text
stringlengths 56
1.16k
|
---|
[2023-10-25 17:57:05,726::train::INFO] [train] Iter 598664 | loss 0.3328 | loss(rot) 0.1251 | loss(pos) 0.0229 | loss(seq) 0.1848 | grad 2.1454 | lr 0.0000 | time_forward 1.2930 | time_backward 1.3850 |
[2023-10-25 17:57:13,782::train::INFO] [train] Iter 598665 | loss 0.7651 | loss(rot) 0.3998 | loss(pos) 0.0501 | loss(seq) 0.3152 | grad 4.1950 | lr 0.0000 | time_forward 3.4170 | time_backward 4.6010 |
[2023-10-25 17:57:15,418::train::INFO] [train] Iter 598666 | loss 1.3823 | loss(rot) 0.5200 | loss(pos) 0.7696 | loss(seq) 0.0927 | grad 12.8222 | lr 0.0000 | time_forward 0.7980 | time_backward 0.8340 |
[2023-10-25 17:57:24,373::train::INFO] [train] Iter 598667 | loss 0.6610 | loss(rot) 0.6351 | loss(pos) 0.0256 | loss(seq) 0.0002 | grad 3.5772 | lr 0.0000 | time_forward 3.6150 | time_backward 5.3360 |
[2023-10-25 17:57:33,124::train::INFO] [train] Iter 598668 | loss 0.3453 | loss(rot) 0.1298 | loss(pos) 0.0520 | loss(seq) 0.1635 | grad 2.5904 | lr 0.0000 | time_forward 3.5810 | time_backward 5.1660 |
[2023-10-25 17:57:35,631::train::INFO] [train] Iter 598669 | loss 0.2030 | loss(rot) 0.1798 | loss(pos) 0.0196 | loss(seq) 0.0036 | grad 2.4272 | lr 0.0000 | time_forward 1.1970 | time_backward 1.3070 |
[2023-10-25 17:57:38,062::train::INFO] [train] Iter 598670 | loss 1.5118 | loss(rot) 1.2542 | loss(pos) 0.0315 | loss(seq) 0.2261 | grad 3.8253 | lr 0.0000 | time_forward 1.1820 | time_backward 1.2470 |
[2023-10-25 17:57:46,294::train::INFO] [train] Iter 598671 | loss 1.0259 | loss(rot) 0.0059 | loss(pos) 1.0199 | loss(seq) 0.0001 | grad 22.6558 | lr 0.0000 | time_forward 3.4940 | time_backward 4.7350 |
[2023-10-25 17:57:53,612::train::INFO] [train] Iter 598672 | loss 0.6395 | loss(rot) 0.1424 | loss(pos) 0.0265 | loss(seq) 0.4706 | grad 3.3082 | lr 0.0000 | time_forward 3.1260 | time_backward 4.1880 |
[2023-10-25 17:57:56,337::train::INFO] [train] Iter 598673 | loss 0.4358 | loss(rot) 0.0496 | loss(pos) 0.1829 | loss(seq) 0.2032 | grad 4.0517 | lr 0.0000 | time_forward 1.3100 | time_backward 1.4120 |
[2023-10-25 17:58:05,032::train::INFO] [train] Iter 598674 | loss 0.5514 | loss(rot) 0.2463 | loss(pos) 0.0562 | loss(seq) 0.2489 | grad 2.6068 | lr 0.0000 | time_forward 3.5530 | time_backward 5.1380 |
[2023-10-25 17:58:13,684::train::INFO] [train] Iter 598675 | loss 2.3053 | loss(rot) 1.9565 | loss(pos) 0.1426 | loss(seq) 0.2062 | grad 18.5558 | lr 0.0000 | time_forward 3.6180 | time_backward 5.0310 |
[2023-10-25 17:58:22,451::train::INFO] [train] Iter 598676 | loss 0.2969 | loss(rot) 0.1019 | loss(pos) 0.1334 | loss(seq) 0.0616 | grad 2.7038 | lr 0.0000 | time_forward 3.6080 | time_backward 5.1560 |
[2023-10-25 17:58:30,205::train::INFO] [train] Iter 598677 | loss 0.4969 | loss(rot) 0.1844 | loss(pos) 0.0283 | loss(seq) 0.2842 | grad 2.9029 | lr 0.0000 | time_forward 3.3610 | time_backward 4.3890 |
[2023-10-25 17:58:37,826::train::INFO] [train] Iter 598678 | loss 0.5696 | loss(rot) 0.3164 | loss(pos) 0.0322 | loss(seq) 0.2210 | grad 6.3077 | lr 0.0000 | time_forward 3.2760 | time_backward 4.3430 |
[2023-10-25 17:58:45,408::train::INFO] [train] Iter 598679 | loss 1.6427 | loss(rot) 1.6018 | loss(pos) 0.0366 | loss(seq) 0.0043 | grad 5.5867 | lr 0.0000 | time_forward 3.2580 | time_backward 4.3210 |
[2023-10-25 17:58:52,578::train::INFO] [train] Iter 598680 | loss 1.4328 | loss(rot) 1.0781 | loss(pos) 0.0834 | loss(seq) 0.2712 | grad 3.4687 | lr 0.0000 | time_forward 3.1210 | time_backward 4.0460 |
[2023-10-25 17:58:57,994::train::INFO] [train] Iter 598681 | loss 1.2930 | loss(rot) 1.2511 | loss(pos) 0.0212 | loss(seq) 0.0206 | grad 2.6107 | lr 0.0000 | time_forward 2.3330 | time_backward 3.0790 |
[2023-10-25 17:59:05,316::train::INFO] [train] Iter 598682 | loss 0.2995 | loss(rot) 0.1420 | loss(pos) 0.0289 | loss(seq) 0.1287 | grad 2.6076 | lr 0.0000 | time_forward 3.0990 | time_backward 4.2180 |
[2023-10-25 17:59:07,985::train::INFO] [train] Iter 598683 | loss 0.4004 | loss(rot) 0.0684 | loss(pos) 0.0153 | loss(seq) 0.3167 | grad 4.5584 | lr 0.0000 | time_forward 1.2730 | time_backward 1.3930 |
[2023-10-25 17:59:10,717::train::INFO] [train] Iter 598684 | loss 1.2474 | loss(rot) 0.7732 | loss(pos) 0.0287 | loss(seq) 0.4455 | grad 3.9791 | lr 0.0000 | time_forward 1.3520 | time_backward 1.3760 |
[2023-10-25 17:59:18,288::train::INFO] [train] Iter 598685 | loss 1.3114 | loss(rot) 1.2090 | loss(pos) 0.0802 | loss(seq) 0.0222 | grad 5.6534 | lr 0.0000 | time_forward 3.2530 | time_backward 4.3130 |
[2023-10-25 17:59:25,390::train::INFO] [train] Iter 598686 | loss 0.2306 | loss(rot) 0.0906 | loss(pos) 0.0881 | loss(seq) 0.0519 | grad 2.5942 | lr 0.0000 | time_forward 3.0210 | time_backward 4.0780 |
[2023-10-25 17:59:32,780::train::INFO] [train] Iter 598687 | loss 1.5837 | loss(rot) 0.7686 | loss(pos) 0.4035 | loss(seq) 0.4116 | grad 6.4900 | lr 0.0000 | time_forward 3.1830 | time_backward 4.2040 |
[2023-10-25 17:59:35,499::train::INFO] [train] Iter 598688 | loss 0.7365 | loss(rot) 0.3234 | loss(pos) 0.1744 | loss(seq) 0.2387 | grad 4.8167 | lr 0.0000 | time_forward 1.3100 | time_backward 1.4050 |
[2023-10-25 17:59:43,179::train::INFO] [train] Iter 598689 | loss 0.7620 | loss(rot) 0.3519 | loss(pos) 0.0914 | loss(seq) 0.3186 | grad 3.2678 | lr 0.0000 | time_forward 3.2840 | time_backward 4.3780 |
[2023-10-25 17:59:46,063::train::INFO] [train] Iter 598690 | loss 1.0299 | loss(rot) 0.7218 | loss(pos) 0.0449 | loss(seq) 0.2632 | grad 11.7229 | lr 0.0000 | time_forward 1.3590 | time_backward 1.5220 |
[2023-10-25 17:59:53,573::train::INFO] [train] Iter 598691 | loss 1.1147 | loss(rot) 0.9795 | loss(pos) 0.0211 | loss(seq) 0.1141 | grad 7.5086 | lr 0.0000 | time_forward 3.2520 | time_backward 4.2300 |
[2023-10-25 17:59:56,370::train::INFO] [train] Iter 598692 | loss 1.3129 | loss(rot) 0.0494 | loss(pos) 1.2557 | loss(seq) 0.0077 | grad 11.5900 | lr 0.0000 | time_forward 1.3160 | time_backward 1.4770 |
[2023-10-25 18:00:04,584::train::INFO] [train] Iter 598693 | loss 0.4019 | loss(rot) 0.0822 | loss(pos) 0.0408 | loss(seq) 0.2789 | grad 3.1554 | lr 0.0000 | time_forward 3.5160 | time_backward 4.6680 |
[2023-10-25 18:00:11,320::train::INFO] [train] Iter 598694 | loss 0.2123 | loss(rot) 0.0643 | loss(pos) 0.0224 | loss(seq) 0.1257 | grad 1.6643 | lr 0.0000 | time_forward 2.8580 | time_backward 3.8740 |
[2023-10-25 18:00:19,042::train::INFO] [train] Iter 598695 | loss 0.8240 | loss(rot) 0.3907 | loss(pos) 0.1457 | loss(seq) 0.2876 | grad 4.2544 | lr 0.0000 | time_forward 3.2930 | time_backward 4.4270 |
[2023-10-25 18:00:21,851::train::INFO] [train] Iter 598696 | loss 0.3807 | loss(rot) 0.1426 | loss(pos) 0.0761 | loss(seq) 0.1620 | grad 2.7727 | lr 0.0000 | time_forward 1.3250 | time_backward 1.4800 |
[2023-10-25 18:00:29,564::train::INFO] [train] Iter 598697 | loss 0.9943 | loss(rot) 0.8776 | loss(pos) 0.0336 | loss(seq) 0.0831 | grad 6.2388 | lr 0.0000 | time_forward 3.3150 | time_backward 4.3950 |
[2023-10-25 18:00:32,262::train::INFO] [train] Iter 598698 | loss 0.7894 | loss(rot) 0.5593 | loss(pos) 0.0428 | loss(seq) 0.1873 | grad 43.3761 | lr 0.0000 | time_forward 1.3100 | time_backward 1.3840 |
[2023-10-25 18:00:34,988::train::INFO] [train] Iter 598699 | loss 0.4809 | loss(rot) 0.3196 | loss(pos) 0.0345 | loss(seq) 0.1268 | grad 1.9003 | lr 0.0000 | time_forward 1.3080 | time_backward 1.4140 |
[2023-10-25 18:00:38,255::train::INFO] [train] Iter 598700 | loss 0.7976 | loss(rot) 0.1214 | loss(pos) 0.5577 | loss(seq) 0.1185 | grad 3.5962 | lr 0.0000 | time_forward 1.4960 | time_backward 1.7680 |
[2023-10-25 18:00:45,895::train::INFO] [train] Iter 598701 | loss 2.7678 | loss(rot) 2.0101 | loss(pos) 0.2638 | loss(seq) 0.4939 | grad 6.5069 | lr 0.0000 | time_forward 3.3180 | time_backward 4.3070 |
[2023-10-25 18:00:48,674::train::INFO] [train] Iter 598702 | loss 0.1126 | loss(rot) 0.0936 | loss(pos) 0.0159 | loss(seq) 0.0031 | grad 2.1186 | lr 0.0000 | time_forward 1.3170 | time_backward 1.4580 |
[2023-10-25 18:00:57,996::train::INFO] [train] Iter 598703 | loss 0.4464 | loss(rot) 0.2357 | loss(pos) 0.0816 | loss(seq) 0.1291 | grad 4.1159 | lr 0.0000 | time_forward 3.9270 | time_backward 5.3930 |
[2023-10-25 18:01:06,839::train::INFO] [train] Iter 598704 | loss 0.3533 | loss(rot) 0.1025 | loss(pos) 0.2173 | loss(seq) 0.0335 | grad 2.3179 | lr 0.0000 | time_forward 3.6660 | time_backward 5.1600 |
[2023-10-25 18:01:09,567::train::INFO] [train] Iter 598705 | loss 0.5786 | loss(rot) 0.1144 | loss(pos) 0.2072 | loss(seq) 0.2571 | grad 3.2034 | lr 0.0000 | time_forward 1.3170 | time_backward 1.4070 |
[2023-10-25 18:01:12,347::train::INFO] [train] Iter 598706 | loss 0.2775 | loss(rot) 0.0733 | loss(pos) 0.1428 | loss(seq) 0.0613 | grad 4.6663 | lr 0.0000 | time_forward 1.3450 | time_backward 1.4150 |
[2023-10-25 18:01:19,457::train::INFO] [train] Iter 598707 | loss 1.2480 | loss(rot) 0.7723 | loss(pos) 0.1929 | loss(seq) 0.2828 | grad 4.2245 | lr 0.0000 | time_forward 3.0470 | time_backward 4.0450 |
[2023-10-25 18:01:26,577::train::INFO] [train] Iter 598708 | loss 0.5306 | loss(rot) 0.1214 | loss(pos) 0.0421 | loss(seq) 0.3671 | grad 2.4044 | lr 0.0000 | time_forward 3.0420 | time_backward 4.0760 |
[2023-10-25 18:01:34,222::train::INFO] [train] Iter 598709 | loss 3.5246 | loss(rot) 0.0040 | loss(pos) 3.5206 | loss(seq) 0.0000 | grad 36.2989 | lr 0.0000 | time_forward 3.2450 | time_backward 4.3960 |
[2023-10-25 18:01:41,657::train::INFO] [train] Iter 598710 | loss 0.2122 | loss(rot) 0.0999 | loss(pos) 0.0622 | loss(seq) 0.0501 | grad 2.8916 | lr 0.0000 | time_forward 3.2020 | time_backward 4.2300 |
[2023-10-25 18:01:44,382::train::INFO] [train] Iter 598711 | loss 0.0891 | loss(rot) 0.0442 | loss(pos) 0.0444 | loss(seq) 0.0006 | grad 1.8058 | lr 0.0000 | time_forward 1.2420 | time_backward 1.4810 |
[2023-10-25 18:01:47,264::train::INFO] [train] Iter 598712 | loss 0.4566 | loss(rot) 0.0472 | loss(pos) 0.0281 | loss(seq) 0.3813 | grad 2.5971 | lr 0.0000 | time_forward 1.4180 | time_backward 1.4600 |
[2023-10-25 18:01:50,002::train::INFO] [train] Iter 598713 | loss 0.4639 | loss(rot) 0.1264 | loss(pos) 0.1691 | loss(seq) 0.1684 | grad 4.0138 | lr 0.0000 | time_forward 1.3190 | time_backward 1.4160 |
[2023-10-25 18:01:58,846::train::INFO] [train] Iter 598714 | loss 1.5554 | loss(rot) 0.9255 | loss(pos) 0.1503 | loss(seq) 0.4796 | grad 4.1072 | lr 0.0000 | time_forward 3.7680 | time_backward 5.0720 |
[2023-10-25 18:02:07,086::train::INFO] [train] Iter 598715 | loss 0.9266 | loss(rot) 0.6459 | loss(pos) 0.0263 | loss(seq) 0.2544 | grad 3.8350 | lr 0.0000 | time_forward 3.4430 | time_backward 4.7930 |
[2023-10-25 18:02:13,519::train::INFO] [train] Iter 598716 | loss 1.1053 | loss(rot) 0.6159 | loss(pos) 0.0590 | loss(seq) 0.4304 | grad 4.1901 | lr 0.0000 | time_forward 2.7980 | time_backward 3.6330 |
[2023-10-25 18:02:22,440::train::INFO] [train] Iter 598717 | loss 0.3944 | loss(rot) 0.0421 | loss(pos) 0.2388 | loss(seq) 0.1135 | grad 4.2958 | lr 0.0000 | time_forward 3.6470 | time_backward 5.2700 |
[2023-10-25 18:02:29,844::train::INFO] [train] Iter 598718 | loss 0.2355 | loss(rot) 0.0502 | loss(pos) 0.0302 | loss(seq) 0.1551 | grad 2.6693 | lr 0.0000 | time_forward 3.1420 | time_backward 4.2580 |
[2023-10-25 18:02:38,701::train::INFO] [train] Iter 598719 | loss 0.7320 | loss(rot) 0.3159 | loss(pos) 0.0458 | loss(seq) 0.3702 | grad 2.9586 | lr 0.0000 | time_forward 3.6540 | time_backward 5.2000 |
[2023-10-25 18:02:46,618::train::INFO] [train] Iter 598720 | loss 0.5785 | loss(rot) 0.2204 | loss(pos) 0.0471 | loss(seq) 0.3110 | grad 3.5209 | lr 0.0000 | time_forward 3.3920 | time_backward 4.5210 |
[2023-10-25 18:02:55,495::train::INFO] [train] Iter 598721 | loss 0.4344 | loss(rot) 0.2324 | loss(pos) 0.0324 | loss(seq) 0.1695 | grad 6.6470 | lr 0.0000 | time_forward 3.6490 | time_backward 5.2250 |
[2023-10-25 18:03:04,328::train::INFO] [train] Iter 598722 | loss 0.3415 | loss(rot) 0.3197 | loss(pos) 0.0200 | loss(seq) 0.0019 | grad 2.8107 | lr 0.0000 | time_forward 3.6380 | time_backward 5.1910 |
[2023-10-25 18:03:13,208::train::INFO] [train] Iter 598723 | loss 0.7259 | loss(rot) 0.0626 | loss(pos) 0.6544 | loss(seq) 0.0089 | grad 5.8815 | lr 0.0000 | time_forward 3.7120 | time_backward 5.1640 |
[2023-10-25 18:03:16,431::train::INFO] [train] Iter 598724 | loss 1.3214 | loss(rot) 0.9839 | loss(pos) 0.0752 | loss(seq) 0.2622 | grad 3.8141 | lr 0.0000 | time_forward 1.4660 | time_backward 1.7540 |
[2023-10-25 18:03:23,831::train::INFO] [train] Iter 598725 | loss 0.7130 | loss(rot) 0.5137 | loss(pos) 0.1074 | loss(seq) 0.0920 | grad 3.0841 | lr 0.0000 | time_forward 3.0650 | time_backward 4.3200 |
[2023-10-25 18:03:31,372::train::INFO] [train] Iter 598726 | loss 1.9066 | loss(rot) 1.5656 | loss(pos) 0.0588 | loss(seq) 0.2823 | grad 12.0866 | lr 0.0000 | time_forward 3.1830 | time_backward 4.3550 |
[2023-10-25 18:03:38,702::train::INFO] [train] Iter 598727 | loss 1.0129 | loss(rot) 0.5057 | loss(pos) 0.1511 | loss(seq) 0.3560 | grad 6.2648 | lr 0.0000 | time_forward 3.1170 | time_backward 4.2110 |
[2023-10-25 18:03:41,108::train::INFO] [train] Iter 598728 | loss 4.1963 | loss(rot) 0.0055 | loss(pos) 4.1908 | loss(seq) 0.0000 | grad 45.9868 | lr 0.0000 | time_forward 1.1270 | time_backward 1.2760 |
[2023-10-25 18:03:49,727::train::INFO] [train] Iter 598729 | loss 0.2087 | loss(rot) 0.1891 | loss(pos) 0.0123 | loss(seq) 0.0073 | grad 2.2059 | lr 0.0000 | time_forward 3.5270 | time_backward 5.0880 |
[2023-10-25 18:03:56,752::train::INFO] [train] Iter 598730 | loss 0.4085 | loss(rot) 0.1103 | loss(pos) 0.0491 | loss(seq) 0.2491 | grad 3.2037 | lr 0.0000 | time_forward 2.9250 | time_backward 4.0980 |
[2023-10-25 18:04:04,372::train::INFO] [train] Iter 598731 | loss 0.6189 | loss(rot) 0.3827 | loss(pos) 0.0338 | loss(seq) 0.2025 | grad 5.3967 | lr 0.0000 | time_forward 3.2310 | time_backward 4.3850 |
[2023-10-25 18:04:07,329::train::INFO] [train] Iter 598732 | loss 0.1092 | loss(rot) 0.0781 | loss(pos) 0.0310 | loss(seq) 0.0000 | grad 2.1149 | lr 0.0000 | time_forward 1.4360 | time_backward 1.5180 |
[2023-10-25 18:04:10,203::train::INFO] [train] Iter 598733 | loss 1.1468 | loss(rot) 0.6037 | loss(pos) 0.0798 | loss(seq) 0.4634 | grad 3.8587 | lr 0.0000 | time_forward 1.4110 | time_backward 1.4590 |
[2023-10-25 18:04:13,142::train::INFO] [train] Iter 598734 | loss 0.7013 | loss(rot) 0.5258 | loss(pos) 0.0810 | loss(seq) 0.0944 | grad 3.1591 | lr 0.0000 | time_forward 1.3980 | time_backward 1.5370 |
[2023-10-25 18:04:20,620::train::INFO] [train] Iter 598735 | loss 0.3675 | loss(rot) 0.2075 | loss(pos) 0.0463 | loss(seq) 0.1138 | grad 4.5161 | lr 0.0000 | time_forward 3.2550 | time_backward 4.2180 |
[2023-10-25 18:04:28,554::train::INFO] [train] Iter 598736 | loss 0.4414 | loss(rot) 0.1327 | loss(pos) 0.2559 | loss(seq) 0.0529 | grad 5.6288 | lr 0.0000 | time_forward 3.4950 | time_backward 4.4370 |
[2023-10-25 18:04:36,628::train::INFO] [train] Iter 598737 | loss 0.1242 | loss(rot) 0.0914 | loss(pos) 0.0325 | loss(seq) 0.0003 | grad 1.9671 | lr 0.0000 | time_forward 3.5330 | time_backward 4.5370 |
[2023-10-25 18:04:39,448::train::INFO] [train] Iter 598738 | loss 0.1538 | loss(rot) 0.0989 | loss(pos) 0.0425 | loss(seq) 0.0124 | grad 2.0111 | lr 0.0000 | time_forward 1.3020 | time_backward 1.5150 |
[2023-10-25 18:04:48,491::train::INFO] [train] Iter 598739 | loss 0.3736 | loss(rot) 0.1460 | loss(pos) 0.1636 | loss(seq) 0.0639 | grad 2.9072 | lr 0.0000 | time_forward 3.8460 | time_backward 5.1940 |
[2023-10-25 18:04:57,271::train::INFO] [train] Iter 598740 | loss 0.8174 | loss(rot) 0.4630 | loss(pos) 0.0574 | loss(seq) 0.2970 | grad 3.4361 | lr 0.0000 | time_forward 3.6910 | time_backward 5.0850 |
[2023-10-25 18:05:00,263::train::INFO] [train] Iter 598741 | loss 1.6166 | loss(rot) 1.2091 | loss(pos) 0.0766 | loss(seq) 0.3309 | grad 7.1477 | lr 0.0000 | time_forward 1.5240 | time_backward 1.4660 |
[2023-10-25 18:05:03,371::train::INFO] [train] Iter 598742 | loss 0.1511 | loss(rot) 0.1082 | loss(pos) 0.0429 | loss(seq) 0.0000 | grad 2.8816 | lr 0.0000 | time_forward 1.6360 | time_backward 1.4420 |
[2023-10-25 18:05:06,277::train::INFO] [train] Iter 598743 | loss 0.4723 | loss(rot) 0.0281 | loss(pos) 0.3911 | loss(seq) 0.0531 | grad 8.4878 | lr 0.0000 | time_forward 1.3500 | time_backward 1.5540 |
[2023-10-25 18:05:14,527::train::INFO] [train] Iter 598744 | loss 1.5938 | loss(rot) 1.1211 | loss(pos) 0.1107 | loss(seq) 0.3621 | grad 4.7300 | lr 0.0000 | time_forward 3.7970 | time_backward 4.4500 |
[2023-10-25 18:05:22,672::train::INFO] [train] Iter 598745 | loss 0.1864 | loss(rot) 0.0493 | loss(pos) 0.0806 | loss(seq) 0.0565 | grad 4.5609 | lr 0.0000 | time_forward 3.7970 | time_backward 4.3440 |
[2023-10-25 18:05:30,661::train::INFO] [train] Iter 598746 | loss 0.6831 | loss(rot) 0.2440 | loss(pos) 0.1618 | loss(seq) 0.2772 | grad 4.5919 | lr 0.0000 | time_forward 3.5070 | time_backward 4.4790 |
[2023-10-25 18:05:39,820::train::INFO] [train] Iter 598747 | loss 0.3890 | loss(rot) 0.1027 | loss(pos) 0.1618 | loss(seq) 0.1246 | grad 2.9900 | lr 0.0000 | time_forward 4.0140 | time_backward 5.1420 |
[2023-10-25 18:05:48,875::train::INFO] [train] Iter 598748 | loss 0.4788 | loss(rot) 0.1947 | loss(pos) 0.0421 | loss(seq) 0.2419 | grad 2.8199 | lr 0.0000 | time_forward 3.8800 | time_backward 5.1720 |
[2023-10-25 18:05:58,268::train::INFO] [train] Iter 598749 | loss 0.9908 | loss(rot) 0.3745 | loss(pos) 0.2699 | loss(seq) 0.3463 | grad 3.8286 | lr 0.0000 | time_forward 4.2060 | time_backward 5.1830 |
[2023-10-25 18:06:04,018::train::INFO] [train] Iter 598750 | loss 0.2572 | loss(rot) 0.0554 | loss(pos) 0.0335 | loss(seq) 0.1683 | grad 2.1959 | lr 0.0000 | time_forward 2.6060 | time_backward 3.1380 |
[2023-10-25 18:06:06,580::train::INFO] [train] Iter 598751 | loss 1.5028 | loss(rot) 1.2252 | loss(pos) 0.0526 | loss(seq) 0.2250 | grad 4.5027 | lr 0.0000 | time_forward 1.2380 | time_backward 1.3190 |
[2023-10-25 18:06:09,474::train::INFO] [train] Iter 598752 | loss 0.2665 | loss(rot) 0.2009 | loss(pos) 0.0655 | loss(seq) 0.0000 | grad 2.3017 | lr 0.0000 | time_forward 1.3830 | time_backward 1.5070 |
[2023-10-25 18:06:16,650::train::INFO] [train] Iter 598753 | loss 1.2455 | loss(rot) 0.0166 | loss(pos) 1.2271 | loss(seq) 0.0018 | grad 10.4227 | lr 0.0000 | time_forward 3.0520 | time_backward 4.1190 |
[2023-10-25 18:06:23,359::train::INFO] [train] Iter 598754 | loss 0.7582 | loss(rot) 0.2751 | loss(pos) 0.0663 | loss(seq) 0.4168 | grad 4.2187 | lr 0.0000 | time_forward 2.8950 | time_backward 3.8120 |
[2023-10-25 18:06:31,366::train::INFO] [train] Iter 598755 | loss 0.3748 | loss(rot) 0.2852 | loss(pos) 0.0895 | loss(seq) 0.0000 | grad 4.9219 | lr 0.0000 | time_forward 3.4490 | time_backward 4.5540 |
[2023-10-25 18:06:38,835::train::INFO] [train] Iter 598756 | loss 0.3077 | loss(rot) 0.1758 | loss(pos) 0.0599 | loss(seq) 0.0720 | grad 4.1278 | lr 0.0000 | time_forward 3.1710 | time_backward 4.2950 |
[2023-10-25 18:06:41,559::train::INFO] [train] Iter 598757 | loss 0.5064 | loss(rot) 0.3199 | loss(pos) 0.1409 | loss(seq) 0.0456 | grad 2.7147 | lr 0.0000 | time_forward 1.3050 | time_backward 1.4160 |
[2023-10-25 18:06:50,491::train::INFO] [train] Iter 598758 | loss 0.5267 | loss(rot) 0.4984 | loss(pos) 0.0270 | loss(seq) 0.0014 | grad 21.6603 | lr 0.0000 | time_forward 3.6850 | time_backward 5.2440 |
[2023-10-25 18:06:53,296::train::INFO] [train] Iter 598759 | loss 0.3948 | loss(rot) 0.1203 | loss(pos) 0.0274 | loss(seq) 0.2471 | grad 2.0821 | lr 0.0000 | time_forward 1.3470 | time_backward 1.4540 |
[2023-10-25 18:07:01,396::train::INFO] [train] Iter 598760 | loss 0.9623 | loss(rot) 0.1998 | loss(pos) 0.0860 | loss(seq) 0.6766 | grad 4.4260 | lr 0.0000 | time_forward 3.5790 | time_backward 4.5180 |
[2023-10-25 18:07:10,107::train::INFO] [train] Iter 598761 | loss 0.3193 | loss(rot) 0.3019 | loss(pos) 0.0171 | loss(seq) 0.0003 | grad 3.9330 | lr 0.0000 | time_forward 3.6350 | time_backward 5.0730 |
[2023-10-25 18:07:17,630::train::INFO] [train] Iter 598762 | loss 0.2274 | loss(rot) 0.0992 | loss(pos) 0.0883 | loss(seq) 0.0399 | grad 2.7448 | lr 0.0000 | time_forward 3.1820 | time_backward 4.3380 |
[2023-10-25 18:07:25,005::train::INFO] [train] Iter 598763 | loss 0.2795 | loss(rot) 0.1417 | loss(pos) 0.0715 | loss(seq) 0.0663 | grad 3.8361 | lr 0.0000 | time_forward 3.1160 | time_backward 4.2550 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.