text
stringlengths 56
1.16k
|
---|
[2023-10-25 19:51:59,830::train::INFO] [train] Iter 599663 | loss 0.2433 | loss(rot) 0.0903 | loss(pos) 0.0428 | loss(seq) 0.1102 | grad 2.1081 | lr 0.0000 | time_forward 4.0000 | time_backward 5.9000 |
[2023-10-25 19:52:09,970::train::INFO] [train] Iter 599664 | loss 0.6563 | loss(rot) 0.2459 | loss(pos) 0.2035 | loss(seq) 0.2069 | grad 3.7005 | lr 0.0000 | time_forward 4.1380 | time_backward 5.9980 |
[2023-10-25 19:52:19,253::train::INFO] [train] Iter 599665 | loss 0.4727 | loss(rot) 0.0887 | loss(pos) 0.0211 | loss(seq) 0.3629 | grad 2.1338 | lr 0.0000 | time_forward 3.9140 | time_backward 5.3670 |
[2023-10-25 19:52:22,649::train::INFO] [train] Iter 599666 | loss 0.6491 | loss(rot) 0.2088 | loss(pos) 0.4054 | loss(seq) 0.0349 | grad 3.5252 | lr 0.0000 | time_forward 1.6070 | time_backward 1.7850 |
[2023-10-25 19:52:31,897::train::INFO] [train] Iter 599667 | loss 0.3173 | loss(rot) 0.2308 | loss(pos) 0.0192 | loss(seq) 0.0672 | grad 3.0030 | lr 0.0000 | time_forward 3.9190 | time_backward 5.3150 |
[2023-10-25 19:52:42,005::train::INFO] [train] Iter 599668 | loss 0.8769 | loss(rot) 0.5605 | loss(pos) 0.0720 | loss(seq) 0.2444 | grad 11.1462 | lr 0.0000 | time_forward 4.1060 | time_backward 5.9980 |
[2023-10-25 19:52:51,390::train::INFO] [train] Iter 599669 | loss 0.3529 | loss(rot) 0.2628 | loss(pos) 0.0207 | loss(seq) 0.0694 | grad 2.3980 | lr 0.0000 | time_forward 3.9950 | time_backward 5.3870 |
[2023-10-25 19:53:01,440::train::INFO] [train] Iter 599670 | loss 0.1744 | loss(rot) 0.1354 | loss(pos) 0.0180 | loss(seq) 0.0210 | grad 2.2362 | lr 0.0000 | time_forward 4.0630 | time_backward 5.9820 |
[2023-10-25 19:53:04,439::train::INFO] [train] Iter 599671 | loss 0.5852 | loss(rot) 0.1830 | loss(pos) 0.0365 | loss(seq) 0.3657 | grad 2.7254 | lr 0.0000 | time_forward 1.4360 | time_backward 1.5610 |
[2023-10-25 19:53:14,507::train::INFO] [train] Iter 599672 | loss 0.6751 | loss(rot) 0.2264 | loss(pos) 0.2428 | loss(seq) 0.2059 | grad 3.5883 | lr 0.0000 | time_forward 4.0760 | time_backward 5.9550 |
[2023-10-25 19:53:25,149::train::INFO] [train] Iter 599673 | loss 0.4950 | loss(rot) 0.1372 | loss(pos) 0.0336 | loss(seq) 0.3242 | grad 2.6410 | lr 0.0000 | time_forward 4.2520 | time_backward 6.3870 |
[2023-10-25 19:53:28,043::train::INFO] [train] Iter 599674 | loss 1.5902 | loss(rot) 0.7103 | loss(pos) 0.4461 | loss(seq) 0.4339 | grad 3.6327 | lr 0.0000 | time_forward 1.3960 | time_backward 1.4950 |
[2023-10-25 19:53:31,004::train::INFO] [train] Iter 599675 | loss 0.8022 | loss(rot) 0.3686 | loss(pos) 0.0258 | loss(seq) 0.4077 | grad 2.6142 | lr 0.0000 | time_forward 1.4080 | time_backward 1.5510 |
[2023-10-25 19:53:40,604::train::INFO] [train] Iter 599676 | loss 0.2779 | loss(rot) 0.0835 | loss(pos) 0.0342 | loss(seq) 0.1601 | grad 2.4152 | lr 0.0000 | time_forward 4.4460 | time_backward 5.1110 |
[2023-10-25 19:53:43,423::train::INFO] [train] Iter 599677 | loss 0.8383 | loss(rot) 0.7977 | loss(pos) 0.0348 | loss(seq) 0.0057 | grad 6.6227 | lr 0.0000 | time_forward 1.3180 | time_backward 1.4970 |
[2023-10-25 19:53:53,571::train::INFO] [train] Iter 599678 | loss 0.1157 | loss(rot) 0.0836 | loss(pos) 0.0086 | loss(seq) 0.0234 | grad 1.2422 | lr 0.0000 | time_forward 4.1450 | time_backward 6.0000 |
[2023-10-25 19:54:03,148::train::INFO] [train] Iter 599679 | loss 0.5180 | loss(rot) 0.3715 | loss(pos) 0.0071 | loss(seq) 0.1395 | grad 4.6294 | lr 0.0000 | time_forward 4.2700 | time_backward 5.3050 |
[2023-10-25 19:54:05,959::train::INFO] [train] Iter 599680 | loss 1.0251 | loss(rot) 0.0052 | loss(pos) 1.0197 | loss(seq) 0.0003 | grad 11.4237 | lr 0.0000 | time_forward 1.3440 | time_backward 1.4630 |
[2023-10-25 19:54:16,086::train::INFO] [train] Iter 599681 | loss 0.7179 | loss(rot) 0.1042 | loss(pos) 0.3588 | loss(seq) 0.2549 | grad 3.6171 | lr 0.0000 | time_forward 4.2660 | time_backward 5.8210 |
[2023-10-25 19:54:25,156::train::INFO] [train] Iter 599682 | loss 0.2342 | loss(rot) 0.0421 | loss(pos) 0.1874 | loss(seq) 0.0047 | grad 3.6429 | lr 0.0000 | time_forward 3.8170 | time_backward 5.2490 |
[2023-10-25 19:54:33,155::train::INFO] [train] Iter 599683 | loss 0.3638 | loss(rot) 0.3325 | loss(pos) 0.0310 | loss(seq) 0.0002 | grad 16.7852 | lr 0.0000 | time_forward 3.2720 | time_backward 4.7240 |
[2023-10-25 19:54:35,865::train::INFO] [train] Iter 599684 | loss 0.6507 | loss(rot) 0.2214 | loss(pos) 0.1007 | loss(seq) 0.3286 | grad 4.8538 | lr 0.0000 | time_forward 1.2500 | time_backward 1.4570 |
[2023-10-25 19:54:44,009::train::INFO] [train] Iter 599685 | loss 0.3212 | loss(rot) 0.2170 | loss(pos) 0.0241 | loss(seq) 0.0801 | grad 3.4997 | lr 0.0000 | time_forward 3.3580 | time_backward 4.7370 |
[2023-10-25 19:54:53,361::train::INFO] [train] Iter 599686 | loss 0.1531 | loss(rot) 0.0736 | loss(pos) 0.0653 | loss(seq) 0.0141 | grad 1.9702 | lr 0.0000 | time_forward 3.9440 | time_backward 5.4040 |
[2023-10-25 19:55:01,801::train::INFO] [train] Iter 599687 | loss 0.2699 | loss(rot) 0.2310 | loss(pos) 0.0278 | loss(seq) 0.0111 | grad 3.9824 | lr 0.0000 | time_forward 3.5690 | time_backward 4.8690 |
[2023-10-25 19:55:11,072::train::INFO] [train] Iter 599688 | loss 0.9043 | loss(rot) 0.8791 | loss(pos) 0.0252 | loss(seq) 0.0000 | grad 4.1121 | lr 0.0000 | time_forward 3.9510 | time_backward 5.3160 |
[2023-10-25 19:55:18,629::train::INFO] [train] Iter 599689 | loss 0.4686 | loss(rot) 0.1209 | loss(pos) 0.0234 | loss(seq) 0.3242 | grad 3.3183 | lr 0.0000 | time_forward 3.2130 | time_backward 4.3400 |
[2023-10-25 19:55:21,931::train::INFO] [train] Iter 599690 | loss 1.5543 | loss(rot) 0.3435 | loss(pos) 1.0616 | loss(seq) 0.1492 | grad 7.6258 | lr 0.0000 | time_forward 1.4890 | time_backward 1.8100 |
[2023-10-25 19:55:24,772::train::INFO] [train] Iter 599691 | loss 0.1737 | loss(rot) 0.0220 | loss(pos) 0.1245 | loss(seq) 0.0272 | grad 3.5062 | lr 0.0000 | time_forward 1.3780 | time_backward 1.4490 |
[2023-10-25 19:55:34,151::train::INFO] [train] Iter 599692 | loss 1.3355 | loss(rot) 1.2805 | loss(pos) 0.0342 | loss(seq) 0.0208 | grad 4.5094 | lr 0.0000 | time_forward 4.0460 | time_backward 5.3290 |
[2023-10-25 19:55:42,580::train::INFO] [train] Iter 599693 | loss 0.5198 | loss(rot) 0.0846 | loss(pos) 0.4217 | loss(seq) 0.0134 | grad 6.2268 | lr 0.0000 | time_forward 3.5530 | time_backward 4.8740 |
[2023-10-25 19:55:52,825::train::INFO] [train] Iter 599694 | loss 0.1794 | loss(rot) 0.0525 | loss(pos) 0.0437 | loss(seq) 0.0832 | grad 1.5944 | lr 0.0000 | time_forward 4.1760 | time_backward 6.0650 |
[2023-10-25 19:55:55,641::train::INFO] [train] Iter 599695 | loss 0.4136 | loss(rot) 0.1335 | loss(pos) 0.2521 | loss(seq) 0.0280 | grad 3.1840 | lr 0.0000 | time_forward 1.3660 | time_backward 1.4460 |
[2023-10-25 19:56:05,847::train::INFO] [train] Iter 599696 | loss 0.8764 | loss(rot) 0.6065 | loss(pos) 0.1203 | loss(seq) 0.1496 | grad 3.1598 | lr 0.0000 | time_forward 4.2330 | time_backward 5.9700 |
[2023-10-25 19:56:08,151::train::INFO] [train] Iter 599697 | loss 0.0836 | loss(rot) 0.0485 | loss(pos) 0.0277 | loss(seq) 0.0073 | grad 1.3122 | lr 0.0000 | time_forward 1.0560 | time_backward 1.2460 |
[2023-10-25 19:56:10,955::train::INFO] [train] Iter 599698 | loss 1.6110 | loss(rot) 0.0059 | loss(pos) 1.6043 | loss(seq) 0.0008 | grad 14.2281 | lr 0.0000 | time_forward 1.3310 | time_backward 1.4690 |
[2023-10-25 19:56:18,672::train::INFO] [train] Iter 599699 | loss 0.3720 | loss(rot) 0.1054 | loss(pos) 0.1843 | loss(seq) 0.0823 | grad 3.4123 | lr 0.0000 | time_forward 3.2860 | time_backward 4.4090 |
[2023-10-25 19:56:21,440::train::INFO] [train] Iter 599700 | loss 0.4792 | loss(rot) 0.2008 | loss(pos) 0.0383 | loss(seq) 0.2402 | grad 2.8159 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4510 |
[2023-10-25 19:56:30,353::train::INFO] [train] Iter 599701 | loss 0.3723 | loss(rot) 0.0618 | loss(pos) 0.0418 | loss(seq) 0.2687 | grad 3.3141 | lr 0.0000 | time_forward 3.7830 | time_backward 5.1260 |
[2023-10-25 19:56:33,182::train::INFO] [train] Iter 599702 | loss 0.6079 | loss(rot) 0.5594 | loss(pos) 0.0145 | loss(seq) 0.0340 | grad 6.7568 | lr 0.0000 | time_forward 1.3180 | time_backward 1.5080 |
[2023-10-25 19:56:41,612::train::INFO] [train] Iter 599703 | loss 0.8344 | loss(rot) 0.2722 | loss(pos) 0.1368 | loss(seq) 0.4254 | grad 3.5855 | lr 0.0000 | time_forward 3.5610 | time_backward 4.8660 |
[2023-10-25 19:56:51,804::train::INFO] [train] Iter 599704 | loss 1.0896 | loss(rot) 0.8928 | loss(pos) 0.0388 | loss(seq) 0.1580 | grad 20.4035 | lr 0.0000 | time_forward 4.2700 | time_backward 5.9180 |
[2023-10-25 19:57:01,865::train::INFO] [train] Iter 599705 | loss 0.6329 | loss(rot) 0.5404 | loss(pos) 0.0776 | loss(seq) 0.0149 | grad 3.9973 | lr 0.0000 | time_forward 4.0990 | time_backward 5.9580 |
[2023-10-25 19:57:10,042::train::INFO] [train] Iter 599706 | loss 0.3211 | loss(rot) 0.0871 | loss(pos) 0.1147 | loss(seq) 0.1194 | grad 3.4539 | lr 0.0000 | time_forward 3.3770 | time_backward 4.7970 |
[2023-10-25 19:57:19,053::train::INFO] [train] Iter 599707 | loss 0.5279 | loss(rot) 0.4917 | loss(pos) 0.0361 | loss(seq) 0.0001 | grad 3.6228 | lr 0.0000 | time_forward 3.7700 | time_backward 5.2390 |
[2023-10-25 19:57:28,081::train::INFO] [train] Iter 599708 | loss 0.7691 | loss(rot) 0.7354 | loss(pos) 0.0266 | loss(seq) 0.0071 | grad 3.8435 | lr 0.0000 | time_forward 3.8020 | time_backward 5.2220 |
[2023-10-25 19:57:38,215::train::INFO] [train] Iter 599709 | loss 1.0292 | loss(rot) 0.7367 | loss(pos) 0.0253 | loss(seq) 0.2672 | grad 3.2161 | lr 0.0000 | time_forward 4.0990 | time_backward 6.0320 |
[2023-10-25 19:57:41,099::train::INFO] [train] Iter 599710 | loss 0.3163 | loss(rot) 0.2251 | loss(pos) 0.0182 | loss(seq) 0.0730 | grad 3.3496 | lr 0.0000 | time_forward 1.3560 | time_backward 1.5250 |
[2023-10-25 19:57:49,316::train::INFO] [train] Iter 599711 | loss 0.5723 | loss(rot) 0.5169 | loss(pos) 0.0176 | loss(seq) 0.0377 | grad 5.2607 | lr 0.0000 | time_forward 3.4420 | time_backward 4.7720 |
[2023-10-25 19:57:59,432::train::INFO] [train] Iter 599712 | loss 2.2858 | loss(rot) 2.1470 | loss(pos) 0.0460 | loss(seq) 0.0928 | grad 5.5107 | lr 0.0000 | time_forward 4.1300 | time_backward 5.9830 |
[2023-10-25 19:58:08,651::train::INFO] [train] Iter 599713 | loss 0.1658 | loss(rot) 0.0555 | loss(pos) 0.0373 | loss(seq) 0.0730 | grad 1.9815 | lr 0.0000 | time_forward 3.9290 | time_backward 5.2860 |
[2023-10-25 19:58:11,915::train::INFO] [train] Iter 599714 | loss 0.5004 | loss(rot) 0.4787 | loss(pos) 0.0181 | loss(seq) 0.0035 | grad 9.3645 | lr 0.0000 | time_forward 1.4820 | time_backward 1.7780 |
[2023-10-25 19:58:21,989::train::INFO] [train] Iter 599715 | loss 1.9357 | loss(rot) 1.4833 | loss(pos) 0.1040 | loss(seq) 0.3484 | grad 4.8406 | lr 0.0000 | time_forward 4.1010 | time_backward 5.9570 |
[2023-10-25 19:58:24,286::train::INFO] [train] Iter 599716 | loss 1.1673 | loss(rot) 0.1392 | loss(pos) 1.0086 | loss(seq) 0.0195 | grad 7.5551 | lr 0.0000 | time_forward 1.0600 | time_backward 1.2330 |
[2023-10-25 19:58:32,602::train::INFO] [train] Iter 599717 | loss 1.2217 | loss(rot) 0.2641 | loss(pos) 0.1536 | loss(seq) 0.8040 | grad 4.0388 | lr 0.0000 | time_forward 3.4750 | time_backward 4.8260 |
[2023-10-25 19:58:35,461::train::INFO] [train] Iter 599718 | loss 1.2524 | loss(rot) 0.2600 | loss(pos) 0.9882 | loss(seq) 0.0042 | grad 10.3117 | lr 0.0000 | time_forward 1.3460 | time_backward 1.5100 |
[2023-10-25 19:58:38,305::train::INFO] [train] Iter 599719 | loss 1.2310 | loss(rot) 0.2274 | loss(pos) 0.2850 | loss(seq) 0.7186 | grad 5.5515 | lr 0.0000 | time_forward 1.3480 | time_backward 1.4660 |
[2023-10-25 19:58:47,212::train::INFO] [train] Iter 599720 | loss 0.6318 | loss(rot) 0.6028 | loss(pos) 0.0286 | loss(seq) 0.0003 | grad 29.6040 | lr 0.0000 | time_forward 3.8050 | time_backward 5.1000 |
[2023-10-25 19:58:57,199::train::INFO] [train] Iter 599721 | loss 0.9504 | loss(rot) 0.0361 | loss(pos) 0.7284 | loss(seq) 0.1859 | grad 10.7816 | lr 0.0000 | time_forward 4.0640 | time_backward 5.9200 |
[2023-10-25 19:59:05,581::train::INFO] [train] Iter 599722 | loss 0.5426 | loss(rot) 0.0884 | loss(pos) 0.4333 | loss(seq) 0.0208 | grad 7.6510 | lr 0.0000 | time_forward 3.4820 | time_backward 4.8960 |
[2023-10-25 19:59:14,029::train::INFO] [train] Iter 599723 | loss 1.8313 | loss(rot) 1.7977 | loss(pos) 0.0336 | loss(seq) 0.0000 | grad 6.4202 | lr 0.0000 | time_forward 3.5120 | time_backward 4.9340 |
[2023-10-25 19:59:23,378::train::INFO] [train] Iter 599724 | loss 0.7150 | loss(rot) 0.6908 | loss(pos) 0.0149 | loss(seq) 0.0093 | grad 2.6661 | lr 0.0000 | time_forward 3.9470 | time_backward 5.3980 |
[2023-10-25 19:59:32,627::train::INFO] [train] Iter 599725 | loss 0.5072 | loss(rot) 0.1197 | loss(pos) 0.0346 | loss(seq) 0.3528 | grad 2.4505 | lr 0.0000 | time_forward 3.8870 | time_backward 5.3580 |
[2023-10-25 19:59:42,523::train::INFO] [train] Iter 599726 | loss 0.7599 | loss(rot) 0.7179 | loss(pos) 0.0381 | loss(seq) 0.0039 | grad 2.9201 | lr 0.0000 | time_forward 4.2050 | time_backward 5.6880 |
[2023-10-25 19:59:51,207::train::INFO] [train] Iter 599727 | loss 0.3881 | loss(rot) 0.2075 | loss(pos) 0.0424 | loss(seq) 0.1382 | grad 2.8121 | lr 0.0000 | time_forward 3.6600 | time_backward 5.0200 |
[2023-10-25 20:00:01,251::train::INFO] [train] Iter 599728 | loss 0.4086 | loss(rot) 0.1214 | loss(pos) 0.0422 | loss(seq) 0.2450 | grad 2.8070 | lr 0.0000 | time_forward 4.0770 | time_backward 5.9640 |
[2023-10-25 20:00:11,314::train::INFO] [train] Iter 599729 | loss 0.8834 | loss(rot) 0.1926 | loss(pos) 0.3044 | loss(seq) 0.3863 | grad 3.1052 | lr 0.0000 | time_forward 4.0930 | time_backward 5.9660 |
[2023-10-25 20:00:14,044::train::INFO] [train] Iter 599730 | loss 0.2933 | loss(rot) 0.1165 | loss(pos) 0.1694 | loss(seq) 0.0074 | grad 4.3869 | lr 0.0000 | time_forward 1.3250 | time_backward 1.4020 |
[2023-10-25 20:00:16,884::train::INFO] [train] Iter 599731 | loss 0.5729 | loss(rot) 0.1636 | loss(pos) 0.0295 | loss(seq) 0.3798 | grad 2.5623 | lr 0.0000 | time_forward 1.3780 | time_backward 1.4600 |
[2023-10-25 20:00:25,384::train::INFO] [train] Iter 599732 | loss 0.4494 | loss(rot) 0.0382 | loss(pos) 0.4080 | loss(seq) 0.0033 | grad 5.3367 | lr 0.0000 | time_forward 3.6510 | time_backward 4.8450 |
[2023-10-25 20:00:35,397::train::INFO] [train] Iter 599733 | loss 1.2635 | loss(rot) 1.2440 | loss(pos) 0.0193 | loss(seq) 0.0002 | grad 4.8277 | lr 0.0000 | time_forward 4.0160 | time_backward 5.9950 |
[2023-10-25 20:00:38,335::train::INFO] [train] Iter 599734 | loss 1.7111 | loss(rot) 1.5357 | loss(pos) 0.1139 | loss(seq) 0.0614 | grad 5.0642 | lr 0.0000 | time_forward 1.3530 | time_backward 1.5820 |
[2023-10-25 20:00:46,371::train::INFO] [train] Iter 599735 | loss 0.8817 | loss(rot) 0.2206 | loss(pos) 0.0655 | loss(seq) 0.5956 | grad 4.0811 | lr 0.0000 | time_forward 3.3530 | time_backward 4.6790 |
[2023-10-25 20:00:56,575::train::INFO] [train] Iter 599736 | loss 3.0191 | loss(rot) 0.0204 | loss(pos) 2.9987 | loss(seq) 0.0000 | grad 29.3964 | lr 0.0000 | time_forward 4.1590 | time_backward 6.0420 |
[2023-10-25 20:01:05,306::train::INFO] [train] Iter 599737 | loss 0.5142 | loss(rot) 0.3868 | loss(pos) 0.0420 | loss(seq) 0.0854 | grad 8.4647 | lr 0.0000 | time_forward 3.6650 | time_backward 5.0630 |
[2023-10-25 20:01:13,648::train::INFO] [train] Iter 599738 | loss 2.2311 | loss(rot) 2.1669 | loss(pos) 0.0641 | loss(seq) 0.0000 | grad 12.1055 | lr 0.0000 | time_forward 3.4880 | time_backward 4.8510 |
[2023-10-25 20:01:15,518::train::INFO] [train] Iter 599739 | loss 1.4216 | loss(rot) 0.5536 | loss(pos) 0.8030 | loss(seq) 0.0650 | grad 16.9848 | lr 0.0000 | time_forward 0.8850 | time_backward 0.9810 |
[2023-10-25 20:01:24,022::train::INFO] [train] Iter 599740 | loss 0.7479 | loss(rot) 0.2324 | loss(pos) 0.1732 | loss(seq) 0.3424 | grad 4.1497 | lr 0.0000 | time_forward 3.5020 | time_backward 4.9980 |
[2023-10-25 20:01:34,079::train::INFO] [train] Iter 599741 | loss 0.1203 | loss(rot) 0.0946 | loss(pos) 0.0192 | loss(seq) 0.0064 | grad 1.4461 | lr 0.0000 | time_forward 4.0570 | time_backward 5.9970 |
[2023-10-25 20:01:41,666::train::INFO] [train] Iter 599742 | loss 0.2060 | loss(rot) 0.1899 | loss(pos) 0.0138 | loss(seq) 0.0023 | grad 3.1125 | lr 0.0000 | time_forward 3.2610 | time_backward 4.3220 |
[2023-10-25 20:01:51,804::train::INFO] [train] Iter 599743 | loss 0.6102 | loss(rot) 0.2397 | loss(pos) 0.1288 | loss(seq) 0.2417 | grad 3.4232 | lr 0.0000 | time_forward 4.1190 | time_backward 6.0160 |
[2023-10-25 20:02:01,898::train::INFO] [train] Iter 599744 | loss 1.4073 | loss(rot) 0.8717 | loss(pos) 0.1162 | loss(seq) 0.4194 | grad 5.4287 | lr 0.0000 | time_forward 4.0850 | time_backward 6.0050 |
[2023-10-25 20:02:11,172::train::INFO] [train] Iter 599745 | loss 1.0576 | loss(rot) 0.6437 | loss(pos) 0.1124 | loss(seq) 0.3015 | grad 3.2592 | lr 0.0000 | time_forward 3.9670 | time_backward 5.3040 |
[2023-10-25 20:02:19,461::train::INFO] [train] Iter 599746 | loss 1.4164 | loss(rot) 0.7033 | loss(pos) 0.2990 | loss(seq) 0.4141 | grad 4.1843 | lr 0.0000 | time_forward 3.5290 | time_backward 4.7570 |
[2023-10-25 20:02:22,312::train::INFO] [train] Iter 599747 | loss 0.6205 | loss(rot) 0.0293 | loss(pos) 0.5817 | loss(seq) 0.0095 | grad 16.1983 | lr 0.0000 | time_forward 1.3470 | time_backward 1.5000 |
[2023-10-25 20:02:25,161::train::INFO] [train] Iter 599748 | loss 1.6050 | loss(rot) 1.5235 | loss(pos) 0.0211 | loss(seq) 0.0604 | grad 20.3209 | lr 0.0000 | time_forward 1.3720 | time_backward 1.4480 |
[2023-10-25 20:02:34,418::train::INFO] [train] Iter 599749 | loss 1.5366 | loss(rot) 1.5068 | loss(pos) 0.0298 | loss(seq) 0.0000 | grad 18.5467 | lr 0.0000 | time_forward 3.9770 | time_backward 5.2760 |
[2023-10-25 20:02:37,161::train::INFO] [train] Iter 599750 | loss 0.1204 | loss(rot) 0.0873 | loss(pos) 0.0265 | loss(seq) 0.0065 | grad 1.5704 | lr 0.0000 | time_forward 1.3210 | time_backward 1.4190 |
[2023-10-25 20:02:39,959::train::INFO] [train] Iter 599751 | loss 0.4033 | loss(rot) 0.1703 | loss(pos) 0.1014 | loss(seq) 0.1315 | grad 2.6846 | lr 0.0000 | time_forward 1.2960 | time_backward 1.4630 |
[2023-10-25 20:02:49,414::train::INFO] [train] Iter 599752 | loss 0.2761 | loss(rot) 0.1525 | loss(pos) 0.0840 | loss(seq) 0.0397 | grad 3.8427 | lr 0.0000 | time_forward 4.0520 | time_backward 5.3990 |
[2023-10-25 20:02:59,708::train::INFO] [train] Iter 599753 | loss 1.0212 | loss(rot) 0.1867 | loss(pos) 0.7632 | loss(seq) 0.0713 | grad 4.3865 | lr 0.0000 | time_forward 4.1690 | time_backward 6.1210 |
[2023-10-25 20:03:09,929::train::INFO] [train] Iter 599754 | loss 1.2770 | loss(rot) 1.1057 | loss(pos) 0.0461 | loss(seq) 0.1252 | grad 3.6442 | lr 0.0000 | time_forward 4.2160 | time_backward 6.0030 |
[2023-10-25 20:03:20,127::train::INFO] [train] Iter 599755 | loss 1.0027 | loss(rot) 0.0309 | loss(pos) 0.9675 | loss(seq) 0.0044 | grad 8.5277 | lr 0.0000 | time_forward 4.2040 | time_backward 5.9900 |
[2023-10-25 20:03:28,158::train::INFO] [train] Iter 599756 | loss 0.7720 | loss(rot) 0.5665 | loss(pos) 0.0446 | loss(seq) 0.1609 | grad 5.5715 | lr 0.0000 | time_forward 3.4120 | time_backward 4.6160 |
[2023-10-25 20:03:37,433::train::INFO] [train] Iter 599757 | loss 0.3903 | loss(rot) 0.1729 | loss(pos) 0.0429 | loss(seq) 0.1745 | grad 2.9911 | lr 0.0000 | time_forward 3.8620 | time_backward 5.4100 |
[2023-10-25 20:03:46,776::train::INFO] [train] Iter 599758 | loss 0.2562 | loss(rot) 0.0616 | loss(pos) 0.1608 | loss(seq) 0.0338 | grad 3.1108 | lr 0.0000 | time_forward 3.8970 | time_backward 5.4420 |
[2023-10-25 20:03:55,583::train::INFO] [train] Iter 599759 | loss 0.1800 | loss(rot) 0.1138 | loss(pos) 0.0220 | loss(seq) 0.0443 | grad 1.8506 | lr 0.0000 | time_forward 3.6740 | time_backward 5.1310 |
[2023-10-25 20:03:58,381::train::INFO] [train] Iter 599760 | loss 0.4110 | loss(rot) 0.0717 | loss(pos) 0.3129 | loss(seq) 0.0264 | grad 4.8654 | lr 0.0000 | time_forward 1.3240 | time_backward 1.4700 |
[2023-10-25 20:04:08,646::train::INFO] [train] Iter 599761 | loss 0.6918 | loss(rot) 0.3857 | loss(pos) 0.0299 | loss(seq) 0.2762 | grad 2.9019 | lr 0.0000 | time_forward 4.2350 | time_backward 6.0270 |
[2023-10-25 20:04:16,724::train::INFO] [train] Iter 599762 | loss 2.4036 | loss(rot) 1.8692 | loss(pos) 0.2499 | loss(seq) 0.2845 | grad 4.4905 | lr 0.0000 | time_forward 3.3780 | time_backward 4.6980 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.