text
stringlengths 56
1.16k
|
---|
[2023-10-25 20:17:19,076::train::INFO] [train] Iter 599863 | loss 0.8454 | loss(rot) 0.6218 | loss(pos) 0.0264 | loss(seq) 0.1973 | grad 4.2718 | lr 0.0000 | time_forward 1.4860 | time_backward 1.8280 |
[2023-10-25 20:17:27,362::train::INFO] [train] Iter 599864 | loss 1.3953 | loss(rot) 1.2378 | loss(pos) 0.0441 | loss(seq) 0.1134 | grad 7.0989 | lr 0.0000 | time_forward 3.5100 | time_backward 4.7600 |
[2023-10-25 20:17:37,356::train::INFO] [train] Iter 599865 | loss 1.1598 | loss(rot) 0.8921 | loss(pos) 0.0298 | loss(seq) 0.2379 | grad 4.2860 | lr 0.0000 | time_forward 4.0170 | time_backward 5.9740 |
[2023-10-25 20:17:45,744::train::INFO] [train] Iter 599866 | loss 0.3766 | loss(rot) 0.1080 | loss(pos) 0.0280 | loss(seq) 0.2406 | grad 2.4797 | lr 0.0000 | time_forward 3.5440 | time_backward 4.8420 |
[2023-10-25 20:17:54,489::train::INFO] [train] Iter 599867 | loss 0.2814 | loss(rot) 0.2200 | loss(pos) 0.0233 | loss(seq) 0.0381 | grad 4.5956 | lr 0.0000 | time_forward 3.6850 | time_backward 5.0560 |
[2023-10-25 20:18:03,661::train::INFO] [train] Iter 599868 | loss 0.3786 | loss(rot) 0.0924 | loss(pos) 0.2761 | loss(seq) 0.0101 | grad 4.1113 | lr 0.0000 | time_forward 3.8630 | time_backward 5.3060 |
[2023-10-25 20:18:06,403::train::INFO] [train] Iter 599869 | loss 0.6345 | loss(rot) 0.3205 | loss(pos) 0.0640 | loss(seq) 0.2500 | grad 3.4655 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4250 |
[2023-10-25 20:18:14,634::train::INFO] [train] Iter 599870 | loss 0.3309 | loss(rot) 0.0762 | loss(pos) 0.1143 | loss(seq) 0.1404 | grad 3.7649 | lr 0.0000 | time_forward 3.4220 | time_backward 4.7680 |
[2023-10-25 20:18:23,958::train::INFO] [train] Iter 599871 | loss 0.7934 | loss(rot) 0.0156 | loss(pos) 0.7746 | loss(seq) 0.0032 | grad 7.5645 | lr 0.0000 | time_forward 3.9310 | time_backward 5.3890 |
[2023-10-25 20:18:26,653::train::INFO] [train] Iter 599872 | loss 0.2737 | loss(rot) 0.0698 | loss(pos) 0.0155 | loss(seq) 0.1884 | grad 1.9600 | lr 0.0000 | time_forward 1.2630 | time_backward 1.4290 |
[2023-10-25 20:18:29,471::train::INFO] [train] Iter 599873 | loss 0.1887 | loss(rot) 0.1384 | loss(pos) 0.0266 | loss(seq) 0.0236 | grad 2.4770 | lr 0.0000 | time_forward 1.3880 | time_backward 1.4260 |
[2023-10-25 20:18:39,540::train::INFO] [train] Iter 599874 | loss 1.2680 | loss(rot) 0.8378 | loss(pos) 0.1343 | loss(seq) 0.2959 | grad 4.1953 | lr 0.0000 | time_forward 4.1120 | time_backward 5.9200 |
[2023-10-25 20:18:49,532::train::INFO] [train] Iter 599875 | loss 0.7185 | loss(rot) 0.3111 | loss(pos) 0.0438 | loss(seq) 0.3635 | grad 3.9571 | lr 0.0000 | time_forward 4.0410 | time_backward 5.9480 |
[2023-10-25 20:18:57,911::train::INFO] [train] Iter 599876 | loss 0.4856 | loss(rot) 0.3203 | loss(pos) 0.0360 | loss(seq) 0.1293 | grad 3.2002 | lr 0.0000 | time_forward 3.5260 | time_backward 4.8500 |
[2023-10-25 20:19:01,182::train::INFO] [train] Iter 599877 | loss 0.4421 | loss(rot) 0.1293 | loss(pos) 0.2570 | loss(seq) 0.0558 | grad 2.6729 | lr 0.0000 | time_forward 1.4880 | time_backward 1.7790 |
[2023-10-25 20:19:04,610::train::INFO] [train] Iter 599878 | loss 0.4349 | loss(rot) 0.1817 | loss(pos) 0.0861 | loss(seq) 0.1671 | grad 2.2602 | lr 0.0000 | time_forward 1.5250 | time_backward 1.8870 |
[2023-10-25 20:19:14,857::train::INFO] [train] Iter 599879 | loss 0.4797 | loss(rot) 0.3807 | loss(pos) 0.0749 | loss(seq) 0.0241 | grad 1.8317 | lr 0.0000 | time_forward 4.2470 | time_backward 5.9980 |
[2023-10-25 20:19:25,196::train::INFO] [train] Iter 599880 | loss 1.4753 | loss(rot) 0.8584 | loss(pos) 0.1585 | loss(seq) 0.4585 | grad 4.8125 | lr 0.0000 | time_forward 4.1600 | time_backward 6.1640 |
[2023-10-25 20:19:28,043::train::INFO] [train] Iter 599881 | loss 1.4400 | loss(rot) 0.8197 | loss(pos) 0.0876 | loss(seq) 0.5326 | grad 4.0848 | lr 0.0000 | time_forward 1.3560 | time_backward 1.4880 |
[2023-10-25 20:19:36,049::train::INFO] [train] Iter 599882 | loss 1.0007 | loss(rot) 0.8296 | loss(pos) 0.0514 | loss(seq) 0.1198 | grad 3.2341 | lr 0.0000 | time_forward 3.3540 | time_backward 4.6160 |
[2023-10-25 20:19:46,077::train::INFO] [train] Iter 599883 | loss 0.3598 | loss(rot) 0.3241 | loss(pos) 0.0211 | loss(seq) 0.0147 | grad 3.1819 | lr 0.0000 | time_forward 4.2310 | time_backward 5.7940 |
[2023-10-25 20:19:56,145::train::INFO] [train] Iter 599884 | loss 0.2857 | loss(rot) 0.0612 | loss(pos) 0.0751 | loss(seq) 0.1495 | grad 2.3000 | lr 0.0000 | time_forward 4.1160 | time_backward 5.9480 |
[2023-10-25 20:19:59,585::train::INFO] [train] Iter 599885 | loss 1.6829 | loss(rot) 1.6513 | loss(pos) 0.0315 | loss(seq) 0.0000 | grad 4.0684 | lr 0.0000 | time_forward 1.5440 | time_backward 1.8940 |
[2023-10-25 20:20:08,774::train::INFO] [train] Iter 599886 | loss 0.9760 | loss(rot) 0.2377 | loss(pos) 0.1388 | loss(seq) 0.5994 | grad 5.3882 | lr 0.0000 | time_forward 3.9920 | time_backward 5.1940 |
[2023-10-25 20:20:11,545::train::INFO] [train] Iter 599887 | loss 0.1241 | loss(rot) 0.0968 | loss(pos) 0.0268 | loss(seq) 0.0005 | grad 2.3582 | lr 0.0000 | time_forward 1.3040 | time_backward 1.4630 |
[2023-10-25 20:20:15,056::train::INFO] [train] Iter 599888 | loss 1.3850 | loss(rot) 1.2925 | loss(pos) 0.0323 | loss(seq) 0.0603 | grad 15.4095 | lr 0.0000 | time_forward 1.5780 | time_backward 1.9290 |
[2023-10-25 20:20:25,262::train::INFO] [train] Iter 599889 | loss 0.2452 | loss(rot) 0.0679 | loss(pos) 0.1599 | loss(seq) 0.0174 | grad 3.3389 | lr 0.0000 | time_forward 4.1640 | time_backward 6.0230 |
[2023-10-25 20:20:35,493::train::INFO] [train] Iter 599890 | loss 0.2029 | loss(rot) 0.1837 | loss(pos) 0.0158 | loss(seq) 0.0035 | grad 2.1447 | lr 0.0000 | time_forward 4.1480 | time_backward 6.0790 |
[2023-10-25 20:20:45,669::train::INFO] [train] Iter 599891 | loss 0.9336 | loss(rot) 0.4960 | loss(pos) 0.0642 | loss(seq) 0.3735 | grad 3.3256 | lr 0.0000 | time_forward 4.1910 | time_backward 5.9820 |
[2023-10-25 20:20:54,345::train::INFO] [train] Iter 599892 | loss 2.4425 | loss(rot) 2.0993 | loss(pos) 0.1417 | loss(seq) 0.2016 | grad 17.5740 | lr 0.0000 | time_forward 3.6840 | time_backward 4.9900 |
[2023-10-25 20:21:02,722::train::INFO] [train] Iter 599893 | loss 0.6471 | loss(rot) 0.6165 | loss(pos) 0.0305 | loss(seq) 0.0000 | grad 2.3303 | lr 0.0000 | time_forward 3.5230 | time_backward 4.8500 |
[2023-10-25 20:21:12,725::train::INFO] [train] Iter 599894 | loss 0.9426 | loss(rot) 0.2566 | loss(pos) 0.3555 | loss(seq) 0.3305 | grad 3.1391 | lr 0.0000 | time_forward 4.0620 | time_backward 5.9370 |
[2023-10-25 20:21:21,209::train::INFO] [train] Iter 599895 | loss 2.1470 | loss(rot) 2.0400 | loss(pos) 0.0561 | loss(seq) 0.0508 | grad 3.8906 | lr 0.0000 | time_forward 3.6040 | time_backward 4.8780 |
[2023-10-25 20:21:31,095::train::INFO] [train] Iter 599896 | loss 2.0274 | loss(rot) 1.9792 | loss(pos) 0.0394 | loss(seq) 0.0088 | grad 4.0264 | lr 0.0000 | time_forward 4.0360 | time_backward 5.8470 |
[2023-10-25 20:21:40,295::train::INFO] [train] Iter 599897 | loss 0.8160 | loss(rot) 0.4360 | loss(pos) 0.0552 | loss(seq) 0.3248 | grad 3.1738 | lr 0.0000 | time_forward 3.8870 | time_backward 5.3100 |
[2023-10-25 20:21:43,532::train::INFO] [train] Iter 599898 | loss 0.3525 | loss(rot) 0.1450 | loss(pos) 0.1674 | loss(seq) 0.0401 | grad 2.2423 | lr 0.0000 | time_forward 1.4710 | time_backward 1.7630 |
[2023-10-25 20:21:46,267::train::INFO] [train] Iter 599899 | loss 0.0833 | loss(rot) 0.0533 | loss(pos) 0.0206 | loss(seq) 0.0094 | grad 1.0937 | lr 0.0000 | time_forward 1.3180 | time_backward 1.4030 |
[2023-10-25 20:21:55,376::train::INFO] [train] Iter 599900 | loss 0.1896 | loss(rot) 0.0755 | loss(pos) 0.0686 | loss(seq) 0.0455 | grad 2.1723 | lr 0.0000 | time_forward 3.9180 | time_backward 5.1880 |
[2023-10-25 20:22:05,212::train::INFO] [train] Iter 599901 | loss 0.6935 | loss(rot) 0.6505 | loss(pos) 0.0242 | loss(seq) 0.0188 | grad 3.0074 | lr 0.0000 | time_forward 4.0180 | time_backward 5.8150 |
[2023-10-25 20:22:12,696::train::INFO] [train] Iter 599902 | loss 0.2976 | loss(rot) 0.2412 | loss(pos) 0.0308 | loss(seq) 0.0255 | grad 2.4169 | lr 0.0000 | time_forward 3.1440 | time_backward 4.3360 |
[2023-10-25 20:22:19,130::train::INFO] [train] Iter 599903 | loss 0.6343 | loss(rot) 0.4318 | loss(pos) 0.0250 | loss(seq) 0.1775 | grad 5.9977 | lr 0.0000 | time_forward 2.7200 | time_backward 3.7100 |
[2023-10-25 20:22:29,144::train::INFO] [train] Iter 599904 | loss 0.5008 | loss(rot) 0.1594 | loss(pos) 0.1910 | loss(seq) 0.1503 | grad 4.5747 | lr 0.0000 | time_forward 4.0780 | time_backward 5.9190 |
[2023-10-25 20:22:39,133::train::INFO] [train] Iter 599905 | loss 0.4965 | loss(rot) 0.4154 | loss(pos) 0.0369 | loss(seq) 0.0442 | grad 13.3334 | lr 0.0000 | time_forward 4.0840 | time_backward 5.9020 |
[2023-10-25 20:22:49,135::train::INFO] [train] Iter 599906 | loss 0.4976 | loss(rot) 0.1829 | loss(pos) 0.1093 | loss(seq) 0.2054 | grad 2.5464 | lr 0.0000 | time_forward 4.2360 | time_backward 5.7640 |
[2023-10-25 20:22:59,061::train::INFO] [train] Iter 599907 | loss 1.0760 | loss(rot) 0.6325 | loss(pos) 0.3933 | loss(seq) 0.0502 | grad 5.7451 | lr 0.0000 | time_forward 4.1840 | time_backward 5.7380 |
[2023-10-25 20:23:08,984::train::INFO] [train] Iter 599908 | loss 0.7153 | loss(rot) 0.4757 | loss(pos) 0.0174 | loss(seq) 0.2222 | grad 3.2461 | lr 0.0000 | time_forward 4.0060 | time_backward 5.9140 |
[2023-10-25 20:23:18,152::train::INFO] [train] Iter 599909 | loss 1.4792 | loss(rot) 0.9072 | loss(pos) 0.4114 | loss(seq) 0.1606 | grad 7.4051 | lr 0.0000 | time_forward 3.8700 | time_backward 5.2950 |
[2023-10-25 20:23:28,209::train::INFO] [train] Iter 599910 | loss 0.8042 | loss(rot) 0.5168 | loss(pos) 0.1014 | loss(seq) 0.1860 | grad 4.4666 | lr 0.0000 | time_forward 4.2780 | time_backward 5.7750 |
[2023-10-25 20:23:36,542::train::INFO] [train] Iter 599911 | loss 0.4833 | loss(rot) 0.0848 | loss(pos) 0.3888 | loss(seq) 0.0096 | grad 5.9820 | lr 0.0000 | time_forward 3.4760 | time_backward 4.8530 |
[2023-10-25 20:23:39,446::train::INFO] [train] Iter 599912 | loss 0.3557 | loss(rot) 0.2472 | loss(pos) 0.0382 | loss(seq) 0.0703 | grad 2.7378 | lr 0.0000 | time_forward 1.3310 | time_backward 1.5700 |
[2023-10-25 20:23:48,424::train::INFO] [train] Iter 599913 | loss 1.4983 | loss(rot) 1.1436 | loss(pos) 0.0220 | loss(seq) 0.3327 | grad 32.0094 | lr 0.0000 | time_forward 3.7350 | time_backward 5.2400 |
[2023-10-25 20:23:57,157::train::INFO] [train] Iter 599914 | loss 0.3303 | loss(rot) 0.0421 | loss(pos) 0.0263 | loss(seq) 0.2619 | grad 2.5487 | lr 0.0000 | time_forward 3.7410 | time_backward 4.9890 |
[2023-10-25 20:24:00,135::train::INFO] [train] Iter 599915 | loss 0.2189 | loss(rot) 0.0893 | loss(pos) 0.0187 | loss(seq) 0.1109 | grad 1.4775 | lr 0.0000 | time_forward 1.4510 | time_backward 1.5230 |
[2023-10-25 20:24:10,875::train::INFO] [train] Iter 599916 | loss 0.4986 | loss(rot) 0.0363 | loss(pos) 0.4602 | loss(seq) 0.0021 | grad 11.9789 | lr 0.0000 | time_forward 4.4370 | time_backward 6.2990 |
[2023-10-25 20:24:21,334::train::INFO] [train] Iter 599917 | loss 0.3587 | loss(rot) 0.0590 | loss(pos) 0.2789 | loss(seq) 0.0208 | grad 8.4966 | lr 0.0000 | time_forward 4.2670 | time_backward 6.1890 |
[2023-10-25 20:24:31,712::train::INFO] [train] Iter 599918 | loss 0.7827 | loss(rot) 0.6377 | loss(pos) 0.0296 | loss(seq) 0.1154 | grad 6.4346 | lr 0.0000 | time_forward 4.2380 | time_backward 6.1370 |
[2023-10-25 20:24:38,995::train::INFO] [train] Iter 599919 | loss 0.4539 | loss(rot) 0.3690 | loss(pos) 0.0615 | loss(seq) 0.0234 | grad 14.4835 | lr 0.0000 | time_forward 3.1350 | time_backward 4.1440 |
[2023-10-25 20:24:49,370::train::INFO] [train] Iter 599920 | loss 0.6323 | loss(rot) 0.1116 | loss(pos) 0.3270 | loss(seq) 0.1937 | grad 5.7189 | lr 0.0000 | time_forward 4.2210 | time_backward 6.1510 |
[2023-10-25 20:24:52,153::train::INFO] [train] Iter 599921 | loss 0.5636 | loss(rot) 0.3849 | loss(pos) 0.0557 | loss(seq) 0.1230 | grad 5.4324 | lr 0.0000 | time_forward 1.2730 | time_backward 1.5080 |
[2023-10-25 20:25:01,248::train::INFO] [train] Iter 599922 | loss 0.3948 | loss(rot) 0.1364 | loss(pos) 0.0293 | loss(seq) 0.2291 | grad 3.3637 | lr 0.0000 | time_forward 3.7980 | time_backward 5.2670 |
[2023-10-25 20:25:11,505::train::INFO] [train] Iter 599923 | loss 1.1149 | loss(rot) 0.0874 | loss(pos) 1.0249 | loss(seq) 0.0027 | grad 9.5649 | lr 0.0000 | time_forward 4.1050 | time_backward 6.1490 |
[2023-10-25 20:25:13,631::train::INFO] [train] Iter 599924 | loss 2.2282 | loss(rot) 1.4055 | loss(pos) 0.4139 | loss(seq) 0.4089 | grad 5.3166 | lr 0.0000 | time_forward 0.9470 | time_backward 1.1760 |
[2023-10-25 20:25:24,188::train::INFO] [train] Iter 599925 | loss 0.2152 | loss(rot) 0.0931 | loss(pos) 0.0415 | loss(seq) 0.0806 | grad 2.1324 | lr 0.0000 | time_forward 4.3500 | time_backward 6.2030 |
[2023-10-25 20:25:27,628::train::INFO] [train] Iter 599926 | loss 0.7287 | loss(rot) 0.2165 | loss(pos) 0.1849 | loss(seq) 0.3274 | grad 2.8661 | lr 0.0000 | time_forward 1.5640 | time_backward 1.8720 |
[2023-10-25 20:25:37,968::train::INFO] [train] Iter 599927 | loss 0.4350 | loss(rot) 0.4076 | loss(pos) 0.0213 | loss(seq) 0.0061 | grad 42.8814 | lr 0.0000 | time_forward 4.2060 | time_backward 6.1180 |
[2023-10-25 20:25:40,923::train::INFO] [train] Iter 599928 | loss 1.9291 | loss(rot) 1.4783 | loss(pos) 0.0789 | loss(seq) 0.3719 | grad 12.9798 | lr 0.0000 | time_forward 1.3610 | time_backward 1.5920 |
[2023-10-25 20:25:43,846::train::INFO] [train] Iter 599929 | loss 0.7787 | loss(rot) 0.1504 | loss(pos) 0.0396 | loss(seq) 0.5887 | grad 2.8381 | lr 0.0000 | time_forward 1.3830 | time_backward 1.5140 |
[2023-10-25 20:25:54,442::train::INFO] [train] Iter 599930 | loss 1.2536 | loss(rot) 1.0982 | loss(pos) 0.0396 | loss(seq) 0.1157 | grad 23.6263 | lr 0.0000 | time_forward 4.4390 | time_backward 6.1540 |
[2023-10-25 20:25:57,362::train::INFO] [train] Iter 599931 | loss 0.4446 | loss(rot) 0.1365 | loss(pos) 0.0801 | loss(seq) 0.2280 | grad 2.9258 | lr 0.0000 | time_forward 1.3440 | time_backward 1.5730 |
[2023-10-25 20:26:06,107::train::INFO] [train] Iter 599932 | loss 1.1475 | loss(rot) 0.3986 | loss(pos) 0.0493 | loss(seq) 0.6997 | grad 4.1983 | lr 0.0000 | time_forward 3.6640 | time_backward 5.0770 |
[2023-10-25 20:26:13,692::train::INFO] [train] Iter 599933 | loss 0.5026 | loss(rot) 0.1738 | loss(pos) 0.0465 | loss(seq) 0.2823 | grad 2.4433 | lr 0.0000 | time_forward 3.2470 | time_backward 4.3350 |
[2023-10-25 20:26:22,430::train::INFO] [train] Iter 599934 | loss 0.7875 | loss(rot) 0.3029 | loss(pos) 0.0669 | loss(seq) 0.4178 | grad 3.4287 | lr 0.0000 | time_forward 3.6580 | time_backward 5.0760 |
[2023-10-25 20:26:28,524::train::INFO] [train] Iter 599935 | loss 0.4905 | loss(rot) 0.1964 | loss(pos) 0.2803 | loss(seq) 0.0138 | grad 4.5048 | lr 0.0000 | time_forward 2.6520 | time_backward 3.4390 |
[2023-10-25 20:26:37,202::train::INFO] [train] Iter 599936 | loss 0.3278 | loss(rot) 0.1199 | loss(pos) 0.1609 | loss(seq) 0.0470 | grad 3.6597 | lr 0.0000 | time_forward 3.6800 | time_backward 4.9940 |
[2023-10-25 20:26:46,448::train::INFO] [train] Iter 599937 | loss 1.1511 | loss(rot) 0.9102 | loss(pos) 0.0293 | loss(seq) 0.2116 | grad 5.2593 | lr 0.0000 | time_forward 3.8050 | time_backward 5.4380 |
[2023-10-25 20:26:49,779::train::INFO] [train] Iter 599938 | loss 1.0820 | loss(rot) 0.5794 | loss(pos) 0.1155 | loss(seq) 0.3872 | grad 3.6787 | lr 0.0000 | time_forward 1.4940 | time_backward 1.8340 |
[2023-10-25 20:26:59,986::train::INFO] [train] Iter 599939 | loss 0.7096 | loss(rot) 0.5984 | loss(pos) 0.0346 | loss(seq) 0.0766 | grad 4.4740 | lr 0.0000 | time_forward 4.3690 | time_backward 5.8200 |
[2023-10-25 20:27:02,859::train::INFO] [train] Iter 599940 | loss 0.5867 | loss(rot) 0.0537 | loss(pos) 0.0592 | loss(seq) 0.4738 | grad 2.4645 | lr 0.0000 | time_forward 1.3220 | time_backward 1.5470 |
[2023-10-25 20:27:11,315::train::INFO] [train] Iter 599941 | loss 0.2546 | loss(rot) 0.0315 | loss(pos) 0.1316 | loss(seq) 0.0914 | grad 4.3467 | lr 0.0000 | time_forward 3.5160 | time_backward 4.9360 |
[2023-10-25 20:27:20,549::train::INFO] [train] Iter 599942 | loss 0.6444 | loss(rot) 0.0925 | loss(pos) 0.3449 | loss(seq) 0.2070 | grad 3.3192 | lr 0.0000 | time_forward 3.9170 | time_backward 5.3130 |
[2023-10-25 20:27:29,962::train::INFO] [train] Iter 599943 | loss 0.4556 | loss(rot) 0.1192 | loss(pos) 0.1515 | loss(seq) 0.1849 | grad 2.8732 | lr 0.0000 | time_forward 3.9220 | time_backward 5.4880 |
[2023-10-25 20:27:37,606::train::INFO] [train] Iter 599944 | loss 0.5844 | loss(rot) 0.1349 | loss(pos) 0.0409 | loss(seq) 0.4086 | grad 4.0335 | lr 0.0000 | time_forward 3.2310 | time_backward 4.4100 |
[2023-10-25 20:27:47,703::train::INFO] [train] Iter 599945 | loss 0.9617 | loss(rot) 0.9140 | loss(pos) 0.0316 | loss(seq) 0.0162 | grad 4.2680 | lr 0.0000 | time_forward 4.1200 | time_backward 5.9740 |
[2023-10-25 20:27:50,464::train::INFO] [train] Iter 599946 | loss 1.6342 | loss(rot) 1.3335 | loss(pos) 0.0292 | loss(seq) 0.2716 | grad 4.0126 | lr 0.0000 | time_forward 1.2730 | time_backward 1.4840 |
[2023-10-25 20:28:00,651::train::INFO] [train] Iter 599947 | loss 0.2905 | loss(rot) 0.1037 | loss(pos) 0.0182 | loss(seq) 0.1686 | grad 1.8949 | lr 0.0000 | time_forward 4.1380 | time_backward 6.0450 |
[2023-10-25 20:28:03,237::train::INFO] [train] Iter 599948 | loss 2.1002 | loss(rot) 2.0171 | loss(pos) 0.0305 | loss(seq) 0.0526 | grad 5.6627 | lr 0.0000 | time_forward 1.2080 | time_backward 1.3760 |
[2023-10-25 20:28:06,301::train::INFO] [train] Iter 599949 | loss 1.0025 | loss(rot) 0.8067 | loss(pos) 0.0806 | loss(seq) 0.1152 | grad 10.0279 | lr 0.0000 | time_forward 1.4050 | time_backward 1.6560 |
[2023-10-25 20:28:16,420::train::INFO] [train] Iter 599950 | loss 0.2091 | loss(rot) 0.1662 | loss(pos) 0.0397 | loss(seq) 0.0032 | grad 2.6478 | lr 0.0000 | time_forward 4.1920 | time_backward 5.9230 |
[2023-10-25 20:28:19,279::train::INFO] [train] Iter 599951 | loss 0.3374 | loss(rot) 0.1073 | loss(pos) 0.0294 | loss(seq) 0.2007 | grad 1.9664 | lr 0.0000 | time_forward 1.3190 | time_backward 1.5370 |
[2023-10-25 20:28:27,953::train::INFO] [train] Iter 599952 | loss 1.5326 | loss(rot) 0.5933 | loss(pos) 0.4092 | loss(seq) 0.5301 | grad 5.0858 | lr 0.0000 | time_forward 3.6440 | time_backward 4.9970 |
[2023-10-25 20:28:37,325::train::INFO] [train] Iter 599953 | loss 1.2002 | loss(rot) 0.6835 | loss(pos) 0.1865 | loss(seq) 0.3302 | grad 5.5760 | lr 0.0000 | time_forward 3.9280 | time_backward 5.4400 |
[2023-10-25 20:28:39,676::train::INFO] [train] Iter 599954 | loss 0.3143 | loss(rot) 0.1369 | loss(pos) 0.0882 | loss(seq) 0.0892 | grad 3.4639 | lr 0.0000 | time_forward 1.0600 | time_backward 1.2890 |
[2023-10-25 20:28:48,592::train::INFO] [train] Iter 599955 | loss 1.7456 | loss(rot) 1.6262 | loss(pos) 0.0645 | loss(seq) 0.0550 | grad 13.0033 | lr 0.0000 | time_forward 3.7730 | time_backward 5.1400 |
[2023-10-25 20:28:57,897::train::INFO] [train] Iter 599956 | loss 1.1180 | loss(rot) 0.4393 | loss(pos) 0.4213 | loss(seq) 0.2574 | grad 4.5217 | lr 0.0000 | time_forward 3.9480 | time_backward 5.3540 |
[2023-10-25 20:29:05,991::train::INFO] [train] Iter 599957 | loss 0.8655 | loss(rot) 0.2460 | loss(pos) 0.6145 | loss(seq) 0.0050 | grad 9.9223 | lr 0.0000 | time_forward 3.4070 | time_backward 4.6830 |
[2023-10-25 20:29:08,810::train::INFO] [train] Iter 599958 | loss 1.0196 | loss(rot) 0.9460 | loss(pos) 0.0265 | loss(seq) 0.0471 | grad 4.9678 | lr 0.0000 | time_forward 1.3290 | time_backward 1.4870 |
[2023-10-25 20:29:16,972::train::INFO] [train] Iter 599959 | loss 0.1302 | loss(rot) 0.0245 | loss(pos) 0.0957 | loss(seq) 0.0100 | grad 3.0600 | lr 0.0000 | time_forward 3.4520 | time_backward 4.7070 |
[2023-10-25 20:29:25,924::train::INFO] [train] Iter 599960 | loss 0.4073 | loss(rot) 0.1774 | loss(pos) 0.0170 | loss(seq) 0.2129 | grad 2.6664 | lr 0.0000 | time_forward 3.6790 | time_backward 5.2700 |
[2023-10-25 20:29:36,314::train::INFO] [train] Iter 599961 | loss 0.5309 | loss(rot) 0.4159 | loss(pos) 0.0376 | loss(seq) 0.0773 | grad 3.0938 | lr 0.0000 | time_forward 4.3510 | time_backward 6.0350 |
[2023-10-25 20:29:45,857::train::INFO] [train] Iter 599962 | loss 0.6408 | loss(rot) 0.2453 | loss(pos) 0.0304 | loss(seq) 0.3651 | grad 2.7829 | lr 0.0000 | time_forward 4.0450 | time_backward 5.4940 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.