text
stringlengths
56
1.16k
[2023-10-25 18:17:50,003::train::INFO] [train] Iter 598864 | loss 0.7739 | loss(rot) 0.2493 | loss(pos) 0.1836 | loss(seq) 0.3409 | grad 2.4441 | lr 0.0000 | time_forward 3.7000 | time_backward 4.9070
[2023-10-25 18:17:52,256::train::INFO] [train] Iter 598865 | loss 1.0171 | loss(rot) 0.5820 | loss(pos) 0.0615 | loss(seq) 0.3736 | grad 3.3270 | lr 0.0000 | time_forward 1.0250 | time_backward 1.2250
[2023-10-25 18:18:00,926::train::INFO] [train] Iter 598866 | loss 0.4441 | loss(rot) 0.1129 | loss(pos) 0.0804 | loss(seq) 0.2508 | grad 3.1043 | lr 0.0000 | time_forward 3.5740 | time_backward 5.0920
[2023-10-25 18:18:08,849::train::INFO] [train] Iter 598867 | loss 1.3530 | loss(rot) 0.8141 | loss(pos) 0.3168 | loss(seq) 0.2220 | grad 3.2470 | lr 0.0000 | time_forward 3.3550 | time_backward 4.5650
[2023-10-25 18:18:17,447::train::INFO] [train] Iter 598868 | loss 0.2812 | loss(rot) 0.0686 | loss(pos) 0.0851 | loss(seq) 0.1275 | grad 3.3035 | lr 0.0000 | time_forward 3.5130 | time_backward 5.0830
[2023-10-25 18:18:20,207::train::INFO] [train] Iter 598869 | loss 1.6461 | loss(rot) 1.6193 | loss(pos) 0.0250 | loss(seq) 0.0019 | grad 3.8052 | lr 0.0000 | time_forward 1.3200 | time_backward 1.4360
[2023-10-25 18:18:29,088::train::INFO] [train] Iter 598870 | loss 0.3076 | loss(rot) 0.2671 | loss(pos) 0.0254 | loss(seq) 0.0150 | grad 2.7119 | lr 0.0000 | time_forward 3.7370 | time_backward 5.1400
[2023-10-25 18:18:36,782::train::INFO] [train] Iter 598871 | loss 1.1155 | loss(rot) 0.3002 | loss(pos) 0.8059 | loss(seq) 0.0094 | grad 8.7673 | lr 0.0000 | time_forward 3.2780 | time_backward 4.4120
[2023-10-25 18:18:44,764::train::INFO] [train] Iter 598872 | loss 0.9138 | loss(rot) 0.4353 | loss(pos) 0.0832 | loss(seq) 0.3954 | grad 2.9755 | lr 0.0000 | time_forward 3.4230 | time_backward 4.5560
[2023-10-25 18:18:53,496::train::INFO] [train] Iter 598873 | loss 0.4716 | loss(rot) 0.1633 | loss(pos) 0.1842 | loss(seq) 0.1241 | grad 3.7869 | lr 0.0000 | time_forward 3.6160 | time_backward 5.1130
[2023-10-25 18:18:55,758::train::INFO] [train] Iter 598874 | loss 0.2270 | loss(rot) 0.2130 | loss(pos) 0.0139 | loss(seq) 0.0001 | grad 3.1264 | lr 0.0000 | time_forward 1.0460 | time_backward 1.2140
[2023-10-25 18:19:02,942::train::INFO] [train] Iter 598875 | loss 1.4277 | loss(rot) 1.0356 | loss(pos) 0.0501 | loss(seq) 0.3420 | grad 4.9271 | lr 0.0000 | time_forward 3.0560 | time_backward 4.1240
[2023-10-25 18:19:05,421::train::INFO] [train] Iter 598876 | loss 0.7634 | loss(rot) 0.1669 | loss(pos) 0.5622 | loss(seq) 0.0342 | grad 5.3062 | lr 0.0000 | time_forward 1.2000 | time_backward 1.2760
[2023-10-25 18:19:13,420::train::INFO] [train] Iter 598877 | loss 0.2022 | loss(rot) 0.0681 | loss(pos) 0.0348 | loss(seq) 0.0993 | grad 2.2729 | lr 0.0000 | time_forward 3.4490 | time_backward 4.5470
[2023-10-25 18:19:16,165::train::INFO] [train] Iter 598878 | loss 1.0856 | loss(rot) 0.3658 | loss(pos) 0.3453 | loss(seq) 0.3745 | grad 5.7845 | lr 0.0000 | time_forward 1.3120 | time_backward 1.4300
[2023-10-25 18:19:18,949::train::INFO] [train] Iter 598879 | loss 0.1278 | loss(rot) 0.0943 | loss(pos) 0.0335 | loss(seq) -0.0000 | grad 2.5353 | lr 0.0000 | time_forward 1.3250 | time_backward 1.4550
[2023-10-25 18:19:25,235::train::INFO] [train] Iter 598880 | loss 0.7513 | loss(rot) 0.1793 | loss(pos) 0.3007 | loss(seq) 0.2714 | grad 4.8588 | lr 0.0000 | time_forward 2.7500 | time_backward 3.5310
[2023-10-25 18:19:33,808::train::INFO] [train] Iter 598881 | loss 0.4777 | loss(rot) 0.1848 | loss(pos) 0.0440 | loss(seq) 0.2489 | grad 2.1949 | lr 0.0000 | time_forward 3.4750 | time_backward 5.0950
[2023-10-25 18:19:36,531::train::INFO] [train] Iter 598882 | loss 1.3095 | loss(rot) 1.2737 | loss(pos) 0.0299 | loss(seq) 0.0059 | grad 3.2395 | lr 0.0000 | time_forward 1.2980 | time_backward 1.4230
[2023-10-25 18:19:45,203::train::INFO] [train] Iter 598883 | loss 0.9302 | loss(rot) 0.7567 | loss(pos) 0.0134 | loss(seq) 0.1601 | grad 10.2574 | lr 0.0000 | time_forward 3.5800 | time_backward 5.0880
[2023-10-25 18:19:47,923::train::INFO] [train] Iter 598884 | loss 0.8355 | loss(rot) 0.3009 | loss(pos) 0.1686 | loss(seq) 0.3660 | grad 5.5061 | lr 0.0000 | time_forward 1.3010 | time_backward 1.4160
[2023-10-25 18:19:55,782::train::INFO] [train] Iter 598885 | loss 0.4926 | loss(rot) 0.2143 | loss(pos) 0.0463 | loss(seq) 0.2320 | grad 30.0809 | lr 0.0000 | time_forward 3.4120 | time_backward 4.4430
[2023-10-25 18:20:03,386::train::INFO] [train] Iter 598886 | loss 1.5489 | loss(rot) 1.1468 | loss(pos) 0.0313 | loss(seq) 0.3708 | grad 4.6334 | lr 0.0000 | time_forward 3.1480 | time_backward 4.4520
[2023-10-25 18:20:12,309::train::INFO] [train] Iter 598887 | loss 2.3132 | loss(rot) 0.0033 | loss(pos) 2.3099 | loss(seq) 0.0000 | grad 26.7927 | lr 0.0000 | time_forward 3.7670 | time_backward 5.1520
[2023-10-25 18:20:19,416::train::INFO] [train] Iter 598888 | loss 0.3858 | loss(rot) 0.3281 | loss(pos) 0.0171 | loss(seq) 0.0406 | grad 3.9806 | lr 0.0000 | time_forward 2.9970 | time_backward 4.1070
[2023-10-25 18:20:22,154::train::INFO] [train] Iter 598889 | loss 1.4371 | loss(rot) 0.9768 | loss(pos) 0.0893 | loss(seq) 0.3711 | grad 23.0716 | lr 0.0000 | time_forward 1.2410 | time_backward 1.4950
[2023-10-25 18:20:29,081::train::INFO] [train] Iter 598890 | loss 1.2930 | loss(rot) 0.7146 | loss(pos) 0.0622 | loss(seq) 0.5163 | grad 6.4395 | lr 0.0000 | time_forward 2.9580 | time_backward 3.9660
[2023-10-25 18:20:31,797::train::INFO] [train] Iter 598891 | loss 0.7051 | loss(rot) 0.5400 | loss(pos) 0.0539 | loss(seq) 0.1112 | grad 4.7261 | lr 0.0000 | time_forward 1.2910 | time_backward 1.4220
[2023-10-25 18:20:34,527::train::INFO] [train] Iter 598892 | loss 0.2589 | loss(rot) 0.2275 | loss(pos) 0.0201 | loss(seq) 0.0113 | grad 2.2317 | lr 0.0000 | time_forward 1.2800 | time_backward 1.4290
[2023-10-25 18:20:39,858::train::INFO] [train] Iter 598893 | loss 0.8522 | loss(rot) 0.2560 | loss(pos) 0.5888 | loss(seq) 0.0074 | grad 5.6739 | lr 0.0000 | time_forward 2.2450 | time_backward 3.0630
[2023-10-25 18:20:40,402::train::INFO] [train] Iter 598894 | loss 0.2469 | loss(rot) 0.0034 | loss(pos) 0.2434 | loss(seq) 0.0001 | grad 7.1625 | lr 0.0000 | time_forward 0.2210 | time_backward 0.3200
[2023-10-25 18:20:48,991::train::INFO] [train] Iter 598895 | loss 0.3178 | loss(rot) 0.2981 | loss(pos) 0.0196 | loss(seq) 0.0000 | grad 3.1014 | lr 0.0000 | time_forward 3.5540 | time_backward 5.0310
[2023-10-25 18:20:51,637::train::INFO] [train] Iter 598896 | loss 0.4820 | loss(rot) 0.0888 | loss(pos) 0.1809 | loss(seq) 0.2123 | grad 4.8682 | lr 0.0000 | time_forward 1.2660 | time_backward 1.3770
[2023-10-25 18:20:57,941::train::INFO] [train] Iter 598897 | loss 0.3880 | loss(rot) 0.3293 | loss(pos) 0.0122 | loss(seq) 0.0465 | grad 2.2333 | lr 0.0000 | time_forward 2.7640 | time_backward 3.5380
[2023-10-25 18:21:00,642::train::INFO] [train] Iter 598898 | loss 0.6062 | loss(rot) 0.3452 | loss(pos) 0.0319 | loss(seq) 0.2292 | grad 3.3914 | lr 0.0000 | time_forward 1.3120 | time_backward 1.3860
[2023-10-25 18:21:08,600::train::INFO] [train] Iter 598899 | loss 0.3400 | loss(rot) 0.1144 | loss(pos) 0.0453 | loss(seq) 0.1803 | grad 20.3977 | lr 0.0000 | time_forward 3.4620 | time_backward 4.4930
[2023-10-25 18:21:11,902::train::INFO] [train] Iter 598900 | loss 0.3992 | loss(rot) 0.0520 | loss(pos) 0.3196 | loss(seq) 0.0276 | grad 5.3309 | lr 0.0000 | time_forward 1.4570 | time_backward 1.8430
[2023-10-25 18:21:14,676::train::INFO] [train] Iter 598901 | loss 0.7026 | loss(rot) 0.5216 | loss(pos) 0.0494 | loss(seq) 0.1317 | grad 2.7595 | lr 0.0000 | time_forward 1.2910 | time_backward 1.4660
[2023-10-25 18:21:22,733::train::INFO] [train] Iter 598902 | loss 0.7703 | loss(rot) 0.2472 | loss(pos) 0.0785 | loss(seq) 0.4447 | grad 4.3415 | lr 0.0000 | time_forward 3.5050 | time_backward 4.5500
[2023-10-25 18:21:28,473::train::INFO] [train] Iter 598903 | loss 2.8056 | loss(rot) 2.1802 | loss(pos) 0.1728 | loss(seq) 0.4526 | grad 9.5158 | lr 0.0000 | time_forward 2.4250 | time_backward 3.3110
[2023-10-25 18:21:37,133::train::INFO] [train] Iter 598904 | loss 0.5983 | loss(rot) 0.3569 | loss(pos) 0.0540 | loss(seq) 0.1874 | grad 3.1618 | lr 0.0000 | time_forward 3.5430 | time_backward 5.1010
[2023-10-25 18:21:43,724::train::INFO] [train] Iter 598905 | loss 0.5413 | loss(rot) 0.4989 | loss(pos) 0.0126 | loss(seq) 0.0298 | grad 4.5836 | lr 0.0000 | time_forward 2.8430 | time_backward 3.7440
[2023-10-25 18:21:50,785::train::INFO] [train] Iter 598906 | loss 0.4416 | loss(rot) 0.4178 | loss(pos) 0.0238 | loss(seq) 0.0000 | grad 4.0779 | lr 0.0000 | time_forward 3.0040 | time_backward 4.0540
[2023-10-25 18:21:53,211::train::INFO] [train] Iter 598907 | loss 0.7988 | loss(rot) 0.7140 | loss(pos) 0.0227 | loss(seq) 0.0620 | grad 9.8637 | lr 0.0000 | time_forward 1.1810 | time_backward 1.2420
[2023-10-25 18:21:55,842::train::INFO] [train] Iter 598908 | loss 1.0672 | loss(rot) 0.4334 | loss(pos) 0.2467 | loss(seq) 0.3870 | grad 2.7980 | lr 0.0000 | time_forward 1.2200 | time_backward 1.3960
[2023-10-25 18:22:04,038::train::INFO] [train] Iter 598909 | loss 0.4436 | loss(rot) 0.2868 | loss(pos) 0.0147 | loss(seq) 0.1421 | grad 3.3735 | lr 0.0000 | time_forward 3.6430 | time_backward 4.5510
[2023-10-25 18:22:06,130::train::INFO] [train] Iter 598910 | loss 1.3877 | loss(rot) 1.3093 | loss(pos) 0.0275 | loss(seq) 0.0509 | grad 3.0382 | lr 0.0000 | time_forward 0.9650 | time_backward 1.1240
[2023-10-25 18:22:09,000::train::INFO] [train] Iter 598911 | loss 0.7874 | loss(rot) 0.6603 | loss(pos) 0.0345 | loss(seq) 0.0925 | grad 16.2578 | lr 0.0000 | time_forward 1.2770 | time_backward 1.5890
[2023-10-25 18:22:15,966::train::INFO] [train] Iter 598912 | loss 0.5116 | loss(rot) 0.0644 | loss(pos) 0.0372 | loss(seq) 0.4100 | grad 2.5902 | lr 0.0000 | time_forward 2.9330 | time_backward 4.0300
[2023-10-25 18:22:24,632::train::INFO] [train] Iter 598913 | loss 0.6327 | loss(rot) 0.0170 | loss(pos) 0.6146 | loss(seq) 0.0011 | grad 11.3382 | lr 0.0000 | time_forward 3.5770 | time_backward 5.0700
[2023-10-25 18:22:27,421::train::INFO] [train] Iter 598914 | loss 0.7144 | loss(rot) 0.1045 | loss(pos) 0.0720 | loss(seq) 0.5379 | grad 3.0690 | lr 0.0000 | time_forward 1.3300 | time_backward 1.4560
[2023-10-25 18:22:36,218::train::INFO] [train] Iter 598915 | loss 0.6099 | loss(rot) 0.1959 | loss(pos) 0.3828 | loss(seq) 0.0312 | grad 4.5127 | lr 0.0000 | time_forward 3.6240 | time_backward 5.1540
[2023-10-25 18:22:44,951::train::INFO] [train] Iter 598916 | loss 0.3446 | loss(rot) 0.1719 | loss(pos) 0.0292 | loss(seq) 0.1436 | grad 2.4675 | lr 0.0000 | time_forward 3.6270 | time_backward 5.1030
[2023-10-25 18:22:47,646::train::INFO] [train] Iter 598917 | loss 0.5421 | loss(rot) 0.0343 | loss(pos) 0.5004 | loss(seq) 0.0074 | grad 4.4646 | lr 0.0000 | time_forward 1.2850 | time_backward 1.4070
[2023-10-25 18:22:56,382::train::INFO] [train] Iter 598918 | loss 0.7152 | loss(rot) 0.3264 | loss(pos) 0.0701 | loss(seq) 0.3187 | grad 3.6158 | lr 0.0000 | time_forward 3.6230 | time_backward 5.1090
[2023-10-25 18:23:05,480::train::INFO] [train] Iter 598919 | loss 0.4225 | loss(rot) 0.2304 | loss(pos) 0.0194 | loss(seq) 0.1727 | grad 2.9526 | lr 0.0000 | time_forward 3.7640 | time_backward 5.3310
[2023-10-25 18:23:14,316::train::INFO] [train] Iter 598920 | loss 1.3859 | loss(rot) 1.3072 | loss(pos) 0.0589 | loss(seq) 0.0198 | grad 4.9901 | lr 0.0000 | time_forward 3.8360 | time_backward 4.9970
[2023-10-25 18:23:22,098::train::INFO] [train] Iter 598921 | loss 0.2566 | loss(rot) 0.2013 | loss(pos) 0.0553 | loss(seq) 0.0000 | grad 3.2049 | lr 0.0000 | time_forward 3.3810 | time_backward 4.3970
[2023-10-25 18:23:30,803::train::INFO] [train] Iter 598922 | loss 2.2260 | loss(rot) 1.5942 | loss(pos) 0.2287 | loss(seq) 0.4032 | grad 7.2887 | lr 0.0000 | time_forward 3.5830 | time_backward 5.1200
[2023-10-25 18:23:33,596::train::INFO] [train] Iter 598923 | loss 0.1586 | loss(rot) 0.1196 | loss(pos) 0.0389 | loss(seq) 0.0001 | grad 1.9904 | lr 0.0000 | time_forward 1.3100 | time_backward 1.4800
[2023-10-25 18:23:42,268::train::INFO] [train] Iter 598924 | loss 0.4543 | loss(rot) 0.0806 | loss(pos) 0.3537 | loss(seq) 0.0199 | grad 6.3691 | lr 0.0000 | time_forward 3.5950 | time_backward 5.0740
[2023-10-25 18:23:49,732::train::INFO] [train] Iter 598925 | loss 1.4229 | loss(rot) 0.7040 | loss(pos) 0.1919 | loss(seq) 0.5270 | grad 5.2892 | lr 0.0000 | time_forward 3.1920 | time_backward 4.2690
[2023-10-25 18:23:56,383::train::INFO] [train] Iter 598926 | loss 0.4861 | loss(rot) 0.2379 | loss(pos) 0.0802 | loss(seq) 0.1680 | grad 3.3570 | lr 0.0000 | time_forward 2.9070 | time_backward 3.7400
[2023-10-25 18:24:02,379::train::INFO] [train] Iter 598927 | loss 0.2798 | loss(rot) 0.1119 | loss(pos) 0.0198 | loss(seq) 0.1482 | grad 2.8525 | lr 0.0000 | time_forward 2.6020 | time_backward 3.3910
[2023-10-25 18:24:10,961::train::INFO] [train] Iter 598928 | loss 0.9900 | loss(rot) 0.5583 | loss(pos) 0.1832 | loss(seq) 0.2485 | grad 4.2447 | lr 0.0000 | time_forward 3.5070 | time_backward 5.0720
[2023-10-25 18:24:17,364::train::INFO] [train] Iter 598929 | loss 3.8735 | loss(rot) 0.0028 | loss(pos) 3.8706 | loss(seq) 0.0000 | grad 28.7382 | lr 0.0000 | time_forward 2.7550 | time_backward 3.6440
[2023-10-25 18:24:25,347::train::INFO] [train] Iter 598930 | loss 1.0836 | loss(rot) 0.6558 | loss(pos) 0.1700 | loss(seq) 0.2577 | grad 6.5788 | lr 0.0000 | time_forward 3.3690 | time_backward 4.6100
[2023-10-25 18:24:32,797::train::INFO] [train] Iter 598931 | loss 0.1834 | loss(rot) 0.1294 | loss(pos) 0.0186 | loss(seq) 0.0353 | grad 2.4458 | lr 0.0000 | time_forward 3.1020 | time_backward 4.3460
[2023-10-25 18:24:41,233::train::INFO] [train] Iter 598932 | loss 1.0953 | loss(rot) 0.6034 | loss(pos) 0.1554 | loss(seq) 0.3365 | grad 3.1467 | lr 0.0000 | time_forward 3.5710 | time_backward 4.8620
[2023-10-25 18:24:48,534::train::INFO] [train] Iter 598933 | loss 1.2435 | loss(rot) 0.0281 | loss(pos) 1.2139 | loss(seq) 0.0016 | grad 7.2639 | lr 0.0000 | time_forward 3.0990 | time_backward 4.1990
[2023-10-25 18:24:55,776::train::INFO] [train] Iter 598934 | loss 1.1168 | loss(rot) 0.9845 | loss(pos) 0.0170 | loss(seq) 0.1153 | grad 39.9833 | lr 0.0000 | time_forward 2.9460 | time_backward 4.2920
[2023-10-25 18:25:03,911::train::INFO] [train] Iter 598935 | loss 0.2689 | loss(rot) 0.2297 | loss(pos) 0.0392 | loss(seq) 0.0000 | grad 2.8386 | lr 0.0000 | time_forward 3.4910 | time_backward 4.6420
[2023-10-25 18:25:11,369::train::INFO] [train] Iter 598936 | loss 0.2320 | loss(rot) 0.0400 | loss(pos) 0.1908 | loss(seq) 0.0012 | grad 3.5906 | lr 0.0000 | time_forward 3.1940 | time_backward 4.2610
[2023-10-25 18:25:18,896::train::INFO] [train] Iter 598937 | loss 2.7101 | loss(rot) 2.0351 | loss(pos) 0.2692 | loss(seq) 0.4059 | grad 4.9406 | lr 0.0000 | time_forward 3.2350 | time_backward 4.2880
[2023-10-25 18:25:26,633::train::INFO] [train] Iter 598938 | loss 0.1134 | loss(rot) 0.0809 | loss(pos) 0.0309 | loss(seq) 0.0016 | grad 1.7230 | lr 0.0000 | time_forward 3.3180 | time_backward 4.4160
[2023-10-25 18:25:34,750::train::INFO] [train] Iter 598939 | loss 0.4501 | loss(rot) 0.2459 | loss(pos) 0.0149 | loss(seq) 0.1893 | grad 2.2534 | lr 0.0000 | time_forward 3.5010 | time_backward 4.6130
[2023-10-25 18:25:38,054::train::INFO] [train] Iter 598940 | loss 0.4047 | loss(rot) 0.1741 | loss(pos) 0.0669 | loss(seq) 0.1636 | grad 3.3578 | lr 0.0000 | time_forward 1.4430 | time_backward 1.8570
[2023-10-25 18:25:45,990::train::INFO] [train] Iter 598941 | loss 1.0594 | loss(rot) 0.9995 | loss(pos) 0.0263 | loss(seq) 0.0335 | grad 5.2355 | lr 0.0000 | time_forward 3.3570 | time_backward 4.5760
[2023-10-25 18:25:48,420::train::INFO] [train] Iter 598942 | loss 1.7055 | loss(rot) 1.4084 | loss(pos) 0.0307 | loss(seq) 0.2663 | grad 6.7045 | lr 0.0000 | time_forward 1.1690 | time_backward 1.2570
[2023-10-25 18:25:56,170::train::INFO] [train] Iter 598943 | loss 0.8880 | loss(rot) 0.7195 | loss(pos) 0.0428 | loss(seq) 0.1258 | grad 19.6090 | lr 0.0000 | time_forward 3.2550 | time_backward 4.4920
[2023-10-25 18:26:04,958::train::INFO] [train] Iter 598944 | loss 0.5388 | loss(rot) 0.2112 | loss(pos) 0.0401 | loss(seq) 0.2875 | grad 2.4785 | lr 0.0000 | time_forward 3.6070 | time_backward 5.1780
[2023-10-25 18:26:12,890::train::INFO] [train] Iter 598945 | loss 1.6611 | loss(rot) 0.8601 | loss(pos) 0.2946 | loss(seq) 0.5065 | grad 5.4632 | lr 0.0000 | time_forward 3.3980 | time_backward 4.5300
[2023-10-25 18:26:20,825::train::INFO] [train] Iter 598946 | loss 0.1858 | loss(rot) 0.1446 | loss(pos) 0.0347 | loss(seq) 0.0064 | grad 2.2226 | lr 0.0000 | time_forward 3.4060 | time_backward 4.5270
[2023-10-25 18:26:29,475::train::INFO] [train] Iter 598947 | loss 0.9636 | loss(rot) 0.5879 | loss(pos) 0.0631 | loss(seq) 0.3126 | grad 3.0011 | lr 0.0000 | time_forward 3.5490 | time_backward 5.0970
[2023-10-25 18:26:32,243::train::INFO] [train] Iter 598948 | loss 1.2678 | loss(rot) 0.8363 | loss(pos) 0.0412 | loss(seq) 0.3904 | grad 3.6502 | lr 0.0000 | time_forward 1.3250 | time_backward 1.4390
[2023-10-25 18:26:41,061::train::INFO] [train] Iter 598949 | loss 0.3421 | loss(rot) 0.0456 | loss(pos) 0.1879 | loss(seq) 0.1087 | grad 5.0056 | lr 0.0000 | time_forward 3.6800 | time_backward 5.1350
[2023-10-25 18:26:48,983::train::INFO] [train] Iter 598950 | loss 0.3100 | loss(rot) 0.0570 | loss(pos) 0.0227 | loss(seq) 0.2304 | grad 2.5525 | lr 0.0000 | time_forward 3.4060 | time_backward 4.5120
[2023-10-25 18:26:51,441::train::INFO] [train] Iter 598951 | loss 0.4655 | loss(rot) 0.4101 | loss(pos) 0.0529 | loss(seq) 0.0025 | grad 2.2834 | lr 0.0000 | time_forward 1.1880 | time_backward 1.2680
[2023-10-25 18:26:57,199::train::INFO] [train] Iter 598952 | loss 1.4722 | loss(rot) 0.0271 | loss(pos) 1.4424 | loss(seq) 0.0028 | grad 13.8206 | lr 0.0000 | time_forward 2.4260 | time_backward 3.3070
[2023-10-25 18:27:05,851::train::INFO] [train] Iter 598953 | loss 0.5779 | loss(rot) 0.1362 | loss(pos) 0.0528 | loss(seq) 0.3889 | grad 2.9522 | lr 0.0000 | time_forward 3.5720 | time_backward 5.0640
[2023-10-25 18:27:13,342::train::INFO] [train] Iter 598954 | loss 0.5357 | loss(rot) 0.1233 | loss(pos) 0.1231 | loss(seq) 0.2892 | grad 3.9698 | lr 0.0000 | time_forward 3.2630 | time_backward 4.2260
[2023-10-25 18:27:22,066::train::INFO] [train] Iter 598955 | loss 0.1479 | loss(rot) 0.0828 | loss(pos) 0.0154 | loss(seq) 0.0497 | grad 1.6321 | lr 0.0000 | time_forward 3.6170 | time_backward 5.1040
[2023-10-25 18:27:24,789::train::INFO] [train] Iter 598956 | loss 0.3414 | loss(rot) 0.0725 | loss(pos) 0.2589 | loss(seq) 0.0100 | grad 4.8870 | lr 0.0000 | time_forward 1.3190 | time_backward 1.4020
[2023-10-25 18:27:32,006::train::INFO] [train] Iter 598957 | loss 1.4816 | loss(rot) 1.3581 | loss(pos) 0.0698 | loss(seq) 0.0537 | grad 3.7644 | lr 0.0000 | time_forward 3.0930 | time_backward 4.1200
[2023-10-25 18:27:39,353::train::INFO] [train] Iter 598958 | loss 2.1458 | loss(rot) 1.6404 | loss(pos) 0.1221 | loss(seq) 0.3833 | grad 5.1167 | lr 0.0000 | time_forward 3.1240 | time_backward 4.2200
[2023-10-25 18:27:47,195::train::INFO] [train] Iter 598959 | loss 2.3738 | loss(rot) 2.1097 | loss(pos) 0.0826 | loss(seq) 0.1815 | grad 5.0131 | lr 0.0000 | time_forward 3.3300 | time_backward 4.5090
[2023-10-25 18:27:54,872::train::INFO] [train] Iter 598960 | loss 0.2077 | loss(rot) 0.0741 | loss(pos) 0.0221 | loss(seq) 0.1115 | grad 2.3883 | lr 0.0000 | time_forward 3.3370 | time_backward 4.3370
[2023-10-25 18:28:03,614::train::INFO] [train] Iter 598961 | loss 0.6268 | loss(rot) 0.4392 | loss(pos) 0.1220 | loss(seq) 0.0656 | grad 3.3323 | lr 0.0000 | time_forward 3.5710 | time_backward 5.1670
[2023-10-25 18:28:06,339::train::INFO] [train] Iter 598962 | loss 1.9899 | loss(rot) 1.3962 | loss(pos) 0.1747 | loss(seq) 0.4189 | grad 4.3454 | lr 0.0000 | time_forward 1.3140 | time_backward 1.4090
[2023-10-25 18:28:12,749::train::INFO] [train] Iter 598963 | loss 0.3834 | loss(rot) 0.3020 | loss(pos) 0.0203 | loss(seq) 0.0611 | grad 3.7016 | lr 0.0000 | time_forward 2.7820 | time_backward 3.6240