text
stringlengths 56
1.16k
|
---|
[2023-10-25 18:07:33,978::train::INFO] [train] Iter 598764 | loss 0.8653 | loss(rot) 0.4761 | loss(pos) 0.1332 | loss(seq) 0.2560 | grad 2.9209 | lr 0.0000 | time_forward 3.9730 | time_backward 4.9980 |
[2023-10-25 18:07:36,856::train::INFO] [train] Iter 598765 | loss 0.8223 | loss(rot) 0.2952 | loss(pos) 0.2351 | loss(seq) 0.2919 | grad 4.3977 | lr 0.0000 | time_forward 1.4790 | time_backward 1.3950 |
[2023-10-25 18:07:45,048::train::INFO] [train] Iter 598766 | loss 0.3909 | loss(rot) 0.1726 | loss(pos) 0.1201 | loss(seq) 0.0982 | grad 3.9588 | lr 0.0000 | time_forward 3.5330 | time_backward 4.6560 |
[2023-10-25 18:07:53,053::train::INFO] [train] Iter 598767 | loss 1.0167 | loss(rot) 0.6500 | loss(pos) 0.0734 | loss(seq) 0.2933 | grad 5.4721 | lr 0.0000 | time_forward 3.4040 | time_backward 4.5970 |
[2023-10-25 18:07:55,967::train::INFO] [train] Iter 598768 | loss 0.8086 | loss(rot) 0.5552 | loss(pos) 0.2272 | loss(seq) 0.0262 | grad 38.1051 | lr 0.0000 | time_forward 1.3990 | time_backward 1.5130 |
[2023-10-25 18:08:03,520::train::INFO] [train] Iter 598769 | loss 0.3020 | loss(rot) 0.1278 | loss(pos) 0.0272 | loss(seq) 0.1471 | grad 2.1353 | lr 0.0000 | time_forward 3.2390 | time_backward 4.3110 |
[2023-10-25 18:08:10,732::train::INFO] [train] Iter 598770 | loss 0.4646 | loss(rot) 0.2034 | loss(pos) 0.0310 | loss(seq) 0.2302 | grad 2.1887 | lr 0.0000 | time_forward 3.1510 | time_backward 4.0570 |
[2023-10-25 18:08:13,403::train::INFO] [train] Iter 598771 | loss 0.3129 | loss(rot) 0.2310 | loss(pos) 0.0192 | loss(seq) 0.0628 | grad 2.6714 | lr 0.0000 | time_forward 1.3670 | time_backward 1.3020 |
[2023-10-25 18:08:16,201::train::INFO] [train] Iter 598772 | loss 0.8641 | loss(rot) 0.1839 | loss(pos) 0.0775 | loss(seq) 0.6026 | grad 3.5993 | lr 0.0000 | time_forward 1.2860 | time_backward 1.5090 |
[2023-10-25 18:08:19,504::train::INFO] [train] Iter 598773 | loss 0.5085 | loss(rot) 0.2762 | loss(pos) 0.2214 | loss(seq) 0.0109 | grad 2.9146 | lr 0.0000 | time_forward 1.4940 | time_backward 1.8050 |
[2023-10-25 18:08:25,558::train::INFO] [train] Iter 598774 | loss 0.2668 | loss(rot) 0.2366 | loss(pos) 0.0286 | loss(seq) 0.0016 | grad 2.8593 | lr 0.0000 | time_forward 2.6870 | time_backward 3.3490 |
[2023-10-25 18:08:28,266::train::INFO] [train] Iter 598775 | loss 0.6939 | loss(rot) 0.5563 | loss(pos) 0.0169 | loss(seq) 0.1207 | grad 2.2111 | lr 0.0000 | time_forward 1.2900 | time_backward 1.4150 |
[2023-10-25 18:08:35,590::train::INFO] [train] Iter 598776 | loss 0.5422 | loss(rot) 0.1892 | loss(pos) 0.0673 | loss(seq) 0.2858 | grad 3.6156 | lr 0.0000 | time_forward 3.1290 | time_backward 4.1920 |
[2023-10-25 18:08:42,159::train::INFO] [train] Iter 598777 | loss 0.6386 | loss(rot) 0.2394 | loss(pos) 0.0246 | loss(seq) 0.3746 | grad 3.3176 | lr 0.0000 | time_forward 2.8380 | time_backward 3.7280 |
[2023-10-25 18:08:50,256::train::INFO] [train] Iter 598778 | loss 0.9029 | loss(rot) 0.8694 | loss(pos) 0.0332 | loss(seq) 0.0003 | grad 3.9059 | lr 0.0000 | time_forward 3.3750 | time_backward 4.7190 |
[2023-10-25 18:08:52,521::train::INFO] [train] Iter 598779 | loss 0.2734 | loss(rot) 0.1167 | loss(pos) 0.1257 | loss(seq) 0.0310 | grad 3.2957 | lr 0.0000 | time_forward 1.0520 | time_backward 1.2110 |
[2023-10-25 18:09:01,557::train::INFO] [train] Iter 598780 | loss 0.3163 | loss(rot) 0.0714 | loss(pos) 0.2335 | loss(seq) 0.0115 | grad 6.8521 | lr 0.0000 | time_forward 3.7280 | time_backward 5.3040 |
[2023-10-25 18:09:04,375::train::INFO] [train] Iter 598781 | loss 0.1421 | loss(rot) 0.0950 | loss(pos) 0.0261 | loss(seq) 0.0210 | grad 1.9446 | lr 0.0000 | time_forward 1.3720 | time_backward 1.4420 |
[2023-10-25 18:09:12,423::train::INFO] [train] Iter 598782 | loss 0.3227 | loss(rot) 0.1265 | loss(pos) 0.1493 | loss(seq) 0.0469 | grad 3.7984 | lr 0.0000 | time_forward 3.4720 | time_backward 4.5730 |
[2023-10-25 18:09:14,642::train::INFO] [train] Iter 598783 | loss 0.3270 | loss(rot) 0.2973 | loss(pos) 0.0225 | loss(seq) 0.0072 | grad 10.1672 | lr 0.0000 | time_forward 1.0220 | time_backward 1.1940 |
[2023-10-25 18:09:22,492::train::INFO] [train] Iter 598784 | loss 0.5246 | loss(rot) 0.4908 | loss(pos) 0.0330 | loss(seq) 0.0009 | grad 3.2085 | lr 0.0000 | time_forward 3.4000 | time_backward 4.4340 |
[2023-10-25 18:09:30,608::train::INFO] [train] Iter 598785 | loss 0.1846 | loss(rot) 0.0720 | loss(pos) 0.0973 | loss(seq) 0.0153 | grad 2.7061 | lr 0.0000 | time_forward 3.3920 | time_backward 4.7210 |
[2023-10-25 18:09:39,356::train::INFO] [train] Iter 598786 | loss 0.1680 | loss(rot) 0.0667 | loss(pos) 0.0376 | loss(seq) 0.0636 | grad 1.7476 | lr 0.0000 | time_forward 3.6010 | time_backward 5.1440 |
[2023-10-25 18:09:46,994::train::INFO] [train] Iter 598787 | loss 0.4174 | loss(rot) 0.0854 | loss(pos) 0.2070 | loss(seq) 0.1250 | grad 4.6487 | lr 0.0000 | time_forward 3.2650 | time_backward 4.3690 |
[2023-10-25 18:09:55,705::train::INFO] [train] Iter 598788 | loss 0.8654 | loss(rot) 0.2860 | loss(pos) 0.1410 | loss(seq) 0.4384 | grad 4.6071 | lr 0.0000 | time_forward 3.5750 | time_backward 5.1330 |
[2023-10-25 18:09:58,228::train::INFO] [train] Iter 598789 | loss 1.2187 | loss(rot) 1.0997 | loss(pos) 0.0623 | loss(seq) 0.0568 | grad 2.9901 | lr 0.0000 | time_forward 1.1880 | time_backward 1.3310 |
[2023-10-25 18:10:06,247::train::INFO] [train] Iter 598790 | loss 0.8861 | loss(rot) 0.2834 | loss(pos) 0.0704 | loss(seq) 0.5324 | grad 3.7854 | lr 0.0000 | time_forward 3.4850 | time_backward 4.5310 |
[2023-10-25 18:10:13,959::train::INFO] [train] Iter 598791 | loss 1.4004 | loss(rot) 0.7699 | loss(pos) 0.2615 | loss(seq) 0.3689 | grad 3.7397 | lr 0.0000 | time_forward 3.2730 | time_backward 4.4350 |
[2023-10-25 18:10:21,313::train::INFO] [train] Iter 598792 | loss 1.1912 | loss(rot) 0.5736 | loss(pos) 0.3748 | loss(seq) 0.2428 | grad 4.9446 | lr 0.0000 | time_forward 3.1390 | time_backward 4.2120 |
[2023-10-25 18:10:28,745::train::INFO] [train] Iter 598793 | loss 1.0698 | loss(rot) 0.9040 | loss(pos) 0.0383 | loss(seq) 0.1275 | grad 3.5368 | lr 0.0000 | time_forward 3.1770 | time_backward 4.2520 |
[2023-10-25 18:10:37,543::train::INFO] [train] Iter 598794 | loss 0.2659 | loss(rot) 0.1715 | loss(pos) 0.0182 | loss(seq) 0.0761 | grad 2.9772 | lr 0.0000 | time_forward 3.5810 | time_backward 5.2150 |
[2023-10-25 18:10:46,292::train::INFO] [train] Iter 598795 | loss 0.9374 | loss(rot) 0.5575 | loss(pos) 0.0769 | loss(seq) 0.3029 | grad 7.2386 | lr 0.0000 | time_forward 3.6030 | time_backward 5.1420 |
[2023-10-25 18:10:54,937::train::INFO] [train] Iter 598796 | loss 0.3322 | loss(rot) 0.0246 | loss(pos) 0.2899 | loss(seq) 0.0177 | grad 3.8094 | lr 0.0000 | time_forward 3.5730 | time_backward 5.0690 |
[2023-10-25 18:11:03,542::train::INFO] [train] Iter 598797 | loss 0.9737 | loss(rot) 0.4080 | loss(pos) 0.3494 | loss(seq) 0.2163 | grad 4.1075 | lr 0.0000 | time_forward 3.5450 | time_backward 5.0580 |
[2023-10-25 18:11:12,328::train::INFO] [train] Iter 598798 | loss 1.0666 | loss(rot) 0.3560 | loss(pos) 0.1604 | loss(seq) 0.5502 | grad 4.5377 | lr 0.0000 | time_forward 3.6220 | time_backward 5.1600 |
[2023-10-25 18:11:14,832::train::INFO] [train] Iter 598799 | loss 0.8416 | loss(rot) 0.6471 | loss(pos) 0.0125 | loss(seq) 0.1819 | grad 7.6502 | lr 0.0000 | time_forward 1.2290 | time_backward 1.2720 |
[2023-10-25 18:11:18,131::train::INFO] [train] Iter 598800 | loss 0.7451 | loss(rot) 0.6112 | loss(pos) 0.0325 | loss(seq) 0.1014 | grad 3.6665 | lr 0.0000 | time_forward 1.4790 | time_backward 1.8170 |
[2023-10-25 18:11:26,190::train::INFO] [train] Iter 598801 | loss 0.7071 | loss(rot) 0.4672 | loss(pos) 0.0455 | loss(seq) 0.1945 | grad 2.1306 | lr 0.0000 | time_forward 3.4800 | time_backward 4.5770 |
[2023-10-25 18:11:29,007::train::INFO] [train] Iter 598802 | loss 0.4208 | loss(rot) 0.1200 | loss(pos) 0.0983 | loss(seq) 0.2025 | grad 3.3082 | lr 0.0000 | time_forward 1.3140 | time_backward 1.5000 |
[2023-10-25 18:11:31,831::train::INFO] [train] Iter 598803 | loss 0.2274 | loss(rot) 0.0519 | loss(pos) 0.1498 | loss(seq) 0.0257 | grad 3.3988 | lr 0.0000 | time_forward 1.3600 | time_backward 1.4600 |
[2023-10-25 18:11:40,003::train::INFO] [train] Iter 598804 | loss 0.6504 | loss(rot) 0.4229 | loss(pos) 0.1411 | loss(seq) 0.0864 | grad 5.3449 | lr 0.0000 | time_forward 3.6080 | time_backward 4.5610 |
[2023-10-25 18:11:48,945::train::INFO] [train] Iter 598805 | loss 0.8186 | loss(rot) 0.0575 | loss(pos) 0.7511 | loss(seq) 0.0100 | grad 4.9098 | lr 0.0000 | time_forward 3.6080 | time_backward 5.3320 |
[2023-10-25 18:11:57,911::train::INFO] [train] Iter 598806 | loss 0.8829 | loss(rot) 0.3995 | loss(pos) 0.1335 | loss(seq) 0.3499 | grad 2.9394 | lr 0.0000 | time_forward 3.7400 | time_backward 5.2220 |
[2023-10-25 18:12:06,178::train::INFO] [train] Iter 598807 | loss 1.1690 | loss(rot) 0.8741 | loss(pos) 0.0414 | loss(seq) 0.2535 | grad 4.0342 | lr 0.0000 | time_forward 3.4930 | time_backward 4.7700 |
[2023-10-25 18:12:08,428::train::INFO] [train] Iter 598808 | loss 0.5095 | loss(rot) 0.1271 | loss(pos) 0.2367 | loss(seq) 0.1457 | grad 3.2517 | lr 0.0000 | time_forward 1.0620 | time_backward 1.1860 |
[2023-10-25 18:12:10,708::train::INFO] [train] Iter 598809 | loss 0.4062 | loss(rot) 0.1631 | loss(pos) 0.0456 | loss(seq) 0.1975 | grad 2.5849 | lr 0.0000 | time_forward 1.0640 | time_backward 1.2120 |
[2023-10-25 18:12:19,491::train::INFO] [train] Iter 598810 | loss 0.3902 | loss(rot) 0.0901 | loss(pos) 0.0348 | loss(seq) 0.2652 | grad 2.5963 | lr 0.0000 | time_forward 3.6350 | time_backward 5.1450 |
[2023-10-25 18:12:26,954::train::INFO] [train] Iter 598811 | loss 1.6869 | loss(rot) 1.2772 | loss(pos) 0.0656 | loss(seq) 0.3441 | grad 5.4865 | lr 0.0000 | time_forward 3.1980 | time_backward 4.2630 |
[2023-10-25 18:12:35,629::train::INFO] [train] Iter 598812 | loss 0.7224 | loss(rot) 0.5578 | loss(pos) 0.0535 | loss(seq) 0.1111 | grad 4.3080 | lr 0.0000 | time_forward 3.6000 | time_backward 5.0710 |
[2023-10-25 18:12:42,323::train::INFO] [train] Iter 598813 | loss 1.9655 | loss(rot) 1.3675 | loss(pos) 0.1004 | loss(seq) 0.4975 | grad 5.7359 | lr 0.0000 | time_forward 2.9070 | time_backward 3.7840 |
[2023-10-25 18:12:51,012::train::INFO] [train] Iter 598814 | loss 0.6135 | loss(rot) 0.3156 | loss(pos) 0.1311 | loss(seq) 0.1668 | grad 3.4496 | lr 0.0000 | time_forward 3.5720 | time_backward 5.1150 |
[2023-10-25 18:12:53,793::train::INFO] [train] Iter 598815 | loss 0.5124 | loss(rot) 0.2277 | loss(pos) 0.0782 | loss(seq) 0.2066 | grad 3.7305 | lr 0.0000 | time_forward 1.3160 | time_backward 1.4620 |
[2023-10-25 18:13:01,616::train::INFO] [train] Iter 598816 | loss 0.2783 | loss(rot) 0.2069 | loss(pos) 0.0713 | loss(seq) 0.0001 | grad 3.3573 | lr 0.0000 | time_forward 3.3910 | time_backward 4.4280 |
[2023-10-25 18:13:10,370::train::INFO] [train] Iter 598817 | loss 0.5784 | loss(rot) 0.4570 | loss(pos) 0.0147 | loss(seq) 0.1068 | grad 3.5050 | lr 0.0000 | time_forward 3.6370 | time_backward 5.1130 |
[2023-10-25 18:13:18,102::train::INFO] [train] Iter 598818 | loss 0.6325 | loss(rot) 0.0548 | loss(pos) 0.5661 | loss(seq) 0.0117 | grad 6.3010 | lr 0.0000 | time_forward 3.3060 | time_backward 4.4230 |
[2023-10-25 18:13:20,784::train::INFO] [train] Iter 598819 | loss 0.1496 | loss(rot) 0.0431 | loss(pos) 0.0924 | loss(seq) 0.0142 | grad 3.7784 | lr 0.0000 | time_forward 1.2920 | time_backward 1.3880 |
[2023-10-25 18:13:29,496::train::INFO] [train] Iter 598820 | loss 0.5572 | loss(rot) 0.2707 | loss(pos) 0.1094 | loss(seq) 0.1771 | grad 3.2355 | lr 0.0000 | time_forward 3.6180 | time_backward 5.0900 |
[2023-10-25 18:13:36,882::train::INFO] [train] Iter 598821 | loss 1.0057 | loss(rot) 0.5181 | loss(pos) 0.1585 | loss(seq) 0.3291 | grad 2.8316 | lr 0.0000 | time_forward 3.1300 | time_backward 4.2530 |
[2023-10-25 18:13:44,562::train::INFO] [train] Iter 598822 | loss 0.9438 | loss(rot) 0.8774 | loss(pos) 0.0183 | loss(seq) 0.0481 | grad 11.2909 | lr 0.0000 | time_forward 3.2980 | time_backward 4.3790 |
[2023-10-25 18:13:47,259::train::INFO] [train] Iter 598823 | loss 0.5633 | loss(rot) 0.4984 | loss(pos) 0.0259 | loss(seq) 0.0391 | grad 3.1648 | lr 0.0000 | time_forward 1.2950 | time_backward 1.3990 |
[2023-10-25 18:13:54,647::train::INFO] [train] Iter 598824 | loss 0.4769 | loss(rot) 0.2366 | loss(pos) 0.0357 | loss(seq) 0.2046 | grad 2.8926 | lr 0.0000 | time_forward 3.1740 | time_backward 4.1830 |
[2023-10-25 18:13:57,415::train::INFO] [train] Iter 598825 | loss 0.5433 | loss(rot) 0.1612 | loss(pos) 0.0545 | loss(seq) 0.3276 | grad 3.6690 | lr 0.0000 | time_forward 1.3400 | time_backward 1.4250 |
[2023-10-25 18:14:04,891::train::INFO] [train] Iter 598826 | loss 1.5492 | loss(rot) 0.0136 | loss(pos) 1.5342 | loss(seq) 0.0014 | grad 14.2201 | lr 0.0000 | time_forward 3.2380 | time_backward 4.2350 |
[2023-10-25 18:14:07,609::train::INFO] [train] Iter 598827 | loss 0.4854 | loss(rot) 0.0995 | loss(pos) 0.0226 | loss(seq) 0.3633 | grad 2.1494 | lr 0.0000 | time_forward 1.2720 | time_backward 1.4430 |
[2023-10-25 18:14:10,375::train::INFO] [train] Iter 598828 | loss 0.1400 | loss(rot) 0.0997 | loss(pos) 0.0403 | loss(seq) 0.0000 | grad 1.7636 | lr 0.0000 | time_forward 1.3320 | time_backward 1.4300 |
[2023-10-25 18:14:18,985::train::INFO] [train] Iter 598829 | loss 0.4854 | loss(rot) 0.0767 | loss(pos) 0.2470 | loss(seq) 0.1617 | grad 4.3308 | lr 0.0000 | time_forward 3.7510 | time_backward 4.8570 |
[2023-10-25 18:14:21,790::train::INFO] [train] Iter 598830 | loss 0.4815 | loss(rot) 0.1338 | loss(pos) 0.1056 | loss(seq) 0.2421 | grad 3.6368 | lr 0.0000 | time_forward 1.2980 | time_backward 1.5030 |
[2023-10-25 18:14:24,501::train::INFO] [train] Iter 598831 | loss 0.3613 | loss(rot) 0.3252 | loss(pos) 0.0339 | loss(seq) 0.0022 | grad 3.8755 | lr 0.0000 | time_forward 1.2980 | time_backward 1.3950 |
[2023-10-25 18:14:27,240::train::INFO] [train] Iter 598832 | loss 1.6265 | loss(rot) 1.6003 | loss(pos) 0.0259 | loss(seq) 0.0003 | grad 4.1916 | lr 0.0000 | time_forward 1.3080 | time_backward 1.4040 |
[2023-10-25 18:14:29,973::train::INFO] [train] Iter 598833 | loss 0.1951 | loss(rot) 0.1688 | loss(pos) 0.0228 | loss(seq) 0.0035 | grad 2.0816 | lr 0.0000 | time_forward 1.3360 | time_backward 1.3930 |
[2023-10-25 18:14:38,983::train::INFO] [train] Iter 598834 | loss 0.5012 | loss(rot) 0.1205 | loss(pos) 0.0674 | loss(seq) 0.3134 | grad 2.2582 | lr 0.0000 | time_forward 3.8140 | time_backward 5.1930 |
[2023-10-25 18:14:47,106::train::INFO] [train] Iter 598835 | loss 0.2822 | loss(rot) 0.0924 | loss(pos) 0.0286 | loss(seq) 0.1612 | grad 2.1291 | lr 0.0000 | time_forward 3.4750 | time_backward 4.6450 |
[2023-10-25 18:14:54,582::train::INFO] [train] Iter 598836 | loss 2.0409 | loss(rot) 2.0263 | loss(pos) 0.0140 | loss(seq) 0.0006 | grad 118.7853 | lr 0.0000 | time_forward 3.2080 | time_backward 4.2650 |
[2023-10-25 18:14:57,229::train::INFO] [train] Iter 598837 | loss 0.6466 | loss(rot) 0.2727 | loss(pos) 0.0522 | loss(seq) 0.3217 | grad 2.8542 | lr 0.0000 | time_forward 1.2190 | time_backward 1.4240 |
[2023-10-25 18:15:05,422::train::INFO] [train] Iter 598838 | loss 0.3124 | loss(rot) 0.1177 | loss(pos) 0.0103 | loss(seq) 0.1844 | grad 2.3973 | lr 0.0000 | time_forward 3.4800 | time_backward 4.7100 |
[2023-10-25 18:15:14,109::train::INFO] [train] Iter 598839 | loss 0.8586 | loss(rot) 0.5338 | loss(pos) 0.1759 | loss(seq) 0.1489 | grad 3.3629 | lr 0.0000 | time_forward 3.7270 | time_backward 4.9570 |
[2023-10-25 18:15:16,823::train::INFO] [train] Iter 598840 | loss 0.3644 | loss(rot) 0.1079 | loss(pos) 0.0097 | loss(seq) 0.2468 | grad 2.2396 | lr 0.0000 | time_forward 1.2660 | time_backward 1.4450 |
[2023-10-25 18:15:24,823::train::INFO] [train] Iter 598841 | loss 0.3983 | loss(rot) 0.3590 | loss(pos) 0.0325 | loss(seq) 0.0068 | grad 3.6745 | lr 0.0000 | time_forward 3.2820 | time_backward 4.7150 |
[2023-10-25 18:15:33,549::train::INFO] [train] Iter 598842 | loss 0.7677 | loss(rot) 0.2967 | loss(pos) 0.1397 | loss(seq) 0.3312 | grad 3.8596 | lr 0.0000 | time_forward 3.7960 | time_backward 4.9270 |
[2023-10-25 18:15:40,983::train::INFO] [train] Iter 598843 | loss 1.1102 | loss(rot) 0.8286 | loss(pos) 0.0666 | loss(seq) 0.2149 | grad 54.6617 | lr 0.0000 | time_forward 3.1610 | time_backward 4.2700 |
[2023-10-25 18:15:43,238::train::INFO] [train] Iter 598844 | loss 0.5315 | loss(rot) 0.4927 | loss(pos) 0.0388 | loss(seq) 0.0000 | grad 14.1438 | lr 0.0000 | time_forward 1.0430 | time_backward 1.2100 |
[2023-10-25 18:15:51,563::train::INFO] [train] Iter 598845 | loss 0.7080 | loss(rot) 0.0888 | loss(pos) 0.0530 | loss(seq) 0.5662 | grad 2.4415 | lr 0.0000 | time_forward 3.6150 | time_backward 4.7070 |
[2023-10-25 18:16:00,140::train::INFO] [train] Iter 598846 | loss 0.7041 | loss(rot) 0.0752 | loss(pos) 0.6233 | loss(seq) 0.0057 | grad 7.2844 | lr 0.0000 | time_forward 3.5550 | time_backward 5.0090 |
[2023-10-25 18:16:02,856::train::INFO] [train] Iter 598847 | loss 1.6578 | loss(rot) 1.4360 | loss(pos) 0.0787 | loss(seq) 0.1432 | grad 3.3956 | lr 0.0000 | time_forward 1.2860 | time_backward 1.4270 |
[2023-10-25 18:16:05,656::train::INFO] [train] Iter 598848 | loss 0.6134 | loss(rot) 0.4544 | loss(pos) 0.0234 | loss(seq) 0.1356 | grad 1.5973 | lr 0.0000 | time_forward 1.3080 | time_backward 1.4630 |
[2023-10-25 18:16:13,708::train::INFO] [train] Iter 598849 | loss 1.8090 | loss(rot) 0.0186 | loss(pos) 1.7421 | loss(seq) 0.0483 | grad 15.9796 | lr 0.0000 | time_forward 3.4450 | time_backward 4.5790 |
[2023-10-25 18:16:22,442::train::INFO] [train] Iter 598850 | loss 0.2961 | loss(rot) 0.1913 | loss(pos) 0.0151 | loss(seq) 0.0897 | grad 2.8910 | lr 0.0000 | time_forward 3.5930 | time_backward 5.1390 |
[2023-10-25 18:16:25,296::train::INFO] [train] Iter 598851 | loss 0.2232 | loss(rot) 0.0814 | loss(pos) 0.0856 | loss(seq) 0.0562 | grad 2.9875 | lr 0.0000 | time_forward 1.3350 | time_backward 1.5160 |
[2023-10-25 18:16:32,798::train::INFO] [train] Iter 598852 | loss 1.6666 | loss(rot) 0.0487 | loss(pos) 1.6107 | loss(seq) 0.0072 | grad 12.2431 | lr 0.0000 | time_forward 3.2110 | time_backward 4.2640 |
[2023-10-25 18:16:36,003::train::INFO] [train] Iter 598853 | loss 0.9631 | loss(rot) 0.5003 | loss(pos) 0.1105 | loss(seq) 0.3524 | grad 3.5582 | lr 0.0000 | time_forward 1.4280 | time_backward 1.7740 |
[2023-10-25 18:16:43,629::train::INFO] [train] Iter 598854 | loss 0.3750 | loss(rot) 0.2625 | loss(pos) 0.0795 | loss(seq) 0.0330 | grad 3.4285 | lr 0.0000 | time_forward 3.2450 | time_backward 4.3660 |
[2023-10-25 18:16:51,353::train::INFO] [train] Iter 598855 | loss 0.2116 | loss(rot) 0.1122 | loss(pos) 0.0375 | loss(seq) 0.0619 | grad 1.7725 | lr 0.0000 | time_forward 3.2580 | time_backward 4.4640 |
[2023-10-25 18:17:00,091::train::INFO] [train] Iter 598856 | loss 0.5040 | loss(rot) 0.1296 | loss(pos) 0.0663 | loss(seq) 0.3081 | grad 2.6245 | lr 0.0000 | time_forward 3.5750 | time_backward 5.1600 |
[2023-10-25 18:17:02,344::train::INFO] [train] Iter 598857 | loss 1.1098 | loss(rot) 0.6555 | loss(pos) 0.2068 | loss(seq) 0.2474 | grad 3.5551 | lr 0.0000 | time_forward 1.0280 | time_backward 1.2210 |
[2023-10-25 18:17:10,118::train::INFO] [train] Iter 598858 | loss 0.6296 | loss(rot) 0.2144 | loss(pos) 0.0286 | loss(seq) 0.3866 | grad 3.1758 | lr 0.0000 | time_forward 3.2760 | time_backward 4.4960 |
[2023-10-25 18:17:12,870::train::INFO] [train] Iter 598859 | loss 0.9133 | loss(rot) 0.6469 | loss(pos) 0.0818 | loss(seq) 0.1847 | grad 5.4985 | lr 0.0000 | time_forward 1.3230 | time_backward 1.4250 |
[2023-10-25 18:17:20,422::train::INFO] [train] Iter 598860 | loss 0.5819 | loss(rot) 0.1718 | loss(pos) 0.0469 | loss(seq) 0.3632 | grad 2.8308 | lr 0.0000 | time_forward 3.2390 | time_backward 4.2750 |
[2023-10-25 18:17:28,581::train::INFO] [train] Iter 598861 | loss 0.2928 | loss(rot) 0.0419 | loss(pos) 0.0582 | loss(seq) 0.1927 | grad 2.9528 | lr 0.0000 | time_forward 3.5170 | time_backward 4.6390 |
[2023-10-25 18:17:37,323::train::INFO] [train] Iter 598862 | loss 0.7181 | loss(rot) 0.7014 | loss(pos) 0.0141 | loss(seq) 0.0026 | grad 55.2951 | lr 0.0000 | time_forward 3.6130 | time_backward 5.1270 |
[2023-10-25 18:17:41,365::train::INFO] [train] Iter 598863 | loss 0.2161 | loss(rot) 0.1798 | loss(pos) 0.0358 | loss(seq) 0.0005 | grad 2.0999 | lr 0.0000 | time_forward 1.8490 | time_backward 2.1900 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.