text
stringlengths 56
1.16k
|
---|
[2023-10-25 15:55:34,617::train::INFO] [train] Iter 597565 | loss 0.2282 | loss(rot) 0.0715 | loss(pos) 0.0485 | loss(seq) 0.1082 | grad 2.9023 | lr 0.0000 | time_forward 3.0740 | time_backward 4.0410 |
[2023-10-25 15:55:42,082::train::INFO] [train] Iter 597566 | loss 0.3430 | loss(rot) 0.0858 | loss(pos) 0.2074 | loss(seq) 0.0498 | grad 3.5173 | lr 0.0000 | time_forward 3.1800 | time_backward 4.2820 |
[2023-10-25 15:55:49,386::train::INFO] [train] Iter 597567 | loss 0.2862 | loss(rot) 0.0994 | loss(pos) 0.0077 | loss(seq) 0.1791 | grad 2.0565 | lr 0.0000 | time_forward 3.1460 | time_backward 4.1550 |
[2023-10-25 15:55:56,859::train::INFO] [train] Iter 597568 | loss 0.7023 | loss(rot) 0.0094 | loss(pos) 0.6917 | loss(seq) 0.0013 | grad 12.9819 | lr 0.0000 | time_forward 3.2250 | time_backward 4.2450 |
[2023-10-25 15:55:59,622::train::INFO] [train] Iter 597569 | loss 0.4805 | loss(rot) 0.0724 | loss(pos) 0.0631 | loss(seq) 0.3450 | grad 4.3203 | lr 0.0000 | time_forward 1.3550 | time_backward 1.4050 |
[2023-10-25 15:56:08,116::train::INFO] [train] Iter 597570 | loss 0.6404 | loss(rot) 0.3188 | loss(pos) 0.0950 | loss(seq) 0.2266 | grad 4.2551 | lr 0.0000 | time_forward 3.5690 | time_backward 4.9210 |
[2023-10-25 15:56:15,164::train::INFO] [train] Iter 597571 | loss 0.2067 | loss(rot) 0.1109 | loss(pos) 0.0319 | loss(seq) 0.0639 | grad 2.7470 | lr 0.0000 | time_forward 3.0240 | time_backward 4.0210 |
[2023-10-25 15:56:23,025::train::INFO] [train] Iter 597572 | loss 0.3211 | loss(rot) 0.0667 | loss(pos) 0.0328 | loss(seq) 0.2215 | grad 2.2524 | lr 0.0000 | time_forward 3.4100 | time_backward 4.4480 |
[2023-10-25 15:56:30,810::train::INFO] [train] Iter 597573 | loss 0.2068 | loss(rot) 0.1287 | loss(pos) 0.0128 | loss(seq) 0.0652 | grad 2.1053 | lr 0.0000 | time_forward 3.3760 | time_backward 4.4070 |
[2023-10-25 15:56:33,533::train::INFO] [train] Iter 597574 | loss 0.7134 | loss(rot) 0.0801 | loss(pos) 0.0274 | loss(seq) 0.6058 | grad 2.8711 | lr 0.0000 | time_forward 1.3080 | time_backward 1.4120 |
[2023-10-25 15:56:41,016::train::INFO] [train] Iter 597575 | loss 0.6617 | loss(rot) 0.0392 | loss(pos) 0.6146 | loss(seq) 0.0078 | grad 4.2321 | lr 0.0000 | time_forward 3.1490 | time_backward 4.3300 |
[2023-10-25 15:56:47,698::train::INFO] [train] Iter 597576 | loss 0.3520 | loss(rot) 0.0639 | loss(pos) 0.1815 | loss(seq) 0.1066 | grad 2.4561 | lr 0.0000 | time_forward 2.9250 | time_backward 3.7550 |
[2023-10-25 15:56:56,477::train::INFO] [train] Iter 597577 | loss 1.4189 | loss(rot) 1.3591 | loss(pos) 0.0436 | loss(seq) 0.0162 | grad 3.6687 | lr 0.0000 | time_forward 3.6190 | time_backward 5.1560 |
[2023-10-25 15:57:05,379::train::INFO] [train] Iter 597578 | loss 0.5792 | loss(rot) 0.2783 | loss(pos) 0.0687 | loss(seq) 0.2322 | grad 3.4730 | lr 0.0000 | time_forward 3.6050 | time_backward 5.2950 |
[2023-10-25 15:57:08,151::train::INFO] [train] Iter 597579 | loss 0.2702 | loss(rot) 0.0676 | loss(pos) 0.1999 | loss(seq) 0.0027 | grad 4.6276 | lr 0.0000 | time_forward 1.2880 | time_backward 1.4810 |
[2023-10-25 15:57:11,033::train::INFO] [train] Iter 597580 | loss 0.4987 | loss(rot) 0.0205 | loss(pos) 0.4730 | loss(seq) 0.0052 | grad 9.9325 | lr 0.0000 | time_forward 1.3410 | time_backward 1.5370 |
[2023-10-25 15:57:19,101::train::INFO] [train] Iter 597581 | loss 0.6570 | loss(rot) 0.4871 | loss(pos) 0.1117 | loss(seq) 0.0583 | grad 2.6034 | lr 0.0000 | time_forward 3.5080 | time_backward 4.5580 |
[2023-10-25 15:57:26,179::train::INFO] [train] Iter 597582 | loss 0.8984 | loss(rot) 0.0398 | loss(pos) 0.8572 | loss(seq) 0.0015 | grad 7.4274 | lr 0.0000 | time_forward 3.0600 | time_backward 4.0150 |
[2023-10-25 15:57:29,068::train::INFO] [train] Iter 597583 | loss 0.1466 | loss(rot) 0.0464 | loss(pos) 0.0694 | loss(seq) 0.0308 | grad 3.3220 | lr 0.0000 | time_forward 1.3830 | time_backward 1.5020 |
[2023-10-25 15:57:36,401::train::INFO] [train] Iter 597584 | loss 0.8544 | loss(rot) 0.3992 | loss(pos) 0.3685 | loss(seq) 0.0867 | grad 4.9280 | lr 0.0000 | time_forward 3.1520 | time_backward 4.1780 |
[2023-10-25 15:57:39,208::train::INFO] [train] Iter 597585 | loss 0.4801 | loss(rot) 0.0587 | loss(pos) 0.4112 | loss(seq) 0.0102 | grad 6.3292 | lr 0.0000 | time_forward 1.2980 | time_backward 1.5050 |
[2023-10-25 15:57:42,128::train::INFO] [train] Iter 597586 | loss 0.2802 | loss(rot) 0.2539 | loss(pos) 0.0263 | loss(seq) 0.0000 | grad 2.1363 | lr 0.0000 | time_forward 1.3140 | time_backward 1.6040 |
[2023-10-25 15:57:44,869::train::INFO] [train] Iter 597587 | loss 1.8019 | loss(rot) 1.7697 | loss(pos) 0.0313 | loss(seq) 0.0009 | grad 4.1320 | lr 0.0000 | time_forward 1.2970 | time_backward 1.4240 |
[2023-10-25 15:57:52,439::train::INFO] [train] Iter 597588 | loss 0.3133 | loss(rot) 0.0844 | loss(pos) 0.0461 | loss(seq) 0.1828 | grad 2.2957 | lr 0.0000 | time_forward 3.1200 | time_backward 4.4470 |
[2023-10-25 15:58:01,692::train::INFO] [train] Iter 597589 | loss 0.8533 | loss(rot) 0.7907 | loss(pos) 0.0448 | loss(seq) 0.0177 | grad 3.8036 | lr 0.0000 | time_forward 3.7780 | time_backward 5.4730 |
[2023-10-25 15:58:10,747::train::INFO] [train] Iter 597590 | loss 0.7381 | loss(rot) 0.1955 | loss(pos) 0.0727 | loss(seq) 0.4700 | grad 3.6918 | lr 0.0000 | time_forward 3.8150 | time_backward 5.2370 |
[2023-10-25 15:58:19,968::train::INFO] [train] Iter 597591 | loss 0.5233 | loss(rot) 0.4244 | loss(pos) 0.0989 | loss(seq) 0.0000 | grad 2.8592 | lr 0.0000 | time_forward 3.8890 | time_backward 5.3280 |
[2023-10-25 15:58:26,424::train::INFO] [train] Iter 597592 | loss 0.2894 | loss(rot) 0.0870 | loss(pos) 0.0445 | loss(seq) 0.1578 | grad 3.2000 | lr 0.0000 | time_forward 2.8170 | time_backward 3.6350 |
[2023-10-25 15:58:35,222::train::INFO] [train] Iter 597593 | loss 1.9073 | loss(rot) 1.0485 | loss(pos) 0.2540 | loss(seq) 0.6048 | grad 5.1745 | lr 0.0000 | time_forward 3.6330 | time_backward 5.1620 |
[2023-10-25 15:58:38,066::train::INFO] [train] Iter 597594 | loss 0.9809 | loss(rot) 0.9154 | loss(pos) 0.0240 | loss(seq) 0.0414 | grad 3.4592 | lr 0.0000 | time_forward 1.3420 | time_backward 1.4990 |
[2023-10-25 15:58:45,955::train::INFO] [train] Iter 597595 | loss 0.5166 | loss(rot) 0.2938 | loss(pos) 0.1135 | loss(seq) 0.1093 | grad 3.5334 | lr 0.0000 | time_forward 3.4660 | time_backward 4.4190 |
[2023-10-25 15:58:55,379::train::INFO] [train] Iter 597596 | loss 2.3345 | loss(rot) 2.1747 | loss(pos) 0.0984 | loss(seq) 0.0614 | grad 3.6639 | lr 0.0000 | time_forward 4.0360 | time_backward 5.3860 |
[2023-10-25 15:59:05,757::train::INFO] [train] Iter 597597 | loss 1.3904 | loss(rot) 1.3617 | loss(pos) 0.0227 | loss(seq) 0.0060 | grad 4.8663 | lr 0.0000 | time_forward 5.6510 | time_backward 4.7220 |
[2023-10-25 15:59:25,694::train::INFO] [train] Iter 597598 | loss 0.8139 | loss(rot) 0.5663 | loss(pos) 0.0447 | loss(seq) 0.2029 | grad 23.1670 | lr 0.0000 | time_forward 13.7870 | time_backward 6.1470 |
[2023-10-25 15:59:30,673::train::INFO] [train] Iter 597599 | loss 0.5425 | loss(rot) 0.0550 | loss(pos) 0.4859 | loss(seq) 0.0016 | grad 9.0344 | lr 0.0000 | time_forward 2.1490 | time_backward 2.8260 |
[2023-10-25 15:59:38,276::train::INFO] [train] Iter 597600 | loss 0.7215 | loss(rot) 0.2749 | loss(pos) 0.1271 | loss(seq) 0.3195 | grad 5.3015 | lr 0.0000 | time_forward 3.3220 | time_backward 4.2780 |
[2023-10-25 15:59:40,623::train::INFO] [train] Iter 597601 | loss 0.9254 | loss(rot) 0.2247 | loss(pos) 0.4111 | loss(seq) 0.2896 | grad 5.0196 | lr 0.0000 | time_forward 1.0280 | time_backward 1.3150 |
[2023-10-25 15:59:43,354::train::INFO] [train] Iter 597602 | loss 0.2354 | loss(rot) 0.0943 | loss(pos) 0.0943 | loss(seq) 0.0468 | grad 2.4896 | lr 0.0000 | time_forward 1.3050 | time_backward 1.4240 |
[2023-10-25 15:59:51,305::train::INFO] [train] Iter 597603 | loss 1.1287 | loss(rot) 0.5680 | loss(pos) 0.0961 | loss(seq) 0.4645 | grad 4.7231 | lr 0.0000 | time_forward 3.2740 | time_backward 4.6730 |
[2023-10-25 15:59:59,588::train::INFO] [train] Iter 597604 | loss 1.2884 | loss(rot) 0.9415 | loss(pos) 0.0545 | loss(seq) 0.2925 | grad 17.8317 | lr 0.0000 | time_forward 3.3890 | time_backward 4.8920 |
[2023-10-25 16:00:06,110::train::INFO] [train] Iter 597605 | loss 0.7808 | loss(rot) 0.1160 | loss(pos) 0.6372 | loss(seq) 0.0277 | grad 4.4403 | lr 0.0000 | time_forward 2.7310 | time_backward 3.7870 |
[2023-10-25 16:00:13,531::train::INFO] [train] Iter 597606 | loss 0.4764 | loss(rot) 0.0935 | loss(pos) 0.1454 | loss(seq) 0.2375 | grad 2.8518 | lr 0.0000 | time_forward 3.2410 | time_backward 4.1750 |
[2023-10-25 16:00:19,877::train::INFO] [train] Iter 597607 | loss 1.0789 | loss(rot) 1.0599 | loss(pos) 0.0141 | loss(seq) 0.0049 | grad 6.3629 | lr 0.0000 | time_forward 2.7270 | time_backward 3.6170 |
[2023-10-25 16:00:27,081::train::INFO] [train] Iter 597608 | loss 0.2390 | loss(rot) 0.0426 | loss(pos) 0.1879 | loss(seq) 0.0085 | grad 4.6729 | lr 0.0000 | time_forward 3.2030 | time_backward 3.9960 |
[2023-10-25 16:00:33,885::train::INFO] [train] Iter 597609 | loss 0.5668 | loss(rot) 0.0613 | loss(pos) 0.1977 | loss(seq) 0.3079 | grad 3.0894 | lr 0.0000 | time_forward 2.9760 | time_backward 3.8260 |
[2023-10-25 16:00:40,528::train::INFO] [train] Iter 597610 | loss 0.3988 | loss(rot) 0.0869 | loss(pos) 0.0146 | loss(seq) 0.2973 | grad 2.7294 | lr 0.0000 | time_forward 2.8130 | time_backward 3.8270 |
[2023-10-25 16:00:48,538::train::INFO] [train] Iter 597611 | loss 1.6792 | loss(rot) 1.5365 | loss(pos) 0.0689 | loss(seq) 0.0737 | grad 18.6535 | lr 0.0000 | time_forward 3.3640 | time_backward 4.6430 |
[2023-10-25 16:00:56,593::train::INFO] [train] Iter 597612 | loss 0.4926 | loss(rot) 0.0985 | loss(pos) 0.0326 | loss(seq) 0.3615 | grad 2.4788 | lr 0.0000 | time_forward 3.3440 | time_backward 4.7080 |
[2023-10-25 16:01:03,629::train::INFO] [train] Iter 597613 | loss 0.4358 | loss(rot) 0.1656 | loss(pos) 0.0132 | loss(seq) 0.2570 | grad 3.7191 | lr 0.0000 | time_forward 3.0460 | time_backward 3.9870 |
[2023-10-25 16:01:10,671::train::INFO] [train] Iter 597614 | loss 0.3813 | loss(rot) 0.1118 | loss(pos) 0.0387 | loss(seq) 0.2308 | grad 1.8441 | lr 0.0000 | time_forward 3.0860 | time_backward 3.9510 |
[2023-10-25 16:01:18,855::train::INFO] [train] Iter 597615 | loss 0.3039 | loss(rot) 0.0879 | loss(pos) 0.0860 | loss(seq) 0.1300 | grad 2.3895 | lr 0.0000 | time_forward 3.3760 | time_backward 4.8030 |
[2023-10-25 16:01:26,984::train::INFO] [train] Iter 597616 | loss 0.4676 | loss(rot) 0.2244 | loss(pos) 0.1846 | loss(seq) 0.0586 | grad 10.4010 | lr 0.0000 | time_forward 3.3970 | time_backward 4.7290 |
[2023-10-25 16:01:35,144::train::INFO] [train] Iter 597617 | loss 0.5792 | loss(rot) 0.2873 | loss(pos) 0.0497 | loss(seq) 0.2423 | grad 2.7487 | lr 0.0000 | time_forward 3.4010 | time_backward 4.7550 |
[2023-10-25 16:01:42,314::train::INFO] [train] Iter 597618 | loss 0.3468 | loss(rot) 0.1393 | loss(pos) 0.0324 | loss(seq) 0.1751 | grad 2.0448 | lr 0.0000 | time_forward 3.1040 | time_backward 4.0620 |
[2023-10-25 16:01:49,170::train::INFO] [train] Iter 597619 | loss 1.7614 | loss(rot) 1.4921 | loss(pos) 0.0405 | loss(seq) 0.2288 | grad 5.2944 | lr 0.0000 | time_forward 2.9840 | time_backward 3.8680 |
[2023-10-25 16:01:52,024::train::INFO] [train] Iter 597620 | loss 0.9017 | loss(rot) 0.8731 | loss(pos) 0.0286 | loss(seq) 0.0000 | grad 39.1865 | lr 0.0000 | time_forward 1.3700 | time_backward 1.4810 |
[2023-10-25 16:01:59,200::train::INFO] [train] Iter 597621 | loss 0.3444 | loss(rot) 0.1658 | loss(pos) 0.0222 | loss(seq) 0.1564 | grad 2.4599 | lr 0.0000 | time_forward 3.1470 | time_backward 3.9930 |
[2023-10-25 16:02:06,683::train::INFO] [train] Iter 597622 | loss 0.2733 | loss(rot) 0.0732 | loss(pos) 0.1762 | loss(seq) 0.0239 | grad 5.0158 | lr 0.0000 | time_forward 3.2760 | time_backward 4.2030 |
[2023-10-25 16:02:14,718::train::INFO] [train] Iter 597623 | loss 0.5264 | loss(rot) 0.3538 | loss(pos) 0.0290 | loss(seq) 0.1437 | grad 3.0249 | lr 0.0000 | time_forward 3.3250 | time_backward 4.7080 |
[2023-10-25 16:02:22,384::train::INFO] [train] Iter 597624 | loss 0.4226 | loss(rot) 0.2030 | loss(pos) 0.0353 | loss(seq) 0.1843 | grad 2.6669 | lr 0.0000 | time_forward 3.3280 | time_backward 4.3340 |
[2023-10-25 16:02:29,062::train::INFO] [train] Iter 597625 | loss 0.2548 | loss(rot) 0.0921 | loss(pos) 0.0528 | loss(seq) 0.1099 | grad 2.6791 | lr 0.0000 | time_forward 2.8840 | time_backward 3.7910 |
[2023-10-25 16:02:36,495::train::INFO] [train] Iter 597626 | loss 0.8391 | loss(rot) 0.3659 | loss(pos) 0.0451 | loss(seq) 0.4281 | grad 4.3058 | lr 0.0000 | time_forward 3.1580 | time_backward 4.2710 |
[2023-10-25 16:02:43,665::train::INFO] [train] Iter 597627 | loss 1.1245 | loss(rot) 0.7376 | loss(pos) 0.0529 | loss(seq) 0.3340 | grad 4.6797 | lr 0.0000 | time_forward 3.0490 | time_backward 4.1180 |
[2023-10-25 16:02:50,587::train::INFO] [train] Iter 597628 | loss 0.6330 | loss(rot) 0.2037 | loss(pos) 0.0432 | loss(seq) 0.3861 | grad 4.0396 | lr 0.0000 | time_forward 2.9920 | time_backward 3.9260 |
[2023-10-25 16:02:58,886::train::INFO] [train] Iter 597629 | loss 0.3380 | loss(rot) 0.1711 | loss(pos) 0.0439 | loss(seq) 0.1230 | grad 2.4424 | lr 0.0000 | time_forward 3.4200 | time_backward 4.8760 |
[2023-10-25 16:03:01,922::train::INFO] [train] Iter 597630 | loss 0.2008 | loss(rot) 0.1821 | loss(pos) 0.0184 | loss(seq) 0.0003 | grad 2.9332 | lr 0.0000 | time_forward 1.3830 | time_backward 1.6500 |
[2023-10-25 16:03:10,164::train::INFO] [train] Iter 597631 | loss 0.7941 | loss(rot) 0.7423 | loss(pos) 0.0402 | loss(seq) 0.0116 | grad 5.1104 | lr 0.0000 | time_forward 3.3890 | time_backward 4.8500 |
[2023-10-25 16:03:17,607::train::INFO] [train] Iter 597632 | loss 0.2012 | loss(rot) 0.0489 | loss(pos) 0.0194 | loss(seq) 0.1328 | grad 1.9307 | lr 0.0000 | time_forward 3.1410 | time_backward 4.2990 |
[2023-10-25 16:03:20,582::train::INFO] [train] Iter 597633 | loss 0.8466 | loss(rot) 0.6738 | loss(pos) 0.0129 | loss(seq) 0.1599 | grad 34.1327 | lr 0.0000 | time_forward 1.3880 | time_backward 1.5840 |
[2023-10-25 16:03:23,400::train::INFO] [train] Iter 597634 | loss 0.5289 | loss(rot) 0.1820 | loss(pos) 0.0210 | loss(seq) 0.3259 | grad 5.3776 | lr 0.0000 | time_forward 1.3260 | time_backward 1.4900 |
[2023-10-25 16:03:31,839::train::INFO] [train] Iter 597635 | loss 0.5408 | loss(rot) 0.1306 | loss(pos) 0.4028 | loss(seq) 0.0074 | grad 5.2801 | lr 0.0000 | time_forward 3.5430 | time_backward 4.8810 |
[2023-10-25 16:03:39,031::train::INFO] [train] Iter 597636 | loss 0.3920 | loss(rot) 0.2202 | loss(pos) 0.0261 | loss(seq) 0.1458 | grad 3.4198 | lr 0.0000 | time_forward 3.0820 | time_backward 4.1070 |
[2023-10-25 16:03:47,292::train::INFO] [train] Iter 597637 | loss 0.7037 | loss(rot) 0.2514 | loss(pos) 0.0985 | loss(seq) 0.3537 | grad 3.7122 | lr 0.0000 | time_forward 3.4200 | time_backward 4.8370 |
[2023-10-25 16:03:50,175::train::INFO] [train] Iter 597638 | loss 0.3528 | loss(rot) 0.2379 | loss(pos) 0.0469 | loss(seq) 0.0680 | grad 3.0519 | lr 0.0000 | time_forward 1.3520 | time_backward 1.5290 |
[2023-10-25 16:03:53,054::train::INFO] [train] Iter 597639 | loss 1.4412 | loss(rot) 1.2506 | loss(pos) 0.0346 | loss(seq) 0.1560 | grad 3.2186 | lr 0.0000 | time_forward 1.3700 | time_backward 1.5050 |
[2023-10-25 16:04:01,644::train::INFO] [train] Iter 597640 | loss 0.8086 | loss(rot) 0.3544 | loss(pos) 0.0365 | loss(seq) 0.4176 | grad 48.0817 | lr 0.0000 | time_forward 3.4940 | time_backward 5.0930 |
[2023-10-25 16:04:07,711::train::INFO] [train] Iter 597641 | loss 2.3304 | loss(rot) 0.1294 | loss(pos) 2.1997 | loss(seq) 0.0013 | grad 9.3196 | lr 0.0000 | time_forward 2.6020 | time_backward 3.4620 |
[2023-10-25 16:04:15,804::train::INFO] [train] Iter 597642 | loss 0.9058 | loss(rot) 0.8588 | loss(pos) 0.0306 | loss(seq) 0.0164 | grad 3.1608 | lr 0.0000 | time_forward 3.3780 | time_backward 4.7120 |
[2023-10-25 16:04:21,933::train::INFO] [train] Iter 597643 | loss 1.5541 | loss(rot) 1.3064 | loss(pos) 0.0948 | loss(seq) 0.1529 | grad 8.9639 | lr 0.0000 | time_forward 2.6790 | time_backward 3.4470 |
[2023-10-25 16:04:29,294::train::INFO] [train] Iter 597644 | loss 0.2739 | loss(rot) 0.0773 | loss(pos) 0.1366 | loss(seq) 0.0600 | grad 3.0292 | lr 0.0000 | time_forward 3.1710 | time_backward 4.1880 |
[2023-10-25 16:04:36,896::train::INFO] [train] Iter 597645 | loss 0.3308 | loss(rot) 0.2962 | loss(pos) 0.0309 | loss(seq) 0.0037 | grad 4.5934 | lr 0.0000 | time_forward 3.2990 | time_backward 4.2990 |
[2023-10-25 16:04:39,649::train::INFO] [train] Iter 597646 | loss 0.2686 | loss(rot) 0.1705 | loss(pos) 0.0224 | loss(seq) 0.0758 | grad 2.9108 | lr 0.0000 | time_forward 1.2960 | time_backward 1.4540 |
[2023-10-25 16:04:48,121::train::INFO] [train] Iter 597647 | loss 1.1788 | loss(rot) 0.7554 | loss(pos) 0.1401 | loss(seq) 0.2833 | grad 4.2856 | lr 0.0000 | time_forward 3.4690 | time_backward 4.9850 |
[2023-10-25 16:04:51,371::train::INFO] [train] Iter 597648 | loss 0.4080 | loss(rot) 0.0762 | loss(pos) 0.0920 | loss(seq) 0.2397 | grad 2.4646 | lr 0.0000 | time_forward 1.4860 | time_backward 1.7600 |
[2023-10-25 16:04:54,212::train::INFO] [train] Iter 597649 | loss 1.8097 | loss(rot) 1.5148 | loss(pos) 0.0823 | loss(seq) 0.2127 | grad 8.1499 | lr 0.0000 | time_forward 1.3500 | time_backward 1.4770 |
[2023-10-25 16:05:01,333::train::INFO] [train] Iter 597650 | loss 0.8276 | loss(rot) 0.5490 | loss(pos) 0.0740 | loss(seq) 0.2046 | grad 2.8894 | lr 0.0000 | time_forward 3.0750 | time_backward 4.0440 |
[2023-10-25 16:05:09,110::train::INFO] [train] Iter 597651 | loss 0.6140 | loss(rot) 0.2997 | loss(pos) 0.0968 | loss(seq) 0.2175 | grad 3.3517 | lr 0.0000 | time_forward 3.3440 | time_backward 4.4290 |
[2023-10-25 16:05:15,637::train::INFO] [train] Iter 597652 | loss 0.2304 | loss(rot) 0.0473 | loss(pos) 0.0452 | loss(seq) 0.1379 | grad 2.1310 | lr 0.0000 | time_forward 2.9000 | time_backward 3.6240 |
[2023-10-25 16:05:18,295::train::INFO] [train] Iter 597653 | loss 0.9289 | loss(rot) 0.4768 | loss(pos) 0.0348 | loss(seq) 0.4174 | grad 2.3679 | lr 0.0000 | time_forward 1.2410 | time_backward 1.4140 |
[2023-10-25 16:05:25,390::train::INFO] [train] Iter 597654 | loss 2.0432 | loss(rot) 1.2869 | loss(pos) 0.2691 | loss(seq) 0.4871 | grad 4.4887 | lr 0.0000 | time_forward 2.9970 | time_backward 4.0940 |
[2023-10-25 16:05:31,935::train::INFO] [train] Iter 597655 | loss 1.6677 | loss(rot) 0.0064 | loss(pos) 1.6612 | loss(seq) 0.0001 | grad 28.9155 | lr 0.0000 | time_forward 2.8810 | time_backward 3.6620 |
[2023-10-25 16:05:34,268::train::INFO] [train] Iter 597656 | loss 0.7093 | loss(rot) 0.2854 | loss(pos) 0.2513 | loss(seq) 0.1725 | grad 3.2576 | lr 0.0000 | time_forward 1.0730 | time_backward 1.2560 |
[2023-10-25 16:05:41,814::train::INFO] [train] Iter 597657 | loss 0.5467 | loss(rot) 0.3093 | loss(pos) 0.0130 | loss(seq) 0.2244 | grad 3.7271 | lr 0.0000 | time_forward 3.2940 | time_backward 4.2490 |
[2023-10-25 16:05:47,632::train::INFO] [train] Iter 597658 | loss 0.9789 | loss(rot) 0.0242 | loss(pos) 0.9541 | loss(seq) 0.0005 | grad 13.5169 | lr 0.0000 | time_forward 2.4970 | time_backward 3.3180 |
[2023-10-25 16:05:50,866::train::INFO] [train] Iter 597659 | loss 1.8590 | loss(rot) 1.8376 | loss(pos) 0.0213 | loss(seq) 0.0001 | grad 6.3723 | lr 0.0000 | time_forward 1.4590 | time_backward 1.7640 |
[2023-10-25 16:05:59,131::train::INFO] [train] Iter 597660 | loss 0.4197 | loss(rot) 0.0206 | loss(pos) 0.3956 | loss(seq) 0.0035 | grad 9.7945 | lr 0.0000 | time_forward 3.4960 | time_backward 4.7560 |
[2023-10-25 16:06:06,880::train::INFO] [train] Iter 597661 | loss 0.3644 | loss(rot) 0.1933 | loss(pos) 0.1224 | loss(seq) 0.0488 | grad 3.8372 | lr 0.0000 | time_forward 3.4180 | time_backward 4.3280 |
[2023-10-25 16:06:15,144::train::INFO] [train] Iter 597662 | loss 0.3697 | loss(rot) 0.2375 | loss(pos) 0.0202 | loss(seq) 0.1121 | grad 4.6223 | lr 0.0000 | time_forward 3.4390 | time_backward 4.8220 |
[2023-10-25 16:06:23,578::train::INFO] [train] Iter 597663 | loss 0.2258 | loss(rot) 0.1888 | loss(pos) 0.0364 | loss(seq) 0.0006 | grad 1.8578 | lr 0.0000 | time_forward 3.4170 | time_backward 5.0130 |
[2023-10-25 16:06:26,371::train::INFO] [train] Iter 597664 | loss 0.1636 | loss(rot) 0.0868 | loss(pos) 0.0150 | loss(seq) 0.0617 | grad 1.5660 | lr 0.0000 | time_forward 1.3530 | time_backward 1.4370 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.