text
stringlengths 56
1.16k
|
---|
[2023-10-25 19:25:35,184::train::INFO] [train] Iter 599463 | loss 0.1099 | loss(rot) 0.0651 | loss(pos) 0.0399 | loss(seq) 0.0050 | grad 1.5750 | lr 0.0000 | time_forward 3.8670 | time_backward 5.3240 |
[2023-10-25 19:25:43,931::train::INFO] [train] Iter 599464 | loss 1.6047 | loss(rot) 0.8775 | loss(pos) 0.2375 | loss(seq) 0.4897 | grad 2.2806 | lr 0.0000 | time_forward 3.6890 | time_backward 5.0550 |
[2023-10-25 19:25:53,999::train::INFO] [train] Iter 599465 | loss 0.5507 | loss(rot) 0.0684 | loss(pos) 0.3600 | loss(seq) 0.1222 | grad 4.4036 | lr 0.0000 | time_forward 4.2360 | time_backward 5.8290 |
[2023-10-25 19:26:03,311::train::INFO] [train] Iter 599466 | loss 0.6588 | loss(rot) 0.3193 | loss(pos) 0.1827 | loss(seq) 0.1568 | grad 3.6406 | lr 0.0000 | time_forward 3.9150 | time_backward 5.3950 |
[2023-10-25 19:26:11,316::train::INFO] [train] Iter 599467 | loss 0.4407 | loss(rot) 0.0451 | loss(pos) 0.3917 | loss(seq) 0.0038 | grad 6.3498 | lr 0.0000 | time_forward 3.3230 | time_backward 4.6780 |
[2023-10-25 19:26:20,487::train::INFO] [train] Iter 599468 | loss 2.0256 | loss(rot) 1.8420 | loss(pos) 0.0285 | loss(seq) 0.1551 | grad 13.6279 | lr 0.0000 | time_forward 3.8860 | time_backward 5.2820 |
[2023-10-25 19:26:23,366::train::INFO] [train] Iter 599469 | loss 0.2679 | loss(rot) 0.0989 | loss(pos) 0.0605 | loss(seq) 0.1085 | grad 2.5057 | lr 0.0000 | time_forward 1.3130 | time_backward 1.5620 |
[2023-10-25 19:26:33,369::train::INFO] [train] Iter 599470 | loss 0.6424 | loss(rot) 0.1252 | loss(pos) 0.5010 | loss(seq) 0.0163 | grad 4.4394 | lr 0.0000 | time_forward 4.1780 | time_backward 5.8220 |
[2023-10-25 19:26:42,072::train::INFO] [train] Iter 599471 | loss 1.0146 | loss(rot) 0.3281 | loss(pos) 0.1308 | loss(seq) 0.5557 | grad 3.6996 | lr 0.0000 | time_forward 3.6850 | time_backward 5.0160 |
[2023-10-25 19:26:51,198::train::INFO] [train] Iter 599472 | loss 0.8759 | loss(rot) 0.5802 | loss(pos) 0.1206 | loss(seq) 0.1751 | grad 5.9149 | lr 0.0000 | time_forward 3.8440 | time_backward 5.2780 |
[2023-10-25 19:27:01,274::train::INFO] [train] Iter 599473 | loss 0.4405 | loss(rot) 0.2001 | loss(pos) 0.1093 | loss(seq) 0.1311 | grad 4.6402 | lr 0.0000 | time_forward 4.0330 | time_backward 6.0410 |
[2023-10-25 19:27:09,446::train::INFO] [train] Iter 599474 | loss 0.1468 | loss(rot) 0.1206 | loss(pos) 0.0260 | loss(seq) 0.0002 | grad 2.2638 | lr 0.0000 | time_forward 3.3840 | time_backward 4.7830 |
[2023-10-25 19:27:12,226::train::INFO] [train] Iter 599475 | loss 1.3518 | loss(rot) 1.1600 | loss(pos) 0.0284 | loss(seq) 0.1633 | grad 3.5992 | lr 0.0000 | time_forward 1.3270 | time_backward 1.4490 |
[2023-10-25 19:27:15,037::train::INFO] [train] Iter 599476 | loss 0.2703 | loss(rot) 0.0504 | loss(pos) 0.1995 | loss(seq) 0.0204 | grad 6.6137 | lr 0.0000 | time_forward 1.3930 | time_backward 1.4140 |
[2023-10-25 19:27:23,690::train::INFO] [train] Iter 599477 | loss 0.8372 | loss(rot) 0.4869 | loss(pos) 0.0617 | loss(seq) 0.2886 | grad 4.8948 | lr 0.0000 | time_forward 3.6950 | time_backward 4.9540 |
[2023-10-25 19:27:33,916::train::INFO] [train] Iter 599478 | loss 1.0841 | loss(rot) 0.6235 | loss(pos) 0.1275 | loss(seq) 0.3331 | grad 4.4998 | lr 0.0000 | time_forward 4.1680 | time_backward 6.0550 |
[2023-10-25 19:27:43,074::train::INFO] [train] Iter 599479 | loss 0.2202 | loss(rot) 0.1845 | loss(pos) 0.0357 | loss(seq) 0.0000 | grad 2.2637 | lr 0.0000 | time_forward 3.9000 | time_backward 5.2540 |
[2023-10-25 19:27:53,630::train::INFO] [train] Iter 599480 | loss 0.6116 | loss(rot) 0.0484 | loss(pos) 0.5572 | loss(seq) 0.0060 | grad 5.4555 | lr 0.0000 | time_forward 4.1520 | time_backward 6.4000 |
[2023-10-25 19:27:56,580::train::INFO] [train] Iter 599481 | loss 0.7155 | loss(rot) 0.3222 | loss(pos) 0.0923 | loss(seq) 0.3010 | grad 3.7933 | lr 0.0000 | time_forward 1.4670 | time_backward 1.4800 |
[2023-10-25 19:28:08,069::train::INFO] [train] Iter 599482 | loss 0.4140 | loss(rot) 0.1690 | loss(pos) 0.0297 | loss(seq) 0.2152 | grad 4.6976 | lr 0.0000 | time_forward 4.4540 | time_backward 7.0090 |
[2023-10-25 19:28:19,231::train::INFO] [train] Iter 599483 | loss 0.4697 | loss(rot) 0.1915 | loss(pos) 0.0279 | loss(seq) 0.2503 | grad 2.3049 | lr 0.0000 | time_forward 4.3560 | time_backward 6.8020 |
[2023-10-25 19:28:29,883::train::INFO] [train] Iter 599484 | loss 0.4175 | loss(rot) 0.3854 | loss(pos) 0.0321 | loss(seq) 0.0000 | grad 4.5792 | lr 0.0000 | time_forward 4.3790 | time_backward 6.2690 |
[2023-10-25 19:28:39,545::train::INFO] [train] Iter 599485 | loss 1.1541 | loss(rot) 1.1239 | loss(pos) 0.0298 | loss(seq) 0.0005 | grad 6.0047 | lr 0.0000 | time_forward 4.0750 | time_backward 5.5840 |
[2023-10-25 19:28:42,935::train::INFO] [train] Iter 599486 | loss 0.9541 | loss(rot) 0.0550 | loss(pos) 0.8966 | loss(seq) 0.0025 | grad 12.1318 | lr 0.0000 | time_forward 1.5550 | time_backward 1.8310 |
[2023-10-25 19:28:45,775::train::INFO] [train] Iter 599487 | loss 0.4689 | loss(rot) 0.2864 | loss(pos) 0.0448 | loss(seq) 0.1376 | grad 3.6476 | lr 0.0000 | time_forward 1.3550 | time_backward 1.4700 |
[2023-10-25 19:28:55,820::train::INFO] [train] Iter 599488 | loss 0.7513 | loss(rot) 0.0543 | loss(pos) 0.5422 | loss(seq) 0.1548 | grad 10.6084 | lr 0.0000 | time_forward 3.9660 | time_backward 6.0470 |
[2023-10-25 19:29:06,466::train::INFO] [train] Iter 599489 | loss 0.8092 | loss(rot) 0.4564 | loss(pos) 0.0240 | loss(seq) 0.3287 | grad 4.7315 | lr 0.0000 | time_forward 4.3650 | time_backward 6.2770 |
[2023-10-25 19:29:15,523::train::INFO] [train] Iter 599490 | loss 0.3753 | loss(rot) 0.0726 | loss(pos) 0.2880 | loss(seq) 0.0147 | grad 4.7972 | lr 0.0000 | time_forward 3.6030 | time_backward 5.4510 |
[2023-10-25 19:29:19,012::train::INFO] [train] Iter 599491 | loss 2.5879 | loss(rot) 2.5596 | loss(pos) 0.0283 | loss(seq) 0.0000 | grad 4.5272 | lr 0.0000 | time_forward 1.5580 | time_backward 1.9270 |
[2023-10-25 19:29:29,847::train::INFO] [train] Iter 599492 | loss 0.5767 | loss(rot) 0.3605 | loss(pos) 0.0409 | loss(seq) 0.1753 | grad 2.7271 | lr 0.0000 | time_forward 4.2750 | time_backward 6.5440 |
[2023-10-25 19:29:32,382::train::INFO] [train] Iter 599493 | loss 0.3392 | loss(rot) 0.1760 | loss(pos) 0.0226 | loss(seq) 0.1405 | grad 2.1032 | lr 0.0000 | time_forward 1.2320 | time_backward 1.3000 |
[2023-10-25 19:29:41,523::train::INFO] [train] Iter 599494 | loss 0.1649 | loss(rot) 0.0972 | loss(pos) 0.0138 | loss(seq) 0.0539 | grad 1.6663 | lr 0.0000 | time_forward 3.9060 | time_backward 5.2310 |
[2023-10-25 19:29:44,166::train::INFO] [train] Iter 599495 | loss 0.6697 | loss(rot) 0.0398 | loss(pos) 0.6241 | loss(seq) 0.0058 | grad 7.9307 | lr 0.0000 | time_forward 1.2210 | time_backward 1.4190 |
[2023-10-25 19:29:53,871::train::INFO] [train] Iter 599496 | loss 1.9781 | loss(rot) 1.7043 | loss(pos) 0.0587 | loss(seq) 0.2151 | grad 96.8049 | lr 0.0000 | time_forward 4.0480 | time_backward 5.6540 |
[2023-10-25 19:30:05,645::train::INFO] [train] Iter 599497 | loss 1.6525 | loss(rot) 1.1237 | loss(pos) 0.1361 | loss(seq) 0.3927 | grad 2.8170 | lr 0.0000 | time_forward 4.8900 | time_backward 6.8810 |
[2023-10-25 19:30:16,845::train::INFO] [train] Iter 599498 | loss 0.5020 | loss(rot) 0.4585 | loss(pos) 0.0370 | loss(seq) 0.0065 | grad 54.3249 | lr 0.0000 | time_forward 4.7350 | time_backward 6.4600 |
[2023-10-25 19:30:27,991::train::INFO] [train] Iter 599499 | loss 0.4036 | loss(rot) 0.2463 | loss(pos) 0.0558 | loss(seq) 0.1015 | grad 3.3640 | lr 0.0000 | time_forward 4.1400 | time_backward 7.0030 |
[2023-10-25 19:30:36,859::train::INFO] [train] Iter 599500 | loss 0.1154 | loss(rot) 0.0577 | loss(pos) 0.0237 | loss(seq) 0.0340 | grad 1.6168 | lr 0.0000 | time_forward 3.7360 | time_backward 5.1280 |
[2023-10-25 19:30:39,902::train::INFO] [train] Iter 599501 | loss 0.4047 | loss(rot) 0.0702 | loss(pos) 0.3246 | loss(seq) 0.0098 | grad 9.6789 | lr 0.0000 | time_forward 1.4790 | time_backward 1.5600 |
[2023-10-25 19:30:48,905::train::INFO] [train] Iter 599502 | loss 0.9976 | loss(rot) 0.1733 | loss(pos) 0.5720 | loss(seq) 0.2523 | grad 2.4691 | lr 0.0000 | time_forward 3.7570 | time_backward 5.1850 |
[2023-10-25 19:30:58,694::train::INFO] [train] Iter 599503 | loss 0.5771 | loss(rot) 0.1018 | loss(pos) 0.0310 | loss(seq) 0.4443 | grad 3.7200 | lr 0.0000 | time_forward 3.7900 | time_backward 5.9950 |
[2023-10-25 19:31:02,441::train::INFO] [train] Iter 599504 | loss 0.9930 | loss(rot) 0.8738 | loss(pos) 0.0471 | loss(seq) 0.0721 | grad 3.6081 | lr 0.0000 | time_forward 1.6860 | time_backward 2.0570 |
[2023-10-25 19:31:05,435::train::INFO] [train] Iter 599505 | loss 0.9989 | loss(rot) 0.8972 | loss(pos) 0.0407 | loss(seq) 0.0609 | grad 3.4911 | lr 0.0000 | time_forward 1.4460 | time_backward 1.5300 |
[2023-10-25 19:31:15,628::train::INFO] [train] Iter 599506 | loss 1.3568 | loss(rot) 1.3289 | loss(pos) 0.0162 | loss(seq) 0.0117 | grad 5.0133 | lr 0.0000 | time_forward 4.4310 | time_backward 5.7570 |
[2023-10-25 19:31:18,644::train::INFO] [train] Iter 599507 | loss 0.4893 | loss(rot) 0.1512 | loss(pos) 0.0445 | loss(seq) 0.2937 | grad 2.6897 | lr 0.0000 | time_forward 1.4510 | time_backward 1.5610 |
[2023-10-25 19:31:30,090::train::INFO] [train] Iter 599508 | loss 0.5040 | loss(rot) 0.0528 | loss(pos) 0.4302 | loss(seq) 0.0209 | grad 5.1826 | lr 0.0000 | time_forward 4.4980 | time_backward 6.9440 |
[2023-10-25 19:31:39,631::train::INFO] [train] Iter 599509 | loss 1.5172 | loss(rot) 1.3285 | loss(pos) 0.0239 | loss(seq) 0.1647 | grad 5.8119 | lr 0.0000 | time_forward 4.2190 | time_backward 5.3170 |
[2023-10-25 19:31:50,871::train::INFO] [train] Iter 599510 | loss 1.2800 | loss(rot) 1.2187 | loss(pos) 0.0613 | loss(seq) 0.0000 | grad 7.0224 | lr 0.0000 | time_forward 4.4090 | time_backward 6.8290 |
[2023-10-25 19:31:59,289::train::INFO] [train] Iter 599511 | loss 0.7694 | loss(rot) 0.2832 | loss(pos) 0.1008 | loss(seq) 0.3854 | grad 4.0678 | lr 0.0000 | time_forward 3.5260 | time_backward 4.8880 |
[2023-10-25 19:32:02,332::train::INFO] [train] Iter 599512 | loss 0.5539 | loss(rot) 0.0989 | loss(pos) 0.0282 | loss(seq) 0.4267 | grad 3.1674 | lr 0.0000 | time_forward 1.3830 | time_backward 1.6570 |
[2023-10-25 19:32:13,732::train::INFO] [train] Iter 599513 | loss 0.4238 | loss(rot) 0.2666 | loss(pos) 0.0326 | loss(seq) 0.1247 | grad 2.7820 | lr 0.0000 | time_forward 4.5150 | time_backward 6.8400 |
[2023-10-25 19:32:24,187::train::INFO] [train] Iter 599514 | loss 1.3346 | loss(rot) 1.0688 | loss(pos) 0.0501 | loss(seq) 0.2157 | grad 16.3861 | lr 0.0000 | time_forward 4.4890 | time_backward 5.9620 |
[2023-10-25 19:32:26,804::train::INFO] [train] Iter 599515 | loss 1.1878 | loss(rot) 0.0152 | loss(pos) 1.1690 | loss(seq) 0.0036 | grad 17.9571 | lr 0.0000 | time_forward 1.2850 | time_backward 1.3280 |
[2023-10-25 19:32:37,069::train::INFO] [train] Iter 599516 | loss 0.4574 | loss(rot) 0.3515 | loss(pos) 0.0190 | loss(seq) 0.0869 | grad 3.9353 | lr 0.0000 | time_forward 4.3340 | time_backward 5.9040 |
[2023-10-25 19:32:40,169::train::INFO] [train] Iter 599517 | loss 0.3429 | loss(rot) 0.1394 | loss(pos) 0.0196 | loss(seq) 0.1839 | grad 2.9007 | lr 0.0000 | time_forward 1.4550 | time_backward 1.6400 |
[2023-10-25 19:32:49,591::train::INFO] [train] Iter 599518 | loss 1.0171 | loss(rot) 0.0528 | loss(pos) 0.9454 | loss(seq) 0.0189 | grad 6.4129 | lr 0.0000 | time_forward 3.9760 | time_backward 5.4430 |
[2023-10-25 19:32:58,716::train::INFO] [train] Iter 599519 | loss 0.3620 | loss(rot) 0.1353 | loss(pos) 0.2096 | loss(seq) 0.0172 | grad 5.1115 | lr 0.0000 | time_forward 3.7340 | time_backward 5.3880 |
[2023-10-25 19:33:08,283::train::INFO] [train] Iter 599520 | loss 0.3048 | loss(rot) 0.1167 | loss(pos) 0.0492 | loss(seq) 0.1389 | grad 2.3982 | lr 0.0000 | time_forward 3.8350 | time_backward 5.7280 |
[2023-10-25 19:33:11,589::train::INFO] [train] Iter 599521 | loss 0.2934 | loss(rot) 0.2619 | loss(pos) 0.0314 | loss(seq) 0.0000 | grad 2.5528 | lr 0.0000 | time_forward 1.5770 | time_backward 1.7240 |
[2023-10-25 19:33:15,555::train::INFO] [train] Iter 599522 | loss 0.4379 | loss(rot) 0.1684 | loss(pos) 0.1589 | loss(seq) 0.1106 | grad 2.9336 | lr 0.0000 | time_forward 1.7520 | time_backward 2.2090 |
[2023-10-25 19:33:24,026::train::INFO] [train] Iter 599523 | loss 1.8960 | loss(rot) 1.3181 | loss(pos) 0.1329 | loss(seq) 0.4450 | grad 12.9344 | lr 0.0000 | time_forward 3.6840 | time_backward 4.7820 |
[2023-10-25 19:33:32,323::train::INFO] [train] Iter 599524 | loss 0.2710 | loss(rot) 0.2465 | loss(pos) 0.0180 | loss(seq) 0.0065 | grad 4.2118 | lr 0.0000 | time_forward 3.6900 | time_backward 4.5830 |
[2023-10-25 19:33:41,064::train::INFO] [train] Iter 599525 | loss 0.4610 | loss(rot) 0.0265 | loss(pos) 0.4035 | loss(seq) 0.0311 | grad 3.2298 | lr 0.0000 | time_forward 3.5780 | time_backward 5.1600 |
[2023-10-25 19:33:52,814::train::INFO] [train] Iter 599526 | loss 1.2569 | loss(rot) 0.9637 | loss(pos) 0.1037 | loss(seq) 0.1895 | grad 6.2335 | lr 0.0000 | time_forward 4.7070 | time_backward 7.0380 |
[2023-10-25 19:34:02,217::train::INFO] [train] Iter 599527 | loss 0.6281 | loss(rot) 0.0342 | loss(pos) 0.5913 | loss(seq) 0.0026 | grad 11.2811 | lr 0.0000 | time_forward 3.8580 | time_backward 5.5400 |
[2023-10-25 19:34:05,242::train::INFO] [train] Iter 599528 | loss 0.2398 | loss(rot) 0.0746 | loss(pos) 0.0244 | loss(seq) 0.1409 | grad 1.5065 | lr 0.0000 | time_forward 1.5030 | time_backward 1.5150 |
[2023-10-25 19:34:16,700::train::INFO] [train] Iter 599529 | loss 0.6124 | loss(rot) 0.5804 | loss(pos) 0.0280 | loss(seq) 0.0040 | grad 95.6922 | lr 0.0000 | time_forward 4.7660 | time_backward 6.6540 |
[2023-10-25 19:34:27,470::train::INFO] [train] Iter 599530 | loss 1.7224 | loss(rot) 0.4832 | loss(pos) 1.2377 | loss(seq) 0.0015 | grad 7.3097 | lr 0.0000 | time_forward 4.4910 | time_backward 6.2740 |
[2023-10-25 19:34:36,865::train::INFO] [train] Iter 599531 | loss 0.1025 | loss(rot) 0.0719 | loss(pos) 0.0267 | loss(seq) 0.0038 | grad 1.8573 | lr 0.0000 | time_forward 4.1620 | time_backward 5.2280 |
[2023-10-25 19:34:46,319::train::INFO] [train] Iter 599532 | loss 0.7218 | loss(rot) 0.4051 | loss(pos) 0.0396 | loss(seq) 0.2771 | grad 2.2963 | lr 0.0000 | time_forward 3.9050 | time_backward 5.5460 |
[2023-10-25 19:34:56,807::train::INFO] [train] Iter 599533 | loss 0.3029 | loss(rot) 0.1982 | loss(pos) 0.0249 | loss(seq) 0.0799 | grad 3.5545 | lr 0.0000 | time_forward 4.5020 | time_backward 5.9810 |
[2023-10-25 19:34:59,949::train::INFO] [train] Iter 599534 | loss 1.3719 | loss(rot) 1.3324 | loss(pos) 0.0311 | loss(seq) 0.0084 | grad 4.3417 | lr 0.0000 | time_forward 1.4580 | time_backward 1.6790 |
[2023-10-25 19:35:03,107::train::INFO] [train] Iter 599535 | loss 1.5942 | loss(rot) 1.2909 | loss(pos) 0.0864 | loss(seq) 0.2169 | grad 10.8986 | lr 0.0000 | time_forward 1.5110 | time_backward 1.5960 |
[2023-10-25 19:35:13,622::train::INFO] [train] Iter 599536 | loss 0.2266 | loss(rot) 0.0695 | loss(pos) 0.0166 | loss(seq) 0.1405 | grad 1.6041 | lr 0.0000 | time_forward 4.3770 | time_backward 6.1350 |
[2023-10-25 19:35:23,883::train::INFO] [train] Iter 599537 | loss 0.9875 | loss(rot) 0.9359 | loss(pos) 0.0507 | loss(seq) 0.0009 | grad 3.9221 | lr 0.0000 | time_forward 4.1980 | time_backward 6.0590 |
[2023-10-25 19:35:34,243::train::INFO] [train] Iter 599538 | loss 1.4550 | loss(rot) 1.0602 | loss(pos) 0.0784 | loss(seq) 0.3164 | grad 5.6240 | lr 0.0000 | time_forward 4.3370 | time_backward 6.0190 |
[2023-10-25 19:35:43,304::train::INFO] [train] Iter 599539 | loss 0.7394 | loss(rot) 0.4482 | loss(pos) 0.0213 | loss(seq) 0.2698 | grad 4.1867 | lr 0.0000 | time_forward 3.8260 | time_backward 5.2300 |
[2023-10-25 19:35:46,989::train::INFO] [train] Iter 599540 | loss 0.5476 | loss(rot) 0.5123 | loss(pos) 0.0298 | loss(seq) 0.0054 | grad 6.0373 | lr 0.0000 | time_forward 1.5980 | time_backward 2.0830 |
[2023-10-25 19:35:57,694::train::INFO] [train] Iter 599541 | loss 0.2266 | loss(rot) 0.1894 | loss(pos) 0.0282 | loss(seq) 0.0090 | grad 2.6292 | lr 0.0000 | time_forward 4.5960 | time_backward 6.0900 |
[2023-10-25 19:36:08,947::train::INFO] [train] Iter 599542 | loss 0.3131 | loss(rot) 0.2115 | loss(pos) 0.0344 | loss(seq) 0.0671 | grad 2.6975 | lr 0.0000 | time_forward 4.4020 | time_backward 6.8470 |
[2023-10-25 19:36:17,671::train::INFO] [train] Iter 599543 | loss 0.3332 | loss(rot) 0.2228 | loss(pos) 0.0318 | loss(seq) 0.0786 | grad 5.4101 | lr 0.0000 | time_forward 3.7410 | time_backward 4.9810 |
[2023-10-25 19:36:20,543::train::INFO] [train] Iter 599544 | loss 0.4276 | loss(rot) 0.0994 | loss(pos) 0.0234 | loss(seq) 0.3047 | grad 1.9402 | lr 0.0000 | time_forward 1.3870 | time_backward 1.4810 |
[2023-10-25 19:36:31,363::train::INFO] [train] Iter 599545 | loss 0.4202 | loss(rot) 0.2919 | loss(pos) 0.0302 | loss(seq) 0.0981 | grad 4.3988 | lr 0.0000 | time_forward 4.3380 | time_backward 6.3760 |
[2023-10-25 19:36:42,545::train::INFO] [train] Iter 599546 | loss 1.3487 | loss(rot) 1.2867 | loss(pos) 0.0610 | loss(seq) 0.0011 | grad 6.7117 | lr 0.0000 | time_forward 4.6910 | time_backward 6.4860 |
[2023-10-25 19:36:52,072::train::INFO] [train] Iter 599547 | loss 0.4595 | loss(rot) 0.1565 | loss(pos) 0.0659 | loss(seq) 0.2370 | grad 4.1057 | lr 0.0000 | time_forward 3.7730 | time_backward 5.7500 |
[2023-10-25 19:36:55,151::train::INFO] [train] Iter 599548 | loss 0.3744 | loss(rot) 0.0774 | loss(pos) 0.1158 | loss(seq) 0.1812 | grad 2.9099 | lr 0.0000 | time_forward 1.4880 | time_backward 1.5860 |
[2023-10-25 19:36:58,223::train::INFO] [train] Iter 599549 | loss 0.6155 | loss(rot) 0.5707 | loss(pos) 0.0447 | loss(seq) 0.0002 | grad 3.0269 | lr 0.0000 | time_forward 1.5220 | time_backward 1.5460 |
[2023-10-25 19:37:00,577::train::INFO] [train] Iter 599550 | loss 0.2929 | loss(rot) 0.0439 | loss(pos) 0.2297 | loss(seq) 0.0193 | grad 4.9285 | lr 0.0000 | time_forward 1.0660 | time_backward 1.2600 |
[2023-10-25 19:37:03,657::train::INFO] [train] Iter 599551 | loss 0.3755 | loss(rot) 0.0854 | loss(pos) 0.0764 | loss(seq) 0.2137 | grad 2.9343 | lr 0.0000 | time_forward 1.5030 | time_backward 1.5740 |
[2023-10-25 19:37:06,707::train::INFO] [train] Iter 599552 | loss 0.3087 | loss(rot) 0.1191 | loss(pos) 0.0371 | loss(seq) 0.1525 | grad 2.7753 | lr 0.0000 | time_forward 1.4740 | time_backward 1.5190 |
[2023-10-25 19:37:18,028::train::INFO] [train] Iter 599553 | loss 0.8172 | loss(rot) 0.5239 | loss(pos) 0.0395 | loss(seq) 0.2538 | grad 3.4623 | lr 0.0000 | time_forward 4.3960 | time_backward 6.9210 |
[2023-10-25 19:37:29,627::train::INFO] [train] Iter 599554 | loss 1.0561 | loss(rot) 0.5896 | loss(pos) 0.1088 | loss(seq) 0.3578 | grad 3.5060 | lr 0.0000 | time_forward 4.5550 | time_backward 7.0400 |
[2023-10-25 19:37:32,093::train::INFO] [train] Iter 599555 | loss 0.1801 | loss(rot) 0.0825 | loss(pos) 0.0599 | loss(seq) 0.0377 | grad 2.1823 | lr 0.0000 | time_forward 1.1060 | time_backward 1.3570 |
[2023-10-25 19:37:42,525::train::INFO] [train] Iter 599556 | loss 0.3535 | loss(rot) 0.1316 | loss(pos) 0.0913 | loss(seq) 0.1306 | grad 2.8487 | lr 0.0000 | time_forward 4.3950 | time_backward 6.0340 |
[2023-10-25 19:37:52,454::train::INFO] [train] Iter 599557 | loss 2.2181 | loss(rot) 1.6708 | loss(pos) 0.1302 | loss(seq) 0.4171 | grad 7.2074 | lr 0.0000 | time_forward 4.1350 | time_backward 5.7900 |
[2023-10-25 19:38:03,013::train::INFO] [train] Iter 599558 | loss 0.1595 | loss(rot) 0.1207 | loss(pos) 0.0211 | loss(seq) 0.0178 | grad 2.5473 | lr 0.0000 | time_forward 4.5310 | time_backward 6.0230 |
[2023-10-25 19:38:06,014::train::INFO] [train] Iter 599559 | loss 0.5703 | loss(rot) 0.2440 | loss(pos) 0.0502 | loss(seq) 0.2761 | grad 3.3702 | lr 0.0000 | time_forward 1.4800 | time_backward 1.5170 |
[2023-10-25 19:38:17,303::train::INFO] [train] Iter 599560 | loss 0.5625 | loss(rot) 0.5359 | loss(pos) 0.0266 | loss(seq) 0.0000 | grad 3.7258 | lr 0.0000 | time_forward 4.5680 | time_backward 6.7170 |
[2023-10-25 19:38:26,795::train::INFO] [train] Iter 599561 | loss 1.0376 | loss(rot) 1.0002 | loss(pos) 0.0349 | loss(seq) 0.0025 | grad 5.7668 | lr 0.0000 | time_forward 3.8990 | time_backward 5.5880 |
[2023-10-25 19:38:31,002::train::INFO] [train] Iter 599562 | loss 1.8697 | loss(rot) 1.7728 | loss(pos) 0.0938 | loss(seq) 0.0031 | grad 3.9842 | lr 0.0000 | time_forward 1.8850 | time_backward 2.3110 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.