text
stringlengths 56
1.16k
|
---|
[2023-10-25 19:13:03,127::train::INFO] [train] Iter 599363 | loss 1.9205 | loss(rot) 1.6791 | loss(pos) 0.0495 | loss(seq) 0.1920 | grad 4.8492 | lr 0.0000 | time_forward 1.2130 | time_backward 1.3070 |
[2023-10-25 19:13:06,024::train::INFO] [train] Iter 599364 | loss 0.4178 | loss(rot) 0.0394 | loss(pos) 0.3724 | loss(seq) 0.0060 | grad 8.6948 | lr 0.0000 | time_forward 1.3810 | time_backward 1.5130 |
[2023-10-25 19:13:14,479::train::INFO] [train] Iter 599365 | loss 0.5907 | loss(rot) 0.3894 | loss(pos) 0.1639 | loss(seq) 0.0374 | grad 3.7464 | lr 0.0000 | time_forward 3.5640 | time_backward 4.8870 |
[2023-10-25 19:13:17,219::train::INFO] [train] Iter 599366 | loss 0.9307 | loss(rot) 0.8215 | loss(pos) 0.0300 | loss(seq) 0.0792 | grad 4.3416 | lr 0.0000 | time_forward 1.2960 | time_backward 1.4410 |
[2023-10-25 19:13:25,244::train::INFO] [train] Iter 599367 | loss 0.3142 | loss(rot) 0.0503 | loss(pos) 0.2568 | loss(seq) 0.0070 | grad 4.4448 | lr 0.0000 | time_forward 3.4080 | time_backward 4.5790 |
[2023-10-25 19:13:35,201::train::INFO] [train] Iter 599368 | loss 0.1985 | loss(rot) 0.0463 | loss(pos) 0.0209 | loss(seq) 0.1313 | grad 1.6564 | lr 0.0000 | time_forward 4.0480 | time_backward 5.9050 |
[2023-10-25 19:13:37,949::train::INFO] [train] Iter 599369 | loss 0.7175 | loss(rot) 0.6922 | loss(pos) 0.0252 | loss(seq) 0.0001 | grad 3.6136 | lr 0.0000 | time_forward 1.3170 | time_backward 1.4280 |
[2023-10-25 19:13:48,070::train::INFO] [train] Iter 599370 | loss 0.8079 | loss(rot) 0.3714 | loss(pos) 0.0765 | loss(seq) 0.3600 | grad 2.5491 | lr 0.0000 | time_forward 4.2330 | time_backward 5.8840 |
[2023-10-25 19:13:57,157::train::INFO] [train] Iter 599371 | loss 0.4914 | loss(rot) 0.0878 | loss(pos) 0.0832 | loss(seq) 0.3203 | grad 2.6898 | lr 0.0000 | time_forward 3.8670 | time_backward 5.2170 |
[2023-10-25 19:14:05,130::train::INFO] [train] Iter 599372 | loss 0.3998 | loss(rot) 0.1914 | loss(pos) 0.0295 | loss(seq) 0.1789 | grad 2.5957 | lr 0.0000 | time_forward 3.3470 | time_backward 4.6240 |
[2023-10-25 19:14:15,158::train::INFO] [train] Iter 599373 | loss 0.2991 | loss(rot) 0.1636 | loss(pos) 0.0139 | loss(seq) 0.1216 | grad 1.9838 | lr 0.0000 | time_forward 4.0180 | time_backward 6.0070 |
[2023-10-25 19:14:17,936::train::INFO] [train] Iter 599374 | loss 1.3987 | loss(rot) 0.6294 | loss(pos) 0.2734 | loss(seq) 0.4959 | grad 4.5910 | lr 0.0000 | time_forward 1.3360 | time_backward 1.4380 |
[2023-10-25 19:14:28,049::train::INFO] [train] Iter 599375 | loss 0.2678 | loss(rot) 0.0454 | loss(pos) 0.2140 | loss(seq) 0.0084 | grad 2.8897 | lr 0.0000 | time_forward 4.1460 | time_backward 5.9630 |
[2023-10-25 19:14:36,825::train::INFO] [train] Iter 599376 | loss 1.7183 | loss(rot) 1.2211 | loss(pos) 0.1533 | loss(seq) 0.3439 | grad 3.2340 | lr 0.0000 | time_forward 3.6830 | time_backward 5.0900 |
[2023-10-25 19:14:45,489::train::INFO] [train] Iter 599377 | loss 0.2948 | loss(rot) 0.1290 | loss(pos) 0.0198 | loss(seq) 0.1460 | grad 3.3954 | lr 0.0000 | time_forward 3.6400 | time_backward 5.0220 |
[2023-10-25 19:14:49,163::train::INFO] [train] Iter 599378 | loss 1.1200 | loss(rot) 0.4273 | loss(pos) 0.2023 | loss(seq) 0.4904 | grad 2.7307 | lr 0.0000 | time_forward 1.6500 | time_backward 2.0200 |
[2023-10-25 19:14:59,115::train::INFO] [train] Iter 599379 | loss 0.7947 | loss(rot) 0.3153 | loss(pos) 0.4539 | loss(seq) 0.0255 | grad 5.8328 | lr 0.0000 | time_forward 4.0060 | time_backward 5.9300 |
[2023-10-25 19:15:09,035::train::INFO] [train] Iter 599380 | loss 1.1840 | loss(rot) 0.7019 | loss(pos) 0.1354 | loss(seq) 0.3467 | grad 5.3967 | lr 0.0000 | time_forward 4.0480 | time_backward 5.8480 |
[2023-10-25 19:15:18,912::train::INFO] [train] Iter 599381 | loss 0.3318 | loss(rot) 0.2240 | loss(pos) 0.0904 | loss(seq) 0.0174 | grad 2.1536 | lr 0.0000 | time_forward 3.9890 | time_backward 5.8840 |
[2023-10-25 19:15:27,743::train::INFO] [train] Iter 599382 | loss 0.3269 | loss(rot) 0.2071 | loss(pos) 0.0455 | loss(seq) 0.0743 | grad 2.9226 | lr 0.0000 | time_forward 3.6450 | time_backward 5.1840 |
[2023-10-25 19:15:36,880::train::INFO] [train] Iter 599383 | loss 0.7106 | loss(rot) 0.3648 | loss(pos) 0.0251 | loss(seq) 0.3207 | grad 4.3235 | lr 0.0000 | time_forward 3.8540 | time_backward 5.2790 |
[2023-10-25 19:15:39,636::train::INFO] [train] Iter 599384 | loss 0.4940 | loss(rot) 0.0451 | loss(pos) 0.4430 | loss(seq) 0.0058 | grad 4.9712 | lr 0.0000 | time_forward 1.2980 | time_backward 1.4540 |
[2023-10-25 19:15:42,455::train::INFO] [train] Iter 599385 | loss 2.7242 | loss(rot) 2.1048 | loss(pos) 0.1448 | loss(seq) 0.4747 | grad 4.5290 | lr 0.0000 | time_forward 1.3600 | time_backward 1.4540 |
[2023-10-25 19:15:51,376::train::INFO] [train] Iter 599386 | loss 0.4435 | loss(rot) 0.1454 | loss(pos) 0.2441 | loss(seq) 0.0541 | grad 6.2940 | lr 0.0000 | time_forward 3.8010 | time_backward 5.1170 |
[2023-10-25 19:15:54,239::train::INFO] [train] Iter 599387 | loss 0.8435 | loss(rot) 0.5047 | loss(pos) 0.0543 | loss(seq) 0.2845 | grad 2.7360 | lr 0.0000 | time_forward 1.3440 | time_backward 1.5150 |
[2023-10-25 19:16:01,456::train::INFO] [train] Iter 599388 | loss 2.2410 | loss(rot) 1.7967 | loss(pos) 0.0411 | loss(seq) 0.4031 | grad 8.3019 | lr 0.0000 | time_forward 3.0860 | time_backward 4.1280 |
[2023-10-25 19:16:10,020::train::INFO] [train] Iter 599389 | loss 0.3784 | loss(rot) 0.2863 | loss(pos) 0.0395 | loss(seq) 0.0526 | grad 3.5689 | lr 0.0000 | time_forward 3.6120 | time_backward 4.9480 |
[2023-10-25 19:16:12,895::train::INFO] [train] Iter 599390 | loss 0.9920 | loss(rot) 0.5825 | loss(pos) 0.0466 | loss(seq) 0.3628 | grad 4.9239 | lr 0.0000 | time_forward 1.3180 | time_backward 1.5550 |
[2023-10-25 19:16:21,605::train::INFO] [train] Iter 599391 | loss 1.1124 | loss(rot) 0.3648 | loss(pos) 0.4104 | loss(seq) 0.3372 | grad 4.6992 | lr 0.0000 | time_forward 3.6330 | time_backward 5.0730 |
[2023-10-25 19:16:31,421::train::INFO] [train] Iter 599392 | loss 0.4684 | loss(rot) 0.1378 | loss(pos) 0.3053 | loss(seq) 0.0252 | grad 3.5784 | lr 0.0000 | time_forward 3.9970 | time_backward 5.8160 |
[2023-10-25 19:16:41,461::train::INFO] [train] Iter 599393 | loss 0.9166 | loss(rot) 0.6180 | loss(pos) 0.1336 | loss(seq) 0.1650 | grad 3.9657 | lr 0.0000 | time_forward 4.1140 | time_backward 5.9220 |
[2023-10-25 19:16:44,830::train::INFO] [train] Iter 599394 | loss 1.5404 | loss(rot) 1.4289 | loss(pos) 0.0584 | loss(seq) 0.0531 | grad 2.9181 | lr 0.0000 | time_forward 1.4810 | time_backward 1.8860 |
[2023-10-25 19:16:54,110::train::INFO] [train] Iter 599395 | loss 0.4433 | loss(rot) 0.4116 | loss(pos) 0.0299 | loss(seq) 0.0018 | grad 4.2525 | lr 0.0000 | time_forward 3.9560 | time_backward 5.3200 |
[2023-10-25 19:17:04,022::train::INFO] [train] Iter 599396 | loss 1.3126 | loss(rot) 1.1088 | loss(pos) 0.0225 | loss(seq) 0.1813 | grad 4.2855 | lr 0.0000 | time_forward 4.0210 | time_backward 5.8880 |
[2023-10-25 19:17:06,732::train::INFO] [train] Iter 599397 | loss 1.0136 | loss(rot) 0.9953 | loss(pos) 0.0177 | loss(seq) 0.0006 | grad 4.2361 | lr 0.0000 | time_forward 1.2830 | time_backward 1.4230 |
[2023-10-25 19:17:17,001::train::INFO] [train] Iter 599398 | loss 0.5451 | loss(rot) 0.1849 | loss(pos) 0.2818 | loss(seq) 0.0784 | grad 2.9577 | lr 0.0000 | time_forward 4.4010 | time_backward 5.8220 |
[2023-10-25 19:17:25,497::train::INFO] [train] Iter 599399 | loss 0.2198 | loss(rot) 0.1121 | loss(pos) 0.0384 | loss(seq) 0.0693 | grad 2.3079 | lr 0.0000 | time_forward 3.6320 | time_backward 4.8600 |
[2023-10-25 19:17:34,375::train::INFO] [train] Iter 599400 | loss 0.4965 | loss(rot) 0.1430 | loss(pos) 0.0969 | loss(seq) 0.2566 | grad 2.7887 | lr 0.0000 | time_forward 3.7660 | time_backward 5.1090 |
[2023-10-25 19:17:37,161::train::INFO] [train] Iter 599401 | loss 0.8609 | loss(rot) 0.3238 | loss(pos) 0.2703 | loss(seq) 0.2668 | grad 6.1446 | lr 0.0000 | time_forward 1.3480 | time_backward 1.4360 |
[2023-10-25 19:17:47,243::train::INFO] [train] Iter 599402 | loss 0.5810 | loss(rot) 0.3750 | loss(pos) 0.0575 | loss(seq) 0.1485 | grad 21.1763 | lr 0.0000 | time_forward 4.2310 | time_backward 5.8120 |
[2023-10-25 19:17:55,452::train::INFO] [train] Iter 599403 | loss 1.5763 | loss(rot) 1.3627 | loss(pos) 0.0458 | loss(seq) 0.1677 | grad 13.3946 | lr 0.0000 | time_forward 3.5440 | time_backward 4.6620 |
[2023-10-25 19:18:03,880::train::INFO] [train] Iter 599404 | loss 1.5798 | loss(rot) 1.5341 | loss(pos) 0.0340 | loss(seq) 0.0118 | grad 4.0684 | lr 0.0000 | time_forward 3.4770 | time_backward 4.9490 |
[2023-10-25 19:18:11,921::train::INFO] [train] Iter 599405 | loss 0.2214 | loss(rot) 0.0413 | loss(pos) 0.0750 | loss(seq) 0.1051 | grad 1.9423 | lr 0.0000 | time_forward 3.4030 | time_backward 4.6340 |
[2023-10-25 19:18:21,961::train::INFO] [train] Iter 599406 | loss 1.1716 | loss(rot) 0.4952 | loss(pos) 0.2682 | loss(seq) 0.4082 | grad 51.5239 | lr 0.0000 | time_forward 4.2110 | time_backward 5.8260 |
[2023-10-25 19:18:31,879::train::INFO] [train] Iter 599407 | loss 0.5802 | loss(rot) 0.1821 | loss(pos) 0.0684 | loss(seq) 0.3297 | grad 3.9184 | lr 0.0000 | time_forward 4.0390 | time_backward 5.8750 |
[2023-10-25 19:18:42,070::train::INFO] [train] Iter 599408 | loss 0.6226 | loss(rot) 0.4729 | loss(pos) 0.0283 | loss(seq) 0.1214 | grad 11.8714 | lr 0.0000 | time_forward 4.0860 | time_backward 6.1030 |
[2023-10-25 19:18:52,324::train::INFO] [train] Iter 599409 | loss 0.9633 | loss(rot) 0.2911 | loss(pos) 0.0602 | loss(seq) 0.6120 | grad 3.3113 | lr 0.0000 | time_forward 4.2400 | time_backward 6.0100 |
[2023-10-25 19:19:02,416::train::INFO] [train] Iter 599410 | loss 1.4794 | loss(rot) 0.0060 | loss(pos) 1.4730 | loss(seq) 0.0005 | grad 8.5842 | lr 0.0000 | time_forward 4.0480 | time_backward 6.0400 |
[2023-10-25 19:19:10,365::train::INFO] [train] Iter 599411 | loss 0.6130 | loss(rot) 0.2590 | loss(pos) 0.0399 | loss(seq) 0.3141 | grad 3.3366 | lr 0.0000 | time_forward 3.6320 | time_backward 4.3130 |
[2023-10-25 19:19:18,339::train::INFO] [train] Iter 599412 | loss 0.2667 | loss(rot) 0.1377 | loss(pos) 0.0103 | loss(seq) 0.1186 | grad 2.6295 | lr 0.0000 | time_forward 3.3400 | time_backward 4.6310 |
[2023-10-25 19:19:28,971::train::INFO] [train] Iter 599413 | loss 2.1901 | loss(rot) 1.6804 | loss(pos) 0.0753 | loss(seq) 0.4344 | grad 10.9152 | lr 0.0000 | time_forward 4.4060 | time_backward 6.2230 |
[2023-10-25 19:19:38,033::train::INFO] [train] Iter 599414 | loss 0.6034 | loss(rot) 0.3266 | loss(pos) 0.2192 | loss(seq) 0.0577 | grad 2.9192 | lr 0.0000 | time_forward 3.7950 | time_backward 5.2640 |
[2023-10-25 19:19:46,448::train::INFO] [train] Iter 599415 | loss 0.9061 | loss(rot) 0.0467 | loss(pos) 0.4535 | loss(seq) 0.4059 | grad 9.2718 | lr 0.0000 | time_forward 3.5060 | time_backward 4.9060 |
[2023-10-25 19:19:52,950::train::INFO] [train] Iter 599416 | loss 0.5975 | loss(rot) 0.5657 | loss(pos) 0.0318 | loss(seq) 0.0000 | grad 21.1724 | lr 0.0000 | time_forward 2.7170 | time_backward 3.7810 |
[2023-10-25 19:20:03,270::train::INFO] [train] Iter 599417 | loss 1.7520 | loss(rot) 1.7254 | loss(pos) 0.0249 | loss(seq) 0.0017 | grad 4.3302 | lr 0.0000 | time_forward 4.3620 | time_backward 5.9430 |
[2023-10-25 19:20:11,967::train::INFO] [train] Iter 599418 | loss 1.3561 | loss(rot) 1.1814 | loss(pos) 0.0428 | loss(seq) 0.1318 | grad 5.0880 | lr 0.0000 | time_forward 3.7660 | time_backward 4.9280 |
[2023-10-25 19:20:20,346::train::INFO] [train] Iter 599419 | loss 1.4770 | loss(rot) 1.1675 | loss(pos) 0.0745 | loss(seq) 0.2350 | grad 5.7055 | lr 0.0000 | time_forward 3.5320 | time_backward 4.8430 |
[2023-10-25 19:20:29,272::train::INFO] [train] Iter 599420 | loss 3.3969 | loss(rot) 0.0091 | loss(pos) 3.3875 | loss(seq) 0.0003 | grad 26.9479 | lr 0.0000 | time_forward 3.6570 | time_backward 5.2660 |
[2023-10-25 19:20:37,662::train::INFO] [train] Iter 599421 | loss 0.1343 | loss(rot) 0.0454 | loss(pos) 0.0742 | loss(seq) 0.0147 | grad 1.4874 | lr 0.0000 | time_forward 3.5290 | time_backward 4.8580 |
[2023-10-25 19:20:45,670::train::INFO] [train] Iter 599422 | loss 0.5021 | loss(rot) 0.0514 | loss(pos) 0.4302 | loss(seq) 0.0206 | grad 6.8994 | lr 0.0000 | time_forward 3.3670 | time_backward 4.6370 |
[2023-10-25 19:20:48,468::train::INFO] [train] Iter 599423 | loss 1.5269 | loss(rot) 1.0395 | loss(pos) 0.0746 | loss(seq) 0.4128 | grad 5.2671 | lr 0.0000 | time_forward 1.3980 | time_backward 1.3960 |
[2023-10-25 19:20:51,257::train::INFO] [train] Iter 599424 | loss 0.6585 | loss(rot) 0.6104 | loss(pos) 0.0354 | loss(seq) 0.0127 | grad 107.6821 | lr 0.0000 | time_forward 1.3670 | time_backward 1.4190 |
[2023-10-25 19:20:53,513::train::INFO] [train] Iter 599425 | loss 1.4437 | loss(rot) 1.0199 | loss(pos) 0.0257 | loss(seq) 0.3981 | grad 3.3025 | lr 0.0000 | time_forward 1.0230 | time_backward 1.1940 |
[2023-10-25 19:21:02,143::train::INFO] [train] Iter 599426 | loss 0.8563 | loss(rot) 0.2906 | loss(pos) 0.1314 | loss(seq) 0.4343 | grad 4.4882 | lr 0.0000 | time_forward 3.6320 | time_backward 4.9950 |
[2023-10-25 19:21:12,016::train::INFO] [train] Iter 599427 | loss 0.6718 | loss(rot) 0.3318 | loss(pos) 0.0628 | loss(seq) 0.2772 | grad 4.2357 | lr 0.0000 | time_forward 4.0620 | time_backward 5.8070 |
[2023-10-25 19:21:21,852::train::INFO] [train] Iter 599428 | loss 0.7467 | loss(rot) 0.7267 | loss(pos) 0.0145 | loss(seq) 0.0055 | grad 3.3617 | lr 0.0000 | time_forward 3.9930 | time_backward 5.8390 |
[2023-10-25 19:21:29,541::train::INFO] [train] Iter 599429 | loss 0.2785 | loss(rot) 0.2305 | loss(pos) 0.0248 | loss(seq) 0.0232 | grad 2.4166 | lr 0.0000 | time_forward 3.2140 | time_backward 4.4730 |
[2023-10-25 19:21:38,421::train::INFO] [train] Iter 599430 | loss 1.6748 | loss(rot) 1.6424 | loss(pos) 0.0324 | loss(seq) 0.0000 | grad 3.8498 | lr 0.0000 | time_forward 3.7060 | time_backward 5.1710 |
[2023-10-25 19:21:48,040::train::INFO] [train] Iter 599431 | loss 1.0133 | loss(rot) 0.5119 | loss(pos) 0.1175 | loss(seq) 0.3839 | grad 2.5411 | lr 0.0000 | time_forward 3.8840 | time_backward 5.7310 |
[2023-10-25 19:21:57,103::train::INFO] [train] Iter 599432 | loss 1.7577 | loss(rot) 0.0095 | loss(pos) 1.7477 | loss(seq) 0.0005 | grad 10.0214 | lr 0.0000 | time_forward 3.7120 | time_backward 5.3470 |
[2023-10-25 19:22:05,381::train::INFO] [train] Iter 599433 | loss 1.3773 | loss(rot) 0.8172 | loss(pos) 0.1460 | loss(seq) 0.4140 | grad 2.7941 | lr 0.0000 | time_forward 3.5100 | time_backward 4.7660 |
[2023-10-25 19:22:08,130::train::INFO] [train] Iter 599434 | loss 0.5996 | loss(rot) 0.4527 | loss(pos) 0.1162 | loss(seq) 0.0307 | grad 4.6219 | lr 0.0000 | time_forward 1.3270 | time_backward 1.4190 |
[2023-10-25 19:22:17,194::train::INFO] [train] Iter 599435 | loss 1.4758 | loss(rot) 0.8474 | loss(pos) 0.1985 | loss(seq) 0.4299 | grad 2.5950 | lr 0.0000 | time_forward 3.8740 | time_backward 5.1870 |
[2023-10-25 19:22:26,411::train::INFO] [train] Iter 599436 | loss 0.3160 | loss(rot) 0.1162 | loss(pos) 0.0693 | loss(seq) 0.1304 | grad 3.2313 | lr 0.0000 | time_forward 4.0030 | time_backward 5.2100 |
[2023-10-25 19:22:33,636::train::INFO] [train] Iter 599437 | loss 0.2750 | loss(rot) 0.0721 | loss(pos) 0.1987 | loss(seq) 0.0043 | grad 6.3727 | lr 0.0000 | time_forward 2.9990 | time_backward 4.2230 |
[2023-10-25 19:22:43,589::train::INFO] [train] Iter 599438 | loss 0.3870 | loss(rot) 0.0248 | loss(pos) 0.3586 | loss(seq) 0.0037 | grad 4.2717 | lr 0.0000 | time_forward 4.0970 | time_backward 5.8540 |
[2023-10-25 19:22:51,390::train::INFO] [train] Iter 599439 | loss 0.6920 | loss(rot) 0.4157 | loss(pos) 0.0469 | loss(seq) 0.2294 | grad 3.3897 | lr 0.0000 | time_forward 3.2630 | time_backward 4.5350 |
[2023-10-25 19:22:53,879::train::INFO] [train] Iter 599440 | loss 0.2497 | loss(rot) 0.0828 | loss(pos) 0.0799 | loss(seq) 0.0870 | grad 2.8235 | lr 0.0000 | time_forward 1.1790 | time_backward 1.3060 |
[2023-10-25 19:22:56,673::train::INFO] [train] Iter 599441 | loss 0.8025 | loss(rot) 0.0294 | loss(pos) 0.7711 | loss(seq) 0.0021 | grad 5.9085 | lr 0.0000 | time_forward 1.2970 | time_backward 1.4710 |
[2023-10-25 19:23:05,172::train::INFO] [train] Iter 599442 | loss 0.3738 | loss(rot) 0.0643 | loss(pos) 0.0145 | loss(seq) 0.2950 | grad 2.0313 | lr 0.0000 | time_forward 3.4890 | time_backward 5.0080 |
[2023-10-25 19:23:13,632::train::INFO] [train] Iter 599443 | loss 0.9827 | loss(rot) 0.4100 | loss(pos) 0.0812 | loss(seq) 0.4915 | grad 3.8276 | lr 0.0000 | time_forward 3.5650 | time_backward 4.8910 |
[2023-10-25 19:23:22,147::train::INFO] [train] Iter 599444 | loss 0.2026 | loss(rot) 0.1589 | loss(pos) 0.0235 | loss(seq) 0.0202 | grad 2.4022 | lr 0.0000 | time_forward 3.5420 | time_backward 4.9700 |
[2023-10-25 19:23:30,946::train::INFO] [train] Iter 599445 | loss 0.4115 | loss(rot) 0.1402 | loss(pos) 0.0617 | loss(seq) 0.2096 | grad 3.4472 | lr 0.0000 | time_forward 3.7530 | time_backward 5.0420 |
[2023-10-25 19:23:38,000::train::INFO] [train] Iter 599446 | loss 0.6494 | loss(rot) 0.1462 | loss(pos) 0.0874 | loss(seq) 0.4157 | grad 4.8551 | lr 0.0000 | time_forward 2.9620 | time_backward 4.0890 |
[2023-10-25 19:23:47,978::train::INFO] [train] Iter 599447 | loss 0.4415 | loss(rot) 0.1682 | loss(pos) 0.0875 | loss(seq) 0.1858 | grad 3.6939 | lr 0.0000 | time_forward 3.9980 | time_backward 5.9770 |
[2023-10-25 19:23:50,761::train::INFO] [train] Iter 599448 | loss 0.5230 | loss(rot) 0.4487 | loss(pos) 0.0281 | loss(seq) 0.0462 | grad 12.1814 | lr 0.0000 | time_forward 1.3480 | time_backward 1.4310 |
[2023-10-25 19:24:00,855::train::INFO] [train] Iter 599449 | loss 0.6444 | loss(rot) 0.2763 | loss(pos) 0.0264 | loss(seq) 0.3418 | grad 3.4099 | lr 0.0000 | time_forward 4.1570 | time_backward 5.9330 |
[2023-10-25 19:24:10,185::train::INFO] [train] Iter 599450 | loss 0.2693 | loss(rot) 0.0797 | loss(pos) 0.0309 | loss(seq) 0.1586 | grad 1.9877 | lr 0.0000 | time_forward 3.9860 | time_backward 5.3400 |
[2023-10-25 19:24:17,766::train::INFO] [train] Iter 599451 | loss 0.8109 | loss(rot) 0.2819 | loss(pos) 0.0339 | loss(seq) 0.4951 | grad 3.8815 | lr 0.0000 | time_forward 3.2020 | time_backward 4.3750 |
[2023-10-25 19:24:20,596::train::INFO] [train] Iter 599452 | loss 0.5979 | loss(rot) 0.2444 | loss(pos) 0.0647 | loss(seq) 0.2889 | grad 3.8127 | lr 0.0000 | time_forward 1.3050 | time_backward 1.5220 |
[2023-10-25 19:24:23,350::train::INFO] [train] Iter 599453 | loss 0.4247 | loss(rot) 0.2074 | loss(pos) 0.0154 | loss(seq) 0.2019 | grad 1.5883 | lr 0.0000 | time_forward 1.3110 | time_backward 1.4400 |
[2023-10-25 19:24:26,126::train::INFO] [train] Iter 599454 | loss 1.1936 | loss(rot) 0.7604 | loss(pos) 0.1561 | loss(seq) 0.2771 | grad 4.1649 | lr 0.0000 | time_forward 1.3210 | time_backward 1.4130 |
[2023-10-25 19:24:34,533::train::INFO] [train] Iter 599455 | loss 0.3868 | loss(rot) 0.3275 | loss(pos) 0.0563 | loss(seq) 0.0029 | grad 2.5740 | lr 0.0000 | time_forward 3.5450 | time_backward 4.8580 |
[2023-10-25 19:24:44,720::train::INFO] [train] Iter 599456 | loss 0.1732 | loss(rot) 0.1531 | loss(pos) 0.0170 | loss(seq) 0.0030 | grad 2.0983 | lr 0.0000 | time_forward 4.3140 | time_backward 5.8700 |
[2023-10-25 19:24:47,549::train::INFO] [train] Iter 599457 | loss 0.7645 | loss(rot) 0.3404 | loss(pos) 0.0887 | loss(seq) 0.3354 | grad 3.6422 | lr 0.0000 | time_forward 1.3060 | time_backward 1.5200 |
[2023-10-25 19:24:57,656::train::INFO] [train] Iter 599458 | loss 1.3715 | loss(rot) 0.0777 | loss(pos) 1.2919 | loss(seq) 0.0018 | grad 11.4695 | lr 0.0000 | time_forward 3.9790 | time_backward 6.1240 |
[2023-10-25 19:25:07,631::train::INFO] [train] Iter 599459 | loss 0.3464 | loss(rot) 0.2637 | loss(pos) 0.0375 | loss(seq) 0.0452 | grad 71.3808 | lr 0.0000 | time_forward 4.0540 | time_backward 5.9180 |
[2023-10-25 19:25:14,758::train::INFO] [train] Iter 599460 | loss 0.8432 | loss(rot) 0.3246 | loss(pos) 0.1662 | loss(seq) 0.3524 | grad 2.6220 | lr 0.0000 | time_forward 3.0210 | time_backward 4.1020 |
[2023-10-25 19:25:17,567::train::INFO] [train] Iter 599461 | loss 0.2765 | loss(rot) 0.0752 | loss(pos) 0.1797 | loss(seq) 0.0216 | grad 4.4573 | lr 0.0000 | time_forward 1.3680 | time_backward 1.4370 |
[2023-10-25 19:25:25,989::train::INFO] [train] Iter 599462 | loss 0.2749 | loss(rot) 0.0772 | loss(pos) 0.0701 | loss(seq) 0.1276 | grad 3.5043 | lr 0.0000 | time_forward 3.5520 | time_backward 4.8380 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.