text
stringlengths
56
1.16k
[2023-10-25 17:01:00,815::train::INFO] [train] Iter 598164 | loss 0.2344 | loss(rot) 0.2012 | loss(pos) 0.0237 | loss(seq) 0.0095 | grad 2.0205 | lr 0.0000 | time_forward 2.7560 | time_backward 3.5680
[2023-10-25 17:01:07,774::train::INFO] [train] Iter 598165 | loss 1.8316 | loss(rot) 1.7969 | loss(pos) 0.0341 | loss(seq) 0.0006 | grad 3.6086 | lr 0.0000 | time_forward 2.9760 | time_backward 3.9790
[2023-10-25 17:01:10,455::train::INFO] [train] Iter 598166 | loss 1.0795 | loss(rot) 1.0475 | loss(pos) 0.0270 | loss(seq) 0.0050 | grad 4.2067 | lr 0.0000 | time_forward 1.2790 | time_backward 1.3990
[2023-10-25 17:01:18,187::train::INFO] [train] Iter 598167 | loss 0.2081 | loss(rot) 0.1713 | loss(pos) 0.0362 | loss(seq) 0.0007 | grad 2.0853 | lr 0.0000 | time_forward 3.3610 | time_backward 4.3510
[2023-10-25 17:01:20,887::train::INFO] [train] Iter 598168 | loss 0.4196 | loss(rot) 0.0454 | loss(pos) 0.1190 | loss(seq) 0.2552 | grad 4.5008 | lr 0.0000 | time_forward 1.3030 | time_backward 1.3950
[2023-10-25 17:01:28,548::train::INFO] [train] Iter 598169 | loss 0.1664 | loss(rot) 0.1272 | loss(pos) 0.0382 | loss(seq) 0.0010 | grad 1.8102 | lr 0.0000 | time_forward 3.2490 | time_backward 4.4080
[2023-10-25 17:01:36,892::train::INFO] [train] Iter 598170 | loss 0.6149 | loss(rot) 0.0553 | loss(pos) 0.5091 | loss(seq) 0.0505 | grad 5.9409 | lr 0.0000 | time_forward 3.4690 | time_backward 4.8720
[2023-10-25 17:01:44,199::train::INFO] [train] Iter 598171 | loss 0.5887 | loss(rot) 0.1615 | loss(pos) 0.3805 | loss(seq) 0.0467 | grad 4.0734 | lr 0.0000 | time_forward 3.1360 | time_backward 4.1690
[2023-10-25 17:01:50,797::train::INFO] [train] Iter 598172 | loss 0.2206 | loss(rot) 0.1074 | loss(pos) 0.0597 | loss(seq) 0.0535 | grad 3.9755 | lr 0.0000 | time_forward 2.8630 | time_backward 3.7320
[2023-10-25 17:01:59,002::train::INFO] [train] Iter 598173 | loss 1.5402 | loss(rot) 1.4665 | loss(pos) 0.0604 | loss(seq) 0.0133 | grad 25.2380 | lr 0.0000 | time_forward 3.5510 | time_backward 4.6500
[2023-10-25 17:02:06,845::train::INFO] [train] Iter 598174 | loss 0.6111 | loss(rot) 0.0884 | loss(pos) 0.0875 | loss(seq) 0.4352 | grad 2.6045 | lr 0.0000 | time_forward 3.3550 | time_backward 4.4860
[2023-10-25 17:02:09,186::train::INFO] [train] Iter 598175 | loss 0.7379 | loss(rot) 0.1397 | loss(pos) 0.2471 | loss(seq) 0.3512 | grad 3.7078 | lr 0.0000 | time_forward 1.0320 | time_backward 1.3050
[2023-10-25 17:02:17,646::train::INFO] [train] Iter 598176 | loss 0.8092 | loss(rot) 0.3439 | loss(pos) 0.1201 | loss(seq) 0.3452 | grad 4.3818 | lr 0.0000 | time_forward 3.5060 | time_backward 4.9500
[2023-10-25 17:02:25,901::train::INFO] [train] Iter 598177 | loss 0.6360 | loss(rot) 0.0456 | loss(pos) 0.3746 | loss(seq) 0.2158 | grad 5.4104 | lr 0.0000 | time_forward 3.3990 | time_backward 4.8530
[2023-10-25 17:02:34,368::train::INFO] [train] Iter 598178 | loss 0.3569 | loss(rot) 0.1845 | loss(pos) 0.0630 | loss(seq) 0.1094 | grad 3.4748 | lr 0.0000 | time_forward 3.4550 | time_backward 5.0080
[2023-10-25 17:02:36,633::train::INFO] [train] Iter 598179 | loss 0.6092 | loss(rot) 0.1838 | loss(pos) 0.0749 | loss(seq) 0.3505 | grad 3.7390 | lr 0.0000 | time_forward 1.0620 | time_backward 1.1990
[2023-10-25 17:02:39,382::train::INFO] [train] Iter 598180 | loss 1.2056 | loss(rot) 0.2516 | loss(pos) 0.9515 | loss(seq) 0.0024 | grad 11.9605 | lr 0.0000 | time_forward 1.3200 | time_backward 1.4110
[2023-10-25 17:02:46,512::train::INFO] [train] Iter 598181 | loss 1.6765 | loss(rot) 1.1778 | loss(pos) 0.1172 | loss(seq) 0.3815 | grad 6.3366 | lr 0.0000 | time_forward 3.1440 | time_backward 3.9830
[2023-10-25 17:02:53,372::train::INFO] [train] Iter 598182 | loss 0.1731 | loss(rot) 0.0489 | loss(pos) 0.0860 | loss(seq) 0.0383 | grad 3.2527 | lr 0.0000 | time_forward 2.8950 | time_backward 3.9630
[2023-10-25 17:02:56,112::train::INFO] [train] Iter 598183 | loss 0.3366 | loss(rot) 0.0840 | loss(pos) 0.2023 | loss(seq) 0.0503 | grad 3.3983 | lr 0.0000 | time_forward 1.2850 | time_backward 1.4510
[2023-10-25 17:03:04,661::train::INFO] [train] Iter 598184 | loss 0.3185 | loss(rot) 0.2011 | loss(pos) 0.0189 | loss(seq) 0.0984 | grad 2.9650 | lr 0.0000 | time_forward 3.6490 | time_backward 4.8760
[2023-10-25 17:03:11,699::train::INFO] [train] Iter 598185 | loss 0.3542 | loss(rot) 0.0566 | loss(pos) 0.1212 | loss(seq) 0.1763 | grad 3.3097 | lr 0.0000 | time_forward 3.0000 | time_backward 4.0350
[2023-10-25 17:03:18,452::train::INFO] [train] Iter 598186 | loss 0.1893 | loss(rot) 0.1482 | loss(pos) 0.0240 | loss(seq) 0.0171 | grad 2.3855 | lr 0.0000 | time_forward 2.8480 | time_backward 3.9030
[2023-10-25 17:03:25,815::train::INFO] [train] Iter 598187 | loss 0.3804 | loss(rot) 0.0829 | loss(pos) 0.2785 | loss(seq) 0.0190 | grad 5.0220 | lr 0.0000 | time_forward 3.2290 | time_backward 4.1310
[2023-10-25 17:03:32,980::train::INFO] [train] Iter 598188 | loss 0.2399 | loss(rot) 0.1483 | loss(pos) 0.0128 | loss(seq) 0.0788 | grad 2.4546 | lr 0.0000 | time_forward 3.1040 | time_backward 4.0580
[2023-10-25 17:03:35,228::train::INFO] [train] Iter 598189 | loss 0.9434 | loss(rot) 0.3389 | loss(pos) 0.2843 | loss(seq) 0.3203 | grad 4.6826 | lr 0.0000 | time_forward 1.0320 | time_backward 1.2120
[2023-10-25 17:03:43,070::train::INFO] [train] Iter 598190 | loss 0.2596 | loss(rot) 0.0320 | loss(pos) 0.2256 | loss(seq) 0.0020 | grad 3.5976 | lr 0.0000 | time_forward 3.3910 | time_backward 4.4480
[2023-10-25 17:03:49,564::train::INFO] [train] Iter 598191 | loss 0.5247 | loss(rot) 0.0373 | loss(pos) 0.4825 | loss(seq) 0.0049 | grad 12.9474 | lr 0.0000 | time_forward 2.8410 | time_backward 3.6500
[2023-10-25 17:03:55,986::train::INFO] [train] Iter 598192 | loss 1.8207 | loss(rot) 1.6394 | loss(pos) 0.0487 | loss(seq) 0.1326 | grad 5.3991 | lr 0.0000 | time_forward 2.7610 | time_backward 3.6590
[2023-10-25 17:03:58,692::train::INFO] [train] Iter 598193 | loss 0.4725 | loss(rot) 0.0931 | loss(pos) 0.3436 | loss(seq) 0.0358 | grad 5.0943 | lr 0.0000 | time_forward 1.2960 | time_backward 1.4070
[2023-10-25 17:04:06,255::train::INFO] [train] Iter 598194 | loss 0.6981 | loss(rot) 0.1798 | loss(pos) 0.0859 | loss(seq) 0.4324 | grad 4.9258 | lr 0.0000 | time_forward 3.2680 | time_backward 4.2910
[2023-10-25 17:04:12,469::train::INFO] [train] Iter 598195 | loss 0.1684 | loss(rot) 0.0752 | loss(pos) 0.0585 | loss(seq) 0.0347 | grad 2.1028 | lr 0.0000 | time_forward 2.7030 | time_backward 3.5090
[2023-10-25 17:04:20,979::train::INFO] [train] Iter 598196 | loss 1.6903 | loss(rot) 0.9925 | loss(pos) 0.1025 | loss(seq) 0.5952 | grad 5.1508 | lr 0.0000 | time_forward 3.4770 | time_backward 5.0290
[2023-10-25 17:04:28,583::train::INFO] [train] Iter 598197 | loss 0.3908 | loss(rot) 0.0540 | loss(pos) 0.0512 | loss(seq) 0.2857 | grad 2.2587 | lr 0.0000 | time_forward 3.2950 | time_backward 4.3070
[2023-10-25 17:04:37,018::train::INFO] [train] Iter 598198 | loss 1.1911 | loss(rot) 0.9735 | loss(pos) 0.0486 | loss(seq) 0.1690 | grad 5.4085 | lr 0.0000 | time_forward 3.4850 | time_backward 4.9460
[2023-10-25 17:04:44,643::train::INFO] [train] Iter 598199 | loss 0.8156 | loss(rot) 0.7865 | loss(pos) 0.0283 | loss(seq) 0.0008 | grad 4.0102 | lr 0.0000 | time_forward 3.3060 | time_backward 4.3160
[2023-10-25 17:04:52,272::train::INFO] [train] Iter 598200 | loss 0.5729 | loss(rot) 0.0918 | loss(pos) 0.4765 | loss(seq) 0.0045 | grad 9.6700 | lr 0.0000 | time_forward 3.2420 | time_backward 4.3830
[2023-10-25 17:05:00,955::train::INFO] [train] Iter 598201 | loss 0.3207 | loss(rot) 0.1523 | loss(pos) 0.0099 | loss(seq) 0.1585 | grad 2.3490 | lr 0.0000 | time_forward 3.4900 | time_backward 5.1880
[2023-10-25 17:05:08,784::train::INFO] [train] Iter 598202 | loss 1.7068 | loss(rot) 0.7003 | loss(pos) 0.2563 | loss(seq) 0.7502 | grad 5.0095 | lr 0.0000 | time_forward 3.3840 | time_backward 4.4420
[2023-10-25 17:05:11,557::train::INFO] [train] Iter 598203 | loss 0.2377 | loss(rot) 0.1884 | loss(pos) 0.0347 | loss(seq) 0.0146 | grad 2.3004 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4530
[2023-10-25 17:05:19,998::train::INFO] [train] Iter 598204 | loss 0.3462 | loss(rot) 0.1137 | loss(pos) 0.2220 | loss(seq) 0.0106 | grad 3.9379 | lr 0.0000 | time_forward 3.5490 | time_backward 4.8880
[2023-10-25 17:05:28,354::train::INFO] [train] Iter 598205 | loss 1.1417 | loss(rot) 0.0718 | loss(pos) 0.8914 | loss(seq) 0.1786 | grad 5.5057 | lr 0.0000 | time_forward 3.4420 | time_backward 4.9110
[2023-10-25 17:05:36,081::train::INFO] [train] Iter 598206 | loss 0.2137 | loss(rot) 0.1036 | loss(pos) 0.0937 | loss(seq) 0.0163 | grad 2.6915 | lr 0.0000 | time_forward 3.3380 | time_backward 4.3870
[2023-10-25 17:05:44,388::train::INFO] [train] Iter 598207 | loss 0.3713 | loss(rot) 0.1065 | loss(pos) 0.1034 | loss(seq) 0.1614 | grad 3.1604 | lr 0.0000 | time_forward 3.5390 | time_backward 4.7650
[2023-10-25 17:05:52,662::train::INFO] [train] Iter 598208 | loss 0.9631 | loss(rot) 0.8795 | loss(pos) 0.0514 | loss(seq) 0.0322 | grad 8.7219 | lr 0.0000 | time_forward 3.6090 | time_backward 4.6610
[2023-10-25 17:06:00,931::train::INFO] [train] Iter 598209 | loss 1.6878 | loss(rot) 1.6315 | loss(pos) 0.0432 | loss(seq) 0.0131 | grad 4.1000 | lr 0.0000 | time_forward 3.4210 | time_backward 4.8450
[2023-10-25 17:06:08,807::train::INFO] [train] Iter 598210 | loss 0.1537 | loss(rot) 0.1166 | loss(pos) 0.0299 | loss(seq) 0.0072 | grad 1.5590 | lr 0.0000 | time_forward 3.3630 | time_backward 4.5110
[2023-10-25 17:06:11,593::train::INFO] [train] Iter 598211 | loss 0.2291 | loss(rot) 0.0178 | loss(pos) 0.1282 | loss(seq) 0.0832 | grad 5.5847 | lr 0.0000 | time_forward 1.3220 | time_backward 1.4600
[2023-10-25 17:06:20,471::train::INFO] [train] Iter 598212 | loss 1.9941 | loss(rot) 1.9162 | loss(pos) 0.0776 | loss(seq) 0.0003 | grad 8.8677 | lr 0.0000 | time_forward 3.9230 | time_backward 4.9510
[2023-10-25 17:06:28,187::train::INFO] [train] Iter 598213 | loss 0.4158 | loss(rot) 0.1631 | loss(pos) 0.0400 | loss(seq) 0.2127 | grad 2.2864 | lr 0.0000 | time_forward 3.3620 | time_backward 4.3510
[2023-10-25 17:06:35,791::train::INFO] [train] Iter 598214 | loss 1.6977 | loss(rot) 1.2576 | loss(pos) 0.0663 | loss(seq) 0.3738 | grad 4.3714 | lr 0.0000 | time_forward 3.1650 | time_backward 4.4350
[2023-10-25 17:06:38,503::train::INFO] [train] Iter 598215 | loss 0.2628 | loss(rot) 0.2319 | loss(pos) 0.0225 | loss(seq) 0.0084 | grad 2.5499 | lr 0.0000 | time_forward 1.2900 | time_backward 1.4190
[2023-10-25 17:06:41,348::train::INFO] [train] Iter 598216 | loss 0.8231 | loss(rot) 0.0757 | loss(pos) 0.7076 | loss(seq) 0.0398 | grad 6.5547 | lr 0.0000 | time_forward 1.3490 | time_backward 1.4930
[2023-10-25 17:06:49,732::train::INFO] [train] Iter 598217 | loss 3.3089 | loss(rot) 2.7107 | loss(pos) 0.2885 | loss(seq) 0.3097 | grad 4.9248 | lr 0.0000 | time_forward 3.4610 | time_backward 4.9070
[2023-10-25 17:06:58,170::train::INFO] [train] Iter 598218 | loss 1.9631 | loss(rot) 1.3079 | loss(pos) 0.1434 | loss(seq) 0.5118 | grad 3.3446 | lr 0.0000 | time_forward 3.4940 | time_backward 4.9410
[2023-10-25 17:07:05,468::train::INFO] [train] Iter 598219 | loss 1.0950 | loss(rot) 0.4376 | loss(pos) 0.3891 | loss(seq) 0.2683 | grad 4.2087 | lr 0.0000 | time_forward 3.1570 | time_backward 4.1390
[2023-10-25 17:07:08,308::train::INFO] [train] Iter 598220 | loss 0.2156 | loss(rot) 0.1778 | loss(pos) 0.0233 | loss(seq) 0.0145 | grad 1.6039 | lr 0.0000 | time_forward 1.3120 | time_backward 1.5250
[2023-10-25 17:07:11,013::train::INFO] [train] Iter 598221 | loss 0.4688 | loss(rot) 0.3780 | loss(pos) 0.0195 | loss(seq) 0.0713 | grad 3.2736 | lr 0.0000 | time_forward 1.2760 | time_backward 1.4260
[2023-10-25 17:07:18,340::train::INFO] [train] Iter 598222 | loss 0.8370 | loss(rot) 0.2867 | loss(pos) 0.5081 | loss(seq) 0.0421 | grad 5.5193 | lr 0.0000 | time_forward 3.1500 | time_backward 4.1730
[2023-10-25 17:07:26,689::train::INFO] [train] Iter 598223 | loss 3.4674 | loss(rot) 0.0029 | loss(pos) 3.4645 | loss(seq) 0.0000 | grad 29.0401 | lr 0.0000 | time_forward 3.4380 | time_backward 4.9080
[2023-10-25 17:07:29,190::train::INFO] [train] Iter 598224 | loss 1.9778 | loss(rot) 1.4710 | loss(pos) 0.1261 | loss(seq) 0.3807 | grad 8.9027 | lr 0.0000 | time_forward 1.2070 | time_backward 1.2900
[2023-10-25 17:07:31,978::train::INFO] [train] Iter 598225 | loss 0.4036 | loss(rot) 0.0888 | loss(pos) 0.0990 | loss(seq) 0.2158 | grad 4.4662 | lr 0.0000 | time_forward 1.3440 | time_backward 1.4410
[2023-10-25 17:07:40,397::train::INFO] [train] Iter 598226 | loss 1.0081 | loss(rot) 0.3943 | loss(pos) 0.2141 | loss(seq) 0.3997 | grad 3.1629 | lr 0.0000 | time_forward 3.6320 | time_backward 4.7840
[2023-10-25 17:07:49,109::train::INFO] [train] Iter 598227 | loss 1.8227 | loss(rot) 1.6968 | loss(pos) 0.1107 | loss(seq) 0.0151 | grad 6.6711 | lr 0.0000 | time_forward 3.7430 | time_backward 4.9650
[2023-10-25 17:07:56,430::train::INFO] [train] Iter 598228 | loss 0.5153 | loss(rot) 0.2067 | loss(pos) 0.2723 | loss(seq) 0.0363 | grad 4.5223 | lr 0.0000 | time_forward 3.1550 | time_backward 4.1640
[2023-10-25 17:07:59,206::train::INFO] [train] Iter 598229 | loss 1.4125 | loss(rot) 0.0043 | loss(pos) 1.4079 | loss(seq) 0.0003 | grad 11.2587 | lr 0.0000 | time_forward 1.3280 | time_backward 1.4440
[2023-10-25 17:08:06,349::train::INFO] [train] Iter 598230 | loss 0.9133 | loss(rot) 0.3255 | loss(pos) 0.1328 | loss(seq) 0.4551 | grad 4.3602 | lr 0.0000 | time_forward 3.0870 | time_backward 4.0540
[2023-10-25 17:08:14,778::train::INFO] [train] Iter 598231 | loss 0.3462 | loss(rot) 0.3147 | loss(pos) 0.0237 | loss(seq) 0.0078 | grad 2.0015 | lr 0.0000 | time_forward 3.5000 | time_backward 4.9250
[2023-10-25 17:08:17,510::train::INFO] [train] Iter 598232 | loss 1.9472 | loss(rot) 1.4541 | loss(pos) 0.1288 | loss(seq) 0.3643 | grad 4.6266 | lr 0.0000 | time_forward 1.3180 | time_backward 1.4110
[2023-10-25 17:08:24,759::train::INFO] [train] Iter 598233 | loss 1.5349 | loss(rot) 1.3087 | loss(pos) 0.0674 | loss(seq) 0.1589 | grad 15.5352 | lr 0.0000 | time_forward 3.1170 | time_backward 4.1000
[2023-10-25 17:08:27,466::train::INFO] [train] Iter 598234 | loss 0.8988 | loss(rot) 0.2816 | loss(pos) 0.1605 | loss(seq) 0.4567 | grad 5.2565 | lr 0.0000 | time_forward 1.2970 | time_backward 1.4070
[2023-10-25 17:08:33,762::train::INFO] [train] Iter 598235 | loss 0.3860 | loss(rot) 0.0545 | loss(pos) 0.1040 | loss(seq) 0.2276 | grad 4.0607 | lr 0.0000 | time_forward 2.7350 | time_backward 3.5320
[2023-10-25 17:08:40,677::train::INFO] [train] Iter 598236 | loss 2.9735 | loss(rot) 2.3078 | loss(pos) 0.2527 | loss(seq) 0.4129 | grad 6.6279 | lr 0.0000 | time_forward 2.9570 | time_backward 3.9560
[2023-10-25 17:08:48,504::train::INFO] [train] Iter 598237 | loss 1.0136 | loss(rot) 0.4720 | loss(pos) 0.1176 | loss(seq) 0.4240 | grad 5.6669 | lr 0.0000 | time_forward 3.3640 | time_backward 4.4590
[2023-10-25 17:08:51,293::train::INFO] [train] Iter 598238 | loss 0.3355 | loss(rot) 0.1064 | loss(pos) 0.0427 | loss(seq) 0.1864 | grad 2.1481 | lr 0.0000 | time_forward 1.2910 | time_backward 1.4950
[2023-10-25 17:08:53,903::train::INFO] [train] Iter 598239 | loss 0.3434 | loss(rot) 0.2043 | loss(pos) 0.0075 | loss(seq) 0.1316 | grad 3.2532 | lr 0.0000 | time_forward 1.1950 | time_backward 1.4010
[2023-10-25 17:09:01,368::train::INFO] [train] Iter 598240 | loss 0.6803 | loss(rot) 0.1778 | loss(pos) 0.4438 | loss(seq) 0.0587 | grad 5.7044 | lr 0.0000 | time_forward 3.2130 | time_backward 4.2480
[2023-10-25 17:09:08,025::train::INFO] [train] Iter 598241 | loss 1.1310 | loss(rot) 0.6832 | loss(pos) 0.0557 | loss(seq) 0.3921 | grad 2.7184 | lr 0.0000 | time_forward 2.8500 | time_backward 3.8040
[2023-10-25 17:09:16,728::train::INFO] [train] Iter 598242 | loss 0.6153 | loss(rot) 0.1039 | loss(pos) 0.2920 | loss(seq) 0.2193 | grad 4.0765 | lr 0.0000 | time_forward 3.8150 | time_backward 4.8850
[2023-10-25 17:09:19,551::train::INFO] [train] Iter 598243 | loss 0.4138 | loss(rot) 0.1097 | loss(pos) 0.0645 | loss(seq) 0.2396 | grad 2.7543 | lr 0.0000 | time_forward 1.3330 | time_backward 1.4870
[2023-10-25 17:09:27,192::train::INFO] [train] Iter 598244 | loss 0.7730 | loss(rot) 0.1130 | loss(pos) 0.4345 | loss(seq) 0.2254 | grad 3.4854 | lr 0.0000 | time_forward 3.3050 | time_backward 4.3230
[2023-10-25 17:09:29,175::train::INFO] [train] Iter 598245 | loss 2.6711 | loss(rot) 2.1406 | loss(pos) 0.5256 | loss(seq) 0.0049 | grad 39.9280 | lr 0.0000 | time_forward 0.8810 | time_backward 1.0980
[2023-10-25 17:09:35,562::train::INFO] [train] Iter 598246 | loss 0.8179 | loss(rot) 0.0594 | loss(pos) 0.7552 | loss(seq) 0.0033 | grad 8.8713 | lr 0.0000 | time_forward 2.7690 | time_backward 3.6150
[2023-10-25 17:09:43,883::train::INFO] [train] Iter 598247 | loss 0.8811 | loss(rot) 0.6293 | loss(pos) 0.0327 | loss(seq) 0.2192 | grad 3.5675 | lr 0.0000 | time_forward 3.4420 | time_backward 4.8760
[2023-10-25 17:09:49,307::train::INFO] [train] Iter 598248 | loss 0.5178 | loss(rot) 0.1518 | loss(pos) 0.3367 | loss(seq) 0.0293 | grad 5.9353 | lr 0.0000 | time_forward 2.3630 | time_backward 3.0570
[2023-10-25 17:09:57,869::train::INFO] [train] Iter 598249 | loss 1.1387 | loss(rot) 0.8364 | loss(pos) 0.0662 | loss(seq) 0.2361 | grad 4.8811 | lr 0.0000 | time_forward 3.6250 | time_backward 4.9350
[2023-10-25 17:10:05,684::train::INFO] [train] Iter 598250 | loss 1.1438 | loss(rot) 0.4835 | loss(pos) 0.3635 | loss(seq) 0.2968 | grad 4.0503 | lr 0.0000 | time_forward 3.3820 | time_backward 4.4300
[2023-10-25 17:10:13,393::train::INFO] [train] Iter 598251 | loss 1.6715 | loss(rot) 1.3650 | loss(pos) 0.0307 | loss(seq) 0.2757 | grad 33.6445 | lr 0.0000 | time_forward 3.2840 | time_backward 4.4210
[2023-10-25 17:10:20,411::train::INFO] [train] Iter 598252 | loss 0.3118 | loss(rot) 0.1669 | loss(pos) 0.1056 | loss(seq) 0.0393 | grad 2.7302 | lr 0.0000 | time_forward 3.0210 | time_backward 3.9950
[2023-10-25 17:10:28,587::train::INFO] [train] Iter 598253 | loss 1.1313 | loss(rot) 0.3519 | loss(pos) 0.3483 | loss(seq) 0.4311 | grad 3.0502 | lr 0.0000 | time_forward 3.5580 | time_backward 4.6140
[2023-10-25 17:10:31,337::train::INFO] [train] Iter 598254 | loss 0.2775 | loss(rot) 0.0839 | loss(pos) 0.0841 | loss(seq) 0.1095 | grad 2.2779 | lr 0.0000 | time_forward 1.2650 | time_backward 1.4820
[2023-10-25 17:10:38,672::train::INFO] [train] Iter 598255 | loss 0.8993 | loss(rot) 0.3130 | loss(pos) 0.1671 | loss(seq) 0.4192 | grad 4.7631 | lr 0.0000 | time_forward 3.1570 | time_backward 4.1740
[2023-10-25 17:10:46,018::train::INFO] [train] Iter 598256 | loss 1.3672 | loss(rot) 0.7059 | loss(pos) 0.4733 | loss(seq) 0.1880 | grad 7.9716 | lr 0.0000 | time_forward 3.1560 | time_backward 4.1860
[2023-10-25 17:10:52,825::train::INFO] [train] Iter 598257 | loss 0.5362 | loss(rot) 0.3485 | loss(pos) 0.0233 | loss(seq) 0.1644 | grad 4.1730 | lr 0.0000 | time_forward 2.9010 | time_backward 3.9020
[2023-10-25 17:10:55,569::train::INFO] [train] Iter 598258 | loss 0.5727 | loss(rot) 0.4867 | loss(pos) 0.0217 | loss(seq) 0.0643 | grad 3.5001 | lr 0.0000 | time_forward 1.2970 | time_backward 1.4430
[2023-10-25 17:11:03,788::train::INFO] [train] Iter 598259 | loss 0.8130 | loss(rot) 0.6630 | loss(pos) 0.0784 | loss(seq) 0.0716 | grad 10.4026 | lr 0.0000 | time_forward 3.5250 | time_backward 4.6900
[2023-10-25 17:11:12,176::train::INFO] [train] Iter 598260 | loss 0.4270 | loss(rot) 0.0316 | loss(pos) 0.3879 | loss(seq) 0.0074 | grad 8.8803 | lr 0.0000 | time_forward 3.5310 | time_backward 4.8540
[2023-10-25 17:11:19,421::train::INFO] [train] Iter 598261 | loss 0.7202 | loss(rot) 0.1553 | loss(pos) 0.1211 | loss(seq) 0.4437 | grad 4.0202 | lr 0.0000 | time_forward 3.1480 | time_backward 4.0940
[2023-10-25 17:11:27,887::train::INFO] [train] Iter 598262 | loss 0.3939 | loss(rot) 0.2882 | loss(pos) 0.0880 | loss(seq) 0.0178 | grad 2.9061 | lr 0.0000 | time_forward 3.5970 | time_backward 4.8670
[2023-10-25 17:11:35,422::train::INFO] [train] Iter 598263 | loss 1.0546 | loss(rot) 0.6041 | loss(pos) 0.3031 | loss(seq) 0.1474 | grad 4.6933 | lr 0.0000 | time_forward 3.2390 | time_backward 4.2920