text
stringlengths
56
1.16k
[2023-10-25 16:06:29,286::train::INFO] [train] Iter 597665 | loss 0.4608 | loss(rot) 0.1984 | loss(pos) 0.0464 | loss(seq) 0.2161 | grad 3.3357 | lr 0.0000 | time_forward 1.3520 | time_backward 1.5250
[2023-10-25 16:06:31,674::train::INFO] [train] Iter 597666 | loss 1.0843 | loss(rot) 0.9537 | loss(pos) 0.1306 | loss(seq) 0.0000 | grad 21.4268 | lr 0.0000 | time_forward 1.0770 | time_backward 1.3080
[2023-10-25 16:06:34,450::train::INFO] [train] Iter 597667 | loss 1.3589 | loss(rot) 1.2653 | loss(pos) 0.0399 | loss(seq) 0.0537 | grad 13.1355 | lr 0.0000 | time_forward 1.3020 | time_backward 1.4640
[2023-10-25 16:06:43,021::train::INFO] [train] Iter 597668 | loss 0.7408 | loss(rot) 0.4259 | loss(pos) 0.1549 | loss(seq) 0.1600 | grad 2.7687 | lr 0.0000 | time_forward 3.5130 | time_backward 5.0260
[2023-10-25 16:06:50,073::train::INFO] [train] Iter 597669 | loss 0.6366 | loss(rot) 0.3582 | loss(pos) 0.0441 | loss(seq) 0.2342 | grad 3.5570 | lr 0.0000 | time_forward 3.1630 | time_backward 3.8850
[2023-10-25 16:06:52,881::train::INFO] [train] Iter 597670 | loss 0.7609 | loss(rot) 0.5334 | loss(pos) 0.0325 | loss(seq) 0.1950 | grad 5.4791 | lr 0.0000 | time_forward 1.3130 | time_backward 1.4920
[2023-10-25 16:06:59,499::train::INFO] [train] Iter 597671 | loss 0.3863 | loss(rot) 0.1058 | loss(pos) 0.0398 | loss(seq) 0.2407 | grad 2.9714 | lr 0.0000 | time_forward 2.8840 | time_backward 3.7310
[2023-10-25 16:07:06,337::train::INFO] [train] Iter 597672 | loss 0.5188 | loss(rot) 0.2783 | loss(pos) 0.1579 | loss(seq) 0.0827 | grad 3.9673 | lr 0.0000 | time_forward 2.8760 | time_backward 3.9590
[2023-10-25 16:07:14,443::train::INFO] [train] Iter 597673 | loss 0.5255 | loss(rot) 0.1566 | loss(pos) 0.3425 | loss(seq) 0.0264 | grad 3.2272 | lr 0.0000 | time_forward 3.3220 | time_backward 4.7810
[2023-10-25 16:07:16,680::train::INFO] [train] Iter 597674 | loss 0.5152 | loss(rot) 0.1870 | loss(pos) 0.2270 | loss(seq) 0.1012 | grad 4.1312 | lr 0.0000 | time_forward 1.0260 | time_backward 1.2090
[2023-10-25 16:07:23,525::train::INFO] [train] Iter 597675 | loss 0.2706 | loss(rot) 0.1171 | loss(pos) 0.0340 | loss(seq) 0.1195 | grad 2.7874 | lr 0.0000 | time_forward 2.9660 | time_backward 3.8760
[2023-10-25 16:07:30,354::train::INFO] [train] Iter 597676 | loss 0.9016 | loss(rot) 0.0772 | loss(pos) 0.8222 | loss(seq) 0.0022 | grad 19.6951 | lr 0.0000 | time_forward 2.9550 | time_backward 3.8700
[2023-10-25 16:07:33,106::train::INFO] [train] Iter 597677 | loss 0.4173 | loss(rot) 0.2991 | loss(pos) 0.0180 | loss(seq) 0.1002 | grad 3.5328 | lr 0.0000 | time_forward 1.3030 | time_backward 1.4460
[2023-10-25 16:07:41,147::train::INFO] [train] Iter 597678 | loss 0.2261 | loss(rot) 0.0816 | loss(pos) 0.0243 | loss(seq) 0.1201 | grad 1.7286 | lr 0.0000 | time_forward 3.3900 | time_backward 4.6480
[2023-10-25 16:07:49,080::train::INFO] [train] Iter 597679 | loss 0.8054 | loss(rot) 0.6531 | loss(pos) 0.0412 | loss(seq) 0.1111 | grad 13.9220 | lr 0.0000 | time_forward 3.2640 | time_backward 4.6660
[2023-10-25 16:07:57,041::train::INFO] [train] Iter 597680 | loss 0.3425 | loss(rot) 0.1822 | loss(pos) 0.1291 | loss(seq) 0.0312 | grad 2.5208 | lr 0.0000 | time_forward 3.3030 | time_backward 4.6550
[2023-10-25 16:08:03,722::train::INFO] [train] Iter 597681 | loss 0.7258 | loss(rot) 0.0410 | loss(pos) 0.6796 | loss(seq) 0.0052 | grad 9.6062 | lr 0.0000 | time_forward 2.8770 | time_backward 3.8000
[2023-10-25 16:08:10,615::train::INFO] [train] Iter 597682 | loss 0.4585 | loss(rot) 0.0940 | loss(pos) 0.0217 | loss(seq) 0.3429 | grad 1.8699 | lr 0.0000 | time_forward 3.0050 | time_backward 3.8850
[2023-10-25 16:08:13,342::train::INFO] [train] Iter 597683 | loss 0.8245 | loss(rot) 0.4579 | loss(pos) 0.0357 | loss(seq) 0.3309 | grad 134.4355 | lr 0.0000 | time_forward 1.3070 | time_backward 1.4180
[2023-10-25 16:08:20,689::train::INFO] [train] Iter 597684 | loss 1.5431 | loss(rot) 1.1091 | loss(pos) 0.1338 | loss(seq) 0.3002 | grad 5.1646 | lr 0.0000 | time_forward 3.2040 | time_backward 4.1400
[2023-10-25 16:08:28,852::train::INFO] [train] Iter 597685 | loss 0.9300 | loss(rot) 0.5915 | loss(pos) 0.0670 | loss(seq) 0.2715 | grad 3.4059 | lr 0.0000 | time_forward 3.2970 | time_backward 4.8630
[2023-10-25 16:08:31,323::train::INFO] [train] Iter 597686 | loss 1.1233 | loss(rot) 0.8011 | loss(pos) 0.0583 | loss(seq) 0.2638 | grad 14.7161 | lr 0.0000 | time_forward 1.2080 | time_backward 1.2600
[2023-10-25 16:08:38,676::train::INFO] [train] Iter 597687 | loss 0.4952 | loss(rot) 0.4605 | loss(pos) 0.0347 | loss(seq) 0.0000 | grad 31.8979 | lr 0.0000 | time_forward 3.1200 | time_backward 4.2130
[2023-10-25 16:08:41,496::train::INFO] [train] Iter 597688 | loss 0.4354 | loss(rot) 0.3004 | loss(pos) 0.0394 | loss(seq) 0.0955 | grad 4.4443 | lr 0.0000 | time_forward 1.3580 | time_backward 1.4600
[2023-10-25 16:08:49,671::train::INFO] [train] Iter 597689 | loss 0.3556 | loss(rot) 0.1755 | loss(pos) 0.1204 | loss(seq) 0.0598 | grad 4.3136 | lr 0.0000 | time_forward 3.2270 | time_backward 4.9310
[2023-10-25 16:08:52,569::train::INFO] [train] Iter 597690 | loss 0.7879 | loss(rot) 0.1589 | loss(pos) 0.5862 | loss(seq) 0.0428 | grad 8.0880 | lr 0.0000 | time_forward 1.3800 | time_backward 1.5150
[2023-10-25 16:08:54,959::train::INFO] [train] Iter 597691 | loss 0.4837 | loss(rot) 0.4418 | loss(pos) 0.0198 | loss(seq) 0.0220 | grad 3.7772 | lr 0.0000 | time_forward 1.1450 | time_backward 1.2420
[2023-10-25 16:09:02,199::train::INFO] [train] Iter 597692 | loss 0.2162 | loss(rot) 0.1383 | loss(pos) 0.0335 | loss(seq) 0.0444 | grad 2.5145 | lr 0.0000 | time_forward 3.0080 | time_backward 4.2120
[2023-10-25 16:09:09,845::train::INFO] [train] Iter 597693 | loss 1.6002 | loss(rot) 1.4918 | loss(pos) 0.0873 | loss(seq) 0.0210 | grad 4.4248 | lr 0.0000 | time_forward 3.2020 | time_backward 4.4410
[2023-10-25 16:09:16,850::train::INFO] [train] Iter 597694 | loss 0.4041 | loss(rot) 0.0916 | loss(pos) 0.0927 | loss(seq) 0.2197 | grad 2.4130 | lr 0.0000 | time_forward 2.9330 | time_backward 4.0680
[2023-10-25 16:09:25,266::train::INFO] [train] Iter 597695 | loss 1.6602 | loss(rot) 1.6196 | loss(pos) 0.0314 | loss(seq) 0.0092 | grad 5.8359 | lr 0.0000 | time_forward 3.3830 | time_backward 5.0310
[2023-10-25 16:09:28,092::train::INFO] [train] Iter 597696 | loss 1.2186 | loss(rot) 0.1605 | loss(pos) 1.0504 | loss(seq) 0.0078 | grad 8.7261 | lr 0.0000 | time_forward 1.3090 | time_backward 1.5130
[2023-10-25 16:09:35,891::train::INFO] [train] Iter 597697 | loss 1.1711 | loss(rot) 0.5759 | loss(pos) 0.1747 | loss(seq) 0.4206 | grad 2.7510 | lr 0.0000 | time_forward 3.1940 | time_backward 4.6010
[2023-10-25 16:09:44,300::train::INFO] [train] Iter 597698 | loss 0.7656 | loss(rot) 0.0934 | loss(pos) 0.6549 | loss(seq) 0.0173 | grad 4.9395 | lr 0.0000 | time_forward 3.4380 | time_backward 4.9680
[2023-10-25 16:09:52,746::train::INFO] [train] Iter 597699 | loss 0.3635 | loss(rot) 0.2674 | loss(pos) 0.0537 | loss(seq) 0.0425 | grad 3.1483 | lr 0.0000 | time_forward 3.4500 | time_backward 4.9930
[2023-10-25 16:09:55,661::train::INFO] [train] Iter 597700 | loss 0.5697 | loss(rot) 0.4194 | loss(pos) 0.0224 | loss(seq) 0.1280 | grad 3.7159 | lr 0.0000 | time_forward 1.3740 | time_backward 1.5390
[2023-10-25 16:10:03,028::train::INFO] [train] Iter 597701 | loss 0.5493 | loss(rot) 0.1889 | loss(pos) 0.0767 | loss(seq) 0.2838 | grad 3.8761 | lr 0.0000 | time_forward 3.1650 | time_backward 4.1980
[2023-10-25 16:10:10,285::train::INFO] [train] Iter 597702 | loss 0.4303 | loss(rot) 0.2558 | loss(pos) 0.0239 | loss(seq) 0.1507 | grad 2.6573 | lr 0.0000 | time_forward 3.1570 | time_backward 4.0960
[2023-10-25 16:10:17,621::train::INFO] [train] Iter 597703 | loss 1.0813 | loss(rot) 0.0497 | loss(pos) 1.0299 | loss(seq) 0.0016 | grad 10.6897 | lr 0.0000 | time_forward 3.1450 | time_backward 4.1880
[2023-10-25 16:10:20,441::train::INFO] [train] Iter 597704 | loss 1.4633 | loss(rot) 0.9487 | loss(pos) 0.1442 | loss(seq) 0.3705 | grad 3.9908 | lr 0.0000 | time_forward 1.3170 | time_backward 1.4990
[2023-10-25 16:10:27,762::train::INFO] [train] Iter 597705 | loss 0.2373 | loss(rot) 0.1208 | loss(pos) 0.0956 | loss(seq) 0.0209 | grad 2.8602 | lr 0.0000 | time_forward 3.2090 | time_backward 4.1070
[2023-10-25 16:10:30,609::train::INFO] [train] Iter 597706 | loss 1.0051 | loss(rot) 0.6459 | loss(pos) 0.0344 | loss(seq) 0.3248 | grad 3.3126 | lr 0.0000 | time_forward 1.3210 | time_backward 1.5230
[2023-10-25 16:10:33,339::train::INFO] [train] Iter 597707 | loss 0.4395 | loss(rot) 0.2176 | loss(pos) 0.0228 | loss(seq) 0.1990 | grad 3.2090 | lr 0.0000 | time_forward 1.2720 | time_backward 1.4560
[2023-10-25 16:10:36,623::train::INFO] [train] Iter 597708 | loss 0.3357 | loss(rot) 0.1394 | loss(pos) 0.1659 | loss(seq) 0.0304 | grad 3.0036 | lr 0.0000 | time_forward 1.4810 | time_backward 1.8000
[2023-10-25 16:10:44,078::train::INFO] [train] Iter 597709 | loss 1.6889 | loss(rot) 1.3496 | loss(pos) 0.0870 | loss(seq) 0.2523 | grad 2.3878 | lr 0.0000 | time_forward 3.1630 | time_backward 4.2880
[2023-10-25 16:10:51,706::train::INFO] [train] Iter 597710 | loss 0.4842 | loss(rot) 0.1146 | loss(pos) 0.2321 | loss(seq) 0.1375 | grad 5.6620 | lr 0.0000 | time_forward 3.3230 | time_backward 4.2890
[2023-10-25 16:10:54,644::train::INFO] [train] Iter 597711 | loss 2.1125 | loss(rot) 2.0219 | loss(pos) 0.0335 | loss(seq) 0.0571 | grad 4.8568 | lr 0.0000 | time_forward 1.3250 | time_backward 1.6100
[2023-10-25 16:11:01,991::train::INFO] [train] Iter 597712 | loss 0.3443 | loss(rot) 0.2784 | loss(pos) 0.0129 | loss(seq) 0.0531 | grad 22.4084 | lr 0.0000 | time_forward 3.1260 | time_backward 4.2170
[2023-10-25 16:11:04,783::train::INFO] [train] Iter 597713 | loss 1.3926 | loss(rot) 1.1644 | loss(pos) 0.0674 | loss(seq) 0.1609 | grad 55.2699 | lr 0.0000 | time_forward 1.3250 | time_backward 1.4630
[2023-10-25 16:11:13,163::train::INFO] [train] Iter 597714 | loss 0.2187 | loss(rot) 0.0863 | loss(pos) 0.0141 | loss(seq) 0.1183 | grad 1.5616 | lr 0.0000 | time_forward 3.4270 | time_backward 4.9500
[2023-10-25 16:11:20,468::train::INFO] [train] Iter 597715 | loss 0.6082 | loss(rot) 0.2327 | loss(pos) 0.0351 | loss(seq) 0.3404 | grad 3.1585 | lr 0.0000 | time_forward 3.1420 | time_backward 4.1600
[2023-10-25 16:11:23,159::train::INFO] [train] Iter 597716 | loss 0.8272 | loss(rot) 0.7817 | loss(pos) 0.0278 | loss(seq) 0.0177 | grad 25.4778 | lr 0.0000 | time_forward 1.2350 | time_backward 1.4530
[2023-10-25 16:11:31,647::train::INFO] [train] Iter 597717 | loss 1.0875 | loss(rot) 0.7851 | loss(pos) 0.0651 | loss(seq) 0.2373 | grad 3.6192 | lr 0.0000 | time_forward 3.4010 | time_backward 5.0840
[2023-10-25 16:11:39,040::train::INFO] [train] Iter 597718 | loss 0.2502 | loss(rot) 0.0631 | loss(pos) 0.0239 | loss(seq) 0.1632 | grad 2.3248 | lr 0.0000 | time_forward 3.2560 | time_backward 4.1340
[2023-10-25 16:11:47,015::train::INFO] [train] Iter 597719 | loss 0.8662 | loss(rot) 0.4566 | loss(pos) 0.0468 | loss(seq) 0.3629 | grad 2.9842 | lr 0.0000 | time_forward 3.3740 | time_backward 4.5980
[2023-10-25 16:11:49,614::train::INFO] [train] Iter 597720 | loss 0.9924 | loss(rot) 0.6369 | loss(pos) 0.2013 | loss(seq) 0.1542 | grad 7.7689 | lr 0.0000 | time_forward 1.2020 | time_backward 1.3930
[2023-10-25 16:11:52,322::train::INFO] [train] Iter 597721 | loss 3.2824 | loss(rot) 0.0234 | loss(pos) 3.2585 | loss(seq) 0.0005 | grad 15.5181 | lr 0.0000 | time_forward 1.2890 | time_backward 1.4160
[2023-10-25 16:11:59,078::train::INFO] [train] Iter 597722 | loss 1.7345 | loss(rot) 1.6956 | loss(pos) 0.0323 | loss(seq) 0.0066 | grad 34.0907 | lr 0.0000 | time_forward 2.9060 | time_backward 3.8450
[2023-10-25 16:12:01,873::train::INFO] [train] Iter 597723 | loss 0.3908 | loss(rot) 0.1811 | loss(pos) 0.0413 | loss(seq) 0.1684 | grad 14.0484 | lr 0.0000 | time_forward 1.3020 | time_backward 1.4900
[2023-10-25 16:12:08,556::train::INFO] [train] Iter 597724 | loss 0.4392 | loss(rot) 0.1505 | loss(pos) 0.1527 | loss(seq) 0.1360 | grad 3.2237 | lr 0.0000 | time_forward 2.8660 | time_backward 3.8140
[2023-10-25 16:12:13,988::train::INFO] [train] Iter 597725 | loss 0.2411 | loss(rot) 0.0736 | loss(pos) 0.0631 | loss(seq) 0.1044 | grad 2.4898 | lr 0.0000 | time_forward 2.3620 | time_backward 3.0670
[2023-10-25 16:12:16,715::train::INFO] [train] Iter 597726 | loss 0.5263 | loss(rot) 0.1675 | loss(pos) 0.0177 | loss(seq) 0.3411 | grad 2.7569 | lr 0.0000 | time_forward 1.2920 | time_backward 1.4320
[2023-10-25 16:12:24,946::train::INFO] [train] Iter 597727 | loss 1.3187 | loss(rot) 0.0234 | loss(pos) 1.2948 | loss(seq) 0.0004 | grad 13.3596 | lr 0.0000 | time_forward 3.3570 | time_backward 4.8710
[2023-10-25 16:12:27,842::train::INFO] [train] Iter 597728 | loss 0.1565 | loss(rot) 0.0614 | loss(pos) 0.0222 | loss(seq) 0.0729 | grad 2.0663 | lr 0.0000 | time_forward 1.3520 | time_backward 1.5400
[2023-10-25 16:12:30,548::train::INFO] [train] Iter 597729 | loss 1.5725 | loss(rot) 0.9334 | loss(pos) 0.2905 | loss(seq) 0.3486 | grad 6.2375 | lr 0.0000 | time_forward 1.3110 | time_backward 1.3920
[2023-10-25 16:12:36,662::train::INFO] [train] Iter 597730 | loss 0.1687 | loss(rot) 0.1577 | loss(pos) 0.0107 | loss(seq) 0.0003 | grad 1.9757 | lr 0.0000 | time_forward 2.6190 | time_backward 3.4630
[2023-10-25 16:12:39,900::train::INFO] [train] Iter 597731 | loss 1.5556 | loss(rot) 1.3668 | loss(pos) 0.0538 | loss(seq) 0.1350 | grad 4.7601 | lr 0.0000 | time_forward 1.4580 | time_backward 1.7760
[2023-10-25 16:12:46,919::train::INFO] [train] Iter 597732 | loss 1.2852 | loss(rot) 0.7879 | loss(pos) 0.0761 | loss(seq) 0.4212 | grad 4.7113 | lr 0.0000 | time_forward 3.0240 | time_backward 3.9920
[2023-10-25 16:12:53,889::train::INFO] [train] Iter 597733 | loss 0.3772 | loss(rot) 0.3363 | loss(pos) 0.0209 | loss(seq) 0.0200 | grad 6.2513 | lr 0.0000 | time_forward 2.9700 | time_backward 3.9970
[2023-10-25 16:13:01,877::train::INFO] [train] Iter 597734 | loss 0.6167 | loss(rot) 0.0808 | loss(pos) 0.3744 | loss(seq) 0.1614 | grad 6.9346 | lr 0.0000 | time_forward 3.3410 | time_backward 4.6440
[2023-10-25 16:13:04,582::train::INFO] [train] Iter 597735 | loss 0.7303 | loss(rot) 0.3321 | loss(pos) 0.0253 | loss(seq) 0.3729 | grad 9.0501 | lr 0.0000 | time_forward 1.2840 | time_backward 1.4180
[2023-10-25 16:13:11,604::train::INFO] [train] Iter 597736 | loss 0.8619 | loss(rot) 0.4831 | loss(pos) 0.1750 | loss(seq) 0.2038 | grad 3.1593 | lr 0.0000 | time_forward 3.0210 | time_backward 3.9980
[2023-10-25 16:13:19,232::train::INFO] [train] Iter 597737 | loss 0.8399 | loss(rot) 0.3351 | loss(pos) 0.2236 | loss(seq) 0.2811 | grad 3.0014 | lr 0.0000 | time_forward 3.2970 | time_backward 4.3280
[2023-10-25 16:13:21,524::train::INFO] [train] Iter 597738 | loss 0.8860 | loss(rot) 0.6737 | loss(pos) 0.0935 | loss(seq) 0.1188 | grad 3.6028 | lr 0.0000 | time_forward 1.0640 | time_backward 1.2250
[2023-10-25 16:13:24,233::train::INFO] [train] Iter 597739 | loss 0.4666 | loss(rot) 0.0181 | loss(pos) 0.4468 | loss(seq) 0.0017 | grad 7.2918 | lr 0.0000 | time_forward 1.2640 | time_backward 1.4430
[2023-10-25 16:13:27,056::train::INFO] [train] Iter 597740 | loss 0.3278 | loss(rot) 0.0816 | loss(pos) 0.2324 | loss(seq) 0.0137 | grad 7.0921 | lr 0.0000 | time_forward 1.3770 | time_backward 1.4430
[2023-10-25 16:13:29,797::train::INFO] [train] Iter 597741 | loss 1.6586 | loss(rot) 0.7819 | loss(pos) 0.4096 | loss(seq) 0.4671 | grad 3.5721 | lr 0.0000 | time_forward 1.3240 | time_backward 1.4130
[2023-10-25 16:13:35,749::train::INFO] [train] Iter 597742 | loss 0.1582 | loss(rot) 0.0590 | loss(pos) 0.0942 | loss(seq) 0.0051 | grad 3.2690 | lr 0.0000 | time_forward 2.6010 | time_backward 3.3490
[2023-10-25 16:13:43,338::train::INFO] [train] Iter 597743 | loss 0.4668 | loss(rot) 0.2655 | loss(pos) 0.0402 | loss(seq) 0.1612 | grad 2.8879 | lr 0.0000 | time_forward 3.3160 | time_backward 4.2690
[2023-10-25 16:13:46,030::train::INFO] [train] Iter 597744 | loss 0.5359 | loss(rot) 0.2249 | loss(pos) 0.2659 | loss(seq) 0.0450 | grad 6.3888 | lr 0.0000 | time_forward 1.3030 | time_backward 1.3860
[2023-10-25 16:13:52,635::train::INFO] [train] Iter 597745 | loss 0.6901 | loss(rot) 0.1000 | loss(pos) 0.0567 | loss(seq) 0.5334 | grad 3.5332 | lr 0.0000 | time_forward 2.8710 | time_backward 3.7310
[2023-10-25 16:13:59,299::train::INFO] [train] Iter 597746 | loss 1.9136 | loss(rot) 1.8823 | loss(pos) 0.0221 | loss(seq) 0.0091 | grad 3.5674 | lr 0.0000 | time_forward 2.8810 | time_backward 3.7780
[2023-10-25 16:14:06,898::train::INFO] [train] Iter 597747 | loss 0.1778 | loss(rot) 0.0648 | loss(pos) 0.0932 | loss(seq) 0.0199 | grad 2.8871 | lr 0.0000 | time_forward 3.0650 | time_backward 4.5310
[2023-10-25 16:14:14,880::train::INFO] [train] Iter 597748 | loss 0.5164 | loss(rot) 0.0631 | loss(pos) 0.4377 | loss(seq) 0.0157 | grad 6.4281 | lr 0.0000 | time_forward 3.3310 | time_backward 4.6490
[2023-10-25 16:14:22,153::train::INFO] [train] Iter 597749 | loss 0.3323 | loss(rot) 0.0727 | loss(pos) 0.2585 | loss(seq) 0.0011 | grad 4.4850 | lr 0.0000 | time_forward 3.1550 | time_backward 4.1150
[2023-10-25 16:14:28,477::train::INFO] [train] Iter 597750 | loss 0.1748 | loss(rot) 0.0590 | loss(pos) 0.0280 | loss(seq) 0.0878 | grad 1.9843 | lr 0.0000 | time_forward 2.6500 | time_backward 3.6700
[2023-10-25 16:14:36,818::train::INFO] [train] Iter 597751 | loss 0.7421 | loss(rot) 0.5873 | loss(pos) 0.0226 | loss(seq) 0.1321 | grad 2.6918 | lr 0.0000 | time_forward 3.5810 | time_backward 4.7560
[2023-10-25 16:14:39,523::train::INFO] [train] Iter 597752 | loss 0.3829 | loss(rot) 0.2339 | loss(pos) 0.0178 | loss(seq) 0.1313 | grad 4.8560 | lr 0.0000 | time_forward 1.3100 | time_backward 1.3910
[2023-10-25 16:14:51,228::train::INFO] [train] Iter 597753 | loss 2.3185 | loss(rot) 2.2765 | loss(pos) 0.0339 | loss(seq) 0.0081 | grad 7.4057 | lr 0.0000 | time_forward 7.3320 | time_backward 4.3700
[2023-10-25 16:14:58,529::train::INFO] [train] Iter 597754 | loss 0.4431 | loss(rot) 0.2943 | loss(pos) 0.1250 | loss(seq) 0.0238 | grad 3.3479 | lr 0.0000 | time_forward 3.0830 | time_backward 4.2160
[2023-10-25 16:15:01,360::train::INFO] [train] Iter 597755 | loss 0.5131 | loss(rot) 0.0556 | loss(pos) 0.0331 | loss(seq) 0.4244 | grad 3.0489 | lr 0.0000 | time_forward 1.3790 | time_backward 1.4480
[2023-10-25 16:15:04,219::train::INFO] [train] Iter 597756 | loss 0.5764 | loss(rot) 0.1702 | loss(pos) 0.0433 | loss(seq) 0.3629 | grad 3.0245 | lr 0.0000 | time_forward 1.3610 | time_backward 1.4940
[2023-10-25 16:15:07,068::train::INFO] [train] Iter 597757 | loss 0.5730 | loss(rot) 0.4851 | loss(pos) 0.0331 | loss(seq) 0.0548 | grad 3.4387 | lr 0.0000 | time_forward 1.4020 | time_backward 1.4440
[2023-10-25 16:15:09,894::train::INFO] [train] Iter 597758 | loss 0.3422 | loss(rot) 0.0730 | loss(pos) 0.0703 | loss(seq) 0.1988 | grad 2.3175 | lr 0.0000 | time_forward 1.3650 | time_backward 1.4570
[2023-10-25 16:15:17,932::train::INFO] [train] Iter 597759 | loss 0.6006 | loss(rot) 0.1239 | loss(pos) 0.4609 | loss(seq) 0.0158 | grad 5.0388 | lr 0.0000 | time_forward 3.3930 | time_backward 4.6420
[2023-10-25 16:15:20,719::train::INFO] [train] Iter 597760 | loss 1.0437 | loss(rot) 0.5165 | loss(pos) 0.1046 | loss(seq) 0.4225 | grad 5.2042 | lr 0.0000 | time_forward 1.2950 | time_backward 1.4890
[2023-10-25 16:15:23,676::train::INFO] [train] Iter 597761 | loss 3.7255 | loss(rot) 0.0107 | loss(pos) 3.7148 | loss(seq) 0.0000 | grad 27.1566 | lr 0.0000 | time_forward 1.3660 | time_backward 1.5870
[2023-10-25 16:15:26,536::train::INFO] [train] Iter 597762 | loss 0.6860 | loss(rot) 0.4837 | loss(pos) 0.0657 | loss(seq) 0.1366 | grad 56.3937 | lr 0.0000 | time_forward 1.3520 | time_backward 1.4780
[2023-10-25 16:15:29,439::train::INFO] [train] Iter 597763 | loss 0.6736 | loss(rot) 0.2160 | loss(pos) 0.0668 | loss(seq) 0.3909 | grad 3.6404 | lr 0.0000 | time_forward 1.3710 | time_backward 1.5280
[2023-10-25 16:15:39,302::train::INFO] [train] Iter 597764 | loss 0.5661 | loss(rot) 0.1871 | loss(pos) 0.0422 | loss(seq) 0.3367 | grad 3.0224 | lr 0.0000 | time_forward 4.3630 | time_backward 5.4970