text
stringlengths
56
1.16k
[2023-10-25 15:00:59,601::train::INFO] [train] Iter 597065 | loss 0.9518 | loss(rot) 0.0871 | loss(pos) 0.8480 | loss(seq) 0.0167 | grad 6.8789 | lr 0.0000 | time_forward 1.3300 | time_backward 1.4660
[2023-10-25 15:01:09,082::train::INFO] [train] Iter 597066 | loss 1.2609 | loss(rot) 1.2145 | loss(pos) 0.0368 | loss(seq) 0.0095 | grad 3.3005 | lr 0.0000 | time_forward 3.8730 | time_backward 5.6040
[2023-10-25 15:01:17,886::train::INFO] [train] Iter 597067 | loss 1.4793 | loss(rot) 1.3669 | loss(pos) 0.0448 | loss(seq) 0.0675 | grad 5.8782 | lr 0.0000 | time_forward 3.8060 | time_backward 4.9950
[2023-10-25 15:01:25,697::train::INFO] [train] Iter 597068 | loss 0.5800 | loss(rot) 0.1508 | loss(pos) 0.4215 | loss(seq) 0.0077 | grad 5.8334 | lr 0.0000 | time_forward 3.3100 | time_backward 4.4970
[2023-10-25 15:01:33,086::train::INFO] [train] Iter 597069 | loss 1.3893 | loss(rot) 1.2089 | loss(pos) 0.0500 | loss(seq) 0.1305 | grad 85.6618 | lr 0.0000 | time_forward 3.0830 | time_backward 4.3040
[2023-10-25 15:01:42,757::train::INFO] [train] Iter 597070 | loss 0.5497 | loss(rot) 0.2272 | loss(pos) 0.1634 | loss(seq) 0.1591 | grad 2.8928 | lr 0.0000 | time_forward 3.9680 | time_backward 5.6990
[2023-10-25 15:01:45,567::train::INFO] [train] Iter 597071 | loss 1.4292 | loss(rot) 0.7895 | loss(pos) 0.1227 | loss(seq) 0.5170 | grad 4.1386 | lr 0.0000 | time_forward 1.3390 | time_backward 1.4690
[2023-10-25 15:01:54,615::train::INFO] [train] Iter 597072 | loss 0.4220 | loss(rot) 0.1923 | loss(pos) 0.0228 | loss(seq) 0.2069 | grad 2.8637 | lr 0.0000 | time_forward 3.8190 | time_backward 5.2040
[2023-10-25 15:01:56,891::train::INFO] [train] Iter 597073 | loss 0.2051 | loss(rot) 0.0850 | loss(pos) 0.0177 | loss(seq) 0.1023 | grad 1.7969 | lr 0.0000 | time_forward 1.0650 | time_backward 1.2070
[2023-10-25 15:02:05,738::train::INFO] [train] Iter 597074 | loss 1.1363 | loss(rot) 0.8040 | loss(pos) 0.1635 | loss(seq) 0.1689 | grad 7.7447 | lr 0.0000 | time_forward 3.8070 | time_backward 5.0380
[2023-10-25 15:02:13,997::train::INFO] [train] Iter 597075 | loss 0.3961 | loss(rot) 0.1235 | loss(pos) 0.0764 | loss(seq) 0.1963 | grad 3.0352 | lr 0.0000 | time_forward 3.4500 | time_backward 4.8050
[2023-10-25 15:02:23,678::train::INFO] [train] Iter 597076 | loss 0.8228 | loss(rot) 0.3700 | loss(pos) 0.0766 | loss(seq) 0.3762 | grad 3.4929 | lr 0.0000 | time_forward 3.9730 | time_backward 5.7050
[2023-10-25 15:02:26,437::train::INFO] [train] Iter 597077 | loss 0.8880 | loss(rot) 0.5284 | loss(pos) 0.0591 | loss(seq) 0.3005 | grad 4.5657 | lr 0.0000 | time_forward 1.3400 | time_backward 1.4160
[2023-10-25 15:02:34,955::train::INFO] [train] Iter 597078 | loss 0.5838 | loss(rot) 0.2717 | loss(pos) 0.2976 | loss(seq) 0.0145 | grad 6.6921 | lr 0.0000 | time_forward 3.5110 | time_backward 5.0050
[2023-10-25 15:02:43,516::train::INFO] [train] Iter 597079 | loss 0.7506 | loss(rot) 0.6860 | loss(pos) 0.0247 | loss(seq) 0.0399 | grad 2.7401 | lr 0.0000 | time_forward 3.6530 | time_backward 4.9040
[2023-10-25 15:02:51,310::train::INFO] [train] Iter 597080 | loss 0.6474 | loss(rot) 0.5957 | loss(pos) 0.0175 | loss(seq) 0.0342 | grad 6.4159 | lr 0.0000 | time_forward 3.2750 | time_backward 4.5150
[2023-10-25 15:03:00,875::train::INFO] [train] Iter 597081 | loss 0.1858 | loss(rot) 0.1463 | loss(pos) 0.0337 | loss(seq) 0.0058 | grad 3.8064 | lr 0.0000 | time_forward 3.8790 | time_backward 5.6840
[2023-10-25 15:03:03,664::train::INFO] [train] Iter 597082 | loss 0.5872 | loss(rot) 0.1325 | loss(pos) 0.1519 | loss(seq) 0.3029 | grad 4.3613 | lr 0.0000 | time_forward 1.3290 | time_backward 1.4560
[2023-10-25 15:03:13,368::train::INFO] [train] Iter 597083 | loss 0.3645 | loss(rot) 0.3325 | loss(pos) 0.0318 | loss(seq) 0.0001 | grad 2.4161 | lr 0.0000 | time_forward 4.0550 | time_backward 5.6120
[2023-10-25 15:03:15,687::train::INFO] [train] Iter 597084 | loss 0.3309 | loss(rot) 0.0385 | loss(pos) 0.2885 | loss(seq) 0.0039 | grad 3.8634 | lr 0.0000 | time_forward 1.0930 | time_backward 1.2220
[2023-10-25 15:03:23,876::train::INFO] [train] Iter 597085 | loss 1.1622 | loss(rot) 0.9358 | loss(pos) 0.0548 | loss(seq) 0.1716 | grad 4.4188 | lr 0.0000 | time_forward 3.4420 | time_backward 4.7450
[2023-10-25 15:03:26,610::train::INFO] [train] Iter 597086 | loss 0.2762 | loss(rot) 0.2101 | loss(pos) 0.0152 | loss(seq) 0.0509 | grad 2.3016 | lr 0.0000 | time_forward 1.3230 | time_backward 1.4090
[2023-10-25 15:03:29,401::train::INFO] [train] Iter 597087 | loss 1.0672 | loss(rot) 0.8645 | loss(pos) 0.0420 | loss(seq) 0.1607 | grad 3.8591 | lr 0.0000 | time_forward 1.3580 | time_backward 1.4290
[2023-10-25 15:03:38,949::train::INFO] [train] Iter 597088 | loss 0.7413 | loss(rot) 0.4370 | loss(pos) 0.0778 | loss(seq) 0.2265 | grad 3.9729 | lr 0.0000 | time_forward 3.9400 | time_backward 5.6050
[2023-10-25 15:03:46,454::train::INFO] [train] Iter 597089 | loss 2.2746 | loss(rot) 1.9137 | loss(pos) 0.0588 | loss(seq) 0.3021 | grad 4.1563 | lr 0.0000 | time_forward 3.1410 | time_backward 4.3620
[2023-10-25 15:03:53,049::train::INFO] [train] Iter 597090 | loss 1.7021 | loss(rot) 1.3560 | loss(pos) 0.0588 | loss(seq) 0.2873 | grad 5.0377 | lr 0.0000 | time_forward 2.8520 | time_backward 3.7390
[2023-10-25 15:04:02,673::train::INFO] [train] Iter 597091 | loss 0.3922 | loss(rot) 0.3473 | loss(pos) 0.0439 | loss(seq) 0.0010 | grad 3.6651 | lr 0.0000 | time_forward 3.9500 | time_backward 5.6710
[2023-10-25 15:04:12,415::train::INFO] [train] Iter 597092 | loss 1.8340 | loss(rot) 1.2535 | loss(pos) 0.1544 | loss(seq) 0.4261 | grad 22.1216 | lr 0.0000 | time_forward 3.9420 | time_backward 5.7960
[2023-10-25 15:04:21,390::train::INFO] [train] Iter 597093 | loss 0.0968 | loss(rot) 0.0788 | loss(pos) 0.0166 | loss(seq) 0.0015 | grad 1.3241 | lr 0.0000 | time_forward 3.8520 | time_backward 5.1190
[2023-10-25 15:04:29,745::train::INFO] [train] Iter 597094 | loss 1.4844 | loss(rot) 1.4176 | loss(pos) 0.0262 | loss(seq) 0.0406 | grad 5.0713 | lr 0.0000 | time_forward 3.4870 | time_backward 4.8650
[2023-10-25 15:04:38,202::train::INFO] [train] Iter 597095 | loss 0.7061 | loss(rot) 0.3986 | loss(pos) 0.0345 | loss(seq) 0.2729 | grad 4.0001 | lr 0.0000 | time_forward 3.6050 | time_backward 4.8490
[2023-10-25 15:04:47,770::train::INFO] [train] Iter 597096 | loss 1.3720 | loss(rot) 0.0107 | loss(pos) 1.3609 | loss(seq) 0.0004 | grad 11.1964 | lr 0.0000 | time_forward 3.8350 | time_backward 5.7300
[2023-10-25 15:04:51,243::train::INFO] [train] Iter 597097 | loss 1.7883 | loss(rot) 1.7610 | loss(pos) 0.0185 | loss(seq) 0.0088 | grad 4.9295 | lr 0.0000 | time_forward 1.5340 | time_backward 1.9360
[2023-10-25 15:04:54,102::train::INFO] [train] Iter 597098 | loss 1.4019 | loss(rot) 0.8351 | loss(pos) 0.1615 | loss(seq) 0.4053 | grad 3.3032 | lr 0.0000 | time_forward 1.3450 | time_backward 1.5110
[2023-10-25 15:05:03,127::train::INFO] [train] Iter 597099 | loss 0.1192 | loss(rot) 0.0666 | loss(pos) 0.0147 | loss(seq) 0.0379 | grad 1.3488 | lr 0.0000 | time_forward 3.8390 | time_backward 5.1830
[2023-10-25 15:05:12,077::train::INFO] [train] Iter 597100 | loss 0.2933 | loss(rot) 0.1082 | loss(pos) 0.0959 | loss(seq) 0.0892 | grad 2.8562 | lr 0.0000 | time_forward 3.8220 | time_backward 5.1260
[2023-10-25 15:05:21,640::train::INFO] [train] Iter 597101 | loss 0.9631 | loss(rot) 0.6409 | loss(pos) 0.0385 | loss(seq) 0.2837 | grad 5.0674 | lr 0.0000 | time_forward 3.8870 | time_backward 5.6720
[2023-10-25 15:05:31,153::train::INFO] [train] Iter 597102 | loss 0.4388 | loss(rot) 0.1509 | loss(pos) 0.0680 | loss(seq) 0.2198 | grad 2.9135 | lr 0.0000 | time_forward 3.9100 | time_backward 5.5990
[2023-10-25 15:05:40,049::train::INFO] [train] Iter 597103 | loss 0.5761 | loss(rot) 0.2065 | loss(pos) 0.0151 | loss(seq) 0.3544 | grad 4.3907 | lr 0.0000 | time_forward 3.7450 | time_backward 5.1480
[2023-10-25 15:05:42,839::train::INFO] [train] Iter 597104 | loss 1.5694 | loss(rot) 0.9349 | loss(pos) 0.1290 | loss(seq) 0.5055 | grad 5.3373 | lr 0.0000 | time_forward 1.3180 | time_backward 1.4690
[2023-10-25 15:05:52,415::train::INFO] [train] Iter 597105 | loss 1.1200 | loss(rot) 0.7172 | loss(pos) 0.0730 | loss(seq) 0.3298 | grad 3.6768 | lr 0.0000 | time_forward 3.8720 | time_backward 5.7010
[2023-10-25 15:06:01,235::train::INFO] [train] Iter 597106 | loss 1.7605 | loss(rot) 0.1368 | loss(pos) 1.6225 | loss(seq) 0.0012 | grad 13.9476 | lr 0.0000 | time_forward 3.7470 | time_backward 5.0710
[2023-10-25 15:06:06,774::train::INFO] [train] Iter 597107 | loss 0.5963 | loss(rot) 0.1136 | loss(pos) 0.2960 | loss(seq) 0.1866 | grad 4.4675 | lr 0.0000 | time_forward 2.3760 | time_backward 3.1600
[2023-10-25 15:06:15,602::train::INFO] [train] Iter 597108 | loss 0.3299 | loss(rot) 0.2776 | loss(pos) 0.0429 | loss(seq) 0.0095 | grad 3.0224 | lr 0.0000 | time_forward 3.7320 | time_backward 5.0920
[2023-10-25 15:06:22,302::train::INFO] [train] Iter 597109 | loss 0.1221 | loss(rot) 0.0823 | loss(pos) 0.0363 | loss(seq) 0.0035 | grad 1.6452 | lr 0.0000 | time_forward 2.8100 | time_backward 3.8870
[2023-10-25 15:06:25,052::train::INFO] [train] Iter 597110 | loss 0.1942 | loss(rot) 0.0523 | loss(pos) 0.0728 | loss(seq) 0.0692 | grad 2.7317 | lr 0.0000 | time_forward 1.3160 | time_backward 1.4300
[2023-10-25 15:06:29,757::train::INFO] [train] Iter 597111 | loss 1.6527 | loss(rot) 1.1618 | loss(pos) 0.0582 | loss(seq) 0.4327 | grad 4.7021 | lr 0.0000 | time_forward 2.1720 | time_backward 2.5300
[2023-10-25 15:06:37,090::train::INFO] [train] Iter 597112 | loss 1.2423 | loss(rot) 1.2228 | loss(pos) 0.0185 | loss(seq) 0.0009 | grad 4.2030 | lr 0.0000 | time_forward 3.0870 | time_backward 4.2430
[2023-10-25 15:06:44,834::train::INFO] [train] Iter 597113 | loss 0.6907 | loss(rot) 0.1221 | loss(pos) 0.0639 | loss(seq) 0.5046 | grad 3.2993 | lr 0.0000 | time_forward 3.2290 | time_backward 4.5130
[2023-10-25 15:06:53,513::train::INFO] [train] Iter 597114 | loss 0.6123 | loss(rot) 0.0750 | loss(pos) 0.1974 | loss(seq) 0.3398 | grad 4.7583 | lr 0.0000 | time_forward 3.7100 | time_backward 4.9650
[2023-10-25 15:07:03,140::train::INFO] [train] Iter 597115 | loss 0.5612 | loss(rot) 0.3836 | loss(pos) 0.0364 | loss(seq) 0.1413 | grad 2.0032 | lr 0.0000 | time_forward 4.0590 | time_backward 5.5560
[2023-10-25 15:07:11,227::train::INFO] [train] Iter 597116 | loss 3.4960 | loss(rot) 0.3811 | loss(pos) 3.1148 | loss(seq) 0.0001 | grad 19.9533 | lr 0.0000 | time_forward 3.4740 | time_backward 4.6100
[2023-10-25 15:07:14,151::train::INFO] [train] Iter 597117 | loss 0.8075 | loss(rot) 0.7595 | loss(pos) 0.0184 | loss(seq) 0.0296 | grad 7.5157 | lr 0.0000 | time_forward 1.3660 | time_backward 1.5540
[2023-10-25 15:07:16,492::train::INFO] [train] Iter 597118 | loss 0.4855 | loss(rot) 0.1049 | loss(pos) 0.0359 | loss(seq) 0.3447 | grad 3.8777 | lr 0.0000 | time_forward 1.0760 | time_backward 1.2400
[2023-10-25 15:07:26,223::train::INFO] [train] Iter 597119 | loss 0.4329 | loss(rot) 0.0479 | loss(pos) 0.3629 | loss(seq) 0.0222 | grad 4.8542 | lr 0.0000 | time_forward 3.9320 | time_backward 5.7960
[2023-10-25 15:07:35,087::train::INFO] [train] Iter 597120 | loss 1.7212 | loss(rot) 0.7942 | loss(pos) 0.4146 | loss(seq) 0.5125 | grad 4.7064 | lr 0.0000 | time_forward 3.7460 | time_backward 5.1160
[2023-10-25 15:07:44,578::train::INFO] [train] Iter 597121 | loss 0.4133 | loss(rot) 0.2365 | loss(pos) 0.0129 | loss(seq) 0.1638 | grad 17.0419 | lr 0.0000 | time_forward 3.9320 | time_backward 5.5550
[2023-10-25 15:07:47,395::train::INFO] [train] Iter 597122 | loss 0.4430 | loss(rot) 0.3071 | loss(pos) 0.0542 | loss(seq) 0.0818 | grad 3.7311 | lr 0.0000 | time_forward 1.3380 | time_backward 1.4760
[2023-10-25 15:07:55,522::train::INFO] [train] Iter 597123 | loss 0.6014 | loss(rot) 0.1956 | loss(pos) 0.0557 | loss(seq) 0.3501 | grad 3.3337 | lr 0.0000 | time_forward 3.4520 | time_backward 4.6720
[2023-10-25 15:07:58,299::train::INFO] [train] Iter 597124 | loss 0.7814 | loss(rot) 0.2510 | loss(pos) 0.0637 | loss(seq) 0.4668 | grad 3.9444 | lr 0.0000 | time_forward 1.3210 | time_backward 1.4520
[2023-10-25 15:08:07,332::train::INFO] [train] Iter 597125 | loss 0.4230 | loss(rot) 0.1315 | loss(pos) 0.0214 | loss(seq) 0.2702 | grad 2.8210 | lr 0.0000 | time_forward 3.8640 | time_backward 5.1660
[2023-10-25 15:08:16,879::train::INFO] [train] Iter 597126 | loss 0.2302 | loss(rot) 0.1845 | loss(pos) 0.0455 | loss(seq) 0.0002 | grad 2.1453 | lr 0.0000 | time_forward 3.9300 | time_backward 5.6140
[2023-10-25 15:08:20,126::train::INFO] [train] Iter 597127 | loss 0.5000 | loss(rot) 0.0786 | loss(pos) 0.4166 | loss(seq) 0.0048 | grad 3.6965 | lr 0.0000 | time_forward 1.4750 | time_backward 1.7690
[2023-10-25 15:08:27,934::train::INFO] [train] Iter 597128 | loss 2.0176 | loss(rot) 1.9989 | loss(pos) 0.0142 | loss(seq) 0.0046 | grad 4.6275 | lr 0.0000 | time_forward 3.3010 | time_backward 4.4900
[2023-10-25 15:08:37,379::train::INFO] [train] Iter 597129 | loss 1.1406 | loss(rot) 0.0096 | loss(pos) 1.1294 | loss(seq) 0.0016 | grad 8.3149 | lr 0.0000 | time_forward 3.9830 | time_backward 5.4600
[2023-10-25 15:08:45,595::train::INFO] [train] Iter 597130 | loss 0.3277 | loss(rot) 0.1240 | loss(pos) 0.1010 | loss(seq) 0.1027 | grad 4.7536 | lr 0.0000 | time_forward 3.4970 | time_backward 4.7150
[2023-10-25 15:08:48,426::train::INFO] [train] Iter 597131 | loss 0.8580 | loss(rot) 0.4083 | loss(pos) 0.0487 | loss(seq) 0.4010 | grad 2.9334 | lr 0.0000 | time_forward 1.3470 | time_backward 1.4820
[2023-10-25 15:08:51,275::train::INFO] [train] Iter 597132 | loss 0.3286 | loss(rot) 0.0310 | loss(pos) 0.2946 | loss(seq) 0.0030 | grad 5.6915 | lr 0.0000 | time_forward 1.3770 | time_backward 1.4690
[2023-10-25 15:09:00,719::train::INFO] [train] Iter 597133 | loss 0.4800 | loss(rot) 0.0813 | loss(pos) 0.3543 | loss(seq) 0.0444 | grad 5.9831 | lr 0.0000 | time_forward 3.8790 | time_backward 5.5610
[2023-10-25 15:09:09,483::train::INFO] [train] Iter 597134 | loss 0.6687 | loss(rot) 0.0585 | loss(pos) 0.1232 | loss(seq) 0.4870 | grad 3.4691 | lr 0.0000 | time_forward 3.7300 | time_backward 5.0300
[2023-10-25 15:09:12,779::train::INFO] [train] Iter 597135 | loss 1.3329 | loss(rot) 0.8334 | loss(pos) 0.1241 | loss(seq) 0.3755 | grad 3.7052 | lr 0.0000 | time_forward 1.4620 | time_backward 1.8310
[2023-10-25 15:09:15,480::train::INFO] [train] Iter 597136 | loss 0.6019 | loss(rot) 0.0729 | loss(pos) 0.5094 | loss(seq) 0.0196 | grad 9.8511 | lr 0.0000 | time_forward 1.2400 | time_backward 1.4440
[2023-10-25 15:09:22,927::train::INFO] [train] Iter 597137 | loss 1.3684 | loss(rot) 1.0954 | loss(pos) 0.0254 | loss(seq) 0.2476 | grad 4.3527 | lr 0.0000 | time_forward 3.1390 | time_backward 4.2720
[2023-10-25 15:09:32,333::train::INFO] [train] Iter 597138 | loss 0.6601 | loss(rot) 0.0453 | loss(pos) 0.6013 | loss(seq) 0.0135 | grad 7.1608 | lr 0.0000 | time_forward 3.7560 | time_backward 5.6460
[2023-10-25 15:09:42,219::train::INFO] [train] Iter 597139 | loss 0.3478 | loss(rot) 0.1150 | loss(pos) 0.1542 | loss(seq) 0.0786 | grad 3.6855 | lr 0.0000 | time_forward 3.8190 | time_backward 6.0640
[2023-10-25 15:09:45,075::train::INFO] [train] Iter 597140 | loss 0.2034 | loss(rot) 0.1430 | loss(pos) 0.0437 | loss(seq) 0.0166 | grad 2.1049 | lr 0.0000 | time_forward 1.3700 | time_backward 1.4830
[2023-10-25 15:09:54,551::train::INFO] [train] Iter 597141 | loss 0.6750 | loss(rot) 0.6226 | loss(pos) 0.0518 | loss(seq) 0.0006 | grad 3.3480 | lr 0.0000 | time_forward 3.9040 | time_backward 5.5330
[2023-10-25 15:09:57,291::train::INFO] [train] Iter 597142 | loss 0.6505 | loss(rot) 0.3345 | loss(pos) 0.0962 | loss(seq) 0.2198 | grad 3.0337 | lr 0.0000 | time_forward 1.3050 | time_backward 1.4330
[2023-10-25 15:10:06,102::train::INFO] [train] Iter 597143 | loss 0.6639 | loss(rot) 0.5257 | loss(pos) 0.0116 | loss(seq) 0.1266 | grad 4.0699 | lr 0.0000 | time_forward 3.8400 | time_backward 4.9550
[2023-10-25 15:10:13,982::train::INFO] [train] Iter 597144 | loss 0.2111 | loss(rot) 0.1996 | loss(pos) 0.0111 | loss(seq) 0.0005 | grad 3.8607 | lr 0.0000 | time_forward 3.3480 | time_backward 4.5290
[2023-10-25 15:10:23,356::train::INFO] [train] Iter 597145 | loss 0.3367 | loss(rot) 0.0681 | loss(pos) 0.2391 | loss(seq) 0.0295 | grad 3.6181 | lr 0.0000 | time_forward 3.8610 | time_backward 5.5110
[2023-10-25 15:10:31,356::train::INFO] [train] Iter 597146 | loss 0.4910 | loss(rot) 0.1865 | loss(pos) 0.2732 | loss(seq) 0.0313 | grad 4.3755 | lr 0.0000 | time_forward 3.3950 | time_backward 4.6020
[2023-10-25 15:10:40,105::train::INFO] [train] Iter 597147 | loss 0.5831 | loss(rot) 0.4769 | loss(pos) 0.0234 | loss(seq) 0.0828 | grad 25.1060 | lr 0.0000 | time_forward 3.7360 | time_backward 5.0090
[2023-10-25 15:10:48,034::train::INFO] [train] Iter 597148 | loss 1.0604 | loss(rot) 0.7229 | loss(pos) 0.0348 | loss(seq) 0.3028 | grad 12.8723 | lr 0.0000 | time_forward 3.3710 | time_backward 4.5550
[2023-10-25 15:10:56,469::train::INFO] [train] Iter 597149 | loss 7.3790 | loss(rot) 0.0082 | loss(pos) 7.3708 | loss(seq) 0.0000 | grad 52.0496 | lr 0.0000 | time_forward 3.5980 | time_backward 4.8350
[2023-10-25 15:11:02,305::train::INFO] [train] Iter 597150 | loss 0.3269 | loss(rot) 0.0466 | loss(pos) 0.2717 | loss(seq) 0.0086 | grad 4.9249 | lr 0.0000 | time_forward 2.4700 | time_backward 3.3630
[2023-10-25 15:11:10,050::train::INFO] [train] Iter 597151 | loss 2.9018 | loss(rot) 0.0491 | loss(pos) 2.8527 | loss(seq) 0.0000 | grad 18.3485 | lr 0.0000 | time_forward 3.2250 | time_backward 4.5180
[2023-10-25 15:11:19,463::train::INFO] [train] Iter 597152 | loss 0.2167 | loss(rot) 0.1683 | loss(pos) 0.0484 | loss(seq) 0.0000 | grad 2.1561 | lr 0.0000 | time_forward 3.7920 | time_backward 5.6170
[2023-10-25 15:11:22,221::train::INFO] [train] Iter 597153 | loss 0.5223 | loss(rot) 0.4818 | loss(pos) 0.0250 | loss(seq) 0.0155 | grad 4.5475 | lr 0.0000 | time_forward 1.3070 | time_backward 1.4480
[2023-10-25 15:11:25,018::train::INFO] [train] Iter 597154 | loss 0.3747 | loss(rot) 0.0258 | loss(pos) 0.3396 | loss(seq) 0.0093 | grad 6.3358 | lr 0.0000 | time_forward 1.3360 | time_backward 1.4250
[2023-10-25 15:11:33,188::train::INFO] [train] Iter 597155 | loss 1.5414 | loss(rot) 0.9120 | loss(pos) 0.0829 | loss(seq) 0.5465 | grad 3.9298 | lr 0.0000 | time_forward 3.4920 | time_backward 4.6760
[2023-10-25 15:11:42,121::train::INFO] [train] Iter 597156 | loss 1.1090 | loss(rot) 0.7711 | loss(pos) 0.0645 | loss(seq) 0.2734 | grad 6.0072 | lr 0.0000 | time_forward 3.8100 | time_backward 5.1190
[2023-10-25 15:11:50,530::train::INFO] [train] Iter 597157 | loss 1.3894 | loss(rot) 1.3612 | loss(pos) 0.0271 | loss(seq) 0.0010 | grad 3.7531 | lr 0.0000 | time_forward 3.6050 | time_backward 4.8000
[2023-10-25 15:11:57,996::train::INFO] [train] Iter 597158 | loss 0.3408 | loss(rot) 0.1488 | loss(pos) 0.0317 | loss(seq) 0.1604 | grad 3.5237 | lr 0.0000 | time_forward 3.2420 | time_backward 4.2200
[2023-10-25 15:12:05,291::train::INFO] [train] Iter 597159 | loss 2.2110 | loss(rot) 2.1794 | loss(pos) 0.0164 | loss(seq) 0.0151 | grad 3.9238 | lr 0.0000 | time_forward 3.1150 | time_backward 4.1770
[2023-10-25 15:12:13,801::train::INFO] [train] Iter 597160 | loss 1.0404 | loss(rot) 0.3517 | loss(pos) 0.3482 | loss(seq) 0.3404 | grad 2.7777 | lr 0.0000 | time_forward 3.5700 | time_backward 4.9370
[2023-10-25 15:12:21,275::train::INFO] [train] Iter 597161 | loss 2.5935 | loss(rot) 2.5603 | loss(pos) 0.0328 | loss(seq) 0.0004 | grad 4.6123 | lr 0.0000 | time_forward 3.1310 | time_backward 4.3400
[2023-10-25 15:12:29,659::train::INFO] [train] Iter 597162 | loss 0.2387 | loss(rot) 0.0258 | loss(pos) 0.1982 | loss(seq) 0.0147 | grad 2.9393 | lr 0.0000 | time_forward 3.5730 | time_backward 4.8080
[2023-10-25 15:12:39,109::train::INFO] [train] Iter 597163 | loss 1.5496 | loss(rot) 0.9391 | loss(pos) 0.1796 | loss(seq) 0.4309 | grad 4.0156 | lr 0.0000 | time_forward 3.8450 | time_backward 5.6010
[2023-10-25 15:12:48,634::train::INFO] [train] Iter 597164 | loss 1.1624 | loss(rot) 0.5502 | loss(pos) 0.0854 | loss(seq) 0.5268 | grad 3.6130 | lr 0.0000 | time_forward 4.0020 | time_backward 5.5190