text
stringlengths
56
1.16k
[2023-10-25 16:27:21,157::train::INFO] [train] Iter 597865 | loss 0.9553 | loss(rot) 0.8906 | loss(pos) 0.0435 | loss(seq) 0.0212 | grad 5.7549 | lr 0.0000 | time_forward 2.7260 | time_backward 3.6250
[2023-10-25 16:27:26,483::train::INFO] [train] Iter 597866 | loss 0.4519 | loss(rot) 0.1776 | loss(pos) 0.0758 | loss(seq) 0.1985 | grad 3.2635 | lr 0.0000 | time_forward 2.2760 | time_backward 3.0480
[2023-10-25 16:27:34,241::train::INFO] [train] Iter 597867 | loss 1.5486 | loss(rot) 0.9341 | loss(pos) 0.0922 | loss(seq) 0.5224 | grad 4.1121 | lr 0.0000 | time_forward 3.2620 | time_backward 4.4830
[2023-10-25 16:27:37,012::train::INFO] [train] Iter 597868 | loss 0.5260 | loss(rot) 0.2178 | loss(pos) 0.1323 | loss(seq) 0.1759 | grad 3.1730 | lr 0.0000 | time_forward 1.2730 | time_backward 1.4950
[2023-10-25 16:27:39,655::train::INFO] [train] Iter 597869 | loss 0.3828 | loss(rot) 0.2730 | loss(pos) 0.0143 | loss(seq) 0.0955 | grad 2.3974 | lr 0.0000 | time_forward 1.2740 | time_backward 1.3670
[2023-10-25 16:27:41,763::train::INFO] [train] Iter 597870 | loss 1.9679 | loss(rot) 1.0818 | loss(pos) 0.4593 | loss(seq) 0.4267 | grad 8.1396 | lr 0.0000 | time_forward 1.0050 | time_backward 1.0980
[2023-10-25 16:27:44,543::train::INFO] [train] Iter 597871 | loss 1.4277 | loss(rot) 1.0750 | loss(pos) 0.0858 | loss(seq) 0.2669 | grad 3.7005 | lr 0.0000 | time_forward 1.2980 | time_backward 1.4790
[2023-10-25 16:27:51,467::train::INFO] [train] Iter 597872 | loss 0.3114 | loss(rot) 0.0399 | loss(pos) 0.0517 | loss(seq) 0.2199 | grad 3.1628 | lr 0.0000 | time_forward 3.0150 | time_backward 3.9060
[2023-10-25 16:28:00,136::train::INFO] [train] Iter 597873 | loss 0.9122 | loss(rot) 0.4373 | loss(pos) 0.2349 | loss(seq) 0.2399 | grad 2.5891 | lr 0.0000 | time_forward 3.6230 | time_backward 5.0420
[2023-10-25 16:28:02,744::train::INFO] [train] Iter 597874 | loss 0.2883 | loss(rot) 0.1357 | loss(pos) 0.0181 | loss(seq) 0.1345 | grad 2.3861 | lr 0.0000 | time_forward 1.2180 | time_backward 1.3870
[2023-10-25 16:28:05,443::train::INFO] [train] Iter 597875 | loss 0.4625 | loss(rot) 0.0181 | loss(pos) 0.4428 | loss(seq) 0.0017 | grad 6.1509 | lr 0.0000 | time_forward 1.2720 | time_backward 1.4070
[2023-10-25 16:28:12,681::train::INFO] [train] Iter 597876 | loss 0.1840 | loss(rot) 0.1347 | loss(pos) 0.0493 | loss(seq) 0.0000 | grad 2.3782 | lr 0.0000 | time_forward 3.1680 | time_backward 4.0650
[2023-10-25 16:28:17,780::train::INFO] [train] Iter 597877 | loss 0.4089 | loss(rot) 0.1461 | loss(pos) 0.0677 | loss(seq) 0.1951 | grad 2.9862 | lr 0.0000 | time_forward 2.2560 | time_backward 2.8400
[2023-10-25 16:28:20,406::train::INFO] [train] Iter 597878 | loss 0.7931 | loss(rot) 0.2815 | loss(pos) 0.1240 | loss(seq) 0.3876 | grad 2.7592 | lr 0.0000 | time_forward 1.2510 | time_backward 1.3700
[2023-10-25 16:28:22,627::train::INFO] [train] Iter 597879 | loss 0.6942 | loss(rot) 0.4780 | loss(pos) 0.0488 | loss(seq) 0.1675 | grad 2.8481 | lr 0.0000 | time_forward 1.0270 | time_backward 1.1740
[2023-10-25 16:28:29,549::train::INFO] [train] Iter 597880 | loss 0.4669 | loss(rot) 0.1826 | loss(pos) 0.0401 | loss(seq) 0.2441 | grad 2.5482 | lr 0.0000 | time_forward 3.0190 | time_backward 3.9000
[2023-10-25 16:28:32,214::train::INFO] [train] Iter 597881 | loss 0.2189 | loss(rot) 0.1679 | loss(pos) 0.0499 | loss(seq) 0.0011 | grad 3.4979 | lr 0.0000 | time_forward 1.2810 | time_backward 1.3800
[2023-10-25 16:28:40,063::train::INFO] [train] Iter 597882 | loss 1.4490 | loss(rot) 1.0821 | loss(pos) 0.0671 | loss(seq) 0.2998 | grad 3.5094 | lr 0.0000 | time_forward 3.2920 | time_backward 4.5520
[2023-10-25 16:28:47,846::train::INFO] [train] Iter 597883 | loss 1.4831 | loss(rot) 1.1465 | loss(pos) 0.0615 | loss(seq) 0.2751 | grad 3.9380 | lr 0.0000 | time_forward 3.3750 | time_backward 4.4040
[2023-10-25 16:28:50,480::train::INFO] [train] Iter 597884 | loss 0.4506 | loss(rot) 0.4019 | loss(pos) 0.0325 | loss(seq) 0.0163 | grad 4.8305 | lr 0.0000 | time_forward 1.2410 | time_backward 1.3900
[2023-10-25 16:28:57,708::train::INFO] [train] Iter 597885 | loss 0.6571 | loss(rot) 0.6115 | loss(pos) 0.0267 | loss(seq) 0.0188 | grad 6.9123 | lr 0.0000 | time_forward 3.1770 | time_backward 4.0480
[2023-10-25 16:29:04,699::train::INFO] [train] Iter 597886 | loss 1.1744 | loss(rot) 0.8610 | loss(pos) 0.0335 | loss(seq) 0.2798 | grad 4.1768 | lr 0.0000 | time_forward 3.0130 | time_backward 3.9740
[2023-10-25 16:29:11,331::train::INFO] [train] Iter 597887 | loss 0.1677 | loss(rot) 0.0613 | loss(pos) 0.0131 | loss(seq) 0.0933 | grad 2.0561 | lr 0.0000 | time_forward 2.8050 | time_backward 3.8240
[2023-10-25 16:29:18,622::train::INFO] [train] Iter 597888 | loss 0.8923 | loss(rot) 0.5635 | loss(pos) 0.0202 | loss(seq) 0.3087 | grad 2.8218 | lr 0.0000 | time_forward 3.2250 | time_backward 4.0640
[2023-10-25 16:29:26,503::train::INFO] [train] Iter 597889 | loss 0.7543 | loss(rot) 0.2686 | loss(pos) 0.4782 | loss(seq) 0.0076 | grad 3.8718 | lr 0.0000 | time_forward 3.2440 | time_backward 4.6330
[2023-10-25 16:29:29,202::train::INFO] [train] Iter 597890 | loss 0.4437 | loss(rot) 0.1423 | loss(pos) 0.2953 | loss(seq) 0.0062 | grad 5.1388 | lr 0.0000 | time_forward 1.3180 | time_backward 1.3780
[2023-10-25 16:29:35,703::train::INFO] [train] Iter 597891 | loss 0.3147 | loss(rot) 0.2937 | loss(pos) 0.0135 | loss(seq) 0.0075 | grad 3.2263 | lr 0.0000 | time_forward 2.8040 | time_backward 3.6930
[2023-10-25 16:29:42,654::train::INFO] [train] Iter 597892 | loss 0.2073 | loss(rot) 0.1714 | loss(pos) 0.0190 | loss(seq) 0.0169 | grad 1.9959 | lr 0.0000 | time_forward 3.0290 | time_backward 3.9200
[2023-10-25 16:29:50,549::train::INFO] [train] Iter 597893 | loss 1.4492 | loss(rot) 1.1103 | loss(pos) 0.0377 | loss(seq) 0.3012 | grad 3.9888 | lr 0.0000 | time_forward 3.2710 | time_backward 4.6200
[2023-10-25 16:29:55,955::train::INFO] [train] Iter 597894 | loss 1.6317 | loss(rot) 1.1852 | loss(pos) 0.0621 | loss(seq) 0.3845 | grad 3.4499 | lr 0.0000 | time_forward 2.3590 | time_backward 3.0450
[2023-10-25 16:30:03,258::train::INFO] [train] Iter 597895 | loss 0.1444 | loss(rot) 0.0873 | loss(pos) 0.0116 | loss(seq) 0.0454 | grad 1.5518 | lr 0.0000 | time_forward 3.1520 | time_backward 4.1350
[2023-10-25 16:30:06,037::train::INFO] [train] Iter 597896 | loss 1.1209 | loss(rot) 0.6847 | loss(pos) 0.0699 | loss(seq) 0.3663 | grad 5.2754 | lr 0.0000 | time_forward 1.3110 | time_backward 1.4650
[2023-10-25 16:30:14,417::train::INFO] [train] Iter 597897 | loss 1.2961 | loss(rot) 0.8560 | loss(pos) 0.0784 | loss(seq) 0.3618 | grad 8.4600 | lr 0.0000 | time_forward 3.3020 | time_backward 5.0750
[2023-10-25 16:30:22,503::train::INFO] [train] Iter 597898 | loss 0.5160 | loss(rot) 0.1363 | loss(pos) 0.0309 | loss(seq) 0.3488 | grad 2.7360 | lr 0.0000 | time_forward 3.3620 | time_backward 4.7210
[2023-10-25 16:30:29,781::train::INFO] [train] Iter 597899 | loss 0.9559 | loss(rot) 0.6226 | loss(pos) 0.0398 | loss(seq) 0.2935 | grad 3.4743 | lr 0.0000 | time_forward 3.1440 | time_backward 4.1300
[2023-10-25 16:30:37,132::train::INFO] [train] Iter 597900 | loss 0.4566 | loss(rot) 0.1327 | loss(pos) 0.0629 | loss(seq) 0.2610 | grad 2.8860 | lr 0.0000 | time_forward 3.1440 | time_backward 4.2030
[2023-10-25 16:30:39,400::train::INFO] [train] Iter 597901 | loss 1.1192 | loss(rot) 1.0482 | loss(pos) 0.0645 | loss(seq) 0.0064 | grad 3.9294 | lr 0.0000 | time_forward 1.0350 | time_backward 1.2300
[2023-10-25 16:30:42,121::train::INFO] [train] Iter 597902 | loss 0.7860 | loss(rot) 0.6698 | loss(pos) 0.0748 | loss(seq) 0.0415 | grad 4.7039 | lr 0.0000 | time_forward 1.2860 | time_backward 1.4310
[2023-10-25 16:30:50,059::train::INFO] [train] Iter 597903 | loss 1.2362 | loss(rot) 0.0113 | loss(pos) 1.2236 | loss(seq) 0.0014 | grad 7.7724 | lr 0.0000 | time_forward 3.2450 | time_backward 4.6550
[2023-10-25 16:30:57,972::train::INFO] [train] Iter 597904 | loss 1.5597 | loss(rot) 1.5152 | loss(pos) 0.0438 | loss(seq) 0.0006 | grad 19.2020 | lr 0.0000 | time_forward 3.2490 | time_backward 4.6600
[2023-10-25 16:31:04,854::train::INFO] [train] Iter 597905 | loss 1.1583 | loss(rot) 1.0704 | loss(pos) 0.0602 | loss(seq) 0.0276 | grad 3.4700 | lr 0.0000 | time_forward 2.9780 | time_backward 3.9020
[2023-10-25 16:31:07,521::train::INFO] [train] Iter 597906 | loss 0.7790 | loss(rot) 0.3801 | loss(pos) 0.0971 | loss(seq) 0.3018 | grad 3.6229 | lr 0.0000 | time_forward 1.2810 | time_backward 1.3830
[2023-10-25 16:31:15,434::train::INFO] [train] Iter 597907 | loss 0.6148 | loss(rot) 0.2316 | loss(pos) 0.3787 | loss(seq) 0.0046 | grad 4.2207 | lr 0.0000 | time_forward 3.4280 | time_backward 4.4820
[2023-10-25 16:31:17,865::train::INFO] [train] Iter 597908 | loss 0.7300 | loss(rot) 0.3048 | loss(pos) 0.3016 | loss(seq) 0.1236 | grad 2.9398 | lr 0.0000 | time_forward 1.1910 | time_backward 1.2360
[2023-10-25 16:31:25,795::train::INFO] [train] Iter 597909 | loss 2.2400 | loss(rot) 2.1793 | loss(pos) 0.0493 | loss(seq) 0.0114 | grad 8.2229 | lr 0.0000 | time_forward 3.4740 | time_backward 4.4530
[2023-10-25 16:31:32,650::train::INFO] [train] Iter 597910 | loss 0.3579 | loss(rot) 0.1879 | loss(pos) 0.0358 | loss(seq) 0.1342 | grad 2.8894 | lr 0.0000 | time_forward 2.8680 | time_backward 3.9850
[2023-10-25 16:31:39,813::train::INFO] [train] Iter 597911 | loss 1.7745 | loss(rot) 1.7399 | loss(pos) 0.0346 | loss(seq) 0.0000 | grad 23.1117 | lr 0.0000 | time_forward 3.0980 | time_backward 4.0610
[2023-10-25 16:31:46,720::train::INFO] [train] Iter 597912 | loss 0.8982 | loss(rot) 0.4127 | loss(pos) 0.0751 | loss(seq) 0.4104 | grad 3.7666 | lr 0.0000 | time_forward 3.0540 | time_backward 3.8510
[2023-10-25 16:31:54,488::train::INFO] [train] Iter 597913 | loss 0.5875 | loss(rot) 0.2093 | loss(pos) 0.0276 | loss(seq) 0.3506 | grad 2.5319 | lr 0.0000 | time_forward 3.4350 | time_backward 4.3290
[2023-10-25 16:32:01,397::train::INFO] [train] Iter 597914 | loss 0.6014 | loss(rot) 0.1411 | loss(pos) 0.3100 | loss(seq) 0.1502 | grad 4.1622 | lr 0.0000 | time_forward 2.9940 | time_backward 3.9110
[2023-10-25 16:32:04,247::train::INFO] [train] Iter 597915 | loss 0.6913 | loss(rot) 0.2411 | loss(pos) 0.4239 | loss(seq) 0.0262 | grad 5.9157 | lr 0.0000 | time_forward 1.3990 | time_backward 1.4480
[2023-10-25 16:32:12,617::train::INFO] [train] Iter 597916 | loss 0.6345 | loss(rot) 0.3188 | loss(pos) 0.0547 | loss(seq) 0.2610 | grad 2.6918 | lr 0.0000 | time_forward 3.5760 | time_backward 4.7720
[2023-10-25 16:32:15,390::train::INFO] [train] Iter 597917 | loss 1.3619 | loss(rot) 0.6352 | loss(pos) 0.2222 | loss(seq) 0.5044 | grad 5.7566 | lr 0.0000 | time_forward 1.3670 | time_backward 1.4040
[2023-10-25 16:32:22,385::train::INFO] [train] Iter 597918 | loss 1.3629 | loss(rot) 0.9479 | loss(pos) 0.1100 | loss(seq) 0.3050 | grad 6.0201 | lr 0.0000 | time_forward 3.0430 | time_backward 3.9330
[2023-10-25 16:32:30,380::train::INFO] [train] Iter 597919 | loss 0.7015 | loss(rot) 0.4967 | loss(pos) 0.0410 | loss(seq) 0.1638 | grad 6.6363 | lr 0.0000 | time_forward 3.5280 | time_backward 4.4640
[2023-10-25 16:32:38,620::train::INFO] [train] Iter 597920 | loss 0.3213 | loss(rot) 0.2690 | loss(pos) 0.0483 | loss(seq) 0.0040 | grad 2.2967 | lr 0.0000 | time_forward 3.6750 | time_backward 4.5610
[2023-10-25 16:32:46,835::train::INFO] [train] Iter 597921 | loss 0.8813 | loss(rot) 0.7633 | loss(pos) 0.0423 | loss(seq) 0.0756 | grad 4.6478 | lr 0.0000 | time_forward 3.5810 | time_backward 4.6310
[2023-10-25 16:32:53,890::train::INFO] [train] Iter 597922 | loss 0.4191 | loss(rot) 0.0554 | loss(pos) 0.0308 | loss(seq) 0.3329 | grad 2.8678 | lr 0.0000 | time_forward 3.0110 | time_backward 4.0400
[2023-10-25 16:33:01,917::train::INFO] [train] Iter 597923 | loss 0.3940 | loss(rot) 0.3466 | loss(pos) 0.0300 | loss(seq) 0.0173 | grad 3.5419 | lr 0.0000 | time_forward 3.6350 | time_backward 4.3900
[2023-10-25 16:33:09,417::train::INFO] [train] Iter 597924 | loss 1.4970 | loss(rot) 1.2804 | loss(pos) 0.0367 | loss(seq) 0.1799 | grad 3.2457 | lr 0.0000 | time_forward 3.4080 | time_backward 4.0900
[2023-10-25 16:33:16,448::train::INFO] [train] Iter 597925 | loss 0.3049 | loss(rot) 0.1132 | loss(pos) 0.0266 | loss(seq) 0.1651 | grad 1.6287 | lr 0.0000 | time_forward 3.1090 | time_backward 3.9190
[2023-10-25 16:33:23,921::train::INFO] [train] Iter 597926 | loss 0.3870 | loss(rot) 0.1060 | loss(pos) 0.0362 | loss(seq) 0.2447 | grad 2.5775 | lr 0.0000 | time_forward 3.3030 | time_backward 4.1670
[2023-10-25 16:33:29,335::train::INFO] [train] Iter 597927 | loss 0.6938 | loss(rot) 0.0621 | loss(pos) 0.6292 | loss(seq) 0.0025 | grad 9.1438 | lr 0.0000 | time_forward 2.3530 | time_backward 3.0570
[2023-10-25 16:33:32,145::train::INFO] [train] Iter 597928 | loss 0.6018 | loss(rot) 0.5088 | loss(pos) 0.0380 | loss(seq) 0.0550 | grad 4.5578 | lr 0.0000 | time_forward 1.3060 | time_backward 1.4860
[2023-10-25 16:33:34,967::train::INFO] [train] Iter 597929 | loss 0.8505 | loss(rot) 0.8029 | loss(pos) 0.0170 | loss(seq) 0.0306 | grad 9.1903 | lr 0.0000 | time_forward 1.3530 | time_backward 1.4650
[2023-10-25 16:33:42,308::train::INFO] [train] Iter 597930 | loss 0.6936 | loss(rot) 0.1323 | loss(pos) 0.5334 | loss(seq) 0.0280 | grad 4.6226 | lr 0.0000 | time_forward 3.2230 | time_backward 4.1150
[2023-10-25 16:33:49,878::train::INFO] [train] Iter 597931 | loss 0.3093 | loss(rot) 0.0629 | loss(pos) 0.0305 | loss(seq) 0.2159 | grad 1.9628 | lr 0.0000 | time_forward 3.3650 | time_backward 4.2030
[2023-10-25 16:33:57,603::train::INFO] [train] Iter 597932 | loss 0.2337 | loss(rot) 0.1716 | loss(pos) 0.0219 | loss(seq) 0.0402 | grad 2.4693 | lr 0.0000 | time_forward 3.3540 | time_backward 4.3670
[2023-10-25 16:34:05,212::train::INFO] [train] Iter 597933 | loss 0.5471 | loss(rot) 0.4633 | loss(pos) 0.0837 | loss(seq) 0.0000 | grad 2.8855 | lr 0.0000 | time_forward 3.1520 | time_backward 4.4540
[2023-10-25 16:34:13,988::train::INFO] [train] Iter 597934 | loss 0.3873 | loss(rot) 0.2375 | loss(pos) 0.0255 | loss(seq) 0.1244 | grad 1.7227 | lr 0.0000 | time_forward 3.9860 | time_backward 4.7870
[2023-10-25 16:34:22,290::train::INFO] [train] Iter 597935 | loss 0.6835 | loss(rot) 0.2222 | loss(pos) 0.1043 | loss(seq) 0.3570 | grad 2.9730 | lr 0.0000 | time_forward 3.5110 | time_backward 4.7870
[2023-10-25 16:34:29,256::train::INFO] [train] Iter 597936 | loss 0.4194 | loss(rot) 0.1976 | loss(pos) 0.0258 | loss(seq) 0.1959 | grad 5.9510 | lr 0.0000 | time_forward 3.1110 | time_backward 3.8530
[2023-10-25 16:34:37,681::train::INFO] [train] Iter 597937 | loss 0.4717 | loss(rot) 0.0450 | loss(pos) 0.4182 | loss(seq) 0.0084 | grad 4.5443 | lr 0.0000 | time_forward 3.5850 | time_backward 4.8360
[2023-10-25 16:34:46,015::train::INFO] [train] Iter 597938 | loss 1.6471 | loss(rot) 1.6267 | loss(pos) 0.0203 | loss(seq) 0.0001 | grad 32.7947 | lr 0.0000 | time_forward 3.5210 | time_backward 4.8100
[2023-10-25 16:34:54,224::train::INFO] [train] Iter 597939 | loss 0.6756 | loss(rot) 0.1965 | loss(pos) 0.4086 | loss(seq) 0.0706 | grad 4.3362 | lr 0.0000 | time_forward 3.4620 | time_backward 4.7450
[2023-10-25 16:35:02,596::train::INFO] [train] Iter 597940 | loss 0.5026 | loss(rot) 0.1345 | loss(pos) 0.0498 | loss(seq) 0.3182 | grad 2.4699 | lr 0.0000 | time_forward 3.4960 | time_backward 4.8690
[2023-10-25 16:35:10,185::train::INFO] [train] Iter 597941 | loss 0.4150 | loss(rot) 0.2080 | loss(pos) 0.0161 | loss(seq) 0.1909 | grad 4.3568 | lr 0.0000 | time_forward 3.4490 | time_backward 4.1370
[2023-10-25 16:35:17,969::train::INFO] [train] Iter 597942 | loss 1.3417 | loss(rot) 0.0089 | loss(pos) 1.3324 | loss(seq) 0.0004 | grad 23.9518 | lr 0.0000 | time_forward 3.5250 | time_backward 4.2550
[2023-10-25 16:35:25,178::train::INFO] [train] Iter 597943 | loss 0.5139 | loss(rot) 0.1752 | loss(pos) 0.1040 | loss(seq) 0.2348 | grad 4.5797 | lr 0.0000 | time_forward 3.3010 | time_backward 3.9050
[2023-10-25 16:35:28,097::train::INFO] [train] Iter 597944 | loss 0.2630 | loss(rot) 0.0872 | loss(pos) 0.0246 | loss(seq) 0.1512 | grad 1.9650 | lr 0.0000 | time_forward 1.4940 | time_backward 1.4220
[2023-10-25 16:35:30,958::train::INFO] [train] Iter 597945 | loss 1.0847 | loss(rot) 0.3478 | loss(pos) 0.4846 | loss(seq) 0.2523 | grad 7.9284 | lr 0.0000 | time_forward 1.3390 | time_backward 1.4970
[2023-10-25 16:35:38,840::train::INFO] [train] Iter 597946 | loss 1.1853 | loss(rot) 0.8005 | loss(pos) 0.0579 | loss(seq) 0.3269 | grad 3.9635 | lr 0.0000 | time_forward 3.5200 | time_backward 4.3580
[2023-10-25 16:35:45,920::train::INFO] [train] Iter 597947 | loss 0.2024 | loss(rot) 0.1055 | loss(pos) 0.0891 | loss(seq) 0.0078 | grad 2.4642 | lr 0.0000 | time_forward 3.0920 | time_backward 3.9850
[2023-10-25 16:35:52,884::train::INFO] [train] Iter 597948 | loss 0.0967 | loss(rot) 0.0408 | loss(pos) 0.0106 | loss(seq) 0.0452 | grad 1.2881 | lr 0.0000 | time_forward 3.0490 | time_backward 3.9120
[2023-10-25 16:35:55,670::train::INFO] [train] Iter 597949 | loss 0.5279 | loss(rot) 0.0368 | loss(pos) 0.4851 | loss(seq) 0.0060 | grad 4.8468 | lr 0.0000 | time_forward 1.3470 | time_backward 1.4350
[2023-10-25 16:36:03,962::train::INFO] [train] Iter 597950 | loss 1.2616 | loss(rot) 1.2083 | loss(pos) 0.0342 | loss(seq) 0.0191 | grad 5.1598 | lr 0.0000 | time_forward 3.5100 | time_backward 4.7560
[2023-10-25 16:36:12,077::train::INFO] [train] Iter 597951 | loss 0.3748 | loss(rot) 0.2718 | loss(pos) 0.0458 | loss(seq) 0.0572 | grad 2.9696 | lr 0.0000 | time_forward 3.4350 | time_backward 4.6770
[2023-10-25 16:36:14,116::train::INFO] [train] Iter 597952 | loss 2.3878 | loss(rot) 1.4486 | loss(pos) 0.4001 | loss(seq) 0.5391 | grad 6.1255 | lr 0.0000 | time_forward 1.0060 | time_backward 1.0290
[2023-10-25 16:36:22,371::train::INFO] [train] Iter 597953 | loss 0.6007 | loss(rot) 0.2702 | loss(pos) 0.0963 | loss(seq) 0.2342 | grad 3.4128 | lr 0.0000 | time_forward 3.4130 | time_backward 4.8390
[2023-10-25 16:36:30,145::train::INFO] [train] Iter 597954 | loss 1.1981 | loss(rot) 0.7601 | loss(pos) 0.0544 | loss(seq) 0.3836 | grad 4.5507 | lr 0.0000 | time_forward 3.4410 | time_backward 4.3300
[2023-10-25 16:36:37,726::train::INFO] [train] Iter 597955 | loss 0.9411 | loss(rot) 0.5666 | loss(pos) 0.0587 | loss(seq) 0.3157 | grad 3.0715 | lr 0.0000 | time_forward 3.2650 | time_backward 4.3120
[2023-10-25 16:36:46,611::train::INFO] [train] Iter 597956 | loss 0.6591 | loss(rot) 0.1946 | loss(pos) 0.0447 | loss(seq) 0.4198 | grad 3.1195 | lr 0.0000 | time_forward 4.2520 | time_backward 4.6290
[2023-10-25 16:36:49,660::train::INFO] [train] Iter 597957 | loss 0.4643 | loss(rot) 0.1059 | loss(pos) 0.0736 | loss(seq) 0.2848 | grad 4.6060 | lr 0.0000 | time_forward 1.5760 | time_backward 1.4690
[2023-10-25 16:37:01,593::train::INFO] [train] Iter 597958 | loss 0.8797 | loss(rot) 0.6565 | loss(pos) 0.0709 | loss(seq) 0.1523 | grad 3.1461 | lr 0.0000 | time_forward 6.8370 | time_backward 5.0850
[2023-10-25 16:37:09,353::train::INFO] [train] Iter 597959 | loss 0.8025 | loss(rot) 0.0387 | loss(pos) 0.7613 | loss(seq) 0.0025 | grad 13.2113 | lr 0.0000 | time_forward 3.2560 | time_backward 4.5000
[2023-10-25 16:37:12,528::train::INFO] [train] Iter 597960 | loss 0.4869 | loss(rot) 0.1302 | loss(pos) 0.2326 | loss(seq) 0.1241 | grad 3.5412 | lr 0.0000 | time_forward 1.4720 | time_backward 1.7000
[2023-10-25 16:37:21,341::train::INFO] [train] Iter 597961 | loss 1.0129 | loss(rot) 0.0589 | loss(pos) 0.8021 | loss(seq) 0.1520 | grad 7.9109 | lr 0.0000 | time_forward 4.0060 | time_backward 4.7920
[2023-10-25 16:37:30,378::train::INFO] [train] Iter 597962 | loss 0.6490 | loss(rot) 0.0436 | loss(pos) 0.4614 | loss(seq) 0.1441 | grad 4.7567 | lr 0.0000 | time_forward 4.1270 | time_backward 4.9060
[2023-10-25 16:37:33,013::train::INFO] [train] Iter 597963 | loss 0.2942 | loss(rot) 0.1280 | loss(pos) 0.0646 | loss(seq) 0.1015 | grad 2.8432 | lr 0.0000 | time_forward 1.2530 | time_backward 1.3790
[2023-10-25 16:37:41,547::train::INFO] [train] Iter 597964 | loss 5.4263 | loss(rot) 0.0329 | loss(pos) 5.3934 | loss(seq) 0.0000 | grad 41.0243 | lr 0.0000 | time_forward 3.7030 | time_backward 4.8270