text
stringlengths 56
1.16k
|
---|
[2023-10-25 17:46:08,801::train::INFO] [train] Iter 598564 | loss 0.2207 | loss(rot) 0.1956 | loss(pos) 0.0246 | loss(seq) 0.0005 | grad 1.6573 | lr 0.0000 | time_forward 4.3720 | time_backward 5.9270 |
[2023-10-25 17:46:11,437::train::INFO] [train] Iter 598565 | loss 0.7636 | loss(rot) 0.2759 | loss(pos) 0.4745 | loss(seq) 0.0132 | grad 5.4380 | lr 0.0000 | time_forward 1.2310 | time_backward 1.4030 |
[2023-10-25 17:46:14,252::train::INFO] [train] Iter 598566 | loss 0.4725 | loss(rot) 0.4547 | loss(pos) 0.0177 | loss(seq) 0.0000 | grad 2.2479 | lr 0.0000 | time_forward 1.3550 | time_backward 1.4570 |
[2023-10-25 17:46:24,245::train::INFO] [train] Iter 598567 | loss 0.3883 | loss(rot) 0.1121 | loss(pos) 0.2593 | loss(seq) 0.0169 | grad 4.0204 | lr 0.0000 | time_forward 4.0990 | time_backward 5.8900 |
[2023-10-25 17:46:32,480::train::INFO] [train] Iter 598568 | loss 1.1711 | loss(rot) 0.7585 | loss(pos) 0.0856 | loss(seq) 0.3269 | grad 4.2158 | lr 0.0000 | time_forward 3.4950 | time_backward 4.7370 |
[2023-10-25 17:46:35,190::train::INFO] [train] Iter 598569 | loss 0.3691 | loss(rot) 0.1129 | loss(pos) 0.0816 | loss(seq) 0.1747 | grad 3.4734 | lr 0.0000 | time_forward 1.2410 | time_backward 1.4650 |
[2023-10-25 17:46:38,689::train::INFO] [train] Iter 598570 | loss 0.2123 | loss(rot) 0.1016 | loss(pos) 0.0451 | loss(seq) 0.0655 | grad 2.0405 | lr 0.0000 | time_forward 1.5360 | time_backward 1.9590 |
[2023-10-25 17:46:47,888::train::INFO] [train] Iter 598571 | loss 1.4381 | loss(rot) 0.7927 | loss(pos) 0.2245 | loss(seq) 0.4209 | grad 2.7629 | lr 0.0000 | time_forward 3.9330 | time_backward 5.2630 |
[2023-10-25 17:46:50,724::train::INFO] [train] Iter 598572 | loss 0.2873 | loss(rot) 0.2186 | loss(pos) 0.0231 | loss(seq) 0.0457 | grad 16.1614 | lr 0.0000 | time_forward 1.3320 | time_backward 1.5010 |
[2023-10-25 17:46:58,763::train::INFO] [train] Iter 598573 | loss 0.5806 | loss(rot) 0.5581 | loss(pos) 0.0204 | loss(seq) 0.0021 | grad 1.6076 | lr 0.0000 | time_forward 3.4260 | time_backward 4.6090 |
[2023-10-25 17:47:08,717::train::INFO] [train] Iter 598574 | loss 1.2895 | loss(rot) 0.6591 | loss(pos) 0.1756 | loss(seq) 0.4548 | grad 3.0710 | lr 0.0000 | time_forward 4.0520 | time_backward 5.8990 |
[2023-10-25 17:47:15,306::train::INFO] [train] Iter 598575 | loss 2.1803 | loss(rot) 2.1160 | loss(pos) 0.0431 | loss(seq) 0.0212 | grad 4.6751 | lr 0.0000 | time_forward 2.7510 | time_backward 3.8340 |
[2023-10-25 17:47:23,372::train::INFO] [train] Iter 598576 | loss 0.5016 | loss(rot) 0.0858 | loss(pos) 0.0342 | loss(seq) 0.3816 | grad 2.3853 | lr 0.0000 | time_forward 3.4690 | time_backward 4.5800 |
[2023-10-25 17:47:31,998::train::INFO] [train] Iter 598577 | loss 1.0144 | loss(rot) 0.6976 | loss(pos) 0.0262 | loss(seq) 0.2906 | grad 3.1976 | lr 0.0000 | time_forward 3.6250 | time_backward 4.9980 |
[2023-10-25 17:47:41,199::train::INFO] [train] Iter 598578 | loss 0.4332 | loss(rot) 0.1750 | loss(pos) 0.0229 | loss(seq) 0.2353 | grad 2.4437 | lr 0.0000 | time_forward 3.8840 | time_backward 5.3130 |
[2023-10-25 17:47:48,946::train::INFO] [train] Iter 598579 | loss 0.2661 | loss(rot) 0.1462 | loss(pos) 0.0626 | loss(seq) 0.0573 | grad 6.9929 | lr 0.0000 | time_forward 3.3200 | time_backward 4.4240 |
[2023-10-25 17:47:58,980::train::INFO] [train] Iter 598580 | loss 0.4969 | loss(rot) 0.1807 | loss(pos) 0.2678 | loss(seq) 0.0484 | grad 4.9060 | lr 0.0000 | time_forward 4.2800 | time_backward 5.7500 |
[2023-10-25 17:48:08,132::train::INFO] [train] Iter 598581 | loss 1.4710 | loss(rot) 1.2672 | loss(pos) 0.0714 | loss(seq) 0.1324 | grad 3.4794 | lr 0.0000 | time_forward 3.8750 | time_backward 5.2740 |
[2023-10-25 17:48:16,076::train::INFO] [train] Iter 598582 | loss 0.6901 | loss(rot) 0.6317 | loss(pos) 0.0168 | loss(seq) 0.0416 | grad 4.7233 | lr 0.0000 | time_forward 3.3600 | time_backward 4.5800 |
[2023-10-25 17:48:23,177::train::INFO] [train] Iter 598583 | loss 0.7223 | loss(rot) 0.3431 | loss(pos) 0.0416 | loss(seq) 0.3376 | grad 3.7681 | lr 0.0000 | time_forward 3.0270 | time_backward 4.0700 |
[2023-10-25 17:48:33,426::train::INFO] [train] Iter 598584 | loss 0.2120 | loss(rot) 0.1627 | loss(pos) 0.0220 | loss(seq) 0.0274 | grad 3.0165 | lr 0.0000 | time_forward 4.6350 | time_backward 5.6100 |
[2023-10-25 17:48:42,084::train::INFO] [train] Iter 598585 | loss 0.5010 | loss(rot) 0.3379 | loss(pos) 0.0428 | loss(seq) 0.1203 | grad 2.7367 | lr 0.0000 | time_forward 3.8320 | time_backward 4.8220 |
[2023-10-25 17:48:44,806::train::INFO] [train] Iter 598586 | loss 0.5823 | loss(rot) 0.0919 | loss(pos) 0.3628 | loss(seq) 0.1275 | grad 5.5682 | lr 0.0000 | time_forward 1.2920 | time_backward 1.4260 |
[2023-10-25 17:48:52,805::train::INFO] [train] Iter 598587 | loss 1.3878 | loss(rot) 0.8621 | loss(pos) 0.0865 | loss(seq) 0.4392 | grad 4.7280 | lr 0.0000 | time_forward 3.4680 | time_backward 4.5280 |
[2023-10-25 17:49:01,574::train::INFO] [train] Iter 598588 | loss 0.6255 | loss(rot) 0.0770 | loss(pos) 0.5395 | loss(seq) 0.0091 | grad 6.0606 | lr 0.0000 | time_forward 3.5780 | time_backward 5.1890 |
[2023-10-25 17:49:10,177::train::INFO] [train] Iter 598589 | loss 0.5256 | loss(rot) 0.2071 | loss(pos) 0.0255 | loss(seq) 0.2930 | grad 2.9172 | lr 0.0000 | time_forward 3.5590 | time_backward 5.0410 |
[2023-10-25 17:49:18,911::train::INFO] [train] Iter 598590 | loss 0.4569 | loss(rot) 0.1347 | loss(pos) 0.0291 | loss(seq) 0.2931 | grad 2.9476 | lr 0.0000 | time_forward 3.5550 | time_backward 5.1760 |
[2023-10-25 17:49:27,372::train::INFO] [train] Iter 598591 | loss 0.2921 | loss(rot) 0.2482 | loss(pos) 0.0355 | loss(seq) 0.0084 | grad 2.7199 | lr 0.0000 | time_forward 3.5280 | time_backward 4.9290 |
[2023-10-25 17:49:35,804::train::INFO] [train] Iter 598592 | loss 0.3477 | loss(rot) 0.2134 | loss(pos) 0.0194 | loss(seq) 0.1149 | grad 3.1893 | lr 0.0000 | time_forward 3.4560 | time_backward 4.9740 |
[2023-10-25 17:49:44,492::train::INFO] [train] Iter 598593 | loss 0.7987 | loss(rot) 0.5274 | loss(pos) 0.0301 | loss(seq) 0.2412 | grad 3.2090 | lr 0.0000 | time_forward 3.5800 | time_backward 5.1050 |
[2023-10-25 17:49:50,853::train::INFO] [train] Iter 598594 | loss 2.2229 | loss(rot) 1.4783 | loss(pos) 0.1565 | loss(seq) 0.5881 | grad 7.6272 | lr 0.0000 | time_forward 2.7300 | time_backward 3.6270 |
[2023-10-25 17:49:59,415::train::INFO] [train] Iter 598595 | loss 0.3157 | loss(rot) 0.1589 | loss(pos) 0.0272 | loss(seq) 0.1296 | grad 3.8966 | lr 0.0000 | time_forward 3.5090 | time_backward 5.0490 |
[2023-10-25 17:50:08,126::train::INFO] [train] Iter 598596 | loss 1.1116 | loss(rot) 0.6347 | loss(pos) 0.1210 | loss(seq) 0.3559 | grad 3.7945 | lr 0.0000 | time_forward 3.7260 | time_backward 4.9810 |
[2023-10-25 17:50:15,474::train::INFO] [train] Iter 598597 | loss 0.4080 | loss(rot) 0.0246 | loss(pos) 0.3707 | loss(seq) 0.0126 | grad 8.5866 | lr 0.0000 | time_forward 3.1740 | time_backward 4.1720 |
[2023-10-25 17:50:17,743::train::INFO] [train] Iter 598598 | loss 0.2877 | loss(rot) 0.2468 | loss(pos) 0.0376 | loss(seq) 0.0033 | grad 2.5179 | lr 0.0000 | time_forward 1.0460 | time_backward 1.2190 |
[2023-10-25 17:50:26,203::train::INFO] [train] Iter 598599 | loss 0.8512 | loss(rot) 0.1955 | loss(pos) 0.5174 | loss(seq) 0.1383 | grad 3.1067 | lr 0.0000 | time_forward 3.5000 | time_backward 4.9560 |
[2023-10-25 17:50:34,780::train::INFO] [train] Iter 598600 | loss 1.9209 | loss(rot) 1.0294 | loss(pos) 0.4416 | loss(seq) 0.4499 | grad 7.1913 | lr 0.0000 | time_forward 3.4650 | time_backward 5.1090 |
[2023-10-25 17:50:43,389::train::INFO] [train] Iter 598601 | loss 0.4259 | loss(rot) 0.1550 | loss(pos) 0.0404 | loss(seq) 0.2306 | grad 2.9634 | lr 0.0000 | time_forward 3.5230 | time_backward 5.0820 |
[2023-10-25 17:50:46,059::train::INFO] [train] Iter 598602 | loss 0.2856 | loss(rot) 0.0796 | loss(pos) 0.1901 | loss(seq) 0.0159 | grad 6.7940 | lr 0.0000 | time_forward 1.2850 | time_backward 1.3830 |
[2023-10-25 17:50:48,765::train::INFO] [train] Iter 598603 | loss 0.7364 | loss(rot) 0.7049 | loss(pos) 0.0217 | loss(seq) 0.0098 | grad 3.8017 | lr 0.0000 | time_forward 1.3210 | time_backward 1.3770 |
[2023-10-25 17:50:51,522::train::INFO] [train] Iter 598604 | loss 0.2708 | loss(rot) 0.1006 | loss(pos) 0.0297 | loss(seq) 0.1405 | grad 2.3830 | lr 0.0000 | time_forward 1.3370 | time_backward 1.4170 |
[2023-10-25 17:50:54,280::train::INFO] [train] Iter 598605 | loss 0.7046 | loss(rot) 0.5674 | loss(pos) 0.1022 | loss(seq) 0.0350 | grad 4.8277 | lr 0.0000 | time_forward 1.3250 | time_backward 1.4290 |
[2023-10-25 17:51:03,046::train::INFO] [train] Iter 598606 | loss 0.5899 | loss(rot) 0.2702 | loss(pos) 0.0978 | loss(seq) 0.2219 | grad 3.7088 | lr 0.0000 | time_forward 3.5650 | time_backward 5.1970 |
[2023-10-25 17:51:05,735::train::INFO] [train] Iter 598607 | loss 0.8745 | loss(rot) 0.1761 | loss(pos) 0.6802 | loss(seq) 0.0182 | grad 8.0590 | lr 0.0000 | time_forward 1.2900 | time_backward 1.3960 |
[2023-10-25 17:51:14,201::train::INFO] [train] Iter 598608 | loss 0.3046 | loss(rot) 0.1236 | loss(pos) 0.1131 | loss(seq) 0.0679 | grad 2.7433 | lr 0.0000 | time_forward 3.4950 | time_backward 4.9670 |
[2023-10-25 17:51:22,834::train::INFO] [train] Iter 598609 | loss 0.6017 | loss(rot) 0.0435 | loss(pos) 0.3586 | loss(seq) 0.1996 | grad 3.9264 | lr 0.0000 | time_forward 3.5980 | time_backward 5.0310 |
[2023-10-25 17:51:25,568::train::INFO] [train] Iter 598610 | loss 0.5262 | loss(rot) 0.1126 | loss(pos) 0.3802 | loss(seq) 0.0334 | grad 3.8328 | lr 0.0000 | time_forward 1.3090 | time_backward 1.4210 |
[2023-10-25 17:51:33,257::train::INFO] [train] Iter 598611 | loss 0.9907 | loss(rot) 0.5839 | loss(pos) 0.0798 | loss(seq) 0.3269 | grad 5.2210 | lr 0.0000 | time_forward 3.3180 | time_backward 4.3440 |
[2023-10-25 17:51:36,409::train::INFO] [train] Iter 598612 | loss 0.2370 | loss(rot) 0.1113 | loss(pos) 0.0354 | loss(seq) 0.0903 | grad 1.7235 | lr 0.0000 | time_forward 1.4470 | time_backward 1.7030 |
[2023-10-25 17:51:39,139::train::INFO] [train] Iter 598613 | loss 0.2748 | loss(rot) 0.2427 | loss(pos) 0.0237 | loss(seq) 0.0085 | grad 2.7805 | lr 0.0000 | time_forward 1.2890 | time_backward 1.4260 |
[2023-10-25 17:51:47,733::train::INFO] [train] Iter 598614 | loss 1.0419 | loss(rot) 0.3359 | loss(pos) 0.2783 | loss(seq) 0.4278 | grad 2.9164 | lr 0.0000 | time_forward 3.5090 | time_backward 5.0810 |
[2023-10-25 17:51:50,436::train::INFO] [train] Iter 598615 | loss 1.8036 | loss(rot) 1.2370 | loss(pos) 0.1399 | loss(seq) 0.4266 | grad 16.1320 | lr 0.0000 | time_forward 1.2880 | time_backward 1.4120 |
[2023-10-25 17:51:59,060::train::INFO] [train] Iter 598616 | loss 0.2594 | loss(rot) 0.1920 | loss(pos) 0.0674 | loss(seq) 0.0000 | grad 2.1413 | lr 0.0000 | time_forward 3.5470 | time_backward 5.0640 |
[2023-10-25 17:52:06,647::train::INFO] [train] Iter 598617 | loss 1.1911 | loss(rot) 0.5441 | loss(pos) 0.2075 | loss(seq) 0.4395 | grad 6.4877 | lr 0.0000 | time_forward 3.2140 | time_backward 4.3690 |
[2023-10-25 17:52:14,768::train::INFO] [train] Iter 598618 | loss 0.9071 | loss(rot) 0.2179 | loss(pos) 0.3898 | loss(seq) 0.2994 | grad 4.0159 | lr 0.0000 | time_forward 3.4710 | time_backward 4.6450 |
[2023-10-25 17:52:22,163::train::INFO] [train] Iter 598619 | loss 0.1347 | loss(rot) 0.1049 | loss(pos) 0.0297 | loss(seq) 0.0002 | grad 1.7280 | lr 0.0000 | time_forward 3.1150 | time_backward 4.2760 |
[2023-10-25 17:52:29,530::train::INFO] [train] Iter 598620 | loss 0.2071 | loss(rot) 0.1565 | loss(pos) 0.0446 | loss(seq) 0.0059 | grad 2.4336 | lr 0.0000 | time_forward 3.1760 | time_backward 4.1870 |
[2023-10-25 17:52:36,866::train::INFO] [train] Iter 598621 | loss 0.4240 | loss(rot) 0.2113 | loss(pos) 0.0201 | loss(seq) 0.1926 | grad 3.3040 | lr 0.0000 | time_forward 3.1540 | time_backward 4.1790 |
[2023-10-25 17:52:45,398::train::INFO] [train] Iter 598622 | loss 0.5976 | loss(rot) 0.2693 | loss(pos) 0.2366 | loss(seq) 0.0917 | grad 2.7573 | lr 0.0000 | time_forward 3.4870 | time_backward 5.0410 |
[2023-10-25 17:52:52,925::train::INFO] [train] Iter 598623 | loss 1.1140 | loss(rot) 0.6465 | loss(pos) 0.0660 | loss(seq) 0.4015 | grad 4.8133 | lr 0.0000 | time_forward 3.2270 | time_backward 4.2960 |
[2023-10-25 17:53:00,375::train::INFO] [train] Iter 598624 | loss 0.2466 | loss(rot) 0.0359 | loss(pos) 0.0356 | loss(seq) 0.1751 | grad 2.4980 | lr 0.0000 | time_forward 3.2560 | time_backward 4.1900 |
[2023-10-25 17:53:03,084::train::INFO] [train] Iter 598625 | loss 1.3114 | loss(rot) 0.9655 | loss(pos) 0.0360 | loss(seq) 0.3100 | grad 4.1982 | lr 0.0000 | time_forward 1.2700 | time_backward 1.4370 |
[2023-10-25 17:53:10,502::train::INFO] [train] Iter 598626 | loss 0.7767 | loss(rot) 0.7306 | loss(pos) 0.0246 | loss(seq) 0.0215 | grad 4.5369 | lr 0.0000 | time_forward 3.1730 | time_backward 4.2410 |
[2023-10-25 17:53:19,023::train::INFO] [train] Iter 598627 | loss 1.1451 | loss(rot) 1.0263 | loss(pos) 0.0571 | loss(seq) 0.0616 | grad 3.7735 | lr 0.0000 | time_forward 3.5230 | time_backward 4.9950 |
[2023-10-25 17:53:27,719::train::INFO] [train] Iter 598628 | loss 0.8057 | loss(rot) 0.1780 | loss(pos) 0.3153 | loss(seq) 0.3124 | grad 4.8110 | lr 0.0000 | time_forward 3.6160 | time_backward 5.0770 |
[2023-10-25 17:53:35,567::train::INFO] [train] Iter 598629 | loss 1.3429 | loss(rot) 1.2823 | loss(pos) 0.0591 | loss(seq) 0.0015 | grad 5.8074 | lr 0.0000 | time_forward 3.3470 | time_backward 4.4970 |
[2023-10-25 17:53:44,347::train::INFO] [train] Iter 598630 | loss 0.4608 | loss(rot) 0.0154 | loss(pos) 0.4415 | loss(seq) 0.0039 | grad 5.2029 | lr 0.0000 | time_forward 3.9350 | time_backward 4.8430 |
[2023-10-25 17:53:52,031::train::INFO] [train] Iter 598631 | loss 0.5808 | loss(rot) 0.2057 | loss(pos) 0.0233 | loss(seq) 0.3518 | grad 2.8821 | lr 0.0000 | time_forward 3.6220 | time_backward 4.0580 |
[2023-10-25 17:54:00,634::train::INFO] [train] Iter 598632 | loss 0.6907 | loss(rot) 0.2038 | loss(pos) 0.1081 | loss(seq) 0.3788 | grad 3.2392 | lr 0.0000 | time_forward 3.5380 | time_backward 5.0610 |
[2023-10-25 17:54:09,377::train::INFO] [train] Iter 598633 | loss 0.7021 | loss(rot) 0.5190 | loss(pos) 0.0591 | loss(seq) 0.1240 | grad 2.6484 | lr 0.0000 | time_forward 3.6080 | time_backward 5.1310 |
[2023-10-25 17:54:12,078::train::INFO] [train] Iter 598634 | loss 0.3638 | loss(rot) 0.0267 | loss(pos) 0.3230 | loss(seq) 0.0142 | grad 3.7212 | lr 0.0000 | time_forward 1.3080 | time_backward 1.3900 |
[2023-10-25 17:54:20,733::train::INFO] [train] Iter 598635 | loss 1.4016 | loss(rot) 1.0724 | loss(pos) 0.1284 | loss(seq) 0.2008 | grad 3.6578 | lr 0.0000 | time_forward 3.7530 | time_backward 4.8970 |
[2023-10-25 17:54:27,498::train::INFO] [train] Iter 598636 | loss 1.0498 | loss(rot) 0.5453 | loss(pos) 0.0726 | loss(seq) 0.4319 | grad 3.2014 | lr 0.0000 | time_forward 2.9130 | time_backward 3.8490 |
[2023-10-25 17:54:35,550::train::INFO] [train] Iter 598637 | loss 0.4143 | loss(rot) 0.1529 | loss(pos) 0.0445 | loss(seq) 0.2170 | grad 2.9231 | lr 0.0000 | time_forward 3.5650 | time_backward 4.4840 |
[2023-10-25 17:54:42,886::train::INFO] [train] Iter 598638 | loss 0.3297 | loss(rot) 0.1285 | loss(pos) 0.1749 | loss(seq) 0.0263 | grad 3.4758 | lr 0.0000 | time_forward 3.1600 | time_backward 4.1720 |
[2023-10-25 17:54:49,510::train::INFO] [train] Iter 598639 | loss 0.2896 | loss(rot) 0.1682 | loss(pos) 0.0109 | loss(seq) 0.1105 | grad 2.5942 | lr 0.0000 | time_forward 2.8330 | time_backward 3.7880 |
[2023-10-25 17:54:56,959::train::INFO] [train] Iter 598640 | loss 1.3455 | loss(rot) 1.2915 | loss(pos) 0.0518 | loss(seq) 0.0022 | grad 11.2919 | lr 0.0000 | time_forward 3.1630 | time_backward 4.2840 |
[2023-10-25 17:55:05,570::train::INFO] [train] Iter 598641 | loss 1.5928 | loss(rot) 1.5470 | loss(pos) 0.0458 | loss(seq) 0.0000 | grad 10.7294 | lr 0.0000 | time_forward 3.7000 | time_backward 4.9080 |
[2023-10-25 17:55:09,958::train::INFO] [train] Iter 598642 | loss 1.6853 | loss(rot) 1.2534 | loss(pos) 0.0574 | loss(seq) 0.3745 | grad 7.5749 | lr 0.0000 | time_forward 2.0220 | time_backward 2.3620 |
[2023-10-25 17:55:17,926::train::INFO] [train] Iter 598643 | loss 1.1255 | loss(rot) 0.3694 | loss(pos) 0.3287 | loss(seq) 0.4273 | grad 3.0479 | lr 0.0000 | time_forward 3.2800 | time_backward 4.6850 |
[2023-10-25 17:55:25,884::train::INFO] [train] Iter 598644 | loss 1.0388 | loss(rot) 0.2181 | loss(pos) 0.1389 | loss(seq) 0.6818 | grad 5.0118 | lr 0.0000 | time_forward 3.4590 | time_backward 4.4880 |
[2023-10-25 17:55:34,336::train::INFO] [train] Iter 598645 | loss 0.9245 | loss(rot) 0.6842 | loss(pos) 0.0365 | loss(seq) 0.2038 | grad 2.8118 | lr 0.0000 | time_forward 3.6390 | time_backward 4.8110 |
[2023-10-25 17:55:36,573::train::INFO] [train] Iter 598646 | loss 0.2733 | loss(rot) 0.0256 | loss(pos) 0.2382 | loss(seq) 0.0095 | grad 4.1033 | lr 0.0000 | time_forward 1.0440 | time_backward 1.1900 |
[2023-10-25 17:55:39,353::train::INFO] [train] Iter 598647 | loss 0.9334 | loss(rot) 0.4590 | loss(pos) 0.0913 | loss(seq) 0.3831 | grad 4.5970 | lr 0.0000 | time_forward 1.3120 | time_backward 1.4640 |
[2023-10-25 17:55:42,036::train::INFO] [train] Iter 598648 | loss 0.8443 | loss(rot) 0.5627 | loss(pos) 0.0424 | loss(seq) 0.2392 | grad 6.8704 | lr 0.0000 | time_forward 1.2850 | time_backward 1.3930 |
[2023-10-25 17:55:49,346::train::INFO] [train] Iter 598649 | loss 2.2598 | loss(rot) 1.6335 | loss(pos) 0.1941 | loss(seq) 0.4322 | grad 7.1997 | lr 0.0000 | time_forward 3.0490 | time_backward 4.2580 |
[2023-10-25 17:55:57,168::train::INFO] [train] Iter 598650 | loss 0.2067 | loss(rot) 0.1082 | loss(pos) 0.0162 | loss(seq) 0.0823 | grad 1.7795 | lr 0.0000 | time_forward 3.4200 | time_backward 4.3990 |
[2023-10-25 17:56:00,022::train::INFO] [train] Iter 598651 | loss 0.1772 | loss(rot) 0.0273 | loss(pos) 0.1413 | loss(seq) 0.0085 | grad 4.5429 | lr 0.0000 | time_forward 1.3650 | time_backward 1.4850 |
[2023-10-25 17:56:03,392::train::INFO] [train] Iter 598652 | loss 0.6601 | loss(rot) 0.2377 | loss(pos) 0.1665 | loss(seq) 0.2559 | grad 3.0242 | lr 0.0000 | time_forward 1.5140 | time_backward 1.8530 |
[2023-10-25 17:56:11,372::train::INFO] [train] Iter 598653 | loss 0.2355 | loss(rot) 0.1639 | loss(pos) 0.0506 | loss(seq) 0.0210 | grad 2.7821 | lr 0.0000 | time_forward 3.5140 | time_backward 4.4630 |
[2023-10-25 17:56:14,180::train::INFO] [train] Iter 598654 | loss 0.4630 | loss(rot) 0.1402 | loss(pos) 0.0193 | loss(seq) 0.3035 | grad 2.2407 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4460 |
[2023-10-25 17:56:16,981::train::INFO] [train] Iter 598655 | loss 0.8323 | loss(rot) 0.5468 | loss(pos) 0.2516 | loss(seq) 0.0339 | grad 5.2012 | lr 0.0000 | time_forward 1.3310 | time_backward 1.4670 |
[2023-10-25 17:56:23,717::train::INFO] [train] Iter 598656 | loss 0.9909 | loss(rot) 0.7404 | loss(pos) 0.0772 | loss(seq) 0.1733 | grad 5.4432 | lr 0.0000 | time_forward 2.8690 | time_backward 3.8630 |
[2023-10-25 17:56:31,023::train::INFO] [train] Iter 598657 | loss 0.1248 | loss(rot) 0.0720 | loss(pos) 0.0071 | loss(seq) 0.0458 | grad 2.8361 | lr 0.0000 | time_forward 3.1030 | time_backward 4.2010 |
[2023-10-25 17:56:37,839::train::INFO] [train] Iter 598658 | loss 0.3861 | loss(rot) 0.0898 | loss(pos) 0.0248 | loss(seq) 0.2715 | grad 1.9624 | lr 0.0000 | time_forward 3.0440 | time_backward 3.7690 |
[2023-10-25 17:56:40,503::train::INFO] [train] Iter 598659 | loss 0.2404 | loss(rot) 0.1286 | loss(pos) 0.0316 | loss(seq) 0.0802 | grad 1.8139 | lr 0.0000 | time_forward 1.2410 | time_backward 1.4190 |
[2023-10-25 17:56:48,605::train::INFO] [train] Iter 598660 | loss 0.3656 | loss(rot) 0.3375 | loss(pos) 0.0264 | loss(seq) 0.0018 | grad 2.4497 | lr 0.0000 | time_forward 3.4840 | time_backward 4.6140 |
[2023-10-25 17:56:57,485::train::INFO] [train] Iter 598661 | loss 0.9741 | loss(rot) 0.4738 | loss(pos) 0.1087 | loss(seq) 0.3916 | grad 4.2267 | lr 0.0000 | time_forward 3.8130 | time_backward 5.0650 |
[2023-10-25 17:56:59,761::train::INFO] [train] Iter 598662 | loss 0.6046 | loss(rot) 0.5618 | loss(pos) 0.0418 | loss(seq) 0.0010 | grad 2.9303 | lr 0.0000 | time_forward 1.0350 | time_backward 1.2370 |
[2023-10-25 17:57:03,044::train::INFO] [train] Iter 598663 | loss 1.0984 | loss(rot) 0.6182 | loss(pos) 0.1018 | loss(seq) 0.3784 | grad 4.3144 | lr 0.0000 | time_forward 1.4680 | time_backward 1.8120 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.