text
stringlengths 56
1.16k
|
---|
[2023-10-25 15:34:38,582::train::INFO] [train] Iter 597365 | loss 0.3498 | loss(rot) 0.1027 | loss(pos) 0.0275 | loss(seq) 0.2196 | grad 2.8929 | lr 0.0000 | time_forward 3.0890 | time_backward 4.0750 |
[2023-10-25 15:34:44,813::train::INFO] [train] Iter 597366 | loss 1.5569 | loss(rot) 1.5352 | loss(pos) 0.0182 | loss(seq) 0.0035 | grad 4.3007 | lr 0.0000 | time_forward 2.7330 | time_backward 3.4940 |
[2023-10-25 15:34:51,727::train::INFO] [train] Iter 597367 | loss 1.2818 | loss(rot) 0.7359 | loss(pos) 0.1037 | loss(seq) 0.4422 | grad 4.2796 | lr 0.0000 | time_forward 2.9890 | time_backward 3.9230 |
[2023-10-25 15:34:59,047::train::INFO] [train] Iter 597368 | loss 0.1318 | loss(rot) 0.0197 | loss(pos) 0.1086 | loss(seq) 0.0035 | grad 6.2304 | lr 0.0000 | time_forward 3.1910 | time_backward 4.1260 |
[2023-10-25 15:35:07,135::train::INFO] [train] Iter 597369 | loss 0.5457 | loss(rot) 0.4797 | loss(pos) 0.0282 | loss(seq) 0.0378 | grad 3.0621 | lr 0.0000 | time_forward 3.3680 | time_backward 4.7160 |
[2023-10-25 15:35:14,578::train::INFO] [train] Iter 597370 | loss 0.5754 | loss(rot) 0.5449 | loss(pos) 0.0218 | loss(seq) 0.0087 | grad 4.5743 | lr 0.0000 | time_forward 3.2280 | time_backward 4.2120 |
[2023-10-25 15:35:19,801::train::INFO] [train] Iter 597371 | loss 0.5808 | loss(rot) 0.4577 | loss(pos) 0.0659 | loss(seq) 0.0573 | grad 2.8220 | lr 0.0000 | time_forward 2.2870 | time_backward 2.9320 |
[2023-10-25 15:35:26,634::train::INFO] [train] Iter 597372 | loss 0.6483 | loss(rot) 0.0494 | loss(pos) 0.5903 | loss(seq) 0.0087 | grad 6.4453 | lr 0.0000 | time_forward 2.9620 | time_backward 3.8690 |
[2023-10-25 15:35:33,276::train::INFO] [train] Iter 597373 | loss 0.4797 | loss(rot) 0.1527 | loss(pos) 0.0647 | loss(seq) 0.2622 | grad 3.3085 | lr 0.0000 | time_forward 2.8750 | time_backward 3.7630 |
[2023-10-25 15:35:40,004::train::INFO] [train] Iter 597374 | loss 0.2099 | loss(rot) 0.0947 | loss(pos) 0.0290 | loss(seq) 0.0861 | grad 3.1080 | lr 0.0000 | time_forward 2.9450 | time_backward 3.7800 |
[2023-10-25 15:35:42,611::train::INFO] [train] Iter 597375 | loss 0.8070 | loss(rot) 0.7768 | loss(pos) 0.0300 | loss(seq) 0.0001 | grad 4.8161 | lr 0.0000 | time_forward 1.2300 | time_backward 1.3730 |
[2023-10-25 15:35:50,491::train::INFO] [train] Iter 597376 | loss 2.3316 | loss(rot) 2.2852 | loss(pos) 0.0465 | loss(seq) 0.0000 | grad 5.0711 | lr 0.0000 | time_forward 3.4970 | time_backward 4.3790 |
[2023-10-25 15:35:58,364::train::INFO] [train] Iter 597377 | loss 0.3552 | loss(rot) 0.1203 | loss(pos) 0.0131 | loss(seq) 0.2218 | grad 1.8450 | lr 0.0000 | time_forward 3.2700 | time_backward 4.5990 |
[2023-10-25 15:36:01,062::train::INFO] [train] Iter 597378 | loss 0.5626 | loss(rot) 0.2183 | loss(pos) 0.0357 | loss(seq) 0.3085 | grad 3.0113 | lr 0.0000 | time_forward 1.2810 | time_backward 1.4140 |
[2023-10-25 15:36:03,773::train::INFO] [train] Iter 597379 | loss 1.3763 | loss(rot) 0.7312 | loss(pos) 0.1862 | loss(seq) 0.4589 | grad 4.1156 | lr 0.0000 | time_forward 1.3140 | time_backward 1.3650 |
[2023-10-25 15:36:06,500::train::INFO] [train] Iter 597380 | loss 1.8313 | loss(rot) 1.3591 | loss(pos) 0.0450 | loss(seq) 0.4273 | grad 6.0156 | lr 0.0000 | time_forward 1.3460 | time_backward 1.3780 |
[2023-10-25 15:36:14,569::train::INFO] [train] Iter 597381 | loss 1.0062 | loss(rot) 0.4897 | loss(pos) 0.1270 | loss(seq) 0.3895 | grad 4.0547 | lr 0.0000 | time_forward 3.3560 | time_backward 4.7090 |
[2023-10-25 15:36:22,619::train::INFO] [train] Iter 597382 | loss 1.2723 | loss(rot) 0.8394 | loss(pos) 0.0807 | loss(seq) 0.3521 | grad 3.4559 | lr 0.0000 | time_forward 3.3500 | time_backward 4.6970 |
[2023-10-25 15:36:30,632::train::INFO] [train] Iter 597383 | loss 0.8577 | loss(rot) 0.4545 | loss(pos) 0.0700 | loss(seq) 0.3332 | grad 2.8404 | lr 0.0000 | time_forward 3.3380 | time_backward 4.6710 |
[2023-10-25 15:36:38,064::train::INFO] [train] Iter 597384 | loss 0.6602 | loss(rot) 0.0546 | loss(pos) 0.5313 | loss(seq) 0.0744 | grad 7.2293 | lr 0.0000 | time_forward 3.2340 | time_backward 4.1950 |
[2023-10-25 15:36:40,621::train::INFO] [train] Iter 597385 | loss 0.5929 | loss(rot) 0.1068 | loss(pos) 0.4756 | loss(seq) 0.0105 | grad 7.1976 | lr 0.0000 | time_forward 1.2060 | time_backward 1.3490 |
[2023-10-25 15:36:48,732::train::INFO] [train] Iter 597386 | loss 0.5578 | loss(rot) 0.2415 | loss(pos) 0.0308 | loss(seq) 0.2856 | grad 2.1631 | lr 0.0000 | time_forward 3.3260 | time_backward 4.7810 |
[2023-10-25 15:36:56,753::train::INFO] [train] Iter 597387 | loss 0.5777 | loss(rot) 0.0284 | loss(pos) 0.5447 | loss(seq) 0.0046 | grad 8.8927 | lr 0.0000 | time_forward 3.3390 | time_backward 4.6790 |
[2023-10-25 15:37:04,816::train::INFO] [train] Iter 597388 | loss 0.7994 | loss(rot) 0.4057 | loss(pos) 0.0735 | loss(seq) 0.3202 | grad 3.5403 | lr 0.0000 | time_forward 3.3450 | time_backward 4.7150 |
[2023-10-25 15:37:12,862::train::INFO] [train] Iter 597389 | loss 1.9632 | loss(rot) 1.9091 | loss(pos) 0.0387 | loss(seq) 0.0154 | grad 12.5619 | lr 0.0000 | time_forward 3.3560 | time_backward 4.6870 |
[2023-10-25 15:37:20,868::train::INFO] [train] Iter 597390 | loss 1.1418 | loss(rot) 0.6596 | loss(pos) 0.0982 | loss(seq) 0.3841 | grad 6.2455 | lr 0.0000 | time_forward 3.3520 | time_backward 4.6510 |
[2023-10-25 15:37:28,853::train::INFO] [train] Iter 597391 | loss 1.1104 | loss(rot) 0.7561 | loss(pos) 0.0742 | loss(seq) 0.2801 | grad 3.7964 | lr 0.0000 | time_forward 3.3190 | time_backward 4.6630 |
[2023-10-25 15:37:36,324::train::INFO] [train] Iter 597392 | loss 0.3164 | loss(rot) 0.0461 | loss(pos) 0.2626 | loss(seq) 0.0077 | grad 5.4994 | lr 0.0000 | time_forward 3.2460 | time_backward 4.2230 |
[2023-10-25 15:37:38,531::train::INFO] [train] Iter 597393 | loss 2.3923 | loss(rot) 1.9939 | loss(pos) 0.3145 | loss(seq) 0.0840 | grad 13.0327 | lr 0.0000 | time_forward 1.0300 | time_backward 1.1730 |
[2023-10-25 15:37:46,549::train::INFO] [train] Iter 597394 | loss 0.8304 | loss(rot) 0.7670 | loss(pos) 0.0182 | loss(seq) 0.0452 | grad 3.9182 | lr 0.0000 | time_forward 3.3300 | time_backward 4.6750 |
[2023-10-25 15:37:53,711::train::INFO] [train] Iter 597395 | loss 0.6222 | loss(rot) 0.0687 | loss(pos) 0.5384 | loss(seq) 0.0152 | grad 7.1565 | lr 0.0000 | time_forward 3.0610 | time_backward 4.0970 |
[2023-10-25 15:38:00,620::train::INFO] [train] Iter 597396 | loss 0.4843 | loss(rot) 0.2002 | loss(pos) 0.0222 | loss(seq) 0.2619 | grad 2.5730 | lr 0.0000 | time_forward 2.9340 | time_backward 3.9710 |
[2023-10-25 15:38:08,636::train::INFO] [train] Iter 597397 | loss 1.1937 | loss(rot) 0.1422 | loss(pos) 1.0464 | loss(seq) 0.0051 | grad 5.9860 | lr 0.0000 | time_forward 3.3230 | time_backward 4.6900 |
[2023-10-25 15:38:16,571::train::INFO] [train] Iter 597398 | loss 0.2089 | loss(rot) 0.0673 | loss(pos) 0.1295 | loss(seq) 0.0121 | grad 3.0507 | lr 0.0000 | time_forward 3.2750 | time_backward 4.6570 |
[2023-10-25 15:38:24,594::train::INFO] [train] Iter 597399 | loss 0.2348 | loss(rot) 0.1323 | loss(pos) 0.0174 | loss(seq) 0.0852 | grad 2.3582 | lr 0.0000 | time_forward 3.2690 | time_backward 4.7520 |
[2023-10-25 15:38:27,262::train::INFO] [train] Iter 597400 | loss 0.5627 | loss(rot) 0.4805 | loss(pos) 0.0210 | loss(seq) 0.0612 | grad 2.6507 | lr 0.0000 | time_forward 1.2750 | time_backward 1.3900 |
[2023-10-25 15:38:33,971::train::INFO] [train] Iter 597401 | loss 0.8793 | loss(rot) 0.7863 | loss(pos) 0.0520 | loss(seq) 0.0410 | grad 4.0569 | lr 0.0000 | time_forward 2.8530 | time_backward 3.8530 |
[2023-10-25 15:38:36,658::train::INFO] [train] Iter 597402 | loss 0.3052 | loss(rot) 0.0732 | loss(pos) 0.0761 | loss(seq) 0.1559 | grad 2.6832 | lr 0.0000 | time_forward 1.2940 | time_backward 1.3900 |
[2023-10-25 15:38:43,994::train::INFO] [train] Iter 597403 | loss 0.7160 | loss(rot) 0.1594 | loss(pos) 0.5130 | loss(seq) 0.0436 | grad 5.7200 | lr 0.0000 | time_forward 3.0750 | time_backward 4.2370 |
[2023-10-25 15:38:52,139::train::INFO] [train] Iter 597404 | loss 0.7353 | loss(rot) 0.0690 | loss(pos) 0.2255 | loss(seq) 0.4407 | grad 6.2923 | lr 0.0000 | time_forward 3.3730 | time_backward 4.7700 |
[2023-10-25 15:38:59,506::train::INFO] [train] Iter 597405 | loss 1.9254 | loss(rot) 1.8675 | loss(pos) 0.0499 | loss(seq) 0.0080 | grad 5.0859 | lr 0.0000 | time_forward 3.1140 | time_backward 4.2500 |
[2023-10-25 15:39:07,755::train::INFO] [train] Iter 597406 | loss 0.5081 | loss(rot) 0.2017 | loss(pos) 0.1181 | loss(seq) 0.1882 | grad 3.5598 | lr 0.0000 | time_forward 3.4590 | time_backward 4.7860 |
[2023-10-25 15:39:15,774::train::INFO] [train] Iter 597407 | loss 1.1200 | loss(rot) 0.5877 | loss(pos) 0.2526 | loss(seq) 0.2796 | grad 2.5124 | lr 0.0000 | time_forward 3.3170 | time_backward 4.7000 |
[2023-10-25 15:39:21,057::train::INFO] [train] Iter 597408 | loss 1.5230 | loss(rot) 1.4869 | loss(pos) 0.0355 | loss(seq) 0.0006 | grad 4.8994 | lr 0.0000 | time_forward 2.2670 | time_backward 3.0120 |
[2023-10-25 15:39:24,222::train::INFO] [train] Iter 597409 | loss 0.9517 | loss(rot) 0.7892 | loss(pos) 0.0419 | loss(seq) 0.1206 | grad 4.7113 | lr 0.0000 | time_forward 1.4310 | time_backward 1.7300 |
[2023-10-25 15:39:31,792::train::INFO] [train] Iter 597410 | loss 1.1160 | loss(rot) 0.9988 | loss(pos) 0.0457 | loss(seq) 0.0715 | grad 4.0100 | lr 0.0000 | time_forward 3.2810 | time_backward 4.2720 |
[2023-10-25 15:39:35,014::train::INFO] [train] Iter 597411 | loss 0.3644 | loss(rot) 0.3250 | loss(pos) 0.0388 | loss(seq) 0.0006 | grad 2.6957 | lr 0.0000 | time_forward 1.4370 | time_backward 1.7820 |
[2023-10-25 15:39:37,825::train::INFO] [train] Iter 597412 | loss 0.1189 | loss(rot) 0.0815 | loss(pos) 0.0374 | loss(seq) 0.0000 | grad 1.2516 | lr 0.0000 | time_forward 1.2880 | time_backward 1.5200 |
[2023-10-25 15:39:45,321::train::INFO] [train] Iter 597413 | loss 1.7866 | loss(rot) 1.1833 | loss(pos) 0.2082 | loss(seq) 0.3951 | grad 3.8983 | lr 0.0000 | time_forward 3.2400 | time_backward 4.2510 |
[2023-10-25 15:39:48,011::train::INFO] [train] Iter 597414 | loss 0.1869 | loss(rot) 0.1432 | loss(pos) 0.0104 | loss(seq) 0.0333 | grad 2.7273 | lr 0.0000 | time_forward 1.2870 | time_backward 1.3990 |
[2023-10-25 15:39:56,138::train::INFO] [train] Iter 597415 | loss 1.7153 | loss(rot) 1.1912 | loss(pos) 0.1371 | loss(seq) 0.3871 | grad 3.9039 | lr 0.0000 | time_forward 3.3530 | time_backward 4.7450 |
[2023-10-25 15:40:04,323::train::INFO] [train] Iter 597416 | loss 0.6146 | loss(rot) 0.5899 | loss(pos) 0.0201 | loss(seq) 0.0046 | grad 3.4662 | lr 0.0000 | time_forward 3.5040 | time_backward 4.6770 |
[2023-10-25 15:40:11,077::train::INFO] [train] Iter 597417 | loss 1.7554 | loss(rot) 0.0042 | loss(pos) 1.7508 | loss(seq) 0.0005 | grad 12.4115 | lr 0.0000 | time_forward 2.8990 | time_backward 3.8520 |
[2023-10-25 15:40:13,794::train::INFO] [train] Iter 597418 | loss 0.2192 | loss(rot) 0.1843 | loss(pos) 0.0229 | loss(seq) 0.0120 | grad 2.0191 | lr 0.0000 | time_forward 1.2980 | time_backward 1.4170 |
[2023-10-25 15:40:22,194::train::INFO] [train] Iter 597419 | loss 1.3111 | loss(rot) 1.2955 | loss(pos) 0.0152 | loss(seq) 0.0004 | grad 3.5925 | lr 0.0000 | time_forward 3.1280 | time_backward 5.2680 |
[2023-10-25 15:40:30,301::train::INFO] [train] Iter 597420 | loss 0.6529 | loss(rot) 0.2371 | loss(pos) 0.1892 | loss(seq) 0.2266 | grad 4.7729 | lr 0.0000 | time_forward 3.5940 | time_backward 4.5110 |
[2023-10-25 15:40:38,673::train::INFO] [train] Iter 597421 | loss 0.2784 | loss(rot) 0.0326 | loss(pos) 0.0110 | loss(seq) 0.2348 | grad 1.3900 | lr 0.0000 | time_forward 3.4170 | time_backward 4.9510 |
[2023-10-25 15:40:46,180::train::INFO] [train] Iter 597422 | loss 0.4898 | loss(rot) 0.2729 | loss(pos) 0.0357 | loss(seq) 0.1813 | grad 2.6630 | lr 0.0000 | time_forward 3.1680 | time_backward 4.3370 |
[2023-10-25 15:40:53,418::train::INFO] [train] Iter 597423 | loss 1.5851 | loss(rot) 1.5206 | loss(pos) 0.0645 | loss(seq) 0.0000 | grad 4.3323 | lr 0.0000 | time_forward 3.1510 | time_backward 4.0840 |
[2023-10-25 15:41:01,766::train::INFO] [train] Iter 597424 | loss 0.1925 | loss(rot) 0.0645 | loss(pos) 0.0124 | loss(seq) 0.1155 | grad 1.4555 | lr 0.0000 | time_forward 3.5000 | time_backward 4.8440 |
[2023-10-25 15:41:09,467::train::INFO] [train] Iter 597425 | loss 0.3423 | loss(rot) 0.2065 | loss(pos) 0.0664 | loss(seq) 0.0694 | grad 3.1951 | lr 0.0000 | time_forward 3.3810 | time_backward 4.3170 |
[2023-10-25 15:41:12,145::train::INFO] [train] Iter 597426 | loss 0.4669 | loss(rot) 0.0282 | loss(pos) 0.4361 | loss(seq) 0.0026 | grad 6.8185 | lr 0.0000 | time_forward 1.2770 | time_backward 1.3990 |
[2023-10-25 15:41:14,635::train::INFO] [train] Iter 597427 | loss 1.0548 | loss(rot) 0.3224 | loss(pos) 0.6434 | loss(seq) 0.0890 | grad 4.2769 | lr 0.0000 | time_forward 1.1930 | time_backward 1.2700 |
[2023-10-25 15:41:22,861::train::INFO] [train] Iter 597428 | loss 1.3137 | loss(rot) 0.8693 | loss(pos) 0.1012 | loss(seq) 0.3432 | grad 3.6735 | lr 0.0000 | time_forward 3.5770 | time_backward 4.6330 |
[2023-10-25 15:41:25,089::train::INFO] [train] Iter 597429 | loss 0.3155 | loss(rot) 0.1077 | loss(pos) 0.1411 | loss(seq) 0.0667 | grad 3.4299 | lr 0.0000 | time_forward 1.0330 | time_backward 1.1920 |
[2023-10-25 15:41:26,919::train::INFO] [train] Iter 597430 | loss 2.2156 | loss(rot) 1.4948 | loss(pos) 0.1928 | loss(seq) 0.5281 | grad 6.0847 | lr 0.0000 | time_forward 0.8900 | time_backward 0.9360 |
[2023-10-25 15:41:35,157::train::INFO] [train] Iter 597431 | loss 0.5374 | loss(rot) 0.3746 | loss(pos) 0.0434 | loss(seq) 0.1194 | grad 13.9808 | lr 0.0000 | time_forward 3.4320 | time_backward 4.8030 |
[2023-10-25 15:41:43,489::train::INFO] [train] Iter 597432 | loss 1.3053 | loss(rot) 0.7205 | loss(pos) 0.1825 | loss(seq) 0.4023 | grad 5.6473 | lr 0.0000 | time_forward 3.4760 | time_backward 4.8530 |
[2023-10-25 15:41:51,676::train::INFO] [train] Iter 597433 | loss 0.5966 | loss(rot) 0.1040 | loss(pos) 0.3811 | loss(seq) 0.1115 | grad 4.2073 | lr 0.0000 | time_forward 3.5350 | time_backward 4.6480 |
[2023-10-25 15:41:54,439::train::INFO] [train] Iter 597434 | loss 0.6894 | loss(rot) 0.0188 | loss(pos) 0.0380 | loss(seq) 0.6326 | grad 3.4912 | lr 0.0000 | time_forward 1.3110 | time_backward 1.4490 |
[2023-10-25 15:42:02,178::train::INFO] [train] Iter 597435 | loss 0.7966 | loss(rot) 0.1573 | loss(pos) 0.4007 | loss(seq) 0.2386 | grad 6.2235 | lr 0.0000 | time_forward 3.3440 | time_backward 4.3920 |
[2023-10-25 15:42:09,680::train::INFO] [train] Iter 597436 | loss 2.2307 | loss(rot) 1.3559 | loss(pos) 0.3578 | loss(seq) 0.5170 | grad 7.1992 | lr 0.0000 | time_forward 3.2160 | time_backward 4.2830 |
[2023-10-25 15:42:12,806::train::INFO] [train] Iter 597437 | loss 1.1490 | loss(rot) 0.8486 | loss(pos) 0.0699 | loss(seq) 0.2304 | grad 13.9522 | lr 0.0000 | time_forward 1.4480 | time_backward 1.6740 |
[2023-10-25 15:42:21,224::train::INFO] [train] Iter 597438 | loss 0.3146 | loss(rot) 0.0968 | loss(pos) 0.0381 | loss(seq) 0.1797 | grad 2.2314 | lr 0.0000 | time_forward 3.4500 | time_backward 4.9540 |
[2023-10-25 15:42:28,259::train::INFO] [train] Iter 597439 | loss 0.1993 | loss(rot) 0.0806 | loss(pos) 0.1060 | loss(seq) 0.0128 | grad 3.2176 | lr 0.0000 | time_forward 2.9780 | time_backward 4.0530 |
[2023-10-25 15:42:31,004::train::INFO] [train] Iter 597440 | loss 1.5619 | loss(rot) 1.1609 | loss(pos) 0.2264 | loss(seq) 0.1746 | grad 5.2000 | lr 0.0000 | time_forward 1.3340 | time_backward 1.4080 |
[2023-10-25 15:42:38,069::train::INFO] [train] Iter 597441 | loss 0.9600 | loss(rot) 0.9150 | loss(pos) 0.0438 | loss(seq) 0.0012 | grad 4.3007 | lr 0.0000 | time_forward 3.0380 | time_backward 4.0230 |
[2023-10-25 15:42:41,408::train::INFO] [train] Iter 597442 | loss 0.9103 | loss(rot) 0.5551 | loss(pos) 0.1219 | loss(seq) 0.2333 | grad 2.7868 | lr 0.0000 | time_forward 1.4920 | time_backward 1.8440 |
[2023-10-25 15:42:50,256::train::INFO] [train] Iter 597443 | loss 0.3155 | loss(rot) 0.1610 | loss(pos) 0.0182 | loss(seq) 0.1362 | grad 3.8694 | lr 0.0000 | time_forward 4.0220 | time_backward 4.8240 |
[2023-10-25 15:42:53,411::train::INFO] [train] Iter 597444 | loss 0.6982 | loss(rot) 0.6640 | loss(pos) 0.0279 | loss(seq) 0.0063 | grad 2.5539 | lr 0.0000 | time_forward 1.4330 | time_backward 1.7190 |
[2023-10-25 15:43:01,834::train::INFO] [train] Iter 597445 | loss 0.2858 | loss(rot) 0.0950 | loss(pos) 0.0861 | loss(seq) 0.1047 | grad 2.8762 | lr 0.0000 | time_forward 3.4270 | time_backward 4.9770 |
[2023-10-25 15:43:04,072::train::INFO] [train] Iter 597446 | loss 0.4542 | loss(rot) 0.4308 | loss(pos) 0.0230 | loss(seq) 0.0004 | grad 35.1245 | lr 0.0000 | time_forward 1.0350 | time_backward 1.1990 |
[2023-10-25 15:43:12,447::train::INFO] [train] Iter 597447 | loss 0.9841 | loss(rot) 0.0408 | loss(pos) 0.5349 | loss(seq) 0.4084 | grad 6.5443 | lr 0.0000 | time_forward 3.5100 | time_backward 4.8480 |
[2023-10-25 15:43:20,812::train::INFO] [train] Iter 597448 | loss 1.0431 | loss(rot) 0.6722 | loss(pos) 0.0985 | loss(seq) 0.2724 | grad 3.9323 | lr 0.0000 | time_forward 3.4460 | time_backward 4.9160 |
[2023-10-25 15:43:29,263::train::INFO] [train] Iter 597449 | loss 0.5448 | loss(rot) 0.1014 | loss(pos) 0.0473 | loss(seq) 0.3962 | grad 3.1604 | lr 0.0000 | time_forward 3.4880 | time_backward 4.9590 |
[2023-10-25 15:43:36,420::train::INFO] [train] Iter 597450 | loss 0.2539 | loss(rot) 0.1375 | loss(pos) 0.0496 | loss(seq) 0.0668 | grad 2.8622 | lr 0.0000 | time_forward 3.0920 | time_backward 4.0620 |
[2023-10-25 15:43:44,796::train::INFO] [train] Iter 597451 | loss 0.3771 | loss(rot) 0.0223 | loss(pos) 0.3520 | loss(seq) 0.0027 | grad 11.2993 | lr 0.0000 | time_forward 3.4830 | time_backward 4.8900 |
[2023-10-25 15:43:52,187::train::INFO] [train] Iter 597452 | loss 0.8203 | loss(rot) 0.1393 | loss(pos) 0.6805 | loss(seq) 0.0004 | grad 11.1429 | lr 0.0000 | time_forward 3.1960 | time_backward 4.1930 |
[2023-10-25 15:43:59,605::train::INFO] [train] Iter 597453 | loss 0.8713 | loss(rot) 0.7695 | loss(pos) 0.0174 | loss(seq) 0.0844 | grad 3.3506 | lr 0.0000 | time_forward 3.2350 | time_backward 4.1790 |
[2023-10-25 15:44:02,355::train::INFO] [train] Iter 597454 | loss 0.1699 | loss(rot) 0.1465 | loss(pos) 0.0215 | loss(seq) 0.0020 | grad 1.7892 | lr 0.0000 | time_forward 1.3120 | time_backward 1.4350 |
[2023-10-25 15:44:10,605::train::INFO] [train] Iter 597455 | loss 1.1452 | loss(rot) 0.9039 | loss(pos) 0.0463 | loss(seq) 0.1949 | grad 3.7834 | lr 0.0000 | time_forward 3.4330 | time_backward 4.8140 |
[2023-10-25 15:44:13,344::train::INFO] [train] Iter 597456 | loss 0.2022 | loss(rot) 0.0740 | loss(pos) 0.0199 | loss(seq) 0.1083 | grad 1.4967 | lr 0.0000 | time_forward 1.2920 | time_backward 1.4440 |
[2023-10-25 15:44:21,679::train::INFO] [train] Iter 597457 | loss 0.3686 | loss(rot) 0.1752 | loss(pos) 0.0163 | loss(seq) 0.1771 | grad 2.3302 | lr 0.0000 | time_forward 3.4430 | time_backward 4.8890 |
[2023-10-25 15:44:28,633::train::INFO] [train] Iter 597458 | loss 0.5346 | loss(rot) 0.1600 | loss(pos) 0.2450 | loss(seq) 0.1295 | grad 3.6081 | lr 0.0000 | time_forward 2.9440 | time_backward 4.0080 |
[2023-10-25 15:44:35,716::train::INFO] [train] Iter 597459 | loss 2.4386 | loss(rot) 2.1051 | loss(pos) 0.0883 | loss(seq) 0.2451 | grad 5.2213 | lr 0.0000 | time_forward 3.0020 | time_backward 4.0770 |
[2023-10-25 15:44:38,998::train::INFO] [train] Iter 597460 | loss 0.4661 | loss(rot) 0.3739 | loss(pos) 0.0293 | loss(seq) 0.0629 | grad 16.0980 | lr 0.0000 | time_forward 1.4760 | time_backward 1.8030 |
[2023-10-25 15:44:47,379::train::INFO] [train] Iter 597461 | loss 3.1288 | loss(rot) 0.0015 | loss(pos) 3.1273 | loss(seq) 0.0000 | grad 19.8355 | lr 0.0000 | time_forward 3.4850 | time_backward 4.8810 |
[2023-10-25 15:44:53,936::train::INFO] [train] Iter 597462 | loss 1.3045 | loss(rot) 0.5343 | loss(pos) 0.0748 | loss(seq) 0.6953 | grad 4.0926 | lr 0.0000 | time_forward 2.8660 | time_backward 3.6880 |
[2023-10-25 15:45:02,458::train::INFO] [train] Iter 597463 | loss 0.2448 | loss(rot) 0.0393 | loss(pos) 0.0308 | loss(seq) 0.1747 | grad 2.0545 | lr 0.0000 | time_forward 3.5700 | time_backward 4.9500 |
[2023-10-25 15:45:09,302::train::INFO] [train] Iter 597464 | loss 0.3608 | loss(rot) 0.0247 | loss(pos) 0.3356 | loss(seq) 0.0005 | grad 4.5982 | lr 0.0000 | time_forward 2.9040 | time_backward 3.9360 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.