text
stringlengths
56
1.16k
[2023-10-25 18:49:46,359::train::INFO] [train] Iter 599163 | loss 0.8279 | loss(rot) 0.0464 | loss(pos) 0.5752 | loss(seq) 0.2063 | grad 7.3480 | lr 0.0000 | time_forward 2.7580 | time_backward 3.6140
[2023-10-25 18:49:52,788::train::INFO] [train] Iter 599164 | loss 0.8398 | loss(rot) 0.5356 | loss(pos) 0.0861 | loss(seq) 0.2182 | grad 7.1092 | lr 0.0000 | time_forward 2.7740 | time_backward 3.6500
[2023-10-25 18:49:55,051::train::INFO] [train] Iter 599165 | loss 0.6438 | loss(rot) 0.5980 | loss(pos) 0.0457 | loss(seq) 0.0000 | grad 2.6320 | lr 0.0000 | time_forward 1.0460 | time_backward 1.2130
[2023-10-25 18:50:03,099::train::INFO] [train] Iter 599166 | loss 0.5049 | loss(rot) 0.2221 | loss(pos) 0.0451 | loss(seq) 0.2377 | grad 4.0031 | lr 0.0000 | time_forward 3.5210 | time_backward 4.5240
[2023-10-25 18:50:05,787::train::INFO] [train] Iter 599167 | loss 1.4836 | loss(rot) 1.4291 | loss(pos) 0.0544 | loss(seq) 0.0001 | grad 2.5658 | lr 0.0000 | time_forward 1.2790 | time_backward 1.4060
[2023-10-25 18:50:13,700::train::INFO] [train] Iter 599168 | loss 0.8510 | loss(rot) 0.3195 | loss(pos) 0.2020 | loss(seq) 0.3296 | grad 3.4468 | lr 0.0000 | time_forward 3.4420 | time_backward 4.4490
[2023-10-25 18:50:21,660::train::INFO] [train] Iter 599169 | loss 0.2448 | loss(rot) 0.2221 | loss(pos) 0.0226 | loss(seq) 0.0001 | grad 2.0863 | lr 0.0000 | time_forward 3.3930 | time_backward 4.5630
[2023-10-25 18:50:30,318::train::INFO] [train] Iter 599170 | loss 1.0859 | loss(rot) 0.6344 | loss(pos) 0.0984 | loss(seq) 0.3531 | grad 3.6810 | lr 0.0000 | time_forward 3.6240 | time_backward 5.0310
[2023-10-25 18:50:37,335::train::INFO] [train] Iter 599171 | loss 1.0599 | loss(rot) 0.4212 | loss(pos) 0.1509 | loss(seq) 0.4878 | grad 5.8037 | lr 0.0000 | time_forward 3.0020 | time_backward 4.0120
[2023-10-25 18:50:44,484::train::INFO] [train] Iter 599172 | loss 0.6940 | loss(rot) 0.2436 | loss(pos) 0.2926 | loss(seq) 0.1579 | grad 3.6308 | lr 0.0000 | time_forward 3.0390 | time_backward 4.1070
[2023-10-25 18:50:50,502::train::INFO] [train] Iter 599173 | loss 0.5867 | loss(rot) 0.0712 | loss(pos) 0.0319 | loss(seq) 0.4837 | grad 2.8765 | lr 0.0000 | time_forward 2.6290 | time_backward 3.3860
[2023-10-25 18:50:59,008::train::INFO] [train] Iter 599174 | loss 0.6579 | loss(rot) 0.6296 | loss(pos) 0.0220 | loss(seq) 0.0063 | grad 2.9050 | lr 0.0000 | time_forward 3.4980 | time_backward 5.0050
[2023-10-25 18:51:06,287::train::INFO] [train] Iter 599175 | loss 2.1967 | loss(rot) 2.1473 | loss(pos) 0.0350 | loss(seq) 0.0144 | grad 4.9777 | lr 0.0000 | time_forward 3.1610 | time_backward 4.1160
[2023-10-25 18:51:09,080::train::INFO] [train] Iter 599176 | loss 0.5849 | loss(rot) 0.1373 | loss(pos) 0.0404 | loss(seq) 0.4072 | grad 2.8328 | lr 0.0000 | time_forward 1.3620 | time_backward 1.4270
[2023-10-25 18:51:16,779::train::INFO] [train] Iter 599177 | loss 2.2562 | loss(rot) 2.2326 | loss(pos) 0.0236 | loss(seq) 0.0000 | grad 22.6793 | lr 0.0000 | time_forward 3.3590 | time_backward 4.3360
[2023-10-25 18:51:23,987::train::INFO] [train] Iter 599178 | loss 0.9959 | loss(rot) 0.4871 | loss(pos) 0.2504 | loss(seq) 0.2583 | grad 5.6631 | lr 0.0000 | time_forward 2.9730 | time_backward 4.2320
[2023-10-25 18:51:31,632::train::INFO] [train] Iter 599179 | loss 0.2644 | loss(rot) 0.1239 | loss(pos) 0.0273 | loss(seq) 0.1132 | grad 2.6784 | lr 0.0000 | time_forward 3.2580 | time_backward 4.3850
[2023-10-25 18:51:38,742::train::INFO] [train] Iter 599180 | loss 1.6066 | loss(rot) 1.4614 | loss(pos) 0.0171 | loss(seq) 0.1281 | grad 27.2738 | lr 0.0000 | time_forward 3.0470 | time_backward 4.0600
[2023-10-25 18:51:41,508::train::INFO] [train] Iter 599181 | loss 0.1971 | loss(rot) 0.1850 | loss(pos) 0.0094 | loss(seq) 0.0027 | grad 2.7297 | lr 0.0000 | time_forward 1.2860 | time_backward 1.4760
[2023-10-25 18:51:49,633::train::INFO] [train] Iter 599182 | loss 0.6579 | loss(rot) 0.4020 | loss(pos) 0.0317 | loss(seq) 0.2243 | grad 5.5191 | lr 0.0000 | time_forward 3.4060 | time_backward 4.7160
[2023-10-25 18:51:56,987::train::INFO] [train] Iter 599183 | loss 0.4678 | loss(rot) 0.1463 | loss(pos) 0.0431 | loss(seq) 0.2784 | grad 2.7757 | lr 0.0000 | time_forward 3.1760 | time_backward 4.1750
[2023-10-25 18:52:05,773::train::INFO] [train] Iter 599184 | loss 0.4224 | loss(rot) 0.1751 | loss(pos) 0.0328 | loss(seq) 0.2145 | grad 2.7895 | lr 0.0000 | time_forward 3.5990 | time_backward 5.1840
[2023-10-25 18:52:08,548::train::INFO] [train] Iter 599185 | loss 0.2781 | loss(rot) 0.1332 | loss(pos) 0.0299 | loss(seq) 0.1150 | grad 2.0527 | lr 0.0000 | time_forward 1.3350 | time_backward 1.4380
[2023-10-25 18:52:15,322::train::INFO] [train] Iter 599186 | loss 0.4555 | loss(rot) 0.4409 | loss(pos) 0.0139 | loss(seq) 0.0007 | grad 5.2432 | lr 0.0000 | time_forward 2.9300 | time_backward 3.8410
[2023-10-25 18:52:18,043::train::INFO] [train] Iter 599187 | loss 1.0470 | loss(rot) 0.8308 | loss(pos) 0.0364 | loss(seq) 0.1798 | grad 19.9974 | lr 0.0000 | time_forward 1.2810 | time_backward 1.4370
[2023-10-25 18:52:25,681::train::INFO] [train] Iter 599188 | loss 0.9743 | loss(rot) 0.1412 | loss(pos) 0.8320 | loss(seq) 0.0011 | grad 8.4621 | lr 0.0000 | time_forward 3.2660 | time_backward 4.3430
[2023-10-25 18:52:28,818::train::INFO] [train] Iter 599189 | loss 0.9698 | loss(rot) 0.0729 | loss(pos) 0.7274 | loss(seq) 0.1695 | grad 4.4048 | lr 0.0000 | time_forward 1.4310 | time_backward 1.7030
[2023-10-25 18:52:34,739::train::INFO] [train] Iter 599190 | loss 1.6108 | loss(rot) 1.4447 | loss(pos) 0.0625 | loss(seq) 0.1036 | grad 5.0597 | lr 0.0000 | time_forward 2.4590 | time_backward 3.4480
[2023-10-25 18:52:42,119::train::INFO] [train] Iter 599191 | loss 0.5861 | loss(rot) 0.0669 | loss(pos) 0.5006 | loss(seq) 0.0187 | grad 10.6188 | lr 0.0000 | time_forward 3.1390 | time_backward 4.2230
[2023-10-25 18:52:50,630::train::INFO] [train] Iter 599192 | loss 1.5811 | loss(rot) 1.4827 | loss(pos) 0.0448 | loss(seq) 0.0536 | grad 4.7541 | lr 0.0000 | time_forward 3.4930 | time_backward 5.0150
[2023-10-25 18:52:53,215::train::INFO] [train] Iter 599193 | loss 1.2311 | loss(rot) 0.8540 | loss(pos) 0.0690 | loss(seq) 0.3081 | grad 6.9734 | lr 0.0000 | time_forward 1.2630 | time_backward 1.3180
[2023-10-25 18:53:01,337::train::INFO] [train] Iter 599194 | loss 0.2308 | loss(rot) 0.0894 | loss(pos) 0.0281 | loss(seq) 0.1133 | grad 2.2922 | lr 0.0000 | time_forward 3.5100 | time_backward 4.5970
[2023-10-25 18:53:09,152::train::INFO] [train] Iter 599195 | loss 0.5534 | loss(rot) 0.1171 | loss(pos) 0.0752 | loss(seq) 0.3610 | grad 3.0810 | lr 0.0000 | time_forward 3.4090 | time_backward 4.4040
[2023-10-25 18:53:11,946::train::INFO] [train] Iter 599196 | loss 0.6432 | loss(rot) 0.3971 | loss(pos) 0.2051 | loss(seq) 0.0411 | grad 3.0768 | lr 0.0000 | time_forward 1.3270 | time_backward 1.4630
[2023-10-25 18:53:19,969::train::INFO] [train] Iter 599197 | loss 0.7089 | loss(rot) 0.6626 | loss(pos) 0.0270 | loss(seq) 0.0193 | grad 11.6647 | lr 0.0000 | time_forward 3.5150 | time_backward 4.5030
[2023-10-25 18:53:22,707::train::INFO] [train] Iter 599198 | loss 2.7540 | loss(rot) 2.1133 | loss(pos) 0.2266 | loss(seq) 0.4141 | grad 5.7830 | lr 0.0000 | time_forward 1.2810 | time_backward 1.4550
[2023-10-25 18:53:31,336::train::INFO] [train] Iter 599199 | loss 0.8849 | loss(rot) 0.6712 | loss(pos) 0.0332 | loss(seq) 0.1805 | grad 3.3106 | lr 0.0000 | time_forward 3.5980 | time_backward 5.0050
[2023-10-25 18:53:40,072::train::INFO] [train] Iter 599200 | loss 0.3534 | loss(rot) 0.2342 | loss(pos) 0.0213 | loss(seq) 0.0978 | grad 2.1834 | lr 0.0000 | time_forward 3.5730 | time_backward 5.1590
[2023-10-25 18:53:47,803::train::INFO] [train] Iter 599201 | loss 1.2407 | loss(rot) 0.4802 | loss(pos) 0.0516 | loss(seq) 0.7089 | grad 6.1710 | lr 0.0000 | time_forward 3.3500 | time_backward 4.3790
[2023-10-25 18:53:56,525::train::INFO] [train] Iter 599202 | loss 1.3190 | loss(rot) 0.7741 | loss(pos) 0.1793 | loss(seq) 0.3656 | grad 3.5458 | lr 0.0000 | time_forward 3.7330 | time_backward 4.9860
[2023-10-25 18:54:05,476::train::INFO] [train] Iter 599203 | loss 0.8982 | loss(rot) 0.7431 | loss(pos) 0.0370 | loss(seq) 0.1181 | grad 3.7136 | lr 0.0000 | time_forward 4.0030 | time_backward 4.9450
[2023-10-25 18:54:12,384::train::INFO] [train] Iter 599204 | loss 1.9711 | loss(rot) 1.5917 | loss(pos) 0.0390 | loss(seq) 0.3405 | grad 7.0330 | lr 0.0000 | time_forward 2.9910 | time_backward 3.9130
[2023-10-25 18:54:15,227::train::INFO] [train] Iter 599205 | loss 0.6138 | loss(rot) 0.2603 | loss(pos) 0.1621 | loss(seq) 0.1913 | grad 3.1138 | lr 0.0000 | time_forward 1.3270 | time_backward 1.5130
[2023-10-25 18:54:18,071::train::INFO] [train] Iter 599206 | loss 1.3711 | loss(rot) 0.5719 | loss(pos) 0.1335 | loss(seq) 0.6657 | grad 3.0591 | lr 0.0000 | time_forward 1.3890 | time_backward 1.4510
[2023-10-25 18:54:25,957::train::INFO] [train] Iter 599207 | loss 0.3873 | loss(rot) 0.1162 | loss(pos) 0.0246 | loss(seq) 0.2465 | grad 2.9100 | lr 0.0000 | time_forward 3.3870 | time_backward 4.4700
[2023-10-25 18:54:28,792::train::INFO] [train] Iter 599208 | loss 2.0939 | loss(rot) 1.7873 | loss(pos) 0.1221 | loss(seq) 0.1846 | grad 5.0710 | lr 0.0000 | time_forward 1.3410 | time_backward 1.4910
[2023-10-25 18:54:36,392::train::INFO] [train] Iter 599209 | loss 1.0104 | loss(rot) 0.0331 | loss(pos) 0.9687 | loss(seq) 0.0087 | grad 8.2290 | lr 0.0000 | time_forward 3.1950 | time_backward 4.4020
[2023-10-25 18:54:38,742::train::INFO] [train] Iter 599210 | loss 0.1533 | loss(rot) 0.0787 | loss(pos) 0.0148 | loss(seq) 0.0598 | grad 1.7310 | lr 0.0000 | time_forward 1.0980 | time_backward 1.2480
[2023-10-25 18:54:47,572::train::INFO] [train] Iter 599211 | loss 1.4009 | loss(rot) 0.7593 | loss(pos) 0.1898 | loss(seq) 0.4518 | grad 2.7991 | lr 0.0000 | time_forward 3.5680 | time_backward 5.2590
[2023-10-25 18:54:56,512::train::INFO] [train] Iter 599212 | loss 1.4887 | loss(rot) 0.8563 | loss(pos) 0.1282 | loss(seq) 0.5042 | grad 3.2200 | lr 0.0000 | time_forward 3.6180 | time_backward 5.3180
[2023-10-25 18:54:59,257::train::INFO] [train] Iter 599213 | loss 0.2894 | loss(rot) 0.2508 | loss(pos) 0.0387 | loss(seq) 0.0000 | grad 10.8870 | lr 0.0000 | time_forward 1.3140 | time_backward 1.4290
[2023-10-25 18:55:02,166::train::INFO] [train] Iter 599214 | loss 0.4269 | loss(rot) 0.0669 | loss(pos) 0.0126 | loss(seq) 0.3474 | grad 3.5371 | lr 0.0000 | time_forward 1.3880 | time_backward 1.5170
[2023-10-25 18:55:10,361::train::INFO] [train] Iter 599215 | loss 0.4705 | loss(rot) 0.0234 | loss(pos) 0.1895 | loss(seq) 0.2576 | grad 5.4005 | lr 0.0000 | time_forward 3.5770 | time_backward 4.5940
[2023-10-25 18:55:13,121::train::INFO] [train] Iter 599216 | loss 0.4764 | loss(rot) 0.1935 | loss(pos) 0.0452 | loss(seq) 0.2376 | grad 3.8276 | lr 0.0000 | time_forward 1.2610 | time_backward 1.4960
[2023-10-25 18:55:16,006::train::INFO] [train] Iter 599217 | loss 0.7456 | loss(rot) 0.2944 | loss(pos) 0.0392 | loss(seq) 0.4120 | grad 3.2835 | lr 0.0000 | time_forward 1.3790 | time_backward 1.5020
[2023-10-25 18:55:23,439::train::INFO] [train] Iter 599218 | loss 1.0431 | loss(rot) 0.2942 | loss(pos) 0.6485 | loss(seq) 0.1005 | grad 6.4708 | lr 0.0000 | time_forward 3.1880 | time_backward 4.2190
[2023-10-25 18:55:30,764::train::INFO] [train] Iter 599219 | loss 2.2460 | loss(rot) 1.2334 | loss(pos) 0.4408 | loss(seq) 0.5718 | grad 7.9467 | lr 0.0000 | time_forward 3.1600 | time_backward 4.1630
[2023-10-25 18:55:38,936::train::INFO] [train] Iter 599220 | loss 0.6679 | loss(rot) 0.6230 | loss(pos) 0.0100 | loss(seq) 0.0348 | grad 2.9723 | lr 0.0000 | time_forward 3.5290 | time_backward 4.6390
[2023-10-25 18:55:47,571::train::INFO] [train] Iter 599221 | loss 0.7948 | loss(rot) 0.3376 | loss(pos) 0.0820 | loss(seq) 0.3751 | grad 3.1009 | lr 0.0000 | time_forward 3.6760 | time_backward 4.9570
[2023-10-25 18:55:50,422::train::INFO] [train] Iter 599222 | loss 0.8284 | loss(rot) 0.4937 | loss(pos) 0.1790 | loss(seq) 0.1557 | grad 4.9766 | lr 0.0000 | time_forward 1.3670 | time_backward 1.4810
[2023-10-25 18:55:58,104::train::INFO] [train] Iter 599223 | loss 0.6553 | loss(rot) 0.3036 | loss(pos) 0.0209 | loss(seq) 0.3308 | grad 3.3866 | lr 0.0000 | time_forward 3.3400 | time_backward 4.3390
[2023-10-25 18:56:06,970::train::INFO] [train] Iter 599224 | loss 0.3604 | loss(rot) 0.1253 | loss(pos) 0.0498 | loss(seq) 0.1852 | grad 2.0010 | lr 0.0000 | time_forward 3.8210 | time_backward 5.0410
[2023-10-25 18:56:15,137::train::INFO] [train] Iter 599225 | loss 0.6593 | loss(rot) 0.0534 | loss(pos) 0.0819 | loss(seq) 0.5240 | grad 2.5877 | lr 0.0000 | time_forward 3.4920 | time_backward 4.6720
[2023-10-25 18:56:17,912::train::INFO] [train] Iter 599226 | loss 0.6645 | loss(rot) 0.3852 | loss(pos) 0.0346 | loss(seq) 0.2446 | grad 3.7755 | lr 0.0000 | time_forward 1.3300 | time_backward 1.4420
[2023-10-25 18:56:25,727::train::INFO] [train] Iter 599227 | loss 0.6424 | loss(rot) 0.3691 | loss(pos) 0.0640 | loss(seq) 0.2093 | grad 3.4316 | lr 0.0000 | time_forward 3.4040 | time_backward 4.4070
[2023-10-25 18:56:32,984::train::INFO] [train] Iter 599228 | loss 0.8670 | loss(rot) 0.4814 | loss(pos) 0.0801 | loss(seq) 0.3054 | grad 4.2127 | lr 0.0000 | time_forward 3.0650 | time_backward 4.1890
[2023-10-25 18:56:40,242::train::INFO] [train] Iter 599229 | loss 1.0174 | loss(rot) 0.3235 | loss(pos) 0.4498 | loss(seq) 0.2440 | grad 3.0356 | lr 0.0000 | time_forward 3.1340 | time_backward 4.1200
[2023-10-25 18:56:48,380::train::INFO] [train] Iter 599230 | loss 1.9589 | loss(rot) 1.4375 | loss(pos) 0.0505 | loss(seq) 0.4708 | grad 3.7618 | lr 0.0000 | time_forward 3.5740 | time_backward 4.5600
[2023-10-25 18:56:51,128::train::INFO] [train] Iter 599231 | loss 1.1916 | loss(rot) 1.1344 | loss(pos) 0.0305 | loss(seq) 0.0268 | grad 47.2170 | lr 0.0000 | time_forward 1.3330 | time_backward 1.4120
[2023-10-25 18:57:00,143::train::INFO] [train] Iter 599232 | loss 0.9422 | loss(rot) 0.6934 | loss(pos) 0.0526 | loss(seq) 0.1962 | grad 3.1541 | lr 0.0000 | time_forward 3.7770 | time_backward 5.2110
[2023-10-25 18:57:09,042::train::INFO] [train] Iter 599233 | loss 0.6546 | loss(rot) 0.6116 | loss(pos) 0.0375 | loss(seq) 0.0055 | grad 3.0384 | lr 0.0000 | time_forward 3.8800 | time_backward 5.0160
[2023-10-25 18:57:17,284::train::INFO] [train] Iter 599234 | loss 2.1370 | loss(rot) 2.0994 | loss(pos) 0.0169 | loss(seq) 0.0208 | grad 3.3882 | lr 0.0000 | time_forward 3.5780 | time_backward 4.6620
[2023-10-25 18:57:26,083::train::INFO] [train] Iter 599235 | loss 0.4033 | loss(rot) 0.2604 | loss(pos) 0.0569 | loss(seq) 0.0860 | grad 2.7912 | lr 0.0000 | time_forward 3.7970 | time_backward 4.9980
[2023-10-25 18:57:34,868::train::INFO] [train] Iter 599236 | loss 0.5575 | loss(rot) 0.3421 | loss(pos) 0.0877 | loss(seq) 0.1277 | grad 2.8039 | lr 0.0000 | time_forward 3.5340 | time_backward 5.2480
[2023-10-25 18:57:38,024::train::INFO] [train] Iter 599237 | loss 0.6697 | loss(rot) 0.2701 | loss(pos) 0.1350 | loss(seq) 0.2645 | grad 3.3091 | lr 0.0000 | time_forward 1.4500 | time_backward 1.7030
[2023-10-25 18:57:46,760::train::INFO] [train] Iter 599238 | loss 0.6267 | loss(rot) 0.5004 | loss(pos) 0.0236 | loss(seq) 0.1028 | grad 2.7878 | lr 0.0000 | time_forward 3.6380 | time_backward 5.0840
[2023-10-25 18:57:52,628::train::INFO] [train] Iter 599239 | loss 1.3369 | loss(rot) 1.3114 | loss(pos) 0.0238 | loss(seq) 0.0018 | grad 35.5462 | lr 0.0000 | time_forward 2.4770 | time_backward 3.3870
[2023-10-25 18:58:00,099::train::INFO] [train] Iter 599240 | loss 0.3196 | loss(rot) 0.2446 | loss(pos) 0.0187 | loss(seq) 0.0563 | grad 2.1960 | lr 0.0000 | time_forward 3.1700 | time_backward 4.2840
[2023-10-25 18:58:05,847::train::INFO] [train] Iter 599241 | loss 0.1602 | loss(rot) 0.1142 | loss(pos) 0.0208 | loss(seq) 0.0253 | grad 1.7882 | lr 0.0000 | time_forward 2.4920 | time_backward 3.2520
[2023-10-25 18:58:08,648::train::INFO] [train] Iter 599242 | loss 0.2530 | loss(rot) 0.0881 | loss(pos) 0.0711 | loss(seq) 0.0939 | grad 2.4366 | lr 0.0000 | time_forward 1.3360 | time_backward 1.4610
[2023-10-25 18:58:11,220::train::INFO] [train] Iter 599243 | loss 1.0892 | loss(rot) 1.0176 | loss(pos) 0.0310 | loss(seq) 0.0406 | grad 4.8384 | lr 0.0000 | time_forward 1.2440 | time_backward 1.3050
[2023-10-25 18:58:19,179::train::INFO] [train] Iter 599244 | loss 0.6045 | loss(rot) 0.1268 | loss(pos) 0.0772 | loss(seq) 0.4006 | grad 2.9434 | lr 0.0000 | time_forward 3.4040 | time_backward 4.5520
[2023-10-25 18:58:27,332::train::INFO] [train] Iter 599245 | loss 0.2214 | loss(rot) 0.1131 | loss(pos) 0.0313 | loss(seq) 0.0769 | grad 2.2186 | lr 0.0000 | time_forward 3.5120 | time_backward 4.6380
[2023-10-25 18:58:36,202::train::INFO] [train] Iter 599246 | loss 0.4095 | loss(rot) 0.1979 | loss(pos) 0.0347 | loss(seq) 0.1769 | grad 3.3073 | lr 0.0000 | time_forward 3.6400 | time_backward 5.2260
[2023-10-25 18:58:38,910::train::INFO] [train] Iter 599247 | loss 1.9204 | loss(rot) 1.8016 | loss(pos) 0.0358 | loss(seq) 0.0829 | grad 5.9536 | lr 0.0000 | time_forward 1.3030 | time_backward 1.4010
[2023-10-25 18:58:45,697::train::INFO] [train] Iter 599248 | loss 0.4389 | loss(rot) 0.3888 | loss(pos) 0.0354 | loss(seq) 0.0148 | grad 3.3436 | lr 0.0000 | time_forward 2.8660 | time_backward 3.9180
[2023-10-25 18:58:48,562::train::INFO] [train] Iter 599249 | loss 0.3245 | loss(rot) 0.2953 | loss(pos) 0.0246 | loss(seq) 0.0047 | grad 3.2478 | lr 0.0000 | time_forward 1.3740 | time_backward 1.4880
[2023-10-25 18:58:51,852::train::INFO] [train] Iter 599250 | loss 0.7133 | loss(rot) 0.1994 | loss(pos) 0.3807 | loss(seq) 0.1332 | grad 4.3824 | lr 0.0000 | time_forward 1.4720 | time_backward 1.7880
[2023-10-25 18:59:00,486::train::INFO] [train] Iter 599251 | loss 0.9209 | loss(rot) 0.0500 | loss(pos) 0.8648 | loss(seq) 0.0060 | grad 8.6815 | lr 0.0000 | time_forward 3.6420 | time_backward 4.9880
[2023-10-25 18:59:08,809::train::INFO] [train] Iter 599252 | loss 0.7699 | loss(rot) 0.2156 | loss(pos) 0.1585 | loss(seq) 0.3959 | grad 3.9789 | lr 0.0000 | time_forward 3.5980 | time_backward 4.7220
[2023-10-25 18:59:16,887::train::INFO] [train] Iter 599253 | loss 1.1108 | loss(rot) 0.7812 | loss(pos) 0.0731 | loss(seq) 0.2564 | grad 5.3774 | lr 0.0000 | time_forward 3.5340 | time_backward 4.5410
[2023-10-25 18:59:24,810::train::INFO] [train] Iter 599254 | loss 0.2445 | loss(rot) 0.0534 | loss(pos) 0.1522 | loss(seq) 0.0388 | grad 5.8157 | lr 0.0000 | time_forward 3.3890 | time_backward 4.5300
[2023-10-25 18:59:33,541::train::INFO] [train] Iter 599255 | loss 1.3854 | loss(rot) 1.0380 | loss(pos) 0.0989 | loss(seq) 0.2485 | grad 5.6314 | lr 0.0000 | time_forward 3.5770 | time_backward 5.1500
[2023-10-25 18:59:37,888::train::INFO] [train] Iter 599256 | loss 0.6366 | loss(rot) 0.6199 | loss(pos) 0.0166 | loss(seq) 0.0002 | grad 5.5646 | lr 0.0000 | time_forward 2.0350 | time_backward 2.3100
[2023-10-25 18:59:44,403::train::INFO] [train] Iter 599257 | loss 0.5207 | loss(rot) 0.0885 | loss(pos) 0.0593 | loss(seq) 0.3729 | grad 2.7177 | lr 0.0000 | time_forward 2.7410 | time_backward 3.7700
[2023-10-25 18:59:51,393::train::INFO] [train] Iter 599258 | loss 1.7392 | loss(rot) 1.4551 | loss(pos) 0.0327 | loss(seq) 0.2514 | grad 8.8482 | lr 0.0000 | time_forward 2.9070 | time_backward 4.0540
[2023-10-25 18:59:58,006::train::INFO] [train] Iter 599259 | loss 0.2647 | loss(rot) 0.2292 | loss(pos) 0.0355 | loss(seq) 0.0000 | grad 2.5436 | lr 0.0000 | time_forward 2.8230 | time_backward 3.7630
[2023-10-25 19:00:00,922::train::INFO] [train] Iter 599260 | loss 0.8740 | loss(rot) 0.5795 | loss(pos) 0.0992 | loss(seq) 0.1952 | grad 4.3912 | lr 0.0000 | time_forward 1.4070 | time_backward 1.5060
[2023-10-25 19:00:08,743::train::INFO] [train] Iter 599261 | loss 0.2703 | loss(rot) 0.0951 | loss(pos) 0.0222 | loss(seq) 0.1531 | grad 2.3350 | lr 0.0000 | time_forward 3.3630 | time_backward 4.4540
[2023-10-25 19:00:16,123::train::INFO] [train] Iter 599262 | loss 1.4117 | loss(rot) 1.1021 | loss(pos) 0.0575 | loss(seq) 0.2521 | grad 4.0203 | lr 0.0000 | time_forward 3.2580 | time_backward 4.1200