text
stringlengths 56
1.16k
|
---|
[2023-10-25 19:38:34,409::train::INFO] [train] Iter 599563 | loss 1.4586 | loss(rot) 1.3934 | loss(pos) 0.0330 | loss(seq) 0.0321 | grad 13.3074 | lr 0.0000 | time_forward 1.5290 | time_backward 1.8600 |
[2023-10-25 19:38:45,886::train::INFO] [train] Iter 599564 | loss 0.8705 | loss(rot) 0.3084 | loss(pos) 0.2935 | loss(seq) 0.2686 | grad 3.8539 | lr 0.0000 | time_forward 4.9490 | time_backward 6.5240 |
[2023-10-25 19:38:49,005::train::INFO] [train] Iter 599565 | loss 0.7149 | loss(rot) 0.2625 | loss(pos) 0.2472 | loss(seq) 0.2051 | grad 3.4181 | lr 0.0000 | time_forward 1.5070 | time_backward 1.6070 |
[2023-10-25 19:39:02,075::train::INFO] [train] Iter 599566 | loss 0.8676 | loss(rot) 0.6450 | loss(pos) 0.1801 | loss(seq) 0.0425 | grad 3.5146 | lr 0.0000 | time_forward 5.3300 | time_backward 7.6790 |
[2023-10-25 19:39:13,985::train::INFO] [train] Iter 599567 | loss 0.6765 | loss(rot) 0.2767 | loss(pos) 0.2379 | loss(seq) 0.1618 | grad 5.2953 | lr 0.0000 | time_forward 7.0720 | time_backward 4.8350 |
[2023-10-25 19:39:21,498::train::INFO] [train] Iter 599568 | loss 1.2257 | loss(rot) 0.8512 | loss(pos) 0.1027 | loss(seq) 0.2717 | grad 4.0276 | lr 0.0000 | time_forward 3.3810 | time_backward 4.1280 |
[2023-10-25 19:39:29,574::train::INFO] [train] Iter 599569 | loss 0.1199 | loss(rot) 0.0975 | loss(pos) 0.0223 | loss(seq) 0.0000 | grad 2.4385 | lr 0.0000 | time_forward 3.4070 | time_backward 4.6650 |
[2023-10-25 19:39:38,832::train::INFO] [train] Iter 599570 | loss 0.4116 | loss(rot) 0.2467 | loss(pos) 0.0380 | loss(seq) 0.1268 | grad 24.4982 | lr 0.0000 | time_forward 3.9470 | time_backward 5.3080 |
[2023-10-25 19:39:47,635::train::INFO] [train] Iter 599571 | loss 0.5255 | loss(rot) 0.1373 | loss(pos) 0.0505 | loss(seq) 0.3376 | grad 2.3579 | lr 0.0000 | time_forward 3.7470 | time_backward 5.0540 |
[2023-10-25 19:39:56,405::train::INFO] [train] Iter 599572 | loss 0.4582 | loss(rot) 0.3646 | loss(pos) 0.0187 | loss(seq) 0.0750 | grad 3.6903 | lr 0.0000 | time_forward 3.6870 | time_backward 5.0800 |
[2023-10-25 19:40:05,633::train::INFO] [train] Iter 599573 | loss 0.2811 | loss(rot) 0.0392 | loss(pos) 0.2376 | loss(seq) 0.0042 | grad 4.5701 | lr 0.0000 | time_forward 3.9120 | time_backward 5.3130 |
[2023-10-25 19:40:15,374::train::INFO] [train] Iter 599574 | loss 0.1309 | loss(rot) 0.1061 | loss(pos) 0.0245 | loss(seq) 0.0003 | grad 1.8302 | lr 0.0000 | time_forward 3.9110 | time_backward 5.8270 |
[2023-10-25 19:40:18,620::train::INFO] [train] Iter 599575 | loss 0.6193 | loss(rot) 0.0529 | loss(pos) 0.5556 | loss(seq) 0.0107 | grad 6.2542 | lr 0.0000 | time_forward 1.5560 | time_backward 1.6850 |
[2023-10-25 19:40:32,506::train::INFO] [train] Iter 599576 | loss 0.9795 | loss(rot) 0.9441 | loss(pos) 0.0354 | loss(seq) 0.0000 | grad 17.3764 | lr 0.0000 | time_forward 5.7510 | time_backward 8.1310 |
[2023-10-25 19:40:42,411::train::INFO] [train] Iter 599577 | loss 1.4508 | loss(rot) 1.2773 | loss(pos) 0.0994 | loss(seq) 0.0741 | grad 4.3120 | lr 0.0000 | time_forward 4.1610 | time_backward 5.7420 |
[2023-10-25 19:40:52,088::train::INFO] [train] Iter 599578 | loss 0.3296 | loss(rot) 0.2199 | loss(pos) 0.0225 | loss(seq) 0.0872 | grad 3.5713 | lr 0.0000 | time_forward 4.0850 | time_backward 5.5880 |
[2023-10-25 19:41:04,688::train::INFO] [train] Iter 599579 | loss 2.2260 | loss(rot) 1.9148 | loss(pos) 0.0576 | loss(seq) 0.2535 | grad 17.3993 | lr 0.0000 | time_forward 5.2250 | time_backward 7.3700 |
[2023-10-25 19:41:07,494::train::INFO] [train] Iter 599580 | loss 1.3166 | loss(rot) 1.2548 | loss(pos) 0.0607 | loss(seq) 0.0010 | grad 3.3687 | lr 0.0000 | time_forward 1.3370 | time_backward 1.4650 |
[2023-10-25 19:41:19,384::train::INFO] [train] Iter 599581 | loss 1.4549 | loss(rot) 0.9709 | loss(pos) 0.0836 | loss(seq) 0.4003 | grad 3.1394 | lr 0.0000 | time_forward 4.9910 | time_backward 6.8460 |
[2023-10-25 19:41:29,890::train::INFO] [train] Iter 599582 | loss 1.0673 | loss(rot) 0.7048 | loss(pos) 0.0864 | loss(seq) 0.2761 | grad 6.1581 | lr 0.0000 | time_forward 4.5260 | time_backward 5.9760 |
[2023-10-25 19:41:39,313::train::INFO] [train] Iter 599583 | loss 0.7395 | loss(rot) 0.1611 | loss(pos) 0.0663 | loss(seq) 0.5121 | grad 3.3446 | lr 0.0000 | time_forward 4.0110 | time_backward 5.4080 |
[2023-10-25 19:41:42,265::train::INFO] [train] Iter 599584 | loss 0.1742 | loss(rot) 0.1104 | loss(pos) 0.0255 | loss(seq) 0.0382 | grad 2.6154 | lr 0.0000 | time_forward 1.3940 | time_backward 1.5550 |
[2023-10-25 19:41:54,140::train::INFO] [train] Iter 599585 | loss 0.6135 | loss(rot) 0.1501 | loss(pos) 0.4453 | loss(seq) 0.0182 | grad 3.1191 | lr 0.0000 | time_forward 4.7920 | time_backward 7.0790 |
[2023-10-25 19:41:57,124::train::INFO] [train] Iter 599586 | loss 2.1558 | loss(rot) 1.6408 | loss(pos) 0.1869 | loss(seq) 0.3281 | grad 3.9605 | lr 0.0000 | time_forward 1.4000 | time_backward 1.5810 |
[2023-10-25 19:42:07,946::train::INFO] [train] Iter 599587 | loss 1.0677 | loss(rot) 0.5322 | loss(pos) 0.2798 | loss(seq) 0.2557 | grad 13.0636 | lr 0.0000 | time_forward 4.5540 | time_backward 6.2660 |
[2023-10-25 19:42:10,964::train::INFO] [train] Iter 599588 | loss 0.5956 | loss(rot) 0.0505 | loss(pos) 0.5375 | loss(seq) 0.0076 | grad 5.5140 | lr 0.0000 | time_forward 1.4260 | time_backward 1.5880 |
[2023-10-25 19:42:14,015::train::INFO] [train] Iter 599589 | loss 0.2938 | loss(rot) 0.2197 | loss(pos) 0.0253 | loss(seq) 0.0488 | grad 2.1459 | lr 0.0000 | time_forward 1.4680 | time_backward 1.5790 |
[2023-10-25 19:42:24,066::train::INFO] [train] Iter 599590 | loss 1.0085 | loss(rot) 0.7396 | loss(pos) 0.0559 | loss(seq) 0.2129 | grad 13.3018 | lr 0.0000 | time_forward 4.3360 | time_backward 5.7110 |
[2023-10-25 19:42:27,203::train::INFO] [train] Iter 599591 | loss 0.4642 | loss(rot) 0.1753 | loss(pos) 0.0775 | loss(seq) 0.2114 | grad 2.7873 | lr 0.0000 | time_forward 1.4570 | time_backward 1.6750 |
[2023-10-25 19:42:38,081::train::INFO] [train] Iter 599592 | loss 0.3071 | loss(rot) 0.1564 | loss(pos) 0.0425 | loss(seq) 0.1082 | grad 2.1391 | lr 0.0000 | time_forward 4.3780 | time_backward 6.4960 |
[2023-10-25 19:42:48,785::train::INFO] [train] Iter 599593 | loss 0.2869 | loss(rot) 0.0786 | loss(pos) 0.1928 | loss(seq) 0.0155 | grad 3.0496 | lr 0.0000 | time_forward 4.4920 | time_backward 6.2080 |
[2023-10-25 19:42:52,000::train::INFO] [train] Iter 599594 | loss 1.8386 | loss(rot) 1.7388 | loss(pos) 0.0107 | loss(seq) 0.0891 | grad 7.3249 | lr 0.0000 | time_forward 1.4400 | time_backward 1.7720 |
[2023-10-25 19:43:02,772::train::INFO] [train] Iter 599595 | loss 1.4121 | loss(rot) 0.6866 | loss(pos) 0.1260 | loss(seq) 0.5995 | grad 11.1457 | lr 0.0000 | time_forward 4.5410 | time_backward 6.2270 |
[2023-10-25 19:43:05,966::train::INFO] [train] Iter 599596 | loss 0.1381 | loss(rot) 0.1016 | loss(pos) 0.0193 | loss(seq) 0.0172 | grad 1.5948 | lr 0.0000 | time_forward 1.4480 | time_backward 1.7420 |
[2023-10-25 19:43:08,865::train::INFO] [train] Iter 599597 | loss 1.6986 | loss(rot) 1.2496 | loss(pos) 0.1519 | loss(seq) 0.2971 | grad 6.6341 | lr 0.0000 | time_forward 1.3250 | time_backward 1.5720 |
[2023-10-25 19:43:18,279::train::INFO] [train] Iter 599598 | loss 0.3018 | loss(rot) 0.0461 | loss(pos) 0.2481 | loss(seq) 0.0076 | grad 8.3709 | lr 0.0000 | time_forward 3.8590 | time_backward 5.5400 |
[2023-10-25 19:43:30,182::train::INFO] [train] Iter 599599 | loss 0.7940 | loss(rot) 0.7443 | loss(pos) 0.0392 | loss(seq) 0.0105 | grad 3.8530 | lr 0.0000 | time_forward 5.3520 | time_backward 6.5470 |
[2023-10-25 19:43:33,645::train::INFO] [train] Iter 599600 | loss 0.8332 | loss(rot) 0.7356 | loss(pos) 0.0350 | loss(seq) 0.0627 | grad 12.5638 | lr 0.0000 | time_forward 1.8410 | time_backward 1.6190 |
[2023-10-25 19:43:45,059::train::INFO] [train] Iter 599601 | loss 0.9466 | loss(rot) 0.4382 | loss(pos) 0.0694 | loss(seq) 0.4390 | grad 4.7163 | lr 0.0000 | time_forward 5.6810 | time_backward 5.7310 |
[2023-10-25 19:43:55,754::train::INFO] [train] Iter 599602 | loss 0.4402 | loss(rot) 0.1654 | loss(pos) 0.1452 | loss(seq) 0.1297 | grad 3.6895 | lr 0.0000 | time_forward 4.7380 | time_backward 5.9530 |
[2023-10-25 19:44:07,527::train::INFO] [train] Iter 599603 | loss 1.0955 | loss(rot) 0.0090 | loss(pos) 1.0849 | loss(seq) 0.0016 | grad 7.6972 | lr 0.0000 | time_forward 5.5950 | time_backward 6.1740 |
[2023-10-25 19:44:10,687::train::INFO] [train] Iter 599604 | loss 0.1381 | loss(rot) 0.0835 | loss(pos) 0.0257 | loss(seq) 0.0289 | grad 1.5240 | lr 0.0000 | time_forward 1.4960 | time_backward 1.6610 |
[2023-10-25 19:44:21,120::train::INFO] [train] Iter 599605 | loss 0.7793 | loss(rot) 0.3938 | loss(pos) 0.0786 | loss(seq) 0.3069 | grad 3.0108 | lr 0.0000 | time_forward 4.3190 | time_backward 6.1100 |
[2023-10-25 19:44:23,751::train::INFO] [train] Iter 599606 | loss 0.8903 | loss(rot) 0.2945 | loss(pos) 0.0853 | loss(seq) 0.5105 | grad 3.5302 | lr 0.0000 | time_forward 1.2500 | time_backward 1.3780 |
[2023-10-25 19:44:34,012::train::INFO] [train] Iter 599607 | loss 0.1354 | loss(rot) 0.1118 | loss(pos) 0.0231 | loss(seq) 0.0005 | grad 2.0125 | lr 0.0000 | time_forward 4.1860 | time_backward 6.0720 |
[2023-10-25 19:44:44,499::train::INFO] [train] Iter 599608 | loss 1.1840 | loss(rot) 0.3465 | loss(pos) 0.5027 | loss(seq) 0.3348 | grad 3.5919 | lr 0.0000 | time_forward 4.4430 | time_backward 6.0410 |
[2023-10-25 19:44:55,073::train::INFO] [train] Iter 599609 | loss 0.6491 | loss(rot) 0.0324 | loss(pos) 0.2601 | loss(seq) 0.3566 | grad 6.4944 | lr 0.0000 | time_forward 4.2810 | time_backward 6.2890 |
[2023-10-25 19:45:03,439::train::INFO] [train] Iter 599610 | loss 1.0061 | loss(rot) 0.8611 | loss(pos) 0.0204 | loss(seq) 0.1247 | grad 3.4742 | lr 0.0000 | time_forward 3.5440 | time_backward 4.8200 |
[2023-10-25 19:45:12,665::train::INFO] [train] Iter 599611 | loss 1.1254 | loss(rot) 0.7169 | loss(pos) 0.1565 | loss(seq) 0.2520 | grad 4.0102 | lr 0.0000 | time_forward 3.8830 | time_backward 5.3390 |
[2023-10-25 19:45:20,225::train::INFO] [train] Iter 599612 | loss 0.2978 | loss(rot) 0.1807 | loss(pos) 0.0928 | loss(seq) 0.0242 | grad 2.9028 | lr 0.0000 | time_forward 3.2530 | time_backward 4.3030 |
[2023-10-25 19:45:31,187::train::INFO] [train] Iter 599613 | loss 1.0210 | loss(rot) 0.5723 | loss(pos) 0.0742 | loss(seq) 0.3744 | grad 3.1035 | lr 0.0000 | time_forward 4.1430 | time_backward 6.8160 |
[2023-10-25 19:45:34,205::train::INFO] [train] Iter 599614 | loss 0.8019 | loss(rot) 0.3510 | loss(pos) 0.3972 | loss(seq) 0.0537 | grad 5.2026 | lr 0.0000 | time_forward 1.5600 | time_backward 1.4540 |
[2023-10-25 19:45:44,384::train::INFO] [train] Iter 599615 | loss 0.1999 | loss(rot) 0.0476 | loss(pos) 0.1358 | loss(seq) 0.0164 | grad 4.3366 | lr 0.0000 | time_forward 4.1230 | time_backward 6.0180 |
[2023-10-25 19:45:47,391::train::INFO] [train] Iter 599616 | loss 0.4105 | loss(rot) 0.0987 | loss(pos) 0.0608 | loss(seq) 0.2510 | grad 2.3808 | lr 0.0000 | time_forward 1.4670 | time_backward 1.5380 |
[2023-10-25 19:45:57,535::train::INFO] [train] Iter 599617 | loss 0.3562 | loss(rot) 0.0560 | loss(pos) 0.2922 | loss(seq) 0.0080 | grad 5.7139 | lr 0.0000 | time_forward 4.1680 | time_backward 5.9440 |
[2023-10-25 19:46:06,784::train::INFO] [train] Iter 599618 | loss 0.1969 | loss(rot) 0.0933 | loss(pos) 0.0929 | loss(seq) 0.0107 | grad 2.6604 | lr 0.0000 | time_forward 3.9120 | time_backward 5.3330 |
[2023-10-25 19:46:15,721::train::INFO] [train] Iter 599619 | loss 0.3558 | loss(rot) 0.1822 | loss(pos) 0.0134 | loss(seq) 0.1603 | grad 2.9533 | lr 0.0000 | time_forward 3.7520 | time_backward 5.1820 |
[2023-10-25 19:46:18,615::train::INFO] [train] Iter 599620 | loss 0.3439 | loss(rot) 0.3048 | loss(pos) 0.0391 | loss(seq) 0.0001 | grad 2.9909 | lr 0.0000 | time_forward 1.3560 | time_backward 1.5350 |
[2023-10-25 19:46:25,993::train::INFO] [train] Iter 599621 | loss 0.1416 | loss(rot) 0.1024 | loss(pos) 0.0311 | loss(seq) 0.0081 | grad 1.9387 | lr 0.0000 | time_forward 3.0890 | time_backward 4.2860 |
[2023-10-25 19:46:37,120::train::INFO] [train] Iter 599622 | loss 0.5924 | loss(rot) 0.4325 | loss(pos) 0.0536 | loss(seq) 0.1063 | grad 2.8097 | lr 0.0000 | time_forward 4.7670 | time_backward 6.3570 |
[2023-10-25 19:46:47,929::train::INFO] [train] Iter 599623 | loss 0.5563 | loss(rot) 0.1058 | loss(pos) 0.0925 | loss(seq) 0.3580 | grad 3.1392 | lr 0.0000 | time_forward 5.2680 | time_backward 5.5370 |
[2023-10-25 19:46:58,283::train::INFO] [train] Iter 599624 | loss 1.4952 | loss(rot) 0.0079 | loss(pos) 1.4858 | loss(seq) 0.0015 | grad 19.0923 | lr 0.0000 | time_forward 4.8240 | time_backward 5.5260 |
[2023-10-25 19:47:09,228::train::INFO] [train] Iter 599625 | loss 0.3587 | loss(rot) 0.1334 | loss(pos) 0.0827 | loss(seq) 0.1426 | grad 2.3093 | lr 0.0000 | time_forward 4.9520 | time_backward 5.9890 |
[2023-10-25 19:47:18,126::train::INFO] [train] Iter 599626 | loss 1.6593 | loss(rot) 1.1295 | loss(pos) 0.0500 | loss(seq) 0.4798 | grad 4.9779 | lr 0.0000 | time_forward 3.9650 | time_backward 4.9290 |
[2023-10-25 19:47:20,863::train::INFO] [train] Iter 599627 | loss 0.2629 | loss(rot) 0.1978 | loss(pos) 0.0651 | loss(seq) 0.0000 | grad 3.8683 | lr 0.0000 | time_forward 1.3190 | time_backward 1.4150 |
[2023-10-25 19:47:31,419::train::INFO] [train] Iter 599628 | loss 0.2274 | loss(rot) 0.1151 | loss(pos) 0.0802 | loss(seq) 0.0321 | grad 2.1245 | lr 0.0000 | time_forward 4.3280 | time_backward 6.2010 |
[2023-10-25 19:47:39,415::train::INFO] [train] Iter 599629 | loss 0.7075 | loss(rot) 0.3011 | loss(pos) 0.0521 | loss(seq) 0.3543 | grad 7.2700 | lr 0.0000 | time_forward 3.3720 | time_backward 4.6200 |
[2023-10-25 19:47:48,010::train::INFO] [train] Iter 599630 | loss 0.6153 | loss(rot) 0.2441 | loss(pos) 0.1288 | loss(seq) 0.2423 | grad 4.7668 | lr 0.0000 | time_forward 3.5920 | time_backward 5.0000 |
[2023-10-25 19:47:57,013::train::INFO] [train] Iter 599631 | loss 2.1957 | loss(rot) 2.1272 | loss(pos) 0.0635 | loss(seq) 0.0050 | grad 5.0829 | lr 0.0000 | time_forward 3.8150 | time_backward 5.1840 |
[2023-10-25 19:47:59,984::train::INFO] [train] Iter 599632 | loss 0.8003 | loss(rot) 0.5364 | loss(pos) 0.0730 | loss(seq) 0.1909 | grad 2.3882 | lr 0.0000 | time_forward 1.4430 | time_backward 1.5250 |
[2023-10-25 19:48:08,931::train::INFO] [train] Iter 599633 | loss 0.8440 | loss(rot) 0.2535 | loss(pos) 0.4573 | loss(seq) 0.1332 | grad 3.9849 | lr 0.0000 | time_forward 3.8380 | time_backward 5.1050 |
[2023-10-25 19:48:11,919::train::INFO] [train] Iter 599634 | loss 0.3554 | loss(rot) 0.1043 | loss(pos) 0.0158 | loss(seq) 0.2353 | grad 2.0887 | lr 0.0000 | time_forward 1.3520 | time_backward 1.6330 |
[2023-10-25 19:48:20,054::train::INFO] [train] Iter 599635 | loss 0.1347 | loss(rot) 0.0960 | loss(pos) 0.0384 | loss(seq) 0.0002 | grad 2.6410 | lr 0.0000 | time_forward 3.4060 | time_backward 4.7270 |
[2023-10-25 19:48:30,502::train::INFO] [train] Iter 599636 | loss 1.3756 | loss(rot) 0.8529 | loss(pos) 0.1891 | loss(seq) 0.3336 | grad 5.4725 | lr 0.0000 | time_forward 4.3630 | time_backward 6.0810 |
[2023-10-25 19:48:33,416::train::INFO] [train] Iter 599637 | loss 0.3806 | loss(rot) 0.3399 | loss(pos) 0.0407 | loss(seq) -0.0000 | grad 2.0063 | lr 0.0000 | time_forward 1.4100 | time_backward 1.5000 |
[2023-10-25 19:48:42,870::train::INFO] [train] Iter 599638 | loss 0.2345 | loss(rot) 0.0311 | loss(pos) 0.0360 | loss(seq) 0.1673 | grad 1.8536 | lr 0.0000 | time_forward 3.9220 | time_backward 5.5290 |
[2023-10-25 19:48:49,292::train::INFO] [train] Iter 599639 | loss 1.6340 | loss(rot) 0.0031 | loss(pos) 1.6307 | loss(seq) 0.0002 | grad 15.4327 | lr 0.0000 | time_forward 2.7540 | time_backward 3.6630 |
[2023-10-25 19:48:59,622::train::INFO] [train] Iter 599640 | loss 1.8656 | loss(rot) 1.6677 | loss(pos) 0.0646 | loss(seq) 0.1334 | grad 9.3016 | lr 0.0000 | time_forward 4.3560 | time_backward 5.9700 |
[2023-10-25 19:49:07,977::train::INFO] [train] Iter 599641 | loss 0.8685 | loss(rot) 0.0447 | loss(pos) 0.4705 | loss(seq) 0.3533 | grad 6.1547 | lr 0.0000 | time_forward 3.4530 | time_backward 4.8980 |
[2023-10-25 19:49:16,432::train::INFO] [train] Iter 599642 | loss 0.4068 | loss(rot) 0.2525 | loss(pos) 0.0266 | loss(seq) 0.1277 | grad 2.6041 | lr 0.0000 | time_forward 3.4980 | time_backward 4.9550 |
[2023-10-25 19:49:25,719::train::INFO] [train] Iter 599643 | loss 1.7331 | loss(rot) 1.2769 | loss(pos) 0.0437 | loss(seq) 0.4126 | grad 4.3586 | lr 0.0000 | time_forward 3.9120 | time_backward 5.3710 |
[2023-10-25 19:49:35,265::train::INFO] [train] Iter 599644 | loss 0.5062 | loss(rot) 0.2094 | loss(pos) 0.0349 | loss(seq) 0.2619 | grad 3.1723 | lr 0.0000 | time_forward 4.0870 | time_backward 5.4550 |
[2023-10-25 19:49:44,571::train::INFO] [train] Iter 599645 | loss 0.7607 | loss(rot) 0.1147 | loss(pos) 0.0383 | loss(seq) 0.6077 | grad 3.2470 | lr 0.0000 | time_forward 3.9010 | time_backward 5.4020 |
[2023-10-25 19:49:47,497::train::INFO] [train] Iter 599646 | loss 0.5846 | loss(rot) 0.0160 | loss(pos) 0.4459 | loss(seq) 0.1227 | grad 5.4954 | lr 0.0000 | time_forward 1.4110 | time_backward 1.5130 |
[2023-10-25 19:49:57,569::train::INFO] [train] Iter 599647 | loss 0.6176 | loss(rot) 0.3695 | loss(pos) 0.1077 | loss(seq) 0.1403 | grad 3.5141 | lr 0.0000 | time_forward 4.0730 | time_backward 5.9460 |
[2023-10-25 19:50:08,548::train::INFO] [train] Iter 599648 | loss 1.6074 | loss(rot) 1.5739 | loss(pos) 0.0336 | loss(seq) 0.0000 | grad 5.7072 | lr 0.0000 | time_forward 4.6790 | time_backward 6.2960 |
[2023-10-25 19:50:18,865::train::INFO] [train] Iter 599649 | loss 0.9949 | loss(rot) 0.9586 | loss(pos) 0.0200 | loss(seq) 0.0163 | grad 2.6788 | lr 0.0000 | time_forward 4.1250 | time_backward 6.1890 |
[2023-10-25 19:50:28,392::train::INFO] [train] Iter 599650 | loss 0.7378 | loss(rot) 0.6463 | loss(pos) 0.0193 | loss(seq) 0.0722 | grad 5.5732 | lr 0.0000 | time_forward 4.0350 | time_backward 5.4880 |
[2023-10-25 19:50:37,797::train::INFO] [train] Iter 599651 | loss 0.9796 | loss(rot) 0.2523 | loss(pos) 0.7247 | loss(seq) 0.0026 | grad 7.9440 | lr 0.0000 | time_forward 3.9840 | time_backward 5.4180 |
[2023-10-25 19:50:48,030::train::INFO] [train] Iter 599652 | loss 0.7657 | loss(rot) 0.2281 | loss(pos) 0.0826 | loss(seq) 0.4550 | grad 6.5361 | lr 0.0000 | time_forward 4.0550 | time_backward 6.1740 |
[2023-10-25 19:50:50,551::train::INFO] [train] Iter 599653 | loss 0.3081 | loss(rot) 0.1330 | loss(pos) 0.0178 | loss(seq) 0.1573 | grad 2.5006 | lr 0.0000 | time_forward 1.1680 | time_backward 1.3500 |
[2023-10-25 19:50:52,977::train::INFO] [train] Iter 599654 | loss 1.2461 | loss(rot) 0.7629 | loss(pos) 0.0590 | loss(seq) 0.4243 | grad 4.8815 | lr 0.0000 | time_forward 1.1110 | time_backward 1.3110 |
[2023-10-25 19:51:03,198::train::INFO] [train] Iter 599655 | loss 1.0023 | loss(rot) 0.8503 | loss(pos) 0.0410 | loss(seq) 0.1109 | grad 2.8209 | lr 0.0000 | time_forward 4.1620 | time_backward 6.0520 |
[2023-10-25 19:51:13,463::train::INFO] [train] Iter 599656 | loss 0.8492 | loss(rot) 0.2090 | loss(pos) 0.2032 | loss(seq) 0.4371 | grad 3.1471 | lr 0.0000 | time_forward 4.1450 | time_backward 6.1170 |
[2023-10-25 19:51:22,865::train::INFO] [train] Iter 599657 | loss 0.1506 | loss(rot) 0.0596 | loss(pos) 0.0171 | loss(seq) 0.0738 | grad 1.6863 | lr 0.0000 | time_forward 3.9510 | time_backward 5.4470 |
[2023-10-25 19:51:25,809::train::INFO] [train] Iter 599658 | loss 0.2002 | loss(rot) 0.1464 | loss(pos) 0.0250 | loss(seq) 0.0289 | grad 2.1332 | lr 0.0000 | time_forward 1.3510 | time_backward 1.5890 |
[2023-10-25 19:51:34,073::train::INFO] [train] Iter 599659 | loss 1.1948 | loss(rot) 0.7187 | loss(pos) 0.1307 | loss(seq) 0.3454 | grad 5.5752 | lr 0.0000 | time_forward 3.3890 | time_backward 4.8580 |
[2023-10-25 19:51:37,029::train::INFO] [train] Iter 599660 | loss 1.7648 | loss(rot) 1.7237 | loss(pos) 0.0411 | loss(seq) 0.0000 | grad 3.5777 | lr 0.0000 | time_forward 1.3480 | time_backward 1.6040 |
[2023-10-25 19:51:47,079::train::INFO] [train] Iter 599661 | loss 0.2132 | loss(rot) 0.0406 | loss(pos) 0.0896 | loss(seq) 0.0831 | grad 2.1171 | lr 0.0000 | time_forward 4.1720 | time_backward 5.8750 |
[2023-10-25 19:51:49,903::train::INFO] [train] Iter 599662 | loss 0.6641 | loss(rot) 0.4467 | loss(pos) 0.0124 | loss(seq) 0.2049 | grad 13.8596 | lr 0.0000 | time_forward 1.3260 | time_backward 1.4950 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.