text
stringlengths 56
1.16k
|
---|
[2023-10-25 16:37:52,930::train::INFO] [train] Iter 597965 | loss 0.2093 | loss(rot) 0.1703 | loss(pos) 0.0207 | loss(seq) 0.0183 | grad 2.2378 | lr 0.0000 | time_forward 5.5630 | time_backward 5.8170 |
[2023-10-25 16:38:00,219::train::INFO] [train] Iter 597966 | loss 0.2042 | loss(rot) 0.0704 | loss(pos) 0.1152 | loss(seq) 0.0186 | grad 3.6584 | lr 0.0000 | time_forward 3.2360 | time_backward 4.0510 |
[2023-10-25 16:38:07,511::train::INFO] [train] Iter 597967 | loss 1.3264 | loss(rot) 0.9441 | loss(pos) 0.0447 | loss(seq) 0.3376 | grad 4.9830 | lr 0.0000 | time_forward 3.1090 | time_backward 4.1790 |
[2023-10-25 16:38:14,479::train::INFO] [train] Iter 597968 | loss 0.2343 | loss(rot) 0.2125 | loss(pos) 0.0195 | loss(seq) 0.0023 | grad 2.8875 | lr 0.0000 | time_forward 2.9860 | time_backward 3.9790 |
[2023-10-25 16:38:22,273::train::INFO] [train] Iter 597969 | loss 1.0254 | loss(rot) 0.5493 | loss(pos) 0.1541 | loss(seq) 0.3220 | grad 3.4939 | lr 0.0000 | time_forward 3.4370 | time_backward 4.3540 |
[2023-10-25 16:38:24,937::train::INFO] [train] Iter 597970 | loss 0.9158 | loss(rot) 0.8317 | loss(pos) 0.0208 | loss(seq) 0.0634 | grad 3.2807 | lr 0.0000 | time_forward 1.2680 | time_backward 1.3920 |
[2023-10-25 16:38:32,827::train::INFO] [train] Iter 597971 | loss 0.3083 | loss(rot) 0.0661 | loss(pos) 0.0286 | loss(seq) 0.2136 | grad 1.8718 | lr 0.0000 | time_forward 3.2640 | time_backward 4.6240 |
[2023-10-25 16:38:35,876::train::INFO] [train] Iter 597972 | loss 0.1790 | loss(rot) 0.1427 | loss(pos) 0.0363 | loss(seq) 0.0000 | grad 1.6922 | lr 0.0000 | time_forward 1.4000 | time_backward 1.6450 |
[2023-10-25 16:38:43,666::train::INFO] [train] Iter 597973 | loss 0.5787 | loss(rot) 0.0626 | loss(pos) 0.5025 | loss(seq) 0.0136 | grad 8.1198 | lr 0.0000 | time_forward 3.2600 | time_backward 4.5160 |
[2023-10-25 16:38:50,291::train::INFO] [train] Iter 597974 | loss 2.0702 | loss(rot) 1.3029 | loss(pos) 0.1874 | loss(seq) 0.5799 | grad 5.3801 | lr 0.0000 | time_forward 2.8720 | time_backward 3.7500 |
[2023-10-25 16:38:52,998::train::INFO] [train] Iter 597975 | loss 0.7155 | loss(rot) 0.6537 | loss(pos) 0.0312 | loss(seq) 0.0306 | grad 3.2738 | lr 0.0000 | time_forward 1.2450 | time_backward 1.4600 |
[2023-10-25 16:38:55,807::train::INFO] [train] Iter 597976 | loss 0.6635 | loss(rot) 0.5729 | loss(pos) 0.0906 | loss(seq) 0.0000 | grad 4.5827 | lr 0.0000 | time_forward 1.3960 | time_backward 1.4080 |
[2023-10-25 16:39:03,846::train::INFO] [train] Iter 597977 | loss 0.5423 | loss(rot) 0.4242 | loss(pos) 0.0505 | loss(seq) 0.0677 | grad 3.2643 | lr 0.0000 | time_forward 3.2940 | time_backward 4.7430 |
[2023-10-25 16:39:06,509::train::INFO] [train] Iter 597978 | loss 0.3231 | loss(rot) 0.0739 | loss(pos) 0.2436 | loss(seq) 0.0056 | grad 3.5014 | lr 0.0000 | time_forward 1.2620 | time_backward 1.3970 |
[2023-10-25 16:39:09,582::train::INFO] [train] Iter 597979 | loss 0.4912 | loss(rot) 0.0197 | loss(pos) 0.4679 | loss(seq) 0.0036 | grad 6.6400 | lr 0.0000 | time_forward 1.3950 | time_backward 1.6620 |
[2023-10-25 16:39:16,695::train::INFO] [train] Iter 597980 | loss 0.6802 | loss(rot) 0.1561 | loss(pos) 0.0755 | loss(seq) 0.4487 | grad 4.1211 | lr 0.0000 | time_forward 3.0900 | time_backward 4.0200 |
[2023-10-25 16:39:19,433::train::INFO] [train] Iter 597981 | loss 1.0365 | loss(rot) 0.9897 | loss(pos) 0.0468 | loss(seq) 0.0000 | grad 41.1485 | lr 0.0000 | time_forward 1.2870 | time_backward 1.4370 |
[2023-10-25 16:39:22,167::train::INFO] [train] Iter 597982 | loss 0.2201 | loss(rot) 0.1888 | loss(pos) 0.0313 | loss(seq) 0.0000 | grad 2.0101 | lr 0.0000 | time_forward 1.2990 | time_backward 1.4190 |
[2023-10-25 16:39:28,233::train::INFO] [train] Iter 597983 | loss 1.4945 | loss(rot) 1.3171 | loss(pos) 0.0283 | loss(seq) 0.1491 | grad 5.7714 | lr 0.0000 | time_forward 2.7100 | time_backward 3.3320 |
[2023-10-25 16:39:30,913::train::INFO] [train] Iter 597984 | loss 0.5435 | loss(rot) 0.4143 | loss(pos) 0.0208 | loss(seq) 0.1084 | grad 4.6319 | lr 0.0000 | time_forward 1.2840 | time_backward 1.3930 |
[2023-10-25 16:39:33,618::train::INFO] [train] Iter 597985 | loss 0.2934 | loss(rot) 0.0756 | loss(pos) 0.0097 | loss(seq) 0.2081 | grad 2.1096 | lr 0.0000 | time_forward 1.2710 | time_backward 1.4120 |
[2023-10-25 16:39:35,896::train::INFO] [train] Iter 597986 | loss 0.9146 | loss(rot) 0.5043 | loss(pos) 0.2167 | loss(seq) 0.1935 | grad 5.1221 | lr 0.0000 | time_forward 1.0690 | time_backward 1.1990 |
[2023-10-25 16:39:43,704::train::INFO] [train] Iter 597987 | loss 1.1536 | loss(rot) 1.0714 | loss(pos) 0.0193 | loss(seq) 0.0630 | grad 3.6542 | lr 0.0000 | time_forward 3.3310 | time_backward 4.4730 |
[2023-10-25 16:39:46,452::train::INFO] [train] Iter 597988 | loss 0.4301 | loss(rot) 0.0206 | loss(pos) 0.4065 | loss(seq) 0.0030 | grad 7.4018 | lr 0.0000 | time_forward 1.3450 | time_backward 1.4000 |
[2023-10-25 16:39:53,643::train::INFO] [train] Iter 597989 | loss 0.3892 | loss(rot) 0.1090 | loss(pos) 0.0758 | loss(seq) 0.2044 | grad 3.2138 | lr 0.0000 | time_forward 3.1740 | time_backward 4.0150 |
[2023-10-25 16:40:01,244::train::INFO] [train] Iter 597990 | loss 0.2516 | loss(rot) 0.1436 | loss(pos) 0.0202 | loss(seq) 0.0879 | grad 2.4609 | lr 0.0000 | time_forward 3.5110 | time_backward 4.0870 |
[2023-10-25 16:40:09,274::train::INFO] [train] Iter 597991 | loss 0.4991 | loss(rot) 0.0189 | loss(pos) 0.4776 | loss(seq) 0.0026 | grad 5.4995 | lr 0.0000 | time_forward 3.3400 | time_backward 4.6870 |
[2023-10-25 16:40:11,868::train::INFO] [train] Iter 597992 | loss 0.6242 | loss(rot) 0.1671 | loss(pos) 0.0910 | loss(seq) 0.3661 | grad 3.0094 | lr 0.0000 | time_forward 1.2040 | time_backward 1.3860 |
[2023-10-25 16:40:19,863::train::INFO] [train] Iter 597993 | loss 0.3245 | loss(rot) 0.2404 | loss(pos) 0.0156 | loss(seq) 0.0685 | grad 3.0811 | lr 0.0000 | time_forward 3.3580 | time_backward 4.6350 |
[2023-10-25 16:40:26,633::train::INFO] [train] Iter 597994 | loss 0.2401 | loss(rot) 0.2177 | loss(pos) 0.0195 | loss(seq) 0.0029 | grad 3.0389 | lr 0.0000 | time_forward 2.9320 | time_backward 3.8340 |
[2023-10-25 16:40:34,622::train::INFO] [train] Iter 597995 | loss 0.5945 | loss(rot) 0.1902 | loss(pos) 0.0390 | loss(seq) 0.3654 | grad 4.8089 | lr 0.0000 | time_forward 3.3460 | time_backward 4.6410 |
[2023-10-25 16:40:37,293::train::INFO] [train] Iter 597996 | loss 0.6451 | loss(rot) 0.0897 | loss(pos) 0.5538 | loss(seq) 0.0017 | grad 9.1305 | lr 0.0000 | time_forward 1.2780 | time_backward 1.3890 |
[2023-10-25 16:40:45,233::train::INFO] [train] Iter 597997 | loss 1.7556 | loss(rot) 1.3835 | loss(pos) 0.0619 | loss(seq) 0.3102 | grad 11.2505 | lr 0.0000 | time_forward 3.3080 | time_backward 4.6280 |
[2023-10-25 16:40:47,878::train::INFO] [train] Iter 597998 | loss 0.6054 | loss(rot) 0.3363 | loss(pos) 0.0439 | loss(seq) 0.2251 | grad 3.8905 | lr 0.0000 | time_forward 1.2650 | time_backward 1.3780 |
[2023-10-25 16:40:55,263::train::INFO] [train] Iter 597999 | loss 0.5652 | loss(rot) 0.3024 | loss(pos) 0.0441 | loss(seq) 0.2187 | grad 2.6726 | lr 0.0000 | time_forward 3.2170 | time_backward 4.1640 |
[2023-10-25 16:41:03,247::train::INFO] [train] Iter 598000 | loss 0.3653 | loss(rot) 0.1940 | loss(pos) 0.0939 | loss(seq) 0.0774 | grad 3.0061 | lr 0.0000 | time_forward 3.3170 | time_backward 4.6650 |
[2023-10-25 16:41:47,158::train::INFO] [val] Iter 598000 | loss 1.1237 | loss(rot) 0.6760 | loss(pos) 0.2940 | loss(seq) 0.1537 |
[2023-10-25 16:42:01,144::train::INFO] [train] Iter 598001 | loss 1.1476 | loss(rot) 0.0888 | loss(pos) 0.8233 | loss(seq) 0.2356 | grad 7.7769 | lr 0.0000 | time_forward 8.9850 | time_backward 4.6710 |
[2023-10-25 16:42:09,048::train::INFO] [train] Iter 598002 | loss 1.2420 | loss(rot) 0.7710 | loss(pos) 0.2679 | loss(seq) 0.2031 | grad 3.4273 | lr 0.0000 | time_forward 3.3700 | time_backward 4.5320 |
[2023-10-25 16:42:16,812::train::INFO] [train] Iter 598003 | loss 0.6240 | loss(rot) 0.3427 | loss(pos) 0.0406 | loss(seq) 0.2408 | grad 3.5396 | lr 0.0000 | time_forward 3.2830 | time_backward 4.4770 |
[2023-10-25 16:42:19,583::train::INFO] [train] Iter 598004 | loss 1.4960 | loss(rot) 1.1897 | loss(pos) 0.0375 | loss(seq) 0.2687 | grad 20.8169 | lr 0.0000 | time_forward 1.3760 | time_backward 1.3910 |
[2023-10-25 16:42:27,651::train::INFO] [train] Iter 598005 | loss 0.1721 | loss(rot) 0.0289 | loss(pos) 0.1329 | loss(seq) 0.0103 | grad 4.2523 | lr 0.0000 | time_forward 3.5580 | time_backward 4.5070 |
[2023-10-25 16:42:34,306::train::INFO] [train] Iter 598006 | loss 0.8910 | loss(rot) 0.7107 | loss(pos) 0.0182 | loss(seq) 0.1621 | grad 4.4843 | lr 0.0000 | time_forward 2.9920 | time_backward 3.6610 |
[2023-10-25 16:42:40,211::train::INFO] [train] Iter 598007 | loss 1.2155 | loss(rot) 0.5299 | loss(pos) 0.4043 | loss(seq) 0.2813 | grad 7.8490 | lr 0.0000 | time_forward 2.6030 | time_backward 3.2980 |
[2023-10-25 16:42:45,986::train::INFO] [train] Iter 598008 | loss 0.2788 | loss(rot) 0.0744 | loss(pos) 0.0635 | loss(seq) 0.1409 | grad 2.9860 | lr 0.0000 | time_forward 2.5730 | time_backward 3.1990 |
[2023-10-25 16:42:52,748::train::INFO] [train] Iter 598009 | loss 0.8588 | loss(rot) 0.7919 | loss(pos) 0.0237 | loss(seq) 0.0432 | grad 5.9514 | lr 0.0000 | time_forward 2.9440 | time_backward 3.8150 |
[2023-10-25 16:42:55,162::train::INFO] [train] Iter 598010 | loss 1.1527 | loss(rot) 0.0058 | loss(pos) 1.1465 | loss(seq) 0.0004 | grad 10.9267 | lr 0.0000 | time_forward 1.0680 | time_backward 1.3420 |
[2023-10-25 16:43:03,182::train::INFO] [train] Iter 598011 | loss 1.3266 | loss(rot) 0.3735 | loss(pos) 0.0904 | loss(seq) 0.8627 | grad 4.5785 | lr 0.0000 | time_forward 3.3510 | time_backward 4.6640 |
[2023-10-25 16:43:06,827::train::INFO] [train] Iter 598012 | loss 1.1512 | loss(rot) 0.7420 | loss(pos) 0.0384 | loss(seq) 0.3708 | grad 3.5454 | lr 0.0000 | time_forward 1.7620 | time_backward 1.8780 |
[2023-10-25 16:43:09,955::train::INFO] [train] Iter 598013 | loss 0.5081 | loss(rot) 0.4216 | loss(pos) 0.0171 | loss(seq) 0.0694 | grad 3.7868 | lr 0.0000 | time_forward 1.6190 | time_backward 1.5060 |
[2023-10-25 16:43:19,686::train::INFO] [train] Iter 598014 | loss 0.7748 | loss(rot) 0.3118 | loss(pos) 0.0457 | loss(seq) 0.4172 | grad 3.6349 | lr 0.0000 | time_forward 3.6560 | time_backward 6.0580 |
[2023-10-25 16:43:22,902::train::INFO] [train] Iter 598015 | loss 0.5574 | loss(rot) 0.1208 | loss(pos) 0.1813 | loss(seq) 0.2552 | grad 3.3391 | lr 0.0000 | time_forward 1.6140 | time_backward 1.5990 |
[2023-10-25 16:43:31,524::train::INFO] [train] Iter 598016 | loss 2.7528 | loss(rot) 2.3644 | loss(pos) 0.1779 | loss(seq) 0.2105 | grad 5.7174 | lr 0.0000 | time_forward 4.1720 | time_backward 4.4250 |
[2023-10-25 16:43:40,895::train::INFO] [train] Iter 598017 | loss 1.2695 | loss(rot) 1.0529 | loss(pos) 0.0219 | loss(seq) 0.1947 | grad 2.6539 | lr 0.0000 | time_forward 4.2830 | time_backward 5.0840 |
[2023-10-25 16:43:46,752::train::INFO] [train] Iter 598018 | loss 1.2170 | loss(rot) 0.8722 | loss(pos) 0.0596 | loss(seq) 0.2852 | grad 5.0405 | lr 0.0000 | time_forward 2.8140 | time_backward 3.0400 |
[2023-10-25 16:43:49,432::train::INFO] [train] Iter 598019 | loss 0.7500 | loss(rot) 0.6974 | loss(pos) 0.0524 | loss(seq) 0.0002 | grad 2.6119 | lr 0.0000 | time_forward 1.2870 | time_backward 1.3890 |
[2023-10-25 16:43:59,291::train::INFO] [train] Iter 598020 | loss 0.5894 | loss(rot) 0.5670 | loss(pos) 0.0175 | loss(seq) 0.0049 | grad 2.7656 | lr 0.0000 | time_forward 4.2340 | time_backward 5.6230 |
[2023-10-25 16:44:08,068::train::INFO] [train] Iter 598021 | loss 0.5770 | loss(rot) 0.5431 | loss(pos) 0.0118 | loss(seq) 0.0221 | grad 6.8322 | lr 0.0000 | time_forward 3.7470 | time_backward 5.0260 |
[2023-10-25 16:44:17,290::train::INFO] [train] Iter 598022 | loss 0.5677 | loss(rot) 0.2005 | loss(pos) 0.1112 | loss(seq) 0.2561 | grad 3.3331 | lr 0.0000 | time_forward 3.7830 | time_backward 5.4360 |
[2023-10-25 16:44:25,980::train::INFO] [train] Iter 598023 | loss 0.9916 | loss(rot) 0.2131 | loss(pos) 0.7434 | loss(seq) 0.0352 | grad 12.6636 | lr 0.0000 | time_forward 3.6030 | time_backward 5.0820 |
[2023-10-25 16:44:35,630::train::INFO] [train] Iter 598024 | loss 0.2801 | loss(rot) 0.2043 | loss(pos) 0.0342 | loss(seq) 0.0416 | grad 1.6374 | lr 0.0000 | time_forward 4.2620 | time_backward 5.3800 |
[2023-10-25 16:44:38,524::train::INFO] [train] Iter 598025 | loss 0.3130 | loss(rot) 0.2323 | loss(pos) 0.0150 | loss(seq) 0.0657 | grad 3.0600 | lr 0.0000 | time_forward 1.4660 | time_backward 1.4250 |
[2023-10-25 16:44:45,548::train::INFO] [train] Iter 598026 | loss 0.2230 | loss(rot) 0.1611 | loss(pos) 0.0201 | loss(seq) 0.0418 | grad 2.5409 | lr 0.0000 | time_forward 3.0980 | time_backward 3.8990 |
[2023-10-25 16:44:52,438::train::INFO] [train] Iter 598027 | loss 2.3229 | loss(rot) 2.2050 | loss(pos) 0.0497 | loss(seq) 0.0682 | grad 5.8235 | lr 0.0000 | time_forward 3.1030 | time_backward 3.7830 |
[2023-10-25 16:44:55,281::train::INFO] [train] Iter 598028 | loss 0.4418 | loss(rot) 0.3767 | loss(pos) 0.0537 | loss(seq) 0.0114 | grad 4.3459 | lr 0.0000 | time_forward 1.3270 | time_backward 1.5130 |
[2023-10-25 16:45:02,301::train::INFO] [train] Iter 598029 | loss 0.8664 | loss(rot) 0.2547 | loss(pos) 0.3915 | loss(seq) 0.2202 | grad 3.5119 | lr 0.0000 | time_forward 3.1130 | time_backward 3.9040 |
[2023-10-25 16:45:09,018::train::INFO] [train] Iter 598030 | loss 0.2640 | loss(rot) 0.1097 | loss(pos) 0.0317 | loss(seq) 0.1226 | grad 2.3178 | lr 0.0000 | time_forward 2.9450 | time_backward 3.7700 |
[2023-10-25 16:45:16,953::train::INFO] [train] Iter 598031 | loss 1.3904 | loss(rot) 0.5791 | loss(pos) 0.3757 | loss(seq) 0.4357 | grad 3.5784 | lr 0.0000 | time_forward 3.3530 | time_backward 4.5790 |
[2023-10-25 16:45:24,319::train::INFO] [train] Iter 598032 | loss 1.3459 | loss(rot) 1.2776 | loss(pos) 0.0563 | loss(seq) 0.0120 | grad 5.4632 | lr 0.0000 | time_forward 3.2790 | time_backward 4.0830 |
[2023-10-25 16:45:27,472::train::INFO] [train] Iter 598033 | loss 0.4151 | loss(rot) 0.3266 | loss(pos) 0.0886 | loss(seq) 0.0000 | grad 2.6833 | lr 0.0000 | time_forward 1.4840 | time_backward 1.6660 |
[2023-10-25 16:45:34,000::train::INFO] [train] Iter 598034 | loss 0.7802 | loss(rot) 0.3916 | loss(pos) 0.1626 | loss(seq) 0.2260 | grad 3.7510 | lr 0.0000 | time_forward 2.9290 | time_backward 3.5860 |
[2023-10-25 16:45:40,058::train::INFO] [train] Iter 598035 | loss 0.3345 | loss(rot) 0.2032 | loss(pos) 0.0313 | loss(seq) 0.1000 | grad 3.4940 | lr 0.0000 | time_forward 2.6560 | time_backward 3.3980 |
[2023-10-25 16:45:47,168::train::INFO] [train] Iter 598036 | loss 1.6195 | loss(rot) 1.0762 | loss(pos) 0.1966 | loss(seq) 0.3467 | grad 4.3048 | lr 0.0000 | time_forward 3.1120 | time_backward 3.9940 |
[2023-10-25 16:45:53,867::train::INFO] [train] Iter 598037 | loss 0.2348 | loss(rot) 0.1270 | loss(pos) 0.0220 | loss(seq) 0.0858 | grad 2.1858 | lr 0.0000 | time_forward 2.8610 | time_backward 3.8340 |
[2023-10-25 16:45:56,631::train::INFO] [train] Iter 598038 | loss 0.5721 | loss(rot) 0.1442 | loss(pos) 0.0682 | loss(seq) 0.3597 | grad 2.7665 | lr 0.0000 | time_forward 1.3730 | time_backward 1.3880 |
[2023-10-25 16:46:03,467::train::INFO] [train] Iter 598039 | loss 2.5700 | loss(rot) 2.4614 | loss(pos) 0.0589 | loss(seq) 0.0497 | grad 4.0554 | lr 0.0000 | time_forward 2.9780 | time_backward 3.8380 |
[2023-10-25 16:46:10,126::train::INFO] [train] Iter 598040 | loss 0.3583 | loss(rot) 0.0962 | loss(pos) 0.0427 | loss(seq) 0.2194 | grad 2.6635 | lr 0.0000 | time_forward 2.9210 | time_backward 3.7360 |
[2023-10-25 16:46:17,656::train::INFO] [train] Iter 598041 | loss 0.8407 | loss(rot) 0.2806 | loss(pos) 0.5520 | loss(seq) 0.0080 | grad 3.6289 | lr 0.0000 | time_forward 3.3810 | time_backward 4.1450 |
[2023-10-25 16:46:20,444::train::INFO] [train] Iter 598042 | loss 1.1899 | loss(rot) 0.6041 | loss(pos) 0.1561 | loss(seq) 0.4297 | grad 3.4941 | lr 0.0000 | time_forward 1.3350 | time_backward 1.4510 |
[2023-10-25 16:46:27,578::train::INFO] [train] Iter 598043 | loss 0.2227 | loss(rot) 0.0567 | loss(pos) 0.0226 | loss(seq) 0.1434 | grad 1.9396 | lr 0.0000 | time_forward 3.1590 | time_backward 3.9720 |
[2023-10-25 16:46:30,332::train::INFO] [train] Iter 598044 | loss 0.9887 | loss(rot) 0.7554 | loss(pos) 0.0162 | loss(seq) 0.2171 | grad 30.2811 | lr 0.0000 | time_forward 1.3460 | time_backward 1.4050 |
[2023-10-25 16:46:35,507::train::INFO] [train] Iter 598045 | loss 0.8502 | loss(rot) 0.8164 | loss(pos) 0.0338 | loss(seq) 0.0000 | grad 3.6240 | lr 0.0000 | time_forward 2.2370 | time_backward 2.9170 |
[2023-10-25 16:46:43,552::train::INFO] [train] Iter 598046 | loss 0.6514 | loss(rot) 0.3238 | loss(pos) 0.0222 | loss(seq) 0.3054 | grad 3.3892 | lr 0.0000 | time_forward 3.4390 | time_backward 4.5930 |
[2023-10-25 16:46:50,781::train::INFO] [train] Iter 598047 | loss 0.3054 | loss(rot) 0.1593 | loss(pos) 0.0316 | loss(seq) 0.1145 | grad 1.9125 | lr 0.0000 | time_forward 3.1180 | time_backward 4.1070 |
[2023-10-25 16:47:00,094::train::INFO] [train] Iter 598048 | loss 0.9210 | loss(rot) 0.5927 | loss(pos) 0.1653 | loss(seq) 0.1630 | grad 4.3036 | lr 0.0000 | time_forward 3.9990 | time_backward 5.3110 |
[2023-10-25 16:47:10,251::train::INFO] [train] Iter 598049 | loss 1.7031 | loss(rot) 1.6430 | loss(pos) 0.0369 | loss(seq) 0.0231 | grad 10.2385 | lr 0.0000 | time_forward 4.4160 | time_backward 5.7370 |
[2023-10-25 16:47:18,614::train::INFO] [train] Iter 598050 | loss 1.4458 | loss(rot) 0.9521 | loss(pos) 0.0959 | loss(seq) 0.3978 | grad 3.6128 | lr 0.0000 | time_forward 3.6040 | time_backward 4.7550 |
[2023-10-25 16:47:27,164::train::INFO] [train] Iter 598051 | loss 0.4889 | loss(rot) 0.4645 | loss(pos) 0.0214 | loss(seq) 0.0031 | grad 3.1792 | lr 0.0000 | time_forward 3.6410 | time_backward 4.9060 |
[2023-10-25 16:47:34,263::train::INFO] [train] Iter 598052 | loss 0.3798 | loss(rot) 0.0666 | loss(pos) 0.2397 | loss(seq) 0.0736 | grad 3.3797 | lr 0.0000 | time_forward 3.0340 | time_backward 4.0610 |
[2023-10-25 16:47:42,500::train::INFO] [train] Iter 598053 | loss 2.3867 | loss(rot) 0.0476 | loss(pos) 2.3383 | loss(seq) 0.0008 | grad 9.7634 | lr 0.0000 | time_forward 3.5960 | time_backward 4.6370 |
[2023-10-25 16:47:45,103::train::INFO] [train] Iter 598054 | loss 0.9221 | loss(rot) 0.7448 | loss(pos) 0.0204 | loss(seq) 0.1569 | grad 6.3314 | lr 0.0000 | time_forward 1.2290 | time_backward 1.3710 |
[2023-10-25 16:47:47,890::train::INFO] [train] Iter 598055 | loss 0.9848 | loss(rot) 0.3630 | loss(pos) 0.1041 | loss(seq) 0.5176 | grad 2.7164 | lr 0.0000 | time_forward 1.3230 | time_backward 1.4610 |
[2023-10-25 16:47:55,384::train::INFO] [train] Iter 598056 | loss 0.7663 | loss(rot) 0.6491 | loss(pos) 0.0272 | loss(seq) 0.0900 | grad 3.4607 | lr 0.0000 | time_forward 3.1910 | time_backward 4.2810 |
[2023-10-25 16:47:58,174::train::INFO] [train] Iter 598057 | loss 0.4722 | loss(rot) 0.2958 | loss(pos) 0.0315 | loss(seq) 0.1450 | grad 3.4113 | lr 0.0000 | time_forward 1.3220 | time_backward 1.4650 |
[2023-10-25 16:48:01,245::train::INFO] [train] Iter 598058 | loss 1.1620 | loss(rot) 1.1230 | loss(pos) 0.0212 | loss(seq) 0.0178 | grad 3.0657 | lr 0.0000 | time_forward 1.3700 | time_backward 1.6990 |
[2023-10-25 16:48:04,053::train::INFO] [train] Iter 598059 | loss 0.2964 | loss(rot) 0.0697 | loss(pos) 0.2071 | loss(seq) 0.0196 | grad 6.9351 | lr 0.0000 | time_forward 1.3560 | time_backward 1.4490 |
[2023-10-25 16:48:11,662::train::INFO] [train] Iter 598060 | loss 0.4353 | loss(rot) 0.0399 | loss(pos) 0.3891 | loss(seq) 0.0063 | grad 8.8310 | lr 0.0000 | time_forward 3.2930 | time_backward 4.3120 |
[2023-10-25 16:48:14,437::train::INFO] [train] Iter 598061 | loss 0.3764 | loss(rot) 0.0702 | loss(pos) 0.1468 | loss(seq) 0.1594 | grad 5.1093 | lr 0.0000 | time_forward 1.3340 | time_backward 1.4370 |
[2023-10-25 16:48:22,613::train::INFO] [train] Iter 598062 | loss 0.5129 | loss(rot) 0.2248 | loss(pos) 0.2037 | loss(seq) 0.0844 | grad 3.8585 | lr 0.0000 | time_forward 3.3390 | time_backward 4.8340 |
[2023-10-25 16:48:29,400::train::INFO] [train] Iter 598063 | loss 0.2466 | loss(rot) 0.1112 | loss(pos) 0.0647 | loss(seq) 0.0707 | grad 2.1187 | lr 0.0000 | time_forward 2.8870 | time_backward 3.8980 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.