text
stringlengths 56
1.16k
|
---|
[2023-10-25 17:34:48,280::train::INFO] [train] Iter 598464 | loss 0.6908 | loss(rot) 0.3816 | loss(pos) 0.0191 | loss(seq) 0.2901 | grad 2.2242 | lr 0.0000 | time_forward 1.2000 | time_backward 1.3520 |
[2023-10-25 17:34:50,871::train::INFO] [train] Iter 598465 | loss 0.4877 | loss(rot) 0.2791 | loss(pos) 0.0193 | loss(seq) 0.1893 | grad 6.7070 | lr 0.0000 | time_forward 1.2090 | time_backward 1.3790 |
[2023-10-25 17:34:53,465::train::INFO] [train] Iter 598466 | loss 0.3245 | loss(rot) 0.2509 | loss(pos) 0.0169 | loss(seq) 0.0566 | grad 2.7537 | lr 0.0000 | time_forward 1.2060 | time_backward 1.3840 |
[2023-10-25 17:34:56,176::train::INFO] [train] Iter 598467 | loss 0.7029 | loss(rot) 0.5993 | loss(pos) 0.0909 | loss(seq) 0.0127 | grad 3.1689 | lr 0.0000 | time_forward 1.3050 | time_backward 1.4040 |
[2023-10-25 17:34:58,813::train::INFO] [train] Iter 598468 | loss 0.6090 | loss(rot) 0.3258 | loss(pos) 0.0424 | loss(seq) 0.2408 | grad 2.9056 | lr 0.0000 | time_forward 1.2550 | time_backward 1.3780 |
[2023-10-25 17:35:01,554::train::INFO] [train] Iter 598469 | loss 0.6839 | loss(rot) 0.6322 | loss(pos) 0.0508 | loss(seq) 0.0009 | grad 2.9507 | lr 0.0000 | time_forward 1.2700 | time_backward 1.4680 |
[2023-10-25 17:35:04,422::train::INFO] [train] Iter 598470 | loss 0.1858 | loss(rot) 0.1125 | loss(pos) 0.0733 | loss(seq) 0.0000 | grad 2.5094 | lr 0.0000 | time_forward 1.3260 | time_backward 1.5240 |
[2023-10-25 17:35:11,530::train::INFO] [train] Iter 598471 | loss 2.1854 | loss(rot) 1.7858 | loss(pos) 0.1324 | loss(seq) 0.2672 | grad 6.7472 | lr 0.0000 | time_forward 3.1430 | time_backward 3.9610 |
[2023-10-25 17:35:19,297::train::INFO] [train] Iter 598472 | loss 1.0958 | loss(rot) 0.7633 | loss(pos) 0.1297 | loss(seq) 0.2027 | grad 4.0709 | lr 0.0000 | time_forward 3.2940 | time_backward 4.4690 |
[2023-10-25 17:35:26,700::train::INFO] [train] Iter 598473 | loss 0.7229 | loss(rot) 0.5195 | loss(pos) 0.0486 | loss(seq) 0.1548 | grad 3.1667 | lr 0.0000 | time_forward 3.2400 | time_backward 4.1600 |
[2023-10-25 17:35:29,447::train::INFO] [train] Iter 598474 | loss 0.7724 | loss(rot) 0.4248 | loss(pos) 0.0470 | loss(seq) 0.3006 | grad 4.2944 | lr 0.0000 | time_forward 1.3200 | time_backward 1.4240 |
[2023-10-25 17:35:36,788::train::INFO] [train] Iter 598475 | loss 2.9411 | loss(rot) 0.0098 | loss(pos) 2.9313 | loss(seq) 0.0000 | grad 36.1864 | lr 0.0000 | time_forward 3.1650 | time_backward 4.1530 |
[2023-10-25 17:35:39,463::train::INFO] [train] Iter 598476 | loss 0.3587 | loss(rot) 0.1667 | loss(pos) 0.1807 | loss(seq) 0.0112 | grad 5.4692 | lr 0.0000 | time_forward 1.2830 | time_backward 1.3880 |
[2023-10-25 17:35:47,702::train::INFO] [train] Iter 598477 | loss 1.2173 | loss(rot) 0.8088 | loss(pos) 0.1142 | loss(seq) 0.2943 | grad 4.3544 | lr 0.0000 | time_forward 3.5240 | time_backward 4.7120 |
[2023-10-25 17:35:54,843::train::INFO] [train] Iter 598478 | loss 0.6160 | loss(rot) 0.5126 | loss(pos) 0.0163 | loss(seq) 0.0871 | grad 4.7893 | lr 0.0000 | time_forward 3.3740 | time_backward 3.7650 |
[2023-10-25 17:35:57,555::train::INFO] [train] Iter 598479 | loss 0.2365 | loss(rot) 0.0324 | loss(pos) 0.2012 | loss(seq) 0.0029 | grad 7.4658 | lr 0.0000 | time_forward 1.2570 | time_backward 1.4510 |
[2023-10-25 17:36:04,510::train::INFO] [train] Iter 598480 | loss 1.2778 | loss(rot) 0.9497 | loss(pos) 0.0538 | loss(seq) 0.2743 | grad 11.0217 | lr 0.0000 | time_forward 3.0720 | time_backward 3.8790 |
[2023-10-25 17:36:07,076::train::INFO] [train] Iter 598481 | loss 0.2669 | loss(rot) 0.0629 | loss(pos) 0.1900 | loss(seq) 0.0140 | grad 3.5868 | lr 0.0000 | time_forward 1.2000 | time_backward 1.3620 |
[2023-10-25 17:36:14,849::train::INFO] [train] Iter 598482 | loss 0.6943 | loss(rot) 0.3905 | loss(pos) 0.0452 | loss(seq) 0.2586 | grad 2.8780 | lr 0.0000 | time_forward 3.2130 | time_backward 4.5420 |
[2023-10-25 17:36:21,856::train::INFO] [train] Iter 598483 | loss 0.3978 | loss(rot) 0.3351 | loss(pos) 0.0185 | loss(seq) 0.0443 | grad 3.4028 | lr 0.0000 | time_forward 2.8580 | time_backward 4.1460 |
[2023-10-25 17:36:28,892::train::INFO] [train] Iter 598484 | loss 0.7149 | loss(rot) 0.6769 | loss(pos) 0.0379 | loss(seq) 0.0001 | grad 4.3725 | lr 0.0000 | time_forward 3.0870 | time_backward 3.9450 |
[2023-10-25 17:36:31,439::train::INFO] [train] Iter 598485 | loss 1.0518 | loss(rot) 0.9774 | loss(pos) 0.0167 | loss(seq) 0.0577 | grad 10.0076 | lr 0.0000 | time_forward 1.1870 | time_backward 1.3570 |
[2023-10-25 17:36:37,338::train::INFO] [train] Iter 598486 | loss 2.8851 | loss(rot) 2.4956 | loss(pos) 0.1000 | loss(seq) 0.2895 | grad 3.5574 | lr 0.0000 | time_forward 2.5550 | time_backward 3.3290 |
[2023-10-25 17:36:46,118::train::INFO] [train] Iter 598487 | loss 0.4010 | loss(rot) 0.1294 | loss(pos) 0.0703 | loss(seq) 0.2013 | grad 3.4835 | lr 0.0000 | time_forward 3.5870 | time_backward 5.1900 |
[2023-10-25 17:36:48,715::train::INFO] [train] Iter 598488 | loss 0.1853 | loss(rot) 0.0777 | loss(pos) 0.0832 | loss(seq) 0.0244 | grad 3.3514 | lr 0.0000 | time_forward 1.2020 | time_backward 1.3920 |
[2023-10-25 17:36:51,340::train::INFO] [train] Iter 598489 | loss 1.6476 | loss(rot) 0.1298 | loss(pos) 1.5162 | loss(seq) 0.0017 | grad 17.4833 | lr 0.0000 | time_forward 1.2510 | time_backward 1.3700 |
[2023-10-25 17:36:58,650::train::INFO] [train] Iter 598490 | loss 0.3773 | loss(rot) 0.1794 | loss(pos) 0.0168 | loss(seq) 0.1810 | grad 6.5129 | lr 0.0000 | time_forward 3.0250 | time_backward 4.2830 |
[2023-10-25 17:37:11,943::train::INFO] [train] Iter 598491 | loss 1.7401 | loss(rot) 1.3145 | loss(pos) 0.0978 | loss(seq) 0.3277 | grad 4.5687 | lr 0.0000 | time_forward 11.1390 | time_backward 2.1490 |
[2023-10-25 17:37:35,922::train::INFO] [train] Iter 598492 | loss 0.6703 | loss(rot) 0.1787 | loss(pos) 0.0352 | loss(seq) 0.4564 | grad 3.3921 | lr 0.0000 | time_forward 18.7210 | time_backward 5.2550 |
[2023-10-25 17:38:10,928::train::INFO] [train] Iter 598493 | loss 0.1612 | loss(rot) 0.1035 | loss(pos) 0.0241 | loss(seq) 0.0336 | grad 1.9583 | lr 0.0000 | time_forward 18.2590 | time_backward 16.7350 |
[2023-10-25 17:38:15,689::train::INFO] [train] Iter 598494 | loss 1.1646 | loss(rot) 0.7280 | loss(pos) 0.2939 | loss(seq) 0.1426 | grad 5.0000 | lr 0.0000 | time_forward 2.6580 | time_backward 2.0990 |
[2023-10-25 17:38:36,114::train::INFO] [train] Iter 598495 | loss 1.2570 | loss(rot) 1.2086 | loss(pos) 0.0448 | loss(seq) 0.0036 | grad 5.0313 | lr 0.0000 | time_forward 13.9890 | time_backward 6.4110 |
[2023-10-25 17:38:38,889::train::INFO] [train] Iter 598496 | loss 1.3144 | loss(rot) 0.4156 | loss(pos) 0.4458 | loss(seq) 0.4530 | grad 6.5347 | lr 0.0000 | time_forward 1.2890 | time_backward 1.4820 |
[2023-10-25 17:38:47,387::train::INFO] [train] Iter 598497 | loss 0.7174 | loss(rot) 0.4563 | loss(pos) 0.0592 | loss(seq) 0.2019 | grad 3.9189 | lr 0.0000 | time_forward 3.5350 | time_backward 4.9300 |
[2023-10-25 17:38:57,487::train::INFO] [train] Iter 598498 | loss 0.3325 | loss(rot) 0.0566 | loss(pos) 0.0296 | loss(seq) 0.2463 | grad 1.7396 | lr 0.0000 | time_forward 4.2450 | time_backward 5.8520 |
[2023-10-25 17:39:07,010::train::INFO] [train] Iter 598499 | loss 1.0558 | loss(rot) 0.2749 | loss(pos) 0.1524 | loss(seq) 0.6285 | grad 3.8370 | lr 0.0000 | time_forward 3.9710 | time_backward 5.5480 |
[2023-10-25 17:39:16,498::train::INFO] [train] Iter 598500 | loss 0.5965 | loss(rot) 0.3282 | loss(pos) 0.2016 | loss(seq) 0.0667 | grad 3.4297 | lr 0.0000 | time_forward 4.4050 | time_backward 5.0790 |
[2023-10-25 17:39:26,074::train::INFO] [train] Iter 598501 | loss 1.7141 | loss(rot) 1.1393 | loss(pos) 0.1299 | loss(seq) 0.4449 | grad 5.6360 | lr 0.0000 | time_forward 3.7650 | time_backward 5.8080 |
[2023-10-25 17:39:33,798::train::INFO] [train] Iter 598502 | loss 1.1383 | loss(rot) 0.4383 | loss(pos) 0.1013 | loss(seq) 0.5986 | grad 4.2243 | lr 0.0000 | time_forward 3.3600 | time_backward 4.3610 |
[2023-10-25 17:39:36,574::train::INFO] [train] Iter 598503 | loss 0.5606 | loss(rot) 0.3107 | loss(pos) 0.0399 | loss(seq) 0.2100 | grad 2.4787 | lr 0.0000 | time_forward 1.3160 | time_backward 1.4580 |
[2023-10-25 17:39:44,111::train::INFO] [train] Iter 598504 | loss 0.3284 | loss(rot) 0.0472 | loss(pos) 0.0367 | loss(seq) 0.2445 | grad 2.1193 | lr 0.0000 | time_forward 3.2660 | time_backward 4.2440 |
[2023-10-25 17:39:47,333::train::INFO] [train] Iter 598505 | loss 0.4128 | loss(rot) 0.1995 | loss(pos) 0.1710 | loss(seq) 0.0424 | grad 2.7472 | lr 0.0000 | time_forward 1.4470 | time_backward 1.7710 |
[2023-10-25 17:39:59,358::train::INFO] [train] Iter 598506 | loss 1.2062 | loss(rot) 0.7560 | loss(pos) 0.1963 | loss(seq) 0.2539 | grad 4.7762 | lr 0.0000 | time_forward 4.3420 | time_backward 7.6700 |
[2023-10-25 17:40:07,293::train::INFO] [train] Iter 598507 | loss 2.2246 | loss(rot) 2.0043 | loss(pos) 0.0263 | loss(seq) 0.1939 | grad 20.8502 | lr 0.0000 | time_forward 3.5200 | time_backward 4.4120 |
[2023-10-25 17:40:16,241::train::INFO] [train] Iter 598508 | loss 0.2086 | loss(rot) 0.1392 | loss(pos) 0.0244 | loss(seq) 0.0450 | grad 1.7423 | lr 0.0000 | time_forward 3.5900 | time_backward 5.3560 |
[2023-10-25 17:40:24,780::train::INFO] [train] Iter 598509 | loss 0.8747 | loss(rot) 0.8508 | loss(pos) 0.0102 | loss(seq) 0.0138 | grad 4.6715 | lr 0.0000 | time_forward 3.7820 | time_backward 4.7530 |
[2023-10-25 17:40:27,028::train::INFO] [train] Iter 598510 | loss 0.2206 | loss(rot) 0.0996 | loss(pos) 0.0407 | loss(seq) 0.0804 | grad 1.4375 | lr 0.0000 | time_forward 1.0250 | time_backward 1.2200 |
[2023-10-25 17:40:36,047::train::INFO] [train] Iter 598511 | loss 0.2716 | loss(rot) 0.2324 | loss(pos) 0.0375 | loss(seq) 0.0017 | grad 3.7795 | lr 0.0000 | time_forward 3.7000 | time_backward 5.3160 |
[2023-10-25 17:40:43,402::train::INFO] [train] Iter 598512 | loss 0.7060 | loss(rot) 0.1515 | loss(pos) 0.1242 | loss(seq) 0.4303 | grad 4.6790 | lr 0.0000 | time_forward 3.1530 | time_backward 4.2000 |
[2023-10-25 17:40:50,714::train::INFO] [train] Iter 598513 | loss 1.4654 | loss(rot) 1.3586 | loss(pos) 0.1040 | loss(seq) 0.0028 | grad 6.8225 | lr 0.0000 | time_forward 3.0780 | time_backward 4.2300 |
[2023-10-25 17:40:59,008::train::INFO] [train] Iter 598514 | loss 0.9416 | loss(rot) 0.9103 | loss(pos) 0.0178 | loss(seq) 0.0136 | grad 4.7120 | lr 0.0000 | time_forward 3.4460 | time_backward 4.8450 |
[2023-10-25 17:41:07,998::train::INFO] [train] Iter 598515 | loss 0.9402 | loss(rot) 0.3100 | loss(pos) 0.5891 | loss(seq) 0.0411 | grad 6.0846 | lr 0.0000 | time_forward 3.6550 | time_backward 5.3320 |
[2023-10-25 17:41:16,462::train::INFO] [train] Iter 598516 | loss 0.1632 | loss(rot) 0.1287 | loss(pos) 0.0117 | loss(seq) 0.0228 | grad 2.3395 | lr 0.0000 | time_forward 3.3810 | time_backward 5.0800 |
[2023-10-25 17:41:19,227::train::INFO] [train] Iter 598517 | loss 0.4808 | loss(rot) 0.0446 | loss(pos) 0.4304 | loss(seq) 0.0057 | grad 4.8810 | lr 0.0000 | time_forward 1.2860 | time_backward 1.4770 |
[2023-10-25 17:41:27,836::train::INFO] [train] Iter 598518 | loss 0.3582 | loss(rot) 0.0350 | loss(pos) 0.3193 | loss(seq) 0.0039 | grad 7.3933 | lr 0.0000 | time_forward 3.6600 | time_backward 4.9440 |
[2023-10-25 17:41:36,856::train::INFO] [train] Iter 598519 | loss 1.2625 | loss(rot) 0.6218 | loss(pos) 0.1174 | loss(seq) 0.5233 | grad 4.1627 | lr 0.0000 | time_forward 3.8550 | time_backward 5.1620 |
[2023-10-25 17:41:45,208::train::INFO] [train] Iter 598520 | loss 0.2478 | loss(rot) 0.0597 | loss(pos) 0.0857 | loss(seq) 0.1024 | grad 4.0018 | lr 0.0000 | time_forward 3.6570 | time_backward 4.6910 |
[2023-10-25 17:41:52,627::train::INFO] [train] Iter 598521 | loss 0.2974 | loss(rot) 0.0793 | loss(pos) 0.0379 | loss(seq) 0.1802 | grad 2.5548 | lr 0.0000 | time_forward 3.1230 | time_backward 4.2930 |
[2023-10-25 17:41:59,787::train::INFO] [train] Iter 598522 | loss 0.2466 | loss(rot) 0.0316 | loss(pos) 0.1660 | loss(seq) 0.0490 | grad 4.0654 | lr 0.0000 | time_forward 3.1410 | time_backward 4.0150 |
[2023-10-25 17:42:06,033::train::INFO] [train] Iter 598523 | loss 0.6476 | loss(rot) 0.5975 | loss(pos) 0.0296 | loss(seq) 0.0205 | grad 4.0740 | lr 0.0000 | time_forward 2.6700 | time_backward 3.5720 |
[2023-10-25 17:42:08,376::train::INFO] [train] Iter 598524 | loss 2.6432 | loss(rot) 2.5258 | loss(pos) 0.0506 | loss(seq) 0.0667 | grad 6.3599 | lr 0.0000 | time_forward 1.1330 | time_backward 1.2070 |
[2023-10-25 17:42:10,970::train::INFO] [train] Iter 598525 | loss 0.2776 | loss(rot) 0.0759 | loss(pos) 0.0786 | loss(seq) 0.1231 | grad 2.0735 | lr 0.0000 | time_forward 1.2330 | time_backward 1.3580 |
[2023-10-25 17:42:18,677::train::INFO] [train] Iter 598526 | loss 0.8232 | loss(rot) 0.3359 | loss(pos) 0.0417 | loss(seq) 0.4456 | grad 3.5486 | lr 0.0000 | time_forward 3.2790 | time_backward 4.4260 |
[2023-10-25 17:42:21,408::train::INFO] [train] Iter 598527 | loss 0.7946 | loss(rot) 0.5573 | loss(pos) 0.0273 | loss(seq) 0.2099 | grad 78.4178 | lr 0.0000 | time_forward 1.3070 | time_backward 1.4200 |
[2023-10-25 17:42:30,352::train::INFO] [train] Iter 598528 | loss 0.6265 | loss(rot) 0.5010 | loss(pos) 0.0354 | loss(seq) 0.0900 | grad 2.9478 | lr 0.0000 | time_forward 3.7500 | time_backward 5.1910 |
[2023-10-25 17:42:38,784::train::INFO] [train] Iter 598529 | loss 0.4372 | loss(rot) 0.2884 | loss(pos) 0.0567 | loss(seq) 0.0921 | grad 2.8163 | lr 0.0000 | time_forward 3.6110 | time_backward 4.8180 |
[2023-10-25 17:42:46,118::train::INFO] [train] Iter 598530 | loss 0.2467 | loss(rot) 0.1101 | loss(pos) 0.0295 | loss(seq) 0.1070 | grad 2.0461 | lr 0.0000 | time_forward 3.1270 | time_backward 4.2030 |
[2023-10-25 17:42:53,849::train::INFO] [train] Iter 598531 | loss 0.8366 | loss(rot) 0.7712 | loss(pos) 0.0272 | loss(seq) 0.0382 | grad 4.4359 | lr 0.0000 | time_forward 3.2800 | time_backward 4.4480 |
[2023-10-25 17:43:03,625::train::INFO] [train] Iter 598532 | loss 0.2622 | loss(rot) 0.0994 | loss(pos) 0.0817 | loss(seq) 0.0812 | grad 3.2737 | lr 0.0000 | time_forward 3.4930 | time_backward 6.2800 |
[2023-10-25 17:43:11,480::train::INFO] [train] Iter 598533 | loss 0.2952 | loss(rot) 0.0945 | loss(pos) 0.0199 | loss(seq) 0.1808 | grad 1.6061 | lr 0.0000 | time_forward 3.3790 | time_backward 4.4710 |
[2023-10-25 17:43:14,841::train::INFO] [train] Iter 598534 | loss 0.4570 | loss(rot) 0.1519 | loss(pos) 0.1430 | loss(seq) 0.1621 | grad 3.8613 | lr 0.0000 | time_forward 1.5770 | time_backward 1.7770 |
[2023-10-25 17:43:24,454::train::INFO] [train] Iter 598535 | loss 1.4526 | loss(rot) 1.2462 | loss(pos) 0.0598 | loss(seq) 0.1466 | grad 5.4197 | lr 0.0000 | time_forward 4.4440 | time_backward 5.1440 |
[2023-10-25 17:43:27,174::train::INFO] [train] Iter 598536 | loss 0.2001 | loss(rot) 0.0658 | loss(pos) 0.0106 | loss(seq) 0.1238 | grad 2.0682 | lr 0.0000 | time_forward 1.3260 | time_backward 1.3900 |
[2023-10-25 17:43:29,485::train::INFO] [train] Iter 598537 | loss 0.8373 | loss(rot) 0.5884 | loss(pos) 0.0467 | loss(seq) 0.2022 | grad 4.9336 | lr 0.0000 | time_forward 1.0990 | time_backward 1.2090 |
[2023-10-25 17:43:32,716::train::INFO] [train] Iter 598538 | loss 0.6639 | loss(rot) 0.6104 | loss(pos) 0.0535 | loss(seq) 0.0000 | grad 3.0861 | lr 0.0000 | time_forward 1.4750 | time_backward 1.7530 |
[2023-10-25 17:43:35,431::train::INFO] [train] Iter 598539 | loss 1.7197 | loss(rot) 0.9968 | loss(pos) 0.1506 | loss(seq) 0.5723 | grad 4.1130 | lr 0.0000 | time_forward 1.3000 | time_backward 1.4010 |
[2023-10-25 17:43:43,781::train::INFO] [train] Iter 598540 | loss 1.5116 | loss(rot) 0.8224 | loss(pos) 0.0925 | loss(seq) 0.5967 | grad 4.4907 | lr 0.0000 | time_forward 3.5020 | time_backward 4.8450 |
[2023-10-25 17:43:46,059::train::INFO] [train] Iter 598541 | loss 0.9654 | loss(rot) 0.4674 | loss(pos) 0.1092 | loss(seq) 0.3888 | grad 6.2417 | lr 0.0000 | time_forward 1.0890 | time_backward 1.1840 |
[2023-10-25 17:43:53,740::train::INFO] [train] Iter 598542 | loss 0.8342 | loss(rot) 0.0088 | loss(pos) 0.8251 | loss(seq) 0.0003 | grad 14.0189 | lr 0.0000 | time_forward 3.0740 | time_backward 4.6040 |
[2023-10-25 17:43:56,496::train::INFO] [train] Iter 598543 | loss 0.9266 | loss(rot) 0.1340 | loss(pos) 0.6728 | loss(seq) 0.1198 | grad 4.2711 | lr 0.0000 | time_forward 1.2830 | time_backward 1.4690 |
[2023-10-25 17:43:59,361::train::INFO] [train] Iter 598544 | loss 0.3486 | loss(rot) 0.0875 | loss(pos) 0.1215 | loss(seq) 0.1396 | grad 3.9030 | lr 0.0000 | time_forward 1.3500 | time_backward 1.4810 |
[2023-10-25 17:44:02,175::train::INFO] [train] Iter 598545 | loss 0.8279 | loss(rot) 0.6674 | loss(pos) 0.0115 | loss(seq) 0.1491 | grad 1.7699 | lr 0.0000 | time_forward 1.3730 | time_backward 1.4390 |
[2023-10-25 17:44:05,048::train::INFO] [train] Iter 598546 | loss 0.2120 | loss(rot) 0.0774 | loss(pos) 0.1119 | loss(seq) 0.0228 | grad 3.8603 | lr 0.0000 | time_forward 1.4060 | time_backward 1.4640 |
[2023-10-25 17:44:07,870::train::INFO] [train] Iter 598547 | loss 0.4765 | loss(rot) 0.0297 | loss(pos) 0.4419 | loss(seq) 0.0049 | grad 6.7380 | lr 0.0000 | time_forward 1.3810 | time_backward 1.4380 |
[2023-10-25 17:44:16,180::train::INFO] [train] Iter 598548 | loss 0.2783 | loss(rot) 0.0361 | loss(pos) 0.0504 | loss(seq) 0.1917 | grad 2.8093 | lr 0.0000 | time_forward 3.6400 | time_backward 4.6670 |
[2023-10-25 17:44:23,803::train::INFO] [train] Iter 598549 | loss 1.1428 | loss(rot) 0.7486 | loss(pos) 0.1051 | loss(seq) 0.2891 | grad 2.8756 | lr 0.0000 | time_forward 3.2280 | time_backward 4.3920 |
[2023-10-25 17:44:31,438::train::INFO] [train] Iter 598550 | loss 0.3048 | loss(rot) 0.0860 | loss(pos) 0.0338 | loss(seq) 0.1850 | grad 2.3387 | lr 0.0000 | time_forward 3.2510 | time_backward 4.3810 |
[2023-10-25 17:44:34,239::train::INFO] [train] Iter 598551 | loss 1.0614 | loss(rot) 1.0386 | loss(pos) 0.0141 | loss(seq) 0.0087 | grad 2.8390 | lr 0.0000 | time_forward 1.3350 | time_backward 1.4630 |
[2023-10-25 17:44:37,020::train::INFO] [train] Iter 598552 | loss 0.9951 | loss(rot) 0.9663 | loss(pos) 0.0264 | loss(seq) 0.0024 | grad 4.2083 | lr 0.0000 | time_forward 1.3640 | time_backward 1.4140 |
[2023-10-25 17:44:40,390::train::INFO] [train] Iter 598553 | loss 0.4573 | loss(rot) 0.2540 | loss(pos) 0.1819 | loss(seq) 0.0214 | grad 3.5510 | lr 0.0000 | time_forward 1.5260 | time_backward 1.8410 |
[2023-10-25 17:44:47,914::train::INFO] [train] Iter 598554 | loss 0.5448 | loss(rot) 0.2742 | loss(pos) 0.0432 | loss(seq) 0.2273 | grad 3.0520 | lr 0.0000 | time_forward 3.2070 | time_backward 4.3140 |
[2023-10-25 17:44:56,177::train::INFO] [train] Iter 598555 | loss 0.6505 | loss(rot) 0.1335 | loss(pos) 0.2497 | loss(seq) 0.2672 | grad 2.6016 | lr 0.0000 | time_forward 3.5190 | time_backward 4.7300 |
[2023-10-25 17:45:04,974::train::INFO] [train] Iter 598556 | loss 1.9604 | loss(rot) 0.0150 | loss(pos) 1.9450 | loss(seq) 0.0005 | grad 15.8133 | lr 0.0000 | time_forward 3.8170 | time_backward 4.9760 |
[2023-10-25 17:45:14,463::train::INFO] [train] Iter 598557 | loss 0.3228 | loss(rot) 0.0657 | loss(pos) 0.0477 | loss(seq) 0.2095 | grad 1.8259 | lr 0.0000 | time_forward 3.7110 | time_backward 5.7750 |
[2023-10-25 17:45:24,139::train::INFO] [train] Iter 598558 | loss 1.1486 | loss(rot) 1.0677 | loss(pos) 0.0302 | loss(seq) 0.0507 | grad 3.8408 | lr 0.0000 | time_forward 3.8190 | time_backward 5.8530 |
[2023-10-25 17:45:35,045::train::INFO] [train] Iter 598559 | loss 1.3184 | loss(rot) 0.9169 | loss(pos) 0.0648 | loss(seq) 0.3367 | grad 5.2116 | lr 0.0000 | time_forward 4.5240 | time_backward 6.3780 |
[2023-10-25 17:45:45,703::train::INFO] [train] Iter 598560 | loss 0.7967 | loss(rot) 0.7409 | loss(pos) 0.0474 | loss(seq) 0.0084 | grad 3.3666 | lr 0.0000 | time_forward 4.5610 | time_backward 6.0950 |
[2023-10-25 17:45:47,980::train::INFO] [train] Iter 598561 | loss 0.3696 | loss(rot) 0.0364 | loss(pos) 0.3293 | loss(seq) 0.0038 | grad 3.4319 | lr 0.0000 | time_forward 1.0440 | time_backward 1.2290 |
[2023-10-25 17:45:55,181::train::INFO] [train] Iter 598562 | loss 1.3183 | loss(rot) 0.6223 | loss(pos) 0.1580 | loss(seq) 0.5381 | grad 4.9360 | lr 0.0000 | time_forward 3.0360 | time_backward 4.1470 |
[2023-10-25 17:45:58,487::train::INFO] [train] Iter 598563 | loss 0.5927 | loss(rot) 0.4120 | loss(pos) 0.0683 | loss(seq) 0.1123 | grad 3.2488 | lr 0.0000 | time_forward 1.4710 | time_backward 1.8310 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.