text
stringlengths 56
1.16k
|
---|
[2023-10-25 19:00:18,962::train::INFO] [train] Iter 599263 | loss 1.1549 | loss(rot) 0.0092 | loss(pos) 1.1455 | loss(seq) 0.0002 | grad 24.8147 | lr 0.0000 | time_forward 1.3600 | time_backward 1.4750 |
[2023-10-25 19:00:31,117::train::INFO] [train] Iter 599264 | loss 0.5110 | loss(rot) 0.4627 | loss(pos) 0.0477 | loss(seq) 0.0006 | grad 3.0824 | lr 0.0000 | time_forward 6.1290 | time_backward 6.0240 |
[2023-10-25 19:00:37,017::train::INFO] [train] Iter 599265 | loss 2.6910 | loss(rot) 2.3568 | loss(pos) 0.0635 | loss(seq) 0.2707 | grad 7.1102 | lr 0.0000 | time_forward 2.2730 | time_backward 3.6230 |
[2023-10-25 19:00:51,619::train::INFO] [train] Iter 599266 | loss 1.5421 | loss(rot) 1.4826 | loss(pos) 0.0357 | loss(seq) 0.0238 | grad 5.6498 | lr 0.0000 | time_forward 9.8770 | time_backward 4.7210 |
[2023-10-25 19:01:04,321::train::INFO] [train] Iter 599267 | loss 1.6569 | loss(rot) 1.6293 | loss(pos) 0.0136 | loss(seq) 0.0140 | grad 4.3261 | lr 0.0000 | time_forward 7.7150 | time_backward 4.9830 |
[2023-10-25 19:01:12,260::train::INFO] [train] Iter 599268 | loss 0.7008 | loss(rot) 0.1245 | loss(pos) 0.1896 | loss(seq) 0.3867 | grad 4.7350 | lr 0.0000 | time_forward 3.4470 | time_backward 4.4890 |
[2023-10-25 19:01:24,064::train::INFO] [train] Iter 599269 | loss 1.3801 | loss(rot) 1.3364 | loss(pos) 0.0382 | loss(seq) 0.0055 | grad 3.6725 | lr 0.0000 | time_forward 7.8760 | time_backward 3.9240 |
[2023-10-25 19:01:37,309::train::INFO] [train] Iter 599270 | loss 2.0580 | loss(rot) 1.1185 | loss(pos) 0.2997 | loss(seq) 0.6398 | grad 3.7930 | lr 0.0000 | time_forward 7.9350 | time_backward 5.3060 |
[2023-10-25 19:01:50,138::train::INFO] [train] Iter 599271 | loss 0.2399 | loss(rot) 0.0553 | loss(pos) 0.0377 | loss(seq) 0.1468 | grad 1.9241 | lr 0.0000 | time_forward 6.8780 | time_backward 5.9480 |
[2023-10-25 19:02:01,482::train::INFO] [train] Iter 599272 | loss 1.3028 | loss(rot) 1.2613 | loss(pos) 0.0334 | loss(seq) 0.0082 | grad 4.2315 | lr 0.0000 | time_forward 7.1120 | time_backward 4.2290 |
[2023-10-25 19:02:06,829::train::INFO] [train] Iter 599273 | loss 0.7228 | loss(rot) 0.4005 | loss(pos) 0.2107 | loss(seq) 0.1115 | grad 3.3421 | lr 0.0000 | time_forward 2.2410 | time_backward 3.1030 |
[2023-10-25 19:02:19,649::train::INFO] [train] Iter 599274 | loss 0.7207 | loss(rot) 0.4489 | loss(pos) 0.0381 | loss(seq) 0.2337 | grad 2.6174 | lr 0.0000 | time_forward 8.1470 | time_backward 4.6630 |
[2023-10-25 19:02:29,292::train::INFO] [train] Iter 599275 | loss 0.5517 | loss(rot) 0.2160 | loss(pos) 0.0519 | loss(seq) 0.2838 | grad 3.3857 | lr 0.0000 | time_forward 4.3930 | time_backward 5.2470 |
[2023-10-25 19:02:32,158::train::INFO] [train] Iter 599276 | loss 0.2724 | loss(rot) 0.1352 | loss(pos) 0.0204 | loss(seq) 0.1168 | grad 2.4431 | lr 0.0000 | time_forward 1.3460 | time_backward 1.5170 |
[2023-10-25 19:02:42,305::train::INFO] [train] Iter 599277 | loss 0.3273 | loss(rot) 0.1965 | loss(pos) 0.0269 | loss(seq) 0.1039 | grad 2.8555 | lr 0.0000 | time_forward 4.1370 | time_backward 6.0070 |
[2023-10-25 19:02:45,112::train::INFO] [train] Iter 599278 | loss 0.8231 | loss(rot) 0.3605 | loss(pos) 0.0682 | loss(seq) 0.3944 | grad 5.9479 | lr 0.0000 | time_forward 1.3240 | time_backward 1.4800 |
[2023-10-25 19:02:53,657::train::INFO] [train] Iter 599279 | loss 1.4578 | loss(rot) 0.9203 | loss(pos) 0.1341 | loss(seq) 0.4034 | grad 3.5146 | lr 0.0000 | time_forward 3.6520 | time_backward 4.8670 |
[2023-10-25 19:03:03,592::train::INFO] [train] Iter 599280 | loss 0.6208 | loss(rot) 0.4152 | loss(pos) 0.0753 | loss(seq) 0.1303 | grad 3.4502 | lr 0.0000 | time_forward 4.0200 | time_backward 5.9110 |
[2023-10-25 19:03:05,853::train::INFO] [train] Iter 599281 | loss 0.2292 | loss(rot) 0.0776 | loss(pos) 0.0326 | loss(seq) 0.1191 | grad 1.5299 | lr 0.0000 | time_forward 1.0310 | time_backward 1.2280 |
[2023-10-25 19:03:16,163::train::INFO] [train] Iter 599282 | loss 0.5446 | loss(rot) 0.5141 | loss(pos) 0.0076 | loss(seq) 0.0230 | grad 3.0039 | lr 0.0000 | time_forward 4.3670 | time_backward 5.9400 |
[2023-10-25 19:03:26,119::train::INFO] [train] Iter 599283 | loss 3.3056 | loss(rot) 0.0067 | loss(pos) 3.2989 | loss(seq) 0.0000 | grad 14.2360 | lr 0.0000 | time_forward 4.0700 | time_backward 5.8830 |
[2023-10-25 19:03:34,137::train::INFO] [train] Iter 599284 | loss 0.3662 | loss(rot) 0.0987 | loss(pos) 0.0901 | loss(seq) 0.1774 | grad 2.9438 | lr 0.0000 | time_forward 3.4020 | time_backward 4.6120 |
[2023-10-25 19:03:44,805::train::INFO] [train] Iter 599285 | loss 2.8955 | loss(rot) 2.8253 | loss(pos) 0.0701 | loss(seq) 0.0000 | grad 24.8276 | lr 0.0000 | time_forward 4.5160 | time_backward 6.1500 |
[2023-10-25 19:03:53,643::train::INFO] [train] Iter 599286 | loss 0.4056 | loss(rot) 0.0369 | loss(pos) 0.3576 | loss(seq) 0.0111 | grad 7.6965 | lr 0.0000 | time_forward 3.6520 | time_backward 5.1820 |
[2023-10-25 19:04:02,559::train::INFO] [train] Iter 599287 | loss 1.6246 | loss(rot) 1.0818 | loss(pos) 0.1002 | loss(seq) 0.4426 | grad 3.1520 | lr 0.0000 | time_forward 3.7640 | time_backward 5.1480 |
[2023-10-25 19:04:12,289::train::INFO] [train] Iter 599288 | loss 0.7532 | loss(rot) 0.2584 | loss(pos) 0.0581 | loss(seq) 0.4366 | grad 5.4751 | lr 0.0000 | time_forward 3.9480 | time_backward 5.7790 |
[2023-10-25 19:04:15,014::train::INFO] [train] Iter 599289 | loss 0.3817 | loss(rot) 0.0655 | loss(pos) 0.1045 | loss(seq) 0.2117 | grad 2.2105 | lr 0.0000 | time_forward 1.2760 | time_backward 1.4470 |
[2023-10-25 19:04:17,795::train::INFO] [train] Iter 599290 | loss 0.4421 | loss(rot) 0.0763 | loss(pos) 0.3338 | loss(seq) 0.0319 | grad 3.3278 | lr 0.0000 | time_forward 1.2910 | time_backward 1.4620 |
[2023-10-25 19:04:25,344::train::INFO] [train] Iter 599291 | loss 1.8670 | loss(rot) 1.6452 | loss(pos) 0.0401 | loss(seq) 0.1817 | grad 2.4243 | lr 0.0000 | time_forward 3.1940 | time_backward 4.3510 |
[2023-10-25 19:04:28,119::train::INFO] [train] Iter 599292 | loss 1.4163 | loss(rot) 1.2832 | loss(pos) 0.0705 | loss(seq) 0.0626 | grad 6.1468 | lr 0.0000 | time_forward 1.3080 | time_backward 1.4640 |
[2023-10-25 19:04:35,120::train::INFO] [train] Iter 599293 | loss 0.2758 | loss(rot) 0.2559 | loss(pos) 0.0121 | loss(seq) 0.0077 | grad 7.4648 | lr 0.0000 | time_forward 2.9790 | time_backward 3.9870 |
[2023-10-25 19:04:37,850::train::INFO] [train] Iter 599294 | loss 0.3658 | loss(rot) 0.0976 | loss(pos) 0.0804 | loss(seq) 0.1878 | grad 2.5992 | lr 0.0000 | time_forward 1.3170 | time_backward 1.4090 |
[2023-10-25 19:04:45,883::train::INFO] [train] Iter 599295 | loss 0.3538 | loss(rot) 0.1005 | loss(pos) 0.0424 | loss(seq) 0.2108 | grad 2.2562 | lr 0.0000 | time_forward 3.3740 | time_backward 4.6170 |
[2023-10-25 19:04:54,498::train::INFO] [train] Iter 599296 | loss 1.5788 | loss(rot) 1.3203 | loss(pos) 0.0735 | loss(seq) 0.1850 | grad 21.8095 | lr 0.0000 | time_forward 3.6190 | time_backward 4.9940 |
[2023-10-25 19:04:57,291::train::INFO] [train] Iter 599297 | loss 0.3570 | loss(rot) 0.3162 | loss(pos) 0.0405 | loss(seq) 0.0003 | grad 4.0938 | lr 0.0000 | time_forward 1.3110 | time_backward 1.4780 |
[2023-10-25 19:05:00,097::train::INFO] [train] Iter 599298 | loss 0.3824 | loss(rot) 0.0750 | loss(pos) 0.0458 | loss(seq) 0.2616 | grad 2.6325 | lr 0.0000 | time_forward 1.3290 | time_backward 1.4730 |
[2023-10-25 19:05:08,559::train::INFO] [train] Iter 599299 | loss 0.1466 | loss(rot) 0.0779 | loss(pos) 0.0322 | loss(seq) 0.0364 | grad 2.1695 | lr 0.0000 | time_forward 3.6680 | time_backward 4.7900 |
[2023-10-25 19:05:18,470::train::INFO] [train] Iter 599300 | loss 0.5280 | loss(rot) 0.2518 | loss(pos) 0.0521 | loss(seq) 0.2241 | grad 4.8354 | lr 0.0000 | time_forward 4.1550 | time_backward 5.7540 |
[2023-10-25 19:05:25,658::train::INFO] [train] Iter 599301 | loss 1.8031 | loss(rot) 1.1613 | loss(pos) 0.2266 | loss(seq) 0.4152 | grad 11.8114 | lr 0.0000 | time_forward 3.0590 | time_backward 4.1250 |
[2023-10-25 19:05:28,317::train::INFO] [train] Iter 599302 | loss 0.7036 | loss(rot) 0.3575 | loss(pos) 0.1006 | loss(seq) 0.2455 | grad 3.6071 | lr 0.0000 | time_forward 1.2450 | time_backward 1.4120 |
[2023-10-25 19:05:31,073::train::INFO] [train] Iter 599303 | loss 0.3039 | loss(rot) 0.2617 | loss(pos) 0.0348 | loss(seq) 0.0074 | grad 41.3260 | lr 0.0000 | time_forward 1.3370 | time_backward 1.4150 |
[2023-10-25 19:05:39,775::train::INFO] [train] Iter 599304 | loss 3.2993 | loss(rot) 0.0015 | loss(pos) 3.2978 | loss(seq) 0.0000 | grad 22.4754 | lr 0.0000 | time_forward 3.6920 | time_backward 5.0070 |
[2023-10-25 19:05:42,528::train::INFO] [train] Iter 599305 | loss 1.0898 | loss(rot) 0.9668 | loss(pos) 0.0594 | loss(seq) 0.0635 | grad 2.9905 | lr 0.0000 | time_forward 1.3080 | time_backward 1.4430 |
[2023-10-25 19:05:45,290::train::INFO] [train] Iter 599306 | loss 0.2829 | loss(rot) 0.1438 | loss(pos) 0.0389 | loss(seq) 0.1002 | grad 3.3289 | lr 0.0000 | time_forward 1.3180 | time_backward 1.4170 |
[2023-10-25 19:05:55,231::train::INFO] [train] Iter 599307 | loss 0.6985 | loss(rot) 0.4342 | loss(pos) 0.0387 | loss(seq) 0.2255 | grad 3.3467 | lr 0.0000 | time_forward 4.1970 | time_backward 5.7400 |
[2023-10-25 19:06:03,386::train::INFO] [train] Iter 599308 | loss 0.3537 | loss(rot) 0.2776 | loss(pos) 0.0312 | loss(seq) 0.0449 | grad 3.1566 | lr 0.0000 | time_forward 3.4560 | time_backward 4.6950 |
[2023-10-25 19:06:12,525::train::INFO] [train] Iter 599309 | loss 0.7638 | loss(rot) 0.5192 | loss(pos) 0.0373 | loss(seq) 0.2073 | grad 2.6541 | lr 0.0000 | time_forward 3.8380 | time_backward 5.2980 |
[2023-10-25 19:06:21,411::train::INFO] [train] Iter 599310 | loss 0.5651 | loss(rot) 0.2982 | loss(pos) 0.0591 | loss(seq) 0.2078 | grad 3.4178 | lr 0.0000 | time_forward 3.7580 | time_backward 5.1240 |
[2023-10-25 19:06:31,335::train::INFO] [train] Iter 599311 | loss 0.5677 | loss(rot) 0.5387 | loss(pos) 0.0191 | loss(seq) 0.0099 | grad 2.7105 | lr 0.0000 | time_forward 4.0980 | time_backward 5.8220 |
[2023-10-25 19:06:34,114::train::INFO] [train] Iter 599312 | loss 0.2744 | loss(rot) 0.2175 | loss(pos) 0.0569 | loss(seq) 0.0000 | grad 2.4697 | lr 0.0000 | time_forward 1.3340 | time_backward 1.4420 |
[2023-10-25 19:06:44,085::train::INFO] [train] Iter 599313 | loss 0.7886 | loss(rot) 0.5493 | loss(pos) 0.1019 | loss(seq) 0.1375 | grad 6.6889 | lr 0.0000 | time_forward 3.9980 | time_backward 5.9690 |
[2023-10-25 19:06:47,069::train::INFO] [train] Iter 599314 | loss 0.3741 | loss(rot) 0.1959 | loss(pos) 0.0175 | loss(seq) 0.1607 | grad 7.2594 | lr 0.0000 | time_forward 1.3820 | time_backward 1.6000 |
[2023-10-25 19:06:49,854::train::INFO] [train] Iter 599315 | loss 1.3268 | loss(rot) 1.2747 | loss(pos) 0.0512 | loss(seq) 0.0009 | grad 4.9967 | lr 0.0000 | time_forward 1.2850 | time_backward 1.4970 |
[2023-10-25 19:06:52,109::train::INFO] [train] Iter 599316 | loss 0.4340 | loss(rot) 0.2910 | loss(pos) 0.0860 | loss(seq) 0.0570 | grad 2.9660 | lr 0.0000 | time_forward 1.0420 | time_backward 1.2100 |
[2023-10-25 19:06:55,499::train::INFO] [train] Iter 599317 | loss 0.2681 | loss(rot) 0.1623 | loss(pos) 0.0234 | loss(seq) 0.0824 | grad 1.6732 | lr 0.0000 | time_forward 1.5000 | time_backward 1.8730 |
[2023-10-25 19:06:58,271::train::INFO] [train] Iter 599318 | loss 1.1683 | loss(rot) 1.0713 | loss(pos) 0.0271 | loss(seq) 0.0699 | grad 20.0731 | lr 0.0000 | time_forward 1.3340 | time_backward 1.4360 |
[2023-10-25 19:07:06,486::train::INFO] [train] Iter 599319 | loss 0.6933 | loss(rot) 0.0526 | loss(pos) 0.6348 | loss(seq) 0.0059 | grad 8.8924 | lr 0.0000 | time_forward 3.4210 | time_backward 4.7910 |
[2023-10-25 19:07:09,256::train::INFO] [train] Iter 599320 | loss 0.1176 | loss(rot) 0.0756 | loss(pos) 0.0413 | loss(seq) 0.0007 | grad 1.7914 | lr 0.0000 | time_forward 1.3140 | time_backward 1.4520 |
[2023-10-25 19:07:19,483::train::INFO] [train] Iter 599321 | loss 0.4602 | loss(rot) 0.3519 | loss(pos) 0.0234 | loss(seq) 0.0849 | grad 6.9772 | lr 0.0000 | time_forward 4.0340 | time_backward 6.1910 |
[2023-10-25 19:07:29,305::train::INFO] [train] Iter 599322 | loss 1.1325 | loss(rot) 1.0101 | loss(pos) 0.0293 | loss(seq) 0.0930 | grad 3.7133 | lr 0.0000 | time_forward 4.0140 | time_backward 5.8040 |
[2023-10-25 19:07:32,029::train::INFO] [train] Iter 599323 | loss 0.5701 | loss(rot) 0.2971 | loss(pos) 0.0908 | loss(seq) 0.1823 | grad 2.9127 | lr 0.0000 | time_forward 1.3150 | time_backward 1.4060 |
[2023-10-25 19:07:42,331::train::INFO] [train] Iter 599324 | loss 0.7988 | loss(rot) 0.3550 | loss(pos) 0.1154 | loss(seq) 0.3283 | grad 2.6834 | lr 0.0000 | time_forward 4.2800 | time_backward 6.0180 |
[2023-10-25 19:07:50,951::train::INFO] [train] Iter 599325 | loss 1.2882 | loss(rot) 1.2414 | loss(pos) 0.0325 | loss(seq) 0.0143 | grad 5.6223 | lr 0.0000 | time_forward 3.6030 | time_backward 5.0120 |
[2023-10-25 19:07:59,341::train::INFO] [train] Iter 599326 | loss 0.7336 | loss(rot) 0.2765 | loss(pos) 0.0208 | loss(seq) 0.4363 | grad 3.1114 | lr 0.0000 | time_forward 3.4490 | time_backward 4.9380 |
[2023-10-25 19:08:08,014::train::INFO] [train] Iter 599327 | loss 0.4805 | loss(rot) 0.4411 | loss(pos) 0.0384 | loss(seq) 0.0010 | grad 3.2756 | lr 0.0000 | time_forward 3.6510 | time_backward 5.0200 |
[2023-10-25 19:08:17,900::train::INFO] [train] Iter 599328 | loss 0.4519 | loss(rot) 0.2107 | loss(pos) 0.2320 | loss(seq) 0.0092 | grad 3.1882 | lr 0.0000 | time_forward 3.9910 | time_backward 5.8910 |
[2023-10-25 19:08:26,823::train::INFO] [train] Iter 599329 | loss 0.4422 | loss(rot) 0.0641 | loss(pos) 0.0224 | loss(seq) 0.3557 | grad 2.3144 | lr 0.0000 | time_forward 3.8910 | time_backward 5.0300 |
[2023-10-25 19:08:35,491::train::INFO] [train] Iter 599330 | loss 0.2861 | loss(rot) 0.2505 | loss(pos) 0.0153 | loss(seq) 0.0203 | grad 2.4822 | lr 0.0000 | time_forward 3.6740 | time_backward 4.9910 |
[2023-10-25 19:08:44,318::train::INFO] [train] Iter 599331 | loss 0.2766 | loss(rot) 0.2262 | loss(pos) 0.0495 | loss(seq) 0.0010 | grad 4.9689 | lr 0.0000 | time_forward 3.7570 | time_backward 5.0660 |
[2023-10-25 19:08:53,045::train::INFO] [train] Iter 599332 | loss 1.5318 | loss(rot) 1.1791 | loss(pos) 0.0857 | loss(seq) 0.2670 | grad 3.7154 | lr 0.0000 | time_forward 3.6690 | time_backward 5.0560 |
[2023-10-25 19:08:55,865::train::INFO] [train] Iter 599333 | loss 0.7707 | loss(rot) 0.0367 | loss(pos) 0.4082 | loss(seq) 0.3259 | grad 4.6968 | lr 0.0000 | time_forward 1.3380 | time_backward 1.4790 |
[2023-10-25 19:08:58,667::train::INFO] [train] Iter 599334 | loss 0.3160 | loss(rot) 0.0471 | loss(pos) 0.0777 | loss(seq) 0.1911 | grad 3.1517 | lr 0.0000 | time_forward 1.3360 | time_backward 1.4630 |
[2023-10-25 19:09:07,289::train::INFO] [train] Iter 599335 | loss 0.3025 | loss(rot) 0.0615 | loss(pos) 0.0182 | loss(seq) 0.2228 | grad 1.7735 | lr 0.0000 | time_forward 3.6720 | time_backward 4.9460 |
[2023-10-25 19:09:15,148::train::INFO] [train] Iter 599336 | loss 0.6315 | loss(rot) 0.1171 | loss(pos) 0.0296 | loss(seq) 0.4848 | grad 4.0101 | lr 0.0000 | time_forward 3.2990 | time_backward 4.5580 |
[2023-10-25 19:09:23,740::train::INFO] [train] Iter 599337 | loss 0.1917 | loss(rot) 0.1746 | loss(pos) 0.0147 | loss(seq) 0.0024 | grad 1.9821 | lr 0.0000 | time_forward 3.5260 | time_backward 5.0620 |
[2023-10-25 19:09:33,473::train::INFO] [train] Iter 599338 | loss 0.2805 | loss(rot) 0.2382 | loss(pos) 0.0239 | loss(seq) 0.0185 | grad 2.2958 | lr 0.0000 | time_forward 3.9620 | time_backward 5.7680 |
[2023-10-25 19:09:43,553::train::INFO] [train] Iter 599339 | loss 0.6229 | loss(rot) 0.1770 | loss(pos) 0.0599 | loss(seq) 0.3860 | grad 4.0007 | lr 0.0000 | time_forward 3.9820 | time_backward 6.0940 |
[2023-10-25 19:09:51,730::train::INFO] [train] Iter 599340 | loss 0.8244 | loss(rot) 0.5119 | loss(pos) 0.1786 | loss(seq) 0.1338 | grad 4.2931 | lr 0.0000 | time_forward 3.5260 | time_backward 4.6490 |
[2023-10-25 19:10:01,940::train::INFO] [train] Iter 599341 | loss 0.7629 | loss(rot) 0.6084 | loss(pos) 0.0365 | loss(seq) 0.1181 | grad 3.3744 | lr 0.0000 | time_forward 4.2310 | time_backward 5.9740 |
[2023-10-25 19:10:10,198::train::INFO] [train] Iter 599342 | loss 0.3260 | loss(rot) 0.1987 | loss(pos) 0.0201 | loss(seq) 0.1071 | grad 2.4101 | lr 0.0000 | time_forward 3.5080 | time_backward 4.7460 |
[2023-10-25 19:10:18,221::train::INFO] [train] Iter 599343 | loss 0.5120 | loss(rot) 0.1094 | loss(pos) 0.0458 | loss(seq) 0.3568 | grad 2.7973 | lr 0.0000 | time_forward 3.3630 | time_backward 4.6570 |
[2023-10-25 19:10:26,436::train::INFO] [train] Iter 599344 | loss 0.6504 | loss(rot) 0.0388 | loss(pos) 0.1947 | loss(seq) 0.4168 | grad 5.8570 | lr 0.0000 | time_forward 3.4630 | time_backward 4.7500 |
[2023-10-25 19:10:34,726::train::INFO] [train] Iter 599345 | loss 1.6291 | loss(rot) 1.5813 | loss(pos) 0.0478 | loss(seq) 0.0000 | grad 4.4235 | lr 0.0000 | time_forward 3.4640 | time_backward 4.8220 |
[2023-10-25 19:10:43,811::train::INFO] [train] Iter 599346 | loss 0.4241 | loss(rot) 0.1032 | loss(pos) 0.0398 | loss(seq) 0.2811 | grad 3.0805 | lr 0.0000 | time_forward 3.8190 | time_backward 5.2630 |
[2023-10-25 19:10:52,436::train::INFO] [train] Iter 599347 | loss 0.2107 | loss(rot) 0.1922 | loss(pos) 0.0178 | loss(seq) 0.0007 | grad 3.2708 | lr 0.0000 | time_forward 3.6260 | time_backward 4.9960 |
[2023-10-25 19:11:00,515::train::INFO] [train] Iter 599348 | loss 1.9978 | loss(rot) 1.9499 | loss(pos) 0.0220 | loss(seq) 0.0259 | grad 3.9221 | lr 0.0000 | time_forward 3.4050 | time_backward 4.6710 |
[2023-10-25 19:11:09,221::train::INFO] [train] Iter 599349 | loss 0.5657 | loss(rot) 0.2658 | loss(pos) 0.0390 | loss(seq) 0.2609 | grad 4.6641 | lr 0.0000 | time_forward 3.6550 | time_backward 5.0480 |
[2023-10-25 19:11:19,212::train::INFO] [train] Iter 599350 | loss 0.2899 | loss(rot) 0.0937 | loss(pos) 0.0819 | loss(seq) 0.1144 | grad 3.1273 | lr 0.0000 | time_forward 4.1020 | time_backward 5.8870 |
[2023-10-25 19:11:29,997::train::INFO] [train] Iter 599351 | loss 1.0440 | loss(rot) 0.8899 | loss(pos) 0.0545 | loss(seq) 0.0997 | grad 3.0439 | lr 0.0000 | time_forward 4.4780 | time_backward 6.3040 |
[2023-10-25 19:11:40,021::train::INFO] [train] Iter 599352 | loss 0.2150 | loss(rot) 0.1835 | loss(pos) 0.0213 | loss(seq) 0.0102 | grad 1.5508 | lr 0.0000 | time_forward 4.0490 | time_backward 5.9720 |
[2023-10-25 19:11:48,000::train::INFO] [train] Iter 599353 | loss 0.4309 | loss(rot) 0.3756 | loss(pos) 0.0445 | loss(seq) 0.0108 | grad 19.9189 | lr 0.0000 | time_forward 3.3590 | time_backward 4.6170 |
[2023-10-25 19:11:56,517::train::INFO] [train] Iter 599354 | loss 0.4733 | loss(rot) 0.0746 | loss(pos) 0.0335 | loss(seq) 0.3652 | grad 1.9864 | lr 0.0000 | time_forward 3.5770 | time_backward 4.9360 |
[2023-10-25 19:12:06,675::train::INFO] [train] Iter 599355 | loss 0.7235 | loss(rot) 0.6700 | loss(pos) 0.0536 | loss(seq) 0.0000 | grad 3.2254 | lr 0.0000 | time_forward 4.2030 | time_backward 5.9520 |
[2023-10-25 19:12:09,455::train::INFO] [train] Iter 599356 | loss 0.5147 | loss(rot) 0.4830 | loss(pos) 0.0310 | loss(seq) 0.0008 | grad 1.3816 | lr 0.0000 | time_forward 1.3330 | time_backward 1.4450 |
[2023-10-25 19:12:19,633::train::INFO] [train] Iter 599357 | loss 0.7813 | loss(rot) 0.5605 | loss(pos) 0.1038 | loss(seq) 0.1170 | grad 3.8633 | lr 0.0000 | time_forward 4.0920 | time_backward 6.0490 |
[2023-10-25 19:12:28,275::train::INFO] [train] Iter 599358 | loss 1.1594 | loss(rot) 0.0114 | loss(pos) 1.1462 | loss(seq) 0.0019 | grad 16.5991 | lr 0.0000 | time_forward 3.6600 | time_backward 4.9780 |
[2023-10-25 19:12:37,470::train::INFO] [train] Iter 599359 | loss 0.1531 | loss(rot) 0.0750 | loss(pos) 0.0189 | loss(seq) 0.0591 | grad 1.8420 | lr 0.0000 | time_forward 3.9060 | time_backward 5.2860 |
[2023-10-25 19:12:47,768::train::INFO] [train] Iter 599360 | loss 0.4655 | loss(rot) 0.3687 | loss(pos) 0.0139 | loss(seq) 0.0829 | grad 2.9379 | lr 0.0000 | time_forward 4.3310 | time_backward 5.9630 |
[2023-10-25 19:12:50,712::train::INFO] [train] Iter 599361 | loss 0.5332 | loss(rot) 0.1452 | loss(pos) 0.0796 | loss(seq) 0.3083 | grad 2.8924 | lr 0.0000 | time_forward 1.4570 | time_backward 1.4840 |
[2023-10-25 19:13:00,603::train::INFO] [train] Iter 599362 | loss 1.2690 | loss(rot) 0.5249 | loss(pos) 0.4820 | loss(seq) 0.2621 | grad 3.2599 | lr 0.0000 | time_forward 4.0400 | time_backward 5.8480 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.