text
stringlengths 56
1.16k
|
---|
[2023-10-25 16:15:42,214::train::INFO] [train] Iter 597765 | loss 0.2318 | loss(rot) 0.2039 | loss(pos) 0.0171 | loss(seq) 0.0108 | grad 1.7040 | lr 0.0000 | time_forward 1.4290 | time_backward 1.4790 |
[2023-10-25 16:15:50,546::train::INFO] [train] Iter 597766 | loss 0.5014 | loss(rot) 0.1284 | loss(pos) 0.0878 | loss(seq) 0.2852 | grad 3.1365 | lr 0.0000 | time_forward 3.5590 | time_backward 4.7700 |
[2023-10-25 16:15:59,663::train::INFO] [train] Iter 597767 | loss 0.4525 | loss(rot) 0.2353 | loss(pos) 0.0306 | loss(seq) 0.1867 | grad 3.7927 | lr 0.0000 | time_forward 3.7080 | time_backward 5.4050 |
[2023-10-25 16:16:08,696::train::INFO] [train] Iter 597768 | loss 0.4341 | loss(rot) 0.1705 | loss(pos) 0.1032 | loss(seq) 0.1604 | grad 3.8920 | lr 0.0000 | time_forward 3.6800 | time_backward 5.3500 |
[2023-10-25 16:16:16,236::train::INFO] [train] Iter 597769 | loss 0.5869 | loss(rot) 0.3031 | loss(pos) 0.1477 | loss(seq) 0.1361 | grad 3.7715 | lr 0.0000 | time_forward 3.1270 | time_backward 4.4090 |
[2023-10-25 16:16:24,346::train::INFO] [train] Iter 597770 | loss 0.5355 | loss(rot) 0.2207 | loss(pos) 0.0334 | loss(seq) 0.2814 | grad 3.9640 | lr 0.0000 | time_forward 3.4560 | time_backward 4.6500 |
[2023-10-25 16:16:33,494::train::INFO] [train] Iter 597771 | loss 0.9148 | loss(rot) 0.7882 | loss(pos) 0.0709 | loss(seq) 0.0557 | grad 4.8032 | lr 0.0000 | time_forward 3.8080 | time_backward 5.3380 |
[2023-10-25 16:16:42,528::train::INFO] [train] Iter 597772 | loss 0.5055 | loss(rot) 0.3187 | loss(pos) 0.1495 | loss(seq) 0.0372 | grad 3.0221 | lr 0.0000 | time_forward 3.6970 | time_backward 5.3330 |
[2023-10-25 16:16:51,861::train::INFO] [train] Iter 597773 | loss 0.2472 | loss(rot) 0.1832 | loss(pos) 0.0239 | loss(seq) 0.0402 | grad 2.7895 | lr 0.0000 | time_forward 3.7850 | time_backward 5.5460 |
[2023-10-25 16:17:00,045::train::INFO] [train] Iter 597774 | loss 2.5382 | loss(rot) 2.4165 | loss(pos) 0.0778 | loss(seq) 0.0438 | grad 3.7909 | lr 0.0000 | time_forward 3.6150 | time_backward 4.5650 |
[2023-10-25 16:17:07,772::train::INFO] [train] Iter 597775 | loss 0.6472 | loss(rot) 0.6009 | loss(pos) 0.0368 | loss(seq) 0.0095 | grad 5.7926 | lr 0.0000 | time_forward 3.2440 | time_backward 4.4800 |
[2023-10-25 16:17:16,975::train::INFO] [train] Iter 597776 | loss 1.0190 | loss(rot) 0.5666 | loss(pos) 0.0827 | loss(seq) 0.3697 | grad 3.4221 | lr 0.0000 | time_forward 4.0280 | time_backward 5.1710 |
[2023-10-25 16:17:19,688::train::INFO] [train] Iter 597777 | loss 0.6173 | loss(rot) 0.1774 | loss(pos) 0.0347 | loss(seq) 0.4052 | grad 3.4907 | lr 0.0000 | time_forward 1.3010 | time_backward 1.4100 |
[2023-10-25 16:17:22,530::train::INFO] [train] Iter 597778 | loss 0.1337 | loss(rot) 0.1123 | loss(pos) 0.0144 | loss(seq) 0.0070 | grad 2.0534 | lr 0.0000 | time_forward 1.3770 | time_backward 1.4610 |
[2023-10-25 16:17:31,614::train::INFO] [train] Iter 597779 | loss 0.5747 | loss(rot) 0.2955 | loss(pos) 0.0421 | loss(seq) 0.2372 | grad 3.8004 | lr 0.0000 | time_forward 3.7660 | time_backward 5.3160 |
[2023-10-25 16:17:40,168::train::INFO] [train] Iter 597780 | loss 0.5936 | loss(rot) 0.5543 | loss(pos) 0.0268 | loss(seq) 0.0125 | grad 5.1191 | lr 0.0000 | time_forward 3.6570 | time_backward 4.6560 |
[2023-10-25 16:17:48,055::train::INFO] [train] Iter 597781 | loss 0.8025 | loss(rot) 0.7187 | loss(pos) 0.0265 | loss(seq) 0.0573 | grad 2.0772 | lr 0.0000 | time_forward 3.3490 | time_backward 4.5350 |
[2023-10-25 16:17:50,804::train::INFO] [train] Iter 597782 | loss 0.1227 | loss(rot) 0.1134 | loss(pos) 0.0088 | loss(seq) 0.0006 | grad 1.4462 | lr 0.0000 | time_forward 1.3160 | time_backward 1.4300 |
[2023-10-25 16:17:53,614::train::INFO] [train] Iter 597783 | loss 1.0131 | loss(rot) 0.5897 | loss(pos) 0.0267 | loss(seq) 0.3967 | grad 3.6299 | lr 0.0000 | time_forward 1.3480 | time_backward 1.4590 |
[2023-10-25 16:17:56,408::train::INFO] [train] Iter 597784 | loss 0.4232 | loss(rot) 0.1914 | loss(pos) 0.0255 | loss(seq) 0.2063 | grad 3.3819 | lr 0.0000 | time_forward 1.3560 | time_backward 1.4350 |
[2023-10-25 16:18:04,229::train::INFO] [train] Iter 597785 | loss 1.7175 | loss(rot) 1.0586 | loss(pos) 0.1041 | loss(seq) 0.5548 | grad 4.0117 | lr 0.0000 | time_forward 3.2980 | time_backward 4.5080 |
[2023-10-25 16:18:11,875::train::INFO] [train] Iter 597786 | loss 0.6676 | loss(rot) 0.1159 | loss(pos) 0.5345 | loss(seq) 0.0172 | grad 11.1686 | lr 0.0000 | time_forward 3.3480 | time_backward 4.2960 |
[2023-10-25 16:18:19,988::train::INFO] [train] Iter 597787 | loss 0.6409 | loss(rot) 0.3782 | loss(pos) 0.0320 | loss(seq) 0.2307 | grad 3.3212 | lr 0.0000 | time_forward 3.5040 | time_backward 4.6060 |
[2023-10-25 16:18:22,770::train::INFO] [train] Iter 597788 | loss 0.8664 | loss(rot) 0.4914 | loss(pos) 0.2628 | loss(seq) 0.1121 | grad 6.7273 | lr 0.0000 | time_forward 1.3330 | time_backward 1.4450 |
[2023-10-25 16:18:32,553::train::INFO] [train] Iter 597789 | loss 0.3460 | loss(rot) 0.1066 | loss(pos) 0.1071 | loss(seq) 0.1323 | grad 2.3140 | lr 0.0000 | time_forward 3.8570 | time_backward 5.9220 |
[2023-10-25 16:18:39,789::train::INFO] [train] Iter 597790 | loss 1.8538 | loss(rot) 1.8278 | loss(pos) 0.0260 | loss(seq) 0.0000 | grad 7.1924 | lr 0.0000 | time_forward 3.1160 | time_backward 4.1160 |
[2023-10-25 16:18:47,000::train::INFO] [train] Iter 597791 | loss 0.3777 | loss(rot) 0.2537 | loss(pos) 0.0320 | loss(seq) 0.0920 | grad 3.8975 | lr 0.0000 | time_forward 3.0590 | time_backward 4.1500 |
[2023-10-25 16:18:55,867::train::INFO] [train] Iter 597792 | loss 0.8047 | loss(rot) 0.2981 | loss(pos) 0.2194 | loss(seq) 0.2872 | grad 3.4086 | lr 0.0000 | time_forward 3.6060 | time_backward 5.2570 |
[2023-10-25 16:19:05,145::train::INFO] [train] Iter 597793 | loss 1.4152 | loss(rot) 1.0872 | loss(pos) 0.0717 | loss(seq) 0.2563 | grad 4.5790 | lr 0.0000 | time_forward 3.7190 | time_backward 5.5560 |
[2023-10-25 16:19:14,207::train::INFO] [train] Iter 597794 | loss 0.3419 | loss(rot) 0.2990 | loss(pos) 0.0276 | loss(seq) 0.0153 | grad 2.5966 | lr 0.0000 | time_forward 4.3230 | time_backward 4.7350 |
[2023-10-25 16:19:23,531::train::INFO] [train] Iter 597795 | loss 0.7437 | loss(rot) 0.6577 | loss(pos) 0.0203 | loss(seq) 0.0657 | grad 2.7378 | lr 0.0000 | time_forward 3.6900 | time_backward 5.6300 |
[2023-10-25 16:19:32,010::train::INFO] [train] Iter 597796 | loss 1.7123 | loss(rot) 1.0167 | loss(pos) 0.2554 | loss(seq) 0.4402 | grad 5.2323 | lr 0.0000 | time_forward 3.8110 | time_backward 4.6660 |
[2023-10-25 16:19:41,298::train::INFO] [train] Iter 597797 | loss 2.3643 | loss(rot) 0.1534 | loss(pos) 2.2107 | loss(seq) 0.0003 | grad 19.1484 | lr 0.0000 | time_forward 3.6790 | time_backward 5.6050 |
[2023-10-25 16:19:44,482::train::INFO] [train] Iter 597798 | loss 0.5160 | loss(rot) 0.1850 | loss(pos) 0.2072 | loss(seq) 0.1238 | grad 3.2230 | lr 0.0000 | time_forward 1.4430 | time_backward 1.7390 |
[2023-10-25 16:19:47,244::train::INFO] [train] Iter 597799 | loss 0.6336 | loss(rot) 0.2333 | loss(pos) 0.1998 | loss(seq) 0.2005 | grad 5.8578 | lr 0.0000 | time_forward 1.2990 | time_backward 1.4480 |
[2023-10-25 16:19:54,296::train::INFO] [train] Iter 597800 | loss 1.0630 | loss(rot) 0.4298 | loss(pos) 0.1369 | loss(seq) 0.4963 | grad 5.0824 | lr 0.0000 | time_forward 2.8370 | time_backward 4.2120 |
[2023-10-25 16:19:57,494::train::INFO] [train] Iter 597801 | loss 0.3241 | loss(rot) 0.0655 | loss(pos) 0.2309 | loss(seq) 0.0277 | grad 4.0874 | lr 0.0000 | time_forward 1.6120 | time_backward 1.5820 |
[2023-10-25 16:20:00,237::train::INFO] [train] Iter 597802 | loss 1.0799 | loss(rot) 0.7775 | loss(pos) 0.0985 | loss(seq) 0.2039 | grad 5.3177 | lr 0.0000 | time_forward 1.3120 | time_backward 1.4280 |
[2023-10-25 16:20:09,336::train::INFO] [train] Iter 597803 | loss 0.3729 | loss(rot) 0.3503 | loss(pos) 0.0224 | loss(seq) 0.0002 | grad 2.3531 | lr 0.0000 | time_forward 3.8700 | time_backward 5.2250 |
[2023-10-25 16:20:17,994::train::INFO] [train] Iter 597804 | loss 0.5595 | loss(rot) 0.3241 | loss(pos) 0.0608 | loss(seq) 0.1746 | grad 6.5734 | lr 0.0000 | time_forward 3.4220 | time_backward 5.2330 |
[2023-10-25 16:20:26,403::train::INFO] [train] Iter 597805 | loss 1.1472 | loss(rot) 0.8168 | loss(pos) 0.1070 | loss(seq) 0.2235 | grad 3.9382 | lr 0.0000 | time_forward 3.6130 | time_backward 4.7930 |
[2023-10-25 16:20:35,608::train::INFO] [train] Iter 597806 | loss 0.4811 | loss(rot) 0.0879 | loss(pos) 0.0505 | loss(seq) 0.3427 | grad 2.3736 | lr 0.0000 | time_forward 3.7140 | time_backward 5.4890 |
[2023-10-25 16:20:38,869::train::INFO] [train] Iter 597807 | loss 1.2139 | loss(rot) 0.7368 | loss(pos) 0.0823 | loss(seq) 0.3949 | grad 3.4138 | lr 0.0000 | time_forward 1.4510 | time_backward 1.8060 |
[2023-10-25 16:20:47,978::train::INFO] [train] Iter 597808 | loss 1.0763 | loss(rot) 0.6083 | loss(pos) 0.1187 | loss(seq) 0.3493 | grad 3.0177 | lr 0.0000 | time_forward 3.9540 | time_backward 5.1400 |
[2023-10-25 16:20:54,756::train::INFO] [train] Iter 597809 | loss 1.2396 | loss(rot) 0.7406 | loss(pos) 0.0553 | loss(seq) 0.4436 | grad 6.4348 | lr 0.0000 | time_forward 3.0080 | time_backward 3.7670 |
[2023-10-25 16:21:03,239::train::INFO] [train] Iter 597810 | loss 0.5148 | loss(rot) 0.0625 | loss(pos) 0.1172 | loss(seq) 0.3350 | grad 5.0971 | lr 0.0000 | time_forward 4.1990 | time_backward 4.2790 |
[2023-10-25 16:21:10,428::train::INFO] [train] Iter 597811 | loss 0.4686 | loss(rot) 0.0889 | loss(pos) 0.0361 | loss(seq) 0.3436 | grad 2.9589 | lr 0.0000 | time_forward 3.8660 | time_backward 3.3140 |
[2023-10-25 16:21:18,197::train::INFO] [train] Iter 597812 | loss 0.4506 | loss(rot) 0.4140 | loss(pos) 0.0166 | loss(seq) 0.0201 | grad 81.2709 | lr 0.0000 | time_forward 4.1900 | time_backward 3.5750 |
[2023-10-25 16:21:26,938::train::INFO] [train] Iter 597813 | loss 1.2719 | loss(rot) 1.0548 | loss(pos) 0.0485 | loss(seq) 0.1687 | grad 5.0701 | lr 0.0000 | time_forward 3.2610 | time_backward 5.4770 |
[2023-10-25 16:21:34,852::train::INFO] [train] Iter 597814 | loss 0.8097 | loss(rot) 0.7239 | loss(pos) 0.0193 | loss(seq) 0.0665 | grad 7.0915 | lr 0.0000 | time_forward 2.8840 | time_backward 5.0270 |
[2023-10-25 16:21:37,571::train::INFO] [train] Iter 597815 | loss 0.2041 | loss(rot) 0.1421 | loss(pos) 0.0221 | loss(seq) 0.0399 | grad 4.0452 | lr 0.0000 | time_forward 1.3090 | time_backward 1.4070 |
[2023-10-25 16:21:40,370::train::INFO] [train] Iter 597816 | loss 0.2452 | loss(rot) 0.0907 | loss(pos) 0.0219 | loss(seq) 0.1326 | grad 1.4690 | lr 0.0000 | time_forward 1.3510 | time_backward 1.4440 |
[2023-10-25 16:21:47,404::train::INFO] [train] Iter 597817 | loss 0.2029 | loss(rot) 0.0751 | loss(pos) 0.0298 | loss(seq) 0.0981 | grad 2.9532 | lr 0.0000 | time_forward 2.9870 | time_backward 4.0430 |
[2023-10-25 16:21:50,174::train::INFO] [train] Iter 597818 | loss 0.3276 | loss(rot) 0.0295 | loss(pos) 0.2950 | loss(seq) 0.0031 | grad 6.8931 | lr 0.0000 | time_forward 1.3190 | time_backward 1.4470 |
[2023-10-25 16:21:59,195::train::INFO] [train] Iter 597819 | loss 0.5150 | loss(rot) 0.1338 | loss(pos) 0.1050 | loss(seq) 0.2762 | grad 2.5286 | lr 0.0000 | time_forward 3.6830 | time_backward 5.3160 |
[2023-10-25 16:22:07,395::train::INFO] [train] Iter 597820 | loss 0.2744 | loss(rot) 0.0573 | loss(pos) 0.0526 | loss(seq) 0.1645 | grad 2.2195 | lr 0.0000 | time_forward 3.5750 | time_backward 4.6220 |
[2023-10-25 16:22:09,999::train::INFO] [train] Iter 597821 | loss 0.9676 | loss(rot) 0.9436 | loss(pos) 0.0239 | loss(seq) 0.0000 | grad 4.2286 | lr 0.0000 | time_forward 1.1940 | time_backward 1.4060 |
[2023-10-25 16:22:12,633::train::INFO] [train] Iter 597822 | loss 0.4924 | loss(rot) 0.0795 | loss(pos) 0.0850 | loss(seq) 0.3279 | grad 3.7579 | lr 0.0000 | time_forward 1.2310 | time_backward 1.4000 |
[2023-10-25 16:22:22,622::train::INFO] [train] Iter 597823 | loss 1.4764 | loss(rot) 1.1028 | loss(pos) 0.0798 | loss(seq) 0.2938 | grad 7.1868 | lr 0.0000 | time_forward 4.1570 | time_backward 5.8280 |
[2023-10-25 16:22:31,782::train::INFO] [train] Iter 597824 | loss 0.4162 | loss(rot) 0.3044 | loss(pos) 0.0294 | loss(seq) 0.0824 | grad 2.1953 | lr 0.0000 | time_forward 4.3460 | time_backward 4.8110 |
[2023-10-25 16:22:38,839::train::INFO] [train] Iter 597825 | loss 0.3924 | loss(rot) 0.0362 | loss(pos) 0.3552 | loss(seq) 0.0010 | grad 7.1271 | lr 0.0000 | time_forward 3.0690 | time_backward 3.9840 |
[2023-10-25 16:22:41,296::train::INFO] [train] Iter 597826 | loss 0.8786 | loss(rot) 0.3764 | loss(pos) 0.0454 | loss(seq) 0.4569 | grad 3.8624 | lr 0.0000 | time_forward 1.1960 | time_backward 1.2570 |
[2023-10-25 16:22:47,750::train::INFO] [train] Iter 597827 | loss 0.2443 | loss(rot) 0.2205 | loss(pos) 0.0195 | loss(seq) 0.0042 | grad 3.3069 | lr 0.0000 | time_forward 2.7960 | time_backward 3.6550 |
[2023-10-25 16:22:54,824::train::INFO] [train] Iter 597828 | loss 0.9889 | loss(rot) 0.4437 | loss(pos) 0.1840 | loss(seq) 0.3612 | grad 14.3628 | lr 0.0000 | time_forward 3.0920 | time_backward 3.9780 |
[2023-10-25 16:23:03,100::train::INFO] [train] Iter 597829 | loss 1.1089 | loss(rot) 0.6775 | loss(pos) 0.0964 | loss(seq) 0.3350 | grad 5.1901 | lr 0.0000 | time_forward 3.4140 | time_backward 4.8590 |
[2023-10-25 16:23:11,498::train::INFO] [train] Iter 597830 | loss 0.4768 | loss(rot) 0.2503 | loss(pos) 0.0712 | loss(seq) 0.1552 | grad 2.8422 | lr 0.0000 | time_forward 3.3930 | time_backward 5.0010 |
[2023-10-25 16:23:19,888::train::INFO] [train] Iter 597831 | loss 0.3342 | loss(rot) 0.0762 | loss(pos) 0.2344 | loss(seq) 0.0236 | grad 4.4421 | lr 0.0000 | time_forward 3.4880 | time_backward 4.9000 |
[2023-10-25 16:23:28,127::train::INFO] [train] Iter 597832 | loss 0.4996 | loss(rot) 0.4441 | loss(pos) 0.0531 | loss(seq) 0.0024 | grad 3.4868 | lr 0.0000 | time_forward 3.5730 | time_backward 4.6620 |
[2023-10-25 16:23:36,478::train::INFO] [train] Iter 597833 | loss 0.1847 | loss(rot) 0.1536 | loss(pos) 0.0292 | loss(seq) 0.0020 | grad 2.9787 | lr 0.0000 | time_forward 3.5080 | time_backward 4.8400 |
[2023-10-25 16:23:43,360::train::INFO] [train] Iter 597834 | loss 0.5717 | loss(rot) 0.5506 | loss(pos) 0.0169 | loss(seq) 0.0041 | grad 2.2357 | lr 0.0000 | time_forward 2.9320 | time_backward 3.9470 |
[2023-10-25 16:23:49,119::train::INFO] [train] Iter 597835 | loss 0.5499 | loss(rot) 0.2869 | loss(pos) 0.0501 | loss(seq) 0.2129 | grad 2.2890 | lr 0.0000 | time_forward 2.4620 | time_backward 3.2950 |
[2023-10-25 16:23:57,329::train::INFO] [train] Iter 597836 | loss 0.7503 | loss(rot) 0.2347 | loss(pos) 0.2163 | loss(seq) 0.2993 | grad 2.5512 | lr 0.0000 | time_forward 3.5370 | time_backward 4.6570 |
[2023-10-25 16:24:03,857::train::INFO] [train] Iter 597837 | loss 0.4599 | loss(rot) 0.1508 | loss(pos) 0.1410 | loss(seq) 0.1681 | grad 4.6452 | lr 0.0000 | time_forward 2.8160 | time_backward 3.7090 |
[2023-10-25 16:24:12,163::train::INFO] [train] Iter 597838 | loss 0.2639 | loss(rot) 0.1736 | loss(pos) 0.0578 | loss(seq) 0.0326 | grad 2.5340 | lr 0.0000 | time_forward 3.4000 | time_backward 4.9040 |
[2023-10-25 16:24:19,845::train::INFO] [train] Iter 597839 | loss 0.6238 | loss(rot) 0.5816 | loss(pos) 0.0419 | loss(seq) 0.0003 | grad 3.6888 | lr 0.0000 | time_forward 3.3630 | time_backward 4.3150 |
[2023-10-25 16:24:27,234::train::INFO] [train] Iter 597840 | loss 2.4467 | loss(rot) 2.2757 | loss(pos) 0.0971 | loss(seq) 0.0739 | grad 14.5956 | lr 0.0000 | time_forward 3.1760 | time_backward 4.2090 |
[2023-10-25 16:24:35,258::train::INFO] [train] Iter 597841 | loss 0.3180 | loss(rot) 0.0516 | loss(pos) 0.2006 | loss(seq) 0.0659 | grad 3.4660 | lr 0.0000 | time_forward 3.1570 | time_backward 4.8640 |
[2023-10-25 16:24:46,463::train::INFO] [train] Iter 597842 | loss 2.6370 | loss(rot) 0.1868 | loss(pos) 2.4502 | loss(seq) 0.0000 | grad 17.6411 | lr 0.0000 | time_forward 3.8470 | time_backward 7.3520 |
[2023-10-25 16:24:55,686::train::INFO] [train] Iter 597843 | loss 0.7640 | loss(rot) 0.5608 | loss(pos) 0.0374 | loss(seq) 0.1658 | grad 3.1122 | lr 0.0000 | time_forward 4.4290 | time_backward 4.7890 |
[2023-10-25 16:24:58,568::train::INFO] [train] Iter 597844 | loss 1.8051 | loss(rot) 0.0027 | loss(pos) 1.8013 | loss(seq) 0.0010 | grad 24.6232 | lr 0.0000 | time_forward 1.4020 | time_backward 1.4760 |
[2023-10-25 16:25:02,145::train::INFO] [train] Iter 597845 | loss 0.4417 | loss(rot) 0.3298 | loss(pos) 0.0345 | loss(seq) 0.0774 | grad 24.2257 | lr 0.0000 | time_forward 1.5720 | time_backward 2.0020 |
[2023-10-25 16:25:11,874::train::INFO] [train] Iter 597846 | loss 1.0318 | loss(rot) 0.0323 | loss(pos) 0.9978 | loss(seq) 0.0016 | grad 18.2962 | lr 0.0000 | time_forward 4.1830 | time_backward 5.5410 |
[2023-10-25 16:25:21,075::train::INFO] [train] Iter 597847 | loss 0.3434 | loss(rot) 0.0568 | loss(pos) 0.1775 | loss(seq) 0.1091 | grad 4.7994 | lr 0.0000 | time_forward 3.8830 | time_backward 5.2990 |
[2023-10-25 16:25:28,650::train::INFO] [train] Iter 597848 | loss 0.6365 | loss(rot) 0.2625 | loss(pos) 0.0565 | loss(seq) 0.3176 | grad 5.3900 | lr 0.0000 | time_forward 3.1310 | time_backward 4.4400 |
[2023-10-25 16:25:36,567::train::INFO] [train] Iter 597849 | loss 2.0277 | loss(rot) 1.1790 | loss(pos) 0.3265 | loss(seq) 0.5222 | grad 6.4230 | lr 0.0000 | time_forward 3.6570 | time_backward 4.2550 |
[2023-10-25 16:25:46,223::train::INFO] [train] Iter 597850 | loss 0.5635 | loss(rot) 0.5340 | loss(pos) 0.0225 | loss(seq) 0.0070 | grad 4.5971 | lr 0.0000 | time_forward 4.6730 | time_backward 4.9800 |
[2023-10-25 16:25:54,707::train::INFO] [train] Iter 597851 | loss 0.9760 | loss(rot) 0.8161 | loss(pos) 0.0506 | loss(seq) 0.1092 | grad 4.8261 | lr 0.0000 | time_forward 3.5460 | time_backward 4.9340 |
[2023-10-25 16:26:01,184::train::INFO] [train] Iter 597852 | loss 0.2042 | loss(rot) 0.1040 | loss(pos) 0.0168 | loss(seq) 0.0833 | grad 1.5415 | lr 0.0000 | time_forward 2.8370 | time_backward 3.6370 |
[2023-10-25 16:26:07,624::train::INFO] [train] Iter 597853 | loss 0.5220 | loss(rot) 0.1836 | loss(pos) 0.0284 | loss(seq) 0.3101 | grad 2.7369 | lr 0.0000 | time_forward 2.8030 | time_backward 3.6340 |
[2023-10-25 16:26:10,401::train::INFO] [train] Iter 597854 | loss 0.6212 | loss(rot) 0.1351 | loss(pos) 0.0424 | loss(seq) 0.4438 | grad 3.0516 | lr 0.0000 | time_forward 1.2650 | time_backward 1.5090 |
[2023-10-25 16:26:18,500::train::INFO] [train] Iter 597855 | loss 0.5137 | loss(rot) 0.1420 | loss(pos) 0.0588 | loss(seq) 0.3128 | grad 3.5485 | lr 0.0000 | time_forward 3.2620 | time_backward 4.8330 |
[2023-10-25 16:26:23,185::train::INFO] [train] Iter 597856 | loss 0.4484 | loss(rot) 0.3416 | loss(pos) 0.0280 | loss(seq) 0.0787 | grad 2.5456 | lr 0.0000 | time_forward 2.0540 | time_backward 2.6270 |
[2023-10-25 16:26:30,247::train::INFO] [train] Iter 597857 | loss 1.8884 | loss(rot) 1.5424 | loss(pos) 0.1214 | loss(seq) 0.2246 | grad 3.1808 | lr 0.0000 | time_forward 3.1200 | time_backward 3.9380 |
[2023-10-25 16:26:33,243::train::INFO] [train] Iter 597858 | loss 1.5956 | loss(rot) 1.5624 | loss(pos) 0.0306 | loss(seq) 0.0026 | grad 8.6923 | lr 0.0000 | time_forward 1.3880 | time_backward 1.6050 |
[2023-10-25 16:26:40,693::train::INFO] [train] Iter 597859 | loss 1.8428 | loss(rot) 1.4335 | loss(pos) 0.0797 | loss(seq) 0.3297 | grad 5.1234 | lr 0.0000 | time_forward 3.1360 | time_backward 3.9770 |
[2023-10-25 16:26:48,862::train::INFO] [train] Iter 597860 | loss 0.8257 | loss(rot) 0.3089 | loss(pos) 0.1382 | loss(seq) 0.3786 | grad 3.0051 | lr 0.0000 | time_forward 3.5590 | time_backward 4.6070 |
[2023-10-25 16:26:51,494::train::INFO] [train] Iter 597861 | loss 0.2655 | loss(rot) 0.0564 | loss(pos) 0.1074 | loss(seq) 0.1016 | grad 2.1582 | lr 0.0000 | time_forward 1.2290 | time_backward 1.4000 |
[2023-10-25 16:26:59,258::train::INFO] [train] Iter 597862 | loss 3.0198 | loss(rot) 0.0042 | loss(pos) 3.0156 | loss(seq) 0.0000 | grad 14.1325 | lr 0.0000 | time_forward 3.2490 | time_backward 4.5090 |
[2023-10-25 16:27:06,999::train::INFO] [train] Iter 597863 | loss 0.5865 | loss(rot) 0.2730 | loss(pos) 0.0421 | loss(seq) 0.2713 | grad 3.3921 | lr 0.0000 | time_forward 3.2020 | time_backward 4.5340 |
[2023-10-25 16:27:14,802::train::INFO] [train] Iter 597864 | loss 0.5033 | loss(rot) 0.1145 | loss(pos) 0.3435 | loss(seq) 0.0452 | grad 5.7941 | lr 0.0000 | time_forward 3.2820 | time_backward 4.5180 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.