text
stringlengths
56
1.16k
[2023-10-25 17:11:42,630::train::INFO] [train] Iter 598264 | loss 0.8735 | loss(rot) 0.8073 | loss(pos) 0.0333 | loss(seq) 0.0328 | grad 3.5489 | lr 0.0000 | time_forward 3.1180 | time_backward 4.0870
[2023-10-25 17:11:45,560::train::INFO] [train] Iter 598265 | loss 0.8175 | loss(rot) 0.4226 | loss(pos) 0.0407 | loss(seq) 0.3542 | grad 2.8687 | lr 0.0000 | time_forward 1.2970 | time_backward 1.6300
[2023-10-25 17:11:53,749::train::INFO] [train] Iter 598266 | loss 2.5495 | loss(rot) 0.0093 | loss(pos) 2.5401 | loss(seq) 0.0001 | grad 20.5572 | lr 0.0000 | time_forward 3.4200 | time_backward 4.7650
[2023-10-25 17:12:01,177::train::INFO] [train] Iter 598267 | loss 1.0079 | loss(rot) 0.4613 | loss(pos) 0.0506 | loss(seq) 0.4960 | grad 3.4370 | lr 0.0000 | time_forward 3.2050 | time_backward 4.2190
[2023-10-25 17:12:03,946::train::INFO] [train] Iter 598268 | loss 1.0593 | loss(rot) 0.6608 | loss(pos) 0.0827 | loss(seq) 0.3158 | grad 2.9071 | lr 0.0000 | time_forward 1.3210 | time_backward 1.4440
[2023-10-25 17:12:12,202::train::INFO] [train] Iter 598269 | loss 1.7217 | loss(rot) 1.3040 | loss(pos) 0.0803 | loss(seq) 0.3374 | grad 4.3153 | lr 0.0000 | time_forward 3.5100 | time_backward 4.7430
[2023-10-25 17:12:19,727::train::INFO] [train] Iter 598270 | loss 0.1447 | loss(rot) 0.1118 | loss(pos) 0.0299 | loss(seq) 0.0030 | grad 2.6392 | lr 0.0000 | time_forward 3.2750 | time_backward 4.2460
[2023-10-25 17:12:22,411::train::INFO] [train] Iter 598271 | loss 1.5767 | loss(rot) 1.2860 | loss(pos) 0.1333 | loss(seq) 0.1574 | grad 8.1150 | lr 0.0000 | time_forward 1.2780 | time_backward 1.4030
[2023-10-25 17:12:30,696::train::INFO] [train] Iter 598272 | loss 0.7976 | loss(rot) 0.7270 | loss(pos) 0.0203 | loss(seq) 0.0503 | grad 3.8988 | lr 0.0000 | time_forward 3.3850 | time_backward 4.8730
[2023-10-25 17:12:33,067::train::INFO] [train] Iter 598273 | loss 0.4832 | loss(rot) 0.1800 | loss(pos) 0.2914 | loss(seq) 0.0118 | grad 6.8291 | lr 0.0000 | time_forward 1.0870 | time_backward 1.2810
[2023-10-25 17:12:42,395::train::INFO] [train] Iter 598274 | loss 0.5087 | loss(rot) 0.0561 | loss(pos) 0.4251 | loss(seq) 0.0275 | grad 6.6830 | lr 0.0000 | time_forward 4.3070 | time_backward 5.0170
[2023-10-25 17:12:52,550::train::INFO] [train] Iter 598275 | loss 0.8728 | loss(rot) 0.7684 | loss(pos) 0.0297 | loss(seq) 0.0747 | grad 6.4443 | lr 0.0000 | time_forward 4.0490 | time_backward 6.1030
[2023-10-25 17:13:02,443::train::INFO] [train] Iter 598276 | loss 0.7283 | loss(rot) 0.6864 | loss(pos) 0.0294 | loss(seq) 0.0125 | grad 9.1748 | lr 0.0000 | time_forward 3.9990 | time_backward 5.8910
[2023-10-25 17:13:05,120::train::INFO] [train] Iter 598277 | loss 0.3207 | loss(rot) 0.1476 | loss(pos) 0.0916 | loss(seq) 0.0815 | grad 3.0062 | lr 0.0000 | time_forward 1.2570 | time_backward 1.4170
[2023-10-25 17:13:08,008::train::INFO] [train] Iter 598278 | loss 1.3786 | loss(rot) 1.2636 | loss(pos) 0.0485 | loss(seq) 0.0665 | grad 4.2343 | lr 0.0000 | time_forward 1.3400 | time_backward 1.5460
[2023-10-25 17:13:16,854::train::INFO] [train] Iter 598279 | loss 1.4692 | loss(rot) 1.3652 | loss(pos) 0.0324 | loss(seq) 0.0716 | grad 2.9174 | lr 0.0000 | time_forward 3.7150 | time_backward 5.1270
[2023-10-25 17:13:19,126::train::INFO] [train] Iter 598280 | loss 1.1088 | loss(rot) 1.0387 | loss(pos) 0.0419 | loss(seq) 0.0281 | grad 7.2100 | lr 0.0000 | time_forward 1.0610 | time_backward 1.2070
[2023-10-25 17:13:28,014::train::INFO] [train] Iter 598281 | loss 0.1239 | loss(rot) 0.0763 | loss(pos) 0.0196 | loss(seq) 0.0279 | grad 1.9595 | lr 0.0000 | time_forward 3.7180 | time_backward 5.1670
[2023-10-25 17:13:36,323::train::INFO] [train] Iter 598282 | loss 0.9679 | loss(rot) 0.2589 | loss(pos) 0.6095 | loss(seq) 0.0995 | grad 9.8159 | lr 0.0000 | time_forward 3.6100 | time_backward 4.6960
[2023-10-25 17:13:45,057::train::INFO] [train] Iter 598283 | loss 1.3424 | loss(rot) 0.2519 | loss(pos) 0.7040 | loss(seq) 0.3865 | grad 5.2951 | lr 0.0000 | time_forward 3.6640 | time_backward 5.0670
[2023-10-25 17:13:55,268::train::INFO] [train] Iter 598284 | loss 0.7831 | loss(rot) 0.3211 | loss(pos) 0.0432 | loss(seq) 0.4188 | grad 4.1810 | lr 0.0000 | time_forward 4.0900 | time_backward 6.1170
[2023-10-25 17:14:04,715::train::INFO] [train] Iter 598285 | loss 0.1576 | loss(rot) 0.1384 | loss(pos) 0.0192 | loss(seq) 0.0000 | grad 2.3821 | lr 0.0000 | time_forward 4.0150 | time_backward 5.4280
[2023-10-25 17:14:07,822::train::INFO] [train] Iter 598286 | loss 0.3800 | loss(rot) 0.3617 | loss(pos) 0.0174 | loss(seq) 0.0010 | grad 7.5771 | lr 0.0000 | time_forward 1.4770 | time_backward 1.6270
[2023-10-25 17:14:16,271::train::INFO] [train] Iter 598287 | loss 0.4468 | loss(rot) 0.3902 | loss(pos) 0.0232 | loss(seq) 0.0335 | grad 8.5343 | lr 0.0000 | time_forward 3.5810 | time_backward 4.8640
[2023-10-25 17:14:26,415::train::INFO] [train] Iter 598288 | loss 0.2832 | loss(rot) 0.0664 | loss(pos) 0.0295 | loss(seq) 0.1872 | grad 1.8443 | lr 0.0000 | time_forward 4.1940 | time_backward 5.9480
[2023-10-25 17:14:35,786::train::INFO] [train] Iter 598289 | loss 0.7780 | loss(rot) 0.6595 | loss(pos) 0.0310 | loss(seq) 0.0875 | grad 5.5218 | lr 0.0000 | time_forward 3.9040 | time_backward 5.4630
[2023-10-25 17:14:38,638::train::INFO] [train] Iter 598290 | loss 0.4965 | loss(rot) 0.1197 | loss(pos) 0.3349 | loss(seq) 0.0419 | grad 2.4787 | lr 0.0000 | time_forward 1.3770 | time_backward 1.4710
[2023-10-25 17:14:47,187::train::INFO] [train] Iter 598291 | loss 0.6948 | loss(rot) 0.2349 | loss(pos) 0.0282 | loss(seq) 0.4317 | grad 3.5072 | lr 0.0000 | time_forward 3.6570 | time_backward 4.8890
[2023-10-25 17:14:55,939::train::INFO] [train] Iter 598292 | loss 0.3175 | loss(rot) 0.0711 | loss(pos) 0.0223 | loss(seq) 0.2240 | grad 2.1522 | lr 0.0000 | time_forward 3.7270 | time_backward 5.0220
[2023-10-25 17:15:04,205::train::INFO] [train] Iter 598293 | loss 0.2707 | loss(rot) 0.1844 | loss(pos) 0.0198 | loss(seq) 0.0665 | grad 3.0510 | lr 0.0000 | time_forward 3.5580 | time_backward 4.7050
[2023-10-25 17:15:07,088::train::INFO] [train] Iter 598294 | loss 0.9466 | loss(rot) 0.6143 | loss(pos) 0.0387 | loss(seq) 0.2935 | grad 2.8372 | lr 0.0000 | time_forward 1.3780 | time_backward 1.5010
[2023-10-25 17:15:10,011::train::INFO] [train] Iter 598295 | loss 1.2079 | loss(rot) 1.0997 | loss(pos) 0.0871 | loss(seq) 0.0212 | grad 3.4871 | lr 0.0000 | time_forward 1.4010 | time_backward 1.5180
[2023-10-25 17:15:13,921::train::INFO] [train] Iter 598296 | loss 2.2921 | loss(rot) 1.5780 | loss(pos) 0.2385 | loss(seq) 0.4756 | grad 4.3116 | lr 0.0000 | time_forward 1.7660 | time_backward 2.1410
[2023-10-25 17:15:16,725::train::INFO] [train] Iter 598297 | loss 1.6856 | loss(rot) 1.5760 | loss(pos) 0.0967 | loss(seq) 0.0128 | grad 15.8841 | lr 0.0000 | time_forward 1.3070 | time_backward 1.4850
[2023-10-25 17:15:26,401::train::INFO] [train] Iter 598298 | loss 0.1397 | loss(rot) 0.0993 | loss(pos) 0.0142 | loss(seq) 0.0263 | grad 5.4380 | lr 0.0000 | time_forward 4.1690 | time_backward 5.5030
[2023-10-25 17:15:32,727::train::INFO] [train] Iter 598299 | loss 0.2166 | loss(rot) 0.1924 | loss(pos) 0.0105 | loss(seq) 0.0137 | grad 2.3193 | lr 0.0000 | time_forward 2.7180 | time_backward 3.6040
[2023-10-25 17:15:40,596::train::INFO] [train] Iter 598300 | loss 0.1481 | loss(rot) 0.0741 | loss(pos) 0.0188 | loss(seq) 0.0551 | grad 1.4094 | lr 0.0000 | time_forward 3.3430 | time_backward 4.5080
[2023-10-25 17:15:44,027::train::INFO] [train] Iter 598301 | loss 0.8589 | loss(rot) 0.6624 | loss(pos) 0.0489 | loss(seq) 0.1477 | grad 2.6119 | lr 0.0000 | time_forward 1.4760 | time_backward 1.9520
[2023-10-25 17:15:52,259::train::INFO] [train] Iter 598302 | loss 3.6209 | loss(rot) 0.0327 | loss(pos) 3.5882 | loss(seq) 0.0000 | grad 26.5232 | lr 0.0000 | time_forward 3.2830 | time_backward 4.9310
[2023-10-25 17:15:55,607::train::INFO] [train] Iter 598303 | loss 1.6930 | loss(rot) 1.5474 | loss(pos) 0.1341 | loss(seq) 0.0115 | grad 4.8726 | lr 0.0000 | time_forward 1.5240 | time_backward 1.8200
[2023-10-25 17:16:04,171::train::INFO] [train] Iter 598304 | loss 0.5729 | loss(rot) 0.1684 | loss(pos) 0.0203 | loss(seq) 0.3842 | grad 2.5725 | lr 0.0000 | time_forward 3.6520 | time_backward 4.8970
[2023-10-25 17:16:11,862::train::INFO] [train] Iter 598305 | loss 0.1273 | loss(rot) 0.0675 | loss(pos) 0.0577 | loss(seq) 0.0022 | grad 1.8102 | lr 0.0000 | time_forward 3.3020 | time_backward 4.3860
[2023-10-25 17:16:18,804::train::INFO] [train] Iter 598306 | loss 1.1313 | loss(rot) 0.8769 | loss(pos) 0.0797 | loss(seq) 0.1747 | grad 4.6242 | lr 0.0000 | time_forward 2.9430 | time_backward 3.9970
[2023-10-25 17:16:22,106::train::INFO] [train] Iter 598307 | loss 0.3219 | loss(rot) 0.2851 | loss(pos) 0.0357 | loss(seq) 0.0011 | grad 3.7767 | lr 0.0000 | time_forward 1.4900 | time_backward 1.8090
[2023-10-25 17:16:30,305::train::INFO] [train] Iter 598308 | loss 0.5760 | loss(rot) 0.2593 | loss(pos) 0.0520 | loss(seq) 0.2647 | grad 2.7902 | lr 0.0000 | time_forward 3.5970 | time_backward 4.5860
[2023-10-25 17:16:36,751::train::INFO] [train] Iter 598309 | loss 1.9095 | loss(rot) 1.4585 | loss(pos) 0.0936 | loss(seq) 0.3574 | grad 4.1949 | lr 0.0000 | time_forward 2.7800 | time_backward 3.6640
[2023-10-25 17:16:44,721::train::INFO] [train] Iter 598310 | loss 1.9225 | loss(rot) 0.0049 | loss(pos) 1.9167 | loss(seq) 0.0008 | grad 12.3941 | lr 0.0000 | time_forward 3.4140 | time_backward 4.5520
[2023-10-25 17:16:47,391::train::INFO] [train] Iter 598311 | loss 0.4400 | loss(rot) 0.0951 | loss(pos) 0.2745 | loss(seq) 0.0704 | grad 3.9534 | lr 0.0000 | time_forward 1.2460 | time_backward 1.4210
[2023-10-25 17:16:54,136::train::INFO] [train] Iter 598312 | loss 1.3751 | loss(rot) 0.9703 | loss(pos) 0.0674 | loss(seq) 0.3374 | grad 13.5546 | lr 0.0000 | time_forward 2.8950 | time_backward 3.8470
[2023-10-25 17:17:03,210::train::INFO] [train] Iter 598313 | loss 0.8682 | loss(rot) 0.5408 | loss(pos) 0.0560 | loss(seq) 0.2715 | grad 18.8251 | lr 0.0000 | time_forward 3.9450 | time_backward 5.1260
[2023-10-25 17:17:11,392::train::INFO] [train] Iter 598314 | loss 1.0771 | loss(rot) 0.5848 | loss(pos) 0.1346 | loss(seq) 0.3577 | grad 4.9066 | lr 0.0000 | time_forward 3.5570 | time_backward 4.6210
[2023-10-25 17:17:18,819::train::INFO] [train] Iter 598315 | loss 0.4367 | loss(rot) 0.1152 | loss(pos) 0.0805 | loss(seq) 0.2409 | grad 3.6748 | lr 0.0000 | time_forward 3.1440 | time_backward 4.2790
[2023-10-25 17:17:26,886::train::INFO] [train] Iter 598316 | loss 1.2793 | loss(rot) 0.2213 | loss(pos) 1.0204 | loss(seq) 0.0376 | grad 12.8005 | lr 0.0000 | time_forward 3.4120 | time_backward 4.6530
[2023-10-25 17:17:29,662::train::INFO] [train] Iter 598317 | loss 0.8734 | loss(rot) 0.4234 | loss(pos) 0.1358 | loss(seq) 0.3142 | grad 3.2706 | lr 0.0000 | time_forward 1.3310 | time_backward 1.4410
[2023-10-25 17:17:37,115::train::INFO] [train] Iter 598318 | loss 0.9274 | loss(rot) 0.3124 | loss(pos) 0.1092 | loss(seq) 0.5058 | grad 4.2618 | lr 0.0000 | time_forward 3.1400 | time_backward 4.3080
[2023-10-25 17:17:44,030::train::INFO] [train] Iter 598319 | loss 0.7588 | loss(rot) 0.2766 | loss(pos) 0.0592 | loss(seq) 0.4230 | grad 3.4265 | lr 0.0000 | time_forward 3.0580 | time_backward 3.8540
[2023-10-25 17:17:47,275::train::INFO] [train] Iter 598320 | loss 0.4761 | loss(rot) 0.4112 | loss(pos) 0.0649 | loss(seq) 0.0000 | grad 30.2987 | lr 0.0000 | time_forward 1.4610 | time_backward 1.7820
[2023-10-25 17:17:54,216::train::INFO] [train] Iter 598321 | loss 1.0931 | loss(rot) 0.0096 | loss(pos) 1.0818 | loss(seq) 0.0017 | grad 7.4259 | lr 0.0000 | time_forward 2.9740 | time_backward 3.9640
[2023-10-25 17:18:01,748::train::INFO] [train] Iter 598322 | loss 1.8476 | loss(rot) 0.2084 | loss(pos) 1.6381 | loss(seq) 0.0011 | grad 6.8475 | lr 0.0000 | time_forward 3.2780 | time_backward 4.2500
[2023-10-25 17:18:10,323::train::INFO] [train] Iter 598323 | loss 0.6740 | loss(rot) 0.3740 | loss(pos) 0.0709 | loss(seq) 0.2292 | grad 6.5935 | lr 0.0000 | time_forward 3.9480 | time_backward 4.6230
[2023-10-25 17:18:20,343::train::INFO] [train] Iter 598324 | loss 0.7877 | loss(rot) 0.3354 | loss(pos) 0.0462 | loss(seq) 0.4061 | grad 2.4706 | lr 0.0000 | time_forward 4.0920 | time_backward 5.9250
[2023-10-25 17:18:29,031::train::INFO] [train] Iter 598325 | loss 0.7361 | loss(rot) 0.1102 | loss(pos) 0.0290 | loss(seq) 0.5970 | grad 3.5475 | lr 0.0000 | time_forward 3.6030 | time_backward 5.0810
[2023-10-25 17:18:37,068::train::INFO] [train] Iter 598326 | loss 0.2332 | loss(rot) 0.2080 | loss(pos) 0.0136 | loss(seq) 0.0116 | grad 3.3557 | lr 0.0000 | time_forward 3.4380 | time_backward 4.5970
[2023-10-25 17:18:39,971::train::INFO] [train] Iter 598327 | loss 0.3145 | loss(rot) 0.0510 | loss(pos) 0.0522 | loss(seq) 0.2113 | grad 2.4970 | lr 0.0000 | time_forward 1.3420 | time_backward 1.5040
[2023-10-25 17:18:50,115::train::INFO] [train] Iter 598328 | loss 1.2403 | loss(rot) 1.0765 | loss(pos) 0.0659 | loss(seq) 0.0979 | grad 4.8546 | lr 0.0000 | time_forward 4.3790 | time_backward 5.7610
[2023-10-25 17:19:00,211::train::INFO] [train] Iter 598329 | loss 0.3650 | loss(rot) 0.1414 | loss(pos) 0.0571 | loss(seq) 0.1664 | grad 2.1486 | lr 0.0000 | time_forward 4.0910 | time_backward 6.0020
[2023-10-25 17:19:07,451::train::INFO] [train] Iter 598330 | loss 1.4856 | loss(rot) 1.4653 | loss(pos) 0.0193 | loss(seq) 0.0009 | grad 5.0338 | lr 0.0000 | time_forward 3.0880 | time_backward 4.1490
[2023-10-25 17:19:10,366::train::INFO] [train] Iter 598331 | loss 1.8591 | loss(rot) 1.7974 | loss(pos) 0.0202 | loss(seq) 0.0415 | grad 12.6334 | lr 0.0000 | time_forward 1.3610 | time_backward 1.5500
[2023-10-25 17:19:13,270::train::INFO] [train] Iter 598332 | loss 2.5988 | loss(rot) 0.7997 | loss(pos) 1.2987 | loss(seq) 0.5004 | grad 10.6976 | lr 0.0000 | time_forward 1.3200 | time_backward 1.5520
[2023-10-25 17:19:21,297::train::INFO] [train] Iter 598333 | loss 0.8678 | loss(rot) 0.4660 | loss(pos) 0.0382 | loss(seq) 0.3636 | grad 6.0299 | lr 0.0000 | time_forward 3.3400 | time_backward 4.6510
[2023-10-25 17:19:24,045::train::INFO] [train] Iter 598334 | loss 0.6643 | loss(rot) 0.3162 | loss(pos) 0.0563 | loss(seq) 0.2918 | grad 4.4089 | lr 0.0000 | time_forward 1.2990 | time_backward 1.4460
[2023-10-25 17:19:33,204::train::INFO] [train] Iter 598335 | loss 2.4820 | loss(rot) 1.9972 | loss(pos) 0.1089 | loss(seq) 0.3759 | grad 7.5263 | lr 0.0000 | time_forward 3.8110 | time_backward 5.3460
[2023-10-25 17:19:43,164::train::INFO] [train] Iter 598336 | loss 0.4257 | loss(rot) 0.1840 | loss(pos) 0.0585 | loss(seq) 0.1832 | grad 3.1539 | lr 0.0000 | time_forward 4.0740 | time_backward 5.8820
[2023-10-25 17:19:51,723::train::INFO] [train] Iter 598337 | loss 0.4463 | loss(rot) 0.3216 | loss(pos) 0.0359 | loss(seq) 0.0887 | grad 4.5522 | lr 0.0000 | time_forward 3.5600 | time_backward 4.9950
[2023-10-25 17:19:59,709::train::INFO] [train] Iter 598338 | loss 0.5358 | loss(rot) 0.4477 | loss(pos) 0.0302 | loss(seq) 0.0579 | grad 2.5482 | lr 0.0000 | time_forward 3.3770 | time_backward 4.6060
[2023-10-25 17:20:06,957::train::INFO] [train] Iter 598339 | loss 0.2231 | loss(rot) 0.2083 | loss(pos) 0.0148 | loss(seq) 0.0000 | grad 3.1927 | lr 0.0000 | time_forward 3.0440 | time_backward 4.2010
[2023-10-25 17:20:15,041::train::INFO] [train] Iter 598340 | loss 1.4719 | loss(rot) 0.4154 | loss(pos) 0.7176 | loss(seq) 0.3389 | grad 4.2439 | lr 0.0000 | time_forward 3.3830 | time_backward 4.6980
[2023-10-25 17:20:23,822::train::INFO] [train] Iter 598341 | loss 0.4595 | loss(rot) 0.0855 | loss(pos) 0.0418 | loss(seq) 0.3322 | grad 3.1146 | lr 0.0000 | time_forward 3.7570 | time_backward 5.0210
[2023-10-25 17:20:26,632::train::INFO] [train] Iter 598342 | loss 0.6432 | loss(rot) 0.4863 | loss(pos) 0.1005 | loss(seq) 0.0564 | grad 2.6526 | lr 0.0000 | time_forward 1.3270 | time_backward 1.4800
[2023-10-25 17:20:29,279::train::INFO] [train] Iter 598343 | loss 1.5790 | loss(rot) 1.3173 | loss(pos) 0.0430 | loss(seq) 0.2188 | grad 6.0175 | lr 0.0000 | time_forward 1.2480 | time_backward 1.3970
[2023-10-25 17:20:39,403::train::INFO] [train] Iter 598344 | loss 1.3346 | loss(rot) 1.0204 | loss(pos) 0.0584 | loss(seq) 0.2559 | grad 4.2706 | lr 0.0000 | time_forward 4.1760 | time_backward 5.9330
[2023-10-25 17:20:42,062::train::INFO] [train] Iter 598345 | loss 1.7863 | loss(rot) 0.0065 | loss(pos) 1.7798 | loss(seq) 0.0000 | grad 15.2752 | lr 0.0000 | time_forward 1.2460 | time_backward 1.4090
[2023-10-25 17:20:51,242::train::INFO] [train] Iter 598346 | loss 0.2539 | loss(rot) 0.0411 | loss(pos) 0.0198 | loss(seq) 0.1930 | grad 2.1843 | lr 0.0000 | time_forward 3.8810 | time_backward 5.2970
[2023-10-25 17:21:00,014::train::INFO] [train] Iter 598347 | loss 1.2787 | loss(rot) 1.1658 | loss(pos) 0.0473 | loss(seq) 0.0656 | grad 3.3432 | lr 0.0000 | time_forward 3.7430 | time_backward 5.0250
[2023-10-25 17:21:03,296::train::INFO] [train] Iter 598348 | loss 2.2861 | loss(rot) 1.4729 | loss(pos) 0.2881 | loss(seq) 0.5251 | grad 3.2231 | lr 0.0000 | time_forward 1.4820 | time_backward 1.7970
[2023-10-25 17:21:13,487::train::INFO] [train] Iter 598349 | loss 0.8363 | loss(rot) 0.4705 | loss(pos) 0.1763 | loss(seq) 0.1895 | grad 4.3371 | lr 0.0000 | time_forward 4.1020 | time_backward 6.0740
[2023-10-25 17:21:21,473::train::INFO] [train] Iter 598350 | loss 0.5492 | loss(rot) 0.4599 | loss(pos) 0.0258 | loss(seq) 0.0635 | grad 13.6767 | lr 0.0000 | time_forward 3.4680 | time_backward 4.5140
[2023-10-25 17:21:30,109::train::INFO] [train] Iter 598351 | loss 0.2805 | loss(rot) 0.0897 | loss(pos) 0.0387 | loss(seq) 0.1521 | grad 1.8329 | lr 0.0000 | time_forward 3.6580 | time_backward 4.9760
[2023-10-25 17:21:40,351::train::INFO] [train] Iter 598352 | loss 2.3046 | loss(rot) 1.6061 | loss(pos) 0.2077 | loss(seq) 0.4908 | grad 4.3191 | lr 0.0000 | time_forward 4.1710 | time_backward 6.0680
[2023-10-25 17:21:50,824::train::INFO] [train] Iter 598353 | loss 0.4258 | loss(rot) 0.3961 | loss(pos) 0.0297 | loss(seq) 0.0000 | grad 3.7234 | lr 0.0000 | time_forward 4.0960 | time_backward 6.3730
[2023-10-25 17:22:02,317::train::INFO] [train] Iter 598354 | loss 2.3426 | loss(rot) 2.0915 | loss(pos) 0.1005 | loss(seq) 0.1506 | grad 4.8222 | lr 0.0000 | time_forward 4.5280 | time_backward 6.9610
[2023-10-25 17:22:05,348::train::INFO] [train] Iter 598355 | loss 0.7055 | loss(rot) 0.5635 | loss(pos) 0.0288 | loss(seq) 0.1132 | grad 3.8158 | lr 0.0000 | time_forward 1.3840 | time_backward 1.6430
[2023-10-25 17:22:16,070::train::INFO] [train] Iter 598356 | loss 0.7090 | loss(rot) 0.2908 | loss(pos) 0.0882 | loss(seq) 0.3300 | grad 4.3955 | lr 0.0000 | time_forward 4.3510 | time_backward 6.3680
[2023-10-25 17:22:26,982::train::INFO] [train] Iter 598357 | loss 0.9848 | loss(rot) 0.0248 | loss(pos) 0.9570 | loss(seq) 0.0030 | grad 10.6920 | lr 0.0000 | time_forward 4.6320 | time_backward 6.2760
[2023-10-25 17:22:30,276::train::INFO] [train] Iter 598358 | loss 0.3653 | loss(rot) 0.2622 | loss(pos) 0.0175 | loss(seq) 0.0857 | grad 2.0872 | lr 0.0000 | time_forward 1.5790 | time_backward 1.7120
[2023-10-25 17:22:40,953::train::INFO] [train] Iter 598359 | loss 0.3726 | loss(rot) 0.1443 | loss(pos) 0.0546 | loss(seq) 0.1737 | grad 2.7400 | lr 0.0000 | time_forward 4.6180 | time_backward 5.9680
[2023-10-25 17:22:51,848::train::INFO] [train] Iter 598360 | loss 0.8580 | loss(rot) 0.6712 | loss(pos) 0.0176 | loss(seq) 0.1692 | grad 3.8820 | lr 0.0000 | time_forward 4.5960 | time_backward 6.2950
[2023-10-25 17:23:02,018::train::INFO] [train] Iter 598361 | loss 0.7970 | loss(rot) 0.4798 | loss(pos) 0.0214 | loss(seq) 0.2958 | grad 7.9482 | lr 0.0000 | time_forward 4.1450 | time_backward 6.0120
[2023-10-25 17:23:11,951::train::INFO] [train] Iter 598362 | loss 0.3367 | loss(rot) 0.1451 | loss(pos) 0.0389 | loss(seq) 0.1527 | grad 2.6076 | lr 0.0000 | time_forward 4.0270 | time_backward 5.9030
[2023-10-25 17:23:21,693::train::INFO] [train] Iter 598363 | loss 1.0099 | loss(rot) 0.9421 | loss(pos) 0.0359 | loss(seq) 0.0319 | grad 4.7773 | lr 0.0000 | time_forward 3.8260 | time_backward 5.9110