text
stringlengths
56
1.16k
[2023-10-25 17:23:33,504::train::INFO] [train] Iter 598364 | loss 0.2067 | loss(rot) 0.0713 | loss(pos) 0.1255 | loss(seq) 0.0099 | grad 3.2492 | lr 0.0000 | time_forward 4.8990 | time_backward 6.9090
[2023-10-25 17:23:44,794::train::INFO] [train] Iter 598365 | loss 0.2674 | loss(rot) 0.0887 | loss(pos) 0.0187 | loss(seq) 0.1600 | grad 2.8213 | lr 0.0000 | time_forward 4.5040 | time_backward 6.7740
[2023-10-25 17:23:55,047::train::INFO] [train] Iter 598366 | loss 0.3950 | loss(rot) 0.0364 | loss(pos) 0.3514 | loss(seq) 0.0071 | grad 4.2511 | lr 0.0000 | time_forward 4.4930 | time_backward 5.7570
[2023-10-25 17:24:04,089::train::INFO] [train] Iter 598367 | loss 1.8340 | loss(rot) 1.2782 | loss(pos) 0.1213 | loss(seq) 0.4346 | grad 4.1301 | lr 0.0000 | time_forward 3.8990 | time_backward 5.1390
[2023-10-25 17:24:14,275::train::INFO] [train] Iter 598368 | loss 1.6546 | loss(rot) 1.5853 | loss(pos) 0.0483 | loss(seq) 0.0210 | grad 9.4270 | lr 0.0000 | time_forward 4.1740 | time_backward 6.0080
[2023-10-25 17:24:17,157::train::INFO] [train] Iter 598369 | loss 1.1507 | loss(rot) 1.0132 | loss(pos) 0.0424 | loss(seq) 0.0950 | grad 5.0747 | lr 0.0000 | time_forward 1.3390 | time_backward 1.5410
[2023-10-25 17:24:27,143::train::INFO] [train] Iter 598370 | loss 0.6829 | loss(rot) 0.4504 | loss(pos) 0.0488 | loss(seq) 0.1838 | grad 2.6900 | lr 0.0000 | time_forward 4.0760 | time_backward 5.8650
[2023-10-25 17:24:35,272::train::INFO] [train] Iter 598371 | loss 0.3251 | loss(rot) 0.0665 | loss(pos) 0.2495 | loss(seq) 0.0090 | grad 5.1720 | lr 0.0000 | time_forward 3.4020 | time_backward 4.7230
[2023-10-25 17:24:43,885::train::INFO] [train] Iter 598372 | loss 0.9639 | loss(rot) 0.9356 | loss(pos) 0.0186 | loss(seq) 0.0096 | grad 15.0257 | lr 0.0000 | time_forward 3.6480 | time_backward 4.9630
[2023-10-25 17:24:53,977::train::INFO] [train] Iter 598373 | loss 0.1828 | loss(rot) 0.1286 | loss(pos) 0.0534 | loss(seq) 0.0008 | grad 2.2872 | lr 0.0000 | time_forward 4.0330 | time_backward 6.0550
[2023-10-25 17:24:56,401::train::INFO] [train] Iter 598374 | loss 0.7685 | loss(rot) 0.1203 | loss(pos) 0.6462 | loss(seq) 0.0020 | grad 6.0713 | lr 0.0000 | time_forward 1.0530 | time_backward 1.3690
[2023-10-25 17:25:05,079::train::INFO] [train] Iter 598375 | loss 0.9501 | loss(rot) 0.9076 | loss(pos) 0.0344 | loss(seq) 0.0081 | grad 3.1081 | lr 0.0000 | time_forward 3.6580 | time_backward 5.0160
[2023-10-25 17:25:15,267::train::INFO] [train] Iter 598376 | loss 0.8215 | loss(rot) 0.7678 | loss(pos) 0.0532 | loss(seq) 0.0004 | grad 5.2854 | lr 0.0000 | time_forward 4.1900 | time_backward 5.9960
[2023-10-25 17:25:25,635::train::INFO] [train] Iter 598377 | loss 1.0865 | loss(rot) 0.9806 | loss(pos) 0.1058 | loss(seq) 0.0001 | grad 3.2320 | lr 0.0000 | time_forward 4.2680 | time_backward 6.0960
[2023-10-25 17:25:35,995::train::INFO] [train] Iter 598378 | loss 0.6297 | loss(rot) 0.5221 | loss(pos) 0.0243 | loss(seq) 0.0832 | grad 1.8169 | lr 0.0000 | time_forward 4.2700 | time_backward 6.0870
[2023-10-25 17:25:46,220::train::INFO] [train] Iter 598379 | loss 0.8152 | loss(rot) 0.1999 | loss(pos) 0.4714 | loss(seq) 0.1438 | grad 5.0599 | lr 0.0000 | time_forward 4.1040 | time_backward 6.1170
[2023-10-25 17:25:55,135::train::INFO] [train] Iter 598380 | loss 1.3371 | loss(rot) 0.0082 | loss(pos) 1.3280 | loss(seq) 0.0008 | grad 21.2261 | lr 0.0000 | time_forward 3.7550 | time_backward 5.1560
[2023-10-25 17:26:04,034::train::INFO] [train] Iter 598381 | loss 0.3837 | loss(rot) 0.1409 | loss(pos) 0.0784 | loss(seq) 0.1644 | grad 2.3895 | lr 0.0000 | time_forward 3.8180 | time_backward 5.0780
[2023-10-25 17:26:13,096::train::INFO] [train] Iter 598382 | loss 0.8679 | loss(rot) 0.6311 | loss(pos) 0.0353 | loss(seq) 0.2016 | grad 4.0022 | lr 0.0000 | time_forward 3.8880 | time_backward 5.1710
[2023-10-25 17:26:15,452::train::INFO] [train] Iter 598383 | loss 0.7145 | loss(rot) 0.0896 | loss(pos) 0.5766 | loss(seq) 0.0482 | grad 9.4513 | lr 0.0000 | time_forward 1.0710 | time_backward 1.2830
[2023-10-25 17:26:25,344::train::INFO] [train] Iter 598384 | loss 0.3849 | loss(rot) 0.1636 | loss(pos) 0.1025 | loss(seq) 0.1187 | grad 3.0350 | lr 0.0000 | time_forward 3.9260 | time_backward 5.9630
[2023-10-25 17:26:33,833::train::INFO] [train] Iter 598385 | loss 0.3989 | loss(rot) 0.0399 | loss(pos) 0.2561 | loss(seq) 0.1029 | grad 8.3314 | lr 0.0000 | time_forward 3.6920 | time_backward 4.7930
[2023-10-25 17:26:42,038::train::INFO] [train] Iter 598386 | loss 0.4951 | loss(rot) 0.2349 | loss(pos) 0.0229 | loss(seq) 0.2373 | grad 7.2188 | lr 0.0000 | time_forward 3.4710 | time_backward 4.7310
[2023-10-25 17:26:50,664::train::INFO] [train] Iter 598387 | loss 0.3731 | loss(rot) 0.0715 | loss(pos) 0.0809 | loss(seq) 0.2208 | grad 3.3197 | lr 0.0000 | time_forward 3.5400 | time_backward 5.0830
[2023-10-25 17:27:00,845::train::INFO] [train] Iter 598388 | loss 1.3187 | loss(rot) 1.2617 | loss(pos) 0.0372 | loss(seq) 0.0197 | grad 27.7259 | lr 0.0000 | time_forward 4.2390 | time_backward 5.9390
[2023-10-25 17:27:03,867::train::INFO] [train] Iter 598389 | loss 0.3287 | loss(rot) 0.1105 | loss(pos) 0.1030 | loss(seq) 0.1151 | grad 3.4184 | lr 0.0000 | time_forward 1.3340 | time_backward 1.6840
[2023-10-25 17:27:12,834::train::INFO] [train] Iter 598390 | loss 1.0801 | loss(rot) 0.8821 | loss(pos) 0.0332 | loss(seq) 0.1648 | grad 5.5592 | lr 0.0000 | time_forward 3.7620 | time_backward 5.2020
[2023-10-25 17:27:22,783::train::INFO] [train] Iter 598391 | loss 1.1464 | loss(rot) 0.1586 | loss(pos) 0.5172 | loss(seq) 0.4706 | grad 6.3154 | lr 0.0000 | time_forward 4.1370 | time_backward 5.8080
[2023-10-25 17:27:26,090::train::INFO] [train] Iter 598392 | loss 1.0531 | loss(rot) 0.5556 | loss(pos) 0.0716 | loss(seq) 0.4259 | grad 3.2558 | lr 0.0000 | time_forward 1.4800 | time_backward 1.8230
[2023-10-25 17:27:29,655::train::INFO] [train] Iter 598393 | loss 0.3423 | loss(rot) 0.1432 | loss(pos) 0.0670 | loss(seq) 0.1321 | grad 2.4545 | lr 0.0000 | time_forward 1.5170 | time_backward 2.0340
[2023-10-25 17:27:37,773::train::INFO] [train] Iter 598394 | loss 0.5728 | loss(rot) 0.1003 | loss(pos) 0.1924 | loss(seq) 0.2801 | grad 5.2038 | lr 0.0000 | time_forward 3.3200 | time_backward 4.7810
[2023-10-25 17:27:47,962::train::INFO] [train] Iter 598395 | loss 0.4297 | loss(rot) 0.1481 | loss(pos) 0.2149 | loss(seq) 0.0667 | grad 4.1521 | lr 0.0000 | time_forward 4.1020 | time_backward 6.0830
[2023-10-25 17:27:51,383::train::INFO] [train] Iter 598396 | loss 0.6212 | loss(rot) 0.5796 | loss(pos) 0.0394 | loss(seq) 0.0022 | grad 4.2062 | lr 0.0000 | time_forward 1.5300 | time_backward 1.8880
[2023-10-25 17:27:59,965::train::INFO] [train] Iter 598397 | loss 1.6548 | loss(rot) 1.0680 | loss(pos) 0.1136 | loss(seq) 0.4731 | grad 4.2151 | lr 0.0000 | time_forward 3.5600 | time_backward 5.0190
[2023-10-25 17:28:02,706::train::INFO] [train] Iter 598398 | loss 0.4007 | loss(rot) 0.3008 | loss(pos) 0.0257 | loss(seq) 0.0742 | grad 7.8071 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4230
[2023-10-25 17:28:10,455::train::INFO] [train] Iter 598399 | loss 0.5946 | loss(rot) 0.3624 | loss(pos) 0.0514 | loss(seq) 0.1808 | grad 3.9292 | lr 0.0000 | time_forward 3.2090 | time_backward 4.5020
[2023-10-25 17:28:18,641::train::INFO] [train] Iter 598400 | loss 1.1436 | loss(rot) 0.5089 | loss(pos) 0.6005 | loss(seq) 0.0343 | grad 7.2148 | lr 0.0000 | time_forward 3.3880 | time_backward 4.7950
[2023-10-25 17:28:26,218::train::INFO] [train] Iter 598401 | loss 1.7020 | loss(rot) 0.9773 | loss(pos) 0.5875 | loss(seq) 0.1372 | grad 10.3502 | lr 0.0000 | time_forward 3.2680 | time_backward 4.3070
[2023-10-25 17:28:35,418::train::INFO] [train] Iter 598402 | loss 1.1923 | loss(rot) 0.0108 | loss(pos) 1.1786 | loss(seq) 0.0028 | grad 9.9507 | lr 0.0000 | time_forward 3.8660 | time_backward 5.3300
[2023-10-25 17:28:45,190::train::INFO] [train] Iter 598403 | loss 1.0638 | loss(rot) 0.9726 | loss(pos) 0.0232 | loss(seq) 0.0680 | grad 2.8749 | lr 0.0000 | time_forward 3.9740 | time_backward 5.7940
[2023-10-25 17:28:54,431::train::INFO] [train] Iter 598404 | loss 1.3936 | loss(rot) 1.0873 | loss(pos) 0.0846 | loss(seq) 0.2217 | grad 31.1027 | lr 0.0000 | time_forward 3.7780 | time_backward 5.4600
[2023-10-25 17:28:57,210::train::INFO] [train] Iter 598405 | loss 0.8252 | loss(rot) 0.7864 | loss(pos) 0.0351 | loss(seq) 0.0038 | grad 54.9915 | lr 0.0000 | time_forward 1.3480 | time_backward 1.4270
[2023-10-25 17:29:06,514::train::INFO] [train] Iter 598406 | loss 0.6083 | loss(rot) 0.2732 | loss(pos) 0.1291 | loss(seq) 0.2060 | grad 2.9693 | lr 0.0000 | time_forward 4.1090 | time_backward 5.1910
[2023-10-25 17:29:09,784::train::INFO] [train] Iter 598407 | loss 0.9647 | loss(rot) 0.7736 | loss(pos) 0.0304 | loss(seq) 0.1607 | grad 5.4692 | lr 0.0000 | time_forward 1.4930 | time_backward 1.7750
[2023-10-25 17:29:20,034::train::INFO] [train] Iter 598408 | loss 0.5156 | loss(rot) 0.2113 | loss(pos) 0.0890 | loss(seq) 0.2154 | grad 3.2987 | lr 0.0000 | time_forward 4.1530 | time_backward 6.0820
[2023-10-25 17:29:23,031::train::INFO] [train] Iter 598409 | loss 0.2951 | loss(rot) 0.2668 | loss(pos) 0.0201 | loss(seq) 0.0081 | grad 7.5784 | lr 0.0000 | time_forward 1.4710 | time_backward 1.5230
[2023-10-25 17:29:26,530::train::INFO] [train] Iter 598410 | loss 0.4265 | loss(rot) 0.1547 | loss(pos) 0.1511 | loss(seq) 0.1207 | grad 3.7775 | lr 0.0000 | time_forward 1.5430 | time_backward 1.9530
[2023-10-25 17:29:35,506::train::INFO] [train] Iter 598411 | loss 0.7874 | loss(rot) 0.6355 | loss(pos) 0.0194 | loss(seq) 0.1325 | grad 2.4062 | lr 0.0000 | time_forward 3.8500 | time_backward 5.1220
[2023-10-25 17:29:44,000::train::INFO] [train] Iter 598412 | loss 0.8921 | loss(rot) 0.0926 | loss(pos) 0.5064 | loss(seq) 0.2931 | grad 2.8832 | lr 0.0000 | time_forward 3.5830 | time_backward 4.8960
[2023-10-25 17:29:53,975::train::INFO] [train] Iter 598413 | loss 0.4095 | loss(rot) 0.0919 | loss(pos) 0.2158 | loss(seq) 0.1018 | grad 4.2602 | lr 0.0000 | time_forward 4.1590 | time_backward 5.8130
[2023-10-25 17:30:02,543::train::INFO] [train] Iter 598414 | loss 0.1506 | loss(rot) 0.1328 | loss(pos) 0.0172 | loss(seq) 0.0007 | grad 1.8502 | lr 0.0000 | time_forward 3.5310 | time_backward 5.0350
[2023-10-25 17:30:12,512::train::INFO] [train] Iter 598415 | loss 1.8877 | loss(rot) 1.3316 | loss(pos) 0.1117 | loss(seq) 0.4445 | grad 4.6222 | lr 0.0000 | time_forward 4.0940 | time_backward 5.8710
[2023-10-25 17:30:14,312::train::INFO] [train] Iter 598416 | loss 2.3507 | loss(rot) 0.2602 | loss(pos) 1.0747 | loss(seq) 1.0158 | grad 14.5782 | lr 0.0000 | time_forward 0.8180 | time_backward 0.9780
[2023-10-25 17:30:16,879::train::INFO] [train] Iter 598417 | loss 0.3527 | loss(rot) 0.0459 | loss(pos) 0.2963 | loss(seq) 0.0106 | grad 7.8968 | lr 0.0000 | time_forward 1.2060 | time_backward 1.3580
[2023-10-25 17:30:19,134::train::INFO] [train] Iter 598418 | loss 1.1149 | loss(rot) 0.6462 | loss(pos) 0.1068 | loss(seq) 0.3619 | grad 3.6915 | lr 0.0000 | time_forward 1.0300 | time_backward 1.2230
[2023-10-25 17:30:21,776::train::INFO] [train] Iter 598419 | loss 0.4809 | loss(rot) 0.1396 | loss(pos) 0.3016 | loss(seq) 0.0396 | grad 3.4823 | lr 0.0000 | time_forward 1.2650 | time_backward 1.3730
[2023-10-25 17:30:28,737::train::INFO] [train] Iter 598420 | loss 0.8066 | loss(rot) 0.1535 | loss(pos) 0.6469 | loss(seq) 0.0062 | grad 10.3473 | lr 0.0000 | time_forward 2.9980 | time_backward 3.9370
[2023-10-25 17:30:31,921::train::INFO] [train] Iter 598421 | loss 1.7758 | loss(rot) 0.8860 | loss(pos) 0.3680 | loss(seq) 0.5219 | grad 4.3175 | lr 0.0000 | time_forward 1.4630 | time_backward 1.7170
[2023-10-25 17:30:41,594::train::INFO] [train] Iter 598422 | loss 0.3338 | loss(rot) 0.0199 | loss(pos) 0.3127 | loss(seq) 0.0012 | grad 4.6437 | lr 0.0000 | time_forward 3.8470 | time_backward 5.8220
[2023-10-25 17:30:44,551::train::INFO] [train] Iter 598423 | loss 0.4991 | loss(rot) 0.2397 | loss(pos) 0.0185 | loss(seq) 0.2409 | grad 3.0427 | lr 0.0000 | time_forward 1.4260 | time_backward 1.5240
[2023-10-25 17:30:53,816::train::INFO] [train] Iter 598424 | loss 0.6726 | loss(rot) 0.5175 | loss(pos) 0.0493 | loss(seq) 0.1057 | grad 3.2802 | lr 0.0000 | time_forward 3.8870 | time_backward 5.3750
[2023-10-25 17:30:56,655::train::INFO] [train] Iter 598425 | loss 0.3139 | loss(rot) 0.2212 | loss(pos) 0.0089 | loss(seq) 0.0838 | grad 2.7482 | lr 0.0000 | time_forward 1.3550 | time_backward 1.4810
[2023-10-25 17:31:06,866::train::INFO] [train] Iter 598426 | loss 1.4954 | loss(rot) 1.2842 | loss(pos) 0.0373 | loss(seq) 0.1739 | grad 3.1991 | lr 0.0000 | time_forward 4.7900 | time_backward 5.4000
[2023-10-25 17:31:09,684::train::INFO] [train] Iter 598427 | loss 0.1574 | loss(rot) 0.0831 | loss(pos) 0.0250 | loss(seq) 0.0494 | grad 2.2665 | lr 0.0000 | time_forward 1.3390 | time_backward 1.4760
[2023-10-25 17:31:19,032::train::INFO] [train] Iter 598428 | loss 0.2438 | loss(rot) 0.1673 | loss(pos) 0.0215 | loss(seq) 0.0550 | grad 2.4018 | lr 0.0000 | time_forward 3.8180 | time_backward 5.5280
[2023-10-25 17:31:21,922::train::INFO] [train] Iter 598429 | loss 0.2928 | loss(rot) 0.0818 | loss(pos) 0.0805 | loss(seq) 0.1305 | grad 3.1123 | lr 0.0000 | time_forward 1.3510 | time_backward 1.5350
[2023-10-25 17:31:31,179::train::INFO] [train] Iter 598430 | loss 0.1429 | loss(rot) 0.1121 | loss(pos) 0.0309 | loss(seq) 0.0000 | grad 1.4812 | lr 0.0000 | time_forward 4.4550 | time_backward 4.7840
[2023-10-25 17:31:39,621::train::INFO] [train] Iter 598431 | loss 1.6832 | loss(rot) 1.6492 | loss(pos) 0.0235 | loss(seq) 0.0105 | grad 9.8368 | lr 0.0000 | time_forward 3.5410 | time_backward 4.8980
[2023-10-25 17:31:42,418::train::INFO] [train] Iter 598432 | loss 0.1564 | loss(rot) 0.1035 | loss(pos) 0.0215 | loss(seq) 0.0314 | grad 5.0507 | lr 0.0000 | time_forward 1.3390 | time_backward 1.4550
[2023-10-25 17:31:45,229::train::INFO] [train] Iter 598433 | loss 0.3707 | loss(rot) 0.0664 | loss(pos) 0.2364 | loss(seq) 0.0679 | grad 4.2170 | lr 0.0000 | time_forward 1.3790 | time_backward 1.4280
[2023-10-25 17:31:52,165::train::INFO] [train] Iter 598434 | loss 0.7319 | loss(rot) 0.7035 | loss(pos) 0.0284 | loss(seq) 0.0000 | grad 10.7574 | lr 0.0000 | time_forward 2.9600 | time_backward 3.9300
[2023-10-25 17:32:00,042::train::INFO] [train] Iter 598435 | loss 0.2155 | loss(rot) 0.0993 | loss(pos) 0.0139 | loss(seq) 0.1023 | grad 1.7403 | lr 0.0000 | time_forward 3.3860 | time_backward 4.4880
[2023-10-25 17:32:08,170::train::INFO] [train] Iter 598436 | loss 0.1986 | loss(rot) 0.0276 | loss(pos) 0.1667 | loss(seq) 0.0043 | grad 3.7205 | lr 0.0000 | time_forward 3.3960 | time_backward 4.7280
[2023-10-25 17:32:17,388::train::INFO] [train] Iter 598437 | loss 0.2313 | loss(rot) 0.0710 | loss(pos) 0.0241 | loss(seq) 0.1363 | grad 1.6405 | lr 0.0000 | time_forward 4.0470 | time_backward 5.1690
[2023-10-25 17:32:20,278::train::INFO] [train] Iter 598438 | loss 0.3303 | loss(rot) 0.3086 | loss(pos) 0.0203 | loss(seq) 0.0014 | grad 71.0606 | lr 0.0000 | time_forward 1.3180 | time_backward 1.5680
[2023-10-25 17:32:23,000::train::INFO] [train] Iter 598439 | loss 0.4321 | loss(rot) 0.1916 | loss(pos) 0.1334 | loss(seq) 0.1071 | grad 5.2295 | lr 0.0000 | time_forward 1.3200 | time_backward 1.3970
[2023-10-25 17:32:32,030::train::INFO] [train] Iter 598440 | loss 1.7876 | loss(rot) 1.6000 | loss(pos) 0.0287 | loss(seq) 0.1589 | grad 5.8426 | lr 0.0000 | time_forward 3.4120 | time_backward 5.6150
[2023-10-25 17:32:39,870::train::INFO] [train] Iter 598441 | loss 1.8770 | loss(rot) 1.8322 | loss(pos) 0.0395 | loss(seq) 0.0053 | grad 4.3284 | lr 0.0000 | time_forward 3.2650 | time_backward 4.5710
[2023-10-25 17:32:43,279::train::INFO] [train] Iter 598442 | loss 1.6170 | loss(rot) 1.5773 | loss(pos) 0.0369 | loss(seq) 0.0028 | grad 8.3753 | lr 0.0000 | time_forward 1.5190 | time_backward 1.8870
[2023-10-25 17:32:46,008::train::INFO] [train] Iter 598443 | loss 0.2142 | loss(rot) 0.1356 | loss(pos) 0.0110 | loss(seq) 0.0676 | grad 2.8503 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4120
[2023-10-25 17:32:54,213::train::INFO] [train] Iter 598444 | loss 1.2058 | loss(rot) 0.8425 | loss(pos) 0.0709 | loss(seq) 0.2924 | grad 20.4083 | lr 0.0000 | time_forward 3.5250 | time_backward 4.6450
[2023-10-25 17:32:57,292::train::INFO] [train] Iter 598445 | loss 1.0545 | loss(rot) 0.0131 | loss(pos) 1.0401 | loss(seq) 0.0014 | grad 7.6617 | lr 0.0000 | time_forward 1.4130 | time_backward 1.6630
[2023-10-25 17:33:05,682::train::INFO] [train] Iter 598446 | loss 0.9667 | loss(rot) 0.4980 | loss(pos) 0.2780 | loss(seq) 0.1907 | grad 3.2057 | lr 0.0000 | time_forward 3.4050 | time_backward 4.9810
[2023-10-25 17:33:12,240::train::INFO] [train] Iter 598447 | loss 0.4985 | loss(rot) 0.4817 | loss(pos) 0.0121 | loss(seq) 0.0047 | grad 4.0443 | lr 0.0000 | time_forward 2.8140 | time_backward 3.7400
[2023-10-25 17:33:19,059::train::INFO] [train] Iter 598448 | loss 0.3177 | loss(rot) 0.0706 | loss(pos) 0.0764 | loss(seq) 0.1708 | grad 3.7360 | lr 0.0000 | time_forward 2.9970 | time_backward 3.8190
[2023-10-25 17:33:26,374::train::INFO] [train] Iter 598449 | loss 0.3071 | loss(rot) 0.2437 | loss(pos) 0.0290 | loss(seq) 0.0344 | grad 2.2170 | lr 0.0000 | time_forward 3.1400 | time_backward 4.1730
[2023-10-25 17:33:29,072::train::INFO] [train] Iter 598450 | loss 0.7140 | loss(rot) 0.3511 | loss(pos) 0.0292 | loss(seq) 0.3338 | grad 4.6556 | lr 0.0000 | time_forward 1.2840 | time_backward 1.4100
[2023-10-25 17:33:36,373::train::INFO] [train] Iter 598451 | loss 0.6098 | loss(rot) 0.1312 | loss(pos) 0.4057 | loss(seq) 0.0728 | grad 5.3881 | lr 0.0000 | time_forward 3.1860 | time_backward 4.1120
[2023-10-25 17:33:39,099::train::INFO] [train] Iter 598452 | loss 0.5765 | loss(rot) 0.4282 | loss(pos) 0.0171 | loss(seq) 0.1312 | grad 2.6079 | lr 0.0000 | time_forward 1.3270 | time_backward 1.3970
[2023-10-25 17:33:42,279::train::INFO] [train] Iter 598453 | loss 0.7999 | loss(rot) 0.3470 | loss(pos) 0.1528 | loss(seq) 0.3001 | grad 3.8584 | lr 0.0000 | time_forward 1.3750 | time_backward 1.7890
[2023-10-25 17:33:51,081::train::INFO] [train] Iter 598454 | loss 0.2957 | loss(rot) 0.2671 | loss(pos) 0.0223 | loss(seq) 0.0063 | grad 2.0709 | lr 0.0000 | time_forward 3.8720 | time_backward 4.9160
[2023-10-25 17:33:53,838::train::INFO] [train] Iter 598455 | loss 0.7375 | loss(rot) 0.4501 | loss(pos) 0.1000 | loss(seq) 0.1874 | grad 3.2058 | lr 0.0000 | time_forward 1.3460 | time_backward 1.4070
[2023-10-25 17:34:01,678::train::INFO] [train] Iter 598456 | loss 1.7792 | loss(rot) 1.4047 | loss(pos) 0.1250 | loss(seq) 0.2496 | grad 3.3361 | lr 0.0000 | time_forward 3.3970 | time_backward 4.4260
[2023-10-25 17:34:09,634::train::INFO] [train] Iter 598457 | loss 0.8121 | loss(rot) 0.7923 | loss(pos) 0.0136 | loss(seq) 0.0061 | grad 2.7686 | lr 0.0000 | time_forward 3.3870 | time_backward 4.5660
[2023-10-25 17:34:17,483::train::INFO] [train] Iter 598458 | loss 1.6563 | loss(rot) 0.9526 | loss(pos) 0.1085 | loss(seq) 0.5952 | grad 4.4794 | lr 0.0000 | time_forward 3.2180 | time_backward 4.6280
[2023-10-25 17:34:25,752::train::INFO] [train] Iter 598459 | loss 0.4119 | loss(rot) 0.3845 | loss(pos) 0.0203 | loss(seq) 0.0071 | grad 3.6992 | lr 0.0000 | time_forward 3.1800 | time_backward 5.0870
[2023-10-25 17:34:28,536::train::INFO] [train] Iter 598460 | loss 0.6541 | loss(rot) 0.4985 | loss(pos) 0.0246 | loss(seq) 0.1310 | grad 8.6186 | lr 0.0000 | time_forward 1.3010 | time_backward 1.4790
[2023-10-25 17:34:31,045::train::INFO] [train] Iter 598461 | loss 2.4170 | loss(rot) 2.3604 | loss(pos) 0.0567 | loss(seq) 0.0000 | grad 8.4261 | lr 0.0000 | time_forward 1.2100 | time_backward 1.2960
[2023-10-25 17:34:38,957::train::INFO] [train] Iter 598462 | loss 0.7786 | loss(rot) 0.1242 | loss(pos) 0.1637 | loss(seq) 0.4907 | grad 3.1591 | lr 0.0000 | time_forward 3.1740 | time_backward 4.7340
[2023-10-25 17:34:45,726::train::INFO] [train] Iter 598463 | loss 0.5755 | loss(rot) 0.1903 | loss(pos) 0.0795 | loss(seq) 0.3058 | grad 4.0295 | lr 0.0000 | time_forward 2.9000 | time_backward 3.8660