text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
# coding=utf-8 # Copyright 2020-present, AllenAI Authors, University of Illinois Urbana-Champaign, # Intel Nervana Systems and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Binarizers take a (real value) matrix as input and produce a binary (values in {0,1}) mask of the same shape. """ import torch from torch import autograd class ThresholdBinarizer(autograd.Function): """ Thresholdd binarizer. Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j} > \tau` where `\tau` is a real value threshold. Implementation is inspired from: https://github.com/arunmallya/piggyback Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights Arun Mallya, Dillon Davis, Svetlana Lazebnik """ @staticmethod def forward(ctx, inputs: torch.tensor, threshold: float, sigmoid: bool): """ Args: inputs (`torch.FloatTensor`) The input matrix from which the binarizer computes the binary mask. threshold (`float`) The threshold value (in R). sigmoid (`bool`) If set to ``True``, we apply the sigmoid function to the `inputs` matrix before comparing to `threshold`. In this case, `threshold` should be a value between 0 and 1. Returns: mask (`torch.FloatTensor`) Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is retained, 0 - the associated weight is pruned). """ nb_elems = inputs.numel() nb_min = int(0.005 * nb_elems) + 1 if sigmoid: mask = (torch.sigmoid(inputs) > threshold).type(inputs.type()) else: mask = (inputs > threshold).type(inputs.type()) if mask.sum() < nb_min: # We limit the pruning so that at least 0.5% (half a percent) of the weights are remaining k_threshold = inputs.flatten().kthvalue(max(nb_elems - nb_min, 1)).values mask = (inputs > k_threshold).type(inputs.type()) return mask @staticmethod def backward(ctx, gradOutput): return gradOutput, None, None class TopKBinarizer(autograd.Function): """ Top-k Binarizer. Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}` is among the k% highest values of S. Implementation is inspired from: https://github.com/allenai/hidden-networks What's hidden in a randomly weighted neural network? Vivek Ramanujan*, Mitchell Wortsman*, Aniruddha Kembhavi, Ali Farhadi, Mohammad Rastegari """ @staticmethod def forward(ctx, inputs: torch.tensor, threshold: float): """ Args: inputs (`torch.FloatTensor`) The input matrix from which the binarizer computes the binary mask. threshold (`float`) The percentage of weights to keep (the rest is pruned). `threshold` is a float between 0 and 1. Returns: mask (`torch.FloatTensor`) Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is retained, 0 - the associated weight is pruned). """ # Get the subnetwork by sorting the inputs and using the top threshold % mask = inputs.clone() _, idx = inputs.flatten().sort(descending=True) j = int(threshold * inputs.numel()) # flat_out and mask access the same memory. flat_out = mask.flatten() flat_out[idx[j:]] = 0 flat_out[idx[:j]] = 1 return mask @staticmethod def backward(ctx, gradOutput): return gradOutput, None class MagnitudeBinarizer(object): """ Magnitude Binarizer. Computes a binary mask M from a real value matrix S such that `M_{i,j} = 1` if and only if `S_{i,j}` is among the k% highest values of |S| (absolute value). Implementation is inspired from https://github.com/NervanaSystems/distiller/blob/2291fdcc2ea642a98d4e20629acb5a9e2e04b4e6/distiller/pruning/automated_gradual_pruner.py#L24 """ @staticmethod def apply(inputs: torch.tensor, threshold: float): """ Args: inputs (`torch.FloatTensor`) The input matrix from which the binarizer computes the binary mask. This input marix is typically the weight matrix. threshold (`float`) The percentage of weights to keep (the rest is pruned). `threshold` is a float between 0 and 1. Returns: mask (`torch.FloatTensor`) Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is retained, 0 - the associated weight is pruned). """ # Get the subnetwork by sorting the inputs and using the top threshold % mask = inputs.clone() _, idx = inputs.abs().flatten().sort(descending=True) j = int(threshold * inputs.numel()) # flat_out and mask access the same memory. flat_out = mask.flatten() flat_out[idx[j:]] = 0 flat_out[idx[:j]] = 1 return mask
AdaMix/examples/research_projects/movement-pruning/emmental/modules/binarizer.py/0
{ "file_path": "AdaMix/examples/research_projects/movement-pruning/emmental/modules/binarizer.py", "repo_id": "AdaMix", "token_count": 2366 }
38
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2019 Uber Technologies, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Example command with bag of words: python run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95 Example command with discriminator: python run_pplm.py -D sentiment --class_label 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95 """ import argparse import json from operator import add from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from tqdm import trange from pplm_classification_head import ClassificationHead from transformers import GPT2LMHeadModel, GPT2Tokenizer from transformers.file_utils import cached_path PPLM_BOW = 1 PPLM_DISCRIM = 2 PPLM_BOW_DISCRIM = 3 SMALL_CONST = 1e-15 BIG_CONST = 1e10 BAG_OF_WORDS_ARCHIVE_MAP = { "legal": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt", "military": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt", "politics": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt", "religion": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt", "science": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt", "space": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt", "technology": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt", } DISCRIMINATOR_MODELS_PARAMS = { "clickbait": { "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifier_head.pt", "class_size": 2, "embed_size": 1024, "class_vocab": {"non_clickbait": 0, "clickbait": 1}, "default_class": 1, "pretrained_model": "gpt2-medium", }, "sentiment": { "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/SST_classifier_head.pt", "class_size": 5, "embed_size": 1024, "class_vocab": {"very_positive": 2, "very_negative": 3}, "default_class": 3, "pretrained_model": "gpt2-medium", }, } def top_k_filter(logits, k, probs=False): """ Masks everything but the k top entries as -infinity (1e10). Used to mask logits such that e^-infinity -> 0 won't contribute to the sum of the denominator. """ if k == 0: return logits else: values = torch.topk(logits, k)[0] batch_mins = values[:, -1].view(-1, 1).expand_as(logits) if probs: return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits) return torch.where(logits < batch_mins, torch.ones_like(logits) * -BIG_CONST, logits) def perturb_past( past, model, last, unpert_past=None, unpert_logits=None, accumulated_hidden=None, grad_norms=None, stepsize=0.01, one_hot_bows_vectors=None, classifier=None, class_label=None, loss_type=0, num_iterations=3, horizon_length=1, window_length=0, decay=False, gamma=1.5, kl_scale=0.01, device="cuda", ): # Generate inital perturbed past grad_accumulator = [(np.zeros(p.shape).astype("float32")) for p in past] if accumulated_hidden is None: accumulated_hidden = 0 if decay: decay_mask = torch.arange(0.0, 1.0 + SMALL_CONST, 1.0 / (window_length))[1:] else: decay_mask = 1.0 # TODO fix this comment (SUMANTH) # Generate a mask is gradient perturbated is based on a past window _, _, _, curr_length, _ = past[0].shape if curr_length > window_length and window_length > 0: ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple([window_length]) + tuple(past[0].shape[-1:]) zeros_key_val_shape = ( tuple(past[0].shape[:-2]) + tuple([curr_length - window_length]) + tuple(past[0].shape[-1:]) ) ones_mask = torch.ones(ones_key_val_shape) ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3) ones_mask = ones_mask.permute(0, 1, 2, 4, 3) window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)), dim=-2).to(device) else: window_mask = torch.ones_like(past[0]).to(device) # accumulate perturbations for num_iterations loss_per_iter = [] new_accumulated_hidden = None for i in range(num_iterations): print("Iteration ", i + 1) curr_perturbation = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator] # make sure p_.grad is not None for p_ in curr_perturbation: p_.retain_grad() # Compute hidden using perturbed past perturbed_past = list(map(add, past, curr_perturbation)) _, _, _, curr_length, _ = curr_perturbation[0].shape lm_output = model(last, past_key_values=perturbed_past) all_logits, all_hidden = lm_output["logits"], lm_output["hidden_states"] hidden = all_hidden[-1] new_accumulated_hidden = accumulated_hidden + torch.sum(hidden, dim=1).detach() # TODO: Check the layer-norm consistency of this with trained discriminator (Sumanth) logits = all_logits[:, -1, :] probs = F.softmax(logits, dim=-1) loss = 0.0 loss_list = [] if loss_type == PPLM_BOW or loss_type == PPLM_BOW_DISCRIM: for one_hot_bow in one_hot_bows_vectors: bow_logits = torch.mm(probs, torch.t(one_hot_bow)) bow_loss = -torch.log(torch.sum(bow_logits)) loss += bow_loss loss_list.append(bow_loss) print(" pplm_bow_loss:", loss.data.cpu().numpy()) if loss_type == 2 or loss_type == 3: ce_loss = torch.nn.CrossEntropyLoss() # TODO why we need to do this assignment and not just using unpert_past? (Sumanth) curr_unpert_past = unpert_past curr_probs = torch.unsqueeze(probs, dim=1) wte = model.resize_token_embeddings() for _ in range(horizon_length): inputs_embeds = torch.matmul(curr_probs, wte.weight.data) lm_output = model(past_key_values=curr_unpert_past, inputs_embeds=inputs_embeds) curr_unpert_past, curr_all_hidden = lm_output["past_key_values"], lm_output["hidden_states"] curr_hidden = curr_all_hidden[-1] new_accumulated_hidden = new_accumulated_hidden + torch.sum(curr_hidden, dim=1) prediction = classifier(new_accumulated_hidden / (curr_length + 1 + horizon_length)) label = torch.tensor(prediction.shape[0] * [class_label], device=device, dtype=torch.long) discrim_loss = ce_loss(prediction, label) print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy()) loss += discrim_loss loss_list.append(discrim_loss) kl_loss = 0.0 if kl_scale > 0.0: unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1) unpert_probs = unpert_probs + SMALL_CONST * (unpert_probs <= SMALL_CONST).float().to(device).detach() correction = SMALL_CONST * (probs <= SMALL_CONST).float().to(device).detach() corrected_probs = probs + correction.detach() kl_loss = kl_scale * ((corrected_probs * (corrected_probs / unpert_probs).log()).sum()) print(" kl_loss", kl_loss.data.cpu().numpy()) loss += kl_loss loss_per_iter.append(loss.data.cpu().numpy()) print(" pplm_loss", (loss - kl_loss).data.cpu().numpy()) # compute gradients loss.backward() # calculate gradient norms if grad_norms is not None and loss_type == PPLM_BOW: grad_norms = [ torch.max(grad_norms[index], torch.norm(p_.grad * window_mask)) for index, p_ in enumerate(curr_perturbation) ] else: grad_norms = [ (torch.norm(p_.grad * window_mask) + SMALL_CONST) for index, p_ in enumerate(curr_perturbation) ] # normalize gradients grad = [ -stepsize * (p_.grad * window_mask / grad_norms[index] ** gamma).data.cpu().numpy() for index, p_ in enumerate(curr_perturbation) ] # accumulate gradient grad_accumulator = list(map(add, grad, grad_accumulator)) # reset gradients, just to make sure for p_ in curr_perturbation: p_.grad.data.zero_() # removing past from the graph new_past = [] for p_ in past: new_past.append(p_.detach()) past = new_past # apply the accumulated perturbations to the past grad_accumulator = [torch.from_numpy(p_).requires_grad_(True).to(device=device) for p_ in grad_accumulator] pert_past = list(map(add, past, grad_accumulator)) return pert_past, new_accumulated_hidden, grad_norms, loss_per_iter def get_classifier( name: Optional[str], class_label: Union[str, int], device: str ) -> Tuple[Optional[ClassificationHead], Optional[int]]: if name is None: return None, None params = DISCRIMINATOR_MODELS_PARAMS[name] classifier = ClassificationHead(class_size=params["class_size"], embed_size=params["embed_size"]).to(device) if "url" in params: resolved_archive_file = cached_path(params["url"]) elif "path" in params: resolved_archive_file = params["path"] else: raise ValueError("Either url or path have to be specified in the discriminator model parameters") classifier.load_state_dict(torch.load(resolved_archive_file, map_location=device)) classifier.eval() if isinstance(class_label, str): if class_label in params["class_vocab"]: label_id = params["class_vocab"][class_label] else: label_id = params["default_class"] print("class_label {} not in class_vocab".format(class_label)) print("available values are: {}".format(params["class_vocab"])) print("using default class {}".format(label_id)) elif isinstance(class_label, int): if class_label in set(params["class_vocab"].values()): label_id = class_label else: label_id = params["default_class"] print("class_label {} not in class_vocab".format(class_label)) print("available values are: {}".format(params["class_vocab"])) print("using default class {}".format(label_id)) else: label_id = params["default_class"] return classifier, label_id def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str], tokenizer) -> List[List[List[int]]]: bow_indices = [] for id_or_path in bag_of_words_ids_or_paths: if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP: filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path]) else: filepath = id_or_path with open(filepath, "r") as f: words = f.read().strip().split("\n") bow_indices.append([tokenizer.encode(word.strip(), add_prefix_space=True) for word in words]) return bow_indices def build_bows_one_hot_vectors(bow_indices, tokenizer, device="cuda"): if bow_indices is None: return None one_hot_bows_vectors = [] for single_bow in bow_indices: single_bow = list(filter(lambda x: len(x) <= 1, single_bow)) single_bow = torch.tensor(single_bow).to(device) num_words = single_bow.shape[0] one_hot_bow = torch.zeros(num_words, tokenizer.vocab_size).to(device) one_hot_bow.scatter_(1, single_bow, 1) one_hot_bows_vectors.append(one_hot_bow) return one_hot_bows_vectors def full_text_generation( model, tokenizer, context=None, num_samples=1, device="cuda", bag_of_words=None, discrim=None, class_label=None, length=100, stepsize=0.02, temperature=1.0, top_k=10, sample=False, num_iterations=3, grad_length=10000, horizon_length=1, window_length=0, decay=False, gamma=1.5, gm_scale=0.9, kl_scale=0.01, repetition_penalty=1.0, **kwargs ): classifier, class_id = get_classifier(discrim, class_label, device) bow_indices = [] if bag_of_words: bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer) if bag_of_words and classifier: print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.") loss_type = PPLM_BOW_DISCRIM elif bag_of_words: loss_type = PPLM_BOW print("Using PPLM-BoW") elif classifier is not None: loss_type = PPLM_DISCRIM print("Using PPLM-Discrim") else: raise Exception("Specify either a bag of words or a discriminator") unpert_gen_tok_text, _, _ = generate_text_pplm( model=model, tokenizer=tokenizer, context=context, device=device, length=length, sample=sample, perturb=False, repetition_penalty=repetition_penalty, ) if device == "cuda": torch.cuda.empty_cache() pert_gen_tok_texts = [] discrim_losses = [] losses_in_time = [] for i in range(num_samples): pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm( model=model, tokenizer=tokenizer, context=context, device=device, perturb=True, bow_indices=bow_indices, classifier=classifier, class_label=class_id, loss_type=loss_type, length=length, stepsize=stepsize, temperature=temperature, top_k=top_k, sample=sample, num_iterations=num_iterations, grad_length=grad_length, horizon_length=horizon_length, window_length=window_length, decay=decay, gamma=gamma, gm_scale=gm_scale, kl_scale=kl_scale, repetition_penalty=repetition_penalty, ) pert_gen_tok_texts.append(pert_gen_tok_text) if classifier is not None: discrim_losses.append(discrim_loss.data.cpu().numpy()) losses_in_time.append(loss_in_time) if device == "cuda": torch.cuda.empty_cache() return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time def generate_text_pplm( model, tokenizer, context=None, past=None, device="cuda", perturb=True, bow_indices=None, classifier=None, class_label=None, loss_type=0, length=100, stepsize=0.02, temperature=1.0, top_k=10, sample=False, num_iterations=3, grad_length=10000, horizon_length=1, window_length=0, decay=False, gamma=1.5, gm_scale=0.9, kl_scale=0.01, repetition_penalty=1.0, ): output_so_far = None if context: context_t = torch.tensor(context, device=device, dtype=torch.long) while len(context_t.shape) < 2: context_t = context_t.unsqueeze(0) output_so_far = context_t # collect one hot vectors for bags of words one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices, tokenizer, device) grad_norms = None last = None unpert_discrim_loss = 0 loss_in_time = [] for i in trange(length, ascii=True): # Get past/probs for current output, except for last word # Note that GPT takes 2 inputs: past + current_token # run model forward to obtain unperturbed if past is None and output_so_far is not None: last = output_so_far[:, -1:] if output_so_far.shape[1] > 1: past = model(output_so_far[:, :-1])["past_key_values"] lm_output = model(output_so_far) unpert_logits, unpert_past, unpert_all_hidden = ( lm_output["logits"], lm_output["past_key_values"], lm_output["hidden_states"], ) unpert_last_hidden = unpert_all_hidden[-1] # check if we are abowe grad max length if i >= grad_length: current_stepsize = stepsize * 0 else: current_stepsize = stepsize # modify the past if necessary if not perturb or num_iterations == 0: pert_past = past else: accumulated_hidden = unpert_last_hidden[:, :-1, :] accumulated_hidden = torch.sum(accumulated_hidden, dim=1) if past is not None: pert_past, _, grad_norms, loss_this_iter = perturb_past( past, model, last, unpert_past=unpert_past, unpert_logits=unpert_logits, accumulated_hidden=accumulated_hidden, grad_norms=grad_norms, stepsize=current_stepsize, one_hot_bows_vectors=one_hot_bows_vectors, classifier=classifier, class_label=class_label, loss_type=loss_type, num_iterations=num_iterations, horizon_length=horizon_length, window_length=window_length, decay=decay, gamma=gamma, kl_scale=kl_scale, device=device, ) loss_in_time.append(loss_this_iter) else: pert_past = past lm_output = model(last, past_key_values=pert_past) pert_logits, past = ( lm_output["logits"], lm_output["past_key_values"], ) pert_logits = pert_logits[:, -1, :] / temperature # + SMALL_CONST for token_idx in set(output_so_far[0].tolist()): if pert_logits[0, token_idx] < 0: pert_logits[0, token_idx] *= repetition_penalty else: pert_logits[0, token_idx] /= repetition_penalty pert_probs = F.softmax(pert_logits, dim=-1) if classifier is not None: ce_loss = torch.nn.CrossEntropyLoss() prediction = classifier(torch.mean(unpert_last_hidden, dim=1)) label = torch.tensor([class_label], device=device, dtype=torch.long) unpert_discrim_loss = ce_loss(prediction, label) print("unperturbed discrim loss", unpert_discrim_loss.data.cpu().numpy()) else: unpert_discrim_loss = 0 # Fuse the modified model and original model if perturb: unpert_probs = F.softmax(unpert_logits[:, -1, :], dim=-1) pert_probs = (pert_probs ** gm_scale) * (unpert_probs ** (1 - gm_scale)) # + SMALL_CONST pert_probs = top_k_filter(pert_probs, k=top_k, probs=True) # + SMALL_CONST # rescale if torch.sum(pert_probs) <= 1: pert_probs = pert_probs / torch.sum(pert_probs) else: pert_logits = top_k_filter(pert_logits, k=top_k) # + SMALL_CONST pert_probs = F.softmax(pert_logits, dim=-1) # sample or greedy if sample: last = torch.multinomial(pert_probs, num_samples=1) else: _, last = torch.topk(pert_probs, k=1, dim=-1) # update context/output_so_far appending the new token output_so_far = last if output_so_far is None else torch.cat((output_so_far, last), dim=1) print(tokenizer.decode(output_so_far.tolist()[0])) return output_so_far, unpert_discrim_loss, loss_in_time def set_generic_model_params(discrim_weights, discrim_meta): if discrim_weights is None: raise ValueError("When using a generic discriminator, discrim_weights need to be specified") if discrim_meta is None: raise ValueError("When using a generic discriminator, discrim_meta need to be specified") with open(discrim_meta, "r") as discrim_meta_file: meta = json.load(discrim_meta_file) meta["path"] = discrim_weights DISCRIMINATOR_MODELS_PARAMS["generic"] = meta def run_pplm_example( pretrained_model="gpt2-medium", cond_text="", uncond=False, num_samples=1, bag_of_words=None, discrim=None, discrim_weights=None, discrim_meta=None, class_label=-1, length=100, stepsize=0.02, temperature=1.0, top_k=10, sample=False, num_iterations=3, grad_length=10000, horizon_length=1, window_length=0, decay=False, gamma=1.5, gm_scale=0.9, kl_scale=0.01, seed=0, no_cuda=False, colorama=False, repetition_penalty=1.0, ): # set Random seed torch.manual_seed(seed) np.random.seed(seed) # set the device device = "cuda" if torch.cuda.is_available() and not no_cuda else "cpu" if discrim == "generic": set_generic_model_params(discrim_weights, discrim_meta) if discrim is not None: pretrained_model = DISCRIMINATOR_MODELS_PARAMS[discrim]["pretrained_model"] print("discrim = {}, pretrained_model set to discriminator's = {}".format(discrim, pretrained_model)) # load pretrained model model = GPT2LMHeadModel.from_pretrained(pretrained_model, output_hidden_states=True) model.to(device) model.eval() # load tokenizer tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model) # Freeze GPT-2 weights for param in model.parameters(): param.requires_grad = False # figure out conditioning text if uncond: tokenized_cond_text = tokenizer.encode([tokenizer.bos_token]) else: raw_text = cond_text while not raw_text: print("Did you forget to add `--cond_text`? ") raw_text = input("Model prompt >>> ") tokenized_cond_text = tokenizer.encode(tokenizer.bos_token + raw_text) print("= Prefix of sentence =") print(tokenizer.decode(tokenized_cond_text)) print() # generate unperturbed and perturbed texts # full_text_generation returns: # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation( model=model, tokenizer=tokenizer, context=tokenized_cond_text, device=device, num_samples=num_samples, bag_of_words=bag_of_words, discrim=discrim, class_label=class_label, length=length, stepsize=stepsize, temperature=temperature, top_k=top_k, sample=sample, num_iterations=num_iterations, grad_length=grad_length, horizon_length=horizon_length, window_length=window_length, decay=decay, gamma=gamma, gm_scale=gm_scale, kl_scale=kl_scale, repetition_penalty=repetition_penalty, ) # untokenize unperturbed text unpert_gen_text = tokenizer.decode(unpert_gen_tok_text.tolist()[0]) print("=" * 80) print("= Unperturbed generated text =") print(unpert_gen_text) print() generated_texts = [] bow_word_ids = set() if bag_of_words and colorama: bow_indices = get_bag_of_words_indices(bag_of_words.split(";"), tokenizer) for single_bow_list in bow_indices: # filtering all words in the list composed of more than 1 token filtered = list(filter(lambda x: len(x) <= 1, single_bow_list)) # w[0] because we are sure w has only 1 item because previous fitler bow_word_ids.update(w[0] for w in filtered) # iterate through the perturbed texts for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts): try: # untokenize unperturbed text if colorama: import colorama pert_gen_text = "" for word_id in pert_gen_tok_text.tolist()[0]: if word_id in bow_word_ids: pert_gen_text += "{}{}{}".format( colorama.Fore.RED, tokenizer.decode([word_id]), colorama.Style.RESET_ALL, ) else: pert_gen_text += tokenizer.decode([word_id]) else: pert_gen_text = tokenizer.decode(pert_gen_tok_text.tolist()[0]) print("= Perturbed generated text {} =".format(i + 1)) print(pert_gen_text) print() except Exception as exc: print("Ignoring error while generating perturbed text:", exc) # keep the prefix, perturbed seq, original seq for each index generated_texts.append((tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text)) return if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pretrained_model", "-M", type=str, default="gpt2-medium", help="pretrained model name or path to local checkpoint", ) parser.add_argument("--cond_text", type=str, default="The lake", help="Prefix texts to condition on") parser.add_argument("--uncond", action="store_true", help="Generate from end-of-text as prefix") parser.add_argument( "--num_samples", type=int, default=1, help="Number of samples to generate from the modified latents", ) parser.add_argument( "--bag_of_words", "-B", type=str, default=None, help=( "Bags of words used for PPLM-BoW. " "Either a BOW id (see list in code) or a filepath. " "Multiple BoWs separated by ;" ), ) parser.add_argument( "--discrim", "-D", type=str, default=None, choices=("clickbait", "sentiment", "toxicity", "generic"), help="Discriminator to use", ) parser.add_argument( "--discrim_weights", type=str, default=None, help="Weights for the generic discriminator", ) parser.add_argument( "--discrim_meta", type=str, default=None, help="Meta information for the generic discriminator", ) parser.add_argument( "--class_label", type=int, default=-1, help="Class label used for the discriminator", ) parser.add_argument("--length", type=int, default=100) parser.add_argument("--stepsize", type=float, default=0.02) parser.add_argument("--temperature", type=float, default=1.0) parser.add_argument("--top_k", type=int, default=10) parser.add_argument("--sample", action="store_true", help="Generate from end-of-text as prefix") parser.add_argument("--num_iterations", type=int, default=3) parser.add_argument("--grad_length", type=int, default=10000) parser.add_argument( "--window_length", type=int, default=0, help="Length of past which is being optimized; 0 corresponds to infinite window length", ) parser.add_argument( "--horizon_length", type=int, default=1, help="Length of future to optimize over", ) parser.add_argument("--decay", action="store_true", help="whether to decay or not") parser.add_argument("--gamma", type=float, default=1.5) parser.add_argument("--gm_scale", type=float, default=0.9) parser.add_argument("--kl_scale", type=float, default=0.01) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--no_cuda", action="store_true", help="no cuda") parser.add_argument("--colorama", action="store_true", help="colors keywords") parser.add_argument( "--repetition_penalty", type=float, default=1.0, help="Penalize repetition. More than 1.0 -> less repetition", ) args = parser.parse_args() run_pplm_example(**vars(args))
AdaMix/examples/research_projects/pplm/run_pplm.py/0
{ "file_path": "AdaMix/examples/research_projects/pplm/run_pplm.py", "repo_id": "AdaMix", "token_count": 13228 }
39
# the proper usage is documented in the README, you need to specify data_dir, output_dir and model_name_or_path # run ./finetune.sh --help to see all the possible options python finetune.py \ --learning_rate=3e-5 \ --fp16 \ --gpus 1 \ --do_train \ --do_predict \ --n_val 1000 \ --val_check_interval 0.1 \ "$@"
AdaMix/examples/research_projects/seq2seq-distillation/finetune.sh/0
{ "file_path": "AdaMix/examples/research_projects/seq2seq-distillation/finetune.sh", "repo_id": "AdaMix", "token_count": 138 }
40
#!/usr/bin/env bash python run_asr.py \ --output_dir="./wav2vec2-large-lv60-100h" \ --num_train_epochs="30" \ --per_device_train_batch_size="16" \ --per_device_eval_batch_size="16" \ --evaluation_strategy="steps" \ --save_total_limit="3" \ --save_steps="500" \ --eval_steps="100" \ --logging_steps="50" \ --learning_rate="5e-4" \ --warmup_steps="3000" \ --model_name_or_path="facebook/wav2vec2-large-lv60" \ --fp16 \ --dataset_name="librispeech_asr" \ --dataset_config_name="clean" \ --train_split_name="train.100" \ --preprocessing_num_workers="32" \ --group_by_length \ --freeze_feature_extractor
AdaMix/examples/research_projects/wav2vec2/finetune_large_lv60_100.sh/0
{ "file_path": "AdaMix/examples/research_projects/wav2vec2/finetune_large_lv60_100.sh", "repo_id": "AdaMix", "token_count": 255 }
41
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import sys import unittest from unittest.mock import patch from transformers.file_utils import is_apex_available from transformers.integrations import is_fairscale_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_gpu_count, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed bindir = os.path.abspath(os.path.dirname(__file__)) sys.path.append(f"{bindir}/../../seq2seq") from run_translation import main # noqa set_seed(42) MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1" MBART_TINY = "sshleifer/tiny-mbart" # a candidate for testing_utils def require_fairscale(test_case): """ Decorator marking a test that requires fairscale """ if not is_fairscale_available(): return unittest.skip("test requires fairscale")(test_case) else: return test_case # a candidate for testing_utils def require_apex(test_case): """ Decorator marking a test that requires apex """ if not is_apex_available(): return unittest.skip("test requires apex")(test_case) else: return test_case class TestTrainerExt(TestCasePlus): def run_seq2seq_quick(self, distributed=False, extra_args_str=None, predict_with_generate=True): output_dir = self.run_trainer( eval_steps=1, max_len=12, model_name=MBART_TINY, num_train_epochs=1, distributed=distributed, extra_args_str=extra_args_str, predict_with_generate=predict_with_generate, ) logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history eval_metrics = [log for log in logs if "eval_loss" in log.keys()] first_step_stats = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats last_step_stats = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"], float) assert not math.isnan(float(last_step_stats["eval_loss"])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def test_run_seq2seq_no_dist(self): self.run_seq2seq_quick() # verify that the trainer can handle non-distributed with n_gpu > 1 @require_torch_multi_gpu def test_run_seq2seq_dp(self): self.run_seq2seq_quick(distributed=False) # verify that the trainer can handle distributed with n_gpu > 1 @require_torch_multi_gpu def test_run_seq2seq_ddp(self): self.run_seq2seq_quick(distributed=True) # test --sharded_ddp w/o --fp16 @require_torch_multi_gpu @require_fairscale def test_run_seq2seq_sharded_ddp(self): self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp simple") # test --sharded_ddp w/ --fp16 @require_torch_multi_gpu @require_fairscale def test_run_seq2seq_sharded_ddp_fp16(self): self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp simple --fp16") # test --sharded_ddp zero_dp_2 w/o --fp16 @require_torch_multi_gpu @require_fairscale def test_run_seq2seq_fully_sharded_ddp(self): self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp zero_dp_2", predict_with_generate=False) # test --sharded_ddp zero_dp_2 w/ --fp16 @require_torch_multi_gpu @require_fairscale def test_run_seq2seq_fully_sharded_ddp_fp16(self): self.run_seq2seq_quick( distributed=True, extra_args_str="--sharded_ddp zero_dp_2 --fp16", predict_with_generate=False ) @require_apex @require_torch_gpu def test_run_seq2seq_apex(self): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex") # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex") @slow def test_run_seq2seq_slow(self): output_dir = self.run_trainer( eval_steps=2, max_len=128, model_name=MARIAN_MODEL, learning_rate=3e-4, num_train_epochs=10, distributed=False, ) # Check metrics logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history eval_metrics = [log for log in logs if "eval_loss" in log.keys()] first_step_stats = eval_metrics[0] last_step_stats = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"], float) # test if do_predict saves generations and metrics contents = os.listdir(output_dir) contents = {os.path.basename(p) for p in contents} assert "test_generations.txt" in contents assert "test_results.json" in contents def run_trainer( self, eval_steps: int, max_len: int, model_name: str, num_train_epochs: int, learning_rate: float = 3e-3, distributed: bool = False, extra_args_str: str = None, predict_with_generate: bool = True, ): data_dir = self.examples_dir / "test_data/wmt_en_ro" output_dir = self.get_auto_remove_tmp_dir() args = f""" --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_val_samples 8 --max_source_length {max_len} --max_target_length {max_len} --val_max_target_length {max_len} --do_train --do_eval --do_predict --num_train_epochs {str(num_train_epochs)} --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --evaluation_strategy steps --logging_steps 0 --eval_steps {str(eval_steps)} --save_steps {str(eval_steps)} --group_by_length --label_smoothing_factor 0.1 --adafactor --target_lang ro_RO --source_lang en_XX """ if predict_with_generate: args += "--predict_with_generate" args = args.split() if extra_args_str is not None: args.extend(extra_args_str.split()) if distributed: n_gpu = get_gpu_count() distributed_args = f""" -m torch.distributed.launch --nproc_per_node={n_gpu} {self.examples_dir_str}/seq2seq/run_translation.py """.split() cmd = [sys.executable] + distributed_args + args execute_subprocess_async(cmd, env=self.get_env()) else: testargs = ["run_translation.py"] + args with patch.object(sys, "argv", testargs): main() return output_dir
AdaMix/examples/tests/trainer/test_trainer_ext.py/0
{ "file_path": "AdaMix/examples/tests/trainer/test_trainer_ext.py", "repo_id": "AdaMix", "token_count": 3774 }
42
<jupyter_start><jupyter_text>**How to benchmark models with Transformers**With ever-larger language models, it is no longer enough to just compare models on their performance on a specific task. One should always be aware of the computational cost that is attached to a specific model. For a given computation environment (*e.g.* type of GPU), the computational cost of training a model or deploying it in inference usually depends only on **the required memory** and **the required time**. Being able to accurately benchmark language models on both *speed* and *required memory* is therefore very important.HuggingFace's Transformer library allows users to benchmark models for both TensorFlow 2 and PyTorch using the `PyTorchBenchmark` and `TensorFlowBenchmark` classes.The currently available features for `PyTorchBenchmark` are summarized in the following table.| | CPU | CPU + torchscript | GPU | GPU + torchscript | GPU + FP16 | TPU |:-- | :--- | :--- | :--- | :--- | :--- | :--- |**Speed - Inference** | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |**Memory - Inference** | ✔ | ✔ | ✔ | ✔ | ✔ | ✘ |**Speed - Train** | ✔ | ✘ | ✔ | ✘ | ✔ | ✔ |**Memory - Train** | ✔ | ✘ | ✔ | ✘ | ✔ | ✘ |* *FP16* stands for mixed-precision meaning that computations within the model are done using a mixture of 16-bit and 32-bit floating-point operations, see [here](https://pytorch.org/docs/stable/nn.htmltorch.nn.Module.half) for more detail.* *torchscript* corresponds to PyTorch's torchscript format, see [here](https://pytorch.org/docs/stable/jit.html).The currently available features for `TensorFlowBenchmark` are summarized in the following table.| | CPU | CPU + eager execution | GPU | GPU + eager execution | GPU + XLA | GPU + FP16 | TPU |:-- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |**Speed - Inference** | ✔ | ✔ | ✔ | ✔ | ✔ | ✘ | ✔ |**Memory - Inference** | ✔ | ✔ | ✔ | ✔ | ✔ | ✘ | ✘ |**Speed - Train** | ✔ | ✘ | ✔ | ✘ | ✘ | ✘ | ✔ |**Memory - Train** | ✔ | ✘ | ✔ | ✘ | ✘ | ✘ | ✘ |* *eager execution* means that the function is run in the eager execution environment of TensorFlow 2, see [here](https://www.tensorflow.org/guide/eager).* *XLA* stands for TensorFlow's Accelerated Linear Algebra (XLA) compiler, see [here](https://www.tensorflow.org/xla)* *FP16* stands for TensorFlow's mixed-precision package and is analogous to PyTorch's FP16 feature, see [here](https://www.tensorflow.org/guide/mixed_precision).***Note***: Benchmark training in TensorFlow is not included in v3.0.2, but available in master.This notebook will show the user how to use `PyTorchBenchmark` and `TensorFlowBenchmark` for two different scenarios:1. **Inference - Pre-trained Model Comparison** - *A user wants to implement a pre-trained model in production for inference. She wants to compare different models on speed and required memory.*2. **Training - Configuration Comparison** - *A user wants to train a specific model and searches that for himself most effective model configuration.* **Inference - Pre-trained Model Comparison**Let's say we want to employ a question-answering model in production. The questions are expected to be of the same format as in **SQuAD v2**, so that the model to choose should have been fine-tuned on this dataset. HuggingFace's new dataset [webpage](https://huggingface.co/datasets) lets the user see all relevant information about a dataset and even links the models that have been fine-tuned on this specific dataset. Let's check out the dataset webpage of SQuAD v2 [here](https://huggingface.co/datasets/squad_v2).Nice, we can see that there are 7 available models.Let's assume that we have decided to restrict our pipeline to "encoder-only" models so that we are left with:- `a-ware/roberta-large-squad-classification`- `a-ware/xlmroberta-squadv2`- `aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2`- `deepset/roberta-base-squad2`- `mrm8488/longformer-base-4096-finetuned-squadv2`Great! In this notebook, we will now benchmark these models on both peak memory consumption and inference time to decide which model should be employed in production.***Note***: None of the models has been tested on performance so that we will just assume that all models perform more or less equally well. The purpose of this notebook is not to find the best model for SQuAD v2, but to showcase how Transformers benchmarking tools can be leveraged.First, we assume to be limited by the available GPU on this google colab, which in this copy amounts to 16 GB of RAM. In a first step, we will check which models are the most memory-efficient ones.Let's make sure 100% of the GPU is available to us in this notebook.<jupyter_code>#@title Check available memory of GPU # Check that we are using 100% of GPU # memory footprint support libraries/code !ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi !pip -q install gputil !pip -q install psutil !pip -q install humanize import psutil import humanize import os import GPUtil as GPU GPUs = GPU.getGPUs() # XXX: only one GPU on Colab and isn’t guaranteed gpu = GPUs[0] def printm(): process = psutil.Process(os.getpid()) print("Gen RAM Free: " + humanize.naturalsize( psutil.virtual_memory().available ), " | Proc size: " + humanize.naturalsize( process.memory_info().rss)) print("GPU RAM Free: {0:.0f}MB | Used: {1:.0f}MB | Util {2:3.0f}% | Total {3:.0f}MB".format(gpu.memoryFree, gpu.memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) printm() # If GPU RAM Util > 0% => crash notebook on purpose # !kill -9 -1<jupyter_output><empty_output><jupyter_text>Looks good! Now we import `transformers` and download the scripts `run_benchmark.py`, `run_benchmark_tf.py`, and `plot_csv_file.py` which can be found under `transformers/examples/benchmarking`.`run_benchmark_tf.py` and `run_benchmark.py` are very simple scripts leveraging the `PyTorchBenchmark` and `TensorFlowBenchmark` classes, respectively.<jupyter_code># install transformes !pip uninstall -y transformers !pip install -q git+https://github.com/huggingface/transformers.git # install py3nvml to track GPU memory usage !pip install -q py3nvml !rm -f run_benchmark.py !rm -f run_benchmark_tf.py !rm -f plot_csv_file.py !wget https://raw.githubusercontent.com/huggingface/transformers/master/examples/benchmarking/run_benchmark.py -qq !wget https://raw.githubusercontent.com/huggingface/transformers/master/examples/benchmarking/run_benchmark_tf.py -qq !wget https://raw.githubusercontent.com/huggingface/transformers/master/examples/benchmarking/plot_csv_file.py -qq # import pandas to pretty print csv files import pandas as pd<jupyter_output><empty_output><jupyter_text>Information about the input arguments to the *run_benchmark* scripts can be accessed by running `!python run_benchmark.py --help` for PyTorch and `!python run_benchmark_tf.py --help` for TensorFlow.<jupyter_code>!python run_benchmark.py --help<jupyter_output>2020-06-26 11:51:47.129203: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1 usage: run_benchmark.py [-h] [--models MODELS [MODELS ...]] [--batch_sizes BATCH_SIZES [BATCH_SIZES ...]] [--sequence_lengths SEQUENCE_LENGTHS [SEQUENCE_LENGTHS ...]] [--no_inference] [--no_cuda] [--no_tpu] [--fp16] [--training] [--verbose] [--no_speed] [--no_memory] [--trace_memory_line_by_line] [--save_to_csv] [--log_print] [--no_env_print] [--no_multi_process] [--with_lm_head] [--inference_time_csv_file INFERENCE_TIME_CSV_FILE] [--inference_memory_csv_file INFERENCE_MEMORY_CSV_FILE] [--train_time_csv_file TRAIN_TIME_CSV_FILE] [--train_memory_csv_file TRAIN_MEMORY_CSV_FILE] [...]<jupyter_text>Great, we are ready to run our first memory benchmark. By default, both the *required memory* and *time* for inference is enabled. To disable benchmarking on *time*, we add `--no_speed`.The only required parameter is `--models` which expects a list of model identifiers as defined on the [model hub](https://huggingface.co/models). Here we add the five model identifiers listed above.Next, we define the `sequence_lengths` and `batch_sizes` for which the peak memory is calculated.Finally, because the results should be stored in a *CSV* file, the option `--save_to_csv` is added and the path to save the results is added via the `--inference_memory_csv_file` argument. Whenever a benchmark is run, the environment information, *e.g.* GPU type, library versions, ... can be saved using the `--env_info_csv_file` argument.<jupyter_code># create plots folder in content !mkdir -p plots_pt # run benchmark !python run_benchmark.py --no_speed --save_to_csv \ --models a-ware/roberta-large-squad-classification \ a-ware/xlmroberta-squadv2 \ aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2 \ deepset/roberta-base-squad2 \ mrm8488/longformer-base-4096-finetuned-squadv2 \ --sequence_lengths 32 128 512 1024 \ --batch_sizes 32 \ --inference_memory_csv_file plots_pt/required_memory.csv \ --env_info_csv_file plots_pt/env.csv >/dev/null 2>&1 # redirect all prints<jupyter_output><empty_output><jupyter_text>Under `plots_pt`, two files are now created: `required_memory.csv` and `env.csv`. Let's check out `required_memory.csv` first.<jupyter_code>df = pd.read_csv('plots_pt/required_memory.csv') df<jupyter_output><empty_output><jupyter_text>Each row in the csv file lists one data point showing the *peak memory* usage for a given model, batch_size and sequence_length. As can be seen, some values have a *NaN* result meaning that an *Out-of-Memory* Error occurred. To better visualize the results, one can make use of the `plot_csv_file.py` script.Before, let's take a look at the information about our computation environment.<jupyter_code>df = pd.read_csv('plots_pt/env.csv') df<jupyter_output><empty_output><jupyter_text>We can see all relevant information here: the PyTorch version, the Python version, the system, the type of GPU, and available RAM on the GPU, etc...**Note**: A different GPU is likely assigned to a copy of this notebook, so that all of the following results may be different. It is very important to always include the environment information when benchmarking your models for both reproducibility and transparency to other users.Alright, let's plot the results.<jupyter_code># plot graph and save as image !python plot_csv_file.py --csv_file plots_pt/required_memory.csv --figure_png_file=plots_pt/required_memory_plot.png --no_log_scale --short_model_names a-ware-roberta a-aware-xlm aodiniz-bert deepset-roberta mrm8488-long # show image from IPython.display import Image Image('plots_pt/required_memory_plot.png')<jupyter_output>2020-06-26 11:56:39.671579: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1<jupyter_text>At this point, it is important to understand how the peak memory is measured. The benchmarking tools measure the peak memory usage the same way the command `nvidia-smi` does - see [here](https://developer.nvidia.com/nvidia-system-management-interface) for more information. In short, all memory that is allocated for a given *model identifier*, *batch size* and *sequence length* is measured in a separate process. This way it can be ensured that there is no previously unreleased memory falsely included in the measurement. One should also note that the measured memory even includes the memory allocated by the CUDA driver to load PyTorch and TensorFlow and is, therefore, higher than library-specific memory measurement function, *e.g.* this one for [PyTorch](https://pytorch.org/docs/stable/cuda.htmltorch.cuda.max_memory_allocated).Alright, let's analyze the results. It can be noted that the models `aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2` and `deepset/roberta-base-squad2` require significantly less memory than the other three models. Besides `mrm8488/longformer-base-4096-finetuned-squadv2` all models more or less follow the same memory consumption pattern with `aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2` seemingly being able to better scale to larger sequence lengths. `mrm8488/longformer-base-4096-finetuned-squadv2` is a *Longformer* model, which makes use of *LocalAttention* (check [this](https://huggingface.co/blog/reformer) blog post to learn more about local attention) so that the model scales much better to longer input sequences.For the sake of this notebook, we assume that the longest required input will be less than 512 tokens so that we settle on the models `aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2` and `deepset/roberta-base-squad2`. To better understand how many API requests of our *question-answering* pipeline can be run in parallel, we are interested in finding out how many batches the two models run out of memory.<jupyter_code>!python run_benchmark.py --no_speed --save_to_csv \ --inference_memory_csv_file plots_pt/required_memory_2.csv \ --env_info_csv_file plots_pt/env.csv \ --models aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2 \ deepset/roberta-base-squad2 \ --sequence_lengths 512 \ --batch_sizes 64 128 256 512\ --no_env_print<jupyter_output>2020-06-26 11:56:44.781155: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1 1 / 2 2 / 2 Doesn't fit on GPU. CUDA out of memory. Tried to allocate 6.00 GiB (GPU 0; 15.90 GiB total capacity; 9.47 GiB already allocated; 5.60 GiB free; 9.52 GiB reserved in total by PyTorch) ==================== INFERENCE - MEMORY - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- aodiniz/bert_uncased_L-10_H-51 64 512 2455 aodiniz/bert_uncased_L-10_H-51 128 512 3929 aodiniz/bert_uncased_L-10_H-51 256 512 6875 aodiniz/bert_uncased_L-10_H-51 512 512 12783 deepset/roberta-base-squad[...]<jupyter_text>Let's plot the results again, this time changing the x-axis to `batch_size` however.<jupyter_code># plot graph and save as image !python plot_csv_file.py --csv_file plots_pt/required_memory_2.csv \ --figure_png_file=plots_pt/required_memory_plot_2.png \ --no_log_scale \ --short_model_names aodiniz-bert deepset-roberta \ --plot_along_batch # show image from IPython.display import Image Image('plots_pt/required_memory_plot_2.png')<jupyter_output>2020-06-26 11:57:51.876810: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1<jupyter_text>Interesting! `aodiniz/bert_uncased_L-10_H-51` clearly scales better for higher batch sizes and does not even run out of memory for 512 tokens.For comparison, let's run the same benchmarking on TensorFlow.<jupyter_code># create plots folder in content !mkdir -p plots_tf !TF_CPP_MIN_LOG_LEVEL=3 python run_benchmark_tf.py --no_speed --save_to_csv \ --inference_memory_csv_file plots_tf/required_memory_2.csv \ --env_info_csv_file plots_tf/env.csv \ --models aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2 \ deepset/roberta-base-squad2 \ --sequence_lengths 512 \ --batch_sizes 64 128 256 512 \ --no_env_print \<jupyter_output>1 / 2 Doesn't fit on GPU. OOM when allocating tensor with shape[512,8,512,512] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [[node tf_bert_model/bert/encoder/layer_._0/attention/self/Softmax (defined at /usr/local/lib/python3.6/dist-packages/transformers/modeling_tf_bert.py:267) ]] Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. [Op:__inference_run_in_graph_mode_4243] Errors may have originated from an input operation. Input Source operations connected to node tf_bert_model/bert/encoder/layer_._0/attention/self/Softmax: tf_bert_model/bert/encoder/layer_._0/attention/self/add (defined at /usr/local/lib/python3.6/dist-packages/transformers/modeling_tf_bert.py:264) Function call stack: run_in_graph_mode 2 / 2 Doesn't fit on GPU. OOM when allocating tensor with shape[512,12,512,512] and type float on /job:localhost/replica:0/task:0/devic[...]<jupyter_text>Let's see the same plot for TensorFlow.<jupyter_code># plot graph and save as image !python plot_csv_file.py --csv_file plots_tf/required_memory_2.csv --figure_png_file=plots_tf/required_memory_plot_2.png --no_log_scale --short_model_names aodiniz-bert deepset-roberta --plot_along_batch # show image from IPython.display import Image Image('plots_tf/required_memory_plot_2.png')<jupyter_output>2020-06-26 11:59:28.790462: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1<jupyter_text>The model implemented in TensorFlow requires more memory than the one implemented in PyTorch. Let's say for whatever reason we have decided to use TensorFlow instead of PyTorch. The next step is to measure the inference time of these two models. Instead of disabling time measurement with `--no_speed`, we will now disable memory measurement with `--no_memory`.<jupyter_code>!TF_CPP_MIN_LOG_LEVEL=3 python run_benchmark_tf.py --no_memory --save_to_csv \ --inference_time_csv_file plots_tf/time_2.csv \ --env_info_csv_file plots_tf/env.csv \ --models aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2 \ deepset/roberta-base-squad2 \ --sequence_lengths 8 32 128 512 \ --batch_sizes 256 \ --no_env_print \ # plot graph and save as image !python plot_csv_file.py --csv_file plots_tf/time_2.csv --figure_png_file=plots_tf/time_plot_2.png --no_log_scale --short_model_names aodiniz-bert deepset-roberta --is_time # show image from IPython.display import Image Image('plots_tf/time_plot_2.png')<jupyter_output>2020-06-26 12:04:58.002654: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1<jupyter_text>Ok, this took some time... time measurements take much longer than memory measurements because the forward pass is called multiple times for stable results. Timing measurements leverage Python's [timeit module](https://docs.python.org/2/library/timeit.htmltimeit.Timer.repeat) and run 10 times the value given to the `--repeat` argument (defaults to 3), so in our case 30 times.Let's focus on the resulting plot. It becomes obvious that `aodiniz/bert_uncased_L-10_H-51` is around twice as fast as `deepset/roberta-base-squad2`. Given that the model is also more memory efficient and assuming that the model performs reasonably well, for the sake of this notebook we will settle on `aodiniz/bert_uncased_L-10_H-51`. Our model should be able to process input sequences of up to 512 tokens. Latency time of around 2 seconds might be too long though, so let's compare the time for different batch sizes and using TensorFlows XLA package for more speed.<jupyter_code>!TF_CPP_MIN_LOG_LEVEL=3 python run_benchmark_tf.py --no_memory --save_to_csv \ --inference_time_csv_file plots_tf/time_xla_1.csv \ --env_info_csv_file plots_tf/env.csv \ --models aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2 \ --sequence_lengths 512 \ --batch_sizes 8 64 256 \ --no_env_print \ --use_xla<jupyter_output>1 / 1 ==================== INFERENCE - SPEED - RESULT ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Time in s -------------------------------------------------------------------------------- aodiniz/bert_uncased_L-10_H-51 8 512 0.056 aodiniz/bert_uncased_L-10_H-51 64 512 0.402 aodiniz/bert_uncased_L-10_H-51 256 512 1.591 -------------------------------------------------------------------------------- Saving results to csv.<jupyter_text>First of all, it can be noted that XLA reduces latency time by a factor of ca. 1.3 (which is more than observed for other models by TensorFlow [here](https://www.tensorflow.org/xla)). A batch size of 64 looks like a good choice. More or less half a second for the forward pass is good enough.Cool, now it should be straightforward to benchmark your favorite models. All the inference time measurements can also be done using the `run_benchmark.py` script for PyTorch. **Training - Configuration Comparison**Next, we will look at how a model can be benchmarked on different configurations. This is especially helpful when one wants to decide how to most efficiently choose the model's configuration parameters for training.In the following different configurations of a *Bart MNLI* model will be compared to each other using `PyTorchBenchmark`. Training in `PyTorchBenchmark` is defined by running one forward pass to compute the loss: `loss = model(input_ids, labels=labels)[0]` and one backward pass to compute the gradients `loss.backward()`.Let's see how to most efficiently train a Bart MNLI model from scratch.<jupyter_code># Imports from transformers import BartConfig, PyTorchBenchmark, PyTorchBenchmarkArguments<jupyter_output><empty_output><jupyter_text>For the sake of the notebook, we assume that we are looking for a more efficient version of Facebook's `bart-large-mnli` model.Let's load its configuration and check out the important parameters.<jupyter_code>BartConfig.from_pretrained("facebook/bart-large-mnli").to_diff_dict()<jupyter_output><empty_output><jupyter_text>Alright! The important configuration parameters are usually the number of layers `config.encoder_num_layers` and `config.decoder_num_layers`, the model's hidden size: `config.d_model`, the number of attention heads `config.encoder_attention_heads` and `config.decoder_attention_heads` and the vocabulary size `config.vocab_size`.Let's create 4 configurations different from the baseline and see how they compare in terms of peak memory consumption.<jupyter_code>config_baseline = BartConfig.from_pretrained("facebook/bart-large-mnli") config_768_hidden = BartConfig.from_pretrained("facebook/bart-large-mnli", d_model=768) config_8_heads = BartConfig.from_pretrained("facebook/bart-large-mnli", decoder_attention_heads=8, encoder_attention_heads=8) config_10000_vocab = BartConfig.from_pretrained("facebook/bart-large-mnli", vocab_size=10000) config_8_layers = BartConfig.from_pretrained("facebook/bart-large-mnli", encoder_layers=8, decoder_layers=8)<jupyter_output><empty_output><jupyter_text>Cool, now we can benchmark these configs against the baseline config. This time, instead of using the benchmarking script we will directly use the `PyTorchBenchmark` class. The class expects the argument `args` which has to be of type `PyTorchBenchmarkArguments` and optionally a list of configs.First, we define the `args` and give the different configurations appropriate model names. The model names must be in the same order as the configs that are directly passed to `PyTorchBenchMark`.If no `configs` are provided to `PyTorchBenchmark`, it is assumed that the model names `["bart-base", "bart-768-hid", "bart-8-head", "bart-10000-voc", "bart-8-lay"]` correspond to official model identifiers and their corresponding configs are loaded as was shown in the previous section.It is assumed that the model will be trained on half-precision, so we add the option `fp16=True` for the following benchmarks.<jupyter_code># define args args = PyTorchBenchmarkArguments(models=["bart-base", "bart-768-hid", "bart-8-head", "bart-10000-voc", "bart-8-lay"], no_speed=True, no_inference=True, training=True, train_memory_csv_file="plots_pt/training_mem_fp16.csv", save_to_csv=True, env_info_csv_file="plots_pt/env.csv", sequence_lengths=[64, 128, 256, 512], batch_sizes=[8], no_env_print=True, fp16=True) # let's train on fp16 # create benchmark benchmark = PyTorchBenchmark(configs=[config_baseline, config_768_hidden, config_8_heads, config_10000_vocab, config_8_layers], args=args) # run benchmark result = benchmark.run()<jupyter_output>1 / 5 2 / 5 3 / 5 4 / 5 5 / 5 ==================== TRAIN - MEMORY - RESULTS ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Memory in MB -------------------------------------------------------------------------------- bart-base 8 64 2905 bart-base 8 128 3199 bart-base 8 256 5401 bart-base 8 512 11929 bart-768-hid 8 64 2441 bart-768-hid 8 128 2891 bart-768-hid 8 256 4963 bart-768-hid 8 512 10865 bart-8-head [...]<jupyter_text>Nice, let's plot the results again.<jupyter_code># plot graph and save as image !python plot_csv_file.py --csv_file plots_pt/training_mem_fp16.csv --figure_png_file=plots_pt/training_mem_fp16.png --no_log_scale # show image from IPython.display import Image Image('plots_pt/training_mem_fp16.png')<jupyter_output>2020-06-26 12:11:47.558303: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1<jupyter_text>As expected the model of the baseline config requires the most memory. It is interesting to see that the "bart-8-head" model initially requires more memory than `bart-10000-voc`, but then clearly outperforms `bart-10000-voc` at an input length of 512. Less surprising is that the "bart-8-lay" is by far the most memory-efficient model when reminding oneself that during the forward pass every layer has to store its activations for the backward pass.Alright, given the data above, let's say we narrow our candidates down to only the "bart-8-head" and "bart-8-lay" models. Let's compare these models again on training time.<jupyter_code># define args args = PyTorchBenchmarkArguments(models=["bart-8-head", "bart-8-lay"], no_inference=True, training=True, no_memory=True, train_time_csv_file="plots_pt/training_speed_fp16.csv", save_to_csv=True, env_info_csv_file="plots_pt/env.csv", sequence_lengths=[32, 128, 512], batch_sizes=[8], no_env_print=True, repeat=1, # to make speed measurement faster but less accurate no_multi_process=True, # google colab has problems with multi processing fp16=True ) # create benchmark benchmark = PyTorchBenchmark(configs=[config_8_heads, config_8_layers], args=args) # run benchmark result = benchmark.run()<jupyter_output>1 / 2 2 / 2 ==================== TRAIN - SPEED - RESULTS ==================== -------------------------------------------------------------------------------- Model Name Batch Size Seq Length Time in s -------------------------------------------------------------------------------- bart-8-head 8 32 0.127 bart-8-head 8 128 0.398 bart-8-head 8 512 1.567 bart-8-lay 8 32 0.088 bart-8-lay 8 128 0.284 bart-8-lay 8 512 1.153 -------------------------------------------------------------------------------- Saving results to csv.<jupyter_text>The option `no_multi_process` disabled multi-processing here. This option should in general only be used for testing or debugging. Enabling multi-processing is crucial to ensure accurate memory consumption measurement, but is less important when only measuring speed. The main reason it is disabled here is that google colab sometimes raises "CUDA initialization" due to the notebook's environment. This problem does not arise when running benchmarks outside of a notebook.Alright, let's plot the last speed results as well.<jupyter_code># plot graph and save as image !python plot_csv_file.py --csv_file plots_pt/training_speed_fp16.csv --figure_png_file=plots_pt/training_speed_fp16.png --no_log_scale --is_time # show image from IPython.display import Image Image('plots_pt/training_speed_fp16.png')<jupyter_output>2020-06-26 12:13:17.849561: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
AdaMix/notebooks/05-benchmark.ipynb/0
{ "file_path": "AdaMix/notebooks/05-benchmark.ipynb", "repo_id": "AdaMix", "token_count": 11981 }
43
# this is the process of uploading the updated models to s3. As I can't upload them directly to the correct orgs, this script shows how this is done # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. 1. upload updated models to my account transformers-cli upload -y wmt19-ru-en transformers-cli upload -y wmt19-en-ru transformers-cli upload -y wmt19-de-en transformers-cli upload -y wmt19-en-de transformers-cli upload -y wmt19-de-en-6-6-base transformers-cli upload -y wmt19-de-en-6-6-big transformers-cli upload -y wmt16-en-de-dist-12-1 transformers-cli upload -y wmt16-en-de-dist-6-1 transformers-cli upload -y wmt16-en-de-12-1 2. ask someone to move them to: * to facebook: "wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en" * to allenai: "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big" export b="s3://models.huggingface.co/bert" stas_to_fb () { src=$1 shift aws s3 sync $b/stas/$src $b/facebook/$src $@ } stas_to_allenai () { src=$1 shift aws s3 sync $b/stas/$src $b/allenai/$src $@ } stas_to_fb wmt19-en-ru stas_to_fb wmt19-ru-en stas_to_fb wmt19-en-de stas_to_fb wmt19-de-en stas_to_allenai wmt16-en-de-dist-12-1 stas_to_allenai wmt16-en-de-dist-6-1 stas_to_allenai wmt16-en-de-6-1 stas_to_allenai wmt16-en-de-12-1 stas_to_allenai wmt19-de-en-6-6-base stas_to_allenai wmt19-de-en-6-6-big 3. and then remove all these model files from my account transformers-cli s3 rm wmt16-en-de-12-1/config.json transformers-cli s3 rm wmt16-en-de-12-1/merges.txt transformers-cli s3 rm wmt16-en-de-12-1/pytorch_model.bin transformers-cli s3 rm wmt16-en-de-12-1/tokenizer_config.json transformers-cli s3 rm wmt16-en-de-12-1/vocab-src.json transformers-cli s3 rm wmt16-en-de-12-1/vocab-tgt.json transformers-cli s3 rm wmt16-en-de-dist-12-1/config.json transformers-cli s3 rm wmt16-en-de-dist-12-1/merges.txt transformers-cli s3 rm wmt16-en-de-dist-12-1/pytorch_model.bin transformers-cli s3 rm wmt16-en-de-dist-12-1/tokenizer_config.json transformers-cli s3 rm wmt16-en-de-dist-12-1/vocab-src.json transformers-cli s3 rm wmt16-en-de-dist-12-1/vocab-tgt.json transformers-cli s3 rm wmt16-en-de-dist-6-1/config.json transformers-cli s3 rm wmt16-en-de-dist-6-1/merges.txt transformers-cli s3 rm wmt16-en-de-dist-6-1/pytorch_model.bin transformers-cli s3 rm wmt16-en-de-dist-6-1/tokenizer_config.json transformers-cli s3 rm wmt16-en-de-dist-6-1/vocab-src.json transformers-cli s3 rm wmt16-en-de-dist-6-1/vocab-tgt.json transformers-cli s3 rm wmt19-de-en-6-6-base/config.json transformers-cli s3 rm wmt19-de-en-6-6-base/merges.txt transformers-cli s3 rm wmt19-de-en-6-6-base/pytorch_model.bin transformers-cli s3 rm wmt19-de-en-6-6-base/tokenizer_config.json transformers-cli s3 rm wmt19-de-en-6-6-base/vocab-src.json transformers-cli s3 rm wmt19-de-en-6-6-base/vocab-tgt.json transformers-cli s3 rm wmt19-de-en-6-6-big/config.json transformers-cli s3 rm wmt19-de-en-6-6-big/merges.txt transformers-cli s3 rm wmt19-de-en-6-6-big/pytorch_model.bin transformers-cli s3 rm wmt19-de-en-6-6-big/tokenizer_config.json transformers-cli s3 rm wmt19-de-en-6-6-big/vocab-src.json transformers-cli s3 rm wmt19-de-en-6-6-big/vocab-tgt.json transformers-cli s3 rm wmt19-de-en/config.json transformers-cli s3 rm wmt19-de-en/merges.txt transformers-cli s3 rm wmt19-de-en/pytorch_model.bin transformers-cli s3 rm wmt19-de-en/tokenizer_config.json transformers-cli s3 rm wmt19-de-en/vocab-src.json transformers-cli s3 rm wmt19-de-en/vocab-tgt.json transformers-cli s3 rm wmt19-en-de/config.json transformers-cli s3 rm wmt19-en-de/merges.txt transformers-cli s3 rm wmt19-en-de/pytorch_model.bin transformers-cli s3 rm wmt19-en-de/tokenizer_config.json transformers-cli s3 rm wmt19-en-de/vocab-src.json transformers-cli s3 rm wmt19-en-de/vocab-tgt.json transformers-cli s3 rm wmt19-en-ru/config.json transformers-cli s3 rm wmt19-en-ru/merges.txt transformers-cli s3 rm wmt19-en-ru/pytorch_model.bin transformers-cli s3 rm wmt19-en-ru/tokenizer_config.json transformers-cli s3 rm wmt19-en-ru/vocab-src.json transformers-cli s3 rm wmt19-en-ru/vocab-tgt.json transformers-cli s3 rm wmt19-ru-en/config.json transformers-cli s3 rm wmt19-ru-en/merges.txt transformers-cli s3 rm wmt19-ru-en/pytorch_model.bin transformers-cli s3 rm wmt19-ru-en/tokenizer_config.json transformers-cli s3 rm wmt19-ru-en/vocab-src.json transformers-cli s3 rm wmt19-ru-en/vocab-tgt.json
AdaMix/scripts/fsmt/s3-move.sh/0
{ "file_path": "AdaMix/scripts/fsmt/s3-move.sh", "repo_id": "AdaMix", "token_count": 2133 }
44
# This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp # Copyright 2020 The HuggingFace Team and the AllenNLP authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for working with the local dataset cache. """ import copy import csv import linecache import os import platform import sys from abc import ABC, abstractmethod from collections import defaultdict, namedtuple from datetime import datetime from multiprocessing import Pipe, Process, Queue from multiprocessing.connection import Connection from typing import Callable, Iterable, List, NamedTuple, Optional, Union from .. import AutoConfig, PretrainedConfig from .. import __version__ as version from ..file_utils import is_psutil_available, is_py3nvml_available, is_tf_available, is_torch_available from ..utils import logging from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): from torch.cuda import empty_cache as torch_empty_cache if is_tf_available(): from tensorflow.python.eager import context as tf_context if is_psutil_available(): import psutil if is_py3nvml_available(): import py3nvml.py3nvml as nvml if platform.system() == "Windows": from signal import CTRL_C_EVENT as SIGKILL else: from signal import SIGKILL logger = logging.get_logger(__name__) # pylint: disable=invalid-name _is_memory_tracing_enabled = False BenchmarkOutput = namedtuple( "BenchmarkOutput", [ "time_inference_result", "memory_inference_result", "time_train_result", "memory_train_result", "inference_summary", "train_summary", ], ) def separate_process_wrapper_fn(func: Callable[[], None], do_multi_processing: bool) -> Callable[[], None]: """ This function wraps another function into its own separated process. In order to ensure accurate memory measurements it is important that the function is executed in a separate process Args: - `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process - `do_multi_processing`: (`bool`) Whether to run function on separate process or not """ def multi_process_func(*args, **kwargs): # run function in an individual # process to get correct memory def wrapper_func(queue: Queue, *args): try: result = func(*args) except Exception as e: logger.error(e) print(e) result = "N/A" queue.put(result) queue = Queue() p = Process(target=wrapper_func, args=[queue] + list(args)) p.start() result = queue.get() p.join() return result if do_multi_processing: logger.info(f"Function {func} is executed in its own process...") return multi_process_func else: return func def is_memory_tracing_enabled(): global _is_memory_tracing_enabled return _is_memory_tracing_enabled class Frame(NamedTuple): """ `Frame` is a NamedTuple used to gather the current frame state. `Frame` has the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script """ filename: str module: str line_number: int event: str line_text: str class UsedMemoryState(NamedTuple): """ `UsedMemoryState` are named tuples with the following fields: - 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file, location in current file) - 'cpu_memory': CPU RSS memory state *before* executing the line - 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if provided) """ frame: Frame cpu_memory: int gpu_memory: int class Memory(NamedTuple): """ `Memory` NamedTuple have a single field `bytes` and you can get a human readable str of the number of mega bytes by calling `__repr__` - `byte` (integer): number of bytes, """ bytes: int def __repr__(self) -> str: return str(bytes_to_mega_bytes(self.bytes)) class MemoryState(NamedTuple): """ `MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields: - `frame` (`Frame`): the current frame (see above) - `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple - `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple - `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple """ frame: Frame cpu: Memory gpu: Memory cpu_gpu: Memory class MemorySummary(NamedTuple): """ `MemorySummary` namedtuple otherwise with the fields: - `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by subtracting the memory after executing each line from the memory before executing said line. - `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory is released) - `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default). """ sequential: List[MemoryState] cumulative: List[MemoryState] current: List[MemoryState] total: Memory MemoryTrace = List[UsedMemoryState] def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_idx=None) -> int: """ measures peak cpu memory consumption of a given `function` running the function for at least interval seconds and at most 20 * interval seconds. This function is heavily inspired by: `memory_usage` of the package `memory_profiler`: https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239 Args: - `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure the peak memory - `interval`: (`float`, `optional`, defaults to `0.5`) interval in second for which to measure the memory usage - `device_idx`: (`int`, `optional`, defaults to `None`) device id for which to measure gpu usage Returns: - `max_memory`: (`int`) consumed memory peak in Bytes """ def get_cpu_memory(process_id: int) -> int: """ measures current cpu memory usage of a given `process_id` Args: - `process_id`: (`int`) process_id for which to measure memory Returns - `memory`: (`int`) consumed memory in Bytes """ process = psutil.Process(process_id) try: meminfo_attr = "memory_info" if hasattr(process, "memory_info") else "get_memory_info" memory = getattr(process, meminfo_attr)()[0] except psutil.AccessDenied: raise ValueError("Error with Psutil.") return memory if not is_psutil_available(): logger.warning( "Psutil not installed, we won't log CPU memory usage. " "Install Psutil (pip install psutil) to use CPU memory tracing." ) max_memory = "N/A" else: class MemoryMeasureProcess(Process): """ `MemoryMeasureProcess` inherits from `Process` and overwrites its `run()` method. Used to measure the memory usage of a process """ def __init__(self, process_id: int, child_connection: Connection, interval: float): super().__init__() self.process_id = process_id self.interval = interval self.connection = child_connection self.num_measurements = 1 self.mem_usage = get_cpu_memory(self.process_id) def run(self): self.connection.send(0) stop = False while True: self.mem_usage = max(self.mem_usage, get_cpu_memory(self.process_id)) self.num_measurements += 1 if stop: break stop = self.connection.poll(self.interval) # send results to parent pipe self.connection.send(self.mem_usage) self.connection.send(self.num_measurements) while True: # create child, parent connection child_connection, parent_connection = Pipe() # instantiate process mem_process = MemoryMeasureProcess(os.getpid(), child_connection, interval) mem_process.start() # wait until we get memory parent_connection.recv() try: # execute function function() # start parent connection parent_connection.send(0) # receive memory and num measurements max_memory = parent_connection.recv() num_measurements = parent_connection.recv() except Exception: # kill process in a clean way parent = psutil.Process(os.getpid()) for child in parent.children(recursive=True): os.kill(child.pid, SIGKILL) mem_process.join(0) raise RuntimeError("Process killed. Error in Process") # run process at least 20 * interval or until it finishes mem_process.join(20 * interval) if (num_measurements > 4) or (interval < 1e-6): break # reduce interval interval /= 10 return max_memory def start_memory_tracing( modules_to_trace: Optional[Union[str, Iterable[str]]] = None, modules_not_to_trace: Optional[Union[str, Iterable[str]]] = None, events_to_trace: str = "line", gpus_to_trace: Optional[List[int]] = None, ) -> MemoryTrace: """ Setup line-by-line tracing to record rss mem (RAM) at each line of a module or sub-module. See `./benchmark.py` for usage examples. Current memory consumption is returned using psutil and in particular is the RSS memory "Resident Set Size” (the non-swapped physical memory the process is using). See https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info Args: - `modules_to_trace`: (None, string, list/tuple of string) if None, all events are recorded if string or list of strings: only events from the listed module/sub-module will be recorded (e.g. 'fairseq' or 'transformers.models.gpt2.modeling_gpt2') - `modules_not_to_trace`: (None, string, list/tuple of string) if None, no module is avoided if string or list of strings: events from the listed module/sub-module will not be recorded (e.g. 'torch') - `events_to_trace`: string or list of string of events to be recorded (see official python doc for `sys.settrace` for the list of events) default to line - `gpus_to_trace`: (optional list, default None) list of GPUs to trace. Default to tracing all GPUs Return: - `memory_trace` is a list of `UsedMemoryState` for each event (default each line of the traced script). - `UsedMemoryState` are named tuples with the following fields: - 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file, location in current file) - 'cpu_memory': CPU RSS memory state *before* executing the line - 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if provided) `Frame` is a namedtuple used by `UsedMemoryState` to list the current frame state. `Frame` has the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script """ if is_psutil_available(): process = psutil.Process(os.getpid()) else: logger.warning( "Psutil not installed, we won't log CPU memory usage. " "Install psutil (pip install psutil) to use CPU memory tracing." ) process = None if is_py3nvml_available(): try: nvml.nvmlInit() devices = list(range(nvml.nvmlDeviceGetCount())) if gpus_to_trace is None else gpus_to_trace nvml.nvmlShutdown() except (OSError, nvml.NVMLError): logger.warning("Error while initializing communication with GPU. " "We won't perform GPU memory tracing.") log_gpu = False else: log_gpu = is_torch_available() or is_tf_available() else: logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to use GPU memory tracing." ) log_gpu = False memory_trace = [] def traceit(frame, event, args): """ Tracing method executed before running each line in a module or sub-module Record memory allocated in a list with debugging information """ global _is_memory_tracing_enabled if not _is_memory_tracing_enabled: return traceit # Filter events if events_to_trace is not None: if isinstance(events_to_trace, str) and event != events_to_trace: return traceit elif isinstance(events_to_trace, (list, tuple)) and event not in events_to_trace: return traceit if "__name__" not in frame.f_globals: return traceit # Filter modules name = frame.f_globals["__name__"] if not isinstance(name, str): return traceit else: # Filter whitelist of modules to trace if modules_to_trace is not None: if isinstance(modules_to_trace, str) and modules_to_trace not in name: return traceit elif isinstance(modules_to_trace, (list, tuple)) and all(m not in name for m in modules_to_trace): return traceit # Filter blacklist of modules not to trace if modules_not_to_trace is not None: if isinstance(modules_not_to_trace, str) and modules_not_to_trace in name: return traceit elif isinstance(modules_not_to_trace, (list, tuple)) and any(m in name for m in modules_not_to_trace): return traceit # Record current tracing state (file, location in file...) lineno = frame.f_lineno filename = frame.f_globals["__file__"] if filename.endswith(".pyc") or filename.endswith(".pyo"): filename = filename[:-1] line = linecache.getline(filename, lineno).rstrip() traced_state = Frame(filename, name, lineno, event, line) # Record current memory state (rss memory) and compute difference with previous memory state cpu_mem = 0 if process is not None: mem = process.memory_info() cpu_mem = mem.rss gpu_mem = 0 if log_gpu: # Clear GPU caches if is_torch_available(): torch_empty_cache() if is_tf_available(): tf_context.context()._clear_caches() # See https://github.com/tensorflow/tensorflow/issues/20218#issuecomment-416771802 # Sum used memory for all GPUs nvml.nvmlInit() for i in devices: handle = nvml.nvmlDeviceGetHandleByIndex(i) meminfo = nvml.nvmlDeviceGetMemoryInfo(handle) gpu_mem += meminfo.used nvml.nvmlShutdown() mem_state = UsedMemoryState(traced_state, cpu_mem, gpu_mem) memory_trace.append(mem_state) return traceit sys.settrace(traceit) global _is_memory_tracing_enabled _is_memory_tracing_enabled = True return memory_trace def stop_memory_tracing( memory_trace: Optional[MemoryTrace] = None, ignore_released_memory: bool = True ) -> Optional[MemorySummary]: """ Stop memory tracing cleanly and return a summary of the memory trace if a trace is given. Args: `memory_trace` (optional output of start_memory_tracing, default: None): memory trace to convert in summary `ignore_released_memory` (boolean, default: None): if True we only sum memory increase to compute total memory Return: - None if `memory_trace` is None - `MemorySummary` namedtuple otherwise with the fields: - `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by subtracting the memory after executing each line from the memory before executing said line. - `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory is released) - `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default). `Memory` named tuple have fields - `byte` (integer): number of bytes, - `string` (string): same as human readable string (ex: "3.5MB") `Frame` are namedtuple used to list the current frame state and have the following fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script `MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields: - `frame` (`Frame`): the current frame (see above) - `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple - `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple - `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple """ global _is_memory_tracing_enabled _is_memory_tracing_enabled = False if memory_trace is not None and len(memory_trace) > 1: memory_diff_trace = [] memory_curr_trace = [] cumulative_memory_dict = defaultdict(lambda: [0, 0, 0]) for ( (frame, cpu_mem, gpu_mem), (next_frame, next_cpu_mem, next_gpu_mem), ) in zip(memory_trace[:-1], memory_trace[1:]): cpu_mem_inc = next_cpu_mem - cpu_mem gpu_mem_inc = next_gpu_mem - gpu_mem cpu_gpu_mem_inc = cpu_mem_inc + gpu_mem_inc memory_diff_trace.append( MemoryState( frame=frame, cpu=Memory(cpu_mem_inc), gpu=Memory(gpu_mem_inc), cpu_gpu=Memory(cpu_gpu_mem_inc), ) ) memory_curr_trace.append( MemoryState( frame=frame, cpu=Memory(next_cpu_mem), gpu=Memory(next_gpu_mem), cpu_gpu=Memory(next_gpu_mem + next_cpu_mem), ) ) cumulative_memory_dict[frame][0] += cpu_mem_inc cumulative_memory_dict[frame][1] += gpu_mem_inc cumulative_memory_dict[frame][2] += cpu_gpu_mem_inc cumulative_memory = sorted( list(cumulative_memory_dict.items()), key=lambda x: x[1][2], reverse=True ) # order by the total CPU + GPU memory increase cumulative_memory = list( MemoryState( frame=frame, cpu=Memory(cpu_mem_inc), gpu=Memory(gpu_mem_inc), cpu_gpu=Memory(cpu_gpu_mem_inc), ) for frame, (cpu_mem_inc, gpu_mem_inc, cpu_gpu_mem_inc) in cumulative_memory ) memory_curr_trace = sorted(memory_curr_trace, key=lambda x: x.cpu_gpu.bytes, reverse=True) if ignore_released_memory: total_memory = sum(max(0, step_trace.cpu_gpu.bytes) for step_trace in memory_diff_trace) else: total_memory = sum(step_trace.cpu_gpu.bytes for step_trace in memory_diff_trace) total_memory = Memory(total_memory) return MemorySummary( sequential=memory_diff_trace, cumulative=cumulative_memory, current=memory_curr_trace, total=total_memory, ) return None def bytes_to_mega_bytes(memory_amount: int) -> int: """Utility to convert a number of bytes (int) into a number of mega bytes (int)""" return memory_amount >> 20 class Benchmark(ABC): """ Benchmarks is a simple but feature-complete benchmarking script to compare memory and time performance of models in Transformers. """ args: BenchmarkArguments configs: PretrainedConfig framework: str def __init__(self, args: BenchmarkArguments = None, configs: PretrainedConfig = None): self.args = args if configs is None: self.config_dict = { model_name: AutoConfig.from_pretrained(model_name) for model_name in self.args.model_names } else: self.config_dict = {model_name: config for model_name, config in zip(self.args.model_names, configs)} if self.args.memory and os.getenv("TRANSFORMERS_USE_MULTIPROCESSING") == 0: logger.warning( "Memory consumption will not be measured accurately if `args.multi_process` is set to `False.` The flag 'TRANSFORMERS_USE_MULTIPROCESSING' should only be disabled for debugging / testing." ) self._print_fn = None self._framework_version = None self._environment_info = None @property def print_fn(self): if self._print_fn is None: if self.args.log_print: def print_and_log(*args): with open(self.args.log_filename, "a") as log_file: log_file.write("".join(args) + "\n") print(*args) self._print_fn = print_and_log else: self._print_fn = print return self._print_fn @property @abstractmethod def framework_version(self): pass @abstractmethod def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: pass @abstractmethod def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: pass @abstractmethod def _inference_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: pass @abstractmethod def _train_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: pass def inference_speed(self, *args, **kwargs) -> float: return separate_process_wrapper_fn(self._inference_speed, self.args.do_multi_processing)(*args, **kwargs) def train_speed(self, *args, **kwargs) -> float: return separate_process_wrapper_fn(self._train_speed, self.args.do_multi_processing)(*args, **kwargs) def inference_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]: return separate_process_wrapper_fn(self._inference_memory, self.args.do_multi_processing)(*args, **kwargs) def train_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]: return separate_process_wrapper_fn(self._train_memory, self.args.do_multi_processing)(*args, **kwargs) def run(self): result_dict = {model_name: {} for model_name in self.args.model_names} inference_result_time = copy.deepcopy(result_dict) inference_result_memory = copy.deepcopy(result_dict) train_result_time = copy.deepcopy(result_dict) train_result_memory = copy.deepcopy(result_dict) for c, model_name in enumerate(self.args.model_names): self.print_fn(f"{c + 1} / {len(self.args.model_names)}") model_dict = { "bs": self.args.batch_sizes, "ss": self.args.sequence_lengths, "result": {i: {} for i in self.args.batch_sizes}, } inference_result_time[model_name] = copy.deepcopy(model_dict) inference_result_memory[model_name] = copy.deepcopy(model_dict) train_result_time[model_name] = copy.deepcopy(model_dict) train_result_memory[model_name] = copy.deepcopy(model_dict) inference_summary = train_summary = None for batch_size in self.args.batch_sizes: for sequence_length in self.args.sequence_lengths: if self.args.inference: if self.args.memory: memory, inference_summary = self.inference_memory(model_name, batch_size, sequence_length) inference_result_memory[model_name]["result"][batch_size][sequence_length] = memory if self.args.speed: time = self.inference_speed(model_name, batch_size, sequence_length) inference_result_time[model_name]["result"][batch_size][sequence_length] = time if self.args.training: if self.args.memory: memory, train_summary = self.train_memory(model_name, batch_size, sequence_length) train_result_memory[model_name]["result"][batch_size][sequence_length] = memory if self.args.speed: time = self.train_speed(model_name, batch_size, sequence_length) train_result_time[model_name]["result"][batch_size][sequence_length] = time if self.args.inference: if self.args.speed: self.print_fn("\n" + 20 * "=" + ("INFERENCE - SPEED - RESULT").center(40) + 20 * "=") self.print_results(inference_result_time, type_label="Time in s") self.save_to_csv(inference_result_time, self.args.inference_time_csv_file) if self.args.is_tpu: self.print_fn( "TPU was used for inference. Note that the time after compilation stabilized (after ~10 inferences model.forward(..) calls) was measured." ) if self.args.memory: self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMORY - RESULT").center(40) + 20 * "=") self.print_results(inference_result_memory, type_label="Memory in MB") self.save_to_csv(inference_result_memory, self.args.inference_memory_csv_file) if self.args.trace_memory_line_by_line: self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=") self.print_memory_trace_statistics(inference_summary) if self.args.training: if self.args.speed: self.print_fn("\n" + 20 * "=" + ("TRAIN - SPEED - RESULTS").center(40) + 20 * "=") self.print_results(train_result_time, "Time in s") self.save_to_csv(train_result_time, self.args.train_time_csv_file) if self.args.is_tpu: self.print_fn( "TPU was used for training. Note that the time after compilation stabilized (after ~10 train loss=model.forward(...) + loss.backward() calls) was measured." ) if self.args.memory: self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMORY - RESULTS").center(40) + 20 * "=") self.print_results(train_result_memory, type_label="Memory in MB") self.save_to_csv(train_result_memory, self.args.train_memory_csv_file) if self.args.trace_memory_line_by_line: self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=") self.print_memory_trace_statistics(train_summary) if self.args.env_print: self.print_fn("\n" + 20 * "=" + ("ENVIRONMENT INFORMATION").center(40) + 20 * "=") self.print_fn( "\n".join(["- {}: {}".format(prop, val) for prop, val in self.environment_info.items()]) + "\n" ) if self.args.save_to_csv: with open(self.args.env_info_csv_file, mode="w", newline="") as csv_file: writer = csv.writer(csv_file) for key, value in self.environment_info.items(): writer.writerow([key, value]) return BenchmarkOutput( inference_result_time, inference_result_memory, train_result_time, train_result_memory, inference_summary, train_summary, ) @property def environment_info(self): if self._environment_info is None: info = {} info["transformers_version"] = version info["framework"] = self.framework if self.framework == "PyTorch": info["use_torchscript"] = self.args.torchscript if self.framework == "TensorFlow": info["eager_mode"] = self.args.eager_mode info["use_xla"] = self.args.use_xla info["framework_version"] = self.framework_version info["python_version"] = platform.python_version() info["system"] = platform.system() info["cpu"] = platform.processor() info["architecture"] = platform.architecture()[0] info["date"] = datetime.date(datetime.now()) info["time"] = datetime.time(datetime.now()) info["fp16"] = self.args.fp16 info["use_multiprocessing"] = self.args.do_multi_processing info["only_pretrain_model"] = self.args.only_pretrain_model if is_psutil_available(): info["cpu_ram_mb"] = bytes_to_mega_bytes(psutil.virtual_memory().total) else: logger.warning( "Psutil not installed, we won't log available CPU memory." "Install psutil (pip install psutil) to log available CPU memory." ) info["cpu_ram_mb"] = "N/A" info["use_gpu"] = self.args.is_gpu if self.args.is_gpu: info["num_gpus"] = 1 # TODO(PVP) Currently only single GPU is supported if is_py3nvml_available(): nvml.nvmlInit() handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) info["gpu"] = nvml.nvmlDeviceGetName(handle) info["gpu_ram_mb"] = bytes_to_mega_bytes(nvml.nvmlDeviceGetMemoryInfo(handle).total) info["gpu_power_watts"] = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000 info["gpu_performance_state"] = nvml.nvmlDeviceGetPerformanceState(handle) nvml.nvmlShutdown() else: logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) info["gpu"] = "N/A" info["gpu_ram_mb"] = "N/A" info["gpu_power_watts"] = "N/A" info["gpu_performance_state"] = "N/A" info["use_tpu"] = self.args.is_tpu # TODO(PVP): See if we can add more information about TPU # see: https://github.com/pytorch/xla/issues/2180 self._environment_info = info return self._environment_info def print_results(self, result_dict, type_label): self.print_fn(80 * "-") self.print_fn( "Model Name".center(30) + "Batch Size".center(15) + "Seq Length".center(15) + type_label.center(15) ) self.print_fn(80 * "-") for model_name in self.args.model_names: for batch_size in result_dict[model_name]["bs"]: for sequence_length in result_dict[model_name]["ss"]: result = result_dict[model_name]["result"][batch_size][sequence_length] if isinstance(result, float): result = round(1000 * result) / 1000 result = "< 0.001" if result == 0.0 else str(result) else: result = str(result) self.print_fn( model_name[:30].center(30) + str(batch_size).center(15), str(sequence_length).center(15), result.center(15), ) self.print_fn(80 * "-") def print_memory_trace_statistics(self, summary: MemorySummary): self.print_fn( "\nLine by line memory consumption:\n" + "\n".join( f"{state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.sequential ) ) self.print_fn( "\nLines with top memory consumption:\n" + "\n".join( f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.cumulative[:6] ) ) self.print_fn( "\nLines with lowest memory consumption:\n" + "\n".join( f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}" for state in summary.cumulative[-6:] ) ) self.print_fn(f"\nTotal memory increase: {summary.total}") def save_to_csv(self, result_dict, filename): if not self.args.save_to_csv: return self.print_fn("Saving results to csv.") with open(filename, mode="w") as csv_file: assert len(self.args.model_names) > 0, "At least 1 model should be defined, but got {}".format( self.model_names ) fieldnames = ["model", "batch_size", "sequence_length"] writer = csv.DictWriter(csv_file, fieldnames=fieldnames + ["result"]) writer.writeheader() for model_name in self.args.model_names: result_dict_model = result_dict[model_name]["result"] for bs in result_dict_model: for ss in result_dict_model[bs]: result_model = result_dict_model[bs][ss] writer.writerow( { "model": model_name, "batch_size": bs, "sequence_length": ss, "result": ("{}" if not isinstance(result_model, float) else "{:.4f}").format( result_model ), } )
AdaMix/src/transformers/benchmark/benchmark_utils.py/0
{ "file_path": "AdaMix/src/transformers/benchmark/benchmark_utils.py", "repo_id": "AdaMix", "token_count": 16379 }
45
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert slow tokenizers checkpoints in fast (serialization format of the `tokenizers` library) """ import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) TOKENIZER_CLASSES = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def convert_slow_checkpoint_to_fast(tokenizer_name, checkpoint_name, dump_path, force_download): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError("Unrecognized tokenizer name, should be one of {}.".format(list(TOKENIZER_CLASSES.keys()))) if tokenizer_name is None: tokenizer_names = TOKENIZER_CLASSES else: tokenizer_names = {tokenizer_name: getattr(transformers, tokenizer_name + "Fast")} logger.info(f"Loading tokenizer classes: {tokenizer_names}") for tokenizer_name in tokenizer_names: tokenizer_class = TOKENIZER_CLASSES[tokenizer_name] add_prefix = True if checkpoint_name is None: checkpoint_names = list(tokenizer_class.max_model_input_sizes.keys()) else: checkpoint_names = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}") for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}") # Load tokenizer tokenizer = tokenizer_class.from_pretrained(checkpoint, force_download=force_download) # Save fast tokenizer logger.info( "Save fast tokenizer to {} with prefix {} add_prefix {}".format(dump_path, checkpoint, add_prefix) ) # For organization names we create sub-directories if "/" in checkpoint: checkpoint_directory, checkpoint_prefix_name = checkpoint.split("/") dump_path_full = os.path.join(dump_path, checkpoint_directory) elif add_prefix: checkpoint_prefix_name = checkpoint dump_path_full = dump_path else: checkpoint_prefix_name = None dump_path_full = dump_path logger.info( "=> {} with prefix {}, add_prefix {}".format(dump_path_full, checkpoint_prefix_name, add_prefix) ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values())[0]: file_path = list(tokenizer.pretrained_vocab_files_map.values())[0][checkpoint] next_char = file_path.split(checkpoint)[-1][0] if next_char == "/": dump_path_full = os.path.join(dump_path_full, checkpoint_prefix_name) checkpoint_prefix_name = None logger.info( "=> {} with prefix {}, add_prefix {}".format(dump_path_full, checkpoint_prefix_name, add_prefix) ) file_names = tokenizer.save_pretrained( dump_path_full, legacy_format=False, filename_prefix=checkpoint_prefix_name ) logger.info("=> File names {}".format(file_names)) for file_name in file_names: if not file_name.endswith("tokenizer.json"): os.remove(file_name) logger.info("=> removing {}".format(file_name)) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help="Optional tokenizer type selected in the list of {}. If not given, will download and convert all the checkpoints from AWS.".format( list(TOKENIZER_CLASSES.keys()) ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) args = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
AdaMix/src/transformers/convert_slow_tokenizers_checkpoints_to_fast.py/0
{ "file_path": "AdaMix/src/transformers/convert_slow_tokenizers_checkpoints_to_fast.py", "repo_id": "AdaMix", "token_count": 2078 }
46
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from .utils import logging logger = logging.get_logger(__name__) class TFGenerationMixin: """ A class containing all of the functions supporting generation, to be used as a mixin in :class:`~transformers.TFPreTrainedModel`. """ def prepare_inputs_for_generation(self, inputs, **kwargs): """ Implement in subclasses of :class:`~transformers.TFPreTrainedModel` for custom behavior to prepare inputs in the generate method. """ return {"input_ids": inputs} def _use_cache(self, outputs, use_cache): """During generation, decide whether to pass the `past` variable to the next forward pass.""" use_cache = getattr(self.config, "use_cache", False) if len(outputs) <= 1 or use_cache is False: return False if hasattr(self.config, "mem_len") and self.config.mem_len == 0: return False return True def generate( self, input_ids=None, max_length=None, min_length=None, do_sample=None, early_stopping=None, num_beams=None, temperature=None, top_k=None, top_p=None, repetition_penalty=None, bad_words_ids=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, length_penalty=None, no_repeat_ngram_size=None, num_return_sequences=None, attention_mask=None, decoder_start_token_id=None, use_cache=None, forced_bos_token_id=None, forced_eos_token_id=None, ): r""" Generates sequences for models with a language modeling head. The method currently supports greedy decoding, beam-search decoding, sampling with temperature, sampling with top-k or nucleus sampling. Adapted in part from `Facebook's XLM beam search code <https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529>`__. Apart from :obj:`input_ids` and :obj:`attention_mask`, all the arguments below will default to the value of the attribute of the same name inside the :class:`~transformers.PretrainedConfig` of the model. The default values indicated are the default values of those config. Most of these parameters are explained in more detail in `this blog post <https://huggingface.co/blog/how-to-generate>`__. Parameters: input_ids (:obj:`tf.Tensor` of :obj:`dtype=tf.int32` and shape :obj:`(batch_size, sequence_length)`, `optional`): The sequence used as a prompt for the generation. If :obj:`None` the method initializes it as an empty :obj:`tf.Tensor` of shape :obj:`(1,)`. max_length (:obj:`int`, `optional`, defaults to 20): The maximum length of the sequence to be generated. min_length (:obj:`int`, `optional`, defaults to 10): The minimum length of the sequence to be generated. do_sample (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use sampling ; use greedy decoding otherwise. early_stopping (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to stop the beam search when at least ``num_beams`` sentences are finished per batch or not. num_beams (:obj:`int`, `optional`, defaults to 1): Number of beams for beam search. 1 means no beam search. temperature (:obj:`float`, `optional`, defaults to 1.0): The value used to module the next token probabilities. top_k (:obj:`int`, `optional`, defaults to 50): The number of highest probability vocabulary tokens to keep for top-k-filtering. top_p (:obj:`float`, `optional`, defaults to 1.0): If set to float < 1, only the most probable tokens with probabilities that add up to ``top_p`` or higher are kept for generation. repetition_penalty (:obj:`float`, `optional`, defaults to 1.0): The parameter for repetition penalty. 1.0 means no penalty. See `this paper <https://arxiv.org/pdf/1909.05858.pdf>`__ for more details. pad_token_id (:obj:`int`, `optional`): The id of the `padding` token. bos_token_id (:obj:`int`, `optional`): The id of the `beginning-of-sequence` token. eos_token_id (:obj:`int`, `optional`): The id of the `end-of-sequence` token. length_penalty (:obj:`float`, `optional`, defaults to 1.0): Exponential penalty to the length. 1.0 means no penalty. Set to values < 1.0 in order to encourage the model to generate shorter sequences, to a value > 1.0 in order to encourage the model to produce longer sequences. no_repeat_ngram_size (:obj:`int`, `optional`, defaults to 0): If set to int > 0, all ngrams of that size can only occur once. bad_words_ids(:obj:`List[int]`, `optional`): List of token ids that are not allowed to be generated. In order to get the tokens of the words that should not appear in the generated text, use :obj:`tokenizer.encode(bad_word, add_prefix_space=True)`. num_return_sequences(:obj:`int`, `optional`, defaults to 1): The number of independently computed returned sequences for each element in the batch. attention_mask (:obj:`tf.Tensor` of :obj:`dtype=tf.int32` and shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values are in ``[0, 1]``, 1 for tokens that are not masked, and 0 for masked tokens. If not provided, will default to a tensor the same shape as :obj:`input_ids` that masks the pad token. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_start_token_id (:obj:`int`, `optional`): If an encoder-decoder model starts decoding with a different token than `bos`, the id of that token. use_cache: (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding. forced_bos_token_id (:obj:`int`, `optional`): The id of the token to force as the first generated token after the :obj:`decoder_start_token_id`. Useful for multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to be the target language token. forced_eos_token_id (:obj:`int`, `optional`): The id of the token to force as the last generated token when :obj:`max_length` is reached. model_specific_kwargs: Additional model specific kwargs will be forwarded to the :obj:`forward` function of the model. Return: :obj:`tf.Tensor` of :obj:`dtype=tf.int32` and shape :obj:`(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to :obj:`max_length` or shorter if all batches finished early due to the :obj:`eos_token_id`. Examples:: tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from huggingface.co and cache. outputs = model.generate(max_length=40) # do greedy decoding print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('openai-gpt') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('openai-gpt') # Download model and configuration from huggingface.co and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, num_beams=5, num_return_sequences=3, temperature=1.5) # generate 3 independent sequences using beam search decoding (5 beams) with sampling from initial context 'The dog' for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('distilgpt2') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('distilgpt2') # Download model and configuration from huggingface.co and cache. input_context = 'The dog' input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, max_length=40, temperature=0.7, num_return_sequences=3, do_sample=True) # generate 3 candidates using sampling for i in range(3): # 3 output sequences were generated print('Generated {}: {}'.format(i, tokenizer.decode(outputs[i], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('ctrl') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('ctrl') # Download model and configuration from huggingface.co and cache. input_context = 'Legal My neighbor is' # "Legal" is one of the control codes for ctrl input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, max_length=50, temperature=0.7, repetition_penalty=1.2) # generate sequences print('Generated: {}'.format(tokenizer.decode(outputs[0], skip_special_tokens=True))) tokenizer = AutoTokenizer.from_pretrained('gpt2') # Initialize tokenizer model = TFAutoModelWithLMHead.from_pretrained('gpt2') # Download model and configuration from huggingface.co and cache. input_context = 'My cute dog' bad_words_ids = [tokenizer.encode(bad_word, add_prefix_space=True) for bad_word in ['idiot', 'stupid', 'shut up']] input_ids = tokenizer.encode(input_context, return_tensors='tf') # encode input context outputs = model.generate(input_ids=input_ids, max_length=100, do_sample=True, bad_words_ids=bad_words_ids) # generate sequences without allowing bad_words to be generated """ # We cannot generate if the model does not have a LM head if self.get_output_embeddings() is None: raise AttributeError( "You tried to generate sequences with a model that does not have a LM Head." "Please use another model class (e.g. `TFOpenAIGPTLMHeadModel`, `TFXLNetLMHeadModel`, `TFGPT2LMHeadModel`, `TFCTRLLMHeadModel`, `TFT5ForConditionalGeneration`, `TFTransfoXLLMHeadModel`)" ) max_length = max_length if max_length is not None else self.config.max_length min_length = min_length if min_length is not None else self.config.min_length do_sample = do_sample if do_sample is not None else self.config.do_sample early_stopping = early_stopping if early_stopping is not None else self.config.early_stopping num_beams = num_beams if num_beams is not None else self.config.num_beams temperature = temperature if temperature is not None else self.config.temperature top_k = top_k if top_k is not None else self.config.top_k top_p = top_p if top_p is not None else self.config.top_p repetition_penalty = repetition_penalty if repetition_penalty is not None else self.config.repetition_penalty bos_token_id = bos_token_id if bos_token_id is not None else self.config.bos_token_id pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id length_penalty = length_penalty if length_penalty is not None else self.config.length_penalty no_repeat_ngram_size = ( no_repeat_ngram_size if no_repeat_ngram_size is not None else self.config.no_repeat_ngram_size ) bad_words_ids = bad_words_ids if bad_words_ids is not None else self.config.bad_words_ids num_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.config.decoder_start_token_id ) forced_bos_token_id = ( forced_bos_token_id if forced_bos_token_id is not None else self.config.forced_bos_token_id ) forced_eos_token_id = ( forced_eos_token_id if forced_eos_token_id is not None else self.config.forced_eos_token_id ) if input_ids is not None: batch_size = shape_list(input_ids)[0] # overridden by the input batch_size else: batch_size = 1 assert isinstance(max_length, int) and max_length > 0, "`max_length` should be a strictly positive integer." assert isinstance(min_length, int) and min_length >= 0, "`min_length` should be a positive integer." assert isinstance(do_sample, bool), "`do_sample` should be a boolean." assert isinstance(early_stopping, bool), "`early_stopping` should be a boolean." assert isinstance(num_beams, int) and num_beams > 0, "`num_beams` should be a strictly positive integer." assert temperature > 0, "`temperature` should be strictly positive." assert isinstance(top_k, int) and top_k >= 0, "`top_k` should be a positive integer." assert 0 <= top_p <= 1, "`top_p` should be between 0 and 1." assert repetition_penalty >= 1.0, "`repetition_penalty` should be >= 1." assert input_ids is not None or ( isinstance(bos_token_id, int) and bos_token_id >= 0 ), "If input_ids is not defined, `bos_token_id` should be a positive integer." assert pad_token_id is None or ( isinstance(pad_token_id, int) and (pad_token_id >= 0) ), "`pad_token_id` should be a positive integer." assert (eos_token_id is None) or ( isinstance(eos_token_id, int) and (eos_token_id >= 0) ), "`eos_token_id` should be a positive integer." assert length_penalty > 0, "`length_penalty` should be strictly positive." assert ( isinstance(num_return_sequences, int) and num_return_sequences > 0 ), "`num_return_sequences` should be a strictly positive integer." assert ( bad_words_ids is None or isinstance(bad_words_ids, list) and isinstance(bad_words_ids[0], list) ), "`bad_words_ids` is either `None` or a list of lists of tokens that should not be generated" if input_ids is None: assert isinstance(bos_token_id, int) and bos_token_id >= 0, ( "you should either supply a context to complete as `input_ids` input " "or a `bos_token_id` (integer >= 0) as a first token to start the generation." ) input_ids = tf.fill((batch_size, 1), bos_token_id) else: assert len(shape_list(input_ids)) == 2, "Input prompt should be of shape (batch_size, sequence length)." # not allow to duplicate outputs when greedy decoding if do_sample is False: if num_beams == 1: # no_beam_search greedy generation conditions assert ( num_return_sequences == 1 ), "Greedy decoding will always produce the same output for num_beams == 1 and num_return_sequences > 1. Please set num_return_sequences = 1" else: # beam_search greedy generation conditions assert ( num_beams >= num_return_sequences ), "Greedy beam search decoding cannot return more sequences than it has beams. Please set num_beams >= num_return_sequences" # create attention mask if necessary # TODO (PVP): this should later be handled by the forward fn() in each model in the future see PR 3140 if (attention_mask is None) and (pad_token_id is not None) and (pad_token_id in input_ids.numpy()): attention_mask = tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=tf.int32) elif attention_mask is None: attention_mask = tf.ones_like(input_ids) if pad_token_id is None and eos_token_id is not None: logger.warning( "Setting `pad_token_id` to {} (first `eos_token_id`) to generate sequence".format(eos_token_id) ) pad_token_id = eos_token_id # current position and vocab size cur_len = shape_list(input_ids)[1] # unused vocab_size = self.config.vocab_size # set effective batch size and effective batch multiplier according to do_sample if do_sample: effective_batch_size = batch_size * num_return_sequences effective_batch_mult = num_return_sequences else: effective_batch_size = batch_size effective_batch_mult = 1 if self.config.is_encoder_decoder: if decoder_start_token_id is None: decoder_start_token_id = bos_token_id assert ( decoder_start_token_id is not None ), "decoder_start_token_id or bos_token_id has to be defined for encoder-decoder generation" assert hasattr(self, "get_encoder"), "{} should have a 'get_encoder' function defined".format(self) assert callable(self.get_encoder), "{} should be a method".format(self.get_encoder) # get encoder and store encoder outputs encoder = self.get_encoder() encoder_outputs = encoder(input_ids, attention_mask=attention_mask) # Expand input ids if num_beams > 1 or num_return_sequences > 1 if num_return_sequences > 1 or num_beams > 1: input_ids_len = shape_list(input_ids)[-1] input_ids = tf.broadcast_to( tf.expand_dims(input_ids, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len) ) attention_mask = tf.broadcast_to( tf.expand_dims(attention_mask, 1), (batch_size, effective_batch_mult * num_beams, input_ids_len) ) input_ids = tf.reshape( input_ids, (effective_batch_size * num_beams, input_ids_len) ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) attention_mask = tf.reshape( attention_mask, (effective_batch_size * num_beams, input_ids_len) ) # shape: (batch_size * num_return_sequences * num_beams, cur_len) if self.config.is_encoder_decoder: # create empty decoder_input_ids input_ids = ( tf.ones( (effective_batch_size * num_beams, 1), dtype=tf.int32, ) * decoder_start_token_id ) cur_len = 1 assert ( batch_size == encoder_outputs[0].shape[0] ), f"expected encoder_outputs[0] to have 1st dimension bs={batch_size}, got {encoder_outputs[0].shape[0]} " # expand batch_idx to assign correct encoder output for expanded input_ids (due to num_beams > 1 and num_return_sequences > 1) expanded_batch_idxs = tf.reshape( tf.repeat(tf.expand_dims(tf.range(batch_size), -1), repeats=num_beams * effective_batch_mult, axis=1), shape=(-1,), ) # expand encoder_outputs encoder_outputs = (tf.gather(encoder_outputs[0], expanded_batch_idxs, axis=0),) else: encoder_outputs = None cur_len = shape_list(input_ids)[-1] assert ( cur_len < max_length ), f"The context has {cur_len} number of tokens, but `max_length` is only {max_length}. Please make sure that `max_length` is bigger than the number of tokens, by setting either `generate(max_length=...,...)` or `config.max_length = ...`" if num_beams > 1: output = self._generate_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, early_stopping=early_stopping, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, pad_token_id=pad_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, num_return_sequences=num_return_sequences, length_penalty=length_penalty, num_beams=num_beams, vocab_size=vocab_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, use_cache=use_cache, forced_bos_token_id=forced_bos_token_id, forced_eos_token_id=forced_eos_token_id, ) else: output = self._generate_no_beam_search( input_ids, cur_len=cur_len, max_length=max_length, min_length=min_length, do_sample=do_sample, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, bad_words_ids=bad_words_ids, pad_token_id=pad_token_id, eos_token_id=eos_token_id, batch_size=effective_batch_size, vocab_size=vocab_size, encoder_outputs=encoder_outputs, attention_mask=attention_mask, use_cache=use_cache, ) return output def _generate_no_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, pad_token_id, eos_token_id, batch_size, vocab_size, encoder_outputs, attention_mask, use_cache, **kwargs ): """ Generate sequences for each example without beam search (num_beams == 1). All returned sequence are generated independantly. """ # length of generated sentences / unfinished sentences unfinished_sents = tf.ones_like(input_ids[:, 0]) sent_lengths = tf.ones_like(input_ids[:, 0]) * max_length past = encoder_outputs # defined for encoder-decoder models, None for decoder-only models while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **kwargs ) outputs = self(**model_inputs) next_token_logits = outputs[0][:, -1, :] # if model has past, then set the past variable to speed up decoding if self._use_cache(outputs, use_cache): past = outputs[1] # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: next_token_logits_penalties = _create_next_token_logits_penalties( input_ids, next_token_logits, repetition_penalty ) next_token_logits = tf.math.multiply(next_token_logits, next_token_logits_penalties) if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 banned_tokens = calc_banned_ngram_tokens(input_ids, batch_size, no_repeat_ngram_size, cur_len) # create banned_tokens boolean mask banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) next_token_logits = set_tensor_by_indices_to_value( next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) next_token_logits = set_tensor_by_indices_to_value( next_token_logits, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: # create eos_token_id boolean mask is_token_logit_eos_token = tf.convert_to_tensor( [True if token is eos_token_id else False for token in range(vocab_size)], dtype=tf.bool ) eos_token_indices_mask = tf.broadcast_to(is_token_logit_eos_token, [batch_size, vocab_size]) next_token_logits = set_tensor_by_indices_to_value( next_token_logits, eos_token_indices_mask, -float("inf") ) if do_sample: # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: next_token_logits = next_token_logits / temperature # Top-p/top-k filtering next_token_logits = tf_top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p) # Sample next_token = tf.squeeze( tf.random.categorical(next_token_logits, dtype=tf.int32, num_samples=1), axis=1 ) else: # Greedy decoding next_token = tf.math.argmax(next_token_logits, axis=-1, output_type=tf.int32) # update generations and finished sentences if eos_token_id is not None: # pad finished sentences if eos_token_id exist tokens_to_add = next_token * unfinished_sents + (pad_token_id) * (1 - unfinished_sents) else: tokens_to_add = next_token # add token and increase length by one input_ids = tf.concat([input_ids, tf.expand_dims(tokens_to_add, -1)], 1) cur_len = cur_len + 1 if eos_token_id is not None: eos_in_sents = tokens_to_add == eos_token_id # if sentence is unfinished and the token to add is eos, sent_lengths is filled with current length is_sents_unfinished_and_token_to_add_is_eos = tf.math.multiply( unfinished_sents, tf.cast(eos_in_sents, tf.int32) ) sent_lengths = ( sent_lengths * (1 - is_sents_unfinished_and_token_to_add_is_eos) + cur_len * is_sents_unfinished_and_token_to_add_is_eos ) # unfinished_sents is set to zero if eos in sentence unfinished_sents -= is_sents_unfinished_and_token_to_add_is_eos # stop when there is a </s> in each sentence, or if we exceed the maximum length if tf.math.reduce_max(unfinished_sents) == 0: break # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = tf.concat( [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1 ) # if there are different sentences lengths in the batch, some batches have to be padded min_sent_length = tf.math.reduce_min(sent_lengths) max_sent_length = tf.math.reduce_max(sent_lengths) if min_sent_length != max_sent_length: assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths" # finished sents are filled with pad_token padding = tf.ones([batch_size, max_sent_length.numpy()], dtype=tf.int32) * pad_token_id # create length masks for tf.where operation broad_casted_sent_lengths = tf.broadcast_to( tf.expand_dims(sent_lengths, -1), [batch_size, max_sent_length] ) broad_casted_range = tf.transpose( tf.broadcast_to(tf.expand_dims(tf.range(max_sent_length), -1), [max_sent_length, batch_size]) ) decoded = tf.where(broad_casted_range < broad_casted_sent_lengths, input_ids, padding) else: decoded = input_ids return decoded def _generate_beam_search( self, input_ids, cur_len, max_length, min_length, do_sample, early_stopping, temperature, top_k, top_p, repetition_penalty, no_repeat_ngram_size, bad_words_ids, pad_token_id, eos_token_id, batch_size, num_return_sequences, length_penalty, num_beams, vocab_size, encoder_outputs, attention_mask, use_cache, forced_bos_token_id, forced_eos_token_id, **kwargs, ): """Generate sequences for each example with beam search.""" # generated hypotheses generated_hyps = [ BeamHypotheses(num_beams, max_length, length_penalty, early_stopping=early_stopping) for _ in range(batch_size) ] # for greedy decoding it is made sure that only tokens of the first beam are considered to avoid sampling the exact same tokens three times if do_sample is False: beam_scores_begin = tf.zeros((batch_size, 1), dtype=tf.float32) beam_scores_end = tf.ones((batch_size, num_beams - 1), dtype=tf.float32) * (-1e9) beam_scores = tf.concat([beam_scores_begin, beam_scores_end], -1) else: beam_scores = tf.zeros((batch_size, num_beams), dtype=tf.float32) beam_scores = tf.reshape(beam_scores, (batch_size * num_beams,)) # cache compute states past = encoder_outputs # to stay similar to torch : past = (encoder_outputs, None) if encoder_outputs is not None else None # done sentences done = [False for _ in range(batch_size)] while cur_len < max_length: model_inputs = self.prepare_inputs_for_generation( input_ids, past=past, attention_mask=attention_mask, use_cache=use_cache, **kwargs ) outputs = self(**model_inputs) # (batch_size * num_beams, cur_len, vocab_size) next_token_logits = outputs[0][:, -1, :] # (batch_size * num_beams, vocab_size) # if model has past, then set the past variable to speed up decoding if self._use_cache(outputs, use_cache): past = outputs[1] # repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858) if repetition_penalty != 1.0: next_token_logits_penalties = _create_next_token_logits_penalties( input_ids, next_token_logits, repetition_penalty ) next_token_logits = tf.math.multiply(next_token_logits, next_token_logits_penalties) # Temperature (higher temperature => more likely to sample low probability tokens) if temperature != 1.0: next_token_logits = next_token_logits / temperature if self.config.is_encoder_decoder and do_sample is False: next_token_logits = self.adjust_logits_during_generation( next_token_logits, cur_len=cur_len, max_length=max_length, forced_bos_token_id=forced_bos_token_id, forced_eos_token_id=forced_eos_token_id, ) # calculate log softmax score scores = tf.nn.log_softmax(next_token_logits, axis=-1) # (batch_size * num_beams, vocab_size) # set eos token prob to zero if min_length is not reached if eos_token_id is not None and cur_len < min_length: # create eos_token_id boolean mask num_batch_hypotheses = batch_size * num_beams is_token_logit_eos_token = tf.convert_to_tensor( [True if token is eos_token_id else False for token in range(vocab_size)], dtype=tf.bool ) eos_token_indices_mask = tf.broadcast_to(is_token_logit_eos_token, [num_batch_hypotheses, vocab_size]) scores = set_tensor_by_indices_to_value(scores, eos_token_indices_mask, -float("inf")) if no_repeat_ngram_size > 0: # calculate a list of banned tokens to prevent repetitively generating the same ngrams # from fairseq: https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345 num_batch_hypotheses = batch_size * num_beams banned_tokens = calc_banned_ngram_tokens( input_ids, num_batch_hypotheses, no_repeat_ngram_size, cur_len ) # create banned_tokens boolean mask banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) scores = set_tensor_by_indices_to_value( scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) if bad_words_ids is not None: # calculate a list of banned tokens according to bad words banned_tokens = calc_banned_bad_words_ids(input_ids, bad_words_ids) banned_tokens_indices_mask = [] for banned_tokens_slice in banned_tokens: banned_tokens_indices_mask.append( [True if token in banned_tokens_slice else False for token in range(vocab_size)] ) scores = set_tensor_by_indices_to_value( scores, tf.convert_to_tensor(banned_tokens_indices_mask, dtype=tf.bool), -float("inf") ) assert shape_list(scores) == [batch_size * num_beams, vocab_size] if do_sample: _scores = scores + tf.broadcast_to( beam_scores[:, None], (batch_size * num_beams, vocab_size) ) # (batch_size * num_beams, vocab_size) # Top-p/top-k filtering _scores = tf_top_k_top_p_filtering( _scores, top_k=top_k, top_p=top_p, min_tokens_to_keep=2 ) # (batch_size * num_beams, vocab_size) # Sample 2 next tokens for each beam (so we have some spare tokens and match output of greedy beam search) _scores = tf.reshape(_scores, (batch_size, num_beams * vocab_size)) next_tokens = sample_without_replacement( _scores, num_samples=2 * num_beams ) # (batch_size, 2 * num_beams) # Compute next scores next_scores = tf.gather(_scores, next_tokens, batch_dims=1) # (batch_size, 2 * num_beams) # sort the sampled vector to make sure that the first num_beams samples are the best next_scores_indices = tf.argsort(next_scores, direction="DESCENDING", axis=1) next_scores = tf.gather(next_scores, next_scores_indices, batch_dims=1) # (batch_size, num_beams * 2) next_tokens = tf.gather(next_tokens, next_scores_indices, batch_dims=1) # (batch_size, num_beams * 2) else: # Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product) next_scores = scores + tf.broadcast_to( beam_scores[:, None], (batch_size * num_beams, vocab_size) ) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together (we are keeping top hypothesis across beams) next_scores = tf.reshape( next_scores, (batch_size, num_beams * vocab_size) ) # (batch_size, num_beams * vocab_size) next_scores, next_tokens = tf.math.top_k(next_scores, k=2 * num_beams, sorted=True) assert shape_list(next_scores) == shape_list(next_tokens) == [batch_size, 2 * num_beams] # next batch beam content next_batch_beam = [] # for each sentence for batch_idx in range(batch_size): # if we are done with this sentence if done[batch_idx]: assert ( len(generated_hyps[batch_idx]) >= num_beams ), "Batch can only be done if at least {} beams have been generated".format(num_beams) assert ( eos_token_id is not None and pad_token_id is not None ), "generated beams >= num_beams -> eos_token_id and pad_token have to be defined" next_batch_beam.extend([(0, pad_token_id, 0)] * num_beams) # pad the batch continue # next sentence beam content next_sent_beam = [] # next tokens for this sentence for beam_token_rank, (beam_token_id, beam_token_score) in enumerate( zip(next_tokens[batch_idx], next_scores[batch_idx]) ): # get beam and token IDs beam_id = beam_token_id // vocab_size token_id = beam_token_id % vocab_size effective_beam_id = batch_idx * num_beams + beam_id # add to generated hypotheses if end of sentence or last iteration if (eos_token_id is not None) and (token_id.numpy() == eos_token_id): # if beam_token does not belong to top num_beams tokens, it should not be added is_beam_token_worse_than_top_num_beams = beam_token_rank >= num_beams if is_beam_token_worse_than_top_num_beams: continue generated_hyps[batch_idx].add( tf.identity(input_ids[effective_beam_id]), beam_token_score.numpy() ) else: # add next predicted token if it is not eos_token next_sent_beam.append((beam_token_score, token_id, effective_beam_id)) # the beam for next step is full if len(next_sent_beam) == num_beams: break # Check if we are done so that we can save a pad step if all(done) done[batch_idx] = done[batch_idx] or generated_hyps[batch_idx].is_done( tf.reduce_max(next_scores[batch_idx]).numpy(), cur_len ) # update next beam content assert len(next_sent_beam) == num_beams, "Beam should always be full" next_batch_beam.extend(next_sent_beam) assert len(next_batch_beam) == num_beams * (batch_idx + 1) # stop when we are done with each sentence if all(done): break # sanity check / prepare next batch assert len(next_batch_beam) == batch_size * num_beams beam_scores = tf.convert_to_tensor([x[0] for x in next_batch_beam], dtype=tf.float32) beam_tokens = tf.convert_to_tensor([x[1] for x in next_batch_beam], dtype=tf.int32) beam_idx = tf.convert_to_tensor([x[2] for x in next_batch_beam], dtype=tf.int32) # re-order batch and update current length input_ids = tf.stack([tf.identity(input_ids[x, :]) for x in beam_idx]) input_ids = tf.concat([input_ids, tf.expand_dims(beam_tokens, 1)], axis=-1) cur_len = cur_len + 1 # re-order internal states if past is not None: past = self._reorder_cache(past, beam_idx) # extend attention_mask for new generated input if only decoder if self.config.is_encoder_decoder is False: attention_mask = tf.concat( [attention_mask, tf.ones((shape_list(attention_mask)[0], 1), dtype=tf.int32)], axis=-1 ) # finalize all open beam hypotheses and end to generated hypotheses for batch_idx in range(batch_size): # Add all open beam hypothesis to generated_hyps if done[batch_idx]: continue # test that beam scores match previously calculated scores if not eos and batch_idx not done if eos_token_id is not None and all( (token_id % vocab_size).numpy().item() != eos_token_id for token_id in next_tokens[batch_idx] ): assert tf.reduce_all( next_scores[batch_idx, :num_beams] == tf.reshape(beam_scores, (batch_size, num_beams))[batch_idx] ), "If batch_idx is not done, final next scores: {} have to equal to accumulated beam_scores: {}".format( next_scores[:, :num_beams][batch_idx], tf.reshape(beam_scores, (batch_size, num_beams))[batch_idx] ) # need to add best num_beams hypotheses to generated hyps for beam_id in range(num_beams): effective_beam_id = batch_idx * num_beams + beam_id final_score = beam_scores[effective_beam_id].numpy().item() final_tokens = input_ids[effective_beam_id] generated_hyps[batch_idx].add(final_tokens, final_score) # depending on whether greedy generation is wanted or not define different output_batch_size and output_num_return_sequences_per_batch output_batch_size = batch_size if do_sample else batch_size * num_return_sequences output_num_return_sequences_per_batch = 1 if do_sample else num_return_sequences # select the best hypotheses sent_lengths_list = [] best = [] # retrieve best hypotheses for i, hypotheses in enumerate(generated_hyps): sorted_hyps = sorted(hypotheses.beams, key=lambda x: x[0]) for j in range(output_num_return_sequences_per_batch): best_hyp = sorted_hyps.pop()[1] sent_lengths_list.append(len(best_hyp)) best.append(best_hyp) assert output_batch_size == len(best), "Output batch size {} must match output beam hypotheses {}".format( output_batch_size, len(best) ) sent_lengths = tf.convert_to_tensor(sent_lengths_list, dtype=tf.int32) # shorter batches are filled with pad_token if tf.reduce_min(sent_lengths).numpy() != tf.reduce_max(sent_lengths).numpy(): assert pad_token_id is not None, "`Pad_token_id` has to be defined" sent_max_len = min(tf.reduce_max(sent_lengths).numpy() + 1, max_length) decoded_list = [] # fill with hypothesis and eos_token_id if necessary for i, hypo in enumerate(best): assert sent_lengths[i] == shape_list(hypo)[0] # if sent_length is max_len do not pad if sent_lengths[i] == sent_max_len: decoded_slice = hypo else: # else pad to sent_max_len num_pad_tokens = sent_max_len - sent_lengths[i] padding = pad_token_id * tf.ones((num_pad_tokens,), dtype=tf.int32) decoded_slice = tf.concat([hypo, padding], axis=-1) # finish sentence with EOS token if sent_lengths[i] < max_length: decoded_slice = tf.where( tf.range(sent_max_len, dtype=tf.int32) == sent_lengths[i], eos_token_id * tf.ones((sent_max_len,), dtype=tf.int32), decoded_slice, ) # add to list decoded_list.append(decoded_slice) decoded = tf.stack(decoded_list) else: # none of the hypotheses have an eos_token assert (len(hypo) == max_length for hypo in best) decoded = tf.stack(best) return decoded @staticmethod def _reorder_cache(past, beam_idx): return tuple(tf.gather(layer_past, beam_idx, axis=1) for layer_past in past) def adjust_logits_during_generation( self, logits, cur_len, max_length, forced_bos_token_id, forced_eos_token_id, **kwargs ): """ Implement in subclasses of :class:`~transformers.PreTrainedModel` for custom behavior to adjust the logits in the generate method. """ if cur_len == 1 and forced_bos_token_id is not None: vocab_range = tf.constant(range(self.config.vocab_size)) return tf.where(vocab_range != forced_bos_token_id, -1e8, logits) elif cur_len == max_length - 1 and forced_eos_token_id is not None: vocab_range = tf.constant(range(self.config.vocab_size)) return tf.where(vocab_range != forced_eos_token_id, -1e8, logits) else: return logits def _create_next_token_logits_penalties(input_ids, logits, repetition_penalty): # create logit penalties for already seen input_ids token_penalties = np.ones(shape_list(logits)) prev_input_ids = [np.unique(input_id) for input_id in input_ids.numpy()] for i, prev_input_id in enumerate(prev_input_ids): logit_penalized = logits[i].numpy()[prev_input_id] logit_penalties = np.zeros(logit_penalized.shape) # if previous logit score is < 0 then multiply repetition penalty else divide logit_penalties[logit_penalized < 0] = repetition_penalty logit_penalties[logit_penalized > 0] = 1 / repetition_penalty np.put(token_penalties[i], prev_input_id, logit_penalties) return tf.convert_to_tensor(token_penalties, dtype=tf.float32) def calc_banned_ngram_tokens(prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len): # Copied from fairseq for no_repeat_ngram in beam_search if cur_len + 1 < no_repeat_ngram_size: # return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet return [[] for _ in range(num_hypos)] generated_ngrams = [{} for _ in range(num_hypos)] for idx in range(num_hypos): gen_tokens = prev_input_ids[idx].numpy().tolist() generated_ngram = generated_ngrams[idx] for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]): prev_ngram_tuple = tuple(ngram[:-1]) generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]] def _get_generated_ngrams(hypo_idx): # Before decoding the next token, prevent decoding of ngrams that have already appeared start_idx = cur_len + 1 - no_repeat_ngram_size ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].numpy().tolist()) return generated_ngrams[hypo_idx].get(ngram_idx, []) banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)] return banned_tokens def calc_banned_bad_words_ids(prev_input_ids, bad_words_ids): banned_tokens = [] def _tokens_match(prev_tokens, tokens): if len(tokens) == 0: # if bad word tokens is just one token always ban it return True if len(tokens) > len(prev_tokens): # if bad word tokens are longer than prev tokens they can't be equal return False if prev_tokens[-len(tokens) :] == tokens: # if tokens match return True else: return False for prev_input_ids_slice in prev_input_ids: banned_tokens_slice = [] for banned_token_seq in bad_words_ids: assert len(banned_token_seq) > 0, "Banned words token sequences {} cannot have an empty list".format( bad_words_ids ) if _tokens_match(prev_input_ids_slice.numpy().tolist(), banned_token_seq[:-1]) is False: # if tokens do not match continue continue banned_tokens_slice.append(banned_token_seq[-1]) banned_tokens.append(banned_tokens_slice) return banned_tokens def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ logits_shape = shape_list(logits) if top_k > 0: top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1]) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < tf.math.top_k(logits, k=top_k)[0][..., -1, None] logits = set_tensor_by_indices_to_value(logits, indices_to_remove, filter_value) if top_p < 1.0: sorted_indices = tf.argsort(logits, direction="DESCENDING") sorted_logits = tf.gather( logits, sorted_indices, axis=-1, batch_dims=1 ) # expects logits to be of dim (batch_size, vocab_size) cumulative_probs = tf.math.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove = tf.concat( [ tf.zeros_like(sorted_indices_to_remove[:, :min_tokens_to_keep]), sorted_indices_to_remove[:, min_tokens_to_keep:], ], -1, ) # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove = tf.roll(sorted_indices_to_remove, 1, axis=-1) sorted_indices_to_remove = tf.concat( [tf.zeros_like(sorted_indices_to_remove[:, :1]), sorted_indices_to_remove[:, 1:]], -1, ) # scatter sorted tensors to original indexing indices_to_remove = scatter_values_on_batch_indices(sorted_indices_to_remove, sorted_indices) logits = set_tensor_by_indices_to_value(logits, indices_to_remove, filter_value) return logits def scatter_values_on_batch_indices(values, batch_indices): shape = shape_list(batch_indices) # broadcast batch dim to shape broad_casted_batch_dims = tf.reshape(tf.broadcast_to(tf.expand_dims(tf.range(shape[0]), axis=-1), shape), [1, -1]) # transform batch_indices to pair_indices pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0)) # scatter values to pair indices return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), shape) def set_tensor_by_indices_to_value(tensor, indices, value): # create value_tensor since tensor value assignment is not possible in TF value_tensor = tf.zeros_like(tensor) + value return tf.where(indices, value_tensor, tensor) def sample_without_replacement(logits, num_samples): """ categorical sampling without replacement is currently not implemented the gumbel-max trick will do for now see https://github.com/tensorflow/tensorflow/issues/9260 for more info """ z = -tf.math.log(tf.random.uniform(shape_list(logits), 0, 1)) _, indices = tf.nn.top_k(logits + z, num_samples) return indices def shape_list(x): """Deal with dynamic shape in tensorflow cleanly.""" static = x.shape.as_list() dynamic = tf.shape(x) return [dynamic[i] if s is None else s for i, s in enumerate(static)] class BeamHypotheses(object): def __init__(self, num_beams, max_length, length_penalty, early_stopping): """ Initialize n-best list of hypotheses. """ self.max_length = max_length - 1 # ignoring bos_token self.length_penalty = length_penalty self.early_stopping = early_stopping self.num_beams = num_beams self.beams = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.beams) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ score = sum_logprobs / len(hyp) ** self.length_penalty if len(self) < self.num_beams or score > self.worst_score: self.beams.append((score, hyp)) if len(self) > self.num_beams: sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.beams)]) del self.beams[sorted_scores[0][1]] self.worst_score = sorted_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.num_beams: return False elif self.early_stopping: return True else: cur_score = best_sum_logprobs / cur_len ** self.length_penalty ret = self.worst_score >= cur_score return ret
AdaMix/src/transformers/generation_tf_utils.py/0
{ "file_path": "AdaMix/src/transformers/generation_tf_utils.py", "repo_id": "AdaMix", "token_count": 26353 }
47
from torch import nn from transformers.activations import get_activation class Adapter(nn.Module): def __init__(self, dim, r, act): super().__init__() self.adapter_A = nn.Linear(dim, r) self.act = get_activation(act) self.adapter_B = nn.Linear(r, dim) def forward(self, x, residual): result = self.adapter_A(x) result = self.act(result) result = self.adapter_B(result) return result + residual
AdaMix/src/transformers/models/adapter.py/0
{ "file_path": "AdaMix/src/transformers/models/adapter.py", "repo_id": "AdaMix", "token_count": 204 }
48
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Bart model. """ import random from typing import Dict, Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPast, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( DUMMY_INPUTS, TFCausalLanguageModelingLoss, TFPreTrainedModel, TFSharedEmbeddings, TFWrappedEmbeddings, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_bart import BartConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/bart-large" _CONFIG_FOR_DOC = "BartConfig" _TOKENIZER_FOR_DOC = "BartTokenizer" LARGE_NEGATIVE = -1e8 def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): shifted_input_ids = tf.roll(input_ids, 1, axis=-1) start_tokens = tf.fill((shape_list(shifted_input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, shifted_input_ids[:, 1:]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) if tf.executing_eagerly(): # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None, past_key_values_length: int = 0): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFBartLearnedPositionalEmbedding(TFSharedEmbeddings): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2 # and adjust num_embeddings appropriately. Other models dont have this hack self.offset = 2 super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0): """Input is expected to be of size [bsz x seqlen].""" bsz, seq_len = input_shape[:2] positions = tf.range(past_key_values_length, seq_len + past_key_values_length, delta=1, name="range") return super().call(positions + self.offset) class TFBartAttention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[Tuple[tf.Tensor]]] = None, attention_mask: Optional[tf.Tensor] = None, layer_head_mask: Optional[tf.Tensor] = None, training=False, ) -> Tuple[tf.Tensor, Optional[tf.Tensor]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}", ) if attention_mask is not None: # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}", ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = tf.nn.softmax(attn_weights, axis=-1) if layer_head_mask is not None: # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}", ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}", ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value class TFBartEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: BartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBartAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False): """ Args: hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (:obj:`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights class TFBartDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: BartConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBartAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFBartAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states, attention_mask: Optional[tf.Tensor] = None, encoder_hidden_states: Optional[tf.Tensor] = None, encoder_attention_mask: Optional[tf.Tensor] = None, layer_head_mask: Optional[tf.Tensor] = None, encoder_layer_head_mask: Optional[tf.Tensor] = None, past_key_value: Optional[Tuple[tf.Tensor]] = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (:obj:`tf.Tensor`): input to the layer of shape `(seq_len, batch, embed_dim)` attention_mask (:obj:`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (:obj:`tf.Tensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (:obj:`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (:obj:`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` encoder_layer_head_mask (:obj:`tf.Tensor`): mask for encoder attention heads in a given layer of size `(encoder_attention_heads,)` past_key_value (:obj:`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, _, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=encoder_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, present_key_value, ) class TFBartPretrainedModel(TFPreTrainedModel): config_class = BartConfig base_model_prefix = "model" @property def dummy_inputs(self): pad_token = 1 input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32) decoder_input_ids = tf.cast(tf.convert_to_tensor(DUMMY_INPUTS), tf.int32) dummy_inputs = { "decoder_input_ids": decoder_input_ids, "attention_mask": tf.math.not_equal(input_ids, pad_token), "input_ids": input_ids, } return dummy_inputs @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) BART_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Args: config (:class:`~transformers.BartConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.TFPreTrainedModel.from_pretrained` method to load the model weights. """ BART_GENERATION_EXAMPLE = r""" Summarization example:: >>> from transformers import BartTokenizer, TFBartForConditionalGeneration, BartConfig >>> model = TFBartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='tf') >>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids'], num_beams=4, max_length=5, early_stopping=True) >>> print([tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in summary_ids]) Mask filling example:: >>> from transformers import BartTokenizer, TFBartForConditionalGeneration >>> tokenizer = BartTokenizer.from_pretrained('facebook/bart-large') >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = TFBartForConditionalGeneration.from_pretrained('facebook/bart-large') >>> input_ids = tokenizer([TXT], return_tensors='tf')['input_ids'] >>> logits = model(input_ids).logits >>> probs = tf.nn.softmax(logits[0]) >>> # probs[5] is associated with the mask token """ BART_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ decoder_input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BartTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ Bart uses the :obj:`eos_token_id` as the starting token for :obj:`decoder_input_ids` generation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see :obj:`past_key_values`). For translation and summarization training, :obj:`decoder_input_ids` should be provided. If no :obj:`decoder_input_ids` is provided, the model will create this tensor by shifting the :obj:`input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the heas is **masked**. decoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (:obj:`tf.FloatTensor`, `optional`): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape :obj:`(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). Set to :obj:`False` during training, :obj:`True` during generation output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFBartEncoder(tf.keras.layers.Layer): config_class = BartConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a :class:`TFBartEncoderLayer`. Args: config: BartConfig """ def __init__(self, config: BartConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = tf.keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): """ Args: input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BartTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the heas is **masked**. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["inputs_embeds"] is None: inputs["inputs_embeds"] = self.embed_tokens(inputs["input_ids"]) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs["inputs_embeds"] + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=inputs["training"]) # check attention mask and invert if inputs["attention_mask"] is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(inputs["attention_mask"]) else: attention_mask = None encoder_states = () if inputs["output_hidden_states"] else None all_attentions = () if inputs["output_attentions"] else None # check if head_mask has a correct number of layers specified if desired # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if inputs["head_mask"] is not None and tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(inputs["head_mask"])[0], len(self.layers), message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.", ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if inputs["output_hidden_states"]: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if inputs["training"] and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, inputs["head_mask"][idx] if inputs["head_mask"] is not None else None, ) if inputs["output_attentions"]: all_attentions += (attn,) if inputs["output_hidden_states"]: encoder_states = encoder_states + (hidden_states,) if not inputs["return_dict"]: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TFBartDecoder(tf.keras.layers.Layer): config_class = BartConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`TFBartDecoderLayer` Args: config: BartConfig embed_tokens: output embedding """ def __init__(self, config: BartConfig, embed_tokens: Optional[TFSharedEmbeddings] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFBartLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.dropout = tf.keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, encoder_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" Args: input_ids (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.BartTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ encoder_hidden_states (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length, hidden_size)`, `optional`): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (:obj:`tf.Tensor` of shape :obj:`(batch_size, encoder_sequence_length)`, `optional`): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`tf.Tensor` of shape :obj:`(decoder_layers, decoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the heas is **masked**. encoder_head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the heas is **masked**. past_key_values (:obj:`Tuple[Tuple[tf.Tensor]]` of length :obj:`config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` instead of all :obj:`decoder_input_ids`` of shape :obj:`(batch_size, sequence_length)`. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, encoder_head_mask=encoder_head_mask, inputs_embeds=inputs_embeds, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = ( shape_list(inputs["past_key_values"][0][0])[2] if inputs["past_key_values"] is not None else 0 ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) if inputs["inputs_embeds"] is None: inputs["inputs_embeds"] = self.embed_tokens(inputs["input_ids"]) * self.embed_scale hidden_states = inputs["inputs_embeds"] # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if inputs["attention_mask"] is not None: combined_attention_mask = combined_attention_mask + _expand_mask( inputs["attention_mask"], tgt_len=input_shape[-1] ) if inputs["encoder_hidden_states"] is not None and inputs["encoder_attention_mask"] is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] inputs["encoder_attention_mask"] = _expand_mask(inputs["encoder_attention_mask"], tgt_len=input_shape[-1]) hidden_states = self.layernorm_embedding(hidden_states + positions) hidden_states = self.dropout(hidden_states, training=inputs["training"]) # decoder layers all_hidden_states = () if inputs["output_hidden_states"] else None all_self_attns = () if inputs["output_attentions"] else None present_key_values = () if inputs["use_cache"] else None # check if head_mask has a correct number of layers specified if desired # The tf.debugging asserts are not compliant with XLA then they # have to be disabled in other modes than eager. if inputs["head_mask"] is not None and tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(inputs["head_mask"])[0], len(self.layers), message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(inputs['head_mask'])[0]}.", ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if inputs["output_hidden_states"]: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if inputs["training"] and (dropout_probability < self.layerdrop): continue past_key_value = inputs["past_key_values"][idx] if inputs["past_key_values"] is not None else None hidden_states, layer_self_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=inputs["encoder_hidden_states"], encoder_attention_mask=inputs["encoder_attention_mask"], layer_head_mask=inputs["head_mask"][idx] if inputs["head_mask"] is not None else None, encoder_layer_head_mask=inputs["encoder_head_mask"][idx] if inputs["encoder_head_mask"] is not None else None, past_key_value=past_key_value, ) if inputs["use_cache"]: present_key_values += (present_key_value,) if inputs["output_attentions"]: all_self_attns += (layer_self_attn,) if inputs["output_hidden_states"]: all_hidden_states += (hidden_states,) if inputs["output_attentions"]: all_self_attns = list(all_self_attns) if inputs["use_cache"]: present_key_values = (inputs["encoder_hidden_states"], present_key_values) if not inputs["return_dict"]: return hidden_states, present_key_values, all_hidden_states, all_self_attns else: return TFBaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) @keras_serializable class TFBartMainLayer(tf.keras.layers.Layer): config_class = BartConfig def __init__(self, config: BartConfig, load_weight_prefix=None, **kwargs): super().__init__(**kwargs) self.config = config self.shared = TFSharedEmbeddings(config.vocab_size, config.d_model, config.pad_token_id, name="model.shared") # set tf scope correctly if load_weight_prefix is None: load_weight_prefix = "model.shared" with tf.compat.v1.variable_scope(load_weight_prefix) as shared_abs_scope_name: pass # Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope. embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name) embed_tokens.vocab_size = self.shared.vocab_size embed_tokens.hidden_size = self.shared.hidden_size self.encoder = TFBartEncoder(config, embed_tokens, name="encoder") self.decoder = TFBartDecoder(config, embed_tokens, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared.weight = new_embeddings self.shared.vocab_size = self.shared.weight.shape[0] # retrieve correct absolute scope for embed token wrapper with tf.compat.v1.variable_scope("model.shared") as shared_abs_scope_name: pass # Wraps layer to avoid problems with weight restoring and ensuring we're in the correct TF scope. embed_tokens = TFWrappedEmbeddings(self.shared, abs_scope_name=shared_abs_scope_name) self.encoder.set_embed_tokens(embed_tokens) self.decoder.set_embed_tokens(embed_tokens) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["decoder_input_ids"] is None and inputs["decoder_inputs_embeds"] is None: inputs["use_cache"] = False inputs["output_hidden_states"] = ( inputs["output_hidden_states"] if inputs["output_hidden_states"] is not None else self.config.output_hidden_states ) if inputs["decoder_input_ids"] is None and inputs["input_ids"] is not None: inputs["decoder_input_ids"] = shift_tokens_right( inputs["input_ids"], self.config.pad_token_id, self.config.decoder_start_token_id ) if inputs["encoder_outputs"] is None: inputs["encoder_outputs"] = self.encoder( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], TFBaseModelOutput): inputs["encoder_outputs"] = TFBaseModelOutput( last_hidden_state=inputs["encoder_outputs"][0], hidden_states=inputs["encoder_outputs"][1] if len(inputs["encoder_outputs"]) > 1 else None, attentions=inputs["encoder_outputs"][2] if len(inputs["encoder_outputs"]) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not inputs["return_dict"] and not isinstance(inputs["encoder_outputs"], tuple): inputs["encoder_outputs"] = inputs["encoder_outputs"].to_tuple() decoder_outputs = self.decoder( inputs["decoder_input_ids"], attention_mask=inputs["decoder_attention_mask"], encoder_hidden_states=inputs["encoder_outputs"][0], encoder_attention_mask=inputs["attention_mask"], head_mask=inputs["decoder_head_mask"], encoder_head_mask=inputs["head_mask"], past_key_values=inputs["past_key_values"], inputs_embeds=inputs["decoder_inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) if not inputs["return_dict"]: return decoder_outputs + inputs["encoder_outputs"] return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, encoder_last_hidden_state=inputs["encoder_outputs"].last_hidden_state, encoder_hidden_states=inputs["encoder_outputs"].hidden_states, encoder_attentions=inputs["encoder_outputs"].attentions, ) @add_start_docstrings( "The bare BART Model outputting raw hidden-states without any specific head on top.", BART_START_DOCSTRING, ) class TFBartModel(TFBartPretrainedModel): _requires_load_weight_prefix = True def __init__(self, config: BartConfig, load_weight_prefix=None, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.model( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], decoder_input_ids=inputs["decoder_input_ids"], decoder_attention_mask=inputs["decoder_attention_mask"], head_mask=inputs["head_mask"], decoder_head_mask=inputs["decoder_head_mask"], encoder_outputs=inputs["encoder_outputs"], past_key_values=inputs["past_key_values"], inputs_embeds=inputs["inputs_embeds"], decoder_inputs_embeds=inputs["decoder_inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) @add_start_docstrings( "The BART Model with a language modeling head. Can be used for summarization.", BART_START_DOCSTRING, ) class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] _requires_load_weight_prefix = True def __init__(self, config, load_weight_prefix=None, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBartMainLayer(config, load_weight_prefix=load_weight_prefix, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the the sake of consistency. self.final_logits_bias = self.add_weight( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.final_logits_bias} def set_bias(self, value): self.final_logits_bias = value["final_logits_bias"] @add_start_docstrings_to_model_forward(BART_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BART_GENERATION_EXAMPLE) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should either be in ``[0, ..., config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``. Returns: """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["labels"] is not None: inputs["labels"] = tf.where( inputs["labels"] == self.config.pad_token_id, tf.fill(shape_list(inputs["labels"]), -100), inputs["labels"], ) inputs["use_cache"] = False if inputs["decoder_input_ids"] is None: inputs["decoder_input_ids"] = shift_tokens_right( inputs["labels"], self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( inputs["input_ids"], attention_mask=inputs["attention_mask"], decoder_input_ids=inputs["decoder_input_ids"], encoder_outputs=inputs["encoder_outputs"], decoder_attention_mask=inputs["decoder_attention_mask"], head_mask=inputs["head_mask"], decoder_head_mask=inputs["decoder_head_mask"], past_key_values=inputs["past_key_values"], inputs_embeds=inputs["inputs_embeds"], decoder_inputs_embeds=inputs["decoder_inputs_embeds"], use_cache=inputs["use_cache"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) lm_logits = self.model.shared(outputs[0], mode="linear") lm_logits = lm_logits + self.final_logits_bias masked_lm_loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], lm_logits) if not inputs["return_dict"]: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past, attention_mask, head_mask=None, use_cache=None, **kwargs, ) -> Dict: assert past is not None and len(past) in {1, 2}, f"past has to be an iterable of length 1,2 got {past}" if len(past) == 1: assert isinstance(past[0], tf.Tensor), f"`past[0]` has to be of type `tf.Tensor`, but is {type(past[0])}" encoder_outputs = TFBaseModelOutput(last_hidden_state=past[0]) past_key_values = None else: assert ( len(past) == 2 ), "`past` has to be of length 2 with the encoder_outputs at the first position and past_key_values at the second position." encoder_outputs, past_key_values = past if isinstance(encoder_outputs, tuple): assert isinstance( encoder_outputs[0], tf.Tensor ), f"`encoder_outputs[0]` has to be of type `tf.Tensor`, but is {type(encoder_outputs[0])}" encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs[0]) elif isinstance(encoder_outputs, tf.Tensor): encoder_outputs = TFBaseModelOutput(last_hidden_state=encoder_outputs) assert ( past_key_values ), f"decoder cached states must be truthy. got {past_key_values} from the 2nd element of past" decoder_input_ids = decoder_input_ids[:, -1:] assert isinstance( encoder_outputs, TFBaseModelOutput ), f"encoder_outputs should be a TFBaseModelOutput, Instead got {type(encoder_outputs)}." return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past, beam_idx): if len(past) == 1: return past past_key_values = past[1] reordered_past = () for layer_past_key_values in past_key_values: reordered_past += ( tuple(tf.gather(layer_past_key_value, beam_idx) for layer_past_key_value in layer_past_key_values[:2]) + layer_past_key_values[2:], ) return (past[0], reordered_past)
AdaMix/src/transformers/models/bart/modeling_tf_bart.py/0
{ "file_path": "AdaMix/src/transformers/models/bart/modeling_tf_bart.py", "repo_id": "AdaMix", "token_count": 30206 }
49
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script can be used to convert a head-less TF2.x Bert model to PyTorch, as published on the official GitHub: https://github.com/tensorflow/models/tree/master/official/nlp/bert TF2.x uses different variable names from the original BERT (TF 1.4) implementation. The script re-maps the TF2.x Bert weight names to the original names, so the model can be imported with Huggingface/transformer. You may adapt this script to include classification/MLM/NSP/etc. heads. """ import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def load_tf2_weights_in_bert(model, tf_checkpoint_path, config): tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] layer_depth = [] for full_name, shape in init_vars: # logger.info("Loading TF weight {} with shape {}".format(name, shape)) name = full_name.split("/") if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}") continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}") continue if name[0] == "model": # ignore initial 'model' name = name[1:] # figure out how many levels deep the name is depth = 0 for _name in name: if _name.startswith("layer_with_weights"): depth += 1 else: break layer_depth.append(depth) # read data array = tf.train.load_variable(tf_path, full_name) names.append("/".join(name)) arrays.append(array) logger.info(f"Read a total of {len(arrays):,} layers") # Sanity check if len(set(layer_depth)) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(layer_depth))})") layer_depth = list(set(layer_depth))[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP heads." ) # convert layers logger.info("Converting weights...") for full_name, array in zip(names, arrays): name = full_name.split("/") pointer = model trace = [] for i, m_name in enumerate(name): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights"): layer_num = int(m_name.split("-")[-1]) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"]) pointer = getattr(pointer, "embeddings") pointer = getattr(pointer, "LayerNorm") elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4)]) pointer = getattr(pointer, "encoder") pointer = getattr(pointer, "layer") pointer = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"]) pointer = getattr(pointer, "pooler") pointer = getattr(pointer, "dense") elif m_name == "embeddings": trace.append("embeddings") pointer = getattr(pointer, "embeddings") if layer_num == 0: trace.append("word_embeddings") pointer = getattr(pointer, "word_embeddings") elif layer_num == 1: trace.append("position_embeddings") pointer = getattr(pointer, "position_embeddings") elif layer_num == 2: trace.append("token_type_embeddings") pointer = getattr(pointer, "token_type_embeddings") else: raise ValueError("Unknown embedding layer with name {full_name}") trace.append("weight") pointer = getattr(pointer, "weight") elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"]) pointer = getattr(pointer, "attention") pointer = getattr(pointer, "self") elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"]) pointer = getattr(pointer, "attention") pointer = getattr(pointer, "output") pointer = getattr(pointer, "LayerNorm") elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"]) pointer = getattr(pointer, "attention") pointer = getattr(pointer, "output") pointer = getattr(pointer, "dense") elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"]) pointer = getattr(pointer, "output") pointer = getattr(pointer, "dense") elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"]) pointer = getattr(pointer, "output") pointer = getattr(pointer, "LayerNorm") elif m_name == "_key_dense": # attention key trace.append("key") pointer = getattr(pointer, "key") elif m_name == "_query_dense": # attention query trace.append("query") pointer = getattr(pointer, "query") elif m_name == "_value_dense": # attention value trace.append("value") pointer = getattr(pointer, "value") elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"]) pointer = getattr(pointer, "intermediate") pointer = getattr(pointer, "dense") elif m_name == "_output_layer_norm": # output layer norm trace.append("output") pointer = getattr(pointer, "output") # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias") pointer = getattr(pointer, "bias") elif m_name in ["kernel", "gamma"]: trace.append("weight") pointer = getattr(pointer, "weight") else: logger.warning(f"Ignored {m_name}") # for certain layers reshape is necessary trace = ".".join(trace) if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)", trace) or re.match( r"(\S+)\.attention\.output\.dense\.weight", trace ): array = array.reshape(pointer.data.shape) if "kernel" in full_name: array = array.transpose() if pointer.shape == array.shape: pointer.data = torch.from_numpy(array) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape: {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}") return model def convert_tf2_checkpoint_to_pytorch(tf_checkpoint_path, config_path, pytorch_dump_path): # Instantiate model logger.info(f"Loading model based on config from {config_path}...") config = BertConfig.from_json_file(config_path) model = BertModel(config) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}...") load_tf2_weights_in_bert(model, tf_checkpoint_path, config) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}...") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) args = parser.parse_args() convert_tf2_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
AdaMix/src/transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py/0
{ "file_path": "AdaMix/src/transformers/models/bert/convert_bert_original_tf2_checkpoint_to_pytorch.py", "repo_id": "AdaMix", "token_count": 4716 }
50
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ConvBERT model. """ import math import os from operator import attrgetter import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from ...activations import ACT2FN, get_activation from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import ( PreTrainedModel, SequenceSummary, apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer, ) from ...utils import logging from .configuration_convbert import ConvBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base" _CONFIG_FOR_DOC = "ConvBertConfig" _TOKENIZER_FOR_DOC = "ConvBertTokenizer" CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "YituTech/conv-bert-base", "YituTech/conv-bert-medium-small", "YituTech/conv-bert-small", # See all ConvBERT models at https://huggingface.co/models?filter=convbert ] def load_tf_weights_in_convbert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_data = {} for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) tf_data[name] = array param_mapping = { "embeddings.word_embeddings.weight": "electra/embeddings/word_embeddings", "embeddings.position_embeddings.weight": "electra/embeddings/position_embeddings", "embeddings.token_type_embeddings.weight": "electra/embeddings/token_type_embeddings", "embeddings.LayerNorm.weight": "electra/embeddings/LayerNorm/gamma", "embeddings.LayerNorm.bias": "electra/embeddings/LayerNorm/beta", "embeddings_project.weight": "electra/embeddings_project/kernel", "embeddings_project.bias": "electra/embeddings_project/bias", } if config.num_groups > 1: group_dense_name = "g_dense" else: group_dense_name = "dense" for j in range(config.num_hidden_layers): param_mapping[ f"encoder.layer.{j}.attention.self.query.weight" ] = f"electra/encoder/layer_{j}/attention/self/query/kernel" param_mapping[ f"encoder.layer.{j}.attention.self.query.bias" ] = f"electra/encoder/layer_{j}/attention/self/query/bias" param_mapping[ f"encoder.layer.{j}.attention.self.key.weight" ] = f"electra/encoder/layer_{j}/attention/self/key/kernel" param_mapping[ f"encoder.layer.{j}.attention.self.key.bias" ] = f"electra/encoder/layer_{j}/attention/self/key/bias" param_mapping[ f"encoder.layer.{j}.attention.self.value.weight" ] = f"electra/encoder/layer_{j}/attention/self/value/kernel" param_mapping[ f"encoder.layer.{j}.attention.self.value.bias" ] = f"electra/encoder/layer_{j}/attention/self/value/bias" param_mapping[ f"encoder.layer.{j}.attention.self.key_conv_attn_layer.depthwise.weight" ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/depthwise_kernel" param_mapping[ f"encoder.layer.{j}.attention.self.key_conv_attn_layer.pointwise.weight" ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/pointwise_kernel" param_mapping[ f"encoder.layer.{j}.attention.self.key_conv_attn_layer.bias" ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_key/bias" param_mapping[ f"encoder.layer.{j}.attention.self.conv_kernel_layer.weight" ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/kernel" param_mapping[ f"encoder.layer.{j}.attention.self.conv_kernel_layer.bias" ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_kernel/bias" param_mapping[ f"encoder.layer.{j}.attention.self.conv_out_layer.weight" ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/kernel" param_mapping[ f"encoder.layer.{j}.attention.self.conv_out_layer.bias" ] = f"electra/encoder/layer_{j}/attention/self/conv_attn_point/bias" param_mapping[ f"encoder.layer.{j}.attention.output.dense.weight" ] = f"electra/encoder/layer_{j}/attention/output/dense/kernel" param_mapping[ f"encoder.layer.{j}.attention.output.LayerNorm.weight" ] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/gamma" param_mapping[ f"encoder.layer.{j}.attention.output.dense.bias" ] = f"electra/encoder/layer_{j}/attention/output/dense/bias" param_mapping[ f"encoder.layer.{j}.attention.output.LayerNorm.bias" ] = f"electra/encoder/layer_{j}/attention/output/LayerNorm/beta" param_mapping[ f"encoder.layer.{j}.intermediate.dense.weight" ] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/kernel" param_mapping[ f"encoder.layer.{j}.intermediate.dense.bias" ] = f"electra/encoder/layer_{j}/intermediate/{group_dense_name}/bias" param_mapping[ f"encoder.layer.{j}.output.dense.weight" ] = f"electra/encoder/layer_{j}/output/{group_dense_name}/kernel" param_mapping[ f"encoder.layer.{j}.output.dense.bias" ] = f"electra/encoder/layer_{j}/output/{group_dense_name}/bias" param_mapping[ f"encoder.layer.{j}.output.LayerNorm.weight" ] = f"electra/encoder/layer_{j}/output/LayerNorm/gamma" param_mapping[f"encoder.layer.{j}.output.LayerNorm.bias"] = f"electra/encoder/layer_{j}/output/LayerNorm/beta" for param in model.named_parameters(): param_name = param[0] retriever = attrgetter(param_name) result = retriever(model) tf_name = param_mapping[param_name] value = torch.from_numpy(tf_data[tf_name]) logger.info(f"TF: {tf_name}, PT: {param_name} ") if tf_name.endswith("/kernel"): if not tf_name.endswith("/intermediate/g_dense/kernel"): if not tf_name.endswith("/output/g_dense/kernel"): value = value.T if tf_name.endswith("/depthwise_kernel"): value = value.permute(1, 2, 0) # 2, 0, 1 if tf_name.endswith("/pointwise_kernel"): value = value.permute(2, 1, 0) # 2, 1, 0 if tf_name.endswith("/conv_attn_key/bias"): value = value.unsqueeze(-1) result.data = value return model class ConvBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class ConvBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvBertConfig load_tf_weights = load_tf_weights_in_convbert base_model_prefix = "convbert" authorized_missing_keys = [r"position_ids"] authorized_unexpected_keys = [r"convbert\.embeddings_project\.weight", r"convbert\.embeddings_project\.bias"] def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class SeparableConv1D(nn.Module): """This class implements separable convolution, i.e. a depthwise and a pointwise layer""" def __init__(self, config, input_filters, output_filters, kernel_size, **kwargs): super().__init__() self.depthwise = nn.Conv1d( input_filters, input_filters, kernel_size=kernel_size, groups=input_filters, padding=kernel_size // 2, bias=False, ) self.pointwise = nn.Conv1d(input_filters, output_filters, kernel_size=1, bias=False) self.bias = nn.Parameter(torch.zeros(output_filters, 1)) self.depthwise.weight.data.normal_(mean=0.0, std=config.initializer_range) self.pointwise.weight.data.normal_(mean=0.0, std=config.initializer_range) def forward(self, hidden_states): x = self.depthwise(hidden_states) x = self.pointwise(x) x += self.bias return x class ConvBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) new_num_attention_heads = config.num_attention_heads // config.head_ratio if new_num_attention_heads < 1: self.head_ratio = config.num_attention_heads self.num_attention_heads = 1 else: self.num_attention_heads = new_num_attention_heads self.head_ratio = config.head_ratio self.conv_kernel_size = config.conv_kernel_size assert ( config.hidden_size % self.num_attention_heads == 0 ), "hidden_size should be divisible by num_attention_heads" self.attention_head_size = config.hidden_size // config.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.key_conv_attn_layer = SeparableConv1D( config, config.hidden_size, self.all_head_size, self.conv_kernel_size ) self.conv_kernel_layer = nn.Linear(self.all_head_size, self.num_attention_heads * self.conv_kernel_size) self.conv_out_layer = nn.Linear(config.hidden_size, self.all_head_size) self.unfold = nn.Unfold( kernel_size=[self.conv_kernel_size, 1], padding=[int((self.conv_kernel_size - 1) / 2), 0] ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, output_attentions=False, ): mixed_query_layer = self.query(hidden_states) batch_size = hidden_states.size(0) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states.transpose(1, 2)) mixed_key_conv_attn_layer = mixed_key_conv_attn_layer.transpose(1, 2) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) conv_attn_layer = torch.multiply(mixed_key_conv_attn_layer, mixed_query_layer) conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer) conv_kernel_layer = torch.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1]) conv_kernel_layer = torch.softmax(conv_kernel_layer, dim=1) conv_out_layer = self.conv_out_layer(hidden_states) conv_out_layer = torch.reshape(conv_out_layer, [batch_size, -1, self.all_head_size]) conv_out_layer = conv_out_layer.transpose(1, 2).contiguous().unsqueeze(-1) conv_out_layer = nn.functional.unfold( conv_out_layer, kernel_size=[self.conv_kernel_size, 1], dilation=1, padding=[(self.conv_kernel_size - 1) // 2, 0], stride=1, ) conv_out_layer = conv_out_layer.transpose(1, 2).reshape( batch_size, -1, self.all_head_size, self.conv_kernel_size ) conv_out_layer = torch.reshape(conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size]) conv_out_layer = torch.matmul(conv_out_layer, conv_kernel_layer) conv_out_layer = torch.reshape(conv_out_layer, [-1, self.all_head_size]) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ConvBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = torch.nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() conv_out = torch.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size]) context_layer = torch.cat([context_layer, conv_out], 2) new_context_layer_shape = context_layer.size()[:-2] + (self.head_ratio * self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class ConvBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class ConvBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = ConvBertSelfAttention(config) self.output = ConvBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, output_attentions=False, ): self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class GroupedLinearLayer(nn.Module): def __init__(self, input_size, output_size, num_groups): super().__init__() self.input_size = input_size self.output_size = output_size self.num_groups = num_groups self.group_in_dim = self.input_size // self.num_groups self.group_out_dim = self.output_size // self.num_groups self.weight = nn.Parameter(torch.Tensor(self.num_groups, self.group_in_dim, self.group_out_dim)) self.bias = nn.Parameter(torch.Tensor(output_size)) def forward(self, hidden_states): batch_size = list(hidden_states.size())[0] x = torch.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim]) x = x.permute(1, 0, 2) x = torch.matmul(x, self.weight) x = x.permute(1, 0, 2) x = torch.reshape(x, [batch_size, -1, self.output_size]) x = x + self.bias return x class ConvBertIntermediate(nn.Module): def __init__(self, config): super().__init__() if config.num_groups == 1: self.dense = nn.Linear(config.hidden_size, config.intermediate_size) else: self.dense = GroupedLinearLayer( input_size=config.hidden_size, output_size=config.intermediate_size, num_groups=config.num_groups ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class ConvBertOutput(nn.Module): def __init__(self, config): super().__init__() if config.num_groups == 1: self.dense = nn.Linear(config.intermediate_size, config.hidden_size) else: self.dense = GroupedLinearLayer( input_size=config.intermediate_size, output_size=config.hidden_size, num_groups=config.num_groups ) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class ConvBertLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ConvBertAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added" self.crossattention = ConvBertAttention(config) self.intermediate = ConvBertIntermediate(config) self.output = ConvBertOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False, ): self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.is_decoder and encoder_hidden_states is not None: assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" cross_attention_outputs = self.crossattention( attention_output, encoder_attention_mask, head_mask, encoder_hidden_states, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class ConvBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ConvBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if getattr(self.config, "gradient_checkpointing", False): def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class ConvBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states CONVBERT_START_DOCSTRING = r""" This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.ConvBertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ CONVBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`transformers.ConvBertTokenizer`. See :func:`transformers.PreTrainedTokenizer.encode` and :func:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.", CONVBERT_START_DOCSTRING, ) class ConvBertModel(ConvBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = ConvBertEmbeddings(config) if config.embedding_size != config.hidden_size: self.embeddings_project = nn.Linear(config.embedding_size, config.hidden_size) self.encoder = ConvBertEncoder(config) self.config = config self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) hidden_states = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states) hidden_states = self.encoder( hidden_states, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return hidden_states class ConvBertGeneratorPredictions(nn.Module): """Prediction module for the generator, made up of two dense layers.""" def __init__(self, config): super().__init__() self.LayerNorm = nn.LayerNorm(config.embedding_size) self.dense = nn.Linear(config.hidden_size, config.embedding_size) def forward(self, generator_hidden_states): hidden_states = self.dense(generator_hidden_states) hidden_states = get_activation("gelu")(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states @add_start_docstrings("""ConvBERT Model with a `language modeling` head on top. """, CONVBERT_START_DOCSTRING) class ConvBertForMaskedLM(ConvBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.convbert = ConvBertModel(config) self.generator_predictions = ConvBertGeneratorPredictions(config) self.generator_lm_head = nn.Linear(config.embedding_size, config.vocab_size) self.init_weights() def get_output_embeddings(self): return self.generator_lm_head def set_output_embeddings(self, word_embeddings): self.generator_lm_head = word_embeddings @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict generator_hidden_states = self.convbert( input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output) prediction_scores = self.generator_lm_head(prediction_scores) loss = None # Masked language modeling softmax layer if labels is not None: loss_fct = nn.CrossEntropyLoss() # -100 index = padding token loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + generator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return MaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=generator_hidden_states.hidden_states, attentions=generator_hidden_states.attentions, ) class ConvBertClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, hidden_states, **kwargs): x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ ConvBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, CONVBERT_START_DOCSTRING, ) class ConvBertForSequenceClassification(ConvBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.convbert = ConvBertModel(config) self.classifier = ConvBertClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.convbert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, CONVBERT_START_DOCSTRING, ) class ConvBertForMultipleChoice(ConvBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.convbert = ConvBertModel(config) self.sequence_summary = SequenceSummary(config) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward( CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.convbert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] pooled_output = self.sequence_summary(sequence_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CONVBERT_START_DOCSTRING, ) class ConvBertForTokenClassification(ConvBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.convbert = ConvBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.convbert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, CONVBERT_START_DOCSTRING, ) class ConvBertForQuestionAnswering(ConvBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.convbert = ConvBertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.convbert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
AdaMix/src/transformers/models/convbert/modeling_convbert.py/0
{ "file_path": "AdaMix/src/transformers/models/convbert/modeling_convbert.py", "repo_id": "AdaMix", "token_count": 23815 }
51
# coding=utf-8 # Copyright 2019 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF Electra model. """ import math import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFTokenClassificationLoss, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_electra import ElectraConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/electra-small-discriminator" _CONFIG_FOR_DOC = "ElectraConfig" _TOKENIZER_FOR_DOC = "ElectraTokenizer" TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/electra-small-generator", "google/electra-base-generator", "google/electra-large-generator", "google/electra-small-discriminator", "google/electra-base-discriminator", "google/electra-large-discriminator", # See all ELECTRA models at https://huggingface.co/models?filter=electra ] # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Electra class TFElectraSelfAttention(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFElectraModel call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Electra class TFElectraSelfOutput(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Electra class TFElectraAttention(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFElectraSelfAttention(config, name="self") self.dense_output = TFElectraSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Electra class TFElectraIntermediate(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Electra class TFElectraOutput(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Electra class TFElectraLayer(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.attention = TFElectraAttention(config, name="attention") self.intermediate = TFElectraIntermediate(config, name="intermediate") self.bert_output = TFElectraOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Electra class TFElectraEncoder(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.layer = [TFElectraLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Electra class TFElectraPooler(tf.keras.layers.Layer): def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output # Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->Electra class TFElectraEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: ElectraConfig, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.type_vocab_size = config.type_vocab_size self.embedding_size = config.embedding_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embeddings_sum = tf.keras.layers.Add() self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.embedding_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (:obj:`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = self.embeddings_sum(inputs=[inputs_embeds, position_embeds, token_type_embeds]) final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFElectraDiscriminatorPredictions(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense") self.dense_prediction = tf.keras.layers.Dense(1, name="dense_prediction") self.config = config def call(self, discriminator_hidden_states, training=False): hidden_states = self.dense(discriminator_hidden_states) hidden_states = get_tf_activation(self.config.hidden_act)(hidden_states) logits = tf.squeeze(self.dense_prediction(hidden_states), -1) return logits class TFElectraGeneratorPredictions(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dense = tf.keras.layers.Dense(config.embedding_size, name="dense") def call(self, generator_hidden_states, training=False): hidden_states = self.dense(generator_hidden_states) hidden_states = get_tf_activation("gelu")(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFElectraPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ElectraConfig base_model_prefix = "electra" # When the model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"generator_lm_head.weight"] _keys_to_ignore_on_load_missing = [r"dropout"] @keras_serializable class TFElectraMainLayer(tf.keras.layers.Layer): config_class = ElectraConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFElectraEmbeddings(config, name="embeddings") if config.embedding_size != config.hidden_size: self.embeddings_project = tf.keras.layers.Dense(config.hidden_size, name="embeddings_project") self.encoder = TFElectraEncoder(config, name="encoder") self.config = config def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def get_extended_attention_mask(self, attention_mask, input_shape, dtype): if attention_mask is None: attention_mask = tf.fill(input_shape, 1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers return head_mask def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["attention_mask"] is None: inputs["attention_mask"] = tf.fill(input_shape, 1) if inputs["token_type_ids"] is None: inputs["token_type_ids"] = tf.fill(input_shape, 0) hidden_states = self.embeddings( inputs["input_ids"], inputs["position_ids"], inputs["token_type_ids"], inputs["inputs_embeds"], training=inputs["training"], ) extended_attention_mask = self.get_extended_attention_mask( inputs["attention_mask"], input_shape, hidden_states.dtype ) inputs["head_mask"] = self.get_head_mask(inputs["head_mask"]) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states, training=inputs["training"]) hidden_states = self.encoder( hidden_states, extended_attention_mask, inputs["head_mask"], inputs["output_attentions"], inputs["output_hidden_states"], inputs["return_dict"], training=inputs["training"], ) return hidden_states @dataclass class TFElectraForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.TFElectraForPreTraining`. Args: loss (`optional`, returned when ``labels`` is provided, ``tf.Tensor`` of shape :obj:`(1,)`): Total loss of the ELECTRA objective. logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None ELECTRA_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.ElectraConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ ELECTRA_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.ElectraTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Electra Model transformer outputting raw hidden-states without any specific head on top. Identical to " "the BERT model except that it uses an additional linear layer between the embedding layer and the encoder if the " "hidden size and embedding size are different." "" "Both the generator and discriminator checkpoints may be loaded into this model.", ELECTRA_START_DOCSTRING, ) class TFElectraModel(TFElectraPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs # Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns) @add_start_docstrings( """ Electra model with a binary classification head on top as used during pretraining for identifying generated tokens. Even though both the discriminator and generator may be loaded into this model, the discriminator is the only model of the two to have the correct classification head to be used for this model. """, ELECTRA_START_DOCSTRING, ) class TFElectraForPreTraining(TFElectraPreTrainedModel): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.discriminator_predictions = TFElectraDiscriminatorPredictions(config, name="discriminator_predictions") @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" Returns: Examples:: >>> import tensorflow as tf >>> from transformers import ElectraTokenizer, TFElectraForPreTraining >>> tokenizer = ElectraTokenizer.from_pretrained('google/electra-small-discriminator') >>> model = TFElectraForPreTraining.from_pretrained('google/electra-small-discriminator') >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> scores = outputs[0] """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) discriminator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) if not inputs["return_dict"]: return (logits,) + discriminator_hidden_states[1:] return TFElectraForPreTrainingOutput( logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFElectraForPreTrainingOutput(logits=output.logits, hidden_states=hs, attentions=attns) class TFElectraMaskedLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.embedding_size = config.embedding_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states @add_start_docstrings( """ Electra model with a language modeling head on top. Even though both the discriminator and generator may be loaded into this model, the generator is the only model of the two to have been trained for the masked language modeling task. """, ELECTRA_START_DOCSTRING, ) class TFElectraForMaskedLM(TFElectraPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.vocab_size = config.vocab_size self.electra = TFElectraMainLayer(config, name="electra") self.generator_predictions = TFElectraGeneratorPredictions(config, name="generator_predictions") if isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act self.generator_lm_head = TFElectraMaskedLMHead(config, self.electra.embeddings, name="generator_lm_head") def get_lm_head(self): return self.generator_lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.generator_lm_head.name @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) generator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output, training=inputs["training"]) prediction_scores = self.generator_lm_head(prediction_scores, training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) if not inputs["return_dict"]: output = (prediction_scores,) + generator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=generator_hidden_states.hidden_states, attentions=generator_hidden_states.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns) class TFElectraClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) def call(self, inputs, **kwargs): x = inputs[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = get_tf_activation("gelu")(x) # although BERT uses tanh here, it seems Electra authors used gelu here x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ ELECTRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ELECTRA_START_DOCSTRING, ) class TFElectraForSequenceClassification(TFElectraPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.electra = TFElectraMainLayer(config, name="electra") self.classifier = TFElectraClassificationHead(config, name="classifier") @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.classifier(outputs[0]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ELECTRA_START_DOCSTRING, ) class TFElectraForMultipleChoice(TFElectraPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)} @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.electra( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, inputs["head_mask"], flat_inputs_embeds, inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) logits = self.sequence_summary(outputs[0]) logits = self.classifier(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"), } ] ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving def serving(self, inputs: Dict[str, tf.Tensor]): output = self.call(input_ids=inputs) return self.serving_output(output) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving_output def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ Electra model with a token classification head on top. Both the discriminator and generator may be loaded into this model. """, ELECTRA_START_DOCSTRING, ) class TFElectraForTokenClassification(TFElectraPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.electra = TFElectraMainLayer(config, name="electra") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) discriminator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) discriminator_sequence_output = discriminator_hidden_states[0] discriminator_sequence_output = self.dropout(discriminator_sequence_output) logits = self.classifier(discriminator_sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ Electra Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ELECTRA_START_DOCSTRING, ) class TFElectraForQuestionAnswering(TFElectraPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.electra = TFElectraMainLayer(config, name="electra") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) discriminator_hidden_states = self.electra( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.qa_outputs(discriminator_sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = ( start_logits, end_logits, ) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForQuestionAnswering.serving_output def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns )
AdaMix/src/transformers/models/electra/modeling_tf_electra.py/0
{ "file_path": "AdaMix/src/transformers/models/electra/modeling_tf_electra.py", "repo_id": "AdaMix", "token_count": 26929 }
52
# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Flaubert model, based on XLM. """ import random import torch from torch.nn import functional as F from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import BaseModelOutput from ...utils import logging from ..xlm.modeling_xlm import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, get_masks, ) from .configuration_flaubert import FlaubertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased" _CONFIG_FOR_DOC = "FlaubertConfig" _TOKENIZER_FOR_DOC = "FlaubertTokenizer" FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "flaubert/flaubert_small_cased", "flaubert/flaubert_base_uncased", "flaubert/flaubert_base_cased", "flaubert/flaubert_large_cased", # See all Flaubert models at https://huggingface.co/models?filter=flaubert ] FLAUBERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.FlaubertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ FLAUBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.FlaubertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ lengths (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use :obj:`attention_mask` for the same result (see above), kept here for compatibility. Indices selected in ``[0, ..., input_ids.size(-1)]``: cache (:obj:`Dict[str, torch.FloatTensor]`, `optional`): Dictionary strings to ``torch.FloatTensor`` that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see :obj:`cache` output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states. head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.", FLAUBERT_START_DOCSTRING, ) class FlaubertModel(XLMModel): config_class = FlaubertConfig def __init__(self, config): # , dico, is_encoder, with_output): super().__init__(config) self.layerdrop = getattr(config, "layerdrop", 0.0) self.pre_norm = getattr(config, "pre_norm", False) @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # removed: src_enc=None, src_len=None if input_ids is not None: bs, slen = input_ids.size() else: bs, slen = inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device if lengths is None: if input_ids is not None: lengths = (input_ids != self.pad_index).sum(dim=1).long() else: lengths = torch.tensor([slen] * bs, device=device) # mask = input_ids != self.pad_index # check inputs assert lengths.size(0) == bs assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # position_ids if position_ids is None: position_ids = torch.arange(slen, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand((bs, slen)) else: assert position_ids.size() == (bs, slen) # (slen, bs) # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: assert langs.size() == (bs, slen) # (slen, bs) # langs = langs.transpose(0, 1) # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.n_layers) # do not recompute cached elements if cache is not None and input_ids is not None: _slen = slen - cache["slen"] input_ids = input_ids[:, -_slen:] position_ids = position_ids[:, -_slen:] if langs is not None: langs = langs[:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds) if langs is not None and self.use_lang_emb and self.config.n_langs > 1: tensor = tensor + self.lang_embeddings(langs) if token_type_ids is not None: tensor = tensor + self.embeddings(token_type_ids) tensor = self.layer_norm_emb(tensor) tensor = F.dropout(tensor, p=self.dropout, training=self.training) tensor *= mask.unsqueeze(-1).to(tensor.dtype) # transformer layers hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None for i in range(self.n_layers): # LayerDrop dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue if output_hidden_states: hidden_states = hidden_states + (tensor,) # self attention if not self.pre_norm: attn_outputs = self.attentions[i]( tensor, attn_mask, cache=cache, head_mask=head_mask[i], output_attentions=output_attentions, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = F.dropout(attn, p=self.dropout, training=self.training) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) else: tensor_normalized = self.layer_norm1[i](tensor) attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i]) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = F.dropout(attn, p=self.dropout, training=self.training) tensor = tensor + attn # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = F.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN if not self.pre_norm: tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) else: tensor_normalized = self.layer_norm2[i](tensor) tensor = tensor + self.ffns[i](tensor_normalized) tensor *= mask.unsqueeze(-1).to(tensor.dtype) # Add last hidden state if output_hidden_states: hidden_states = hidden_states + (tensor,) # update cache length if cache is not None: cache["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not return_dict: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions) @add_start_docstrings( """ The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, FLAUBERT_START_DOCSTRING, ) class FlaubertWithLMHeadModel(XLMWithLMHeadModel): """ This class overrides :class:`~transformers.XLMWithLMHeadModel`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = FlaubertConfig def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.init_weights() @add_start_docstrings( """ Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FLAUBERT_START_DOCSTRING, ) class FlaubertForSequenceClassification(XLMForSequenceClassification): """ This class overrides :class:`~transformers.XLMForSequenceClassification`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = FlaubertConfig def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.init_weights() @add_start_docstrings( """ Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FLAUBERT_START_DOCSTRING, ) class FlaubertForTokenClassification(XLMForTokenClassification): """ This class overrides :class:`~transformers.XLMForTokenClassification`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = FlaubertConfig def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.init_weights() @add_start_docstrings( """ Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAUBERT_START_DOCSTRING, ) class FlaubertForQuestionAnsweringSimple(XLMForQuestionAnsweringSimple): """ This class overrides :class:`~transformers.XLMForQuestionAnsweringSimple`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = FlaubertConfig def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.init_weights() @add_start_docstrings( """ Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAUBERT_START_DOCSTRING, ) class FlaubertForQuestionAnswering(XLMForQuestionAnswering): """ This class overrides :class:`~transformers.XLMForQuestionAnswering`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = FlaubertConfig def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.init_weights() @add_start_docstrings( """ Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FLAUBERT_START_DOCSTRING, ) class FlaubertForMultipleChoice(XLMForMultipleChoice): """ This class overrides :class:`~transformers.XLMForMultipleChoice`. Please check the superclass for the appropriate documentation alongside usage examples. """ config_class = FlaubertConfig def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.init_weights()
AdaMix/src/transformers/models/flaubert/modeling_flaubert.py/0
{ "file_path": "AdaMix/src/transformers/models/flaubert/modeling_flaubert.py", "repo_id": "AdaMix", "token_count": 7202 }
53
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT-2 model.""" import os from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.nn as nn import torch.utils.checkpoint from torch.nn import CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, SequenceClassifierOutputWithPast, ) from ...modeling_utils import ( Conv1D, PreTrainedModel, SequenceSummary, find_pruneable_heads_and_indices, prune_conv1d_layer, ) from ...utils import logging from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_gpt2 import GPT2Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "gpt2" _CONFIG_FOR_DOC = "GPT2Config" _TOKENIZER_FOR_DOC = "GPT2Tokenizer" GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [ "gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl", "distilgpt2", # See all GPT-2 models at https://huggingface.co/models?filter=gpt2 ] def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): """Load tf checkpoints in a pytorch model""" try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt2_checkpoint_path) logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info("Loading TF weight {} with shape {}".format(name, shape)) array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array.squeeze()) for name, array in zip(names, arrays): name = name[6:] # skip "model/" name = name.split("/") pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info("Initialize PyTorch weight {}".format(name)) pointer.data = torch.from_numpy(array) return model class Attention(nn.Module): def __init__(self, nx, n_ctx, config, scale=False, is_cross_attention=False): super().__init__() n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.register_buffer( "bias", torch.tril(torch.ones((n_ctx, n_ctx), dtype=torch.uint8)).view(1, 1, n_ctx, n_ctx) ) self.register_buffer("masked_bias", torch.tensor(-1e4)) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.is_cross_attention = is_cross_attention if self.is_cross_attention: self.c_attn = Conv1D(2 * n_state, nx) self.q_attn = Conv1D(n_state, nx) else: self.c_attn = Conv1D(3 * n_state, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_head, self.split_size // self.n_head, self.pruned_heads ) index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False): w = torch.matmul(q, k) if self.scale: w = w / (float(v.size(-1)) ** 0.5) nd, ns = w.size(-2), w.size(-1) if not self.is_cross_attention: # if only "normal" attention layer implements causal mask mask = self.bias[:, :, ns - nd : ns, :ns] w = torch.where(mask.bool(), w, self.masked_bias.to(w.dtype)) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = nn.Softmax(dim=-1)(w) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = (torch.matmul(w, v),) if output_attentions: outputs += (w,) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) else: return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False, ): if encoder_hidden_states is not None: assert hasattr( self, "q_attn" ), "If class is used as cross attention, the weights `q_attn` have to be defined. Please make sure to instantiate class with `Attention(..., is_cross_attention=True)`." query = self.q_attn(hidden_states) key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) attention_mask = encoder_attention_mask else: query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) if layer_past is not None: past_key, past_value = layer_past[0].transpose(-2, -1), layer_past[1] # transpose back cf below key = torch.cat((past_key, key), dim=-1) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key.transpose(-2, -1), value) # transpose to have same shapes else: present = None attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) return (a, present) + attn_outputs[1:] # a, present, (attentions) class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super().__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_ctx, config, scale=False): super().__init__() hidden_size = config.n_embd inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = Attention(hidden_size, n_ctx, config, scale) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: self.crossattention = Attention(hidden_size, n_ctx, config, scale, is_cross_attention=True) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = MLP(inner_dim, config) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False, ): attn_outputs = self.attn( self.ln_1(hidden_states), layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + hidden_states if encoder_hidden_states is not None: # add one self-attention block for cross-attention assert hasattr( self, "crossattention" ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`" cross_attn_outputs = self.crossattention( self.ln_cross_attn(hidden_states), attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = hidden_states + attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights feed_forward_hidden_states = self.mlp(self.ln_2(hidden_states)) # residual connection hidden_states = hidden_states + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" is_parallelizable = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class GPT2DoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided): Language modeling loss. mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided): Multiple choice classification loss. logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): Tuple of length :obj:`config.n_layers`, containing tuples of tensors of shape :obj:`(batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see :obj:`past_key_values` input) to speed up sequential decoding. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mc_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mc_logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None GPT2_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ GPT2_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`): :obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else ``past_key_values[0][0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input sequence tokens in the vocabulary. If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be passed as ``input_ids``. Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see :obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which have their past given to this model should not be passed as ``input_ids`` as they have already been computed. attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see :obj:`past_key_values`). use_cache (:obj:`bool`, `optional`): If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up decoding (see :obj:`past_key_values`). output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (:obj:`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the following number of attention modules: - gpt2: 12 - gpt2-medium: 24 - gpt2-large: 36 - gpt2-xl: 48 Example:: # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: model = GPT2LMHeadModel.from_pretrained('gpt2-xl') device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8], 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]} model.parallelize(device_map) """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to cpu from a model parallel state. Example:: # On a 4 GPU machine with gpt2-large: model = GPT2LMHeadModel.from_pretrained('gpt2-large') device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7], 1: [8, 9, 10, 11, 12, 13, 14, 15], 2: [16, 17, 18, 19, 20, 21, 22, 23], 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]} model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() """ @add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, ) class GPT2Model(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.wte = nn.Embedding(config.vocab_size, config.n_embd) self.wpe = nn.Embedding(config.n_positions, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): # Check validity of device_map self.device_map = ( get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.h)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) self.wte = self.wte.to(self.first_device) self.wpe = self.wpe.to(self.first_device) # Load onto devices for k, v in self.device_map.items(): for block in v: cuda_device = "cuda:" + str(k) self.h[block] = self.h[block].to(cuda_device) # ln_f to last self.ln_f = self.ln_f.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" self.wte = self.wte.to("cpu") self.wpe = self.wpe.to("cpu") for index in range(len(self.h)): self.h[index] = self.h[index].to("cpu") self.ln_f = self.ln_f.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: assert batch_size > 0, "batch_size has to be defined and > 0" attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * -10000.0 # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.add_cross_attention and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warn( "`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting " "`use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, ) class GPT2LMHeadModel(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, GPT2_START_DOCSTRING, ) class GPT2DoubleHeadsModel(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.multiple_choice_head = self.multiple_choice_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past: position_ids = position_ids[:, -1].unsqueeze(-1) else: position_ids = None return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, mc_token_ids=None, labels=None, mc_labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs, ): r""" mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1[``. labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size - 1]`` All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size - 1]`` mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Return: Example:: >>> import torch >>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel >>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2') >>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2') >>> # Add a [CLS] to the vocabulary (we should train it also!) >>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'}) >>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> encoded_choices = [tokenizer.encode(s) for s in choices] >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] >>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 >>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) >>> lm_logits = outputs.logits >>> mc_logits = outputs.mc_logits """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) mc_loss = None if mc_labels is not None: loss_fct = CrossEntropyLoss() mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) lm_loss = None if labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_loss is not None: output = (mc_loss,) + output return ((lm_loss,) + output) if lm_loss is not None else output return GPT2DoubleHeadsModelOutput( loss=lm_loss, mc_loss=mc_loss, logits=lm_logits, mc_logits=mc_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the :obj:`past_key_values` cache if :meth:`~transformers.PretrainedModel.beam_search` or :meth:`~transformers.PretrainedModel.beam_sample` is called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past ) @add_start_docstrings( """ The GPT2 Model transformer with a sequence classification head on top (linear layer). :class:`~transformers.GPT2ForSequenceClassification` uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take the last value in each row of the batch). """, GPT2_START_DOCSTRING, ) class GPT2ForSequenceClassification(GPT2PreTrainedModel): _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPT2Model(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) self.init_weights() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="microsoft/dialogrpt", output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1 else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " f"unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
AdaMix/src/transformers/models/gpt2/modeling_gpt2.py/0
{ "file_path": "AdaMix/src/transformers/models/gpt2/modeling_gpt2.py", "repo_id": "AdaMix", "token_count": 24860 }
54
# coding=utf-8 # Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao, # Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team. # Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch I-BERT model. """ import math import torch import torch.nn as nn import torch.utils.checkpoint from torch.nn import CrossEntropyLoss, MSELoss from ...activations import gelu from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import logging from .configuration_ibert import IBertConfig from .quant_modules import IntGELU, IntLayerNorm, IntSoftmax, QuantAct, QuantEmbedding, QuantLinear logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "ibert-roberta-base" _CONFIG_FOR_DOC = "IBertConfig" _TOKENIZER_FOR_DOC = "RobertaTokenizer" IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "kssteven/ibert-roberta-base", "kssteven/ibert-roberta-large", "kssteven/ibert-roberta-large-mnli", ] class IBertEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.quant_mode = config.quant_mode self.embedding_bit = 8 self.embedding_act_bit = 16 self.act_bit = 8 self.ln_input_bit = 22 self.ln_output_bit = 32 self.word_embeddings = QuantEmbedding( config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id, weight_bit=self.embedding_bit, quant_mode=self.quant_mode, ) self.token_type_embeddings = QuantEmbedding( config.type_vocab_size, config.hidden_size, weight_bit=self.embedding_bit, quant_mode=self.quant_mode ) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") # End copy self.padding_idx = config.pad_token_id self.position_embeddings = QuantEmbedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx, weight_bit=self.embedding_bit, quant_mode=self.quant_mode, ) # Integer-only addition between embeddings self.embeddings_act1 = QuantAct(self.embedding_act_bit, quant_mode=self.quant_mode) self.embeddings_act2 = QuantAct(self.embedding_act_bit, quant_mode=self.quant_mode) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = IntLayerNorm( config.hidden_size, eps=config.layer_norm_eps, output_bit=self.ln_output_bit, quant_mode=self.quant_mode, force_dequant=config.force_dequant, ) self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids( input_ids, self.padding_idx, past_key_values_length ).to(input_ids.device) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds, inputs_embeds_scaling_factor = self.word_embeddings(input_ids) else: inputs_embeds_scaling_factor = None token_type_embeddings, token_type_embeddings_scaling_factor = self.token_type_embeddings(token_type_ids) embeddings, embeddings_scaling_factor = self.embeddings_act1( inputs_embeds, inputs_embeds_scaling_factor, identity=token_type_embeddings, identity_scaling_factor=token_type_embeddings_scaling_factor, ) if self.position_embedding_type == "absolute": position_embeddings, position_embeddings_scaling_factor = self.position_embeddings(position_ids) embeddings, embeddings_scaling_factor = self.embeddings_act1( embeddings, embeddings_scaling_factor, identity=position_embeddings, identity_scaling_factor=position_embeddings_scaling_factor, ) embeddings, embeddings_scaling_factor = self.LayerNorm(embeddings, embeddings_scaling_factor) embeddings = self.dropout(embeddings) embeddings, embeddings_scaling_factor = self.output_activation(embeddings, embeddings_scaling_factor) return embeddings, embeddings_scaling_factor def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class IBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.quant_mode = config.quant_mode self.weight_bit = 8 self.bias_bit = 32 self.act_bit = 8 self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size # Q, K, V Linear layers self.query = QuantLinear( config.hidden_size, self.all_head_size, bias=True, weight_bit=self.weight_bit, bias_bit=self.bias_bit, quant_mode=self.quant_mode, per_channel=True, ) self.key = QuantLinear( config.hidden_size, self.all_head_size, bias=True, weight_bit=self.weight_bit, bias_bit=self.bias_bit, quant_mode=self.quant_mode, per_channel=True, ) self.value = QuantLinear( config.hidden_size, self.all_head_size, bias=True, weight_bit=self.weight_bit, bias_bit=self.bias_bit, quant_mode=self.quant_mode, per_channel=True, ) # Requantization (32bit -> 8bit) for Q, K, V activations self.query_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.key_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.value_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") assert ( self.position_embedding_type == "absolute" ), "I-BERT only supports 'absolute' for `config.position_embedding_type`" self.softmax = IntSoftmax(self.act_bit, quant_mode=self.quant_mode, force_dequant=config.force_dequant) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, hidden_states_scaling_factor, attention_mask=None, head_mask=None, output_attentions=False, ): # Projection mixed_query_layer, mixed_query_layer_scaling_factor = self.query(hidden_states, hidden_states_scaling_factor) mixed_key_layer, mixed_key_layer_scaling_factor = self.key(hidden_states, hidden_states_scaling_factor) mixed_value_layer, mixed_value_layer_scaling_factor = self.value(hidden_states, hidden_states_scaling_factor) # Requantization query_layer, query_layer_scaling_factor = self.query_activation( mixed_query_layer, mixed_query_layer_scaling_factor ) key_layer, key_layer_scaling_factor = self.key_activation(mixed_key_layer, mixed_key_layer_scaling_factor) value_layer, value_layer_scaling_factor = self.value_activation( mixed_value_layer, mixed_value_layer_scaling_factor ) # Transpose query_layer = self.transpose_for_scores(query_layer) key_layer = self.transpose_for_scores(key_layer) value_layer = self.transpose_for_scores(value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) scale = math.sqrt(self.attention_head_size) attention_scores = attention_scores / scale if self.quant_mode: attention_scores_scaling_factor = query_layer_scaling_factor * key_layer_scaling_factor / scale else: attention_scores_scaling_factor = None if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in IBertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs, attention_probs_scaling_factor = self.softmax( attention_scores, attention_scores_scaling_factor ) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) if attention_probs_scaling_factor is not None: context_layer_scaling_factor = attention_probs_scaling_factor * value_layer_scaling_factor else: context_layer_scaling_factor = None context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) # requantization: 32-bit -> 8-bit context_layer, context_layer_scaling_factor = self.output_activation( context_layer, context_layer_scaling_factor ) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) output_scaling_factor = ( (context_layer_scaling_factor, attention_probs_scaling_factor) if output_attentions else (context_layer_scaling_factor,) ) return outputs, output_scaling_factor class IBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.quant_mode = config.quant_mode self.act_bit = 8 self.weight_bit = 8 self.bias_bit = 32 self.ln_input_bit = 22 self.ln_output_bit = 32 self.dense = QuantLinear( config.hidden_size, config.hidden_size, bias=True, weight_bit=self.weight_bit, bias_bit=self.bias_bit, quant_mode=self.quant_mode, per_channel=True, ) self.ln_input_act = QuantAct(self.ln_input_bit, quant_mode=self.quant_mode) self.LayerNorm = IntLayerNorm( config.hidden_size, eps=config.layer_norm_eps, output_bit=self.ln_output_bit, quant_mode=self.quant_mode, force_dequant=config.force_dequant, ) self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, hidden_states_scaling_factor, input_tensor, input_tensor_scaling_factor): hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) hidden_states = self.dropout(hidden_states) hidden_states, hidden_states_scaling_factor = self.ln_input_act( hidden_states, hidden_states_scaling_factor, identity=input_tensor, identity_scaling_factor=input_tensor_scaling_factor, ) hidden_states, hidden_states_scaling_factor = self.LayerNorm(hidden_states, hidden_states_scaling_factor) hidden_states, hidden_states_scaling_factor = self.output_activation( hidden_states, hidden_states_scaling_factor ) return hidden_states, hidden_states_scaling_factor class IBertAttention(nn.Module): def __init__(self, config): super().__init__() self.quant_mode = config.quant_mode self.self = IBertSelfAttention(config) self.output = IBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states, hidden_states_scaling_factor, attention_mask=None, head_mask=None, output_attentions=False, ): self_outputs, self_outputs_scaling_factor = self.self( hidden_states, hidden_states_scaling_factor, attention_mask, head_mask, output_attentions, ) attention_output, attention_output_scaling_factor = self.output( self_outputs[0], self_outputs_scaling_factor[0], hidden_states, hidden_states_scaling_factor ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them outputs_scaling_factor = (attention_output_scaling_factor,) + self_outputs_scaling_factor[1:] return outputs, outputs_scaling_factor class IBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.quant_mode = config.quant_mode self.act_bit = 8 self.weight_bit = 8 self.bias_bit = 32 self.dense = QuantLinear( config.hidden_size, config.intermediate_size, bias=True, weight_bit=self.weight_bit, bias_bit=self.bias_bit, quant_mode=self.quant_mode, per_channel=True, ) assert config.hidden_act == "gelu", "I-BERT only supports 'gelu' for `config.hidden_act`" self.intermediate_act_fn = IntGELU(quant_mode=self.quant_mode, force_dequant=config.force_dequant) self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) def forward(self, hidden_states, hidden_states_scaling_factor): hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) hidden_states, hidden_states_scaling_factor = self.intermediate_act_fn( hidden_states, hidden_states_scaling_factor ) # Requantization: 32bit -> 8-bit hidden_states, hidden_states_scaling_factor = self.output_activation( hidden_states, hidden_states_scaling_factor ) return hidden_states, hidden_states_scaling_factor class IBertOutput(nn.Module): def __init__(self, config): super().__init__() self.quant_mode = config.quant_mode self.act_bit = 8 self.weight_bit = 8 self.bias_bit = 32 self.ln_input_bit = 22 self.ln_output_bit = 32 self.dense = QuantLinear( config.intermediate_size, config.hidden_size, bias=True, weight_bit=self.weight_bit, bias_bit=self.bias_bit, quant_mode=self.quant_mode, per_channel=True, ) self.ln_input_act = QuantAct(self.ln_input_bit, quant_mode=self.quant_mode) self.LayerNorm = IntLayerNorm( config.hidden_size, eps=config.layer_norm_eps, output_bit=self.ln_output_bit, quant_mode=self.quant_mode, force_dequant=config.force_dequant, ) self.output_activation = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, hidden_states_scaling_factor, input_tensor, input_tensor_scaling_factor): hidden_states, hidden_states_scaling_factor = self.dense(hidden_states, hidden_states_scaling_factor) hidden_states = self.dropout(hidden_states) hidden_states, hidden_states_scaling_factor = self.ln_input_act( hidden_states, hidden_states_scaling_factor, identity=input_tensor, identity_scaling_factor=input_tensor_scaling_factor, ) hidden_states, hidden_states_scaling_factor = self.LayerNorm(hidden_states, hidden_states_scaling_factor) hidden_states, hidden_states_scaling_factor = self.output_activation( hidden_states, hidden_states_scaling_factor ) return hidden_states, hidden_states_scaling_factor class IBertLayer(nn.Module): def __init__(self, config): super().__init__() self.quant_mode = config.quant_mode self.act_bit = 8 self.seq_len_dim = 1 self.attention = IBertAttention(config) self.intermediate = IBertIntermediate(config) self.output = IBertOutput(config) self.pre_intermediate_act = QuantAct(self.act_bit, quant_mode=self.quant_mode) self.pre_output_act = QuantAct(self.act_bit, quant_mode=self.quant_mode) def forward( self, hidden_states, hidden_states_scaling_factor, attention_mask=None, head_mask=None, output_attentions=False, ): self_attention_outputs, self_attention_outputs_scaling_factor = self.attention( hidden_states, hidden_states_scaling_factor, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] attention_output_scaling_factor = self_attention_outputs_scaling_factor[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output, layer_output_scaling_factor = self.feed_forward_chunk( attention_output, attention_output_scaling_factor ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output, attention_output_scaling_factor): attention_output, attention_output_scaling_factor = self.pre_intermediate_act( attention_output, attention_output_scaling_factor ) intermediate_output, intermediate_output_scaling_factor = self.intermediate( attention_output, attention_output_scaling_factor ) intermediate_output, intermediate_output_scaling_factor = self.pre_output_act( intermediate_output, intermediate_output_scaling_factor ) layer_output, layer_output_scaling_factor = self.output( intermediate_output, intermediate_output_scaling_factor, attention_output, attention_output_scaling_factor ) return layer_output, layer_output_scaling_factor class IBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.quant_mode = config.quant_mode self.layer = nn.ModuleList([IBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states, hidden_states_scaling_factor, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = None # `config.add_cross_attention` is not supported next_decoder_cache = None # `config.use_cache` is not supported for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: raise NotImplementedError("gradient checkpointing is not currently supported") else: layer_outputs = layer_module( hidden_states, hidden_states_scaling_factor, attention_mask, layer_head_mask, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class IBertPooler(nn.Module): def __init__(self, config): super().__init__() self.quant_mode = config.quant_mode self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class IBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = IBertConfig base_model_prefix = "ibert" def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (QuantLinear, nn.Linear)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (QuantEmbedding, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (IntLayerNorm, nn.LayerNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) def resize_token_embeddings(self, new_num_tokens=None): raise NotImplementedError("`resize_token_embeddings` is not supported for I-BERT.") IBERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.IBertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ IBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.RobertaTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ @add_start_docstrings( "The bare I-BERT Model transformer outputting raw hidden-states without any specific head on top.", IBERT_START_DOCSTRING, ) class IBertModel(IBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. """ _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.quant_mode = config.quant_mode self.embeddings = IBertEmbeddings(config) self.encoder = IBertEncoder(config) self.pooler = IBertPooler(config) if add_pooling_layer else None self.init_weights() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, embedding_output_scaling_factor = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, embedding_output_scaling_factor, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""I-BERT Model with a `language modeling` head on top. """, IBERT_START_DOCSTRING) class IBertForMaskedLM(IBertPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids", r"lm_head.decoder.bias"] _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config): super().__init__(config) self.ibert = IBertModel(config, add_pooling_layer=False) self.lm_head = IBertLMHead(config) self.init_weights() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ibert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class IBertLMHead(nn.Module): """I-BERT Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x @add_start_docstrings( """ I-BERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, IBERT_START_DOCSTRING, ) class IBertForSequenceClassification(IBertPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ibert = IBertModel(config, add_pooling_layer=False) self.classifier = IBertClassificationHead(config) self.init_weights() @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ibert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ I-BERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, IBERT_START_DOCSTRING, ) class IBertForMultipleChoice(IBertPreTrainedModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.ibert = IBertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) self.init_weights() @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, token_type_ids=None, attention_mask=None, labels=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices-1]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.ibert( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ I-BERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, IBERT_START_DOCSTRING, ) class IBertForTokenClassification(IBertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ibert = IBertModel(config, add_pooling_layer=False) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ibert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class IBertClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): hidden_states = features[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states @add_start_docstrings( """ I-BERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, IBERT_START_DOCSTRING, ) class IBertForQuestionAnswering(IBertPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ibert = IBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ibert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids (:obj:`torch.LongTensor`): Indices of input sequence tokens in the vocabulary. Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
AdaMix/src/transformers/models/ibert/modeling_ibert.py/0
{ "file_path": "AdaMix/src/transformers/models/ibert/modeling_ibert.py", "repo_id": "AdaMix", "token_count": 24187 }
55
# coding=utf-8 # Copyright 2020 The Allen Institute for AI team and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tensorflow Longformer model. """ import warnings from dataclasses import dataclass from typing import Optional, Tuple import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_longformer import LongformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "allenai/longformer-base-4096" _CONFIG_FOR_DOC = "LongformerConfig" _TOKENIZER_FOR_DOC = "LongformerTokenizer" TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "allenai/longformer-base-4096", "allenai/longformer-large-4096", "allenai/longformer-large-4096-finetuned-triviaqa", "allenai/longformer-base-4096-extra.pos.embd.only", "allenai/longformer-large-4096-extra.pos.embd.only", # See all Longformer models at https://huggingface.co/models?filter=longformer ] @dataclass class TFLongformerBaseModelOutput(ModelOutput): """ Base class for Longformer's outputs, with potential hidden states, local and global attentions. Args: last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ last_hidden_state: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None global_attentions: Optional[Tuple[tf.Tensor]] = None @dataclass class TFLongformerBaseModelOutputWithPooling(ModelOutput): """ Base class for Longformer's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`tf.Tensor` of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None global_attentions: Optional[Tuple[tf.Tensor]] = None @dataclass class TFLongformerMaskedLMOutput(ModelOutput): """ Base class for masked language models outputs. Args: loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Masked language modeling (MLM) loss. logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[tf.Tensor] = None logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None global_attentions: Optional[Tuple[tf.Tensor]] = None @dataclass class TFLongformerQuestionAnsweringModelOutput(ModelOutput): """ Base class for outputs of question answering Longformer models. Args: loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Span-start scores (before SoftMax). end_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`): Span-end scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[tf.Tensor] = None start_logits: tf.Tensor = None end_logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None global_attentions: Optional[Tuple[tf.Tensor]] = None @dataclass class TFLongformerSequenceClassifierOutput(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[tf.Tensor] = None logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None global_attentions: Optional[Tuple[tf.Tensor]] = None @dataclass class TFLongformerMultipleChoiceModelOutput(ModelOutput): """ Base class for outputs of multiple choice models. Args: loss (:obj:`tf.Tensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided): Classification loss. logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, num_choices)`): `num_choices` is the second dimension of the input tensors. (see `input_ids` above). Classification scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[tf.Tensor] = None logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None global_attentions: Optional[Tuple[tf.Tensor]] = None @dataclass class TFLongformerTokenClassifierOutput(ModelOutput): """ Base class for outputs of token classification models. Args: loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) : Classification loss. logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x + attention_window + 1)`, where ``x`` is the number of tokens with global attention mask. Local attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token in the sequence to every token with global attention (first ``x`` values) and to every token in the attention window (remaining ``attention_window + 1`` values). Note that the first ``x`` values refer to tokens with fixed positions in the text, but the remaining ``attention_window + 1`` values refer to tokens with relative positions: the attention weight of a token to itself is located at index ``x + attention_window / 2`` and the ``attention_window / 2`` preceding (succeeding) values are the attention weights to the ``attention_window / 2`` preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first ``x`` attention weights. If a token has global attention, the attention weights to all other tokens in :obj:`attentions` is set to 0, the values should be accessed from :obj:`global_attentions`. global_attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, x)`, where ``x`` is the number of tokens with global attention mask. Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence. """ loss: Optional[tf.Tensor] = None logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None global_attentions: Optional[Tuple[tf.Tensor]] = None def _compute_global_attention_mask(input_ids_shape, sep_token_indices, before_sep_token=True): """ Computes global attention mask by putting attention on all tokens before `sep_token_id` if `before_sep_token is True` else after `sep_token_id`. """ assert shape_list(sep_token_indices)[1] == 2, "`input_ids` should have two dimensions" question_end_index = tf.reshape(sep_token_indices, (input_ids_shape[0], 3, 2))[:, 0, 1][:, None] # bool attention mask with True in locations of global attention attention_mask = tf.expand_dims(tf.range(input_ids_shape[1]), axis=0) attention_mask = tf.tile(attention_mask, (input_ids_shape[0], 1)) if before_sep_token is True: question_end_index = tf.tile(question_end_index, (1, input_ids_shape[1])) attention_mask = tf.cast(attention_mask < question_end_index, dtype=question_end_index.dtype) else: # last token is separation token and should not be counted and in the middle are two separation tokens question_end_index = tf.tile(question_end_index + 1, (1, input_ids_shape[1])) attention_mask = ( tf.cast( attention_mask > question_end_index, dtype=question_end_index.dtype, ) * tf.cast(attention_mask < input_ids_shape[-1], dtype=question_end_index.dtype) ) return attention_mask # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaLMHead with Roberta->Longformer class TFLongformerLMHead(tf.keras.layers.Layer): """Longformer Head for masked language modeling.""" def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.act = get_tf_activation("gelu") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.decoder def set_output_embeddings(self, value): self.decoder.weight = value self.decoder.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.layer_norm(hidden_states) # project back to size of vocabulary with bias seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.decoder.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.roberta.modeling_tf_roberta.TFRobertaEmbeddings with Roberta->Longformer class TFLongformerEmbeddings(tf.keras.layers.Layer): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) self.padding_idx = 1 self.vocab_size = config.vocab_size self.type_vocab_size = config.type_vocab_size self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embeddings_sum = tf.keras.layers.Add() self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def create_position_ids_from_input_ids(self, input_ids): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: input_ids: tf.Tensor Returns: tf.Tensor """ mask = tf.cast(tf.math.not_equal(input_ids, self.padding_idx), dtype=input_ids.dtype) incremental_indices = tf.math.cumsum(mask, axis=1) * mask return incremental_indices + self.padding_idx def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (:obj:`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids=input_ids) else: position_ids = tf.expand_dims( tf.range(start=self.padding_idx + 1, limit=input_shape[-1] + self.padding_idx + 1), axis=0 ) position_ids = tf.tile(input=position_ids, multiples=(input_shape[0], 1)) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = self.embeddings_sum(inputs=[inputs_embeds, position_embeds, token_type_embeds]) final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Longformer class TFLongformerIntermediate(tf.keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Longformer class TFLongformerOutput(tf.keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Longformer class TFLongformerPooler(tf.keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Longformer class TFLongformerSelfOutput(tf.keras.layers.Layer): def __init__(self, config: LongformerConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states class TFLongformerSelfAttention(tf.keras.layers.Layer): def __init__(self, config, layer_id, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_heads = config.num_attention_heads self.head_dim = int(config.hidden_size / config.num_attention_heads) self.embed_dim = config.hidden_size self.query = tf.keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="query", ) self.key = tf.keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="key", ) self.value = tf.keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="value", ) # separate projection layers for tokens with global attention self.query_global = tf.keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="query_global", ) self.key_global = tf.keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="key_global", ) self.value_global = tf.keras.layers.Dense( self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="value_global", ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) self.global_dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) self.layer_id = layer_id attention_window = config.attention_window[self.layer_id] assert ( attention_window % 2 == 0 ), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}" assert ( attention_window > 0 ), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}" self.one_sided_attn_window_size = attention_window // 2 def call( self, inputs, training=False, ): """ LongformerSelfAttention expects `len(hidden_states)` to be multiple of `attention_window`. Padding to `attention_window` happens in LongformerModel.forward to avoid redoing the padding on each layer. The `attention_mask` is changed in :meth:`LongformerModel.forward` from 0, 1, 2 to: * -10000: no attention * 0: local attention * +10000: global attention """ # retrieve input args ( hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ) = inputs # project hidden states query_vectors = self.query(hidden_states) key_vectors = self.key(hidden_states) value_vectors = self.value(hidden_states) batch_size, seq_len, embed_dim = shape_list(hidden_states) if tf.executing_eagerly(): tf.debugging.assert_equal( embed_dim, self.embed_dim, message=f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}", ) # normalize query query_vectors /= tf.math.sqrt(tf.cast(self.head_dim, dtype=query_vectors.dtype)) query_vectors = tf.reshape(query_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) key_vectors = tf.reshape(key_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) # attn_probs = (batch_size, seq_len, num_heads, window*2+1) attn_scores = self._sliding_chunks_query_key_matmul( query_vectors, key_vectors, self.one_sided_attn_window_size ) # diagonal mask with zeros everywhere and -inf inplace of padding diagonal_mask = self._sliding_chunks_query_key_matmul( tf.ones(shape_list(attention_mask)), attention_mask, self.one_sided_attn_window_size, ) # pad local attention probs attn_scores += diagonal_mask if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_scores), [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1], message=f"attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads}, {self.one_sided_attn_window_size * 2 + 1}), but is of size {shape_list(attn_scores)}", ) # compute global attn indices required through out forward fn ( max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ) = self._get_global_attn_indices(is_index_global_attn) # this function is only relevant for global attention attn_scores = tf.cond( is_global_attn, lambda: self._concat_with_global_key_attn_probs( attn_scores=attn_scores, query_vectors=query_vectors, key_vectors=key_vectors, max_num_global_attn_indices=max_num_global_attn_indices, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, ), lambda: attn_scores, ) attn_probs = tf.nn.softmax(attn_scores, axis=-1) # softmax sometimes inserts NaN if all positions are masked, replace them with 0 # Make sure to create a mask with the proper shape: # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] masked_index = tf.cond( is_global_attn, lambda: tf.tile( is_index_masked[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), ), lambda: tf.tile( is_index_masked[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), ), ) attn_probs = tf.where( masked_index, tf.zeros(shape_list(masked_index), dtype=attn_probs.dtype), attn_probs, ) if layer_head_mask is not None: if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}", ) attn_probs = tf.reshape(layer_head_mask, (1, 1, -1, 1)) * attn_probs # apply dropout attn_probs = self.dropout(attn_probs, training=training) value_vectors = tf.reshape(value_vectors, (batch_size, seq_len, self.num_heads, self.head_dim)) # if global attention, compute sum of global and local attn attn_output = tf.cond( is_global_attn, lambda: self._compute_attn_output_with_global_indices( value_vectors=value_vectors, attn_probs=attn_probs, max_num_global_attn_indices=max_num_global_attn_indices, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, ), lambda: self._sliding_chunks_matmul_attn_probs_value( attn_probs, value_vectors, self.one_sided_attn_window_size ), ) if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(attn_output), [batch_size, seq_len, self.num_heads, self.head_dim], message="Unexpected size", ) attn_output = tf.reshape(attn_output, (batch_size, seq_len, embed_dim)) # compute value for global attention and overwrite to attention output # TODO: remove the redundant computation attn_output, global_attn_probs = tf.cond( is_global_attn, lambda: self._compute_global_attn_output_from_hidden( attn_output=attn_output, hidden_states=hidden_states, max_num_global_attn_indices=max_num_global_attn_indices, layer_head_mask=layer_head_mask, is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero, is_index_global_attn_nonzero=is_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero, is_index_masked=is_index_masked, training=training, ), lambda: (attn_output, tf.zeros((batch_size, self.num_heads, max_num_global_attn_indices, seq_len))), ) # make sure that local attention probabilities are set to 0 for indices of global attn # Make sure to create a mask with the proper shape: # if is_global_attn==True => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1] # if is_global_attn==False => [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1] masked_global_attn_index = tf.cond( is_global_attn, lambda: tf.tile( is_index_global_attn[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + max_num_global_attn_indices + 1), ), lambda: tf.tile( is_index_global_attn[:, :, None, None], (1, 1, self.num_heads, self.one_sided_attn_window_size * 2 + 1), ), ) attn_probs = tf.where( masked_global_attn_index, tf.zeros(shape_list(masked_global_attn_index), dtype=attn_probs.dtype), attn_probs, ) outputs = (attn_output, attn_probs, global_attn_probs) return outputs def _sliding_chunks_query_key_matmul(self, query, key, window_overlap): """ Matrix multiplication of query and key tensors using with a sliding window attention pattern. This implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained Longformer) with an overlap of size window_overlap """ batch_size, seq_len, num_heads, head_dim = shape_list(query) if tf.executing_eagerly(): tf.debugging.assert_equal( seq_len % (window_overlap * 2), 0, message=f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}", ) tf.debugging.assert_equal( shape_list(query), shape_list(key), message=f"Shape of query and key should be equal, but got query: {shape_list(query)} and key: {shape_list(key)}", ) chunks_count = seq_len // window_overlap - 1 # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2 query = tf.reshape( tf.transpose(query, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim), ) key = tf.reshape(tf.transpose(key, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim)) chunked_query = self._chunk(query, window_overlap) chunked_key = self._chunk(key, window_overlap) # matrix multiplication # bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim # bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap chunked_query = tf.cast(chunked_query, dtype=chunked_key.dtype) chunked_attention_scores = tf.einsum("bcxd,bcyd->bcxy", chunked_query, chunked_key) # multiply # convert diagonals into columns paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 1], [0, 0]]) diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(chunked_attention_scores, paddings) # allocate space for the overall attention matrix where the chunks are combined. The last dimension # has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to # window_overlap previous words). The following column is attention score from each word to itself, then # followed by window_overlap columns for the upper triangle. # copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions # - copying the main diagonal and the upper triangle # TODO: This code is most likely not very efficient and should be improved diagonal_attn_scores_up_triang = tf.concat( [ diagonal_chunked_attention_scores[:, :, :window_overlap, : window_overlap + 1], diagonal_chunked_attention_scores[:, -1:, window_overlap:, : window_overlap + 1], ], axis=1, ) # - copying the lower triangle diagonal_attn_scores_low_triang = tf.concat( [ tf.zeros( (batch_size * num_heads, 1, window_overlap, window_overlap), dtype=diagonal_chunked_attention_scores.dtype, ), diagonal_chunked_attention_scores[:, :, -(window_overlap + 1) : -1, window_overlap + 1 :], ], axis=1, ) diagonal_attn_scores_first_chunk = tf.concat( [ tf.roll( diagonal_chunked_attention_scores, shift=[1, window_overlap], axis=[2, 3], )[:, :, :window_overlap, :window_overlap], tf.zeros( (batch_size * num_heads, 1, window_overlap, window_overlap), dtype=diagonal_chunked_attention_scores.dtype, ), ], axis=1, ) first_chunk_mask = ( tf.tile( tf.range(chunks_count + 1)[None, :, None, None], (batch_size * num_heads, 1, window_overlap, window_overlap), ) < 1 ) diagonal_attn_scores_low_triang = tf.where( first_chunk_mask, diagonal_attn_scores_first_chunk, diagonal_attn_scores_low_triang, ) # merging upper and lower triangle diagonal_attention_scores = tf.concat( [diagonal_attn_scores_low_triang, diagonal_attn_scores_up_triang], axis=-1 ) # separate batch_size and num_heads dimensions again diagonal_attention_scores = tf.transpose( tf.reshape( diagonal_attention_scores, (batch_size, num_heads, seq_len, 2 * window_overlap + 1), ), (0, 2, 1, 3), ) diagonal_attention_scores = self._mask_invalid_locations(diagonal_attention_scores, window_overlap) return diagonal_attention_scores @staticmethod def _mask_invalid_locations(input_tensor, window_overlap): # create correct upper triangle bool mask mask_2d_upper = tf.reverse( tf.linalg.band_part(tf.ones(shape=(window_overlap, window_overlap + 1)), -1, 0), axis=[0], ) # pad to full matrix padding = tf.convert_to_tensor( [[0, shape_list(input_tensor)[1] - window_overlap], [0, shape_list(input_tensor)[3] - window_overlap - 1]] ) # create lower mask mask_2d = tf.pad(mask_2d_upper, padding) # combine with upper mask mask_2d = mask_2d + tf.reverse(mask_2d, axis=[0, 1]) # broadcast to full matrix mask_4d = tf.tile(mask_2d[None, :, None, :], (shape_list(input_tensor)[0], 1, 1, 1)) # inf tensor used for masking inf_tensor = -float("inf") * tf.ones_like(input_tensor) # mask input_tensor = tf.where(tf.math.greater(mask_4d, 0), inf_tensor, input_tensor) return input_tensor def _sliding_chunks_matmul_attn_probs_value(self, attn_probs, value, window_overlap): """ Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the same shape as `attn_probs` """ batch_size, seq_len, num_heads, head_dim = shape_list(value) if tf.executing_eagerly(): tf.debugging.assert_equal( seq_len % (window_overlap * 2), 0, message="Seq_len has to be multiple of 2 * window_overlap", ) tf.debugging.assert_equal( shape_list(attn_probs)[:3], shape_list(value)[:3], message="value and attn_probs must have same dims (except head_dim)", ) tf.debugging.assert_equal( shape_list(attn_probs)[3], 2 * window_overlap + 1, message="attn_probs last dim has to be 2 * window_overlap + 1", ) chunks_count = seq_len // window_overlap - 1 # group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap chunked_attn_probs = tf.reshape( tf.transpose(attn_probs, (0, 2, 1, 3)), ( batch_size * num_heads, seq_len // window_overlap, window_overlap, 2 * window_overlap + 1, ), ) # group batch_size and num_heads dimensions into one value = tf.reshape( tf.transpose(value, (0, 2, 1, 3)), (batch_size * num_heads, seq_len, head_dim), ) # pad seq_len with w at the beginning of the sequence and another window overlap at the end paddings = tf.convert_to_tensor([[0, 0], [window_overlap, window_overlap], [0, 0]]) padded_value = tf.pad(value, paddings, constant_values=-1) # chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap frame_size = 3 * window_overlap * head_dim frame_hop_size = (shape_list(padded_value)[1] * head_dim - frame_size) // chunks_count chunked_value = tf.signal.frame( tf.reshape(padded_value, (batch_size * num_heads, -1)), frame_size, frame_hop_size, ) chunked_value = tf.reshape( chunked_value, (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim), ) if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(chunked_value), [batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim], message="Chunked value has the wrong shape", ) chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs) context = tf.einsum("bcwd,bcdh->bcwh", chunked_attn_probs, chunked_value) context = tf.transpose( tf.reshape(context, (batch_size, num_heads, seq_len, head_dim)), (0, 2, 1, 3), ) return context @staticmethod def _pad_and_transpose_last_two_dims(hidden_states_padded, paddings): """pads rows and then flips rows and columns""" hidden_states_padded = tf.pad( hidden_states_padded, paddings ) # padding value is not important because it will be overwritten batch_size, chunk_size, seq_length, hidden_dim = shape_list(hidden_states_padded) hidden_states_padded = tf.reshape(hidden_states_padded, (batch_size, chunk_size, hidden_dim, seq_length)) return hidden_states_padded @staticmethod def _pad_and_diagonalize(chunked_hidden_states): """ shift every row 1 step right, converting columns into diagonals. Example:: chunked_hidden_states: [ 0.4983, 2.6918, -0.0071, 1.0492, -1.8348, 0.7672, 0.2986, 0.0285, -0.7584, 0.4206, -0.0405, 0.1599, 2.0514, -1.1600, 0.5372, 0.2629 ] window_overlap = num_rows = 4 (pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000 0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206, -0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ] """ total_num_heads, num_chunks, window_overlap, hidden_dim = shape_list(chunked_hidden_states) paddings = tf.convert_to_tensor([[0, 0], [0, 0], [0, 0], [0, window_overlap + 1]]) chunked_hidden_states = tf.pad( chunked_hidden_states, paddings ) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten chunked_hidden_states = tf.reshape( chunked_hidden_states, (total_num_heads, num_chunks, -1) ) # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap+window_overlap chunked_hidden_states = chunked_hidden_states[ :, :, :-window_overlap ] # total_num_heads x num_chunks x window_overlapL+window_overlapwindow_overlap chunked_hidden_states = tf.reshape( chunked_hidden_states, (total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim), ) # total_num_heads x num_chunks, window_overlap x hidden_dim+window_overlap chunked_hidden_states = chunked_hidden_states[:, :, :, :-1] return chunked_hidden_states @staticmethod def _chunk(hidden_states, window_overlap): """convert into overlapping chunks. Chunk size = 2w, overlap size = w""" batch_size, seq_length, hidden_dim = shape_list(hidden_states) num_output_chunks = 2 * (seq_length // (2 * window_overlap)) - 1 # define frame size and frame stride (similar to convolution) frame_hop_size = window_overlap * hidden_dim frame_size = 2 * frame_hop_size hidden_states = tf.reshape(hidden_states, (batch_size, seq_length * hidden_dim)) # chunk with overlap chunked_hidden_states = tf.signal.frame(hidden_states, frame_size, frame_hop_size) if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(chunked_hidden_states), [batch_size, num_output_chunks, frame_size], message=f"Make sure chunking is correctly applied. `Chunked hidden states should have output dimension {[batch_size, frame_size, num_output_chunks]}, but got {shape_list(chunked_hidden_states)}.", ) chunked_hidden_states = tf.reshape( chunked_hidden_states, (batch_size, num_output_chunks, 2 * window_overlap, hidden_dim), ) return chunked_hidden_states @staticmethod def _get_global_attn_indices(is_index_global_attn): """ compute global attn indices required throughout forward pass """ # helper variable num_global_attn_indices = tf.math.count_nonzero(is_index_global_attn, axis=1) num_global_attn_indices = tf.cast(num_global_attn_indices, dtype=tf.constant(1).dtype) # max number of global attn indices in batch max_num_global_attn_indices = tf.reduce_max(num_global_attn_indices) # indices of global attn is_index_global_attn_nonzero = tf.where(is_index_global_attn) # helper variable is_local_index_global_attn = tf.range(max_num_global_attn_indices) < tf.expand_dims( num_global_attn_indices, axis=-1 ) # location of the non-padding values within global attention indices is_local_index_global_attn_nonzero = tf.where(is_local_index_global_attn) # location of the padding values within global attention indices is_local_index_no_global_attn_nonzero = tf.where(tf.math.logical_not(is_local_index_global_attn)) return ( max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ) def _concat_with_global_key_attn_probs( self, attn_scores, key_vectors, query_vectors, max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, ): batch_size = shape_list(key_vectors)[0] # select global key vectors global_key_vectors = tf.gather_nd(key_vectors, is_index_global_attn_nonzero) # create only global key vectors key_vectors_only_global = tf.scatter_nd( is_local_index_global_attn_nonzero, global_key_vectors, shape=( batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim, ), ) # (batch_size, seq_len, num_heads, max_num_global_attn_indices) attn_probs_from_global_key = tf.einsum("blhd,bshd->blhs", query_vectors, key_vectors_only_global) # (batch_size, max_num_global_attn_indices, seq_len, num_heads) attn_probs_from_global_key_trans = tf.transpose(attn_probs_from_global_key, (0, 3, 1, 2)) mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( shape_list(attn_probs_from_global_key_trans)[-2:] ) mask = tf.ones(mask_shape) * -10000.0 mask = tf.cast(mask, dtype=attn_probs_from_global_key_trans.dtype) # scatter mask attn_probs_from_global_key_trans = tf.tensor_scatter_nd_update( attn_probs_from_global_key_trans, is_local_index_no_global_attn_nonzero, mask, ) # (batch_size, seq_len, num_heads, max_num_global_attn_indices) attn_probs_from_global_key = tf.transpose(attn_probs_from_global_key_trans, (0, 2, 3, 1)) # concat to attn_probs # (batch_size, seq_len, num_heads, extra attention count + 2*window+1) attn_scores = tf.concat((attn_probs_from_global_key, attn_scores), axis=-1) return attn_scores def _compute_attn_output_with_global_indices( self, value_vectors, attn_probs, max_num_global_attn_indices, is_index_global_attn_nonzero, is_local_index_global_attn_nonzero, ): batch_size = shape_list(attn_probs)[0] # cut local attn probs to global only attn_probs_only_global = attn_probs[:, :, :, :max_num_global_attn_indices] # select global value vectors global_value_vectors = tf.gather_nd(value_vectors, is_index_global_attn_nonzero) # create only global value vectors value_vectors_only_global = tf.scatter_nd( is_local_index_global_attn_nonzero, global_value_vectors, shape=( batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim, ), ) # compute attn output only global attn_output_only_global = tf.einsum("blhs,bshd->blhd", attn_probs_only_global, value_vectors_only_global) # reshape attn probs attn_probs_without_global = attn_probs[:, :, :, max_num_global_attn_indices:] # compute attn output with global attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value( attn_probs_without_global, value_vectors, self.one_sided_attn_window_size ) return attn_output_only_global + attn_output_without_global def _compute_global_attn_output_from_hidden( self, attn_output, hidden_states, max_num_global_attn_indices, layer_head_mask, is_local_index_global_attn_nonzero, is_index_global_attn_nonzero, is_local_index_no_global_attn_nonzero, is_index_masked, training, ): batch_size, seq_len = shape_list(hidden_states)[:2] # prepare global hidden states global_attn_hidden_states = tf.gather_nd(hidden_states, is_index_global_attn_nonzero) global_attn_hidden_states = tf.scatter_nd( is_local_index_global_attn_nonzero, global_attn_hidden_states, shape=(batch_size, max_num_global_attn_indices, self.embed_dim), ) # global key, query, value global_query_vectors_only_global = self.query_global(global_attn_hidden_states) global_key_vectors = self.key_global(hidden_states) global_value_vectors = self.value_global(hidden_states) # normalize global_query_vectors_only_global /= tf.math.sqrt( tf.cast(self.head_dim, dtype=global_query_vectors_only_global.dtype) ) global_query_vectors_only_global = self.reshape_and_transpose(global_query_vectors_only_global, batch_size) global_key_vectors = self.reshape_and_transpose(global_key_vectors, batch_size) global_value_vectors = self.reshape_and_transpose(global_value_vectors, batch_size) # compute attn scores global_attn_scores = tf.matmul(global_query_vectors_only_global, global_key_vectors, transpose_b=True) if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(global_attn_scores), [batch_size * self.num_heads, max_num_global_attn_indices, seq_len], message=f"global_attn_scores have the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is {shape_list(global_attn_scores)}.", ) global_attn_scores = tf.reshape( global_attn_scores, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len), ) global_attn_scores_trans = tf.transpose(global_attn_scores, (0, 2, 1, 3)) mask_shape = (shape_list(is_local_index_no_global_attn_nonzero)[0],) + tuple( shape_list(global_attn_scores_trans)[-2:] ) global_attn_mask = tf.ones(mask_shape) * -10000.0 global_attn_mask = tf.cast(global_attn_mask, dtype=global_attn_scores_trans.dtype) # scatter mask global_attn_scores_trans = tf.tensor_scatter_nd_update( global_attn_scores_trans, is_local_index_no_global_attn_nonzero, global_attn_mask, ) global_attn_scores = tf.transpose(global_attn_scores_trans, (0, 2, 1, 3)) # mask global attn scores attn_mask = tf.tile(is_index_masked[:, None, None, :], (1, shape_list(global_attn_scores)[1], 1, 1)) global_attn_scores = tf.where(attn_mask, -10000.0, global_attn_scores) global_attn_scores = tf.reshape( global_attn_scores, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len), ) # compute global attn probs global_attn_probs_float = tf.nn.softmax(global_attn_scores, axis=-1) # apply layer head maskin if layer_head_mask is not None: if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}", ) global_attn_probs_float = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( global_attn_probs_float, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) ) global_attn_probs_float = tf.reshape( global_attn_probs_float, (batch_size * self.num_heads, max_num_global_attn_indices, seq_len) ) # dropout global_attn_probs = self.global_dropout(global_attn_probs_float, training=training) # global attn output global_attn_output = tf.matmul(global_attn_probs, global_value_vectors) if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(global_attn_output), [batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim], message=f"global_attn_output tensor has the wrong size. Size should be {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is {shape_list(global_attn_output)}.", ) global_attn_output = tf.reshape( global_attn_output, (batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim), ) # get only non zero global attn output nonzero_global_attn_output = tf.gather_nd( tf.transpose(global_attn_output, (0, 2, 1, 3)), is_local_index_global_attn_nonzero, ) nonzero_global_attn_output = tf.reshape( nonzero_global_attn_output, (shape_list(is_local_index_global_attn_nonzero)[0], -1), ) # overwrite values with global attention attn_output = tf.tensor_scatter_nd_update( attn_output, is_index_global_attn_nonzero, nonzero_global_attn_output ) global_attn_probs = tf.reshape( global_attn_probs, (batch_size, self.num_heads, max_num_global_attn_indices, seq_len) ) return attn_output, global_attn_probs def reshape_and_transpose(self, vector, batch_size): return tf.reshape( tf.transpose( tf.reshape(vector, (batch_size, -1, self.num_heads, self.head_dim)), (0, 2, 1, 3), ), (batch_size * self.num_heads, -1, self.head_dim), ) class TFLongformerAttention(tf.keras.layers.Layer): def __init__(self, config, layer_id=0, **kwargs): super().__init__(**kwargs) self.self_attention = TFLongformerSelfAttention(config, layer_id, name="self") self.dense_output = TFLongformerSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, inputs, training=False): ( hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ) = inputs self_outputs = self.self_attention( [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], training=training, ) attention_output = self.dense_output(self_outputs[0], hidden_states, training=training) outputs = (attention_output,) + self_outputs[1:] return outputs class TFLongformerLayer(tf.keras.layers.Layer): def __init__(self, config, layer_id=0, **kwargs): super().__init__(**kwargs) self.attention = TFLongformerAttention(config, layer_id, name="attention") self.intermediate = TFLongformerIntermediate(config, name="intermediate") self.longformer_output = TFLongformerOutput(config, name="output") def call(self, inputs, training=False): ( hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn, ) = inputs attention_outputs = self.attention( [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn], training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.longformer_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class TFLongformerEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.layer = [ TFLongformerLayer(config, i, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers) ] def call( self, hidden_states, attention_mask=None, head_mask=None, padding_len=0, is_index_masked=None, is_index_global_attn=None, is_global_attn=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = all_global_attentions = () if output_attentions else None for idx, layer_module in enumerate(self.layer): if output_hidden_states: hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states all_hidden_states = all_hidden_states + (hidden_states_to_add,) layer_outputs = layer_module( [ hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, is_index_masked, is_index_global_attn, is_global_attn, ], training=training, ) hidden_states = layer_outputs[0] if output_attentions: # bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1) all_attentions = all_attentions + (tf.transpose(layer_outputs[1], (0, 2, 1, 3)),) # bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn all_global_attentions = all_global_attentions + (tf.transpose(layer_outputs[2], (0, 1, 3, 2))) # Add last layer if output_hidden_states: hidden_states_to_add = hidden_states[:, :-padding_len] if padding_len > 0 else hidden_states all_hidden_states = all_hidden_states + (hidden_states_to_add,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_global_attentions] if v is not None ) return TFLongformerBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, global_attentions=all_global_attentions, ) @keras_serializable class TFLongformerMainLayer(tf.keras.layers.Layer): config_class = LongformerConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) if isinstance(config.attention_window, int): assert config.attention_window % 2 == 0, "`config.attention_window` has to be an even value" assert config.attention_window > 0, "`config.attention_window` has to be positive" config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer else: assert len(config.attention_window) == config.num_hidden_layers, ( "`len(config.attention_window)` should equal `config.num_hidden_layers`. " f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}" ) self.config = config self.num_hidden_layers = config.num_hidden_layers self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.pad_token_id = config.pad_token_id self.attention_window = config.attention_window self.embeddings = TFLongformerEmbeddings(config, name="embeddings") self.encoder = TFLongformerEncoder(config, name="encoder") self.pooler = TFLongformerPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def call( self, input_ids=None, attention_mask=None, head_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["attention_mask"] is None: inputs["attention_mask"] = tf.fill(input_shape, 1) if inputs["token_type_ids"] is None: inputs["token_type_ids"] = tf.fill(input_shape, 0) # merge `global_attention_mask` and `attention_mask` if inputs["global_attention_mask"] is not None: inputs["attention_mask"] = self._merge_to_attention_mask( inputs["attention_mask"], inputs["global_attention_mask"] ) ( padding_len, inputs["input_ids"], inputs["attention_mask"], inputs["token_type_ids"], inputs["position_ids"], inputs["inputs_embeds"], ) = self._pad_to_window_size( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], inputs_embeds=inputs["inputs_embeds"], pad_token_id=self.pad_token_id, ) # is index masked or global attention is_index_masked = tf.math.less(inputs["attention_mask"], 1) is_index_global_attn = tf.math.greater(inputs["attention_mask"], 1) is_global_attn = tf.math.reduce_any(is_index_global_attn) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, to_seq_length, 1, 1] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(inputs["attention_mask"]) extended_attention_mask = tf.reshape( inputs["attention_mask"], (attention_mask_shape[0], attention_mask_shape[1], 1, 1) ) # Since attention_mask is 1.0 for positions we want to locall attend locally and 0.0 for # masked and global attn positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(tf.math.abs(1 - extended_attention_mask), tf.dtypes.float32) * -10000.0 embedding_output = self.embeddings( inputs["input_ids"], inputs["position_ids"], inputs["token_type_ids"], inputs["inputs_embeds"], training=inputs["training"], ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, padding_len=padding_len, is_index_masked=is_index_masked, is_index_global_attn=is_index_global_attn, is_global_attn=is_global_attn, output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None # undo padding if padding_len > 0: # unpad `sequence_output` because the calling function is expecting a length == input_ids.size(1) sequence_output = sequence_output[:, :-padding_len] if not inputs["return_dict"]: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFLongformerBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, global_attentions=encoder_outputs.global_attentions, ) def _pad_to_window_size( self, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, pad_token_id, ): """A helper function to pad tokens and mask to work with implementation of Longformer selfattention.""" # padding attention_window = ( self.attention_window if isinstance(self.attention_window, int) else max(self.attention_window) ) assert attention_window % 2 == 0, f"`attention_window` should be an even value. Given {attention_window}" input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds) batch_size, seq_len = input_shape[:2] padding_len = (attention_window - seq_len % attention_window) % attention_window if padding_len > 0: logger.info( "Input ids are automatically padded from {} to {} to be a multiple of `config.attention_window`: {}".format( seq_len, seq_len + padding_len, attention_window ) ) paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]]) if input_ids is not None: input_ids = tf.pad(input_ids, paddings, constant_values=pad_token_id) if position_ids is not None: # pad with position_id = pad_token_id as in modeling_roberta.RobertaEmbeddings position_ids = tf.pad(position_ids, paddings, constant_values=pad_token_id) if inputs_embeds is not None: def pad_embeddings(): input_ids_padding = tf.fill((batch_size, padding_len), self.pad_token_id) inputs_embeds_padding = self.embeddings(input_ids_padding) return tf.concat([inputs_embeds, inputs_embeds_padding], axis=-2) inputs_embeds = tf.cond(tf.math.greater(padding_len, 0), pad_embeddings, lambda: inputs_embeds) attention_mask = tf.pad(attention_mask, paddings, constant_values=False) # no attention on the padding tokens token_type_ids = tf.pad(token_type_ids, paddings, constant_values=0) # pad with token_type_id = 0 return ( padding_len, input_ids, attention_mask, token_type_ids, position_ids, inputs_embeds, ) @staticmethod def _merge_to_attention_mask(attention_mask: tf.Tensor, global_attention_mask: tf.Tensor): # longformer self attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn) # (global_attention_mask + 1) => 1 for local attention, 2 for global attention # => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention if attention_mask is not None: attention_mask = attention_mask * (global_attention_mask + 1) else: # simply use `global_attention_mask` as `attention_mask` # if no `attention_mask` is given attention_mask = global_attention_mask + 1 return attention_mask class TFLongformerPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LongformerConfig base_model_prefix = "longformer" @property def dummy_inputs(self): input_ids = tf.convert_to_tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]) # make sure global layers are initialized attention_mask = tf.convert_to_tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) global_attention_mask = tf.convert_to_tensor([[0, 0, 0, 0, 1], [0, 0, 1, 0, 0], [0, 0, 0, 0, 1]]) return { "input_ids": input_ids, "attention_mask": attention_mask, "global_attention_mask": global_attention_mask, } @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) LONGFORMER_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.LongformerConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ LONGFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.LongformerTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ head_mask (:obj:`tf.Tensor` of shape :obj:`(encoder_layers, encoder_attention_heads)`, `optional`): Mask to nullify selected heads of the attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the heas is **masked**. global_attention_mask (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to decide the attention given on each token, local attention or global attention. Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is important for task-specific finetuning because it makes the model more flexible at representing the task. For example, for classification, the <s> token should be given global attention. For QA, all question tokens should also have global attention. Please refer to the `Longformer paper <https://arxiv.org/abs/2004.05150>`__ for more details. Mask values selected in ``[0, 1]``: - 0 for local attention (a sliding window attention), - 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them). token_type_ids (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`__ position_ids (:obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Longformer Model outputting raw hidden-states without any specific head on top.", LONGFORMER_START_DOCSTRING, ) class TFLongformerModel(TFLongformerPreTrainedModel): """ This class copies code from :class:`~transformers.TFRobertaModel` and overwrites standard self-attention with longformer self-attention to provide the ability to process long sequences following the self-attention approach described in `Longformer: the Long-Document Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer self-attention combines a local (sliding window) and global attention to extend to long documents without the O(n^2) increase in memory and compute. The self-attention module :obj:`TFLongformerSelfAttention` implemented here supports the combination of local and global attention but it lacks support for autoregressive attention and dilated attention. Autoregressive and dilated attention are more relevant for autoregressive language modeling than finetuning on downstream tasks. Future release will add support for autoregressive attention, but the support for dilated attention requires a custom CUDA kernel to be memory and compute efficient. """ def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.longformer = TFLongformerMainLayer(config, name="longformer") @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def call( self, input_ids=None, attention_mask=None, head_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.longformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], head_mask=inputs["head_mask"], global_attention_mask=inputs["global_attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None g_attns = tf.convert_to_tensor(output.global_attentions) if self.config.output_attentions else None return TFLongformerBaseModelOutputWithPooling( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, hidden_states=hs, attentions=attns, global_attentions=g_attns, ) @add_start_docstrings( """Longformer Model with a `language modeling` head on top. """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForMaskedLM(TFLongformerPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") self.lm_head = TFLongformerLMHead(config, self.longformer.embeddings, name="lm_head") def get_lm_head(self): return self.lm_head def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLongformerMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, head_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.longformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], head_mask=inputs["head_mask"], global_attention_mask=inputs["global_attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output, training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) if not inputs["return_dict"]: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None g_attns = tf.convert_to_tensor(output.global_attentions) if self.config.output_attentions else None return TFLongformerMaskedLMOutput( logits=output.logits, hidden_states=hs, attentions=attns, global_attentions=g_attns ) @add_start_docstrings( """ Longformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForQuestionAnswering(TFLongformerPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs", ) @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="allenai/longformer-large-4096-finetuned-triviaqa", output_type=TFLongformerQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, head_mask=None, global_attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) # set global attention on question tokens if inputs["global_attention_mask"] is None and inputs["input_ids"] is not None: if ( shape_list(tf.where(inputs["input_ids"] == self.config.sep_token_id))[0] != 3 * shape_list(inputs["input_ids"])[0] ): logger.warning( f"There should be exactly three separator tokens: {self.config.sep_token_id} in every sample for questions answering. You might also consider to set `global_attention_mask` manually in the forward function to avoid this. This is most likely an error. The global attention is disabled for this forward pass." ) inputs["global_attention_mask"] = tf.fill(shape_list(inputs["input_ids"]), value=0) else: logger.info("Initializing global attention on question tokens...") # put global attention on all tokens until `config.sep_token_id` is reached sep_token_indices = tf.where(inputs["input_ids"] == self.config.sep_token_id) sep_token_indices = tf.cast(sep_token_indices, dtype=inputs["input_ids"].dtype) inputs["global_attention_mask"] = _compute_global_attention_mask( shape_list(inputs["input_ids"]), sep_token_indices ) outputs = self.longformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], head_mask=inputs["head_mask"], global_attention_mask=inputs["global_attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None g_attns = tf.convert_to_tensor(output.global_attentions) if self.config.output_attentions else None return TFLongformerQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns, global_attentions=g_attns, ) class TFLongformerClassificationHead(tf.keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.out_proj = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) def call(self, hidden_states, training=False): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) output = self.out_proj(hidden_states) return output @add_start_docstrings( """ Longformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForSequenceClassification(TFLongformerPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.longformer = TFLongformerMainLayer(config, add_pooling_layer=False, name="longformer") self.classifier = TFLongformerClassificationHead(config, name="classifier") @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLongformerSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, global_attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["global_attention_mask"] is None and inputs["input_ids"] is not None: logger.info("Initializing global attention on CLS token...") # global attention on cls token inputs["global_attention_mask"] = tf.zeros_like(inputs["input_ids"]) updates = tf.ones(shape_list(inputs["input_ids"])[0], dtype=tf.int32) indices = tf.pad( tensor=tf.expand_dims(tf.range(shape_list(inputs["input_ids"])[0]), axis=1), paddings=[[0, 0], [0, 1]], constant_values=0, ) inputs["global_attention_mask"] = tf.tensor_scatter_nd_update( inputs["global_attention_mask"], indices, updates, ) outputs = self.longformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], head_mask=inputs["head_mask"], global_attention_mask=inputs["global_attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None g_attns = tf.convert_to_tensor(output.global_attentions) if self.config.output_attentions else None return TFLongformerSequenceClassifierOutput( logits=output.logits, hidden_states=hs, attentions=attns, global_attentions=g_attns ) @add_start_docstrings( """ Longformer Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForMultipleChoice(TFLongformerPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.longformer = TFLongformerMainLayer(config, name="longformer") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): input_ids = tf.convert_to_tensor(MULTIPLE_CHOICE_DUMMY_INPUTS) # make sure global layers are initialized global_attention_mask = tf.convert_to_tensor([[[0, 0, 0, 1], [0, 0, 0, 1]]] * 2) return {"input_ids": input_ids, "global_attention_mask": global_attention_mask} @add_start_docstrings_to_model_forward( LONGFORMER_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLongformerMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, global_attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_global_attention_mask = ( tf.reshape(inputs["global_attention_mask"], (-1, shape_list(inputs["global_attention_mask"])[-1])) if inputs["global_attention_mask"] is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.longformer( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, global_attention_mask=flat_global_attention_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), } ] ) def serving(self, inputs): output = self.call(inputs) return self.serving_output(output) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None g_attns = tf.convert_to_tensor(output.global_attentions) if self.config.output_attentions else None return TFLongformerMultipleChoiceModelOutput( logits=output.logits, hidden_states=hs, attentions=attns, global_attentions=g_attns ) @add_start_docstrings( """ Longformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, LONGFORMER_START_DOCSTRING, ) class TFLongformerForTokenClassification(TFLongformerPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.longformer = TFLongformerMainLayer(config=config, add_pooling_layer=False, name="longformer") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_model_forward(LONGFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFLongformerTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, head_mask=None, token_type_ids=None, position_ids=None, global_attention_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, global_attention_mask=global_attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.longformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], head_mask=inputs["head_mask"], global_attention_mask=inputs["global_attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFLongformerTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, global_attentions=outputs.global_attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None g_attns = tf.convert_to_tensor(output.global_attentions) if self.config.output_attentions else None return TFLongformerTokenClassifierOutput( logits=output.logits, hidden_states=hs, attentions=attns, global_attentions=g_attns )
AdaMix/src/transformers/models/longformer/modeling_tf_longformer.py/0
{ "file_path": "AdaMix/src/transformers/models/longformer/modeling_tf_longformer.py", "repo_id": "AdaMix", "token_count": 54705 }
56
# coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from contextlib import contextmanager from shutil import copyfile from typing import Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: on class MBart50Tokenizer(PreTrainedTokenizer): """ Construct a MBart50 tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): Path to the vocabulary file. src_lang (:obj:`str`, `optional`): A string representing the source language. tgt_lang (:obj:`str`, `optional`): A string representing the target language. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Examples:: >>> from transformers import MBart50Tokenizer >>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, return_tensors="pt") >>> with tokenizer.as_target_tokenizer(): ... labels = tokenizer(tgt_text, return_tensors="pt").input_ids >>> # model(**model_inputs, labels=labels) should work """ vocab_files_names = VOCAB_FILES_NAMES max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file, src_lang=None, tgt_lang=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( src_lang=src_lang, tgt_lang=tgt_lang, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.sp_model_size = len(self.sp_model) self.lang_code_to_id = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) } self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} self._additional_special_tokens = list(self.lang_code_to_id.keys()) self._src_lang = src_lang if src_lang is not None else "en_XX" self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.tgt_lang = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def vocab_size(self) -> int: return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__(self) -> Dict: state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d: Dict) -> None: self.__dict__ = d self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def get_vocab(self) -> Dict: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.EncodeAsPieces(text) def _convert_token_to_id(self, token: str) -> int: """ Converts a token (str) in an id using the vocab. """ if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the token list is already formatted with special tokens for the model. Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] * len(self.suffix_tokens) if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An MBART-50 sequence has the following format, where ``X`` represents the sequence: - ``input_ids`` (for encoder) ``[src_lang_code] X [eos]`` - ``labels``: (for decoder) ``[tgt_lang_code] X [eos]`` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) @contextmanager def as_target_tokenizer(self): """ Temporarily sets the tokenizer for encoding the targets. Useful for tokenizer associated to sequence-to-sequence models that need a slightly different processing for the labels. """ self.set_tgt_lang_special_tokens(self.tgt_lang) yield self.set_src_lang_special_tokens(self.src_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[src_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.lang_code_to_id[tgt_lang] self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id]
AdaMix/src/transformers/models/mbart/tokenization_mbart50.py/0
{ "file_path": "AdaMix/src/transformers/models/mbart/tokenization_mbart50.py", "repo_id": "AdaMix", "token_count": 6259 }
57
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 MobileBERT model. """ import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFNextSentencePredictorOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFMultipleChoiceLoss, TFNextSentencePredictionLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" _TOKENIZER_FOR_DOC = "MobileBertTokenizer" TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/mobilebert-uncased", # See all MobileBERT models at https://huggingface.co/models?filter=mobilebert ] class TFMobileBertIntermediate(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.intermediate_size, name="dense") if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFLayerNorm(tf.keras.layers.LayerNormalization): def __init__(self, feat_size, *args, **kwargs): super().__init__(*args, **kwargs) class TFNoNorm(tf.keras.layers.Layer): def __init__(self, feat_size, epsilon=None, **kwargs): super().__init__(**kwargs) self.feat_size = feat_size def build(self, input_shape): self.bias = self.add_weight("bias", shape=[self.feat_size], initializer="zeros") self.weight = self.add_weight("weight", shape=[self.feat_size], initializer="ones") def call(self, inputs: tf.Tensor): return inputs * self.weight + self.bias NORM2FN = {"layer_norm": TFLayerNorm, "no_norm": TFNoNorm} class TFMobileBertEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.type_vocab_size = config.type_vocab_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.embeddings_sum = tf.keras.layers.Add() self.embedding_transformation = tf.keras.layers.Dense(config.hidden_size, name="embedding_transformation") # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.embedding_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.type_vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_range), ) super().build(input_shape) def call(self, input_ids=None, position_ids=None, token_type_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (:obj:`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = tf.concat( [ tf.pad(inputs_embeds[:, 1:], ((0, 0), (0, 1), (0, 0))), inputs_embeds, tf.pad(inputs_embeds[:, :-1], ((0, 0), (1, 0), (0, 0))), ], axis=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1)) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = self.embeddings_sum(inputs=[inputs_embeds, position_embeds, token_type_embeds]) final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFMobileBertSelfAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.output_attentions = config.output_attentions assert config.hidden_size % config.num_attention_heads == 0 self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = tf.keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call( self, query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=False ): batch_size = shape_list(attention_mask)[0] mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], dtype=attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFMobileBertModel call() function) attention_mask = tf.cast(attention_mask, dtype=attention_scores.dtype) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = tf.nn.softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) context_layer = tf.reshape( context_layer, (batch_size, -1, self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class TFMobileBertSelfOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = tf.keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, residual_tensor, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states class TFMobileBertAttention(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self = TFMobileBertSelfAttention(config, name="self") self.mobilebert_output = TFMobileBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=False, ): self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.mobilebert_output(self_outputs[0], layer_input, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class TFOutputBottleneck(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def call(self, hidden_states, residual_tensor, training=False): layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs, training=training) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class TFMobileBertOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.dense = tf.keras.layers.Dense( config.true_hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) if not self.use_bottleneck: self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) else: self.bottleneck = TFOutputBottleneck(config, name="bottleneck") def call(self, hidden_states, residual_tensor_1, residual_tensor_2, training=False): hidden_states = self.dense(hidden_states) if not self.use_bottleneck: hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) else: hidden_states = self.LayerNorm(hidden_states + residual_tensor_1) hidden_states = self.bottleneck(hidden_states, residual_tensor_2) return hidden_states class TFBottleneckLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.intra_bottleneck_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.intra_bottleneck_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) def call(self, inputs): hidden_states = self.dense(inputs) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFBottleneck(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.bottleneck_input = TFBottleneckLayer(config, name="input") if self.key_query_shared_bottleneck: self.attention = TFBottleneckLayer(config, name="attention") def call(self, hidden_states): # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.bottleneck_input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class TFFFNOutput(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense(config.true_hidden_size, name="dense") self.LayerNorm = NORM2FN[config.normalization_type]( config.true_hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm" ) def call(self, hidden_states, residual_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.LayerNorm(hidden_states + residual_tensor) return hidden_states class TFFFNLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFFFNOutput(config, name="output") def call(self, hidden_states): intermediate_output = self.intermediate(hidden_states) layer_outputs = self.mobilebert_output(intermediate_output, hidden_states) return layer_outputs class TFMobileBertLayer(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = TFMobileBertAttention(config, name="attention") self.intermediate = TFMobileBertIntermediate(config, name="intermediate") self.mobilebert_output = TFMobileBertOutput(config, name="output") if self.use_bottleneck: self.bottleneck = TFBottleneck(config, name="bottleneck") if config.num_feedforward_networks > 1: self.ffn = [ TFFFNLayer(config, name="ffn.{}".format(i)) for i in range(config.num_feedforward_networks - 1) ] def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions, training=training, ) attention_output = attention_outputs[0] s = (attention_output,) if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.mobilebert_output(intermediate_output, attention_output, hidden_states, training=training) outputs = ( (layer_output,) + attention_outputs[1:] + ( tf.constant(0), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) # add attentions if we output them return outputs class TFMobileBertEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = [TFMobileBertLayer(config, name="layer_._{}".format(i)) for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class TFMobileBertPooler(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.do_activate = config.classifier_activation if self.do_activate: self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) def call(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) return pooled_output class TFMobileBertPredictionHeadTransform(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class TFMobileBertLMPredictionHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.transform = TFMobileBertPredictionHeadTransform(config, name="transform") self.vocab_size = config.vocab_size self.config = config def build(self, input_shape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") self.dense = self.add_weight( shape=(self.config.hidden_size - self.config.embedding_size, self.vocab_size), initializer="zeros", trainable=True, name="dense/weight", ) self.decoder = self.add_weight( shape=(self.config.vocab_size, self.config.embedding_size), initializer="zeros", trainable=True, name="decoder/weight", ) super().build(input_shape) def get_output_embeddings(self): return self def set_output_embeddings(self, value): self.decoder = value self.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = tf.matmul(hidden_states, tf.concat([tf.transpose(self.decoder), self.dense], axis=0)) hidden_states = hidden_states + self.bias return hidden_states class TFMobileBertMLMHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.predictions = TFMobileBertLMPredictionHead(config, name="predictions") def call(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores @keras_serializable class TFMobileBertMainLayer(tf.keras.layers.Layer): config_class = MobileBertConfig def __init__(self, config, add_pooling_layer=True, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFMobileBertEmbeddings(config, name="embeddings") self.encoder = TFMobileBertEncoder(config, name="encoder") self.pooler = TFMobileBertPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: input_shape = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: input_shape = shape_list(inputs["inputs_embeds"])[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["attention_mask"] is None: inputs["attention_mask"] = tf.fill(input_shape, 1) if inputs["token_type_ids"] is None: inputs["token_type_ids"] = tf.fill(input_shape, 0) embedding_output = self.embeddings( inputs["input_ids"], inputs["position_ids"], inputs["token_type_ids"], inputs["inputs_embeds"], training=inputs["training"], ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(inputs["attention_mask"], (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if inputs["head_mask"] is not None: raise NotImplementedError else: inputs["head_mask"] = [None] * self.num_hidden_layers encoder_outputs = self.encoder( embedding_output, extended_attention_mask, inputs["head_mask"], inputs["output_attentions"], inputs["output_hidden_states"], inputs["return_dict"], training=inputs["training"], ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not inputs["return_dict"]: return ( sequence_output, pooled_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFMobileBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig base_model_prefix = "mobilebert" @dataclass class TFMobileBertForPreTrainingOutput(ModelOutput): """ Output type of :class:`~transformers.TFMobileBertForPreTraining`. Args: prediction_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[tf.Tensor] = None prediction_logits: tf.Tensor = None seq_relationship_logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.MobileBertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.MobileBertTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`__ position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class TFMobileBertModel(TFMobileBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.mobilebert( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertModel.serving_output def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutputWithPooling( last_hidden_state=output.last_hidden_state, pooler_output=output.pooler_output, hidden_states=hs, attentions=attns, ) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForPreTraining(TFMobileBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") self.seq_relationship = TFMobileBertOnlyNSPHead(2, name="seq_relationship___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.predictions.name + "/" + self.predictions.predictions.name @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFMobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): r""" Return: Examples:: >>> import tensorflow as tf >>> from transformers import MobileBertTokenizer, TFMobileBertForPreTraining >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased') >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1 >>> outputs = model(input_ids) >>> prediction_scores, seq_relationship_scores = outputs[:2] """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.mobilebert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output, pooled_output = outputs[:2] prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) if not inputs["return_dict"]: return (prediction_scores, seq_relationship_score) + outputs[2:] return TFMobileBertForPreTrainingOutput( prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMobileBertForPreTrainingOutput( prediction_logits=output.prediction_logits, seq_relationship_logits=output.seq_relationship_logits, hidden_states=hs, attentions=attns, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top. """, MOBILEBERT_START_DOCSTRING) class TFMobileBertForMaskedLM(TFMobileBertPreTrainedModel, TFMaskedLanguageModelingLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"seq_relationship___cls", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.predictions = TFMobileBertMLMHead(config, name="predictions___cls") def get_lm_head(self): return self.predictions.predictions def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.mlm.name + "/" + self.mlm.predictions.name @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.mobilebert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] prediction_scores = self.predictions(sequence_output, training=inputs["training"]) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], prediction_scores) if not inputs["return_dict"]: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMaskedLM.serving_output def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMaskedLMOutput(logits=output.logits, hidden_states=hs, attentions=attns) class TFMobileBertOnlyNSPHead(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.seq_relationship = tf.keras.layers.Dense(2, name="seq_relationship") def call(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForNextSentencePrediction(TFMobileBertPreTrainedModel, TFNextSentencePredictionLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [r"predictions___cls", r"cls.predictions"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.cls = TFMobileBertOnlyNSPHead(config, name="seq_relationship___cls") @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFNextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, next_sentence_label=None, training=False, **kwargs, ): r""" Return: Examples:: >>> import tensorflow as tf >>> from transformers import MobileBertTokenizer, TFMobileBertForNextSentencePrediction >>> tokenizer = MobileBertTokenizer.from_pretrained('google/mobilebert-uncased') >>> model = TFMobileBertForNextSentencePrediction.from_pretrained('google/mobilebert-uncased') >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors='tf') >>> logits = model(encoding['input_ids'], token_type_ids=encoding['token_type_ids'])[0] """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, next_sentence_label=next_sentence_label, training=training, kwargs_call=kwargs, ) outputs = self.mobilebert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = ( None if inputs["next_sentence_label"] is None else self.compute_loss(labels=inputs["next_sentence_label"], logits=seq_relationship_scores) ) if not inputs["return_dict"]: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return TFNextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForNextSentencePrediction.serving_output def serving_output(self, output: TFNextSentencePredictorOutput) -> TFNextSentencePredictorOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFNextSentencePredictorOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForSequenceClassification(TFMobileBertPreTrainedModel, TFSequenceClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ..., config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss), If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.mobilebert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=inputs["training"]) logits = self.classifier(pooled_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForQuestionAnswering(TFMobileBertPreTrainedModel, TFQuestionAnsweringLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) outputs = self.mobilebert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForQuestionAnswering.serving_output def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForMultipleChoice(TFMobileBertPreTrainedModel, TFMultipleChoiceLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.mobilebert = TFMobileBertMainLayer(config, name="mobilebert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ return {"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS)} @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where :obj:`num_choices` is the size of the second dimension of the input tensors. (See :obj:`input_ids` above) """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) outputs = self.mobilebert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, inputs["head_mask"], flat_inputs_embeds, inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output, training=inputs["training"]) logits = self.classifier(pooled_output) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"), } ] ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving def serving(self, inputs: Dict[str, tf.Tensor]): output = self.call(input_ids=inputs) return self.serving_output(output) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving_output def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) class TFMobileBertForTokenClassification(TFMobileBertPreTrainedModel, TFTokenClassificationLoss): # names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model _keys_to_ignore_on_load_unexpected = [ r"pooler", r"predictions___cls", r"seq_relationship___cls", r"cls.predictions", r"cls.seq_relationship", ] _keys_to_ignore_on_load_missing = [r"dropout"] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.mobilebert = TFMobileBertMainLayer(config, add_pooling_layer=False, name="mobilebert") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) outputs = self.mobilebert( inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=return_dict, training=inputs["training"], ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=inputs["training"]) logits = self.classifier(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns)
AdaMix/src/transformers/models/mobilebert/modeling_tf_mobilebert.py/0
{ "file_path": "AdaMix/src/transformers/models/mobilebert/modeling_tf_mobilebert.py", "repo_id": "AdaMix", "token_count": 32803 }
58
# coding=utf-8 # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast Tokenization classes for OpenAI GPT.""" from typing import Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_openai import OpenAIGPTTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/vocab.json"}, "merges_file": {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/merges.txt"}, "tokenizer_file": {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/tokenizer.json"}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai-gpt": 512, } class OpenAIGPTTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" GPT Tokenizer (backed by HuggingFace's `tokenizers` library). Based on Byte-Pair-Encoding with the following peculiarities: - lower case all inputs - uses BERT's BasicTokenizer for pre-BPE tokenization This tokenizer inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): Path to the vocabulary file. merges_file (:obj:`str`): Path to the merges file. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = OpenAIGPTTokenizer def __init__(self, vocab_file, merges_file, tokenizer_file=None, unk_token="<unk>", **kwargs): super().__init__(vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, **kwargs) @property def do_lower_case(self): return True def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
AdaMix/src/transformers/models/openai/tokenization_openai_fast.py/0
{ "file_path": "AdaMix/src/transformers/models/openai/tokenization_openai_fast.py", "repo_id": "AdaMix", "token_count": 1111 }
59
# coding=utf-8 # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for PhoBERT """ import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class PhobertTokenizer(PreTrainedTokenizer): """ Construct a PhoBERT tokenizer. Based on Byte-Pair-Encoding. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (:obj:`str`): Path to the vocabulary file. merges_file (:obj:`str`): Path to the merges file. bos_token (:obj:`st`, `optional`, defaults to :obj:`"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. .. note:: When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the :obj:`cls_token`. eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the :obj:`sep_token`. sep_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (:obj:`str`, `optional`, defaults to :obj:`"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (:obj:`str`, `optional`, defaults to :obj:`"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs ): super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.merges_file = merges_file self.encoder = {} self.encoder[self.bos_token] = 0 self.encoder[self.pad_token] = 1 self.encoder[self.eos_token] = 2 self.encoder[self.unk_token] = 3 self.add_from_file(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:-1]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A PhoBERT sequence has the following format: - single sequence: ``<s> X </s>`` - pair of sequences: ``<s> A </s></s> B </s>`` Args: token_ids_0 (:obj:`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the token list is already formatted with special tokens for the model. Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (:obj:`List[int]`): List of IDs. token_ids_1 (:obj:`List[int]`, `optional`): Optional second list of IDs for sequence pairs. Returns: :obj:`List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend([t for t in self.bpe(token).split(" ")]) return split_tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): copyfile(self.merges_file, out_merge_file) return out_vocab_file, out_merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far) def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(f, "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please " "rebuild the dataset".format(f)) return lines = f.readlines() for lineTmp in lines: line = lineTmp.strip() idx = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") word = line[:idx] self.encoder[word] = len(self.encoder)
AdaMix/src/transformers/models/phobert/tokenization_phobert.py/0
{ "file_path": "AdaMix/src/transformers/models/phobert/tokenization_phobert.py", "repo_id": "AdaMix", "token_count": 6318 }
60
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RAG model configuration """ import copy from ...configuration_utils import PretrainedConfig from ...file_utils import add_start_docstrings RAG_CONFIG_DOC = r""" :class:`~transformers.RagConfig` stores the configuration of a `RagModel`. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. Args: title_sep (:obj:`str`, `optional`, defaults to ``" / "``): Separator inserted between the title and the text of the retrieved document when calling :class:`~transformers.RagRetriever`. doc_sep (:obj:`str`, `optional`, defaults to ``" // "``): Separator inserted between the the text of the retrieved document and the original input when calling :class:`~transformers.RagRetriever`. n_docs (:obj:`int`, `optional`, defaults to 5): Number of documents to retrieve. max_combined_length (:obj:`int`, `optional`, defaults to 300): Max length of contextualized input returned by :meth:`~transformers.RagRetriever.__call__`. retrieval_vector_size (:obj:`int`, `optional`, defaults to 768): Dimensionality of the document embeddings indexed by :class:`~transformers.RagRetriever`. retrieval_batch_size (:obj:`int`, `optional`, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated :class:`~transformers.RagRetriever`. dataset (:obj:`str`, `optional`, defaults to :obj:`"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using :obj:`datasets.list_datasets()`). dataset_split (:obj:`str`, `optional`, defaults to :obj:`"train"`) Which split of the :obj:`dataset` to load. index_name (:obj:`str`, `optional`, defaults to :obj:`"compressed"`) The index name of the index associated with the :obj:`dataset`. One can choose between :obj:`"legacy"`, :obj:`"exact"` and :obj:`"compressed"`. index_path (:obj:`str`, `optional`) The path to the serialized faiss index on disk. passages_path: (:obj:`str`, `optional`): A path to text passages compatible with the faiss index. Required if using :class:`~transformers.models.rag.retrieval_rag.LegacyIndex` use_dummy_dataset (:obj:`bool`, `optional`, defaults to ``False``) Whether to load a "dummy" variant of the dataset specified by :obj:`dataset`. label_smoothing (:obj:`float`, `optional`, defaults to 0.0): Only relevant if ``return_loss`` is set to :obj:`True`. Controls the ``epsilon`` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`True`, the logits are marginalized over all documents by making use of ``torch.nn.functional.log_softmax``. reduce_loss (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to reduce the NLL loss using the ``torch.Tensor.sum`` operation. do_deduplication (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to :obj:`False` if used while training with distributed backend. exclude_bos_score (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(:obj:`bool`, `optional`, defaults to :obj:`False`): If set to ``True``, :obj:`retrieved_doc_embeds`, :obj:`retrieved_doc_ids`, :obj:`context_input_ids` and :obj:`context_attention_mask` are returned. See returned tensors for more detail. use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (:obj:`int`, `optional`): The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to :obj:`eos_token_id`. """ @add_start_docstrings(RAG_CONFIG_DOC) class RagConfig(PretrainedConfig): model_type = "rag" is_composition = True def __init__( self, vocab_size=None, is_encoder_decoder=True, prefix=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, decoder_start_token_id=None, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, retrieval_vector_size=768, retrieval_batch_size=8, dataset="wiki_dpr", dataset_split="train", index_name="compressed", index_path=None, passages_path=None, use_dummy_dataset=False, reduce_loss=False, label_smoothing=0.0, do_deduplication=True, exclude_bos_score=False, do_marginalize=False, output_retrieved=False, use_cache=True, forced_eos_token_id=None, **kwargs ): super().__init__( bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, is_encoder_decoder=is_encoder_decoder, prefix=prefix, vocab_size=vocab_size, **kwargs, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" question_encoder_config = kwargs.pop("question_encoder") question_encoder_model_type = question_encoder_config.pop("model_type") decoder_config = kwargs.pop("generator") decoder_model_type = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config) self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config) self.reduce_loss = reduce_loss self.label_smoothing = label_smoothing self.exclude_bos_score = exclude_bos_score self.do_marginalize = do_marginalize self.title_sep = title_sep self.doc_sep = doc_sep self.n_docs = n_docs self.max_combined_length = max_combined_length self.dataset = dataset self.dataset_split = dataset_split self.index_name = index_name self.retrieval_vector_size = retrieval_vector_size self.retrieval_batch_size = retrieval_batch_size self.passages_path = passages_path self.index_path = index_path self.use_dummy_dataset = use_dummy_dataset self.output_retrieved = output_retrieved self.do_deduplication = do_deduplication self.use_cache = use_cache if self.forced_eos_token_id is None: self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None) @classmethod def from_question_encoder_generator_configs( cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a :class:`~transformers.EncoderDecoderConfig` (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: :class:`EncoderDecoderConfig`: An instance of a configuration object """ return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default :meth:`~transformers.PretrainedConfig.to_dict`. Returns: :obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["question_encoder"] = self.question_encoder.to_dict() output["generator"] = self.generator.to_dict() output["model_type"] = self.__class__.model_type return output
AdaMix/src/transformers/models/rag/configuration_rag.py/0
{ "file_path": "AdaMix/src/transformers/models/rag/configuration_rag.py", "repo_id": "AdaMix", "token_count": 3771 }
61
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RoBERTa configuration """ from ...utils import logging from ..bert.configuration_bert import BertConfig logger = logging.get_logger(__name__) ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class RobertaConfig(BertConfig): r""" This is the configuration class to store the configuration of a :class:`~transformers.RobertaModel` or a :class:`~transformers.TFRobertaModel`. It is used to instantiate a RoBERTa model according to the specified arguments, defining the model architecture. Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information. The :class:`~transformers.RobertaConfig` class directly inherits :class:`~transformers.BertConfig`. It reuses the same defaults. Please check the parent class for more information. Examples:: >>> from transformers import RobertaConfig, RobertaModel >>> # Initializing a RoBERTa configuration >>> configuration = RobertaConfig() >>> # Initializing a model from the configuration >>> model = RobertaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """ model_type = "roberta" def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs): """Constructs RobertaConfig.""" super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
AdaMix/src/transformers/models/roberta/configuration_roberta.py/0
{ "file_path": "AdaMix/src/transformers/models/roberta/configuration_roberta.py", "repo_id": "AdaMix", "token_count": 953 }
62
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Speech2Text """ from contextlib import contextmanager from .feature_extraction_speech_to_text import Speech2TextFeatureExtractor from .tokenization_speech_to_text import Speech2TextTokenizer class Speech2TextProcessor: r""" Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a single processor. :class:`~transformers.Speech2TextProcessor` offers all the functionalities of :class:`~transformers.Speech2TextFeatureExtractor` and :class:`~transformers.Speech2TextTokenizer`. See the :meth:`~transformers.Speech2TextProcessor.__call__` and :meth:`~transformers.Speech2TextProcessor.decode` for more information. Args: feature_extractor (:obj:`Speech2TextFeatureExtractor`): An instance of :class:`~transformers.Speech2TextFeatureExtractor`. The feature extractor is a required input. tokenizer (:obj:`Speech2TextTokenizer`): An instance of :class:`~transformers.Speech2TextTokenizer`. The tokenizer is a required input. """ def __init__(self, feature_extractor, tokenizer): if not isinstance(feature_extractor, Speech2TextFeatureExtractor): raise ValueError( f"`feature_extractor` has to be of type {Speech2TextFeatureExtractor.__class__}, but is {type(feature_extractor)}" ) if not isinstance(tokenizer, Speech2TextTokenizer): raise ValueError( f"`tokenizer` has to be of type {Speech2TextTokenizer.__class__}, but is {type(tokenizer)}" ) self.feature_extractor = feature_extractor self.tokenizer = tokenizer self.current_processor = self.feature_extractor def save_pretrained(self, save_directory): """ Save a Speech2Text feature extractor object and Speech2Text tokenizer object to the directory ``save_directory``, so that it can be re-loaded using the :func:`~transformers.Speech2TextProcessor.from_pretrained` class method. .. note:: This class method is simply calling :meth:`~transformers.PreTrainedFeatureExtractor.save_pretrained` and :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizer.save_pretrained`. Please refer to the docstrings of the methods above for more information. Args: save_directory (:obj:`str` or :obj:`os.PathLike`): Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will be created if it does not exist). """ self.feature_extractor.save_pretrained(save_directory) self.tokenizer.save_pretrained(save_directory) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate a :class:`~transformers.Speech2TextProcessor` from a pretrained Speech2Text processor. .. note:: This class method is simply calling Speech2TextFeatureExtractor's :meth:`~transformers.PreTrainedFeatureExtractor.from_pretrained` and Speech2TextTokenizer's :meth:`~transformers.tokenization_utils_base.PreTrainedTokenizer.from_pretrained`. Please refer to the docstrings of the methods above for more information. Args: pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): This can be either: - a string, the `model id` of a pretrained feature_extractor hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``. - a path to a `directory` containing a feature extractor file saved using the :meth:`~transformers.PreTrainedFeatureExtractor.save_pretrained` method, e.g., ``./my_model_directory/``. - a path or url to a saved feature extractor JSON `file`, e.g., ``./my_model_directory/feature_extraction_config.json``. **kwargs Additional keyword arguments passed along to both :class:`~transformers.PreTrainedFeatureExtractor` and :class:`~transformers.PreTrainedTokenizer` """ feature_extractor = Speech2TextFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs) tokenizer = Speech2TextTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) return cls(feature_extractor=feature_extractor, tokenizer=tokenizer) def __call__(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's :meth:`~transformers.Speech2TextFeatureExtractor.__call__` and returns its output. If used in the context :meth:`~transformers.Speech2TextProcessor.as_target_processor` this method forwards all its arguments to Speech2TextTokenizer's :meth:`~transformers.Speech2TextTokenizer.__call__`. Please refer to the doctsring of the above two methods for more information. """ return self.current_processor(*args, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Speech2TextTokenizer's :meth:`~transformers.PreTrainedTokenizer.batch_decode`. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Speech2TextTokenizer's :meth:`~transformers.PreTrainedTokenizer.decode`. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @contextmanager def as_target_processor(self): """ Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning Speech2Text. """ self.current_processor = self.tokenizer yield self.current_processor = self.feature_extractor
AdaMix/src/transformers/models/speech_to_text/processing_speech_to_text.py/0
{ "file_path": "AdaMix/src/transformers/models/speech_to_text/processing_speech_to_text.py", "repo_id": "AdaMix", "token_count": 2597 }
63
# coding=utf-8 # Copyright 2020 Google Research and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for TAPAS model.""" import collections import datetime import enum import itertools import math import os import re import unicodedata from dataclasses import dataclass from typing import Callable, Dict, Generator, List, Optional, Text, Tuple, Union import numpy as np from ...file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, ) from ...utils import logging if is_pandas_available(): import pandas as pd logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { # large models "google/tapas-large-finetuned-sqa": "https://huggingface.co/google/tapas-large-finetuned-sqa/resolve/main/vocab.txt", "google/tapas-large-finetuned-wtq": "https://huggingface.co/google/tapas-large-finetuned-wtq/resolve/main/vocab.txt", "google/tapas-large-finetuned-wikisql-supervised": "https://huggingface.co/google/tapas-large-finetuned-wikisql-supervised/resolve/main/vocab.txt", "google/tapas-large-finetuned-tabfact": "https://huggingface.co/google/tapas-large-finetuned-tabfact/resolve/main/vocab.txt", # base models "google/tapas-base-finetuned-sqa": "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/vocab.txt", "google/tapas-base-finetuned-wtq": "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/vocab.txt", "google/tapas-base-finetuned-wikisql-supervised": "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/vocab.txt", "google/tapas-base-finetuned-tabfact": "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/vocab.txt", # medium models "google/tapas-medium-finetuned-sqa": "https://huggingface.co/google/tapas-medium-finetuned-sqa/resolve/main/vocab.txt", "google/tapas-medium-finetuned-wtq": "https://huggingface.co/google/tapas-medium-finetuned-wtq/resolve/main/vocab.txt", "google/tapas-medium-finetuned-wikisql-supervised": "https://huggingface.co/google/tapas-medium-finetuned-wikisql-supervised/resolve/main/vocab.txt", "google/tapas-medium-finetuned-tabfact": "https://huggingface.co/google/tapas-medium-finetuned-tabfact/resolve/main/vocab.txt", # small models "google/tapas-small-finetuned-sqa": "https://huggingface.co/google/tapas-small-finetuned-sqa/resolve/main/vocab.txt", "google/tapas-small-finetuned-wtq": "https://huggingface.co/google/tapas-small-finetuned-wtq/resolve/main/vocab.txt", "google/tapas-small-finetuned-wikisql-supervised": "https://huggingface.co/google/tapas-small-finetuned-wikisql-supervised/resolve/main/vocab.txt", "google/tapas-small-finetuned-tabfact": "https://huggingface.co/google/tapas-small-finetuned-tabfact/resolve/main/vocab.txt", # tiny models "google/tapas-tiny-finetuned-sqa": "https://huggingface.co/google/tapas-tiny-finetuned-sqa/resolve/main/vocab.txt", "google/tapas-tiny-finetuned-wtq": "https://huggingface.co/google/tapas-tiny-finetuned-wtq/resolve/main/vocab.txt", "google/tapas-tiny-finetuned-wikisql-supervised": "https://huggingface.co/google/tapas-tiny-finetuned-wikisql-supervised/resolve/main/vocab.txt", "google/tapas-tiny-finetuned-tabfact": "https://huggingface.co/google/tapas-tiny-finetuned-tabfact/resolve/main/vocab.txt", # mini models "google/tapas-mini-finetuned-sqa": "https://huggingface.co/google/tapas-mini-finetuned-sqa/resolve/main/vocab.txt", "google/tapas-mini-finetuned-wtq": "https://huggingface.co/google/tapas-mini-finetuned-wtq/resolve/main/vocab.txt", "google/tapas-mini-finetuned-wikisql-supervised": "https://huggingface.co/google/tapas-mini-finetuned-wikisql-supervised/resolve/main/vocab.txt", "google/tapas-mini-finetuned-tabfact": "https://huggingface.co/google/tapas-mini-finetuned-tabfact/resolve/main/vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {name: 512 for name in PRETRAINED_VOCAB_FILES_MAP.keys()} PRETRAINED_INIT_CONFIGURATION = {name: {"do_lower_case": True} for name in PRETRAINED_VOCAB_FILES_MAP.keys()} class TapasTruncationStrategy(ExplicitEnum): """ Possible values for the ``truncation`` argument in :meth:`~transformers.TapasTokenizer.__call__`. Useful for tab-completion in an IDE. """ DROP_ROWS_TO_FIT = "drop_rows_to_fit" DO_NOT_TRUNCATE = "do_not_truncate" TableValue = collections.namedtuple("TokenValue", ["token", "column_id", "row_id"]) @dataclass(frozen=True) class TokenCoordinates: column_index: int row_index: int token_index: int @dataclass class TokenizedTable: rows: List[List[List[Text]]] selected_tokens: List[TokenCoordinates] @dataclass(frozen=True) class SerializedExample: tokens: List[Text] column_ids: List[int] row_ids: List[int] segment_ids: List[int] def _is_inner_wordpiece(token: Text): return token.startswith("##") def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.file_utils.PaddingStrategy`, `optional`, defaults to :obj:`False`): Activates and controls padding. Accepts the following values: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (:obj:`bool`, :obj:`str` or :class:`~transformers.TapasTruncationStrategy`, `optional`, defaults to :obj:`False`): Activates and controls truncation. Accepts the following values: * :obj:`True` or :obj:`'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate row by row, removing rows from the table. * :obj:`False` or :obj:`'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (:obj:`int`, `optional`): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to :obj:`None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. is_split_into_words (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the input is already pre-tokenized (e.g., split into words), in which case the tokenizer will skip the pre-tokenization step. This is useful for NER or token classification. pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`): If set, will return tensors instead of list of python integers. Acceptable values are: * :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects. * :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects. * :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects. """ class TapasTokenizer(PreTrainedTokenizer): r""" Construct a TAPAS tokenizer. Based on WordPiece. Flattens a table and one or more related sentences to be used by TAPAS models. This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. :class:`~transformers.TapasTokenizer` creates several token type ids to encode tabular structure. To be more precise, it adds 7 token type ids, in the following order: :obj:`segment_ids`, :obj:`column_ids`, :obj:`row_ids`, :obj:`prev_labels`, :obj:`column_ranks`, :obj:`inv_column_ranks` and :obj:`numeric_relations`: - segment_ids: indicate whether a token belongs to the question (0) or the table (1). 0 for special tokens and padding. - column_ids: indicate to which column of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. - row_ids: indicate to which row of the table a token belongs (starting from 1). Is 0 for all question tokens, special tokens and padding. Tokens of column headers are also 0. - prev_labels: indicate whether a token was (part of) an answer to the previous question (1) or not (0). Useful in a conversational setup (such as SQA). - column_ranks: indicate the rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the column ranks of these tokens are 3, 1 and 2 respectively. 0 for all question tokens, special tokens and padding. - inv_column_ranks: indicate the inverse rank of a table token relative to a column, if applicable. For example, if you have a column "number of movies" with values 87, 53 and 69, then the inverse column ranks of these tokens are 1, 3 and 2 respectively. 0 for all question tokens, special tokens and padding. - numeric_relations: indicate numeric relations between the question and the tokens of the table. 0 for all question tokens, special tokens and padding. :class:`~transformers.TapasTokenizer` runs end-to-end tokenization on a table and associated sentences: punctuation splitting and wordpiece. Args: vocab_file (:obj:`str`): File containing the vocabulary. do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to do basic tokenization before WordPiece. never_split (:obj:`Iterable`, `optional`): Collection of tokens which will never be split during tokenization. Only has an effect when :obj:`do_basic_tokenize=True` unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. empty_token (:obj:`str`, `optional`, defaults to :obj:`"[EMPTY]"`): The token used for empty cell values in a table. Empty cell values include "", "n/a", "nan" and "?". tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this `issue <https://github.com/huggingface/transformers/issues/328>`__). strip_accents: (:obj:`bool`, `optional`): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for :obj:`lowercase` (as in the original BERT). cell_trim_length (:obj:`int`, `optional`, defaults to -1): If > 0: Trim cells so that the length is <= this value. Also disables further cell trimming, should thus be used with :obj:`truncation` set to :obj:`True`. max_column_id (:obj:`int`, `optional`): Max column id to extract. max_row_id (:obj:`int`, `optional`): Max row id to extract. strip_column_names (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to add empty strings instead of column names. update_answer_coordinates (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to recompute the answer coordinates from the answer text. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", empty_token="[EMPTY]", tokenize_chinese_chars=True, strip_accents=None, cell_trim_length: int = -1, max_column_id: int = None, max_row_id: int = None, strip_column_names: bool = False, update_answer_coordinates: bool = False, model_max_length: int = 512, additional_special_tokens: Optional[List[str]] = None, **kwargs ): if not is_pandas_available(): raise ImportError("Pandas is required for the TAPAS tokenizer.") if additional_special_tokens is not None: if empty_token not in additional_special_tokens: additional_special_tokens.append(empty_token) else: additional_special_tokens = [empty_token] super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, empty_token=empty_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, cell_trim_length=cell_trim_length, max_column_id=max_column_id, max_row_id=max_row_id, strip_column_names=strip_column_names, update_answer_coordinates=update_answer_coordinates, model_max_length=model_max_length, additional_special_tokens=additional_special_tokens, **kwargs, ) if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file) ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) # Additional properties self.cell_trim_length = cell_trim_length self.max_column_id = max_column_id if max_column_id is not None else self.model_max_length self.max_row_id = max_row_id if max_row_id is not None else self.model_max_length self.strip_column_names = strip_column_names self.update_answer_coordinates = update_answer_coordinates @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): if format_text(text) == EMPTY_TEXT: return [self.additional_special_tokens[0]] split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. """ out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def create_attention_mask_from_sequences(self, query_ids: List[int], table_values: List[TableValue]) -> List[int]: """ Creates the attention mask according to the query token IDs and a list of table values. Args: query_ids (:obj:`List[int]`): list of token IDs corresponding to the ID. table_values (:obj:`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: :obj:`List[int]`: List of ints containing the attention mask values. """ return [1] * (1 + len(query_ids) + 1 + len(table_values)) def create_segment_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the segment token type IDs according to the query token IDs and a list of table values. Args: query_ids (:obj:`List[int]`): list of token IDs corresponding to the ID. table_values (:obj:`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: :obj:`List[int]`: List of ints containing the segment token type IDs values. """ table_ids = list(zip(*table_values))[0] if table_values else [] return [0] * (1 + len(query_ids) + 1) + [1] * len(table_ids) def create_column_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the column token type IDs according to the query token IDs and a list of table values. Args: query_ids (:obj:`List[int]`): list of token IDs corresponding to the ID. table_values (:obj:`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: :obj:`List[int]`: List of ints containing the column token type IDs values. """ table_column_ids = list(zip(*table_values))[1] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_column_ids) def create_row_token_type_ids_from_sequences( self, query_ids: List[int], table_values: List[TableValue] ) -> List[int]: """ Creates the row token type IDs according to the query token IDs and a list of table values. Args: query_ids (:obj:`List[int]`): list of token IDs corresponding to the ID. table_values (:obj:`List[TableValue]`): lift of table values, which are named tuples containing the token value, the column ID and the row ID of said token. Returns: :obj:`List[int]`: List of ints containing the row token type IDs values. """ table_row_ids = list(zip(*table_values))[2] if table_values else [] return [0] * (1 + len(query_ids) + 1) + list(table_row_ids) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a question and flattened table for question answering or sequence classification tasks by concatenating and adding special tokens. Args: token_ids_0 (:obj:`List[int]`): The ids of the question. token_ids_1 (:obj:`List[int]`, `optional`): The ids of the flattened table. Returns: :obj:`List[int]`: The model input with special tokens. """ if token_ids_1 is None: raise ValueError("With TAPAS, you must provide both question IDs and table IDs.") return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer ``prepare_for_model`` method. Args: token_ids_0 (:obj:`List[int]`): List of question IDs. token_ids_1 (:obj:`List[int]`, `optional`): List of flattened table IDs. already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not the token list is already formatted with special tokens for the model. Returns: :obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0)) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0)) + [1] @add_end_docstrings(TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, table: "pd.DataFrame", queries: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[Union[List[Tuple], List[List[Tuple]]]] = None, answer_text: Optional[Union[List[TextInput], List[List[TextInput]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) related to a table. Args: table (:obj:`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use `.astype(str)` on a Pandas dataframe to convert it to string. queries (:obj:`str` or :obj:`List[str]`): Question or batch of questions related to a table to be encoded. Note that in case of a batch, all questions must refer to the **same** table. answer_coordinates (:obj:`List[Tuple]` or :obj:`List[List[Tuple]]`, `optional`): Answer coordinates of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (:obj:`List[str]` or :obj:`List[List[str]]`, `optional`): Answer text of each table-question pair in the batch. In case only a single table-question pair is provided, then the answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). """ assert isinstance(table, pd.DataFrame), "Table must be of type pd.DataFrame" # Input type checking for clearer error valid_query = False # Check that query has a valid type if queries is None or isinstance(queries, str): valid_query = True elif isinstance(queries, (list, tuple)): if len(queries) == 0 or isinstance(queries[0], str): valid_query = True if not valid_query: raise ValueError( "queries input must of type `str` (single example), `List[str]` (batch or single pretokenized example). " ) is_batched = isinstance(queries, (list, tuple)) if is_batched: return self.batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( table=table, query=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, table: "pd.DataFrame", queries: Optional[ Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ] ] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Prepare a table and a list of strings for the model. .. warning:: This method is deprecated, ``__call__`` should be used instead. Args: table (:obj:`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use `.astype(str)` on a Pandas dataframe to convert it to string. queries (:obj:`List[str]`): Batch of questions related to a table to be encoded. Note that all questions must refer to the **same** table. answer_coordinates (:obj:`List[Tuple]` or :obj:`List[List[Tuple]]`, `optional`): Answer coordinates of each table-question pair in the batch. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. The answer_coordinates must be a list of lists of tuples (each list corresponding to a single table-question pair). answer_text (:obj:`List[str]` or :obj:`List[List[str]]`, `optional`): Answer text of each table-question pair in the batch. In case a batch of table-question pairs is provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a single table-question pair). Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") elif answer_coordinates is None and answer_text is None: answer_coordinates = answer_text = [None] * len(queries) if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers." "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._batch_encode_plus( table=table, queries=queries, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, table, queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: table_tokens = self._tokenize_table(table) queries_tokens = [] for query in queries: query_tokens = self.tokenize(query) queries_tokens.append(query_tokens) batch_outputs = self._batch_prepare_for_model( table, queries, tokenized_table=table_tokens, queries_tokens=queries_tokens, answer_coordinates=answer_coordinates, padding=padding, truncation=truncation, answer_text=answer_text, add_special_tokens=add_special_tokens, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) return BatchEncoding(batch_outputs) def _batch_prepare_for_model( self, raw_table: "pd.DataFrame", raw_queries: Union[ List[TextInput], List[PreTokenizedInput], List[EncodedInput], ], tokenized_table: Optional[TokenizedTable] = None, queries_tokens: Optional[List[List[str]]] = None, answer_coordinates: Optional[List[List[Tuple]]] = None, answer_text: Optional[List[List[TextInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs ) -> BatchEncoding: batch_outputs = {} for index, example in enumerate(zip(raw_queries, queries_tokens, answer_coordinates, answer_text)): raw_query, query_tokens, answer_coords, answer_txt = example outputs = self.prepare_for_model( raw_table, raw_query, tokenized_table=tokenized_table, query_tokens=query_tokens, answer_coordinates=answer_coords, answer_text=answer_txt, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards truncation=truncation, max_length=max_length, pad_to_multiple_of=None, # we pad in batch afterwards return_attention_mask=False, # we pad in batch afterwards return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, prev_answer_coordinates=answer_coordinates[index - 1] if index != 0 else None, prev_answer_text=answer_text[index - 1] if index != 0 else None, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs ) -> List[int]: """ Prepare a table and a string for the model. This method does not return token type IDs, attention masks, etc. which are necessary for the model to work correctly. Use that method if you want to build your processing on your own, otherwise refer to ``__call__``. Args: table (:obj:`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use `.astype(str)` on a Pandas dataframe to convert it to string. query (:obj:`str` or :obj:`List[str]`): Question related to a table to be encoded. """ encoded_inputs = self.encode_plus( table, query=query, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, table: "pd.DataFrame", query: Optional[ Union[ TextInput, PreTokenizedInput, EncodedInput, ] ] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> BatchEncoding: """ Prepare a table and a string for the model. Args: table (:obj:`pd.DataFrame`): Table containing tabular data. Note that all cell values must be text. Use `.astype(str)` on a Pandas dataframe to convert it to string. query (:obj:`str` or :obj:`List[str]`): Question related to a table to be encoded. answer_coordinates (:obj:`List[Tuple]` or :obj:`List[List[Tuple]]`, `optional`): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (:obj:`List[str]` or :obj:`List[List[str]]`, `optional`): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if return_token_type_ids is not None and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") if "is_split_into_words" in kwargs: raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers." "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) return self._encode_plus( table=table, query=query, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, table: "pd.DataFrame", query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ): if query is None: query = "" logger.warning( "TAPAS is a question answering model but you have not passed a query. Please be aware that the " "model will probably not behave correctly." ) table_tokens = self._tokenize_table(table) query_tokens = self.tokenize(query) return self.prepare_for_model( table, query, tokenized_table=table_tokens, query_tokens=query_tokens, answer_coordinates=answer_coordinates, answer_text=answer_text, add_special_tokens=add_special_tokens, truncation=truncation, padding=padding, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, raw_table: "pd.DataFrame", raw_query: Union[ TextInput, PreTokenizedInput, EncodedInput, ], tokenized_table: Optional[TokenizedTable] = None, query_tokens: Optional[TokenizedTable] = None, answer_coordinates: Optional[List[Tuple]] = None, answer_text: Optional[List[TextInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TapasTruncationStrategy] = False, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = True, return_attention_mask: Optional[bool] = True, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs ) -> BatchEncoding: """ Prepares a sequence of input id so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens. Args: raw_table (:obj:`pd.DataFrame`): The original table before any transformation (like tokenization) was applied to it. raw_query (:obj:`TextInput` or :obj:`PreTokenizedInput` or :obj:`EncodedInput`): The original query before any transformation (like tokenization) was applied to it. tokenized_table (:obj:`TokenizedTable`): The table after tokenization. query_tokens (:obj:`List[str]`): The query after tokenization. answer_coordinates (:obj:`List[Tuple]` or :obj:`List[List[Tuple]]`, `optional`): Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The first column has index 0. answer_text (:obj:`List[str]` or :obj:`List[List[str]]`, `optional`): Answer text of each table-question pair in the batch. The answer_text must be a single list of one or more strings. Each string must be the answer text of a corresponding answer coordinate. """ if isinstance(padding, bool): if padding and (max_length is not None or pad_to_multiple_of is not None): padding = PaddingStrategy.MAX_LENGTH else: padding = PaddingStrategy.DO_NOT_PAD elif not isinstance(padding, PaddingStrategy): padding = PaddingStrategy(padding) if isinstance(truncation, bool): if truncation: truncation = TapasTruncationStrategy.DROP_ROWS_TO_FIT else: truncation = TapasTruncationStrategy.DO_NOT_TRUNCATE elif not isinstance(truncation, TapasTruncationStrategy): truncation = TapasTruncationStrategy(truncation) encoded_inputs = {} is_part_of_batch = False prev_answer_coordinates, prev_answer_text = None, None if "prev_answer_coordinates" in kwargs and "prev_answer_text" in kwargs: is_part_of_batch = True prev_answer_coordinates = kwargs["prev_answer_coordinates"] prev_answer_text = kwargs["prev_answer_text"] num_rows = self._get_num_rows(raw_table, truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE) num_columns = self._get_num_columns(raw_table) _, _, num_tokens = self._get_table_boundaries(tokenized_table) if truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE: num_rows, num_tokens = self._get_truncated_table_rows( query_tokens, tokenized_table, num_rows, num_columns, max_length, truncation_strategy=truncation ) table_data = list(self._get_table_values(tokenized_table, num_columns, num_rows, num_tokens)) query_ids = self.convert_tokens_to_ids(query_tokens) table_ids = list(zip(*table_data))[0] if len(table_data) > 0 else list(zip(*table_data)) table_ids = self.convert_tokens_to_ids(list(table_ids)) if "return_overflowing_tokens" in kwargs and kwargs["return_overflowing_tokens"]: raise ValueError("TAPAS does not return overflowing tokens as it works on tables.") if add_special_tokens: input_ids = self.build_inputs_with_special_tokens(query_ids, table_ids) else: input_ids = query_ids + table_ids if max_length is not None and len(input_ids) > max_length: raise ValueError( "Could not encode the query and table header given the maximum length. Encoding the query and table" f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}" ) encoded_inputs["input_ids"] = input_ids segment_ids = self.create_segment_token_type_ids_from_sequences(query_ids, table_data) column_ids = self.create_column_token_type_ids_from_sequences(query_ids, table_data) row_ids = self.create_row_token_type_ids_from_sequences(query_ids, table_data) if not is_part_of_batch or (prev_answer_coordinates is None and prev_answer_text is None): # simply set the prev_labels to zeros prev_labels = [0] * len(row_ids) else: prev_labels = self.get_answer_ids( column_ids, row_ids, table_data, prev_answer_text, prev_answer_coordinates ) # FIRST: parse both the table and question in terms of numeric values raw_table = add_numeric_table_values(raw_table) raw_query = add_numeric_values_to_question(raw_query) # SECOND: add numeric-related features (and not parse them in these functions): column_ranks, inv_column_ranks = self._get_numeric_column_ranks(column_ids, row_ids, raw_table) numeric_relations = self._get_numeric_relations(raw_query, column_ids, row_ids, raw_table) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if return_attention_mask: attention_mask = self.create_attention_mask_from_sequences(query_ids, table_data) encoded_inputs["attention_mask"] = attention_mask if answer_coordinates is not None and answer_text is not None: labels = self.get_answer_ids(column_ids, row_ids, table_data, answer_text, answer_coordinates) numeric_values = self._get_numeric_values(raw_table, column_ids, row_ids) numeric_values_scale = self._get_numeric_values_scale(raw_table, column_ids, row_ids) encoded_inputs["labels"] = labels encoded_inputs["numeric_values"] = numeric_values encoded_inputs["numeric_values_scale"] = numeric_values_scale if return_token_type_ids: token_type_ids = [ segment_ids, column_ids, row_ids, prev_labels, column_ranks, inv_column_ranks, numeric_relations, ] token_type_ids = [list(ids) for ids in list(zip(*token_type_ids))] encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(query_ids, table_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(input_ids) # Check lengths if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose: if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): logger.warning( "Token indices sequence length is longer than the specified maximum sequence length " "for this model ({} > {}). Running this sequence through the model will result in " "indexing errors".format(len(encoded_inputs["input_ids"]), self.model_max_length) ) self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True # Padding if padding != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def _get_truncated_table_rows( self, query_tokens: List[str], tokenized_table: TokenizedTable, num_rows: int, num_columns: int, max_length: int, truncation_strategy: Union[str, TapasTruncationStrategy], ) -> Tuple[int, int]: """ Truncates a sequence pair in-place following the strategy. Args: query_tokens (:obj:`List[str]`): List of strings corresponding to the tokenized query. tokenized_table (:obj:`TokenizedTable`): Tokenized table num_rows (:obj:`int`): Total number of table rows num_columns (:obj:`int`): Total number of table columns max_length (:obj:`int`): Total maximum length. truncation_strategy (:obj:`str` or :obj:`~transformers.TapasTruncationStrategy`): Truncation strategy to use. Seeing as this method should only be called when truncating, the only available strategy is the :obj:`"drop_rows_to_fit"` strategy. Returns: :obj:`Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available for each table element. """ if not isinstance(truncation_strategy, TapasTruncationStrategy): truncation_strategy = TapasTruncationStrategy(truncation_strategy) if max_length is None: max_length = self.model_max_length if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT: while True: num_tokens = self._get_max_num_tokens( query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length ) if num_tokens is not None: # We could fit the table. break # Try to drop a row to fit the table. num_rows -= 1 if num_rows < 1: break elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE: raise ValueError(f"Unknown truncation strategy {truncation_strategy}.") return num_rows, num_tokens or 1 def _tokenize_table( self, table=None, ): """ Tokenizes column headers and cell texts of a table. Args: table (:obj:`pd.Dataframe`): Table. Returns: :obj:`TokenizedTable`: TokenizedTable object. """ tokenized_rows = [] tokenized_row = [] # tokenize column headers for column in table: if self.strip_column_names: tokenized_row.append(self.tokenize("")) else: tokenized_row.append(self.tokenize(column)) tokenized_rows.append(tokenized_row) # tokenize cell values for idx, row in table.iterrows(): tokenized_row = [] for cell in row: tokenized_row.append(self.tokenize(cell)) tokenized_rows.append(tokenized_row) token_coordinates = [] for row_index, row in enumerate(tokenized_rows): for column_index, cell in enumerate(row): for token_index, _ in enumerate(cell): token_coordinates.append( TokenCoordinates( row_index=row_index, column_index=column_index, token_index=token_index, ) ) return TokenizedTable( rows=tokenized_rows, selected_tokens=token_coordinates, ) def _question_encoding_cost(self, question_tokens): # Two extra spots of SEP and CLS. return len(question_tokens) + 2 def _get_token_budget(self, question_tokens, max_length=None): """ Computes the number of tokens left for the table after tokenizing a question, taking into account the max sequence length of the model. Args: question_tokens (:obj:`List[String]`): List of question tokens. Returns: :obj:`int`: the number of tokens left for the table, given the model max length. """ return (max_length if max_length is not None else self.model_max_length) - self._question_encoding_cost( question_tokens ) def _get_table_values(self, table, num_columns, num_rows, num_tokens) -> Generator[TableValue, None, None]: """Iterates over partial table and returns token, column and row indexes.""" for tc in table.selected_tokens: # First row is header row. if tc.row_index >= num_rows + 1: continue if tc.column_index >= num_columns: continue cell = table.rows[tc.row_index][tc.column_index] token = cell[tc.token_index] word_begin_index = tc.token_index # Don't add partial words. Find the starting word piece and check if it # fits in the token budget. while word_begin_index >= 0 and _is_inner_wordpiece(cell[word_begin_index]): word_begin_index -= 1 if word_begin_index >= num_tokens: continue yield TableValue(token, tc.column_index + 1, tc.row_index) def _get_table_boundaries(self, table): """Return maximal number of rows, columns and tokens.""" max_num_tokens = 0 max_num_columns = 0 max_num_rows = 0 for tc in table.selected_tokens: max_num_columns = max(max_num_columns, tc.column_index + 1) max_num_rows = max(max_num_rows, tc.row_index + 1) max_num_tokens = max(max_num_tokens, tc.token_index + 1) max_num_columns = min(self.max_column_id, max_num_columns) max_num_rows = min(self.max_row_id, max_num_rows) return max_num_rows, max_num_columns, max_num_tokens def _get_table_cost(self, table, num_columns, num_rows, num_tokens): return sum(1 for _ in self._get_table_values(table, num_columns, num_rows, num_tokens)) def _get_max_num_tokens(self, question_tokens, tokenized_table, num_columns, num_rows, max_length): """Computes max number of tokens that can be squeezed into the budget.""" token_budget = self._get_token_budget(question_tokens, max_length) _, _, max_num_tokens = self._get_table_boundaries(tokenized_table) if self.cell_trim_length >= 0 and max_num_tokens > self.cell_trim_length: max_num_tokens = self.cell_trim_length num_tokens = 0 for num_tokens in range(max_num_tokens + 1): cost = self._get_table_cost(tokenized_table, num_columns, num_rows, num_tokens + 1) if cost > token_budget: break if num_tokens < max_num_tokens: if self.cell_trim_length >= 0: # We don't allow dynamic trimming if a cell_trim_length is set. return None if num_tokens == 0: return None return num_tokens def _get_num_columns(self, table): num_columns = table.shape[1] if num_columns >= self.max_column_id: raise ValueError("Too many columns") return num_columns def _get_num_rows(self, table, drop_rows_to_fit): num_rows = table.shape[0] if num_rows >= self.max_row_id: if drop_rows_to_fit: num_rows = self.max_row_id - 1 else: raise ValueError("Too many rows") return num_rows def _serialize_text(self, question_tokens): """Serializes texts in index arrays.""" tokens = [] segment_ids = [] column_ids = [] row_ids = [] # add [CLS] token at the beginning tokens.append(self.cls_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token in question_tokens: tokens.append(token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) return tokens, segment_ids, column_ids, row_ids def _serialize( self, question_tokens, table, num_columns, num_rows, num_tokens, ): """Serializes table and text.""" tokens, segment_ids, column_ids, row_ids = self._serialize_text(question_tokens) # add [SEP] token between question and table tokens tokens.append(self.sep_token) segment_ids.append(0) column_ids.append(0) row_ids.append(0) for token, column_id, row_id in self._get_table_values(table, num_columns, num_rows, num_tokens): tokens.append(token) segment_ids.append(1) column_ids.append(column_id) row_ids.append(row_id) return SerializedExample( tokens=tokens, segment_ids=segment_ids, column_ids=column_ids, row_ids=row_ids, ) def _get_column_values(self, table, col_index): table_numeric_values = {} for row_index, row in table.iterrows(): cell = row[col_index] if cell.numeric_value is not None: table_numeric_values[row_index] = cell.numeric_value return table_numeric_values def _get_cell_token_indexes(self, column_ids, row_ids, column_id, row_id): for index in range(len(column_ids)): if column_ids[index] - 1 == column_id and row_ids[index] - 1 == row_id: yield index def _get_numeric_column_ranks(self, column_ids, row_ids, table): """Returns column ranks for all numeric columns.""" ranks = [0] * len(column_ids) inv_ranks = [0] * len(column_ids) # original code from tf_example_utils.py of the original implementation if table is not None: for col_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, col_index) if not table_numeric_values: continue try: key_fn = get_numeric_sort_key_fn(table_numeric_values.values()) except ValueError: continue table_numeric_values = {row_index: key_fn(value) for row_index, value in table_numeric_values.items()} table_numeric_values_inv = collections.defaultdict(list) for row_index, value in table_numeric_values.items(): table_numeric_values_inv[value].append(row_index) unique_values = sorted(table_numeric_values_inv.keys()) for rank, value in enumerate(unique_values): for row_index in table_numeric_values_inv[value]: for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): ranks[index] = rank + 1 inv_ranks[index] = len(unique_values) - rank return ranks, inv_ranks def _get_numeric_sort_key_fn(self, table_numeric_values, value): """ Returns the sort key function for comparing value to table values. The function returned will be a suitable input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details Args: table_numeric_values: Numeric values of a column value: Numeric value in the question Returns: A function key function to compare column and question values. """ if not table_numeric_values: return None all_values = list(table_numeric_values.values()) all_values.append(value) try: return get_numeric_sort_key_fn(all_values) except ValueError: return None def _get_numeric_relations(self, question, column_ids, row_ids, table): """ Returns numeric relations embeddings Args: question: Question object. column_ids: Maps word piece position to column id. row_ids: Maps word piece position to row id. table: The table containing the numeric cell values. """ numeric_relations = [0] * len(column_ids) # first, we add any numeric value spans to the question: # Create a dictionary that maps a table cell to the set of all relations # this cell has with any value in the question. cell_indices_to_relations = collections.defaultdict(set) if question is not None and table is not None: for numeric_value_span in question.numeric_spans: for value in numeric_value_span.values: for column_index in range(len(table.columns)): table_numeric_values = self._get_column_values(table, column_index) sort_key_fn = self._get_numeric_sort_key_fn(table_numeric_values, value) if sort_key_fn is None: continue for row_index, cell_value in table_numeric_values.items(): relation = get_numeric_relation(value, cell_value, sort_key_fn) if relation is not None: cell_indices_to_relations[column_index, row_index].add(relation) # For each cell add a special feature for all its word pieces. for (column_index, row_index), relations in cell_indices_to_relations.items(): relation_set_index = 0 for relation in relations: assert relation.value >= Relation.EQ.value relation_set_index += 2 ** (relation.value - Relation.EQ.value) for cell_token_index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): numeric_relations[cell_token_index] = relation_set_index return numeric_relations def _get_numeric_values(self, table, column_ids, row_ids): """Returns numeric values for computation of answer loss.""" numeric_values = [float("nan")] * len(column_ids) if table is not None: num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): numeric_value = table.iloc[row_index, col_index].numeric_value if numeric_value is not None: if numeric_value.float_value is None: continue float_value = numeric_value.float_value if float_value == float("inf"): continue for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): numeric_values[index] = float_value return numeric_values def _get_numeric_values_scale(self, table, column_ids, row_ids): """Returns a scale to each token to down weigh the value of long words.""" numeric_values_scale = [1.0] * len(column_ids) if table is None: return numeric_values_scale num_rows = table.shape[0] num_columns = table.shape[1] for col_index in range(num_columns): for row_index in range(num_rows): indices = [index for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index)] num_indices = len(indices) if num_indices > 1: for index in indices: numeric_values_scale[index] = float(num_indices) return numeric_values_scale def _pad_to_seq_length(self, inputs): while len(inputs) > self.model_max_length: inputs.pop() while len(inputs) < self.model_max_length: inputs.append(0) def _get_all_answer_ids_from_coordinates( self, column_ids, row_ids, answers_list, ): """Maps lists of answer coordinates to token indexes.""" answer_ids = [0] * len(column_ids) found_answers = set() all_answers = set() for answers in answers_list: column_index, row_index = answers all_answers.add((column_index, row_index)) for index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): found_answers.add((column_index, row_index)) answer_ids[index] = 1 missing_count = len(all_answers) - len(found_answers) return answer_ids, missing_count def _get_all_answer_ids(self, column_ids, row_ids, answer_coordinates): """ Maps answer coordinates of a question to token indexes. In the SQA format (TSV), the coordinates are given as (row, column) tuples. Here, we first swap them to (column, row) format before calling _get_all_answer_ids_from_coordinates. """ def _to_coordinates(answer_coordinates_question): return [(coords[1], coords[0]) for coords in answer_coordinates_question] return self._get_all_answer_ids_from_coordinates( column_ids, row_ids, answers_list=(_to_coordinates(answer_coordinates)) ) def _find_tokens(self, text, segment): """Return start index of segment in text or None.""" logging.info("text: %s %s", text, segment) for index in range(1 + len(text) - len(segment)): for seg_index, seg_token in enumerate(segment): if text[index + seg_index].piece != seg_token.piece: break else: return index return None def _find_answer_coordinates_from_answer_text( self, tokenized_table, answer_text, ): """Returns all occurrences of answer_text in the table.""" logging.info("answer text: %s", answer_text) for row_index, row in enumerate(tokenized_table.rows): if row_index == 0: # We don't search for answers in the header. continue for col_index, cell in enumerate(row): token_index = self._find_tokens(cell, answer_text) if token_index is not None: yield TokenCoordinates( row_index=row_index, column_index=col_index, token_index=token_index, ) def _find_answer_ids_from_answer_texts( self, column_ids, row_ids, tokenized_table, answer_texts, ): """Maps question with answer texts to the first matching token indexes.""" answer_ids = [0] * len(column_ids) for answer_text in answer_texts: for coordinates in self._find_answer_coordinates_from_answer_text( tokenized_table, answer_text, ): # Maps answer coordinates to indexes this can fail if tokens / rows have # been pruned. indexes = list( self._get_cell_token_indexes( column_ids, row_ids, column_id=coordinates.column_index, row_id=coordinates.row_index - 1, ) ) indexes.sort() coordinate_answer_ids = [] if indexes: begin_index = coordinates.token_index + indexes[0] end_index = begin_index + len(answer_text) for index in indexes: if index >= begin_index and index < end_index: coordinate_answer_ids.append(index) if len(coordinate_answer_ids) == len(answer_text): for index in coordinate_answer_ids: answer_ids[index] = 1 break return answer_ids def _get_answer_ids(self, column_ids, row_ids, answer_coordinates): """Maps answer coordinates of a question to token indexes.""" answer_ids, missing_count = self._get_all_answer_ids(column_ids, row_ids, answer_coordinates) if missing_count: raise ValueError("Couldn't find all answers") return answer_ids def get_answer_ids(self, column_ids, row_ids, tokenized_table, answer_texts_question, answer_coordinates_question): if self.update_answer_coordinates: return self._find_answer_ids_from_answer_texts( column_ids, row_ids, tokenized_table, answer_texts=[self.tokenize(at) for at in answer_texts_question], ) return self._get_answer_ids(column_ids, row_ids, answer_coordinates_question) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability >= 7.5 (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = ( padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length ) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [[self.pad_token_type_id] * 7] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [0] * difference if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = encoded_inputs["numeric_values"] + [float("nan")] * difference if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = ( encoded_inputs["numeric_values_scale"] + [1.0] * difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + [1] * len(encoded_inputs["input_ids"]) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [[self.pad_token_type_id] * 7] * difference + encoded_inputs[ "token_type_ids" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [0] * difference + encoded_inputs["labels"] if "numeric_values" in encoded_inputs: encoded_inputs["numeric_values"] = [float("nan")] * difference + encoded_inputs["numeric_values"] if "numeric_values_scale" in encoded_inputs: encoded_inputs["numeric_values_scale"] = [1.0] * difference + encoded_inputs[ "numeric_values_scale" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) else: if return_attention_mask: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) return encoded_inputs # Everything related to converting logits to predictions def _get_cell_token_probs(self, probabilities, segment_ids, row_ids, column_ids): for i, p in enumerate(probabilities): segment_id = segment_ids[i] col = column_ids[i] - 1 row = row_ids[i] - 1 if col >= 0 and row >= 0 and segment_id == 1: yield i, p def _get_mean_cell_probs(self, probabilities, segment_ids, row_ids, column_ids): """Computes average probability per cell, aggregating over tokens.""" coords_to_probs = collections.defaultdict(list) for i, prob in self._get_cell_token_probs(probabilities, segment_ids, row_ids, column_ids): col = column_ids[i] - 1 row = row_ids[i] - 1 coords_to_probs[(col, row)].append(prob) return {coords: np.array(cell_probs).mean() for coords, cell_probs in coords_to_probs.items()} def convert_logits_to_predictions(self, data, logits, logits_agg=None, cell_classification_threshold=0.5): """ Converts logits of :class:`~transformers.TapasForQuestionAnswering` to actual predicted answer coordinates and optional aggregation indices. The original implementation, on which this function is based, can be found `here <https://github.com/google-research/tapas/blob/4908213eb4df7aa988573350278b44c4dbe3f71b/tapas/experiments/prediction_utils.py#L288>`__. Args: data (:obj:`dict`): Dictionary mapping features to actual values. Should be created using :class:`~transformers.TapasTokenizer`. logits (:obj:`np.ndarray` of shape ``(batch_size, sequence_length)``): Tensor containing the logits at the token level. logits_agg (:obj:`np.ndarray` of shape ``(batch_size, num_aggregation_labels)``, `optional`): Tensor containing the aggregation logits. cell_classification_threshold (:obj:`float`, `optional`, defaults to 0.5): Threshold to be used for cell selection. All table cells for which their probability is larger than this threshold will be selected. Returns: :obj:`tuple` comprising various elements depending on the inputs: - predicted_answer_coordinates (``List[List[[tuple]]`` of length ``batch_size``): Predicted answer coordinates as a list of lists of tuples. Each element in the list contains the predicted answer coordinates of a single example in the batch, as a list of tuples. Each tuple is a cell, i.e. (row index, column index). - predicted_aggregation_indices (``List[int]``of length ``batch_size``, `optional`, returned when ``logits_aggregation`` is provided): Predicted aggregation operator indices of the aggregation head. """ # input data is of type float32 # np.log(np.finfo(np.float32).max) = 88.72284 # Any value over 88.72284 will overflow when passed through the exponential, sending a warning # We disable this warning by truncating the logits. logits[logits < -88.7] = -88.7 # Compute probabilities from token logits probabilities = 1 / (1 + np.exp(-logits)) * data["attention_mask"] token_types = [ "segment_ids", "column_ids", "row_ids", "prev_labels", "column_ranks", "inv_column_ranks", "numeric_relations", ] # collect input_ids, segment ids, row ids and column ids of batch. Shape (batch_size, seq_len) input_ids = data["input_ids"] segment_ids = data["token_type_ids"][:, :, token_types.index("segment_ids")] row_ids = data["token_type_ids"][:, :, token_types.index("row_ids")] column_ids = data["token_type_ids"][:, :, token_types.index("column_ids")] # next, get answer coordinates for every example in the batch num_batch = input_ids.shape[0] predicted_answer_coordinates = [] for i in range(num_batch): probabilities_example = probabilities[i].tolist() segment_ids_example = segment_ids[i] row_ids_example = row_ids[i] column_ids_example = column_ids[i] max_width = column_ids_example.max() max_height = row_ids_example.max() if max_width == 0 and max_height == 0: continue cell_coords_to_prob = self._get_mean_cell_probs( probabilities_example, segment_ids_example.tolist(), row_ids_example.tolist(), column_ids_example.tolist(), ) # Select the answers above the classification threshold. answer_coordinates = [] for col in range(max_width): for row in range(max_height): cell_prob = cell_coords_to_prob.get((col, row), None) if cell_prob is not None: if cell_prob > cell_classification_threshold: answer_coordinates.append((row, col)) answer_coordinates = sorted(answer_coordinates) predicted_answer_coordinates.append(answer_coordinates) output = (predicted_answer_coordinates,) if logits_agg is not None: predicted_aggregation_indices = logits_agg.argmax(dim=-1) output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist()) return output # End of everything related to converting logits to predictions # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to lowercase the input when tokenizing. never_split (:obj:`Iterable`, `optional`): Collection of tokens which will never be split during tokenization. Only has an effect when :obj:`do_basic_tokenize=True` tokenize_chinese_chars (:obj:`bool`, `optional`, defaults to :obj:`True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this `issue <https://github.com/huggingface/transformers/issues/328>`__). strip_accents: (:obj:`bool`, `optional`): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for :obj:`lowercase` (as in the original BERT). """ def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see WordPieceTokenizer. Args: **never_split**: (`optional`) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see :func:`PreTrainedTokenizer.tokenize`) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, :obj:`input = "unaffable"` wil return as output :obj:`["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens # Below: utilities for TAPAS tokenizer (independent from PyTorch/Tensorflow). # This includes functions to parse numeric values (dates and numbers) from both the table and questions in order # to create the column_ranks, inv_column_ranks, numeric_values, numeric values_scale and numeric_relations in # prepare_for_model of TapasTokenizer. # These are meant to be used in an academic setup, for production use cases Gold mine or Aqua should be used. # taken from constants.py of the original implementation # URL: https://github.com/google-research/tapas/blob/master/tapas/utils/constants.py class Relation(enum.Enum): HEADER_TO_CELL = 1 # Connects header to cell. CELL_TO_HEADER = 2 # Connects cell to header. QUERY_TO_HEADER = 3 # Connects query to headers. QUERY_TO_CELL = 4 # Connects query to cells. ROW_TO_CELL = 5 # Connects row to cells. CELL_TO_ROW = 6 # Connects cells to row. EQ = 7 # Annotation value is same as cell value LT = 8 # Annotation value is less than cell value GT = 9 # Annotation value is greater than cell value @dataclass class Date: year: Optional[int] = None month: Optional[int] = None day: Optional[int] = None @dataclass class NumericValue: float_value: Optional[float] = None date: Optional[Date] = None @dataclass class NumericValueSpan: begin_index: int = None end_index: int = None values: List[NumericValue] = None @dataclass class Cell: text: Text numeric_value: Optional[NumericValue] = None @dataclass class Question: original_text: Text # The original raw question string. text: Text # The question string after normalization. numeric_spans: Optional[List[NumericValueSpan]] = None # Below: all functions from number_utils.py as well as 2 functions (namely get_all_spans and normalize_for_match) # from text_utils.py of the original implementation. URL's: # - https://github.com/google-research/tapas/blob/master/tapas/utils/number_utils.py # - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py # Constants for parsing date expressions. # Masks that specify (by a bool) which of (year, month, day) will be populated. _DateMask = collections.namedtuple("_DateMask", ["year", "month", "day"]) _YEAR = _DateMask(True, False, False) _YEAR_MONTH = _DateMask(True, True, False) _YEAR_MONTH_DAY = _DateMask(True, True, True) _MONTH = _DateMask(False, True, False) _MONTH_DAY = _DateMask(False, True, True) # Pairs of patterns to pass to 'datetime.strptime' and masks specifying which # fields will be set by the corresponding pattern. _DATE_PATTERNS = ( ("%B", _MONTH), ("%Y", _YEAR), ("%Ys", _YEAR), ("%b %Y", _YEAR_MONTH), ("%B %Y", _YEAR_MONTH), ("%B %d", _MONTH_DAY), ("%b %d", _MONTH_DAY), ("%d %b", _MONTH_DAY), ("%d %B", _MONTH_DAY), ("%B %d, %Y", _YEAR_MONTH_DAY), ("%d %B %Y", _YEAR_MONTH_DAY), ("%m-%d-%Y", _YEAR_MONTH_DAY), ("%Y-%m-%d", _YEAR_MONTH_DAY), ("%Y-%m", _YEAR_MONTH), ("%B %Y", _YEAR_MONTH), ("%d %b %Y", _YEAR_MONTH_DAY), ("%Y-%m-%d", _YEAR_MONTH_DAY), ("%b %d, %Y", _YEAR_MONTH_DAY), ("%d.%m.%Y", _YEAR_MONTH_DAY), ("%A, %b %d", _MONTH_DAY), ("%A, %B %d", _MONTH_DAY), ) # This mapping is used to convert date patterns to regex patterns. _FIELD_TO_REGEX = ( ("%A", r"\w+"), # Weekday as locale’s full name. ("%B", r"\w+"), # Month as locale’s full name. ("%Y", r"\d{4}"), # Year with century as a decimal number. ("%b", r"\w{3}"), # Month as locale’s abbreviated name. ("%d", r"\d{1,2}"), # Day of the month as a zero-padded decimal number. ("%m", r"\d{1,2}"), # Month as a zero-padded decimal number. ) def _process_date_pattern(dp): """Compute a regex for each date pattern to use as a prefilter.""" pattern, mask = dp regex = pattern regex = regex.replace(".", re.escape(".")) regex = regex.replace("-", re.escape("-")) regex = regex.replace(" ", r"\s+") for field, field_regex in _FIELD_TO_REGEX: regex = regex.replace(field, field_regex) # Make sure we didn't miss any of the fields. assert "%" not in regex, regex return pattern, mask, re.compile("^" + regex + "$") def _process_date_patterns(): return tuple(_process_date_pattern(dp) for dp in _DATE_PATTERNS) _PROCESSED_DATE_PATTERNS = _process_date_patterns() _MAX_DATE_NGRAM_SIZE = 5 # Following DynSp: # https://github.com/Microsoft/DynSP/blob/master/util.py#L414. _NUMBER_WORDS = [ "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", ] _ORDINAL_WORDS = [ "zeroth", "first", "second", "third", "fourth", "fith", "sixth", "seventh", "eighth", "ninth", "tenth", "eleventh", "twelfth", ] _ORDINAL_SUFFIXES = ["st", "nd", "rd", "th"] _NUMBER_PATTERN = re.compile(r"((^|\s)[+-])?((\.\d+)|(\d+(,\d\d\d)*(\.\d*)?))") # Following DynSp: # https://github.com/Microsoft/DynSP/blob/master/util.py#L293. _MIN_YEAR = 1700 _MAX_YEAR = 2016 _INF = float("INF") def _get_numeric_value_from_date(date, mask): """Converts date (datetime Python object) to a NumericValue object with a Date object value.""" if date.year < _MIN_YEAR or date.year > _MAX_YEAR: raise ValueError("Invalid year: %d" % date.year) new_date = Date() if mask.year: new_date.year = date.year if mask.month: new_date.month = date.month if mask.day: new_date.day = date.day return NumericValue(date=new_date) def _get_span_length_key(span): """Sorts span by decreasing length first and incresing first index second.""" return span[1] - span[0], -span[0] def _get_numeric_value_from_float(value): """Converts float (Python) to a NumericValue object with a float value.""" return NumericValue(float_value=value) # Doesn't parse ordinal expressions such as '18th of february 1655'. def _parse_date(text): """Attempts to format a text as a standard date string (yyyy-mm-dd).""" text = re.sub(r"Sept\b", "Sep", text) for in_pattern, mask, regex in _PROCESSED_DATE_PATTERNS: if not regex.match(text): continue try: date = datetime.datetime.strptime(text, in_pattern).date() except ValueError: continue try: return _get_numeric_value_from_date(date, mask) except ValueError: continue return None def _parse_number(text): """Parses simple cardinal and ordinals numbers.""" for suffix in _ORDINAL_SUFFIXES: if text.endswith(suffix): text = text[: -len(suffix)] break text = text.replace(",", "") try: value = float(text) except ValueError: return None if math.isnan(value): return None if value == _INF: return None return value def get_all_spans(text, max_ngram_length): """ Split a text into all possible ngrams up to 'max_ngram_length'. Split points are white space and punctuation. Args: text: Text to split. max_ngram_length: maximal ngram length. Yields: Spans, tuples of begin-end index. """ start_indexes = [] for index, char in enumerate(text): if not char.isalnum(): continue if index == 0 or not text[index - 1].isalnum(): start_indexes.append(index) if index + 1 == len(text) or not text[index + 1].isalnum(): for start_index in start_indexes[-max_ngram_length:]: yield start_index, index + 1 def normalize_for_match(text): return " ".join(text.lower().split()) def format_text(text): """Lowercases and strips punctuation.""" text = text.lower().strip() if text == "n/a" or text == "?" or text == "nan": text = EMPTY_TEXT text = re.sub(r"[^\w\d]+", " ", text).replace("_", " ") text = " ".join(text.split()) text = text.strip() if text: return text return EMPTY_TEXT def parse_text(text): """ Extracts longest number and date spans. Args: text: text to annotate Returns: List of longest numeric value spans. """ span_dict = collections.defaultdict(list) for match in _NUMBER_PATTERN.finditer(text): span_text = text[match.start() : match.end()] number = _parse_number(span_text) if number is not None: span_dict[match.span()].append(_get_numeric_value_from_float(number)) for begin_index, end_index in get_all_spans(text, max_ngram_length=1): if (begin_index, end_index) in span_dict: continue span_text = text[begin_index:end_index] number = _parse_number(span_text) if number is not None: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(number)) for number, word in enumerate(_NUMBER_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for number, word in enumerate(_ORDINAL_WORDS): if span_text == word: span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) break for begin_index, end_index in get_all_spans(text, max_ngram_length=_MAX_DATE_NGRAM_SIZE): span_text = text[begin_index:end_index] date = _parse_date(span_text) if date is not None: span_dict[begin_index, end_index].append(date) spans = sorted(span_dict.items(), key=lambda span_value: _get_span_length_key(span_value[0]), reverse=True) selected_spans = [] for span, value in spans: for selected_span, _ in selected_spans: if selected_span[0] <= span[0] and span[1] <= selected_span[1]: break else: selected_spans.append((span, value)) selected_spans.sort(key=lambda span_value: span_value[0][0]) numeric_value_spans = [] for span, values in selected_spans: numeric_value_spans.append(NumericValueSpan(begin_index=span[0], end_index=span[1], values=values)) return numeric_value_spans # Below: all functions from number_annotation_utils.py and 2 functions (namely filter_invalid_unicode # and filter_invalid_unicode_from_table) from text_utils.py of the original implementation. URL's: # - https://github.com/google-research/tapas/blob/master/tapas/utils/number_annotation_utils.py # - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py _PrimitiveNumericValue = Union[float, Tuple[Optional[float], Optional[float], Optional[float]]] _SortKeyFn = Callable[[NumericValue], Tuple[float, Ellipsis]] _DATE_TUPLE_SIZE = 3 EMPTY_TEXT = "EMPTY" NUMBER_TYPE = "number" DATE_TYPE = "date" def _get_value_type(numeric_value): if numeric_value.float_value is not None: return NUMBER_TYPE elif numeric_value.date is not None: return DATE_TYPE raise ValueError("Unknown type: %s" % numeric_value) def _get_value_as_primitive_value(numeric_value): """Maps a NumericValue proto to a float or tuple of float.""" if numeric_value.float_value is not None: return numeric_value.float_value if numeric_value.date is not None: date = numeric_value.date value_tuple = [None, None, None] # All dates fields are cased to float to produce a simple primitive value. if date.year is not None: value_tuple[0] = float(date.year) if date.month is not None: value_tuple[1] = float(date.month) if date.day is not None: value_tuple[2] = float(date.day) return tuple(value_tuple) raise ValueError("Unknown type: %s" % numeric_value) def _get_all_types(numeric_values): return {_get_value_type(value) for value in numeric_values} def get_numeric_sort_key_fn(numeric_values): """ Creates a function that can be used as a sort key or to compare the values. Maps to primitive types and finds the biggest common subset. Consider the values "05/05/2010" and "August 2007". With the corresponding primitive values (2010.,5.,5.) and (2007.,8., None). These values can be compared by year and date so we map to the sequence (2010., 5.), (2007., 8.). If we added a third value "2006" with primitive value (2006., None, None), we could only compare by the year so we would map to (2010.,), (2007.,) and (2006.,). Args: numeric_values: Values to compare Returns: A function that can be used as a sort key function (mapping numeric values to a comparable tuple) Raises: ValueError if values don't have a common type or are not comparable. """ value_types = _get_all_types(numeric_values) if len(value_types) != 1: raise ValueError("No common value type in %s" % numeric_values) value_type = next(iter(value_types)) if value_type == NUMBER_TYPE: # Primitive values are simple floats, nothing to do here. return _get_value_as_primitive_value # The type can only be Date at this point which means the primitive type # is a float triple. valid_indexes = set(range(_DATE_TUPLE_SIZE)) for numeric_value in numeric_values: value = _get_value_as_primitive_value(numeric_value) assert isinstance(value, tuple) for tuple_index, inner_value in enumerate(value): if inner_value is None: valid_indexes.discard(tuple_index) if not valid_indexes: raise ValueError("No common value in %s" % numeric_values) def _sort_key_fn(numeric_value): value = _get_value_as_primitive_value(numeric_value) return tuple(value[index] for index in valid_indexes) return _sort_key_fn def _consolidate_numeric_values(row_index_to_values, min_consolidation_fraction, debug_info): """ Finds the most common numeric values in a column and returns them Args: row_index_to_values: For each row index all the values in that cell. min_consolidation_fraction: Fraction of cells that need to have consolidated value. debug_info: Additional information only used for logging Returns: For each row index the first value that matches the most common value. Rows that don't have a matching value are dropped. Empty list if values can't be consolidated. """ type_counts = collections.Counter() for numeric_values in row_index_to_values.values(): type_counts.update(_get_all_types(numeric_values)) if not type_counts: return {} max_count = max(type_counts.values()) if max_count < len(row_index_to_values) * min_consolidation_fraction: # logging.log_every_n(logging.INFO, 'Can\'t consolidate types: %s %s %d', 100, # debug_info, row_index_to_values, max_count) return {} valid_types = set() for value_type, count in type_counts.items(): if count == max_count: valid_types.add(value_type) if len(valid_types) > 1: assert DATE_TYPE in valid_types max_type = DATE_TYPE else: max_type = next(iter(valid_types)) new_row_index_to_value = {} for index, values in row_index_to_values.items(): # Extract the first matching value. for value in values: if _get_value_type(value) == max_type: new_row_index_to_value[index] = value break return new_row_index_to_value def _get_numeric_values(text): """Parses text and returns numeric values.""" numeric_spans = parse_text(text) return itertools.chain(*(span.values for span in numeric_spans)) def _get_column_values(table, col_index): """ Parses text in column and returns a dict mapping row_index to values. This is the _get_column_values function from number_annotation_utils.py of the original implementation Args: table: Pandas dataframe col_index: integer, indicating the index of the column to get the numeric values of """ index_to_values = {} for row_index, row in table.iterrows(): text = normalize_for_match(row[col_index].text) index_to_values[row_index] = list(_get_numeric_values(text)) return index_to_values def get_numeric_relation(value, other_value, sort_key_fn): """Compares two values and returns their relation or None.""" value = sort_key_fn(value) other_value = sort_key_fn(other_value) if value == other_value: return Relation.EQ if value < other_value: return Relation.LT if value > other_value: return Relation.GT return None def add_numeric_values_to_question(question): """Adds numeric value spans to a question.""" original_text = question question = normalize_for_match(question) numeric_spans = parse_text(question) return Question(original_text=original_text, text=question, numeric_spans=numeric_spans) def filter_invalid_unicode(text): """Return an empty string and True if 'text' is in invalid unicode.""" return ("", True) if isinstance(text, bytes) else (text, False) def filter_invalid_unicode_from_table(table): """ Removes invalid unicode from table. Checks whether a table cell text contains an invalid unicode encoding. If yes, reset the table cell text to an empty str and log a warning for each invalid cell Args: table: table to clean. """ # to do: add table id support if not hasattr(table, "table_id"): table.table_id = 0 for row_index, row in table.iterrows(): for col_index, cell in enumerate(row): cell, is_invalid = filter_invalid_unicode(cell) if is_invalid: logging.warning( "Scrub an invalid table body @ table_id: %s, row_index: %d, " "col_index: %d", table.table_id, row_index, col_index, ) for col_index, column in enumerate(table.columns): column, is_invalid = filter_invalid_unicode(column) if is_invalid: logging.warning("Scrub an invalid table header @ table_id: %s, col_index: %d", table.table_id, col_index) def add_numeric_table_values(table, min_consolidation_fraction=0.7, debug_info=None): """ Parses text in table column-wise and adds the consolidated values. Consolidation refers to finding values with a common types (date or number) Args: table: Table to annotate. min_consolidation_fraction: Fraction of cells in a column that need to have consolidated value. debug_info: Additional information used for logging. """ table = table.copy() # First, filter table on invalid unicode filter_invalid_unicode_from_table(table) # Second, replace cell values by Cell objects for row_index, row in table.iterrows(): for col_index, cell in enumerate(row): table.iloc[row_index, col_index] = Cell(text=cell) # Third, add numeric_value attributes to these Cell objects for col_index, column in enumerate(table.columns): column_values = _consolidate_numeric_values( _get_column_values(table, col_index), min_consolidation_fraction=min_consolidation_fraction, debug_info=(debug_info, column), ) for row_index, numeric_value in column_values.items(): table.iloc[row_index, col_index].numeric_value = numeric_value return table
AdaMix/src/transformers/models/tapas/tokenization_tapas.py/0
{ "file_path": "AdaMix/src/transformers/models/tapas/tokenization_tapas.py", "repo_id": "AdaMix", "token_count": 53002 }
64
# coding=utf-8 # Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 XLM model. """ import itertools import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, TFTokenClassificationLoss, get_initializer, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_xlm import XLMConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlm-mlm-en-2048" _CONFIG_FOR_DOC = "XLMConfig" _TOKENIZER_FOR_DOC = "XLMTokenizer" TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xlm-mlm-en-2048", "xlm-mlm-ende-1024", "xlm-mlm-enfr-1024", "xlm-mlm-enro-1024", "xlm-mlm-tlm-xnli15-1024", "xlm-mlm-xnli15-1024", "xlm-clm-enfr-1024", "xlm-clm-ende-1024", "xlm-mlm-17-1280", "xlm-mlm-100-1280", # See all XLM models at https://huggingface.co/models?filter=xlm ] def create_sinusoidal_embeddings(n_pos, dim, out): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) out[:, 0::2] = tf.constant(np.sin(position_enc[:, 0::2])) out[:, 1::2] = tf.constant(np.cos(position_enc[:, 1::2])) def get_masks(slen, lengths, causal, padding_mask=None): """ Generate hidden states mask, and optionally an attention mask. """ bs = shape_list(lengths)[0] if padding_mask is not None: mask = padding_mask else: # assert lengths.max().item() <= slen alen = tf.range(slen) mask = tf.math.less(alen, tf.expand_dims(lengths, axis=1)) # attention mask is the same as mask, or triangular inferior attention (causal) if causal: attn_mask = tf.less_equal( tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1)) ) else: attn_mask = mask # sanity check # assert shape_list(mask) == [bs, slen] if tf.executing_eagerly(): tf.debugging.assert_equal(shape_list(mask), [bs, slen]) assert causal is False or shape_list(attn_mask) == [bs, slen, slen] return mask, attn_mask class TFXLMMultiHeadAttention(tf.keras.layers.Layer): NEW_ID = itertools.count() def __init__(self, n_heads, dim, config, **kwargs): super().__init__(**kwargs) self.layer_id = next(TFXLMMultiHeadAttention.NEW_ID) self.dim = dim self.n_heads = n_heads self.output_attentions = config.output_attentions assert self.dim % self.n_heads == 0 self.q_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin") self.k_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin") self.v_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin") self.out_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin") self.dropout = tf.keras.layers.Dropout(config.attention_dropout) self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False): """ Self-attention (if kv is None) or attention over source sentence (provided by kv). """ # Input is (bs, qlen, dim) # Mask is (bs, klen) (non-causal) or (bs, klen, klen) bs, qlen, dim = shape_list(input) if kv is None: klen = qlen if cache is None else cache["slen"] + qlen else: klen = shape_list(kv)[1] # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim) dim_per_head = self.dim // self.n_heads mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen) def shape(x): """ projection """ return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) def unshape(x): """ compute context """ return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) if kv is None: k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) elif cache is None or self.layer_id not in cache: k = v = kv k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) if cache is not None: if self.layer_id in cache: if kv is None: k_, v_ = cache[self.layer_id] k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head) v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head) else: k, v = cache[self.layer_id] cache[self.layer_id] = (k, v) f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype) q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head) k = tf.cast(k, dtype=q.dtype) scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen) mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen) mask = tf.cast(mask, dtype=scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = tf.nn.softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, qlen, dim) outputs = (self.out_lin(context),) if output_attentions: outputs = outputs + (weights,) return outputs class TFXLMTransformerFFN(tf.keras.layers.Layer): def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs): super().__init__(**kwargs) self.lin1 = tf.keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1") self.lin2 = tf.keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2") self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu") self.dropout = tf.keras.layers.Dropout(config.dropout) def call(self, input, training=False): x = self.lin1(input) x = self.act(x) x = self.lin2(x) x = self.dropout(x, training=training) return x @keras_serializable class TFXLMMainLayer(tf.keras.layers.Layer): config_class = XLMConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict # encoder / decoder, output layer self.is_encoder = config.is_encoder self.is_decoder = not config.is_encoder if self.is_decoder: raise NotImplementedError("Currently XLM can only be used as an encoder") # self.with_output = with_output self.causal = config.causal # dictionary / languages self.n_langs = config.n_langs self.use_lang_emb = config.use_lang_emb self.n_words = config.n_words self.eos_index = config.eos_index self.pad_index = config.pad_index # self.dico = dico # self.id2lang = config.id2lang # self.lang2id = config.lang2id # assert len(self.dico) == self.n_words # assert len(self.id2lang) == len(self.lang2id) == self.n_langs # model parameters self.dim = config.emb_dim # 512 by default self.hidden_dim = self.dim * 4 # 2048 by default self.n_heads = config.n_heads # 8 by default self.n_layers = config.n_layers self.max_position_embeddings = config.max_position_embeddings self.embed_init_std = config.embed_init_std assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads" # embeddings self.dropout = tf.keras.layers.Dropout(config.dropout) self.attention_dropout = tf.keras.layers.Dropout(config.attention_dropout) if config.sinusoidal_embeddings: raise NotImplementedError # create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight) self.embeddings = TFSharedEmbeddings( self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings" ) # padding_idx=self.pad_index) self.layer_norm_emb = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb") # transformer layers self.attentions = [] self.layer_norm1 = [] self.ffns = [] self.layer_norm2 = [] # if self.is_decoder: # self.layer_norm15 = [] # self.encoder_attn = [] for i in range(self.n_layers): self.attentions.append( TFXLMMultiHeadAttention(self.n_heads, self.dim, config=config, name="attentions_._{}".format(i)) ) self.layer_norm1.append( tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1_._{}".format(i)) ) # if self.is_decoder: # self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) self.ffns.append( TFXLMTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name="ffns_._{}".format(i)) ) self.layer_norm2.append( tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2_._{}".format(i)) ) if hasattr(config, "pruned_heads"): pruned_heads = config.pruned_heads.copy().items() config.pruned_heads = {} for layer, heads in pruned_heads: if self.attentions[int(layer)].n_heads == config.n_heads: self.prune_heads({int(layer): list(map(int, heads))}) def build(self, input_shape): with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.dim], initializer=get_initializer(self.embed_init_std), ) if self.n_langs > 1 and self.use_lang_emb: with tf.name_scope("lang_embeddings"): self.lang_embeddings = self.add_weight( name="embeddings", shape=[self.n_langs, self.dim], initializer=get_initializer(self.embed_init_std), ) super().build(input_shape) def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def call( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): # removed: src_enc=None, src_len=None inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None and inputs["inputs_embeds"] is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif inputs["input_ids"] is not None: bs, slen = shape_list(inputs["input_ids"]) elif inputs["inputs_embeds"] is not None: bs, slen = shape_list(inputs["inputs_embeds"])[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs["lengths"] is None: if inputs["input_ids"] is not None: inputs["lengths"] = tf.reduce_sum( tf.cast(tf.not_equal(inputs["input_ids"], self.pad_index), dtype=inputs["input_ids"].dtype), axis=1 ) else: inputs["lengths"] = tf.convert_to_tensor([slen] * bs) # mask = input_ids != self.pad_index # check inputs # assert shape_list(lengths)[0] == bs if tf.executing_eagerly(): tf.debugging.assert_equal( shape_list(inputs["lengths"])[0], bs ), f"Expected batch size {shape_list(inputs['lengths'])[0]} and received batch size {bs} mismatched" # assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, inputs["lengths"], self.causal, padding_mask=inputs["attention_mask"]) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # position_ids if inputs["position_ids"] is None: inputs["position_ids"] = tf.expand_dims(tf.range(slen), axis=0) inputs["position_ids"] = tf.tile(inputs["position_ids"], (bs, 1)) if tf.executing_eagerly(): # assert shape_list(position_ids) == [bs, slen] # (slen, bs) tf.debugging.assert_equal( shape_list(inputs["position_ids"]), [bs, slen] ), f"Position id shape {shape_list(inputs['position_ids'])} and input shape {[bs, slen]} mismatched" # position_ids = position_ids.transpose(0, 1) # langs if inputs["langs"] is not None and tf.executing_eagerly(): # assert shape_list(langs) == [bs, slen] # (slen, bs) tf.debugging.assert_equal( shape_list(inputs["langs"]), [bs, slen] ), f"Lang shape {shape_list(inputs['langs'])} and input shape {[bs, slen]} mismatched" # langs = langs.transpose(0, 1) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen] if inputs["head_mask"] is not None: raise NotImplementedError else: inputs["head_mask"] = [None] * self.n_layers # do not recompute cached elements if inputs["cache"] is not None and inputs["input_ids"] is not None: _slen = slen - inputs["cache"]["slen"] inputs["input_ids"] = inputs["input_ids"][:, -_slen:] inputs["position_ids"] = inputs["position_ids"][:, -_slen:] if inputs["langs"] is not None: inputs["langs"] = inputs["langs"][:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs["inputs_embeds"] is None: inputs["inputs_embeds"] = self.embeddings(inputs["input_ids"]) tensor = inputs["inputs_embeds"] + tf.gather(self.position_embeddings, inputs["position_ids"]) if inputs["langs"] is not None and self.use_lang_emb and self.n_langs > 1: tensor = tensor + tf.gather(self.lang_embeddings, inputs["langs"]) if inputs["token_type_ids"] is not None: tensor = tensor + self.embeddings(inputs["token_type_ids"]) tensor = self.layer_norm_emb(tensor) tensor = self.dropout(tensor, training=inputs["training"]) mask = tf.cast(mask, dtype=tensor.dtype) tensor = tensor * tf.expand_dims(mask, axis=-1) # transformer layers hidden_states = () if inputs["output_hidden_states"] else None attentions = () if inputs["output_attentions"] else None for i in range(self.n_layers): if inputs["output_hidden_states"]: hidden_states = hidden_states + (tensor,) # self attention attn_outputs = self.attentions[i]( tensor, attn_mask, None, inputs["cache"], inputs["head_mask"][i], inputs["output_attentions"], training=inputs["training"], ) attn = attn_outputs[0] if inputs["output_attentions"]: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=inputs["training"]) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = F.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) tensor = tensor * tf.expand_dims(mask, axis=-1) # Add last hidden state if inputs["output_hidden_states"]: hidden_states = hidden_states + (tensor,) # update cache length if inputs["cache"] is not None: inputs["cache"]["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not inputs["return_dict"]: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions) class TFXLMPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLMConfig base_model_prefix = "transformer" @property def dummy_inputs(self): # Sometimes XLM has language embeddings so don't forget to build them as well if needed inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]) attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": inputs_list, "attention_mask": attns_list, "langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]), } else: return {"input_ids": inputs_list, "attention_mask": attns_list} # Remove when XLMWithLMHead computes loss like other LM models @dataclass class TFXLMWithLMHeadModelOutput(ModelOutput): """ Base class for :class:`~transformers.TFXLMWithLMHeadModel` outputs. Args: logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): Tuple of :obj:`tf.Tensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Optional[Tuple[tf.Tensor]] = None attentions: Optional[Tuple[tf.Tensor]] = None XLM_START_DOCSTRING = r""" This model inherits from :class:`~transformers.TFPreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a `tf.keras.Model <https://www.tensorflow.org/api_docs/python/tf/keras/Model>`__ subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. note:: TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using :meth:`tf.keras.Model.fit` method which currently requires having all the tensors in the first argument of the model call function: :obj:`model(inputs)`. If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument : - a single Tensor with :obj:`input_ids` only and nothing else: :obj:`model(inputs_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: :obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: :obj:`model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Parameters: config (:class:`~transformers.XLMConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ XLM_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BertTokenizer`. See :func:`transformers.PreTrainedTokenizer.__call__` and :func:`transformers.PreTrainedTokenizer.encode` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ langs (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`({0})`, `optional`): A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the `language name to language id` mapping is in :obj:`model.config.lang2id` (which is a dictionary string to int) and the `language id to language name` mapping is in :obj:`model.config.id2lang` (dictionary int to string). See usage examples detailed in the :doc:`multilingual documentation <../multilingual>`. token_type_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`__ position_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`__ lengths (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size,)`, `optional`): Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in ``[0, ..., input_ids.size(-1)]``. cache (:obj:`Dict[str, tf.Tensor]`, `optional`): Dictionary string to ``torch.FloatTensor`` that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see :obj:`cache` output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states. head_mask (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`tf.Tensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare XLM Model transformer outputting raw hidden-states without any specific head on top.", XLM_START_DOCSTRING, ) class TFXLMModel(TFXLMPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLMMainLayer(config, name="transformer") @add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], langs=inputs["langs"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], lengths=inputs["lengths"], cache=inputs["cache"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) return outputs # Copied from transformers.models.distilbert.modeling_tf_distilbert.TFDistilBertModel.serving_output def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFBaseModelOutput(last_hidden_state=output.last_hidden_state, hidden_states=hs, attentions=attns) class TFXLMPredLayer(tf.keras.layers.Layer): """ Prediction layer (cross_entropy or adaptive_softmax). """ def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.asm = config.asm self.n_words = config.n_words self.pad_index = config.pad_index if config.asm is False: self.input_embeddings = input_embeddings else: raise NotImplementedError # self.proj = nn.AdaptiveLogSoftmaxWithLoss( # in_features=dim, # n_classes=config.n_words, # cutoffs=config.asm_cutoffs, # div_value=config.asm_div_value, # head_bias=True, # default is False # ) def build(self, input_shape): # The output weights are the same as the input embeddings, but there is an output-only bias for each token. self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @add_start_docstrings( """ The XLM Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XLM_START_DOCSTRING, ) class TFXLMWithLMHeadModel(TFXLMPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLMMainLayer(config, name="transformer") self.pred_layer = TFXLMPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj") def get_lm_head(self): return self.pred_layer def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.pred_layer.name def prepare_inputs_for_generation(self, inputs, **kwargs): mask_token_id = self.config.mask_token_id lang_id = self.config.lang_id effective_batch_size = inputs.shape[0] mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id inputs = tf.concat([inputs, mask_token], axis=1) if lang_id is not None: langs = tf.ones_like(inputs) * lang_id else: langs = None return {"input_ids": inputs, "langs": langs} @add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLMWithLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], langs=inputs["langs"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], lengths=inputs["lengths"], cache=inputs["cache"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) output = transformer_outputs[0] outputs = self.pred_layer(output) if not inputs["return_dict"]: return (outputs,) + transformer_outputs[1:] return TFXLMWithLMHeadModelOutput( logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions ) def serving_output(self, output): hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFXLMWithLMHeadModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ XLM Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLM_START_DOCSTRING, ) class TFXLMForSequenceClassification(TFXLMPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLMMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") @add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], langs=inputs["langs"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], lengths=inputs["lengths"], cache=inputs["cache"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) output = transformer_outputs[0] logits = self.sequence_summary(output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForSequenceClassification.serving_output def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFSequenceClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ XLM Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLM_START_DOCSTRING, ) class TFXLMForMultipleChoice(TFXLMPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLMMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") self.logits_proj = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ # Sometimes XLM has language embeddings so don't forget to build them as well if needed if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS), "langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS), } else: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS), } @add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) if inputs["input_ids"] is not None: num_choices = shape_list(inputs["input_ids"])[1] seq_length = shape_list(inputs["input_ids"])[2] else: num_choices = shape_list(inputs["inputs_embeds"])[1] seq_length = shape_list(inputs["inputs_embeds"])[2] flat_input_ids = tf.reshape(inputs["input_ids"], (-1, seq_length)) if inputs["input_ids"] is not None else None flat_attention_mask = ( tf.reshape(inputs["attention_mask"], (-1, seq_length)) if inputs["attention_mask"] is not None else None ) flat_token_type_ids = ( tf.reshape(inputs["token_type_ids"], (-1, seq_length)) if inputs["token_type_ids"] is not None else None ) flat_position_ids = ( tf.reshape(inputs["position_ids"], (-1, seq_length)) if inputs["position_ids"] is not None else None ) flat_langs = tf.reshape(inputs["langs"], (-1, seq_length)) if inputs["langs"] is not None else None flat_inputs_embeds = ( tf.reshape(inputs["inputs_embeds"], (-1, seq_length, shape_list(inputs["inputs_embeds"])[3])) if inputs["inputs_embeds"] is not None else None ) if inputs["lengths"] is not None: logger.warn( "The `lengths` parameter cannot be used with the XLM multiple choice models. Please use the " "attention mask instead.", ) inputs["lengths"] = None transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, flat_langs, flat_token_type_ids, flat_position_ids, inputs["lengths"], inputs["cache"], inputs["head_mask"], flat_inputs_embeds, inputs["output_attentions"], inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], reshaped_logits) if not inputs["return_dict"]: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @tf.function( input_signature=[ { "input_ids": tf.TensorSpec((None, None, None), tf.int32, name="input_ids"), "attention_mask": tf.TensorSpec((None, None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None, None), tf.int32, name="token_type_ids"), } ] ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving def serving(self, inputs: Dict[str, tf.Tensor]): output = self.call(input_ids=inputs) return self.serving_output(output) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForMultipleChoice.serving_output def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFMultipleChoiceModelOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ XLM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLM_START_DOCSTRING, ) class TFXLMForTokenClassification(TFXLMPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLMMainLayer(config, name="transformer") self.dropout = tf.keras.layers.Dropout(config.dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier" ) @add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, **kwargs, ): r""" labels (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): Labels for computing the token classification loss. Indices should be in ``[0, ..., config.num_labels - 1]``. """ inputs = input_processing( func=self.call, input_ids=input_ids, config=self.config, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], langs=inputs["langs"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], lengths=inputs["lengths"], cache=inputs["cache"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = transformer_outputs[0] sequence_output = self.dropout(sequence_output, training=inputs["training"]) logits = self.classifier(sequence_output) loss = None if inputs["labels"] is None else self.compute_loss(inputs["labels"], logits) if not inputs["return_dict"]: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForTokenClassification.serving_output def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFTokenClassifierOutput(logits=output.logits, hidden_states=hs, attentions=attns) @add_start_docstrings( """ XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLM_START_DOCSTRING, ) class TFXLMForQuestionAnsweringSimple(TFXLMPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLMMainLayer(config, name="transformer") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs" ) @add_start_docstrings_to_model_forward(XLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, langs=None, token_type_ids=None, position_ids=None, lengths=None, cache=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, start_positions=None, end_positions=None, training=False, **kwargs, ): r""" start_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (:obj:`tf.Tensor` of shape :obj:`(batch_size,)`, `optional`): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (:obj:`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ inputs = input_processing( func=self.call, config=self.config, input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, start_positions=start_positions, end_positions=end_positions, training=training, kwargs_call=kwargs, ) transformer_outputs = self.transformer( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], langs=inputs["langs"], token_type_ids=inputs["token_type_ids"], position_ids=inputs["position_ids"], lengths=inputs["lengths"], cache=inputs["cache"], head_mask=inputs["head_mask"], inputs_embeds=inputs["inputs_embeds"], output_attentions=inputs["output_attentions"], output_hidden_states=inputs["output_hidden_states"], return_dict=inputs["return_dict"], training=inputs["training"], ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if inputs["start_positions"] is not None and inputs["end_positions"] is not None: labels = {"start_position": inputs["start_positions"]} labels["end_position"] = inputs["end_positions"] loss = self.compute_loss(labels, (start_logits, end_logits)) if not inputs["return_dict"]: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertForQuestionAnswering.serving_output def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=hs, attentions=attns )
AdaMix/src/transformers/models/xlm/modeling_tf_xlm.py/0
{ "file_path": "AdaMix/src/transformers/models/xlm/modeling_tf_xlm.py", "repo_id": "AdaMix", "token_count": 26560 }
65
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ def check_min_version(min_version): if version.parse(__version__) < version.parse(min_version): if "dev" in min_version: error_message = ( "This example requires a source install from 🤗 Transformers (see " "`https://huggingface.co/transformers/installation.html#installing-from-source`)," ) else: error_message = f"This example requires a minimum version of {min_version}," error_message += f" but the version found is {__version__}.\n" raise ImportError( error_message + ( "Check out https://huggingface.co/transformers/examples.html for the examples corresponding to other " "versions of 🤗 Transformers." ) )
AdaMix/src/transformers/utils/__init__.py/0
{ "file_path": "AdaMix/src/transformers/utils/__init__.py", "repo_id": "AdaMix", "token_count": 540 }
66
# THIS FILE HAS BEEN AUTOGENERATED. To update: # 1. modify: models/auto/modeling_auto.py # 2. run: python utils/class_mapping_update.py from collections import OrderedDict MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict( [ ("ConvBertConfig", "ConvBertForQuestionAnswering"), ("LEDConfig", "LEDForQuestionAnswering"), ("DistilBertConfig", "DistilBertForQuestionAnswering"), ("AlbertConfig", "AlbertForQuestionAnswering"), ("CamembertConfig", "CamembertForQuestionAnswering"), ("BartConfig", "BartForQuestionAnswering"), ("MBartConfig", "MBartForQuestionAnswering"), ("LongformerConfig", "LongformerForQuestionAnswering"), ("XLMRobertaConfig", "XLMRobertaForQuestionAnswering"), ("RobertaConfig", "RobertaForQuestionAnswering"), ("SqueezeBertConfig", "SqueezeBertForQuestionAnswering"), ("BertConfig", "BertForQuestionAnswering"), ("XLNetConfig", "XLNetForQuestionAnsweringSimple"), ("FlaubertConfig", "FlaubertForQuestionAnsweringSimple"), ("MobileBertConfig", "MobileBertForQuestionAnswering"), ("XLMConfig", "XLMForQuestionAnsweringSimple"), ("ElectraConfig", "ElectraForQuestionAnswering"), ("ReformerConfig", "ReformerForQuestionAnswering"), ("FunnelConfig", "FunnelForQuestionAnswering"), ("LxmertConfig", "LxmertForQuestionAnswering"), ("MPNetConfig", "MPNetForQuestionAnswering"), ("DebertaConfig", "DebertaForQuestionAnswering"), ("DebertaV2Config", "DebertaV2ForQuestionAnswering"), ("IBertConfig", "IBertForQuestionAnswering"), ] )
AdaMix/src/transformers/utils/modeling_auto_mapping.py/0
{ "file_path": "AdaMix/src/transformers/utils/modeling_auto_mapping.py", "repo_id": "AdaMix", "token_count": 659 }
67
## Copyright 2020 The HuggingFace Team. All rights reserved. ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## This file is made so that specific statements may be copied inside existing files. This is useful to copy ## import statements in __init__.py, or to complete model lists in the AUTO files. ## ## It is to be used as such: ## Put '# To replace in: "FILE_PATH"' in order to indicate the contents will be copied in the file at path FILE_PATH ## Put '# Below: "STATEMENT"' in order to copy the contents below **the first occurence** of that line in the file at FILE_PATH ## Put '# Replace with:' followed by the lines containing the content to define the content ## End a statement with '# End.'. If starting a new statement without redefining the FILE_PATH, it will continue pasting ## content in that file. ## ## Put '## COMMENT' to comment on the file. # To replace in: "src/transformers/__init__.py" # Below: " # PyTorch models structure" if generating PyTorch # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "{{cookiecutter.camelcase_modelname}}ForMaskedLM", "{{cookiecutter.camelcase_modelname}}ForCausalLM", "{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "{{cookiecutter.camelcase_modelname}}ForTokenClassification", "{{cookiecutter.camelcase_modelname}}Layer", "{{cookiecutter.camelcase_modelname}}Model", "{{cookiecutter.camelcase_modelname}}PreTrainedModel", "load_tf_weights_in_{{cookiecutter.lowercase_modelname}}", ] ) {% else %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "{{cookiecutter.camelcase_modelname}}ForCausalLM", "{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "{{cookiecutter.camelcase_modelname}}Model", ] ) {% endif -%} # End. # Below: " # TensorFlow models structure" if generating TensorFlow # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST", "TF{{cookiecutter.camelcase_modelname}}ForMaskedLM", "TF{{cookiecutter.camelcase_modelname}}ForCausalLM", "TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice", "TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering", "TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification", "TF{{cookiecutter.camelcase_modelname}}ForTokenClassification", "TF{{cookiecutter.camelcase_modelname}}Layer", "TF{{cookiecutter.camelcase_modelname}}Model", "TF{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] ) {% else %} _import_structure["models.{{cookiecutter.lowercase_modelname}}"].extend( [ "TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration", "TF{{cookiecutter.camelcase_modelname}}Model", "TF{{cookiecutter.camelcase_modelname}}PreTrainedModel", ] ) {% endif -%} # End. # Below: " # Fast tokenizers" # Replace with: _import_structure["models.{{cookiecutter.lowercase_modelname}}"].append("{{cookiecutter.camelcase_modelname}}TokenizerFast") # End. # Below: " # Models" # Replace with: "models.{{cookiecutter.lowercase_modelname}}": ["{{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP", "{{cookiecutter.camelcase_modelname}}Config", "{{cookiecutter.camelcase_modelname}}Tokenizer"], # End. # To replace in: "src/transformers/__init__.py" # Below: " if is_torch_available():" if generating PyTorch # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} from .models.{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.camelcase_modelname}}ForMaskedLM, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForMultipleChoice, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}ForTokenClassification, {{cookiecutter.camelcase_modelname}}Layer, {{cookiecutter.camelcase_modelname}}Model, {{cookiecutter.camelcase_modelname}}PreTrainedModel, load_tf_weights_in_{{cookiecutter.lowercase_modelname}}, ) {% else %} from .models.{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}Model, ) {% endif -%} # End. # Below: " if is_tf_available():" if generating TensorFlow # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" %} from .models.{{cookiecutter.lowercase_modelname}} import ( TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForCausalLM, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification, TF{{cookiecutter.camelcase_modelname}}Layer, TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% else %} from .models.{{cookiecutter.lowercase_modelname}} import ( TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model, TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, ) {% endif -%} # End. # Below: " if is_tokenizers_available():" # Replace with: from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}TokenizerFast # End. # Below: " from .models.albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig" # Replace with: from .models.{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Tokenizer # End. # To replace in: "src/transformers/models/__init__.py" # Below: "from . import (" # Replace with: {{cookiecutter.lowercase_modelname}}, # End. # To replace in: "src/transformers/models/auto/configuration_auto.py" # Below: "# Add configs here" # Replace with: ("{{cookiecutter.lowercase_modelname}}", {{cookiecutter.camelcase_modelname}}Config), # End. # Below: "# Add archive maps here" # Replace with: {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, # End. # Below: "from ..albert.configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig", # Replace with: from ..{{cookiecutter.lowercase_modelname}}.configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.uppercase_modelname}}_PRETRAINED_CONFIG_ARCHIVE_MAP, {{cookiecutter.camelcase_modelname}}Config # End. # Below: "# Add full (and cased) model names here" # Replace with: ("{{cookiecutter.lowercase_modelname}}", "{{cookiecutter.camelcase_modelname}}"), # End. # To replace in: "src/transformers/models/auto/modeling_auto.py" if generating PyTorch # Below: "from .configuration_auto import (" # Replace with: {{cookiecutter.camelcase_modelname}}Config, # End. # Below: "# Add modeling imports here" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.camelcase_modelname}}ForMaskedLM, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForMultipleChoice, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}ForTokenClassification, {{cookiecutter.camelcase_modelname}}Model, ) {% else -%} from ..{{cookiecutter.lowercase_modelname}}.modeling_{{cookiecutter.lowercase_modelname}} import ( {{cookiecutter.camelcase_modelname}}ForConditionalGeneration, {{cookiecutter.camelcase_modelname}}ForCausalLM, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering, {{cookiecutter.camelcase_modelname}}ForSequenceClassification, {{cookiecutter.camelcase_modelname}}Model, ) {% endif -%} # End. # Below: "# Base model mapping" # Replace with: ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}Model), # End. # Below: "# Model with LM heads mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM), {% else %} ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration), {% endif -%} # End. # Below: "# Model for Causal LM mapping" # Replace with: ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForCausalLM), # End. # Below: "# Model for Masked LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMaskedLM), {% else -%} {% endif -%} # End. # Below: "# Model for Sequence Classification mapping" # Replace with: ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForSequenceClassification), # End. # Below: "# Model for Question Answering mapping" # Replace with: ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForQuestionAnswering), # End. # Below: "# Model for Token Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForTokenClassification), {% else -%} {% endif -%} # End. # Below: "# Model for Multiple Choice mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForMultipleChoice), {% else -%} {% endif -%} # End. # Below: "# Model for Seq2Seq Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else %} ({{cookiecutter.camelcase_modelname}}Config, {{cookiecutter.camelcase_modelname}}ForConditionalGeneration), {% endif -%} # End. # To replace in: "src/transformers/models/auto/modeling_tf_auto.py" if generating TensorFlow # Below: "from .configuration_auto import (" # Replace with: {{cookiecutter.camelcase_modelname}}Config, # End. # Below: "# Add modeling imports here" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase_modelname}} import ( TF{{cookiecutter.camelcase_modelname}}ForMaskedLM, TF{{cookiecutter.camelcase_modelname}}ForCausalLM, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification, TF{{cookiecutter.camelcase_modelname}}Model, ) {% else -%} from ..{{cookiecutter.lowercase_modelname}}.modeling_tf_{{cookiecutter.lowercase_modelname}} import ( TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration, TF{{cookiecutter.camelcase_modelname}}Model, ) {% endif -%} # End. # Below: "# Base model mapping" # Replace with: ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}Model), # End. # Below: "# Model with LM heads mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM), {% else %} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration), {% endif -%} # End. # Below: "# Model for Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForCausalLM), {% else -%} {% endif -%} # End. # Below: "# Model for Masked LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMaskedLM), {% else -%} {% endif -%} # End. # Below: "# Model for Sequence Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification), {% else -%} {% endif -%} # End. # Below: "# Model for Question Answering mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering), {% else -%} {% endif -%} # End. # Below: "# Model for Token Classification mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForTokenClassification), {% else -%} {% endif -%} # End. # Below: "# Model for Multiple Choice mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice), {% else -%} {% endif -%} # End. # Below: "# Model for Seq2Seq Causal LM mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else %} ({{cookiecutter.camelcase_modelname}}Config, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration), {% endif -%} # End. # To replace in: "utils/check_repo.py" if generating PyTorch # Below: "models to ignore for model xxx mapping" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} "{{cookiecutter.camelcase_modelname}}Encoder", "{{cookiecutter.camelcase_modelname}}Decoder", "{{cookiecutter.camelcase_modelname}}DecoderWrapper", {% endif -%} # End. # Below: "models to ignore for not tested" # Replace with: {% if cookiecutter.is_encoder_decoder_model == "False" -%} {% else -%} "{{cookiecutter.camelcase_modelname}}Encoder", # Building part of bigger (tested) model. "{{cookiecutter.camelcase_modelname}}Decoder", # Building part of bigger (tested) model. "{{cookiecutter.camelcase_modelname}}DecoderWrapper", # Building part of bigger (tested) model. {% endif -%} # End.
AdaMix/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/to_replace_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "AdaMix/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/to_replace_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "AdaMix", "token_count": 6383 }
68
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import random import unittest import numpy as np from transformers import Speech2TextFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from .test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin global_rng = random.Random() def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class Speech2TextFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=24, num_mel_bins=24, padding_value=0.0, sampling_rate=16_000, return_attention_mask=True, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.feature_size = feature_size self.num_mel_bins = num_mel_bins self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: speech_inputs = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class Speech2TextFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = Speech2TextFeatureExtractor def setUp(self): self.feat_extract_tester = Speech2TextFeatureExtractionTester(self) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test feature size input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_cepstral_mean_and_variance_normalization(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] inputs = feature_extractor(speech_inputs, padding=True, return_tensors="np", return_attention_mask=True) input_features = inputs.input_features attention_mask = inputs.attention_mask fbank_feat_lengths = np.sum(attention_mask == 1, axis=1) def _check_zero_mean_unit_variance(input_vector): self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3)) _check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) _check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) _check_zero_mean_unit_variance(input_features[2, : fbank_feat_lengths[2]])
AdaMix/tests/test_feature_extraction_speech_to_text.py/0
{ "file_path": "AdaMix/tests/test_feature_extraction_speech_to_text.py", "repo_id": "AdaMix", "token_count": 2436 }
69
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, BertConfig, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLMHeadModel, BertModel, ) from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST class BertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = BertModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = BertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_model_for_causal_lm_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = BertLMHeadModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, encoder_hidden_states=encoder_hidden_states, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = BertLMHeadModel(config=config).to(torch_device).eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = BertForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = BertForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = BertForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = BertForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class BertModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = ( ( BertModel, BertLMHeadModel, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else () # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in MODEL_FOR_PRETRAINING_MAPPING.values(): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = BertModelTester(self) self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_causal_lm_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = BertModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class BertModelIntegrationTest(unittest.TestCase): @slow def test_inference_no_head_absolute_embedding(self): model = BertModel.from_pretrained("bert-base-uncased") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[[0.4249, 0.1008, 0.7531], [0.3771, 0.1188, 0.7467], [0.4152, 0.1098, 0.7108]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) @slow def test_inference_no_head_relative_embedding_key(self): model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.0756, 0.3142, -0.5128], [0.3761, 0.3462, -0.5477], [0.2052, 0.3760, -0.1240]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) @slow def test_inference_no_head_relative_embedding_key_query(self): model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key-query") input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 11, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[0.6496, 0.3784, 0.8203], [0.8148, 0.5656, 0.2636], [-0.0681, 0.5597, 0.7045]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
AdaMix/tests/test_modeling_bert.py/0
{ "file_path": "AdaMix/tests/test_modeling_bert.py", "repo_id": "AdaMix", "token_count": 10939 }
70
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from .test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import FlaxBertForMaskedLM, FlaxBertModel class FlaxBertModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = BertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxBertModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxBertModel, FlaxBertForMaskedLM) if is_flax_available() else () def setUp(self): self.model_tester = FlaxBertModelTester(self) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("bert-base-cased") outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs)
AdaMix/tests/test_modeling_flax_bert.py/0
{ "file_path": "AdaMix/tests/test_modeling_flax_bert.py", "repo_id": "AdaMix", "token_count": 1942 }
71
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeq2SeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class MT5IntegrationTest(unittest.TestCase): @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_mt5_checkpoint = '<fill_in>' >>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-small", return_dict=True).to(torch_device) tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") input_ids = tokenizer("Hello there", return_tensors="pt").input_ids labels = tokenizer("Hi I am", return_tensors="pt").input_ids loss = model(input_ids.to(torch_device), labels=labels.to(torch_device)).loss mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
AdaMix/tests/test_modeling_mt5.py/0
{ "file_path": "AdaMix/tests/test_modeling_mt5.py", "repo_id": "AdaMix", "token_count": 817 }
72
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.file_utils import cached_property from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from .test_configuration_common import ConfigTester from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeq2SeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class TFMBartModelTester: config_cls = MBartConfig config_updates = {} hidden_act = "gelu" def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size) eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1) input_ids = tf.concat([input_ids, eos_tensor], axis=1) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) inputs_dict = prepare_mbart_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def check_decoder_model_past_large_inputs(self, config, inputs_dict): model = TFMBartModel(config=config).get_decoder() input_ids = inputs_dict["input_ids"] input_ids = input_ids[:1, :] attention_mask = inputs_dict["attention_mask"][:1, :] head_mask = inputs_dict["head_mask"] self.batch_size = 1 # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() past_key_values = past_key_values[1] def test_compile_tf_model(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy") model_class = self.all_generative_model_classes[0] input_ids = { "decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"), "input_ids": tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32"), } # Prepare our model model = model_class(config) model(self._prepare_for_class(inputs_dict, model_class)) # Model must be called before saving. # Let's load it from the disk to be sure we can use pretrained weights with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model = model_class.from_pretrained(tmpdirname) outputs_dict = model(input_ids) hidden_states = outputs_dict[0] # Add a dense layer on top to test integration with other keras modules outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states) # Compile extended model extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs]) extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric]) def prepare_mbart_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, ): if attention_mask is None: attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8) if decoder_attention_mask is None: decoder_attention_mask = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8), ], axis=-1, ) if head_mask is None: head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": head_mask, } @require_tf class TFMBartModelTest(TFModelTesterMixin, unittest.TestCase): all_model_classes = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () all_generative_model_classes = (TFMBartForConditionalGeneration,) if is_tf_available() else () is_encoder_decoder = True test_pruning = False test_onnx = False def setUp(self): self.model_tester = TFMBartModelTester(self) self.config_tester = ConfigTester(self, config_class=MBartConfig) def test_config(self): self.config_tester.run_common_tests() def test_decoder_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs) def test_model_common_attributes(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer) if model_class in self.all_generative_model_classes: x = model.get_output_embeddings() assert isinstance(x, tf.keras.layers.Layer) name = model.get_bias() assert isinstance(name, dict) for k, v in name.items(): assert isinstance(v, tf.Variable) else: x = model.get_output_embeddings() assert x is None name = model.get_bias() assert name is None def test_resize_token_embeddings(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(model, embedding_layer): if hasattr(embedding_layer, "weight"): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model(model.dummy_inputs) if hasattr(embedding_layer, "weight"): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10, None]: # build the embeddings model = model_class(config=config) old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) old_final_logits_bias = model.get_bias() # reshape the embeddings model.resize_token_embeddings(size) new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) new_final_logits_bias = model.get_bias() # check that the resized embeddings size matches the desired size. assert_size = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], assert_size) # check that weights remain the same after resizing models_equal = True for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], assert_size) models_equal = True for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) if old_final_logits_bias is not None and new_final_logits_bias is not None: old_final_logits_bias = old_final_logits_bias["final_logits_bias"] new_final_logits_bias = new_final_logits_bias["final_logits_bias"] self.assertEqual(new_final_logits_bias.shape[0], 1) self.assertEqual(new_final_logits_bias.shape[1], assert_size) models_equal = True for old, new in zip(old_final_logits_bias.value(), new_final_logits_bias.value()): for p1, p2 in zip(old, new): if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: models_equal = False self.assertTrue(models_equal) def test_saved_model_creation(self): # This test is too long (>30sec) and makes fail the CI pass def _assert_tensors_equal(a, b, atol=1e-12, prefix=""): """If tensors not close, or a and b arent both tensors, raise a nice Assertion error.""" if a is None and b is None: return True try: if tf.debugging.assert_near(a, b, atol=atol): return True raise except Exception: msg = "{} != {}".format(a, b) if prefix: msg = prefix + ": " + msg raise AssertionError(msg) def _long_tensor(tok_lst): return tf.constant(tok_lst, dtype=tf.int32) TOLERANCE = 1e-4 @require_sentencepiece @require_tokenizers @require_tf class TFMBartModelIntegrationTest(unittest.TestCase): src_text = [ " UN Chief Says There Is No Military Solution in Syria", ] expected_text = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] model_name = "facebook/mbart-large-en-ro" @cached_property def tokenizer(self): return AutoTokenizer.from_pretrained(self.model_name) @cached_property def model(self): model = TFAutoModelForSeq2SeqLM.from_pretrained(self.model_name) return model def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs): generated_words = self.translate_src_text(**tokenizer_kwargs) self.assertListEqual(self.expected_text, generated_words) def translate_src_text(self, **tokenizer_kwargs): model_inputs = self.tokenizer(self.src_text, **tokenizer_kwargs, return_tensors="tf") generated_ids = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2 ) generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_words @slow def test_batch_generation_en_ro(self): self._assert_generated_batch_equal_expected()
AdaMix/tests/test_modeling_tf_mbart.py/0
{ "file_path": "AdaMix/tests/test_modeling_tf_mbart.py", "repo_id": "AdaMix", "token_count": 6424 }
73
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( XLMConfig, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class XLMModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_lengths = True self.use_token_type_ids = True self.use_labels = True self.gelu_activation = True self.sinusoidal_embeddings = False self.causal = False self.asm = False self.n_langs = 2 self.vocab_size = 99 self.n_special = 0 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 2 self.num_choices = 4 self.summary_type = "last" self.use_proj = True self.scope = None self.bos_token_id = 0 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = random_attention_mask([self.batch_size, self.seq_length]) input_lengths = None if self.use_input_lengths: input_lengths = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) sequence_labels = None token_labels = None is_impossible_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) is_impossible_labels = ids_tensor([self.batch_size], 2).float() choice_labels = ids_tensor([self.batch_size], self.num_choices) config = XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, num_labels=self.num_labels, bos_token_id=self.bos_token_id, ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def create_and_check_xlm_model( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, lengths=input_lengths, langs=token_type_ids) result = model(input_ids, langs=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_xlm_lm_head( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMWithLMHeadModel(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_xlm_simple_qa( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMForQuestionAnsweringSimple(config) model.to(torch_device) model.eval() outputs = model(input_ids) outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) result = outputs self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_xlm_qa( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMForQuestionAnswering(config) model.to(torch_device) model.eval() result = model(input_ids) result_with_labels = model( input_ids, start_positions=sequence_labels, end_positions=sequence_labels, cls_index=sequence_labels, is_impossible=is_impossible_labels, p_mask=input_mask, ) result_with_labels = model( input_ids, start_positions=sequence_labels, end_positions=sequence_labels, cls_index=sequence_labels, is_impossible=is_impossible_labels, ) (total_loss,) = result_with_labels.to_tuple() result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels) (total_loss,) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, ()) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) def create_and_check_xlm_sequence_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = XLMForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids) result = model(input_ids, labels=sequence_labels) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_xlm_token_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_labels = self.num_labels model = XLMForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_xlm_for_multiple_choice( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_choices = self.num_choices model = XLMForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) all_generative_model_classes = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable # XLM has 2 QA models -> need to manually set the correct labels for one of them here def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": inputs_dict["start_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) inputs_dict["end_positions"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = XLMModelTester(self) self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37) def test_config(self): self.config_tester.run_common_tests() def test_xlm_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*config_and_inputs) def test_xlm_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs) def test_xlm_simple_qa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs) def test_xlm_qa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*config_and_inputs) def test_xlm_sequence_classif(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs) def test_xlm_token_classif(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs) def test_xlm_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs) def _check_attentions_for_generate( self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(attentions, tuple) self.assertListEqual( [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) ) self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(attentions): # adds PAD dummy token tgt_len = min_length + idx + 1 src_len = min_length + idx + 1 expected_shape = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) ) def _check_hidden_states_for_generate( self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 ): self.assertIsInstance(hidden_states, tuple) self.assertListEqual( [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], [True] * len(hidden_states), ) self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(hidden_states): # adds PAD dummy token seq_len = min_length + idx + 1 expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(iter_hidden_states), ) pass @slow def test_model_from_pretrained(self): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = XLMModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class XLMModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_xlm_mlm_en_2048(self): model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048") model.to(torch_device) input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device) # the president expected_output_ids = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)
AdaMix/tests/test_modeling_xlm.py/0
{ "file_path": "AdaMix/tests/test_modeling_xlm.py", "repo_id": "AdaMix", "token_count": 8258 }
74
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.pipelines import Pipeline, pipeline from transformers.testing_utils import require_pandas, require_torch, require_torch_scatter, slow from .test_pipelines_common import CustomInputPipelineCommonMixin @require_torch_scatter @require_torch @require_pandas class TQAPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase): pipeline_task = "table-question-answering" pipeline_running_kwargs = { "padding": "max_length", } small_models = [ "lysandre/tiny-tapas-random-wtq", "lysandre/tiny-tapas-random-sqa", ] large_models = ["google/tapas-base-finetuned-wtq"] # Models tested with the @slow decorator valid_inputs = [ { "table": { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["56", "45", "59"], "number of movies": ["87", "53", "69"], "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], }, "query": "how many movies has george clooney played in?", }, { "table": { "actors": ["brad pitt", "leonardo di caprio", "george clooney"], "age": ["56", "45", "59"], "number of movies": ["87", "53", "69"], "date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], }, "query": ["how many movies has george clooney played in?", "how old is he?", "what's his date of birth?"], }, { "table": { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"], "Contributors": ["651", "77", "34"], "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], }, "query": [ "What repository has the largest number of stars?", "Given that the numbers of stars defines if a repository is active, what repository is the most active?", "What is the number of repositories?", "What is the average number of stars?", "What is the total amount of stars?", ], }, ] def _test_pipeline(self, table_querier: Pipeline): output_keys = {"answer", "coordinates", "cells"} valid_inputs = self.valid_inputs invalid_inputs = [ {"query": "What does it do with empty context ?", "table": ""}, {"query": "What does it do with empty context ?", "table": None}, ] self.assertIsNotNone(table_querier) mono_result = table_querier(valid_inputs[0]) self.assertIsInstance(mono_result, dict) for key in output_keys: self.assertIn(key, mono_result) multi_result = table_querier(valid_inputs) self.assertIsInstance(multi_result, list) for result in multi_result: self.assertIsInstance(result, (list, dict)) for result in multi_result: if isinstance(result, list): for _result in result: for key in output_keys: self.assertIn(key, _result) else: for key in output_keys: self.assertIn(key, result) for bad_input in invalid_inputs: self.assertRaises(ValueError, table_querier, bad_input) self.assertRaises(ValueError, table_querier, invalid_inputs) def test_aggregation(self): table_querier = pipeline( "table-question-answering", model="lysandre/tiny-tapas-random-wtq", tokenizer="lysandre/tiny-tapas-random-wtq", ) self.assertIsInstance(table_querier.model.config.aggregation_labels, dict) self.assertIsInstance(table_querier.model.config.no_aggregation_label_index, int) mono_result = table_querier(self.valid_inputs[0]) multi_result = table_querier(self.valid_inputs) self.assertIn("aggregator", mono_result) for result in multi_result: if isinstance(result, list): for _result in result: self.assertIn("aggregator", _result) else: self.assertIn("aggregator", result) def test_aggregation_with_sequential(self): table_querier = pipeline( "table-question-answering", model="lysandre/tiny-tapas-random-wtq", tokenizer="lysandre/tiny-tapas-random-wtq", ) self.assertIsInstance(table_querier.model.config.aggregation_labels, dict) self.assertIsInstance(table_querier.model.config.no_aggregation_label_index, int) with self.assertRaises(ValueError): table_querier( { "table": {}, "query": "how many movies has george clooney played in?", } ) with self.assertRaises(ValueError): table_querier( { "query": "how many movies has george clooney played in?", } ) with self.assertRaises(ValueError): table_querier( { "table": { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"], "Contributors": ["651", "77", "34"], "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], }, "query": "", } ) with self.assertRaises(ValueError): table_querier( { "table": { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"], "Contributors": ["651", "77", "34"], "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], }, } ) def test_empty_errors(self): table_querier = pipeline( "table-question-answering", model="lysandre/tiny-tapas-random-wtq", tokenizer="lysandre/tiny-tapas-random-wtq", ) mono_result = table_querier(self.valid_inputs[0], sequential=True) multi_result = table_querier(self.valid_inputs, sequential=True) self.assertIn("aggregator", mono_result) for result in multi_result: if isinstance(result, list): for _result in result: self.assertIn("aggregator", _result) else: self.assertIn("aggregator", result) def test_sequential(self): table_querier = pipeline( "table-question-answering", model="lysandre/tiny-tapas-random-sqa", tokenizer="lysandre/tiny-tapas-random-sqa", ) sequential_mono_result_0 = table_querier(self.valid_inputs[0], sequential=True) sequential_mono_result_1 = table_querier(self.valid_inputs[1], sequential=True) sequential_multi_result = table_querier(self.valid_inputs, sequential=True) mono_result_0 = table_querier(self.valid_inputs[0]) mono_result_1 = table_querier(self.valid_inputs[1]) multi_result = table_querier(self.valid_inputs) # First valid input has a single question, the dict should be equal self.assertDictEqual(sequential_mono_result_0, mono_result_0) # Second valid input has several questions, the questions following the first one should not be equal self.assertNotEqual(sequential_mono_result_1, mono_result_1) # Assert that we get the same results when passing in several sequences. for index, (sequential_multi, multi) in enumerate(zip(sequential_multi_result, multi_result)): if index == 0: self.assertDictEqual(sequential_multi, multi) else: self.assertNotEqual(sequential_multi, multi) @slow def test_integration_wtq(self): tqa_pipeline = pipeline("table-question-answering") data = { "Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"], "Contributors": ["651", "77", "34"], "Programming language": ["Python", "Python", "Rust, Python and NodeJS"], } queries = [ "What repository has the largest number of stars?", "Given that the numbers of stars defines if a repository is active, what repository is the most active?", "What is the number of repositories?", "What is the average number of stars?", "What is the total amount of stars?", ] results = tqa_pipeline(data, queries) expected_results = [ {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"}, {"answer": "Transformers", "coordinates": [(0, 0)], "cells": ["Transformers"], "aggregator": "NONE"}, { "answer": "COUNT > Transformers, Datasets, Tokenizers", "coordinates": [(0, 0), (1, 0), (2, 0)], "cells": ["Transformers", "Datasets", "Tokenizers"], "aggregator": "COUNT", }, { "answer": "AVERAGE > 36542, 4512, 3934", "coordinates": [(0, 1), (1, 1), (2, 1)], "cells": ["36542", "4512", "3934"], "aggregator": "AVERAGE", }, { "answer": "SUM > 36542, 4512, 3934", "coordinates": [(0, 1), (1, 1), (2, 1)], "cells": ["36542", "4512", "3934"], "aggregator": "SUM", }, ] self.assertListEqual(results, expected_results) @slow def test_integration_sqa(self): tqa_pipeline = pipeline( "table-question-answering", model="google/tapas-base-finetuned-sqa", tokenizer="google/tapas-base-finetuned-sqa", ) data = { "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Age": ["56", "45", "59"], "Number of movies": ["87", "53", "69"], "Date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"], } queries = ["How many movies has George Clooney played in?", "How old is he?", "What's his date of birth?"] results = tqa_pipeline(data, queries, sequential=True) expected_results = [ {"answer": "69", "coordinates": [(2, 2)], "cells": ["69"]}, {"answer": "59", "coordinates": [(2, 1)], "cells": ["59"]}, {"answer": "28 november 1967", "coordinates": [(2, 3)], "cells": ["28 november 1967"]}, ] self.assertListEqual(results, expected_results)
AdaMix/tests/test_pipelines_table_question_answering.py/0
{ "file_path": "AdaMix/tests/test_pipelines_table_question_answering.py", "repo_id": "AdaMix", "token_count": 5496 }
75
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers from .test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = BertJapaneseTokenizer space_between_special_tokens = True def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "こんにちは、世界。 \nこんばんは、世界。" output_text = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def get_clean_sequence(self, tokenizer): input_text, output_text = self.get_input_output_texts(tokenizer) ids = tokenizer.encode(output_text, add_special_tokens=False) text = tokenizer.decode(ids, clean_up_tokenization_spaces=False) return text, ids def test_pretokenized_inputs(self): pass # TODO add if relevant def test_maximum_encoding_length_pair_input(self): pass # TODO add if relevant def test_maximum_encoding_length_single_input(self): pass # TODO add if relevant def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file) tokens = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。") self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14]) def test_pickle_mecab_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, word_tokenizer_type="mecab") self.assertIsNotNone(tokenizer) text = "こんにちは、世界。\nこんばんは、世界。" tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14]) filename = os.path.join(self.tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) tokens_loaded = tokenizer_new.tokenize(text) self.assertListEqual(tokens, tokens_loaded) def test_mecab_tokenizer_ipadic(self): tokenizer = MecabTokenizer(mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_unidic_lite(self): try: tokenizer = MecabTokenizer(mecab_dic="unidic_lite") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_unidic(self): try: tokenizer = MecabTokenizer(mecab_dic="unidic") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_lower(self): tokenizer = MecabTokenizer(do_lower_case=True, mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"], ) def test_mecab_tokenizer_with_option(self): try: tokenizer = MecabTokenizer( do_lower_case=True, normalize_text=False, mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"], ) def test_mecab_tokenizer_no_normalize(self): tokenizer = MecabTokenizer(normalize_text=False, mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "), ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"], ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは" "ばんは", "##こん", "##にちは", "##ばんは"] vocab = {} for (i, token) in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こんにちは"]) self.assertListEqual(tokenizer.tokenize("こんばんは"), ["こん", "##ばんは"]) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは"), ["こん", "##ばんは", "[UNK]", "こんにちは"]) def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese") text = tokenizer.encode("ありがとう。", add_special_tokens=False) text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_2 + [3] @custom_tokenizers class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = BertJapaneseTokenizer def setUp(self): super().setUp() vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_tokenizer(self, **kwargs): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type="character", **kwargs) def get_input_output_texts(self, tokenizer): input_text = "こんにちは、世界。 \nこんばんは、世界。" output_text = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def test_pretokenized_inputs(self): pass # TODO add if relevant def test_maximum_encoding_length_pair_input(self): pass # TODO add if relevant def test_maximum_encoding_length_single_input(self): pass # TODO add if relevant def test_full_tokenizer(self): tokenizer = self.tokenizer_class(self.vocab_file, subword_tokenizer_type="character") tokens = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。") self.assertListEqual( tokens, ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def test_character_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界" "、", "。"] vocab = {} for (i, token) in enumerate(vocab_tokens): vocab[token] = i tokenizer = CharacterTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こ", "ん", "に", "ち", "は"]) self.assertListEqual(tokenizer.tokenize("こんにちほ"), ["こ", "ん", "に", "ち", "[UNK]"]) def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char") text = tokenizer.encode("ありがとう。", add_special_tokens=False) text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False) encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_2 + [3] @custom_tokenizers class AutoTokenizerCustomTest(unittest.TestCase): def test_tokenizer_bert_japanese(self): EXAMPLE_BERT_JAPANESE_ID = "cl-tohoku/bert-base-japanese" tokenizer = AutoTokenizer.from_pretrained(EXAMPLE_BERT_JAPANESE_ID) self.assertIsInstance(tokenizer, BertJapaneseTokenizer)
AdaMix/tests/test_tokenization_bert_japanese.py/0
{ "file_path": "AdaMix/tests/test_tokenization_bert_japanese.py", "repo_id": "AdaMix", "token_count": 5199 }
76
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import M2M100Tokenizer, is_torch_available from transformers.file_utils import is_sentencepiece_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch if is_sentencepiece_available(): from transformers.models.m2m_100.tokenization_m2m_100 import save_json, VOCAB_FILES_NAMES from .test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): SAMPLE_SP = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right EN_CODE = 128022 FR_CODE = 128028 @require_sentencepiece class M2M100TokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = M2M100Tokenizer test_rust_tokenizer = False test_seq2seq = False def setUp(self): super().setUp() vocab = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) save_dir = Path(self.tmpdirname) save_json(vocab_tokens, save_dir / VOCAB_FILES_NAMES["vocab_file"]) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(SAMPLE_SP, save_dir / VOCAB_FILES_NAMES["spm_file"]) tokenizer = M2M100Tokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def get_tokenizer(self, **kwargs): return M2M100Tokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): return ( "This is a test", "This is a test", ) @unittest.skip("Skip this test while all models are still to be uploaded.") def test_pretrained_model_lists(self): pass def test_full_tokenizer(self): tokenizer = self.get_tokenizer() tokens = tokenizer.tokenize("This is a test") self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(tokens), [2, 3, 4, 5, 6], ) back_tokens = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6]) self.assertListEqual(back_tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) text = tokenizer.convert_tokens_to_string(tokens) self.assertEqual(text, "This is a test") @require_torch @require_sentencepiece @require_tokenizers class M2M100TokenizerIntegrationTest(unittest.TestCase): checkpoint_name = "facebook/m2m100_418M" src_text = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] tgt_text = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off expected_src_tokens = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] # fmt: on @classmethod def setUpClass(cls): cls.tokenizer: M2M100Tokenizer = M2M100Tokenizer.from_pretrained( cls.checkpoint_name, src_lang="en", tgt_lang="fr" ) cls.pad_token_id = 1 return cls def check_language_codes(self): self.assertEqual(self.tokenizer.get_lang_id("ar"), 128006) self.assertEqual(self.tokenizer.get_lang_id("en"), 128022) self.assertEqual(self.tokenizer.get_lang_id("ro"), 128076) self.assertEqual(self.tokenizer.get_lang_id("mr"), 128063) def test_tokenizer_batch_encode_plus(self): self.tokenizer.src_lang = "en" ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens, ids) def test_tokenizer_decode_ignores_language_codes(self): self.assertIn(FR_CODE, self.tokenizer.all_special_ids) # fmt: off generated_ids = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on result = self.tokenizer.decode(generated_ids, skip_special_tokens=True) expected_french = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True) self.assertEqual(result, expected_french) self.assertNotIn(self.tokenizer.eos_token, result) def test_special_tokens_unaffacted_by_save_load(self): tmpdirname = tempfile.mkdtemp() original_special_tokens = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(tmpdirname) new_tok = M2M100Tokenizer.from_pretrained(tmpdirname) self.assertDictEqual(new_tok.lang_token_to_id, original_special_tokens) @require_torch def test_batch_fairseq_parity(self): self.tokenizer.src_lang = "en" self.tokenizer.tgt_lang = "fr" batch = self.tokenizer(self.src_text, padding=True, return_tensors="pt") with self.tokenizer.as_target_tokenizer(): batch["labels"] = self.tokenizer(self.tgt_text, padding=True, return_tensors="pt").input_ids batch["decoder_input_ids"] = shift_tokens_right( batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id ) for k in batch: batch[k] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def test_src_lang_setter(self): self.tokenizer.src_lang = "mr" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.tokenizer.src_lang = "zh" self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) @require_torch def test_as_target_tokenizer(self): self.tokenizer.tgt_lang = "mr" with self.tokenizer.as_target_tokenizer(): self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("mr")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)]) self.tokenizer.tgt_lang = "zh" with self.tokenizer.as_target_tokenizer(): self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id("zh")]) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id]) self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang)])
AdaMix/tests/test_tokenization_m2m_100.py/0
{ "file_path": "AdaMix/tests/test_tokenization_m2m_100.py", "repo_id": "AdaMix", "token_count": 3428 }
77
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import os import re import tempfile # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py TRANSFORMERS_PATH = "src/transformers" PATH_TO_DOCS = "docs/source" REPO_PATH = "." def find_code_in_transformers(object_name): """ Find and return the code source code of `object_name`.""" parts = object_name.split(".") i = 0 # First let's find the module where our object lives. module = parts[i] while i < len(parts) and not os.path.isfile(os.path.join(TRANSFORMERS_PATH, f"{module}.py")): i += 1 if i < len(parts): module = os.path.join(module, parts[i]) if i >= len(parts): raise ValueError( f"`object_name` should begin with the name of a module of transformers but got {object_name}." ) with open(os.path.join(TRANSFORMERS_PATH, f"{module}.py"), "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Now let's find the class / func in the code! indent = "" line_index = 0 for name in parts[i + 1 :]: while ( line_index < len(lines) and re.search(fr"^{indent}(class|def)\s+{name}(\(|\:)", lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lines): raise ValueError(f" {object_name} does not match any function or class in {module}.") # We found the beginning of the class / func, now let's find the end (when the indent diminishes). start_index = line_index while line_index < len(lines) and (lines[line_index].startswith(indent) or len(lines[line_index]) <= 1): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 code_lines = lines[start_index:line_index] return "".join(code_lines) _re_copy_warning = re.compile(r"^(\s*)#\s*Copied from\s+transformers\.(\S+\.\S+)\s*($|\S.*$)") _re_replace_pattern = re.compile(r"^\s*(\S+)->(\S+)(\s+.*|$)") def blackify(code): """ Applies the black part of our `make style` command to `code`. """ has_indent = code.startswith(" ") if has_indent: code = f"class Bla:\n{code}" with tempfile.TemporaryDirectory() as d: fname = os.path.join(d, "tmp.py") with open(fname, "w", encoding="utf-8", newline="\n") as f: f.write(code) os.system(f"black -q --line-length 119 --target-version py35 {fname}") with open(fname, "r", encoding="utf-8", newline="\n") as f: result = f.read() return result[len("class Bla:\n") :] if has_indent else result def get_indent(code): lines = code.split("\n") idx = 0 while idx < len(lines) and len(lines[idx]) == 0: idx += 1 if idx < len(lines): return re.search(r"^(\s*)\S", lines[idx]).groups()[0] return 0 def is_copy_consistent(filename, overwrite=False): """ Check if the code commented as a copy in `filename` matches the original. Return the differences or overwrites the content depending on `overwrite`. """ with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() diffs = [] line_index = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lines): search = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. indent, object_name, replace_pattern = search.groups() theoretical_code = find_code_in_transformers(object_name) theoretical_indent = get_indent(theoretical_code) start_index = line_index + 1 if indent == theoretical_indent else line_index + 2 indent = theoretical_indent line_index = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. should_continue = True while line_index < len(lines) and should_continue: line_index += 1 if line_index >= len(lines): break line = lines[line_index] should_continue = (len(line) <= 1 or line.startswith(indent)) and re.search( f"^{indent}# End copy", line ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 observed_code_lines = lines[start_index:line_index] observed_code = "".join(observed_code_lines) # Before comparing, use the `replace_pattern` on the original code. if len(replace_pattern) > 0: patterns = replace_pattern.replace("with", "").split(",") patterns = [_re_replace_pattern.search(p) for p in patterns] for pattern in patterns: if pattern is None: continue obj1, obj2, option = pattern.groups() theoretical_code = re.sub(obj1, obj2, theoretical_code) if option.strip() == "all-casing": theoretical_code = re.sub(obj1.lower(), obj2.lower(), theoretical_code) theoretical_code = re.sub(obj1.upper(), obj2.upper(), theoretical_code) # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: lines = lines[:start_index] + [theoretical_code] + lines[line_index:] line_index = start_index + 1 if overwrite and len(diffs) > 0: # Warn the user a file has been modified. print(f"Detected changes, rewriting {filename}.") with open(filename, "w", encoding="utf-8", newline="\n") as f: f.writelines(lines) return diffs def check_copies(overwrite: bool = False): all_files = glob.glob(os.path.join(TRANSFORMERS_PATH, "**/*.py"), recursive=True) diffs = [] for filename in all_files: new_diffs = is_copy_consistent(filename, overwrite) diffs += [f"- {filename}: copy does not match {d[0]} at line {d[1]}" for d in new_diffs] if not overwrite and len(diffs) > 0: diff = "\n".join(diffs) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) check_model_list_copy(overwrite=overwrite) def get_model_list(): """ Extracts the model list from the README. """ # If the introduction or the conclusion of the list change, the prompts may need to be updated. _start_prompt = "🤗 Transformers currently provides the following architectures" _end_prompt = "1. Want to contribute a new model?" with open(os.path.join(REPO_PATH, "README.md"), "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start of the list. start_index = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 result = [] current_line = "" end_index = start_index while not lines[end_index].startswith(_end_prompt): if lines[end_index].startswith("1."): if len(current_line) > 1: result.append(current_line) current_line = lines[end_index] elif len(lines[end_index]) > 1: current_line = f"{current_line[:-1]} {lines[end_index].lstrip()}" end_index += 1 if len(current_line) > 1: result.append(current_line) return "".join(result) def split_long_line_with_indent(line, max_per_line, indent): """ Split the `line` so that it doesn't go over `max_per_line` and adds `indent` to new lines. """ words = line.split(" ") lines = [] current_line = words[0] for word in words[1:]: if len(f"{current_line} {word}") > max_per_line: lines.append(current_line) current_line = " " * indent + word else: current_line = f"{current_line} {word}" lines.append(current_line) return "\n".join(lines) def convert_to_rst(model_list, max_per_line=None): """ Convert `model_list` to rst format. """ # Convert **[description](link)** to `description <link>`__ def _rep_link(match): title, link = match.groups() # Keep hard links for the models not released yet if "master" in link or not link.startswith("https://huggingface.co/transformers"): return f"`{title} <{link}>`__" # Convert links to relative links otherwise else: link = link[len("https://huggingface.co/transformers/") : -len(".html")] return f":doc:`{title} <{link}>`" model_list = re.sub(r"\*\*\[([^\]]*)\]\(([^\)]*)\)\*\*", _rep_link, model_list) # Convert [description](link) to `description <link>`__ model_list = re.sub(r"\[([^\]]*)\]\(([^\)]*)\)", r"`\1 <\2>`__", model_list) # Enumerate the lines properly lines = model_list.split("\n") result = [] for i, line in enumerate(lines): line = re.sub(r"^\s*(\d+)\.", f"{i+1}.", line) # Split the lines that are too long if max_per_line is not None and len(line) > max_per_line: prompt = re.search(r"^(\s*\d+\.\s+)\S", line) indent = len(prompt.groups()[0]) if prompt is not None else 0 line = split_long_line_with_indent(line, max_per_line, indent) result.append(line) return "\n".join(result) def _find_text_in_file(filename, start_prompt, end_prompt): """ Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty lines. """ with open(filename, "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Find the start prompt. start_index = 0 while not lines[start_index].startswith(start_prompt): start_index += 1 start_index += 1 end_index = start_index while not lines[end_index].startswith(end_prompt): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines def check_model_list_copy(overwrite=False, max_per_line=119): """ Check the model lists in the README and index.rst are consistent and maybe `overwrite`. """ rst_list, start_index, end_index, lines = _find_text_in_file( filename=os.path.join(PATH_TO_DOCS, "index.rst"), start_prompt=" This list is updated automatically from the README", end_prompt=".. _bigtable:", ) md_list = get_model_list() converted_list = convert_to_rst(md_list, max_per_line=max_per_line) if converted_list != rst_list: if overwrite: with open(os.path.join(PATH_TO_DOCS, "index.rst"), "w", encoding="utf-8", newline="\n") as f: f.writelines(lines[:start_index] + [converted_list] + lines[end_index:]) else: raise ValueError( "The model list in the README changed and the list in `index.rst` has not been updated. Run " "`make fix-copies` to fix this." ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() check_copies(args.fix_and_overwrite)
AdaMix/utils/check_copies.py/0
{ "file_path": "AdaMix/utils/check_copies.py", "repo_id": "AdaMix", "token_count": 5181 }
78
from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import os import sys import airsimdroneracingvae # imports curr_dir = os.path.dirname(os.path.abspath(__file__)) import_path = os.path.join(curr_dir, '..') sys.path.insert(0, import_path) import racing_models import racing_utils class VelRegressor(): def __init__(self, regressor_type, bc_weights_path, feature_weights_path=None, latent_space_constraints=True): self.regressor_type = regressor_type # create models if self.regressor_type == 'full': self.bc_model = racing_models.bc_full.BcFull() self.bc_model.load_weights(bc_weights_path) elif self.regressor_type == 'latent': # create model if latent_space_constraints is True: self.cmvae_model = racing_models.cmvae.CmvaeDirect(n_z=10, gate_dim=4, res=64, trainable_model=False) else: self.cmvae_model = racing_models.cmvae.Cmvae(n_z=10, gate_dim=4, res=64, trainable_model=False) self.cmvae_model.load_weights(feature_weights_path) self.bc_model = racing_models.bc_latent.BcLatent() self.bc_model.load_weights(bc_weights_path) elif self.regressor_type == 'reg': self.reg_model = racing_models.dronet.Dronet(num_outputs=4, include_top=True) self.reg_model.load_weights(feature_weights_path) self.bc_model = racing_models.bc_latent.BcLatent() self.bc_model.load_weights(bc_weights_path) def predict_velocities(self, img, p_o_b): img = (img / 255.0) * 2 - 1.0 if self.regressor_type == 'full': predictions = self.bc_model(img) elif self.regressor_type == 'latent': z, _, _ = self.cmvae_model.encode(img) predictions = self.bc_model(z) elif self.regressor_type == 'reg': z = self.reg_model(img) predictions = self.bc_model(z) predictions = predictions.numpy() predictions = racing_utils.dataset_utils.de_normalize_v(predictions) # print('Predicted body vel: \n {}'.format(predictions[0])) v_xyz_world = racing_utils.geom_utils.convert_t_body_2_world(airsimdroneracingvae.Vector3r(predictions[0,0], predictions[0,1], predictions[0,2]), p_o_b.orientation) return np.array([v_xyz_world.x_val, v_xyz_world.y_val, v_xyz_world.z_val, predictions[0,3]])
AirSim-Drone-Racing-VAE-Imitation/imitation_learning/vel_regressor.py/0
{ "file_path": "AirSim-Drone-Racing-VAE-Imitation/imitation_learning/vel_regressor.py", "repo_id": "AirSim-Drone-Racing-VAE-Imitation", "token_count": 1119 }
79
from scipy.interpolate import CubicSpline, CubicHermiteSpline import airsimneurips as airsim import cvxpy as cp import numpy as np import time gate_dimensions = [1.6, 1.6] gate_facing_vector = airsim.Vector3r(x_val=0, y_val=1, z_val=0) def rotate_vector(q, v): v_quat = v.to_Quaternionr() v_rotated_ = q * v_quat * q.inverse() return airsim.Vector3r(x_val=v_rotated_.x_val, y_val=v_rotated_.y_val, z_val=v_rotated_.z_val) class SplinedTrack: """This class represents a Track defined by Gates. A spline is fitted through the Gates with tangential constraints. This spline is then sampled at 2048 points. """ def __init__(self, gate_poses): self.gates = gate_poses self.n_gates = np.size(gate_poses, 0) positions = np.array([pose.position.to_numpy_array() for pose in gate_poses]) dists = np.linalg.norm(positions[1:, :] - positions[:-1, :], axis=1) self.arc_length = np.zeros(shape=self.n_gates) self.arc_length[1:] = np.cumsum(dists) # tangents from quaternion # by rotating default gate direction with quaternion self.tangents = np.zeros(shape=(self.n_gates, 3)) for i, pose in enumerate(gate_poses): self.tangents[i, :] = rotate_vector(pose.orientation, gate_facing_vector).to_numpy_array() self.track_spline = CubicHermiteSpline(self.arc_length, positions, self.tangents, axis=0) # gate width to track (half) width gate_widths = [gate_dimensions[0] / 2.0 for gate in gate_poses] gate_heights = [gate_dimensions[1] / 2.0 for gate in gate_poses] self.track_width_spline = CubicSpline(self.arc_length, gate_widths, axis=0) self.track_height_spline = CubicSpline(self.arc_length, gate_heights, axis=0) # sample 2048 points, the 2048 are arbitrary and should really be a parameter taus = np.linspace(self.arc_length[0], self.arc_length[-1], 2**12) self.track_centers = self.track_spline(taus) self.track_tangents = self.track_spline.derivative(nu=1)(taus) self.track_tangents /= np.linalg.norm(self.track_tangents, axis=1)[:, np.newaxis] self.track_normals = np.zeros_like(self.track_tangents) self.track_normals[:, 0] = -self.track_tangents[:, 1] self.track_normals[:, 1] = self.track_tangents[:, 0] self.track_normals /= np.linalg.norm(self.track_normals, axis=1)[:, np.newaxis] self.track_widths = self.track_width_spline(taus) self.track_heights = self.track_height_spline(taus) def track_frame_at(self, p): """Find closest track frame to a reference point p. :param p: Point of reference :return: Index of track frame, track center, tangent and normal. """ i = np.linalg.norm(self.track_centers - p, axis=1).argmin() return i, self.track_centers[i], self.track_tangents[i], self.track_normals[i], \ self.track_widths[i], self.track_heights[i] class IBRController: """ OVERVIEW: Given the state of both drones 0 and 1, this controller iteratively computes trajectories for both drones, that are collision-free and stay within the track and conform to the dynamical model (maximal speed). These trajectories are specified as 'n_steps' points every 'dt' seconds. ITERATIVE BEST RESPONSE: Initially, these trajectories are sampled to follow the track (for more information on the track see above). Then, fixing the trajectory for drone 1, the trajectory for drone 0 is optimized. Next, vice versa, the trajectory for drone 1 is optimized while keeping the trajectory for drone 0 fixed. This is done iteratively for a fixed number of iterations. The hope is that eventually we arrive at a fixed-point, i. e. after optimizing for both drones we get the same trajectories again. COMPUTING THE BEST RESPONSE: Since some of the constraints are non-convex quadratic constraint (namely the non-collision constraint), the optimized trajectory is found in an iteratively fashion (sequential quadratic program, short SQP) by linearizing the non-collision constraints around the current guess. In case no feasible solution is found, the problem is relaxed by turning constraints into objectives. PARAMETERS: i_ego The index of the 'ego' drone i_opp The index of the opponent drone dt Sampling time for trajectories blocking_term Coefficient on the "blocking" objective n_steps Length of the trajectories n_game_iters Number of game iterations (how often the best response is computed for drone i_0) n_sqp_iters Number of SQP iterations (how often the constraints are linearized and the optimization is solved) drone_paramstangents r_coll Collision radius, see competition guidelines. r_safe Safety radius, see competition guidelines v_max Maximal velocity, determines how far waypoints can be apart a_max Maximal acceleration, not used here. """ def __init__(self, params, drone_params, gate_poses): self.dt = params.dt self.n_steps = params.n self.blocking = params.blocking self.drone_params = drone_params self.track = SplinedTrack(gate_poses) # These are some parameters that could be tuned. # They control how the safety penalty and the relaxed constraints are weighted. self.nc_weight = 2.0 self.nc_relax_weight = 128.0 self.track_relax_weight = 128.0 # possibly should be the largest of the gains? self.blocking_weight = 16.0 # increasing gain increases the aggressiveness in the blocking behavior def init_trajectory(self, i_0, p_0): """Initialize Trajectory along the track tangent Based on the start position p_0, return an initial guess for a trajectory This is simply a line following the tangent of the track with maximal speed :param i_0: The index of the drone to initialize the trajectory for. :param p_0: The current position of the drone :return: A trajectory of length self.n_steps """ v_ego = self.drone_params[i_0]["v_max"] trajectory = np.zeros(shape=(self.n_steps, 3)) p = np.copy(p_0) # Copy state as it gets modified throughout the loop for k in range(self.n_steps): idx, c, t, n, width, height = self.track.track_frame_at(p) p += self.dt * v_ego * t p[2] = c[2] # fix trajectory height to center of track trajectory[k, :] = p return trajectory def best_response(self, i_ego, state, trajectories): """Based on current trajectories, compute the best-response (BR) of player i_ego. This is done by solving an optimization problem over the trajectory p_ego[0], p_ego[1], ..., p_ego[N] for drone i_ego maximizing the progress along the track while also trying to block the opponent. Here t is the tangent vector that points along the track and N is the horizon length. The resulting optimization is implemented as the following: minimize -t^T p_ego[N] subject to - dynamical constraints ||p_ego[k+1] - p_ego[k]|| <= v_max*dt - stay-within-track constraints |n^T (p[k] - c)| <= width, |v^T (p[k] - c)| <= height, where v is the track vertical (t x n, where x here represents the cross product) and c is the track center - non-collision constraints ||p_ego[k] - p_opp[k]|| >= r_coll * 2 The progress along the track is approximated by the progress along the tangent of the last point of the trajectory, i. e., maximize t^T p_ego[k]. The non-collision constraints are non convex and are linearized here. Instead of requiring the ego drone to stay outside a circle, the drone is constrained to be in a half-plane tangential to that circle. In addition to optimizing track progress, the penalty of violating the safety radius is accounted for. If the blocking term defined in the trajectory parameters is non-zero, we add an additional term to the objective function that incentivizes the drones to slightly adjust their trajectories to block the opponent. Now the objective function is -t^T p_ego[N] + sum_k( gamma^k p_rel[k]^T n n^T p_rel[k] ) where the sum here is over the full trajectory (1, ..., k, ..., N), gamma is the blocking coefficient (a term that is positive when the opponent is behind the ego agent and zero otherwise), and p_rel = p_ego - p_opp is the relative pose vector between the two drones. This is just a heuristic for "blocking" behavior that is only activated when the ego drone is in front of the opponent. :param i_ego: The drone index of the ego drone. :param state: The current state (positions) of the two drones. :param trajectories: The current trajectories :return: Optimized trajectory of player i_ego """ i_opp = (i_ego + 1) % 2 v_ego = self.drone_params[i_ego]["v_max"] r_coll_ego = self.drone_params[i_ego]["r_coll"] r_coll_opp = self.drone_params[i_opp]["r_coll"] r_safe_ego = self.drone_params[i_ego]["r_safe"] r_safe_opp = self.drone_params[i_opp]["r_safe"] d_coll = r_coll_ego + r_coll_opp d_safe = r_safe_ego + r_safe_opp p = cp.Variable(shape=(self.n_steps, 3)) # === Dynamical Constraints === # ||p_0 - p[0]|| <= v*dt init_dyn_constraint = cp.SOC(cp.Constant(v_ego * self.dt), cp.Constant(state[i_ego, :]) - p[0, :]) # ||p[k+1] - p[k]|| <= v*dt dyn_constraints = [init_dyn_constraint] + [ cp.SOC(cp.Constant(v_ego * self.dt), p[k + 1, :] - p[k, :]) for k in range(self.n_steps - 1)] # === Track Constraints === track_constraints = [] track_obj = cp.Constant(0) track_objective_exp = 0.5 # exponentially decreasing weight t = np.zeros((self.n_steps, 3)) n = np.zeros((self.n_steps, 3)) for k in range(self.n_steps): # query track indices at ego position idx, c, t[k, :], n[k, :], width, height = self.track.track_frame_at(trajectories[i_ego][k, :]) # hortizontal track height constraints track_constraints.append(n[k, :].T @ p[k, :] - np.dot(n[k, :], c) <= width - r_coll_ego) track_constraints.append(n[k, :].T @ p[k, :] - np.dot(n[k, :], c) >= -(width - r_coll_ego)) # vertical track height constraints v = np.cross(t[k, :], n[k, :]) # the vertical direction component of the track track_constraints.append(v.T @ p[k, :] - v.dot(c) <= height - r_coll_ego) track_constraints.append(v.T @ p[k, :] - v.dot(c) >= -(height - r_coll_ego)) # track constraints objective track_obj += (track_objective_exp ** k) * ( cp.pos(n[k, :].T @ p[k, :] - np.dot(n[k, :], c) - (width - r_coll_ego)) + cp.pos(-(n[k, :].T @ p[k, :] - np.dot(n[k, :], c) + (width - r_coll_ego)))) # === Non-Collision Constraints === nc_constraints = [] nc_obj = cp.Constant(0) nc_relax_obj = cp.Constant(0) non_collision_objective_exp = 0.5 # exponentially decreasing weight for k in range(self.n_steps): p_opp = trajectories[i_opp][k, :] p_ego = trajectories[i_ego][k, :] # Compute beta, the normal direction vector pointing from the ego's drone position to the opponent's beta = p_opp - p_ego if np.linalg.norm(beta) >= 1e-6: # Only normalize if norm is large enough beta /= np.linalg.norm(beta) # n.T * (p_opp - p_ego) >= d_coll nc_constraints.append(beta.dot(p_opp) - beta.T @ p[k, :] >= d_coll) # For normal non-collision objective use safety distance nc_obj += (non_collision_objective_exp ** k) * cp.pos(d_safe - (beta.dot(p_opp) - beta.T @ p[k, :])) # For relaxed non-collision objective use collision distance nc_relax_obj += (non_collision_objective_exp ** k) * cp.pos(d_coll - (beta.dot(p_opp) - beta.T @ p[k, :])) # === Blocking Heuristic Objective === blocking_obj = cp.Constant(0) blocking_objective_exp = 0.5 # exponentially decreasing weight leader_term = np.dot((trajectories[i_ego][0, :] - trajectories[i_opp][0, :]), t[0, :]) if ( self.blocking & (leader_term > 0.0) ): for k in range(self.n_steps): p_opp = trajectories[i_opp][k, :] # scale factor for leading robot p_rel = trajectories[i_ego][k, :] - p_opp leader_term = np.dot(p_rel, t[k, :]); gamma = 0.0 if (leader_term > 0): gamma = 1.0/(leader_term * leader_term)/(k + 1); else: gamma = 0.0 # add blocking cost function blocking_obj += gamma * blocking_objective_exp**k * cp.quad_form(p[k, :] - p_opp, np.outer(n[k, :], n[k, :])) # === "Win the Race" Objective === # Take the tangent t at the last trajectory point # This serves as an approximation to the total track progress obj = -t[-1, :].T @ p[-1, :] # create the problem in cxvpy and solve it prob = cp.Problem(cp.Minimize(obj + self.nc_weight * nc_obj + self.blocking_weight * blocking_obj), dyn_constraints + track_constraints + nc_constraints) # try to solve proposed problem trajectory_result = np.array((self.n_steps, 3)) try: prob.solve() # relax track constraints if problem is infeasible if np.isinf(prob.value): print("WARN: relaxing track constraints") # If the problem is not feasible, relax track constraints # Assert it is indeed an infeasible problem and not unbounded (in which case value is -inf). # (The dynamical constraints keep the problem bounded.) assert prob.value >= 0.0 # Solve relaxed problem (track constraint -> track objective) relaxed_prob = cp.Problem(cp.Minimize(obj + self.nc_weight * nc_obj + self.track_relax_weight * track_obj), dyn_constraints + nc_constraints) relaxed_prob.solve() # relax non-collision constraints if problem is still infeasible if np.isinf(relaxed_prob.value): print("WARN: relaxing non collision constraints") # If the problem is still infeasible, relax non-collision constraints # Again, assert it is indeed an infeasible problem and not unbounded (in which case value is -inf). # (The dynamical constraints keep the problem bounded.) assert relaxed_prob.value >= 0.0 # Solve relaxed problem (non-collision constraint -> non-collision objective) relaxed_prob = cp.Problem(cp.Minimize(obj + self.nc_weight * nc_obj + self.nc_relax_weight * nc_relax_obj), dyn_constraints + track_constraints) relaxed_prob.solve() assert not np.isinf(relaxed_prob.value) trajectory_result = p.value except: # if cvxpy fails, just return the initialized trajectory to do something print("WARN: cvxpy failre: resorting to initial trajectory (no collision constraints!)") trajectory_result = trajectories[i_ego] return trajectory_result def iterative_br(self, i_ego, state, n_game_iterations=2, n_sqp_iterations=3): trajectories = [ self.init_trajectory(i, state[i, :]) for i in [0, 1] ] t0 = time.time() for i_game in range(n_game_iterations - 1): for i in [i_ego, (i_ego + 1) % 2]: for i_sqp in range(n_sqp_iterations - 1): trajectories[i] = self.best_response(i, state, trajectories) # one last time for i_ego for i_sqp in range(n_sqp_iterations): trajectories[i_ego] = self.best_response(i_ego, state, trajectories) t1 = time.time() print('Total IBR solution time: ', t1 - t0) return trajectories[i_ego] def truncate(self, p_i, trajectory): """ Truncates the trajectory at time k, so that the next point is 'ahead' of p_i. A point p is ahead of p_i, if p-p_i projected onto the track tangent is positive :param p_i: The position of the drone :param trajectory: The trajectory to be truncated :return: k, the index of the first point ahead of p_i """ _, _, t, _, _, _ = self.track.track_frame_at(p_i) truncate_distance = 0.01 # could be a parameter based on max velocity and computation time for k in range(self.n_steps): if t.dot(trajectory[k, :] - p_i) > truncate_distance: # truncate if next waypoint is closer than truncate_distance meters in front of robot return k, t return self.n_steps, t
AirSim-NeurIPS2019-Drone-Racing/baselines/gtp.py/0
{ "file_path": "AirSim-NeurIPS2019-Drone-Racing/baselines/gtp.py", "repo_id": "AirSim-NeurIPS2019-Drone-Racing", "token_count": 7424 }
80
[settings] include_trailing_comma=True force_grid_wrap=0 use_parentheses=True line_length=79 profile=black ; 3 stands for Vertical Hanging Indent, e.g. ; from third_party import ( ; lib1, ; lib2, ; lib3, ; ) ; docs: https://github.com/timothycrosley/isort#multi-line-output-modes multi_line_output=3 skip=target skip_glob=**/gen/*,.venv*/*,venv*/*,**/proto/*,.tox/*, azure-monitor-opentelemetry/azure/monitor/opentelemetry/_vendor/* known_third_party=opentelemetry,psutil,pytest,redis,redis_opentracing
ApplicationInsights-Python/.isort.cfg/0
{ "file_path": "ApplicationInsights-Python/.isort.cfg", "repo_id": "ApplicationInsights-Python", "token_count": 214 }
81
# Azure Trusted Research Environment **Azure TRE documentation site**: <https://microsoft.github.io/AzureTRE/> ## Background <img align="right" src="./docs/assets/azure-tre-logo.svg" width="33%" /> Across the health industry, be it a pharmaceutical company interrogating clinical trial results, or a public health provider analyzing electronic health records, there is the need to enable researchers, analysts, and developers to work with sensitive data sets. Trusted Research Environments (TREs) enable organisations to provide research teams secure access to these data sets alongside appropriate tooling to ensure researchers can remain efficient and productive despite the security controls in place. Further information on TREs in general can be found in many places, one good resource is [HDR UK's website](https://www.hdruk.ac.uk/access-to-health-data/trusted-research-environments/). The Azure Trusted Research Environment project is an accelerator to assist Microsoft customers and partners who want to build out Trusted Research environments on Azure. This project enables authorized users to deploy and configure secure workspaces and researcher tooling without a dependency on IT teams. This project is typically implemented alongside a data platform that provides research ready datasets to TRE workspaces. TREs are not “one size fits all”, hence although the Azure TRE has a number of out of the box features, the project has been built be extensible, and hence tooling and data platform agnostic. Core features include: - Self-service workspace management for TRE administrators - Self-service provisioning of research tooling for research teams - Package and repository mirroring - PyPi, R-CRAN, Apt and more. - Extensible architecture - build your own service templates as required - Microsoft Entra ID integration - Airlock - import and export - Cost reporting - Ready to workspace templates including: - Restricted with data exfiltration control - Unrestricted for open data - Ready to go workspace service templates including: - Virtual Desktops: Windows, Linux - AzureML (Jupyter, R Studio, VS Code) - ML Flow - Gitea ## Project Status and Support ***This project's code base is still under development and breaking changes will happen. Whilst the maintainers will do our best to minimise disruption to existing deployments, this may not always be possible. Stable releases will be published when the project is more mature.*** The aim is to bring together learnings from past customer engagements where TREs have been built into a single reference solution. This is a solution accelerator aiming to be a great starting point for a customized TRE solution. You're encouraged to download and customize the solution to meet your requirements This project does not have a dedicated team of maintainers but relies on you and the community to maintain and enhance the solution. Microsoft will on project-to-project basis continue to extend the solution in collaboration with customers and partners. No guarantees can be offered as to response times on issues, feature requests, or to the long term road map for the project. It is important before deployment of the solution that the [Support Policy](SUPPORT.md) is read and understood. ## Contributing This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit [https://cla.opensource.microsoft.com](https://cla.opensource.microsoft.com). When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [[email protected]](mailto:[email protected]) with any additional questions or comments. Note: maintainers should refer to the [maintainers guide](maintainers.md) ## Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies. ## Repository structure ```text ├── .github │ ├── ISSUE_TEMPLATE - Templates for GitHub issues │ ├── linters - Linter definitions for workflows │ └── workflows - GitHub Actions workflows (CI/CD) │ ├── devops │ ├── scripts - DevOps scripts │ └── terraform - Terraform specific DevOps files/scripts for bootstrapping │ ├── docs - Documentation │ ├── e2e_tests - pytest-based end-to-end tests │ ├── api_app - API source code and docs │ ├── resource_processor - VMSS Porter Runner │ ├── scripts - Utility scripts │ └── templates ├── core/terraform - Terraform definitions of Azure TRE core resources ├── shared_services - Terraform definitions of shared services ├── workspace_services - Workspace services └── workspaces - Workspace templates ```
AzureTRE/README.md/0
{ "file_path": "AzureTRE/README.md", "repo_id": "AzureTRE", "token_count": 1468 }
82
class NoFilesInRequestException(Exception): pass class TooManyFilesInRequestException(Exception): pass
AzureTRE/airlock_processor/exceptions/__init__.py/0
{ "file_path": "AzureTRE/airlock_processor/exceptions/__init__.py", "repo_id": "AzureTRE", "token_count": 32 }
83
import asyncio from fastapi import APIRouter, Request from core import credentials from models.schemas.status import HealthCheck, ServiceStatus, StatusEnum from resources import strings from services.health_checker import create_resource_processor_status, create_state_store_status, create_service_bus_status from services.logging import logger router = APIRouter() @router.get("/health", name=strings.API_GET_HEALTH_STATUS) async def health_check(request: Request) -> HealthCheck: # The health endpoint checks the status of key components of the system. # Note that Resource Processor checks incur Azure management calls, so # calling this endpoint frequently may result in API throttling. async with credentials.get_credential_async_context() as credential: cosmos, sb, rp = await asyncio.gather( create_state_store_status(), create_service_bus_status(credential), create_resource_processor_status(credential) ) cosmos_status, cosmos_message = cosmos sb_status, sb_message = sb rp_status, rp_message = rp if cosmos_status == StatusEnum.not_ok or sb_status == StatusEnum.not_ok or rp_status == StatusEnum.not_ok: logger.error(f'Cosmos Status: {cosmos_status}, message: {cosmos_message}') logger.error(f'Service Bus Status: {sb_status}, message: {sb_message}') logger.error(f'Resource Processor Status: {rp_status}, message: {rp_message}') services = [ServiceStatus(service=strings.COSMOS_DB, status=cosmos_status, message=cosmos_message), ServiceStatus(service=strings.SERVICE_BUS, status=sb_status, message=sb_message), ServiceStatus(service=strings.RESOURCE_PROCESSOR, status=rp_status, message=rp_message)] return HealthCheck(services=services)
AzureTRE/api_app/api/routes/health.py/0
{ "file_path": "AzureTRE/api_app/api/routes/health.py", "repo_id": "AzureTRE", "token_count": 622 }
84
class EntityDoesNotExist(Exception): """Raised when entity was not found in database.""" class DuplicateEntity(Exception): """Raised when we have an unexpected duplicate (ex. two currents)""" class EntityVersionExist(Exception): """Raised when entity was not found in database.""" class UnableToAccessDatabase(Exception): """Raised when we can't access the database""" class ResourceIsNotDeployed(Exception): """Raised when trying to install resource under entity which haven't finalized its deployment.""" class InvalidInput(Exception): """Raised when invalid input is received when creating an entity.""" class UserNotAuthorizedToUseTemplate(Exception): """Raised when user attempts to use a template they aren't authorized to use""" class MajorVersionUpdateDenied(Exception): """Raised when user attempts to update a resource with a major version.""" class TargetTemplateVersionDoesNotExist(Exception): """Raised when user attempts to upgrade a resource to a version which was not registered.""" class VersionDowngradeDenied(Exception): """Raised when user attempts to downgrade a resource to a lower version."""
AzureTRE/api_app/db/errors.py/0
{ "file_path": "AzureTRE/api_app/db/errors.py", "repo_id": "AzureTRE", "token_count": 297 }
85
import uuid from typing import List, Tuple from pydantic import parse_obj_as from db.repositories.resources_history import ResourceHistoryRepository from models.domain.resource_template import ResourceTemplate from models.domain.authentication import User from core import config from db.errors import EntityDoesNotExist, InvalidInput, ResourceIsNotDeployed from db.repositories.resource_templates import ResourceTemplateRepository from db.repositories.resources import ResourceRepository, IS_NOT_DELETED_CLAUSE from db.repositories.operations import OperationRepository from models.domain.resource import ResourceType from models.domain.workspace import Workspace from models.schemas.resource import ResourcePatch from models.schemas.workspace import WorkspaceInCreate from services.cidr_service import generate_new_cidr, is_network_available class WorkspaceRepository(ResourceRepository): """ Repository class representing data storage for Workspaces """ # We allow the users some predefined TShirt sizes for the address space predefined_address_spaces = {"small": 24, "medium": 22, "large": 16} @classmethod async def create(cls): cls = WorkspaceRepository() await super().create() return cls @staticmethod def workspaces_query_string(): return f'SELECT * FROM c WHERE c.resourceType = "{ResourceType.Workspace}"' @staticmethod def active_workspaces_query_string(): return f'SELECT * FROM c WHERE c.resourceType = "{ResourceType.Workspace}" AND {IS_NOT_DELETED_CLAUSE}' async def get_workspaces(self) -> List[Workspace]: query = WorkspaceRepository.workspaces_query_string() workspaces = await self.query(query=query) return parse_obj_as(List[Workspace], workspaces) async def get_active_workspaces(self) -> List[Workspace]: query = WorkspaceRepository.active_workspaces_query_string() workspaces = await self.query(query=query) return parse_obj_as(List[Workspace], workspaces) async def get_deployed_workspace_by_id(self, workspace_id: str, operations_repo: OperationRepository) -> Workspace: workspace = await self.get_workspace_by_id(workspace_id) if (not await operations_repo.resource_has_deployed_operation(resource_id=workspace_id)): raise ResourceIsNotDeployed return workspace async def get_workspace_by_id(self, workspace_id: str) -> Workspace: query = self.workspaces_query_string() + f' AND c.id = "{workspace_id}"' workspaces = await self.query(query=query) if not workspaces: raise EntityDoesNotExist return parse_obj_as(Workspace, workspaces[0]) # Remove this method once not using last 4 digits for naming - https://github.com/microsoft/AzureTRE/issues/3666 async def is_workspace_with_last_4_id(self, workspace_id: str) -> bool: query = self.workspaces_query_string() + f' AND ENDSWITH(c.id, "{workspace_id[-4:]}")' workspaces = await self.query(query=query) return len(workspaces) > 0 async def create_workspace_item(self, workspace_input: WorkspaceInCreate, auth_info: dict, workspace_owner_object_id: str, user_roles: List[str]) -> Tuple[Workspace, ResourceTemplate]: full_workspace_id = str(uuid.uuid4()) # Ensure workspace with last four digits of ID does not already exist - remove when https://github.com/microsoft/AzureTRE/issues/3666 is resolved while await self.is_workspace_with_last_4_id(full_workspace_id): full_workspace_id = str(uuid.uuid4()) template = await self.validate_input_against_template(workspace_input.templateName, workspace_input, ResourceType.Workspace, user_roles) # allow for workspace template taking a single address_space or multiple address_spaces intial_address_space = await self.get_address_space_based_on_size(workspace_input.properties) address_space_param = {"address_space": intial_address_space} address_spaces_param = {"address_spaces": [intial_address_space]} auto_app_registration_param = {"register_aad_application": self.automatically_create_application_registration(workspace_input.properties)} workspace_owner_param = {"workspace_owner_object_id": self.get_workspace_owner(workspace_input.properties, workspace_owner_object_id)} # we don't want something in the input to overwrite the system parameters, # so dict.update can't work. Priorities from right to left. resource_spec_parameters = {**workspace_input.properties, **address_space_param, **address_spaces_param, **auto_app_registration_param, **workspace_owner_param, **auth_info, **self.get_workspace_spec_params(full_workspace_id)} workspace = Workspace( id=full_workspace_id, templateName=workspace_input.templateName, templateVersion=template.version, properties=resource_spec_parameters, resourcePath=f'/workspaces/{full_workspace_id}', etag='' # need to validate the model ) return workspace, template def get_workspace_owner(self, workspace_properties: dict, workspace_owner_object_id: str) -> str: # Add the objectId of the user that will become the workspace owner. If it is not present in # the request, we can assume the logged in user will be WorkspaceOwner user_defined_workspace_owner_object_id = workspace_properties.get("workspace_owner_object_id") return workspace_owner_object_id if user_defined_workspace_owner_object_id is None else user_defined_workspace_owner_object_id def automatically_create_application_registration(self, workspace_properties: dict) -> bool: return True if ("auth_type" in workspace_properties and workspace_properties["auth_type"] == "Automatic") else False async def get_address_space_based_on_size(self, workspace_properties: dict): # Default the address space to 'small' if not supplied. address_space_size = workspace_properties.get("address_space_size", "small").lower() # 773 allow custom sized networks to be requested if (address_space_size == "custom"): if (await self.validate_address_space(workspace_properties.get("address_space"))): return workspace_properties.get("address_space") else: raise InvalidInput("The custom 'address_space' you requested does not fit in the current network.") # Default mask is 24 (small) cidr_netmask = WorkspaceRepository.predefined_address_spaces.get(address_space_size, 24) return await self.get_new_address_space(cidr_netmask) # 772 check that the provided address_space is available in the network. async def validate_address_space(self, address_space): if (address_space is None): raise InvalidInput("Missing 'address_space' from properties.") allocated_networks = [x.properties["address_space"] for x in await self.get_active_workspaces()] return is_network_available(allocated_networks, address_space) async def get_new_address_space(self, cidr_netmask: int = 24): workspaces = await self.get_active_workspaces() networks = [[x.properties.get("address_space")] for x in workspaces] networks = networks + [x.properties.get("address_spaces", []) for x in workspaces] networks = [i for s in networks for i in s if i is not None] new_address_space = generate_new_cidr(networks, cidr_netmask) return new_address_space async def patch_workspace(self, workspace: Workspace, workspace_patch: ResourcePatch, etag: str, resource_template_repo: ResourceTemplateRepository, resource_history_repo: ResourceHistoryRepository, user: User, force_version_update: bool) -> Tuple[Workspace, ResourceTemplate]: # get the workspace template workspace_template = await resource_template_repo.get_template_by_name_and_version(workspace.templateName, workspace.templateVersion, ResourceType.Workspace) return await self.patch_resource(workspace, workspace_patch, workspace_template, etag, resource_template_repo, resource_history_repo, user, force_version_update) def get_workspace_spec_params(self, full_workspace_id: str): params = self.get_resource_base_spec_params() params.update({ "azure_location": config.RESOURCE_LOCATION, "workspace_id": full_workspace_id[-4:], # TODO: remove with #729 }) return params
AzureTRE/api_app/db/repositories/workspaces.py/0
{ "file_path": "AzureTRE/api_app/db/repositories/workspaces.py", "repo_id": "AzureTRE", "token_count": 3198 }
86
from enum import Enum from typing import Optional, Union, List from pydantic import BaseModel, Field, validator from models.domain.azuretremodel import AzureTREModel from models.domain.request_action import RequestAction from resources import strings class ResourceType(str, Enum): """ Type of resource to deploy """ Workspace = strings.RESOURCE_TYPE_WORKSPACE WorkspaceService = strings.RESOURCE_TYPE_WORKSPACE_SERVICE UserResource = strings.USER_RESOURCE SharedService = strings.RESOURCE_TYPE_SHARED_SERVICE class ResourceHistoryItem(AzureTREModel): """ Resource History Item - to preserve history of resource properties """ id: str = Field(title="Id", description="GUID identifying the resource request") resourceId: str = Field(title="Id", description="GUID identifying the resource request") properties: dict = Field({}, title="Resource template parameters", description="Parameters for the deployment") isEnabled: bool = True resourceVersion: int = 0 updatedWhen: float = 0 user: dict = {} templateVersion: Optional[str] = Field(title="Resource template version", description="The version of the resource template (bundle) to deploy") class AvailableUpgrade(BaseModel): version: str forceUpdateRequired: bool class Resource(AzureTREModel): """ Resource request """ id: str = Field(title="Id", description="GUID identifying the resource request") templateName: str = Field(title="Resource template name", description="The resource template (bundle) to deploy") templateVersion: str = Field(title="Resource template version", description="The version of the resource template (bundle) to deploy") properties: dict = Field({}, title="Resource template parameters", description="Parameters for the deployment") availableUpgrades: Optional[List[AvailableUpgrade]] = Field(title="Available template upgrades", description="Versions of the template that are available for upgrade") isEnabled: bool = True # Must be set before a resource can be deleted resourceType: ResourceType deploymentStatus: Optional[str] = Field(title="Deployment Status", description="Overall deployment status of the resource") etag: str = Field(title="_etag", description="eTag of the document", alias="_etag") resourcePath: str = "" resourceVersion: int = 0 user: dict = {} updatedWhen: float = 0 def get_resource_request_message_payload(self, operation_id: str, step_id: str, action: RequestAction) -> dict: payload = { "operationId": operation_id, "stepId": step_id, "action": action, "id": self.id, "name": self.templateName, "version": self.templateVersion, "parameters": self.properties } if self.resourceType == ResourceType.WorkspaceService: payload["workspaceId"] = self.workspaceId if self.resourceType == ResourceType.UserResource: payload["workspaceId"] = self.workspaceId payload["ownerId"] = self.ownerId payload["parentWorkspaceServiceId"] = self.parentWorkspaceServiceId return payload # SQL API CosmosDB saves etag as an escaped string by default, with no apparent way to change it. # Removing escaped quotes on pydantic deserialization. https://github.com/microsoft/AzureTRE/issues/1931 @validator("etag", pre=True) def parse_etag_to_remove_escaped_quotes(cls, value): return value.replace('\"', '') class Output(AzureTREModel): Name: str = Field(title="", description="", alias="name") Value: Union[list, dict, str] = Field(None, title="", description="", alias="value") Type: str = Field(title="", description="", alias="type")
AzureTRE/api_app/models/domain/resource.py/0
{ "file_path": "AzureTRE/api_app/models/domain/resource.py", "repo_id": "AzureTRE", "token_count": 1208 }
87
from typing import List, Optional from pydantic import BaseModel, Field, Extra from models.domain.resource import ResourceHistoryItem class ResourcePatch(BaseModel): isEnabled: Optional[bool] properties: Optional[dict] templateVersion: Optional[str] class Config: extra = Extra.forbid schema_extra = { "example": { "isEnabled": False, "templateVersion": "1.0.1", "properties": { "display_name": "the display name", "description": "a description", "other_fields": "other properties defined by the resource template" } } } def get_sample_resource_history(resource_id: str) -> dict: return { "id": "abc9ru33-7265-4b5f-9eae-a1a62928772e", "resourceId": resource_id, "templateName": "vm", "templateVersion": "0.1.0", "properties": { "display_name": "my user resource", "description": "some description", }, "isEnabled": "true", "resourceVersion": "1", "updatedWhen": "", "user": "" } class ResourceHistoryInList(BaseModel): resource_history: List[ResourceHistoryItem] = Field([], title="Resource history") class Config: schema_extra = { "example": { "resource_history": [ get_sample_resource_history("2fdc9fba-726e-4db6-a1b8-9018a2165748"), get_sample_resource_history("abcc9fba-726e-4db6-a1b8-9018a2165748") ] } }
AzureTRE/api_app/models/schemas/resource.py/0
{ "file_path": "AzureTRE/api_app/models/schemas/resource.py", "repo_id": "AzureTRE", "token_count": 796 }
88
PONG = "pong" # API Descriptions API_GET_HEALTH_STATUS = "Get health status" API_GET_PING = "Simple endpoint to test calling the API" API_GET_METADATA = "Get public API metadata (e.g. to support the UI and CLI)" API_MIGRATE_DATABASE = "Migrate documents in the database" API_GET_MY_OPERATIONS = "Get Operations that the current user has initiated" API_GET_ALL_WORKSPACES = "Get all workspaces" API_GET_WORKSPACE_BY_ID = "Get workspace by Id" API_GET_WORKSPACE_SCOPE_ID_BY_WORKSPACE_ID = "Get workspace Scope Id by workspace Id" API_CREATE_WORKSPACE = "Create a workspace" API_DELETE_WORKSPACE = "Delete workspace" API_UPDATE_WORKSPACE = "Update an existing workspace" API_INVOKE_ACTION_ON_WORKSPACE = "Invoke action on a workspace" API_GET_ALL_WORKSPACE_SERVICES = "Get all workspace services for workspace" API_GET_WORKSPACE_SERVICE_BY_ID = "Get workspace service by Id" API_CREATE_WORKSPACE_SERVICE = "Create a workspace service" API_UPDATE_WORKSPACE_SERVICE = "Update an existing workspace service" API_DELETE_WORKSPACE_SERVICE = "Delete workspace service" API_INVOKE_ACTION_ON_WORKSPACE_SERVICE = "Invoke action on a workspace service" API_GET_RESOURCE_OPERATIONS = "Get all operations for a resource" API_GET_RESOURCE_OPERATION_BY_ID = "Get a single resource operation by id" API_GET_RESOURCE_HISTORY = "Get history for a resource" API_CREATE_USER_RESOURCE = "Create a user resource" API_GET_MY_USER_RESOURCES = "Get my user resources in the workspace service" API_GET_USER_RESOURCE = "Get user resource by id" API_DELETE_USER_RESOURCE = "Delete user resource" API_UPDATE_USER_RESOURCE = "Update an existing user resource" API_INVOKE_ACTION_ON_USER_RESOURCE = "Invoke action on a user resource" API_CREATE_AIRLOCK_REQUEST = "Create an airlock request" API_GET_AIRLOCK_REQUEST = "Get an airlock request" API_LIST_AIRLOCK_REQUESTS = "Get all airlock requests for a workspace" API_SUBMIT_AIRLOCK_REQUEST = "Submit an airlock request" API_CANCEL_AIRLOCK_REQUEST = "Cancel an airlock request" API_REVIEW_AIRLOCK_REQUEST = "Review an airlock request" API_AIRLOCK_REQUEST_LINK = "Get a token to access airlock request" API_CREATE_AIRLOCK_REVIEW_USER_RESOURCE = "Create an Airlock Review User Resource" API_CREATE_WORKSPACE_TEMPLATES = "Register workspace template" API_GET_WORKSPACE_TEMPLATES = "Get workspace templates" API_GET_WORKSPACE_TEMPLATE_BY_NAME = "Get workspace template by name and optional version" API_CREATE_WORKSPACE_SERVICE_TEMPLATES = "Register workspace service template" API_GET_WORKSPACE_SERVICE_TEMPLATES = "Get workspace service templates" API_GET_WORKSPACE_SERVICE_TEMPLATES_IN_WORKSPACE = "Get workspace service templates (on workspace level)" # only returns templates that the authenticated user is authorized to use API_GET_WORKSPACE_SERVICE_TEMPLATE_BY_NAME = "Get workspace service template by name and optional version" API_CREATE_SHARED_SERVICE_TEMPLATES = "Register shared service template" API_GET_SHARED_SERVICE_TEMPLATES = "Get shared service templates" API_GET_SHARED_SERVICE_TEMPLATE_BY_NAME = "Get shared service template by name and optional version" API_GET_ALL_SHARED_SERVICES = "Get all shared services" API_GET_SHARED_SERVICE_BY_ID = "Get shared service by ID" API_CREATE_SHARED_SERVICE = "Create a shared service" API_UPDATE_SHARED_SERVICE = "Update an existing shared service" API_DELETE_SHARED_SERVICE = "Delete shared service" API_INVOKE_ACTION_ON_SHARED_SERVICE = "Invoke action on a shared service" API_CREATE_USER_RESOURCE_TEMPLATES = "Register user resource template" API_GET_USER_RESOURCE_TEMPLATES = "Get user resource templates applicable to the workspace service template" API_GET_USER_RESOURCE_TEMPLATES_IN_WORKSPACE = "Get user resource templates applicable to the workspace service template (on workspace level)" # only returns templates that the authenticated user is authorized to use API_GET_USER_RESOURCE_TEMPLATE_BY_NAME = "Get user resource template by name and workspace service and optional version" # cost report API_GET_COSTS = "Get overall costs" API_GET_WORKSPACE_COSTS = "Get workspace costs" API_GET_COSTS_MAX_TIME_PERIOD = "The time period for pulling the data cannot exceed 1 year" API_GET_COSTS_TO_DATE_NEED_TO_BE_LATER_THEN_FROM_DATE = "to_date needs to be later than from_date" API_GET_COSTS_FROM_DATE_NEED_TO_BE_BEFORE_TO_DATE = "from_date needs to be before to_date" API_GET_COSTS_SUBSCRIPTION_NOT_SUPPORTED = "Azure subscription doesn't support cost management" API_GET_COSTS_TOO_MANY_REQUESTS = "Too many requests to Azure cost management API. Please retry." API_GET_COSTS_SERVICE_UNAVAILABLE = "Azure cost management API is temporarily unavailable. Please retry." API_GET_COSTS_INTERNAL_SERVER_ERROR = "Failed to query Azure TRE costs." # State store status OK = "OK" NOT_OK = "Not OK" COSMOS_DB = "Cosmos DB" UNABLE_TO_GET_STATE_STORE_CLIENT = "Unable to get state store client" STATE_STORE_ENDPOINT_NOT_RESPONDING = "State Store endpoint is not responding" STATE_STORE_ENDPOINT_NOT_ACCESSIBLE = "State Store endpoint is not accessible" UNSPECIFIED_ERROR = "Unspecified error" # Service bus status SERVICE_BUS = "Service Bus" SERVICE_BUS_NOT_RESPONDING = "Service Bus is not responding" SERVICE_BUS_AUTHENTICATION_ERROR = "Cannot authenticate Service Bus" # Resource processor status RESOURCE_PROCESSOR = "Resource Processor" RESOURCE_PROCESSOR_GENERAL_ERROR_MESSAGE = "Resource Processor is not responding" RESOURCE_PROCESSOR_HEALTHY_MESSAGE = "HealthState/healthy" # Error strings ACCESS_APP_IS_MISSING_ROLE = "The App is missing role" ACCESS_PLEASE_SUPPLY_CLIENT_ID = "Please supply the client_id for the AAD application" ACCESS_UNABLE_TO_GET_INFO_FOR_APP = "Unable to get app info for app:" ACCESS_UNABLE_TO_GET_ROLE_ASSIGNMENTS_FOR_USER = "Unable to get role assignments for user" ACCESS_UNABLE_TO_GET_ACCOUNT_TYPE = "Unable to look up account type" ACCESS_UNHANDLED_ACCOUNT_TYPE = "Unhandled account type" ACCESS_USER_IS_NOT_OWNER_OR_RESEARCHER = "Workspace Researcher or Owner rights are required" ACCESS_USER_IS_NOT_OWNER = "Workspace Owner rights are required" ACCESS_USER_DOES_NOT_HAVE_REQUIRED_ROLE = "The user is missing a required role" AUTH_NOT_ASSIGNED_TO_ADMIN_ROLE = "Not assigned to admin role" AUTH_COULD_NOT_VALIDATE_CREDENTIALS = "Could not validate credentials" AUTH_CONFIGURATION_NOT_AVAILABLE_FOR_WORKSPACE = "Auth configuration not available for workspace" AUTH_UNABLE_TO_VALIDATE_TOKEN = "Unable to decode or validate token" INVALID_AUTH_PROVIDER = "Invalid authentication provider" INVALID_SIGNATURE = "Invalid token signature" EXPIRED_SIGNATURE = "Expired token signature" INVALID_TOKEN = "Invalid token" UNABLE_TO_REPLACE_CURRENT_TEMPLATE = "Unable to replace the existing 'current' template with this name" UNABLE_TO_PROCESS_REQUEST = "Unable to process request" USER_RESOURCE_DOES_NOT_EXIST = "User Resource does not exist" USER_RESOURCES_NEED_TO_BE_DELETED_BEFORE_WORKSPACE = "All user resources need to be deleted before you can delete the workspace service" USER_RESOURCE_NEEDS_TO_BE_DISABLED_BEFORE_DELETION = "The resource needs to be disabled before you can delete it" WORKSPACE_DOES_NOT_EXIST = "Workspace does not exist" WORKSPACE_IS_NOT_DEPLOYED = "Workspace is not deployed." WORKSPACE_NEEDS_TO_BE_DISABLED_BEFORE_DELETION = "The workspace needs to be disabled before you can delete it" WORKSPACE_SERVICE_DOES_NOT_EXIST = "Workspace service does not exist" WORKSPACE_SERVICE_IS_NOT_DEPLOYED = "Workspace service is not deployed." WORKSPACE_SERVICE_NEEDS_TO_BE_DISABLED_BEFORE_DELETION = "The workspace service needs to be disabled before you can delete it" WORKSPACE_SERVICES_NEED_TO_BE_DELETED_BEFORE_WORKSPACE = "All workspace services need to be deleted before you can delete the workspace" WORKSPACE_DOES_NOT_HAVE_ADDRESS_SPACES_PROPERTY = "Workspace does not have address_spaces property" WORKSPACE_TEMPLATE_VERSION_EXISTS = "A template with this version already exists" OPERATION_DOES_NOT_EXIST = "Operation does not exist" CUSTOM_ACTION_NOT_DEFINED = "The specified custom action isn't defined in the targeted resource." CUSTOM_ACTIONS_DO_NOT_EXIST = "The resource being targeted does not implement any custom actions." WORKSPACE_SERVICE_TEMPLATE_DOES_NOT_EXIST = "Could not retrieve the workspace service template specified" TEMPLATE_DOES_NOT_EXIST = "Could not retrieve the template with this name, or name-version pair" NO_UNIQUE_CURRENT_FOR_TEMPLATE = "The template has multiple 'current' versions" SHARED_SERVICE_DOES_NOT_EXIST = "Shared service does not exist" SHARED_SERVICE_NEEDS_TO_BE_DISABLED_BEFORE_DELETION = "Shared service needs to be disabled before you can delete it" SHARED_SERVICE_TEMPLATE_DOES_NOT_EXIST = "Could not retrieve the workspace service template specified" SHARED_SERVICE_TEMPLATE_VERSION_EXISTS = "A template with this version already exists" ETAG_CONFLICT = "This document has been modified by another user or process since you last retrieved it. Please get the document again and retry." SWAGGER_DISABLED = "Swagger is disabled. Set 'ENABLE_SWAGGER' to true in order to access Swagger." # Resource Status RESOURCE_STATUS_AWAITING_DEPLOYMENT = "awaiting_deployment" RESOURCE_STATUS_DEPLOYING = "deploying" RESOURCE_STATUS_DEPLOYED = "deployed" RESOURCE_STATUS_DEPLOYMENT_FAILED = "deployment_failed" RESOURCE_STATUS_AWAITING_DELETION = "awaiting_deletion" RESOURCE_STATUS_DELETING = "deleting" RESOURCE_STATUS_DELETED = "deleted" RESOURCE_STATUS_DELETING_FAILED = "deleting_failed" RESOURCE_STATUS_AWAITING_UPDATE = "awaiting_update" RESOURCE_STATUS_UPDATING = "updating" RESOURCE_STATUS_UPDATED = "updated" RESOURCE_STATUS_UPDATING_FAILED = "updating_failed" # Resource Action Status RESOURCE_STATUS_AWAITING_ACTION = "awaiting_action" RESOURCE_ACTION_STATUS_INVOKING = "invoking_action" RESOURCE_ACTION_STATUS_SUCCEEDED = "action_succeeded" RESOURCE_ACTION_STATUS_FAILED = "action_failed" # Pipeline (multi-step) deployments RESOURCE_ACTION_STATUS_PIPELINE_RUNNING = "pipeline_running" RESOURCE_ACTION_STATUS_PIPELINE_FAILED = "pipeline_failed" RESOURCE_ACTION_STATUS_PIPELINE_SUCCEEDED = "pipeline_succeeded" # Resource Type RESOURCE_TYPE_WORKSPACE = "workspace" RESOURCE_TYPE_WORKSPACE_SERVICE = "workspace-service" USER_RESOURCE = "user-resource" RESOURCE_TYPE_SHARED_SERVICE = "shared-service" # Airlock Resource Type AIRLOCK_RESOURCE_TYPE_REQUEST = "airlock-request" AIRLOCK_RESOURCE_TYPE_REVIEW = "airlock-review" # Airlock Resource Status AIRLOCK_RESOURCE_STATUS_DRAFT = "draft" AIRLOCK_RESOURCE_STATUS_SUBMITTED = "submitted" AIRLOCK_RESOURCE_STATUS_INREVIEW = "in_review" AIRLOCK_RESOURCE_STATUS_APPROVAL_INPROGRESS = "approval_in_progress" AIRLOCK_RESOURCE_STATUS_APPROVED = "approved" AIRLOCK_RESOURCE_STATUS_REJECTION_INPROGRESS = "rejection_in_progress" AIRLOCK_RESOURCE_STATUS_REJECTED = "rejected" AIRLOCK_RESOURCE_STATUS_CANCELLED = "cancelled" AIRLOCK_RESOURCE_STATUS_BLOCKING_INPROGRESS = "blocking_in_progress" AIRLOCK_RESOURCE_STATUS_BLOCKED = "blocked_by_scan" AIRLOCK_RESOURCE_STATUS_FAILED = "failed" # Airlock Request Types AIRLOCK_REQUEST_TYPE_IMPORT = "import" AIRLOCK_REQUEST_TYPE_EXPORT = "export" # Airlock Messages AIRLOCK_REQUEST_DOES_NOT_EXIST = "Airlock request does not exist" AIRLOCK_REQUEST_ILLEGAL_STATUS_CHANGE = "Airlock request status change was illegal" AIRLOCK_REQUEST_IN_PROGRESS = "Airlock request is being processed, please try again later." AIRLOCK_REQUEST_IS_CANCELED = "Airlock request was cancelled." AIRLOCK_REQUEST_UNACCESSIBLE = "Airlock request is in invalid status: rejected, blocked or failed." AIRLOCK_REQUEST_INVALID_STATUS = "Airlock request status is unknown." AIRLOCK_UNAUTHORIZED_TO_SA = "User is unauthorized to access airlock request files in its current status." AIRLOCK_NOT_ENABLED_IN_WORKSPACE = "Airlock is not enabled in this workspace." AIRLOCK_NO_RESEARCHER_EMAIL = "There are no Workspace Researchers with an email address." AIRLOCK_NO_AIRLOCK_MANAGER_EMAIL = "There are no Airlock Managers with an email address." # Airlock Actions AIRLOCK_ACTION_REVIEW = "review" AIRLOCK_ACTION_CANCEL = "cancel" AIRLOCK_ACTION_SUBMIT = "submit" # Airlock Review Decisions AIRLOCK_REVIEW_DECISION_APPROVED = "approved" AIRLOCK_REVIEW_DECISION_REJECTED = "rejected" # Deployments RESOURCE_STATUS_AWAITING_DEPLOYMENT_MESSAGE = "This resource is waiting to be deployed" RESOURCE_STATUS_AWAITING_UPDATE_MESSAGE = "This resource is waiting to be updated" RESOURCE_STATUS_AWAITING_DELETION_MESSAGE = "This resource is waiting to be deleted" RESOURCE_STATUS_AWAITING_ACTION_MESSAGE = "This resource is waiting for an action to be invoked" # Service bus SERVICE_BUS_GENERAL_ERROR_MESSAGE = "Service bus failure" DEPLOYMENT_STATUS_MESSAGE_FORMAT_INCORRECT = "Service bus message is not formatted correctly" DEPLOYMENT_STATUS_ID_NOT_FOUND = "Service bus message refers to resource id = {} which does not exist" STEP_RESULT_MESSAGE_FORMAT_INCORRECT = "Service bus message of step result is not formatted correctly" STEP_RESULT_ID_NOT_FOUND = "Service bus message of step result refers to resource id = {} which does not exist" STEP_RESULT_MESSAGE_STATUS_DOES_NOT_MATCH = "Service bus message of step result current status does not match the one in state store for request id = {}, status in step result = {}, status in state store = {}" STEP_RESULT_MESSAGE_INVALID_STATUS = "Service bus message has invalid status change request for request id = {}, current status is = {}, new status is = {}" # Event grid EVENT_GRID_GENERAL_ERROR_MESSAGE = "Event grid failure" # Workspace creation validation MISSING_REQUIRED_PARAMETERS = "Missing required parameters" INVALID_EXTRA_PARAMETER = "Invalid extra parameters" PARAMETERS_WITH_WRONG_TYPE = "Parameters with wrong type" # Value that a sensitive is replaced with in Cosmos REDACTED_SENSITIVE_VALUE = "REDACTED"
AzureTRE/api_app/resources/strings.py/0
{ "file_path": "AzureTRE/api_app/resources/strings.py", "repo_id": "AzureTRE", "token_count": 4629 }
89
from datetime import datetime, timedelta from services.logging import logger from azure.storage.blob import generate_container_sas, ContainerSasPermissions, BlobServiceClient from fastapi import HTTPException, status from core import config, credentials from models.domain.airlock_request import AirlockRequest, AirlockRequestStatus, AirlockRequestType, AirlockReviewUserResource, AirlockReviewDecision, AirlockActions, AirlockFile, AirlockReview from models.domain.authentication import User from models.domain.workspace import Workspace from models.domain.user_resource import UserResource from models.domain.operation import Operation from models.domain.resource import ResourceType from models.domain.workspace_service import WorkspaceService from models.schemas.airlock_request import AirlockReviewInCreate from models.schemas.airlock_request import AirlockRequestWithAllowedUserActions from models.schemas.resource import ResourcePatch from typing import Tuple, List, Optional from models.schemas.user_resource import UserResourceInCreate from services.azure_resource_status import get_azure_resource_status from services.authentication import get_access_service from resources import strings, constants from api.routes.resource_helpers import save_and_deploy_resource, send_uninstall_message, update_user_resource from db.repositories.user_resources import UserResourceRepository from db.repositories.workspace_services import WorkspaceServiceRepository from db.repositories.operations import OperationRepository from db.repositories.airlock_requests import AirlockRequestRepository from db.repositories.resource_templates import ResourceTemplateRepository from db.repositories.resources_history import ResourceHistoryRepository from collections import defaultdict from event_grid.event_sender import send_status_changed_event, send_airlock_notification_event STORAGE_ENDPOINT = config.STORAGE_ENDPOINT_SUFFIX def get_account_by_request(airlock_request: AirlockRequest, workspace: Workspace) -> str: tre_id = config.TRE_ID short_workspace_id = workspace.id[-4:] if airlock_request.type == constants.IMPORT_TYPE: if airlock_request.status == AirlockRequestStatus.Draft: return constants.STORAGE_ACCOUNT_NAME_IMPORT_EXTERNAL.format(tre_id) elif airlock_request.status == AirlockRequestStatus.Submitted: return constants.STORAGE_ACCOUNT_NAME_IMPORT_INPROGRESS.format(tre_id) elif airlock_request.status == AirlockRequestStatus.InReview: return constants.STORAGE_ACCOUNT_NAME_IMPORT_INPROGRESS.format(tre_id) elif airlock_request.status == AirlockRequestStatus.Approved: return constants.STORAGE_ACCOUNT_NAME_IMPORT_APPROVED.format(short_workspace_id) elif airlock_request.status == AirlockRequestStatus.Rejected: return constants.STORAGE_ACCOUNT_NAME_IMPORT_REJECTED.format(tre_id) elif airlock_request.status == AirlockRequestStatus.Blocked: return constants.STORAGE_ACCOUNT_NAME_IMPORT_BLOCKED.format(tre_id) else: if airlock_request.status == AirlockRequestStatus.Draft: return constants.STORAGE_ACCOUNT_NAME_EXPORT_INTERNAL.format(short_workspace_id) elif airlock_request.status in AirlockRequestStatus.Submitted: return constants.STORAGE_ACCOUNT_NAME_EXPORT_INPROGRESS.format(short_workspace_id) elif airlock_request.status == AirlockRequestStatus.InReview: return constants.STORAGE_ACCOUNT_NAME_EXPORT_INPROGRESS.format(short_workspace_id) elif airlock_request.status == AirlockRequestStatus.Approved: return constants.STORAGE_ACCOUNT_NAME_EXPORT_APPROVED.format(tre_id) elif airlock_request.status == AirlockRequestStatus.Rejected: return constants.STORAGE_ACCOUNT_NAME_EXPORT_REJECTED.format(short_workspace_id) elif airlock_request.status == AirlockRequestStatus.Blocked: return constants.STORAGE_ACCOUNT_NAME_EXPORT_BLOCKED.format(short_workspace_id) def validate_user_allowed_to_access_storage_account(user: User, airlock_request: AirlockRequest): allowed_roles = [] if (airlock_request.status == AirlockRequestStatus.InReview): allowed_roles = ["AirlockManager", "WorkspaceOwner"] else: allowed_roles = ["WorkspaceResearcher", "WorkspaceOwner"] if not _user_has_one_of_roles(user=user, roles=allowed_roles): raise HTTPException(status_code=status.HTTP_403_FORBIDDEN, detail=strings.AIRLOCK_UNAUTHORIZED_TO_SA) return def validate_request_status(airlock_request: AirlockRequest): if airlock_request.status in [AirlockRequestStatus.ApprovalInProgress, AirlockRequestStatus.RejectionInProgress, AirlockRequestStatus.BlockingInProgress]: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=strings.AIRLOCK_REQUEST_IN_PROGRESS) elif airlock_request.status == AirlockRequestStatus.Cancelled: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=strings.AIRLOCK_REQUEST_IS_CANCELED) elif airlock_request.status in [AirlockRequestStatus.Failed, AirlockRequestStatus.Rejected, AirlockRequestStatus.Blocked]: raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=strings.AIRLOCK_REQUEST_UNACCESSIBLE) else: return def get_required_permission(airlock_request: AirlockRequest) -> ContainerSasPermissions: if airlock_request.status == AirlockRequestStatus.Draft: return ContainerSasPermissions(read=True, write=True, list=True, delete=True) else: return ContainerSasPermissions(read=True, list=True) def get_airlock_request_container_sas_token(account_name: str, airlock_request: AirlockRequest): blob_service_client = BlobServiceClient(account_url=get_account_url(account_name), credential=credentials.get_credential()) start = datetime.utcnow() - timedelta(minutes=15) expiry = datetime.utcnow() + timedelta(hours=config.AIRLOCK_SAS_TOKEN_EXPIRY_PERIOD_IN_HOURS) try: udk = blob_service_client.get_user_delegation_key(key_start_time=start, key_expiry_time=expiry) except Exception: raise Exception(f"Failed getting user delegation key, has the API identity been granted 'Storage Blob Data Contributor' access to the storage account {account_name}?") required_permission = get_required_permission(airlock_request) token = generate_container_sas(container_name=airlock_request.id, account_name=account_name, user_delegation_key=udk, permission=required_permission, start=start, expiry=expiry) return "https://{}.blob.{}/{}?{}" \ .format(account_name, STORAGE_ENDPOINT, airlock_request.id, token) def get_account_url(account_name: str) -> str: return f"https://{account_name}.blob.{STORAGE_ENDPOINT}/" async def review_airlock_request(airlock_review_input: AirlockReviewInCreate, airlock_request: AirlockRequest, user: User, workspace: Workspace, airlock_request_repo: AirlockRequestRepository, user_resource_repo: UserResourceRepository, workspace_service_repo, operation_repo: WorkspaceServiceRepository, resource_template_repo: ResourceTemplateRepository, resource_history_repo: ResourceHistoryRepository) -> AirlockRequest: airlock_review = airlock_request_repo.create_airlock_review_item(airlock_review_input, user) # Store review with new status in cosmos, and send status_changed event if airlock_review.reviewDecision.value == AirlockReviewDecision.Approved: review_status = AirlockRequestStatus.ApprovalInProgress elif airlock_review.reviewDecision.value == AirlockReviewDecision.Rejected: review_status = AirlockRequestStatus.RejectionInProgress updated_airlock_request = await update_and_publish_event_airlock_request(airlock_request=airlock_request, airlock_request_repo=airlock_request_repo, updated_by=user, workspace=workspace, new_status=review_status, airlock_review=airlock_review) # If there was a VM created for the request, clean it up as it will no longer be needed # In this request, we aren't returning the operations for clean up of VMs, # however the operations still will be saved in the DB and displayed on the UI as normal. _ = await delete_all_review_user_resources( airlock_request=airlock_request, user_resource_repo=user_resource_repo, workspace_service_repo=workspace_service_repo, resource_template_repo=resource_template_repo, operations_repo=operation_repo, resource_history_repo=resource_history_repo, user=user ) return updated_airlock_request def get_airlock_container_link(airlock_request: AirlockRequest, user, workspace): validate_user_allowed_to_access_storage_account(user, airlock_request) validate_request_status(airlock_request) account_name: str = get_account_by_request(airlock_request, workspace) return get_airlock_request_container_sas_token(account_name, airlock_request) async def create_review_vm(airlock_request: AirlockRequest, user: User, workspace: Workspace, user_resource_repo: UserResourceRepository, workspace_service_repo: WorkspaceServiceRepository, operation_repo: OperationRepository, airlock_request_repo: AirlockRequestRepository, resource_template_repo: ResourceTemplateRepository, resource_history_repo: ResourceHistoryRepository) -> Tuple[UserResource, Operation]: if airlock_request.type == AirlockRequestType.Import: config = workspace.properties["airlock_review_config"]["import"] review_workspace_id = config["import_vm_workspace_id"] review_workspace_service_id = config["import_vm_workspace_service_id"] user_resource_template_name = config["import_vm_user_resource_template_name"] else: assert airlock_request.type == AirlockRequestType.Export config = workspace.properties["airlock_review_config"]["export"] review_workspace_id = workspace.id review_workspace_service_id = config["export_vm_workspace_service_id"] user_resource_template_name = config["export_vm_user_resource_template_name"] # Check whether the user already has a healthy VM deployed for the request resource_already_exists = user.id in airlock_request.reviewUserResources if resource_already_exists: existing_resource = airlock_request.reviewUserResources[user.id] existing_resource = await user_resource_repo.get_user_resource_by_id(workspace_id=existing_resource.workspaceId, service_id=existing_resource.workspaceServiceId, resource_id=existing_resource.userResourceId) logger.info("User already has an existing review resource") await _handle_existing_review_resource(existing_resource, user, user_resource_repo, workspace_service_repo, operation_repo, resource_template_repo, resource_history_repo) # Create the VM user_resource, operation = await _deploy_vm(airlock_request, user, workspace, review_workspace_id, review_workspace_service_id, user_resource_template_name, user_resource_repo, workspace_service_repo, operation_repo, resource_template_repo, resource_history_repo) # Update the Airlock Request with the information on the VM updated_resource = await update_and_publish_event_airlock_request( airlock_request, airlock_request_repo, user, workspace, review_user_resource=AirlockReviewUserResource( workspaceId=review_workspace_id, workspaceServiceId=review_workspace_service_id, userResourceId=user_resource.id )) logger.info(f"Airlock Request {updated_resource.id} updated to include {updated_resource.reviewUserResources}") return updated_resource, operation async def _deploy_vm(airlock_request: AirlockRequest, user: User, workspace: Workspace, review_workspace_id: str, review_workspace_service_id: str, user_resource_template_name: str, user_resource_repo: UserResourceRepository, workspace_service_repo: WorkspaceServiceRepository, operation_repo: OperationRepository, resource_template_repo: ResourceTemplateRepository, resource_history_repo: ResourceHistoryRepository): logger.info(f"Creating review VM in workspace:{review_workspace_id} service:{review_workspace_service_id} using template:{user_resource_template_name}") workspace_service = await workspace_service_repo.get_workspace_service_by_id(workspace_id=review_workspace_id, service_id=review_workspace_service_id) airlock_request_sas_url = get_airlock_container_link(airlock_request, user, workspace) user_resource_create = UserResourceInCreate( templateName=user_resource_template_name, properties={ "display_name": "Airlock Review VM", "description": f"{airlock_request.title} (ID {airlock_request.id})", "airlock_request_sas_url": airlock_request_sas_url } ) user_resource, resource_template = await user_resource_repo.create_user_resource_item( user_resource_create, review_workspace_id, review_workspace_service_id, workspace_service.templateName, user.id, user.roles) operation = await save_and_deploy_resource( resource=user_resource, resource_repo=user_resource_repo, operations_repo=operation_repo, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user, resource_template=resource_template) return user_resource, operation async def _handle_existing_review_resource(existing_resource: AirlockReviewUserResource, user: User, user_resource_repo: UserResourceRepository, workspace_service_repo: WorkspaceServiceRepository, operation_repo: OperationRepository, resource_template_repo: ResourceTemplateRepository, resource_history_repo: ResourceHistoryRepository): # Is the existing resource enabled, deployed, and can we get its power state information if existing_resource.isEnabled and existing_resource.deploymentStatus == "deployed" and 'azure_resource_id' in existing_resource.properties: resource_status = get_azure_resource_status(existing_resource.properties['azure_resource_id']) if "powerState" in resource_status and resource_status["powerState"] == "VM running": logger.info("Existing review resource is enabled, in a succeeded state and running. Returning a conflict error.") raise HTTPException(status_code=status.HTTP_409_CONFLICT, detail="A healthy review resource is already deployed for the current user. " "You may only have a single review resource.") # If it wasn't healthy or running, we'll delete the existing resource if not already deleted, and then create a new one logger.info("Existing review resource is in an unhealthy state.") if existing_resource.deploymentStatus != "deleted": logger.info("Deleting existing user resource...") _ = await delete_review_user_resource( user_resource=existing_resource, user_resource_repo=user_resource_repo, workspace_service_repo=workspace_service_repo, resource_template_repo=resource_template_repo, operations_repo=operation_repo, resource_history_repo=resource_history_repo, user=user ) async def save_and_publish_event_airlock_request(airlock_request: AirlockRequest, airlock_request_repo: AirlockRequestRepository, user: User, workspace: Workspace): # First check we have some email addresses so we can notify people. access_service = get_access_service() role_assignment_details = access_service.get_workspace_role_assignment_details(workspace) check_email_exists(role_assignment_details) try: logger.debug(f"Saving airlock request item: {airlock_request.id}") airlock_request.updatedBy = user airlock_request.updatedWhen = get_timestamp() await airlock_request_repo.save_item(airlock_request) except Exception: logger.exception(f'Failed saving airlock request {airlock_request}') raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=strings.STATE_STORE_ENDPOINT_NOT_RESPONDING) try: logger.debug(f"Sending status changed event for airlock request item: {airlock_request.id}") await send_status_changed_event(airlock_request=airlock_request, previous_status=None) await send_airlock_notification_event(airlock_request, workspace, role_assignment_details) except Exception: await airlock_request_repo.delete_item(airlock_request.id) logger.exception("Failed sending status_changed message") raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=strings.EVENT_GRID_GENERAL_ERROR_MESSAGE) async def update_and_publish_event_airlock_request( airlock_request: AirlockRequest, airlock_request_repo: AirlockRequestRepository, updated_by: User, workspace: Workspace, new_status: Optional[AirlockRequestStatus] = None, request_files: Optional[List[AirlockFile]] = None, status_message: Optional[str] = None, airlock_review: Optional[AirlockReview] = None, review_user_resource: Optional[AirlockReviewUserResource] = None) -> AirlockRequest: try: logger.debug(f"Updating airlock request item: {airlock_request.id}") updated_airlock_request = await airlock_request_repo.update_airlock_request( original_request=airlock_request, updated_by=updated_by, new_status=new_status, request_files=request_files, status_message=status_message, airlock_review=airlock_review, review_user_resource=review_user_resource) except Exception as e: logger.exception(f'Failed updating airlock_request item {airlock_request}') # If the validation failed, the error was not related to the saving itself if hasattr(e, 'status_code'): if e.status_code == 400: # type: ignore raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail=strings.AIRLOCK_REQUEST_ILLEGAL_STATUS_CHANGE) raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=strings.STATE_STORE_ENDPOINT_NOT_RESPONDING) if not new_status: logger.debug(f"Skipping sending 'status changed' event for airlock request item: {airlock_request.id} - there is no status change") return updated_airlock_request try: logger.debug(f"Sending status changed event for airlock request item: {airlock_request.id}") await send_status_changed_event(airlock_request=updated_airlock_request, previous_status=airlock_request.status) access_service = get_access_service() role_assignment_details = access_service.get_workspace_role_assignment_details(workspace) await send_airlock_notification_event(updated_airlock_request, workspace, role_assignment_details) return updated_airlock_request except Exception: logger.exception("Failed sending status_changed message") raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail=strings.EVENT_GRID_GENERAL_ERROR_MESSAGE) def get_timestamp() -> float: return datetime.utcnow().timestamp() def check_email_exists(role_assignment_details: defaultdict(list)): if "WorkspaceResearcher" not in role_assignment_details or not role_assignment_details["WorkspaceResearcher"]: logger.error('Creating an airlock request but the researcher does not have an email address.') raise HTTPException(status_code=status.HTTP_417_EXPECTATION_FAILED, detail=strings.AIRLOCK_NO_RESEARCHER_EMAIL) if "AirlockManager" not in role_assignment_details or not role_assignment_details["AirlockManager"]: logger.error('Creating an airlock request but the airlock manager does not have an email address.') raise HTTPException(status_code=status.HTTP_417_EXPECTATION_FAILED, detail=strings.AIRLOCK_NO_AIRLOCK_MANAGER_EMAIL) async def get_airlock_requests_by_user_and_workspace(user: User, workspace: Workspace, airlock_request_repo: AirlockRequestRepository, creator_user_id: Optional[str] = None, type: Optional[AirlockRequestType] = None, status: Optional[AirlockRequestStatus] = None, order_by: Optional[str] = None, order_ascending=True) -> List[AirlockRequest]: return await airlock_request_repo.get_airlock_requests(workspace_id=workspace.id, creator_user_id=creator_user_id, type=type, status=status, order_by=order_by, order_ascending=order_ascending) def get_allowed_actions(request: AirlockRequest, user: User, airlock_request_repo: AirlockRequestRepository) -> AirlockRequestWithAllowedUserActions: allowed_actions = [] can_review_request = airlock_request_repo.validate_status_update(request.status, AirlockRequestStatus.ApprovalInProgress) can_cancel_request = airlock_request_repo.validate_status_update(request.status, AirlockRequestStatus.Cancelled) can_submit_request = airlock_request_repo.validate_status_update(request.status, AirlockRequestStatus.Submitted) if can_review_request and "AirlockManager" in user.roles: allowed_actions.append(AirlockActions.Review) if can_cancel_request and ("WorkspaceOwner" in user.roles or "WorkspaceResearcher" in user.roles): allowed_actions.append(AirlockActions.Cancel) if can_submit_request and ("WorkspaceOwner" in user.roles or "WorkspaceResearcher" in user.roles): allowed_actions.append(AirlockActions.Submit) return allowed_actions def enrich_requests_with_allowed_actions(requests: List[AirlockRequest], user: User, airlock_request_repo: AirlockRequestRepository) -> List[AirlockRequestWithAllowedUserActions]: enriched_requests = [] for request in requests: allowed_actions = get_allowed_actions(request, user, airlock_request_repo) enriched_requests.append(AirlockRequestWithAllowedUserActions(airlockRequest=request, allowedUserActions=allowed_actions)) return enriched_requests async def delete_review_user_resource( user_resource: UserResource, user_resource_repo: UserResourceRepository, workspace_service_repo: WorkspaceServiceRepository, resource_template_repo: ResourceTemplateRepository, operations_repo: OperationRepository, resource_history_repo: ResourceHistoryRepository, user: User) -> Operation: workspace_service = await workspace_service_repo.get_workspace_service_by_id(workspace_id=user_resource.workspaceId, service_id=user_resource.parentWorkspaceServiceId) # disable might contain logic that we need to execute before the deletion of the resource _ = await disable_user_resource(user_resource, user, workspace_service, user_resource_repo, resource_template_repo, operations_repo, resource_history_repo) logger.info(f"Deleting user resource {user_resource.id} in workspace service {workspace_service.id}") operation = await send_uninstall_message( resource=user_resource, resource_repo=user_resource_repo, operations_repo=operations_repo, resource_type=ResourceType.UserResource, resource_template_repo=resource_template_repo, resource_history_repo=resource_history_repo, user=user) logger.info(f"Started operation {operation}") return operation async def disable_user_resource( user_resource: UserResource, user: User, workspace_service: WorkspaceService, user_resource_repo: UserResourceRepository, resource_template_repo: ResourceTemplateRepository, operations_repo: OperationRepository, resource_history_repo: ResourceHistoryRepository) -> Operation: resource_patch = ResourcePatch(isEnabled=False) operation = await update_user_resource(user_resource=user_resource, resource_patch=resource_patch, force_version_update=False, user=user, etag=user_resource.etag, workspace_service=workspace_service, user_resource_repo=user_resource_repo, resource_template_repo=resource_template_repo, operations_repo=operations_repo, resource_history_repo=resource_history_repo) return operation async def delete_all_review_user_resources( airlock_request: AirlockRequest, user_resource_repo: UserResourceRepository, workspace_service_repo: WorkspaceServiceRepository, resource_template_repo: ResourceTemplateRepository, operations_repo: OperationRepository, resource_history_repo: ResourceHistoryRepository, user: User) -> List[Operation]: operations: List[Operation] = [] for review_ur in airlock_request.reviewUserResources.values(): user_resource = await user_resource_repo.get_user_resource_by_id( workspace_id=review_ur.workspaceId, service_id=review_ur.workspaceServiceId, resource_id=review_ur.userResourceId ) operation = await delete_review_user_resource( user_resource=user_resource, user_resource_repo=user_resource_repo, workspace_service_repo=workspace_service_repo, resource_template_repo=resource_template_repo, operations_repo=operations_repo, resource_history_repo=resource_history_repo, user=user ) operations.append(operation) logger.info(f"Started {len(operations)} operations on deleting user resources") return operations async def cancel_request(airlock_request: AirlockRequest, user: User, workspace: Workspace, airlock_request_repo: AirlockRequestRepository, user_resource_repo: UserResourceRepository, workspace_service_repo: WorkspaceServiceRepository, resource_template_repo: ResourceTemplateRepository, operations_repo: OperationRepository, resource_history_repo: ResourceHistoryRepository) -> AirlockRequest: updated_request = await update_and_publish_event_airlock_request(airlock_request=airlock_request, airlock_request_repo=airlock_request_repo, updated_by=user, workspace=workspace, new_status=AirlockRequestStatus.Cancelled) await delete_all_review_user_resources(airlock_request, user_resource_repo, workspace_service_repo, resource_template_repo, operations_repo, resource_history_repo, user) return updated_request def _user_has_one_of_roles(user: User, roles) -> bool: return any(role in roles for role in user.roles)
AzureTRE/api_app/services/airlock.py/0
{ "file_path": "AzureTRE/api_app/services/airlock.py", "repo_id": "AzureTRE", "token_count": 10431 }
90
import pytest from httpx import AsyncClient from starlette.status import HTTP_404_NOT_FOUND pytestmark = pytest.mark.asyncio async def test_frw_validation_error_format(app): async with AsyncClient(base_url="http://testserver", app=app) as client: response = await client.get("/wrong_path/asd") assert response.status_code == HTTP_404_NOT_FOUND assert "Not Found" in response.text
AzureTRE/api_app/tests_ma/test_api/test_errors/test_error.py/0
{ "file_path": "AzureTRE/api_app/tests_ma/test_api/test_errors/test_error.py", "repo_id": "AzureTRE", "token_count": 142 }
91
### Get all workspaces (Workspace Owner or Researcher -- Get own Workspaces) GET {{baseUrl}}/workspaces Accept: {{contentType}} Authorization: Bearer {{token}} ### Get workspace (Workspace Owner or Researcher -- Get own Workspace) GET {{baseUrl}}/workspaces/{{workspaceId}} Accept: {{contentType}} Authorization: Bearer {{token}} ### Get workspace services (Workspace Owner or Researcher -- Get for own Workspace) GET {{baseUrl}}/workspaces/{{workspaceId}}/workspace-services Accept: {{contentType}} Authorization: Bearer {{token}} ### Get specific workspace services (Workspace Owner or Researcher -- Get for own Workspace) GET {{baseUrl}}/workspaces/{{workspaceId}}/workspace-services/{{workspaceServiceId}} Accept: {{contentType}} Authorization: Bearer {{token}} ### Get user-resources (Workspace Owner or Researcher -- Get for own user resource) GET {{baseUrl}}/workspaces/{{workspaceId}}/workspace-services/{{workspaceServiceId}}/user-resources Accept: {{contentType}} Authorization: Bearer {{token}} ### Get user-resources (Workspace Owner or Researcher -- Get for own user resource) GET {{baseUrl}}/workspaces/{{workspaceId}}/workspace-services/{{workspaceServiceId}}/user-resources/{{userResourceId}} Accept: {{contentType}} Authorization: Bearer {{token}}
AzureTRE/api_http_requests/API Resource GET Endpoints.http/0
{ "file_path": "AzureTRE/api_http_requests/API Resource GET Endpoints.http", "repo_id": "AzureTRE", "token_count": 355 }
92
import asyncio from logging import Logger import msal from azure.identity.aio import ClientSecretCredential from azure.cli.core import cloud from urllib.parse import urlparse from msal.authority import AuthorityBuilder def get_auth_token_client_credentials( log: Logger, client_id: str, client_secret: str, aad_tenant_id: str, api_scope: str, verify: bool ): try: event_loop = asyncio.new_event_loop() asyncio.set_event_loop(event_loop) credential = ClientSecretCredential(aad_tenant_id, client_id, client_secret, connection_verify=verify, authority=get_aad_authority_fqdn()) token = event_loop.run_until_complete(credential.get_token(f'{api_scope}/.default')) event_loop.run_until_complete(credential.close()) event_loop.close() return token.token except Exception as ex: log.error(f"Failed to authenticate: {ex}") raise RuntimeError("Failed to get auth token") def get_public_client_application( client_id: str, aad_tenant_id: str, token_cache ): return msal.PublicClientApplication( client_id=client_id, authority=AuthorityBuilder(instance=get_aad_authority_fqdn(), tenant=aad_tenant_id), token_cache=token_cache) def get_cloud() -> cloud.Cloud: return cloud.get_active_cloud() def get_aad_authority_fqdn() -> str: return urlparse(get_cloud().endpoints.active_directory).netloc
AzureTRE/cli/tre/authentication.py/0
{ "file_path": "AzureTRE/cli/tre/authentication.py", "repo_id": "AzureTRE", "token_count": 570 }
93
import logging import click from tre.commands.operation import operations_list from tre.output import output_option, query_option from .contexts import SharedServiceContext, pass_shared_service_context @click.group(name="operations", help="List operations ") def shared_service_operations(): pass @click.command(name="list", help="List shared_service operations") @output_option() @query_option() @pass_shared_service_context def shared_service_operations_list(shared_service_context: SharedServiceContext, output_format, query): log = logging.getLogger(__name__) shared_service_id = shared_service_context.shared_service_id if shared_service_id is None: raise click.UsageError('Missing shared_service ID') operations_url = f'/api/shared-services/{shared_service_id}/operations' operations_list(log, operations_url, output_format, query) shared_service_operations.add_command(shared_service_operations_list)
AzureTRE/cli/tre/commands/shared_services/operations.py/0
{ "file_path": "AzureTRE/cli/tre/commands/shared_services/operations.py", "repo_id": "AzureTRE", "token_count": 287 }
94
import json import logging import click from tre.api_client import ApiClient from tre.commands.operation import default_operation_table_query_single, operation_show from tre.output import output, output_option, query_option from .contexts import UserResourceContext, pass_user_resource_context from .operation import user_resource_operation from .operations import user_resource_operations def user_resource_id_completion(ctx: click.Context, param: click.Parameter, incomplete: str): log = logging.getLogger(__name__) parent_ctx = ctx.parent workspace_service_id = parent_ctx.params["workspace_service_id"] parent2_ctx = parent_ctx.parent workspace_id = parent2_ctx.params["workspace_id"] client = ApiClient.get_api_client_from_config() workspace_scope = client.get_workspace_scope(log, workspace_id) response = client.call_api( log, "GET", f"/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/user-resources", scope_id=workspace_scope, ) if response.is_success: ids = [resource["id"] for resource in response.json()["userResources"]] return [id for id in ids if id.startswith(incomplete)] @click.group( name="user-resource", invoke_without_command=True, help="Perform actions on a user resource", ) @click.argument( "user_resource_id", required=True, type=click.UUID, shell_complete=user_resource_id_completion, ) @click.pass_context def user_resource(ctx: click.Context, user_resource_id) -> None: ctx.obj = UserResourceContext.add_user_resource_id_to_context_obj( ctx, user_resource_id ) @click.command(name="show", help="Show user resource") @output_option() @query_option() @pass_user_resource_context def user_resource_show( user_resource_context: UserResourceContext, output_format, query ) -> None: log = logging.getLogger(__name__) workspace_id = user_resource_context.workspace_id if workspace_id is None: raise click.UsageError("Missing workspace ID") workspace_service_id = user_resource_context.workspace_service_id if workspace_service_id is None: raise click.UsageError("Missing workspace service ID") user_resource_id = user_resource_context.user_resource_id if user_resource_id is None: raise click.UsageError("Missing user resource ID") client = ApiClient.get_api_client_from_config() workspace_scope = client.get_workspace_scope(log, workspace_id) response = client.call_api( log, "GET", f"/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/user-resources/{user_resource_id}", scope_id=workspace_scope, ) output( response, output_format=output_format, query=query, default_table_query=r"userResource.{id:id, template_name:templateName, template_version:templateVersion, display_name:properties.display_name, owner:user.name}", ) @click.command(name="update", help="Update a workspace") @click.option("--etag", help="The etag of the workspace to update", required=True) @click.option("--definition", help="JSON definition for the workspace", required=False) @click.option( "--definition-file", help="File containing JSON definition for the workspace", required=False, type=click.File("r"), ) @click.option("--no-wait", flag_value=True, default=False) @output_option() @query_option() @click.pass_context @pass_user_resource_context def user_resource_update( user_resource_context: UserResourceContext, ctx: click.Context, etag, definition, definition_file, no_wait, output_format, query, suppress_output: bool = False, ): log = logging.getLogger(__name__) workspace_id = user_resource_context.workspace_id if workspace_id is None: raise click.UsageError("Missing workspace ID") workspace_service_id = user_resource_context.workspace_service_id if workspace_service_id is None: raise click.UsageError("Missing workspace service ID") user_resource_id = user_resource_context.user_resource_id if user_resource_id is None: raise click.UsageError("Missing user resource ID") if definition is None: if definition_file is None: raise click.UsageError( "Please specify either a definition or a definition file" ) definition = definition_file.read() definition_dict = json.loads(definition) client = ApiClient.get_api_client_from_config() workspace_scope = client.get_workspace_scope(log, workspace_id) response = client.call_api( log, "PATCH", f"/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/user-resources/{user_resource_id}", headers={"etag": etag}, json_data=definition_dict, scope_id=workspace_scope, ) if no_wait: output( response, output_format=output_format, query=query, default_table_query=default_operation_table_query_single(), ) else: operation_url = response.headers["location"] operation_show( log, operation_url, no_wait=False, output_format=output_format, query=query, suppress_output=suppress_output, scope_id=workspace_scope, ) @click.command(name="set-enabled", help="Enable/disable a user resource") @click.option("--etag", help="The etag of the user resource to update", required=True) @click.option("--enable/--disable", is_flag=True, required=True) @click.option("--no-wait", flag_value=True, default=False) @output_option() @query_option() @pass_user_resource_context def user_resource_set_enabled( user_resource_context: UserResourceContext, etag, enable, no_wait, output_format, query, suppress_output: bool = False, ): log = logging.getLogger(__name__) workspace_id = user_resource_context.workspace_id if workspace_id is None: raise click.UsageError("Missing workspace ID") workspace_service_id = user_resource_context.workspace_service_id if workspace_service_id is None: raise click.UsageError("Missing workspace service ID") user_resource_id = user_resource_context.user_resource_id if user_resource_id is None: raise click.UsageError("Missing user resource ID") client = ApiClient.get_api_client_from_config() workspace_scope = client.get_workspace_scope(log, workspace_id) click.echo(f"Setting isEnabled to {enable}...", err=True) response = client.call_api( log, "PATCH", f"/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/user-resources/{user_resource_id}", headers={"etag": etag}, json_data={"isEnabled": enable}, scope_id=workspace_scope, ) if no_wait: if not suppress_output or not response.is_success: output( response, output_format=output_format, query=query, default_table_query=default_operation_table_query_single(), ) else: operation_url = response.headers["location"] operation_show( log, operation_url, no_wait=False, output_format=output_format, query=query, suppress_output=suppress_output, scope_id=workspace_scope, ) @click.command(name="delete", help="Delete a user resource") @click.option("--yes", is_flag=True, default=False) @click.option("--no-wait", flag_value=True, default=False) @click.option( "--ensure-disabled", help="Ensure disabled before deleting (resources are required to be disabled before deleting)", flag_value=True, default=False, ) @output_option() @query_option() @click.pass_context @pass_user_resource_context def user_resource_delete( user_resource_context: UserResourceContext, ctx: click.Context, yes, no_wait, ensure_disabled, output_format, query, ): log = logging.getLogger(__name__) workspace_id = user_resource_context.workspace_id if workspace_id is None: raise click.UsageError("Missing workspace ID") workspace_service_id = user_resource_context.workspace_service_id if workspace_service_id is None: raise click.UsageError("Missing workspace service ID") user_resource_id = user_resource_context.user_resource_id if user_resource_id is None: raise click.UsageError("Missing user resource ID") if not yes: click.confirm( "Are you sure you want to delete this user resource?", err=True, abort=True ) client = ApiClient.get_api_client_from_config() workspace_scope = client.get_workspace_scope(log, workspace_id) if ensure_disabled: response = client.call_api( log, "GET", f"/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/user-resources/{user_resource_id}", scope_id=workspace_scope, ) workspace_json = response.json() if workspace_json["userResource"]["isEnabled"]: etag = workspace_json["userResource"]["_etag"] ctx.invoke( user_resource_set_enabled, etag=etag, enable=False, no_wait=False, suppress_output=True, ) click.echo("Deleting user resource...", err=True) response = client.call_api( log, "DELETE", f"/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/user-resources/{user_resource_id}", scope_id=workspace_scope, ) if no_wait: output( response, output_format=output_format, query=query, default_table_query=default_operation_table_query_single(), ) else: operation_url = response.headers["location"] operation_show( log, operation_url, no_wait, output_format=output_format, query=query, scope_id=workspace_scope, ) @click.command(name="invoke-action", help="Invoke an action on a user resource") @click.argument("action-name", required=True) @click.option("--no-wait", flag_value=True, default=False) @output_option() @query_option() @pass_user_resource_context def user_resource_invoke_action( user_resource_context: UserResourceContext, action_name, no_wait, output_format, query, ): log = logging.getLogger(__name__) workspace_id = user_resource_context.workspace_id if workspace_id is None: raise click.UsageError("Missing workspace ID") workspace_service_id = user_resource_context.workspace_service_id if workspace_service_id is None: raise click.UsageError("Missing workspace service ID") user_resource_id = user_resource_context.user_resource_id if user_resource_id is None: raise click.UsageError("Missing user resource ID") client = ApiClient.get_api_client_from_config() workspace_scope = client.get_workspace_scope(log, workspace_id) click.echo(f"Invoking action {action_name}...\n", err=True) response = client.call_api( log, "POST", f"/api/workspaces/{workspace_id}/workspace-services/{workspace_service_id}/user-resources/{user_resource_id}/invoke-action", scope_id=workspace_scope, params={"action": action_name}, ) if no_wait: output(response, output_format=output_format, query=query) else: operation_url = response.headers["location"] operation_show( log, operation_url, no_wait=False, output_format=output_format, query=query, scope_id=workspace_scope, ) user_resource.add_command(user_resource_show) user_resource.add_command(user_resource_update) user_resource.add_command(user_resource_set_enabled) user_resource.add_command(user_resource_delete) user_resource.add_command(user_resource_operation) user_resource.add_command(user_resource_operations) user_resource.add_command(user_resource_invoke_action)
AzureTRE/cli/tre/commands/workspaces/workspace_services/user_resources/user_resource.py/0
{ "file_path": "AzureTRE/cli/tre/commands/workspaces/workspace_services/user_resources/user_resource.py", "repo_id": "AzureTRE", "token_count": 4962 }
95
# Utilize the existing service bus - add new queue resource "azurerm_servicebus_queue" "step_result" { name = local.step_result_queue_name namespace_id = var.airlock_servicebus.id enable_partitioning = false } resource "azurerm_servicebus_queue" "status_changed" { name = local.status_changed_queue_name namespace_id = var.airlock_servicebus.id enable_partitioning = false } resource "azurerm_servicebus_queue" "scan_result" { name = local.scan_result_queue_name namespace_id = var.airlock_servicebus.id enable_partitioning = false } resource "azurerm_servicebus_queue" "data_deletion" { name = local.data_deletion_queue_name namespace_id = var.airlock_servicebus.id enable_partitioning = false } resource "azurerm_servicebus_topic" "blob_created" { name = local.blob_created_topic_name namespace_id = var.airlock_servicebus.id enable_partitioning = false } resource "azurerm_servicebus_subscription" "airlock_processor" { name = local.blob_created_al_processor_subscription_name topic_id = azurerm_servicebus_topic.blob_created.id max_delivery_count = 1 }
AzureTRE/core/terraform/airlock/service_bus.tf/0
{ "file_path": "AzureTRE/core/terraform/airlock/service_bus.tf", "repo_id": "AzureTRE", "token_count": 447 }
96
output "app_insights_connection_string" { value = azurerm_application_insights.core.connection_string } output "log_analytics_workspace_id" { value = azurerm_log_analytics_workspace.core.id } output "log_analytics_workspace_name" { value = azurerm_log_analytics_workspace.core.name }
AzureTRE/core/terraform/azure-monitor/outputs.tf/0
{ "file_path": "AzureTRE/core/terraform/azure-monitor/outputs.tf", "repo_id": "AzureTRE", "token_count": 105 }
97
# admin jumpbox moved { from = module.jumpbox.azurerm_network_interface.jumpbox_nic to = azurerm_network_interface.jumpbox_nic } moved { from = module.jumpbox.random_string.username to = random_string.username } moved { from = module.jumpbox.random_password.password to = random_password.password } moved { from = module.jumpbox.azurerm_virtual_machine.jumpbox to = azurerm_virtual_machine.jumpbox } moved { from = module.jumpbox.azurerm_key_vault_secret.jumpbox_credentials to = azurerm_key_vault_secret.jumpbox_credentials } ## Storage moved { from = module.storage.azurerm_storage_account.stg to = azurerm_storage_account.stg } moved { from = module.storage.azurerm_storage_share.storage_state_path to = azurerm_storage_share.storage_state_path } moved { from = module.storage.azurerm_private_dns_zone.blobcore to = azurerm_private_dns_zone.blobcore } moved { from = module.storage.azurerm_private_endpoint.blobpe to = azurerm_private_endpoint.blobpe } moved { from = module.storage.azurerm_private_dns_zone.filecore to = azurerm_private_dns_zone.filecore } moved { from = module.storage.azurerm_private_endpoint.filepe to = azurerm_private_endpoint.filepe } ## Identity moved { from = module.identity.azurerm_user_assigned_identity.id to = azurerm_user_assigned_identity.id } moved { from = module.identity.azurerm_role_assignment.vm_contributor to = azurerm_role_assignment.vm_contributor } moved { from = module.identity.azurerm_role_assignment.acrpull_role to = azurerm_role_assignment.acrpull_role } moved { from = module.identity.azurerm_role_assignment.servicebus_sender to = azurerm_role_assignment.servicebus_sender } moved { from = module.identity.azurerm_role_assignment.servicebus_receiver to = azurerm_role_assignment.servicebus_receiver } moved { from = module.identity.azurerm_role_assignment.cosmos_contributor to = azurerm_role_assignment.cosmos_contributor } # Api-webapp moved { from = module.api-webapp.azurerm_app_service_plan.core to = azurerm_app_service_plan.core } moved { from = module.api-webapp.azurerm_app_service.api to = azurerm_app_service.api } moved { from = module.api-webapp.azurerm_private_endpoint.api_private_endpoint to = azurerm_private_endpoint.api_private_endpoint } moved { from = module.api-webapp.azurerm_app_service_virtual_network_swift_connection.api-integrated-vnet to = azurerm_app_service_virtual_network_swift_connection.api-integrated-vnet } moved { from = module.api-webapp.azurerm_monitor_diagnostic_setting.webapp_api to = azurerm_monitor_diagnostic_setting.webapp_api } # Service bus moved { from = module.servicebus.azurerm_servicebus_namespace.sb to = azurerm_servicebus_namespace.sb } moved { from = module.servicebus.azurerm_servicebus_queue.workspacequeue to = azurerm_servicebus_queue.workspacequeue } moved { from = module.servicebus.azurerm_servicebus_queue.service_bus_deployment_status_update_queue to = azurerm_servicebus_queue.service_bus_deployment_status_update_queue } moved { from = module.servicebus.azurerm_private_dns_zone.servicebus to = azurerm_private_dns_zone.servicebus } moved { from = module.servicebus.azurerm_private_dns_zone_virtual_network_link.servicebuslink to = azurerm_private_dns_zone_virtual_network_link.servicebuslink } moved { from = module.servicebus.azurerm_private_endpoint.sbpe to = azurerm_private_endpoint.sbpe } moved { from = module.servicebus.azurerm_servicebus_namespace_network_rule_set.servicebus_network_rule_set to = azurerm_servicebus_namespace_network_rule_set.servicebus_network_rule_set } # Keyvault moved { from = module.keyvault.azurerm_key_vault.kv to = azurerm_key_vault.kv } moved { from = module.keyvault.azurerm_key_vault_access_policy.deployer to = azurerm_key_vault_access_policy.deployer } moved { from = module.keyvault.azurerm_key_vault_access_policy.managed_identity to = azurerm_key_vault_access_policy.managed_identity } moved { from = module.keyvault.azurerm_private_endpoint.kvpe to = azurerm_private_endpoint.kvpe } # Routetable moved { from = module.routetable.azurerm_route_table.rt to = azurerm_route_table.rt } moved { from = module.routetable.azurerm_subnet_route_table_association.rt_shared_subnet_association to = azurerm_subnet_route_table_association.rt_shared_subnet_association } moved { from = module.routetable.azurerm_subnet_route_table_association.rt_resource_processor_subnet_association to = azurerm_subnet_route_table_association.rt_resource_processor_subnet_association } moved { from = module.routetable.azurerm_subnet_route_table_association.rt_web_app_subnet_association to = azurerm_subnet_route_table_association.rt_web_app_subnet_association } # State store moved { from = module.state-store.azurerm_cosmosdb_account.tre-db-account to = azurerm_cosmosdb_account.tre-db-account } moved { from = module.state-store.azurerm_cosmosdb_sql_database.tre-db to = azurerm_cosmosdb_sql_database.tre-db } moved { from = module.state-store.azurerm_management_lock.tre-db to = azurerm_management_lock.tre-db } moved { from = module.state-store.azurerm_private_dns_zone.cosmos to = azurerm_private_dns_zone.cosmos } moved { from = module.state-store.azurerm_private_dns_zone_virtual_network_link.cosmos_documents_dns_link to = azurerm_private_dns_zone_virtual_network_link.cosmos_documents_dns_link } moved { from = module.state-store.azurerm_private_endpoint.sspe to = azurerm_private_endpoint.sspe } # Bastion moved { from = module.bastion.azurerm_public_ip.bastion to = azurerm_public_ip.bastion } moved { from = module.bastion.azurerm_bastion_host.bastion to = azurerm_bastion_host.bastion } moved { from = module.airlock.azurerm_private_dns_zone.eventgrid to = module.network.azurerm_private_dns_zone.eventgrid } # DNS Zones moved { from = module.network.azurerm_private_dns_zone.mysql to = azurerm_private_dns_zone.non_core["privatelink.mysql.database.azure.com"] } moved { from = module.network.azurerm_private_dns_zone.azureml to = azurerm_private_dns_zone.non_core["privatelink.api.azureml.ms"] } moved { from = module.network.azurerm_private_dns_zone.azuremlcert to = azurerm_private_dns_zone.non_core["privatelink.cert.api.azureml.ms"] } moved { from = module.network.azurerm_private_dns_zone.notebooks to = azurerm_private_dns_zone.non_core["privatelink.notebooks.azure.net"] } moved { from = module.network.azurerm_private_dns_zone.postgres to = azurerm_private_dns_zone.non_core["privatelink.postgres.database.azure.com"] } moved { from = module.network.azurerm_private_dns_zone_virtual_network_link.mysql to = azurerm_private_dns_zone_virtual_network_link.mysql } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.purview.azure.com"] to = azurerm_private_dns_zone.non_core["privatelink.purview.azure.com"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.purviewstudio.azure.com"] to = azurerm_private_dns_zone.non_core["privatelink.purviewstudio.azure.com"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.sql.azuresynapse.net"] to = azurerm_private_dns_zone.non_core["privatelink.sql.azuresynapse.net"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.dev.azuresynapse.net"] to = azurerm_private_dns_zone.non_core["privatelink.dev.azuresynapse.net"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.azuresynapse.net"] to = azurerm_private_dns_zone.non_core["privatelink.azuresynapse.net"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.azuresynapse.net"] to = azurerm_private_dns_zone.non_core["privatelink.azuresynapse.net"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.dfs.core.windows.net"] to = azurerm_private_dns_zone.non_core["privatelink.dfs.core.windows.net"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.azurehealthcareapis.com"] to = azurerm_private_dns_zone.non_core["privatelink.azurehealthcareapis.com"] } moved { from = module.network.azurerm_private_dns_zone.private_dns_zones["privatelink.dicom.azurehealthcareapis.com"] to = azurerm_private_dns_zone.non_core["privatelink.dicom.azurehealthcareapis.com"] }
AzureTRE/core/terraform/modules_move_definitions.tf/0
{ "file_path": "AzureTRE/core/terraform/modules_move_definitions.tf", "repo_id": "AzureTRE", "token_count": 3477 }
98
#!/bin/bash
AzureTRE/core/terraform/scripts/cleanup-hook.sh/0
{ "file_path": "AzureTRE/core/terraform/scripts/cleanup-hook.sh", "repo_id": "AzureTRE", "token_count": 6 }
99
#!/bin/bash # This script is designed to be `source`d to create reusable helper functions # Utility function that retrieves all of the 'requiredResourceAccess' from an application, # it then removes any access for a given `resourceAppId`, merges in a new element into the # array and then posts it back to AAD. function update_resource_access() { local msGraphUri=$1 local existingObjectId=$2 local resourceAppId=$3 local requiredResourceAccessArray=$4 # Get the existing required resource access from the automation app, # but remove the access that we are about to add for idempotency. We cant use # the response from az cli as it returns an 'AdditionalProperties' element in # the json existingResourceAccess=$(az rest \ --method GET \ --uri "${msGraphUri}/applications/${existingObjectId}" \ --headers Content-Type=application/json -o json \ | jq -r --arg resourceAppId "${resourceAppId}" \ 'del(.requiredResourceAccess[] | select(.resourceAppId==$resourceAppId)) | .requiredResourceAccess' \ ) # Add the existing resource access so we don't remove any existing permissions. combinedResourceAccess=$(jq -c . << JSON { "requiredResourceAccess": ${requiredResourceAccessArray}, "existingAccess": ${existingResourceAccess} } JSON ) # Manipulate the json (add existingAccess into requiredResourceAccess and then remove it) requiredResourceAccess=$(echo "${combinedResourceAccess}" | \ jq '.requiredResourceAccess += .existingAccess | {requiredResourceAccess}') az rest --method PATCH \ --uri "${msGraphUri}/applications/${existingObjectId}" \ --headers Content-Type=application/json \ --body "${requiredResourceAccess}" }
AzureTRE/devops/scripts/aad/update_resource_access.sh/0
{ "file_path": "AzureTRE/devops/scripts/aad/update_resource_access.sh", "repo_id": "AzureTRE", "token_count": 483 }
100
#!/bin/bash set -o errexit set -o pipefail set -o nounset # set -o xtrace # # Usage: # env_to_yaml_config.sh <.env file> # cp config.sample.yaml config.yaml # Loop over the relevant lines in the file specified in $1 (passed in after the loop) # The loop source filters the lines in the source file to those that should be treated # as variable definitions env_files=() for p in "devops/auth.env" "devops/.env" "templates/core/.env" do if [ -r "$p" ] then env_files+=("$p") else echo -e "\e[31m»»» ⚠️ Your $p file has not been setup! 😥 Make sure to fill in the missing configration in config.yaml." fi done for f in "${env_files[@]}" do while read -r line do # split the line into name/value name=$(echo "$line" | cut -d= -f1| tr '[:upper:]' '[:lower:]') value=$(echo "$line" | cut -d= -f2) if [ "$f" == "devops/auth.env" ]; then yq e -i "(.authentication | .\"$name\") = $value" config.yaml else # if the value is quote-delimited then strip that as we quote in the declare statement if [[ ("${value:0:1}" == "'" && "${value: -1:1}" == "'") || (("${value:0:1}" == "\"" && "${value: -1:1}" == "\"")) ]]; then value=${value:1:-1} fi if [[ ($value == ?(-)+([0-9]) || $value == "true" || $value == "false")]]; then yq e -i "(.. | select(has(\"$name\")).\"$name\") = $value" config.yaml else # Set value in config.yaml file yq e -i "(.. | select(has(\"$name\")).\"$name\") = \"$value\"" config.yaml fi fi done < <(grep -v -e '^[[:space:]]*$' -e '^#' "$f" ) done set +o nounset
AzureTRE/devops/scripts/env_to_yaml_config.sh/0
{ "file_path": "AzureTRE/devops/scripts/env_to_yaml_config.sh", "repo_id": "AzureTRE", "token_count": 687 }
101
#!/bin/bash set -o errexit set -o pipefail set -o nounset # Uncomment this line to see each command for debugging (careful: this will show secrets!) # set -o xtrace if [[ -z ${STORAGE_ACCOUNT:-} ]]; then echo "STORAGE_ACCOUNT not set" exit 1 fi # The storage account is protected by network rules echo "Enabling public access to storage account..." az storage account update --default-action Allow --name "${STORAGE_ACCOUNT}" sleep 30 echo "Uploading ${CONTENT_DIR} to static web storage" # shellcheck disable=SC2016 az storage blob upload-batch \ --account-name "${STORAGE_ACCOUNT}" \ --auth-mode login \ --destination '$web' \ --source "${CONTENT_DIR}" \ --no-progress \ --only-show-errors \ --overwrite echo "Disabling public access to storage account..." az storage account update --default-action Deny --name "${STORAGE_ACCOUNT}"
AzureTRE/devops/scripts/upload_static_web.sh/0
{ "file_path": "AzureTRE/devops/scripts/upload_static_web.sh", "repo_id": "AzureTRE", "token_count": 286 }
102
# TRE Automation Admin Application ## Name The Automation Application is typically called `<TRE_ID> Automation Admin` within the Microsoft Entra ID Portal. ## Purpose This application is used to authorize end-to-end test scenarios. !!! note - This app registration is only needed and used for **testing** ## Application Roles This application does not have any roles defined. ## Permissions | Name | Type* | Admin consent required | TRE usage | | --- | -- | -----| --------- | |TRE API / TREAdmin|Application|Yes|This allows this application to authenticate as a TRE Admin for running the tests locally and the E2E in the build.| |TRE API / user_impersonation|Delegated|No|This allows the application to impersonate the logged in user.| |TRE - workspace x API / WorkspaceOwner|Application|Yes|This allows this application to authenticate as a Workspace Owner for running the tests locally and the E2E in the build.| |TRE - workspace x API / user_impersonation|Delegated|No|This allows the application to impersonate the logged in user.| '*' See the difference between [delegated and application permission](https://docs.microsoft.com/graph/auth/auth-concepts#delegated-and-application-permissions) types. See [Microsoft Graph permissions reference](https://docs.microsoft.com/graph/permissions-reference) for more details. ## Clients This application is used locally to automatically register bundles against the API and is the user that runs the E2E locally and in the Build. ## Environment Variables | Variable | Description | Location | | -------- | ----------- | -------- | |TEST_ACCOUNT_CLIENT_ID|The Client Id|`./config.yaml`| |TEST_ACCOUNT_CLIENT_SECRET|The client secret|`./config.yaml`| ## How to create Example on how to run the script: ```bash ./devops/scripts/aad/create_automation_administrator.sh \ --name "${TRE_ID}" ``` | Argument | Description | | -------- | ----------- | | `--name` | The prefix of the name of the app registrations. `TRE123` will give you `TRE123 Automation Admin`. | | `--reset-password` | Optional, default is 0. When run in a headless fashion, 1 is passed in to always reset the password. | ### Create this application from the portal (optional) To create an application registration for automation, open the Microsoft Entra ID tenant for your TRE in the portal and navigate to "App Registrations". Click "New registration" as shown in the image below. ![Screenshot of Azure portal showing "New registration" in Microsoft Entra ID](../../assets/tre-automation-new-app-registration.png) Enter a name for the application registration and click "Register". ![Screenshot of Azure portal showing application registration details](../../assets/tre-automation-register-application.png) On the app registration "Overview" page, copy the "Application (client) ID" value and save it for later. ![Screenshot of Azure portal showing application ID to copy](../../assets/tre-automation-client-id.png) Under "Manage", click on "Certificates & secrets" and then "New client secret" ![Screenshot of Azure portal showing "New client secret"](../../assets/tre-automation-new-client-secret.png) Add a description and create the client secret. Once done, the secret value will be displayed (as shown below). Copy this value and save it for later as you cannot retrieve it again after closing this page. ![Screenshot of Azure portal showing client secret value to copy](../../assets/tre-automation-client-secret.png) #### Add API Permissions After creating the automation application registration, it needs to be granted permissions to access the TRE API. Navigate to the API permissions page for the application registration and click "Add a permission" ![Screenshot of Azure portal showing "Add a permission"](../../assets/tre-automation-add-api-permission.png) Next, click on the "My APIs" tab, and then on "TRE API" On the "Delegated permissions" section, select "user_impersonation". ![Screenshot of Azure portal showing adding user_impersonation permission](../../assets/tre-automation-add-delegated-permission.png) On the "Application permissions" section, select "TRE Administrators". ![Screenshot of Azure portal showing adding TRE Admin permission](../../assets/tre-automation-add-application-permission.png) Back on the main permissions page, click on "Grant admin consent". Once done, you should see "Granted" in the "Status" column, as shown below. ![Screenshot of Azure portal showing admin consent granted](../../assets/tre-automation-admin-consent-granted.png)
AzureTRE/docs/tre-admins/identities/test-account.md/0
{ "file_path": "AzureTRE/docs/tre-admins/identities/test-account.md", "repo_id": "AzureTRE", "token_count": 1193 }
103
# Installing workspace service and user resource ## Publish and register a workspace service template We will use the [Guacamole workspace service bundle](../../tre-templates/workspace-services/guacamole.md) for the purposes of this tutorial; a template that provides Virtual Desktop functionality allowing the deployment of VMs for users. These steps can be repeated for any workspace service template depending on the functionalities required. 1. Run: ```cmd make workspace_service_bundle BUNDLE=guacamole ``` ## Publish and register a user resource template The Guacamole workspace service also has user resources: the VMs that researchers will deploy. These steps can be repeated for any user resource template. 1. Run: ```cmd make user_resource_bundle BUNDLE=guacamole-azure-windowsvm WORKSPACE_SERVICE=guacamole ``` ## Creating a workspace service Now that we have published and registered both workspace service and user resource bundles we can use the UI to create a workspace service in our workspace. 1. In the UI go to the workspace you have created in the previous step and click on `Create New` under Workspace Services: ![Create Workspace Service](../../assets/create-workspace-service-new.png) 2. Choose the Guacamole (Vurtual Desktop) template: ![Choose Workspace Service Template](../../assets/create-workspace-service-choose-template.png) 3. Fill in the details: ![Fill Workspace Service Details](../../assets/create-workspace-service-details.png) 4. Go to operations tab and wait till the status is deployed: ![Workspace Service Status](../../assets/create-workspace-service-status.png) ## Creating a user resource Having published and registered the user resource bundles and a Guacamole workspace service is deployed we can now create the VM user resource the researcher can connect and work on. To create a VM user resource follow the next steps: 1. Inside the Guacamole workspace service created in a previous step, go to Resources and click on `Create New`: ![Create User Resource](../../assets/create-user-resource-new.png) 1. Select the VM template and click on `Create`: ![Select User Resource Template](../../assets/create-user-resource-template.png) 1. Fill in the details and click on `Submit`: ![Fill VM details](../../assets/create-user-resource-fill-details.png) 1. Go to the reource: ![Go to resource](../../assets/create-user-resource.png) 1. Wait until the status is deployed. Once deployed you can connect to the VM: ![VM status](../../assets/create-user-resource-status.png)
AzureTRE/docs/tre-admins/setup-instructions/ui-install-ws-and-ur.md/0
{ "file_path": "AzureTRE/docs/tre-admins/setup-instructions/ui-install-ws-and-ur.md", "repo_id": "AzureTRE", "token_count": 710 }
104
# Troubleshooting cloud-init Cloud-init is used to configure a number of virtual machines within the Azure TRE project at first boot. This methood is used as we are unable to distribute pre built images with third part dependancies. In a production environment you may choose to create your own VM images to avoid the need for cloud-init scripts to run. Examples of virtual machines using cloud-init are: - Resource Processor - Sonatype Nexus VM - Apache Guacamole Linux VM ## Retrieving the cloud-inmit logs Log onto the virtual machine using Bastion or serial console and run the following command to view the cloud-init logs: ```bash sudo cat /var/log/cloud-init-output.log ``` ## Re-running cloud-init scripts If you wish to re-run the cloud-init scripts you can run the following commands from the virtual machine terminal session: ```bash sudo cloud-init clean --logs sudo cloud-init init --local sudo cloud-init init sudo cloud-init modules --mode=config sudo cloud-init modules --mode=final ```
AzureTRE/docs/troubleshooting-faq/cloud-init.md/0
{ "file_path": "AzureTRE/docs/troubleshooting-faq/cloud-init.md", "repo_id": "AzureTRE", "token_count": 254 }
105
import asyncio import json import base64 import logging from urllib.parse import urlparse from resources.helpers import get_installation_id from shared.logging import logger, shell_output_logger def azure_login_command(config): set_cloud_command = f"az cloud set --name {config['azure_environment']} >/dev/null " if config["vmss_msi_id"]: # Use the Managed Identity when in VMSS context login_command = f"az login --identity -u {config['vmss_msi_id']} >/dev/null " else: # Use a Service Principal when running locally login_command = f"az login --service-principal --username {config['arm_client_id']} --password {config['arm_client_secret']} --tenant {config['arm_tenant_id']} >/dev/null" return f"{set_cloud_command} && {login_command}" def apply_porter_credentials_sets_command(config): if config["vmss_msi_id"]: # Use the Managed Identity when in VMSS context porter_credential_sets = "porter credentials apply vmss_porter/arm_auth_local_debugging.json >/dev/null 2>&1 && porter credentials apply vmss_porter/aad_auth.json >/dev/null 2>&1" else: # Use a Service Principal when running locally porter_credential_sets = "porter credentials apply vmss_porter/arm_auth_local_debugging.json >/dev/null 2>&1 && porter credentials apply vmss_porter/aad_auth_local_debugging.json >/dev/null 2>&1" return f"{porter_credential_sets}" def azure_acr_login_command(config): acr_name = _get_acr_name(acr_fqdn=config['registry_server']) return f"az acr login --name {acr_name} >/dev/null " async def build_porter_command(config, msg_body, custom_action=False): porter_parameter_keys = await get_porter_parameter_keys(config, msg_body) porter_parameters = "" if porter_parameter_keys is None: logger.warning("Unknown porter parameters - explain probably failed.") else: for parameter_name in porter_parameter_keys: # try to find the param in order of priorities: parameter_value = None # 1. msg parameters collection if parameter_name in msg_body["parameters"]: parameter_value = msg_body["parameters"][parameter_name] # 2. config (e.g. terraform state env vars) elif parameter_name in config: parameter_value = config[parameter_name] # 3. msg body root (e.g. id of the resource) elif parameter_name in msg_body: parameter_value = msg_body[parameter_name] # 4. if starts user_ then look in user object elif parameter_name.startswith("user_") and "user" in msg_body and parameter_name[5:] in msg_body["user"]: parameter_value = msg_body["user"][parameter_name[5:]] # if still not found, might be a special case # (we give a chance to the method above to allow override of the special handeling done below) else: parameter_value = get_special_porter_param_value(config, parameter_name, msg_body) # only append if we have a value, porter will complain anyway about missing parameters if parameter_value is not None: if isinstance(parameter_value, dict) or isinstance(parameter_value, list): # base64 encode complex types to pass in safely val = json.dumps(parameter_value) val_bytes = val.encode("ascii") val_base64_bytes = base64.b64encode(val_bytes) parameter_value = val_base64_bytes.decode("ascii") porter_parameters = porter_parameters + f" --param {parameter_name}=\"{parameter_value}\"" installation_id = get_installation_id(msg_body) command_line = [f"porter" # If a custom action (i.e. not install, uninstall, upgrade) we need to use 'invoke' f"{' invoke --action' if custom_action else ''}" f" {msg_body['action']} \"{installation_id}\"" f" --reference {config['registry_server']}/{msg_body['name']}:v{msg_body['version']}" f" {porter_parameters} --force" f" --credential-set arm_auth" f" --credential-set aad_auth" ] return command_line async def build_porter_command_for_outputs(msg_body): installation_id = get_installation_id(msg_body) command_line = [f"porter installations output list --installation {installation_id} --output json"] return command_line async def get_porter_parameter_keys(config, msg_body): command = [f"porter explain --reference {config['registry_server']}/{msg_body['name']}:v{msg_body['version']} --output json"] proc = await asyncio.create_subprocess_shell( ''.join(command), stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=config["porter_env"]) stdout, stderr = await proc.communicate() logger.debug(f'get_porter_parameter_keys exited with {proc.returncode}') result_stdout = None result_stderr = None if stdout: result_stdout = stdout.decode() porter_explain_parameters = json.loads(result_stdout)["parameters"] porter_parameter_keys = [item["name"] for item in porter_explain_parameters] return porter_parameter_keys if stderr: result_stderr = stderr.decode() shell_output_logger(result_stderr, '[stderr]', logging.WARN) def get_special_porter_param_value(config, parameter_name: str, msg_body): # some parameters might not have identical names and this comes to handle that if parameter_name == "mgmt_acr_name": return _get_acr_name(acr_fqdn=config['registry_server']) if parameter_name == "mgmt_resource_group_name": return config["tfstate_resource_group_name"] if parameter_name == "azure_environment": return config['azure_environment'] if parameter_name == "workspace_id": return msg_body.get("workspaceId") # not included in all messages if parameter_name == "parent_service_id": return msg_body.get("parentWorkspaceServiceId") # not included in all messages if (value := config["bundle_params"].get(parameter_name.lower())) is not None: return value # Parameters that relate to the cloud type if parameter_name == "aad_authority_url": return config['aad_authority_url'] if parameter_name == "microsoft_graph_fqdn": return urlparse(config['microsoft_graph_fqdn']).netloc if parameter_name == "arm_environment": return config["arm_environment"] def _get_acr_name(acr_fqdn: str): return acr_fqdn.split('.', 1)[0]
AzureTRE/resource_processor/resources/commands.py/0
{ "file_path": "AzureTRE/resource_processor/resources/commands.py", "repo_id": "AzureTRE", "token_count": 2746 }
106
data "azurerm_subnet" "shared" { resource_group_name = local.core_resource_group_name virtual_network_name = local.core_vnet name = "SharedSubnet" } data "azurerm_key_vault" "keyvault" { name = local.keyvault_name resource_group_name = local.core_resource_group_name } data "azurerm_resource_group" "rg" { name = local.core_resource_group_name }
AzureTRE/templates/shared_services/admin-vm/terraform/data.tf/0
{ "file_path": "AzureTRE/templates/shared_services/admin-vm/terraform/data.tf", "repo_id": "AzureTRE", "token_count": 168 }
107
# This file is maintained automatically by "terraform init". # Manual edits may be lost in future updates. provider "registry.terraform.io/hashicorp/azurerm" { version = "3.57.0" constraints = "3.57.0" hashes = [ "h1:SOBKU/ioGnpuQpAx6dgaD0EzfAM2W+uS9e6p59viSxs=", "zh:028202b0ae01f1262dac076b383cb68b5dd624977669b6db833418c215eb8401", "zh:26fcf9e9b73cb3bbf87a048361a89050d2e52bdc91190a305e624a62be26a3f4", "zh:2f381103953e4513068eee62089a0ec8c60a18ecef2235138b6c29a45920d6a2", "zh:376f016f4b449b2cf38f75e27e7a9157fdcfc925f28198124a30e316abb54f3d", "zh:7d491bab94d5aba91cd9c307dbd4b655dcdc0a6212541e7800b9a902be98befe", "zh:85fa7d8339efd15494f947cda02e9ed127eafa32652e568f54261b2e97d2b3ee", "zh:950e079e55a7e321adbd2f6a0639a4b3b0fac47d2e4bb3a12791e0817b694238", "zh:975260e09379c5c97cad3171327db2f0b4914909861d4c24ab784b0ecd79c54a", "zh:a26bb67ab2d2f20e5fee4d41110584af17357f4b4266d80f9debfad61fa0a4fd", "zh:da0e5d1ec301c69b6fae684e55059fc5e1b91699ed3696229f599d558401556b", "zh:ea11e62ce53caec240cb3a1da25d248805387fa246314001ed3e07e9105f6e12", "zh:f569b65999264a9416862bca5cd2a6177d94ccb0424f3a4ef424428912b9cb3c", ] } provider "registry.terraform.io/hashicorp/local" { version = "2.4.0" constraints = "2.4.0" hashes = [ "h1:R97FTYETo88sT2VHfMgkPU3lzCsZLunPftjSI5vfKe8=", "zh:53604cd29cb92538668fe09565c739358dc53ca56f9f11312b9d7de81e48fab9", "zh:66a46e9c508716a1c98efbf793092f03d50049fa4a83cd6b2251e9a06aca2acf", "zh:70a6f6a852dd83768d0778ce9817d81d4b3f073fab8fa570bff92dcb0824f732", "zh:78d5eefdd9e494defcb3c68d282b8f96630502cac21d1ea161f53cfe9bb483b3", "zh:82a803f2f484c8b766e2e9c32343e9c89b91997b9f8d2697f9f3837f62926b35", "zh:9708a4e40d6cc4b8afd1352e5186e6e1502f6ae599867c120967aebe9d90ed04", "zh:973f65ce0d67c585f4ec250c1e634c9b22d9c4288b484ee2a871d7fa1e317406", "zh:c8fa0f98f9316e4cfef082aa9b785ba16e36ff754d6aba8b456dab9500e671c6", "zh:cfa5342a5f5188b20db246c73ac823918c189468e1382cb3c48a9c0c08fc5bf7", "zh:e0e2b477c7e899c63b06b38cd8684a893d834d6d0b5e9b033cedc06dd7ffe9e2", "zh:f62d7d05ea1ee566f732505200ab38d94315a4add27947a60afa29860822d3fc", "zh:fa7ce69dde358e172bd719014ad637634bbdabc49363104f4fca759b4b73f2ce", ] }
AzureTRE/templates/shared_services/airlock_notifier/terraform/.terraform.lock.hcl/0
{ "file_path": "AzureTRE/templates/shared_services/airlock_notifier/terraform/.terraform.lock.hcl", "repo_id": "AzureTRE", "token_count": 1351 }
108
#!/bin/bash
AzureTRE/templates/shared_services/certs/scripts/cleanup-hook.sh/0
{ "file_path": "AzureTRE/templates/shared_services/certs/scripts/cleanup-hook.sh", "repo_id": "AzureTRE", "token_count": 6 }
109
{ "$schema": "http://json-schema.org/draft-07/schema", "$id": "https://github.com/microsoft/AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-linuxvm/template_schema.json", "type": "object", "title": "Azure CycleCloud", "description": "Azure CycleCloud is an enterprise-friendly tool for orchestrating and managing High Performance Computing (HPC) environments on Azure.", "required": [ ], "properties": { } }
AzureTRE/templates/shared_services/cyclecloud/template_schema.json/0
{ "file_path": "AzureTRE/templates/shared_services/cyclecloud/template_schema.json", "repo_id": "AzureTRE", "token_count": 150 }
110
data "azurerm_resource_group" "rg" { name = local.core_resource_group_name } data "azurerm_virtual_network" "core" { name = local.core_virtual_network_name resource_group_name = data.azurerm_resource_group.rg.name } data "azurerm_subnet" "services" { name = "SharedSubnet" virtual_network_name = data.azurerm_virtual_network.core.name resource_group_name = data.azurerm_virtual_network.core.resource_group_name } data "azurerm_private_dns_zone" "databricks" { name = module.terraform_azurerm_environment_configuration.private_links["privatelink.azuredatabricks.net"] resource_group_name = local.core_resource_group_name }
AzureTRE/templates/shared_services/databricks-auth/terraform/data.tf/0
{ "file_path": "AzureTRE/templates/shared_services/databricks-auth/terraform/data.tf", "repo_id": "AzureTRE", "token_count": 276 }
111
resource "azurerm_public_ip" "fwtransit" { name = "pip-fw-${var.tre_id}" resource_group_name = local.core_resource_group_name location = data.azurerm_resource_group.rg.location allocation_method = "Static" sku = "Standard" tags = local.tre_shared_service_tags lifecycle { ignore_changes = [tags, zones] } } moved { from = azurerm_public_ip.fwpip to = azurerm_public_ip.fwtransit } resource "azurerm_public_ip" "fwmanagement" { count = var.sku_tier == "Basic" ? 1 : 0 name = "pip-fw-management-${var.tre_id}" resource_group_name = local.core_resource_group_name location = data.azurerm_resource_group.rg.location allocation_method = "Static" sku = "Standard" tags = local.tre_shared_service_tags lifecycle { ignore_changes = [tags, zones] } } resource "azurerm_firewall" "fw" { name = local.firewall_name resource_group_name = local.core_resource_group_name location = data.azurerm_resource_group.rg.location sku_tier = var.sku_tier sku_name = "AZFW_VNet" firewall_policy_id = azurerm_firewall_policy.root.id tags = local.tre_shared_service_tags ip_configuration { name = "fw-ip-configuration" subnet_id = data.azurerm_subnet.firewall.id public_ip_address_id = azurerm_public_ip.fwtransit.id } dynamic "management_ip_configuration" { for_each = var.sku_tier == "Basic" ? [1] : [] content { name = "mgmtconfig" subnet_id = data.azurerm_subnet.firewall_management.id public_ip_address_id = azurerm_public_ip.fwmanagement[0].id } } lifecycle { ignore_changes = [tags] } } data "azurerm_monitor_diagnostic_categories" "firewall" { resource_id = azurerm_firewall.fw.id } resource "azurerm_monitor_diagnostic_setting" "firewall" { name = "diagnostics-fw-${var.tre_id}" target_resource_id = azurerm_firewall.fw.id log_analytics_workspace_id = data.azurerm_log_analytics_workspace.tre.id log_analytics_destination_type = "Dedicated" dynamic "enabled_log" { for_each = setintersection(data.azurerm_monitor_diagnostic_categories.firewall.log_category_types, local.firewall_diagnostic_categories_enabled) content { category = enabled_log.value } } metric { category = "AllMetrics" enabled = true } } resource "azurerm_firewall_policy" "root" { name = local.firewall_policy_name resource_group_name = local.core_resource_group_name location = data.azurerm_resource_group.rg.location sku = var.sku_tier tags = local.tre_shared_service_tags lifecycle { ignore_changes = [tags] } }
AzureTRE/templates/shared_services/firewall/terraform/firewall.tf/0
{ "file_path": "AzureTRE/templates/shared_services/firewall/terraform/firewall.tf", "repo_id": "AzureTRE", "token_count": 1314 }
112
# This file is maintained automatically by "terraform init". # Manual edits may be lost in future updates. provider "registry.terraform.io/hashicorp/azurerm" { version = "3.33.0" constraints = "3.33.0" hashes = [ "h1:pXB6SKE4NKdf+LepsQjrLcBnVTL5ejeKvx/kyojai6c=", "zh:136d9c642746d8d84e62ecd8ab0c7dc015eac504c1f068e06fad438ae222d934", "zh:266e64b8e32a94ddcc20954ebad1d8ff3921d318addf576e981b1390e5d5ba79", "zh:3bd84a1e5b3bbe34a5870f271d6a5bf9b35a4c924db32b450a1fb53bc910c37a", "zh:3c6604041472bb4691b502877cf9d886ed9f973fbadf11389ec9499fdc66045e", "zh:680c00a73c8054c36a58115a44d02d1ebb675c2ad3afaaab2d74a01f978f16ce", "zh:6dab47ef64f90e43b75ed240a974c4119f5268be4433f3c1c3e97559e7ef2f38", "zh:9f73f19fdc340c443693dc03f1a145c6bd0ee5fd425eab7473d06abbe39b99d7", "zh:9ff008b6737e880f191b4be6dfcef95ff019969dd787c44a58c2d7d6aaf6623b", "zh:be297f1515e9ac63886e3e092a0bcd10aa8aa2b69c2b0995ce4e069176b07a95", "zh:f569b65999264a9416862bca5cd2a6177d94ccb0424f3a4ef424428912b9cb3c", "zh:fb29a566e7698cfae477f3efa3bba38526ec8343355763178c6e9c96e51399f3", "zh:fbc3b625733ce5f0970fa8d9743f6db51064c168d6be5fc7a5e3d1a54af28bb7", ] } provider "registry.terraform.io/hashicorp/local" { version = "2.2.3" constraints = "2.2.3" hashes = [ "h1:aWp5iSUxBGgPv1UnV5yag9Pb0N+U1I0sZb38AXBFO8A=", "zh:04f0978bb3e052707b8e82e46780c371ac1c66b689b4a23bbc2f58865ab7d5c0", "zh:6484f1b3e9e3771eb7cc8e8bab8b35f939a55d550b3f4fb2ab141a24269ee6aa", "zh:78a56d59a013cb0f7eb1c92815d6eb5cf07f8b5f0ae20b96d049e73db915b238", "zh:78d5eefdd9e494defcb3c68d282b8f96630502cac21d1ea161f53cfe9bb483b3", "zh:8aa9950f4c4db37239bcb62e19910c49e47043f6c8587e5b0396619923657797", "zh:996beea85f9084a725ff0e6473a4594deb5266727c5f56e9c1c7c62ded6addbb", "zh:9a7ef7a21f48fabfd145b2e2a4240ca57517ad155017e86a30860d7c0c109de3", "zh:a63e70ac052aa25120113bcddd50c1f3cfe61f681a93a50cea5595a4b2cc3e1c", "zh:a6e8d46f94108e049ad85dbed60354236dc0b9b5ec8eabe01c4580280a43d3b8", "zh:bb112ce7efbfcfa0e65ed97fa245ef348e0fd5bfa5a7e4ab2091a9bd469f0a9e", "zh:d7bec0da5c094c6955efed100f3fe22fca8866859f87c025be1760feb174d6d9", "zh:fb9f271b72094d07cef8154cd3d50e9aa818a0ea39130bc193132ad7b23076fd", ] } provider "registry.terraform.io/hashicorp/random" { version = "3.4.2" constraints = "3.4.2" hashes = [ "h1:PIIfeOjmPoQRHfMM7MDr7qY3mQqD4F+38Dmq8pjvUUs=", "zh:1e61d226778aefd01c0e139c0ad709b61e9ae4b33d72301b922bd3d000b76eee", "zh:3c3295c3d2e9c3f9d60d557ee8faf2a30bd15f59f2c38ed13f50a3220dd027d0", "zh:6661b4953b875857c3ac99fb1006daf314acebf2d1748045d208ebc8cbc647cd", "zh:6e1823a349ceea5e4e0c684561473f57c46f73d7c197c39904d031ce6654bfb8", "zh:78d5eefdd9e494defcb3c68d282b8f96630502cac21d1ea161f53cfe9bb483b3", "zh:8f8e6fd15e5228f1935c63d79bf3074f645ddba1350756acfc968b2a05bf85ee", "zh:939a78da13a7932bd5429f0c77debe907bf9d6c6a26af50fd4d9f32ee16ea5a6", "zh:995a592acbcde12f0d34ff5c3b74ec7054743315684b72b927bdc0d33e0e7c4d", "zh:a9f8b88fe365ed9996d3386b415cabb445cf9d6e4b0e0b73f58af3aa31f1fa3d", "zh:dda7c698cf92170665ca3ac1ccdc2177c0bec4807e69075422ae9d5c5308adbd", "zh:eff42af6313499db0b3177a82851e0f2d2706e81cab11372d7d3673c41b15b9c", "zh:fcd6826d4398147314620401a5908dd35c6f2ebac7e7d3a7d77078dbc7c5a0e6", ] }
AzureTRE/templates/shared_services/gitea/terraform/.terraform.lock.hcl/0
{ "file_path": "AzureTRE/templates/shared_services/gitea/terraform/.terraform.lock.hcl", "repo_id": "AzureTRE", "token_count": 2045 }
113
#!/bin/bash # Configure Nexus to use certificate to serve proxies over https set -o errexit set -o pipefail set -o nounset # set -o xtrace echo "Setting up Nexus SSL..." # Import ssl cert to keystore within Nexus volume keystore_timeout=60 echo 'Checking for nexus-data/keystores directory...' while [ ! -d /etc/nexus-data/keystores ]; do # Wait for /keystore dir to be created by container first if [ $keystore_timeout == 0 ]; then echo 'ERROR - Timeout while waiting for Nexus to create nexus-data/keystores' exit 1 fi sleep 5 ((keystore_timeout--)) done downloaded_cert_path="/var/lib/waagent/Microsoft.Azure.KeyVault.Store/${VAULT_NAME}.${SSL_CERT_NAME}" cert_timeout=60 echo 'Waiting for cert to be downloaded from KV...' while [ ! -f "$downloaded_cert_path" ]; do if [ $cert_timeout == 0 ]; then echo 'ERROR - Timeout while waiting!' exit 1 fi sleep 5 ((cert_timeout--)) done keystore_file_name=ssl.keystore cert_password=$(openssl rand -base64 32) rm -f temp.p12 openssl pkcs12 -export -inkey "$downloaded_cert_path" -in "$downloaded_cert_path" -out temp.p12 -password "pass:$cert_password" rm -f /etc/nexus-data/keystores/"$keystore_file_name" keytool -v -importkeystore -noprompt -srckeystore temp.p12 -srcstoretype PKCS12 -srcstorepass "$cert_password" \ -destkeystore /etc/nexus-data/keystores/"$keystore_file_name" -deststoretype PKCS12 -deststorepass "$cert_password" rm -f temp.p12 # Configure Jetty instance within Nexus to consume ssl cert echo 'Modifying Nexus Jetty configuration to enable ssl...' mkdir -p /etc/nexus-data/etc/jetty # -- first need to copy default Jetty config to persistent volume so isn't overwritten on restart docker exec -u root nexus cp /opt/sonatype/nexus/etc/jetty/jetty-https.xml /nexus-data/etc/jetty/ # -- then we replace password values with the ssl cert keystore password xmlstarlet ed -P --inplace \ -u "/Configure[@id='Server']/New[@id='sslContextFactory']/Set[@name='KeyStorePassword']" \ -v "$cert_password" /etc/nexus-data/etc/jetty/jetty-https.xml xmlstarlet ed -P --inplace \ -u "/Configure[@id='Server']/New[@id='sslContextFactory']/Set[@name='KeyManagerPassword']" \ -v "$cert_password" /etc/nexus-data/etc/jetty/jetty-https.xml xmlstarlet ed -P --inplace \ -u "/Configure[@id='Server']/New[@id='sslContextFactory']/Set[@name='TrustStorePassword']" \ -v "$cert_password" /etc/nexus-data/etc/jetty/jetty-https.xml # -- then update the location of our keystore xmlstarlet ed -P --inplace \ -u "/Configure[@id='Server']/New[@id='sslContextFactory']/Set[@name='KeyStorePath']" \ -v /nexus-data/keystores/"$keystore_file_name" /etc/nexus-data/etc/jetty/jetty-https.xml xmlstarlet ed -P --inplace \ -u "/Configure[@id='Server']/New[@id='sslContextFactory']/Set[@name='TrustStorePath']" \ -v /nexus-data/keystores/"$keystore_file_name" /etc/nexus-data/etc/jetty/jetty-https.xml # Add jetty configuration and ssl port to Nexus properties cat >> /etc/nexus-data/etc/nexus.properties <<'EOF' application-port-ssl=8443 nexus-args=$${jetty.etc}/jetty.xml,$${jetty.etc}/jetty-http.xml,$${jetty.etc}/jetty-requestlog.xml,/nexus-data/etc/jetty/jetty-https.xml EOF # Restart the container for changes to take effect docker restart nexus echo 'Nexus ssl configuration completed.'
AzureTRE/templates/shared_services/sonatype-nexus-vm/scripts/configure_nexus_ssl.sh/0
{ "file_path": "AzureTRE/templates/shared_services/sonatype-nexus-vm/scripts/configure_nexus_ssl.sh", "repo_id": "AzureTRE", "token_count": 1156 }
114
{ "schemaType": "ParameterSet", "schemaVersion": "1.0.1", "namespace": "", "name": "tre-service-azureml", "parameters": [ { "name": "workspace_id", "source": { "env": "WORKSPACE_ID" } }, { "name": "id", "source": { "env": "ID" } }, { "name": "tre_id", "source": { "env": "TRE_ID" } }, { "name": "display_name", "source": { "env": "DISPLAY_NAME" } }, { "name": "description", "source": { "env": "DESCRIPTION" } }, { "name": "address_space", "source": { "env": "ADDRESS_SPACE" } }, { "name": "is_exposed_externally", "source": { "env": "IS_EXPOSED_EXTERNALLY" } }, { "name": "tfstate_container_name", "source": { "env": "TERRAFORM_STATE_CONTAINER_NAME" } }, { "name": "tfstate_resource_group_name", "source": { "env": "MGMT_RESOURCE_GROUP_NAME" } }, { "name": "tfstate_storage_account_name", "source": { "env": "MGMT_STORAGE_ACCOUNT_NAME" } }, { "name": "arm_environment", "source": { "env": "ARM_ENVIRONMENT" } } ] }
AzureTRE/templates/workspace_services/azureml/parameters.json/0
{ "file_path": "AzureTRE/templates/workspace_services/azureml/parameters.json", "repo_id": "AzureTRE", "token_count": 738 }
115
variable "workspace_id" { type = string } variable "tre_id" { type = string } variable "tre_resource_id" { type = string } variable "display_name" { type = string } variable "description" { type = string } variable "is_exposed_externally" { type = bool } variable "address_space" { type = string } variable "arm_tenant_id" { type = string } variable "auth_tenant_id" { type = string description = "Used to authenticate into the AAD Tenant to get app role members" } variable "auth_client_id" { type = string description = "Used to authenticate into the AAD Tenant to get app role members" } variable "auth_client_secret" { type = string sensitive = true description = "Used to authenticate into the AAD Tenant to get app role members" } variable "arm_environment" { type = string } variable "azure_environment" { type = string }
AzureTRE/templates/workspace_services/azureml/terraform/variables.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/azureml/terraform/variables.tf", "repo_id": "AzureTRE", "token_count": 304 }
116
# syntax=docker/dockerfile-upstream:1.4.0 FROM --platform=linux/amd64 debian:bullseye-slim # PORTER_INIT RUN rm -f /etc/apt/apt.conf.d/docker-clean; echo 'Binary::apt::APT::Keep-Downloaded-Packages "true";' > /etc/apt/apt.conf.d/keep-cache # Install git - required for https://registry.terraform.io/modules/claranet/regions/azurerm RUN --mount=type=cache,target=/var/cache/apt --mount=type=cache,target=/var/lib/apt \ apt-get update && apt-get install --no-install-recommends -y git # PORTER_MIXINS # Use the BUNDLE_DIR build argument to copy files into the bundle COPY --link . ${BUNDLE_DIR}/
AzureTRE/templates/workspace_services/databricks/Dockerfile.tmpl/0
{ "file_path": "AzureTRE/templates/workspace_services/databricks/Dockerfile.tmpl", "repo_id": "AzureTRE", "token_count": 233 }
117
ID="__CHANGE_ME__" WORKSPACE_ID="__CHANGE_ME__" MGMT_ACR_NAME="__CHANGE_ME__"
AzureTRE/templates/workspace_services/gitea/.env.sample/0
{ "file_path": "AzureTRE/templates/workspace_services/gitea/.env.sample", "repo_id": "AzureTRE", "token_count": 40 }
118
resource "random_password" "password" { length = 20 min_upper = 2 min_lower = 2 min_numeric = 2 min_special = 2 } resource "azurerm_mysql_flexible_server" "gitea" { name = "mysql-${local.service_resource_name_suffix}" resource_group_name = data.azurerm_resource_group.ws.name location = data.azurerm_resource_group.ws.location administrator_login = "mysqladmin" administrator_password = random_password.password.result sku_name = local.sql_sku[var.sql_sku].value version = "8.0.21" backup_retention_days = 7 geo_redundant_backup_enabled = false tags = local.workspace_service_tags lifecycle { ignore_changes = [tags, zone] } } resource "azurerm_mysql_flexible_database" "gitea" { name = "gitea" resource_group_name = data.azurerm_resource_group.ws.name server_name = azurerm_mysql_flexible_server.gitea.name charset = "utf8" collation = "utf8_unicode_ci" } moved { from = azurerm_private_endpoint.private-endpoint to = azurerm_private_endpoint.private_endpoint } resource "azurerm_private_endpoint" "private_endpoint" { name = "pe-${azurerm_mysql_flexible_server.gitea.name}" location = data.azurerm_resource_group.ws.location resource_group_name = data.azurerm_resource_group.ws.name subnet_id = data.azurerm_subnet.services.id tags = local.workspace_service_tags private_service_connection { private_connection_resource_id = azurerm_mysql_flexible_server.gitea.id name = "psc-${azurerm_mysql_flexible_server.gitea.name}" subresource_names = ["mysqlServer"] is_manual_connection = false } private_dns_zone_group { name = module.terraform_azurerm_environment_configuration.private_links["privatelink.mysql.database.azure.com"] private_dns_zone_ids = [data.azurerm_private_dns_zone.mysql.id] } lifecycle { ignore_changes = [tags] } } resource "azurerm_key_vault_secret" "db_password" { name = "${azurerm_mysql_flexible_server.gitea.name}-administrator-password" value = random_password.password.result key_vault_id = data.azurerm_key_vault.ws.id tags = local.workspace_service_tags depends_on = [ azurerm_key_vault_access_policy.gitea_policy ] lifecycle { ignore_changes = [tags] } }
AzureTRE/templates/workspace_services/gitea/terraform/mysql.tf/0
{ "file_path": "AzureTRE/templates/workspace_services/gitea/terraform/mysql.tf", "repo_id": "AzureTRE", "token_count": 1166 }
119
#!/usr/bin/with-contenv sh set -x echo >&2 "starting oauth2-proxy" cookiesecret=$(dd if=/dev/urandom bs=32 count=1 2>/dev/null | base64 | tr -d -- '\n' | tr -- '+/' '-_'; echo) "${OAUTH2_PROXY_HOME}"/oauth2-proxy \ --provider oidc \ --skip-provider-button \ --cookie-secret "${cookiesecret}" \ --oidc-issuer-url "${OAUTH2_PROXY_OIDC_ISSUER_URL}" \ --upstream http://0.0.0.0:8080 \ --email-domain "${OAUTH2_PROXY_EMAIL_DOMAIN}" \ --redirect-url "${OAUTH2_PROXY_REDIRECT_URI}" --pass-host-header true \ --show-debug-on-error true --pass-authorization-header true --pass-user-headers true \ --http-address http://0.0.0.0:8085 \ --https-address https://0.0.0.0:8086 \ --cookie-secure true \ --reverse-proxy true \ --pass-access-token true \ --set-xauthrequest true \ --pass-basic-auth true \ --cookie-refresh 50m \ --insecure-oidc-allow-unverified-email true \ --oidc-groups-claim "roles" \ --oidc-email-claim "preferred_username" \ --scope "openid offline_access ${AUDIENCE}/user_impersonation profile"
AzureTRE/templates/workspace_services/guacamole/guacamole-server/docker/services/oauth/run/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/guacamole-server/docker/services/oauth/run", "repo_id": "AzureTRE", "token_count": 405 }
120
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ package org.apache.guacamole.auth.azuretre.user; import org.apache.guacamole.net.auth.AbstractAuthenticatedUser; import org.apache.guacamole.net.auth.AuthenticationProvider; import org.apache.guacamole.net.auth.Credentials; public class AzureTREAuthenticatedUser extends AbstractAuthenticatedUser { private final AuthenticationProvider authProvider; private final Credentials credentials; private final String objectId; private final String accessToken; public AzureTREAuthenticatedUser(final Credentials credentials, final String accessToken, final String username, final String objectId, final AuthenticationProvider provider) { this.credentials = credentials; this.accessToken = accessToken; this.objectId = objectId; this.authProvider = provider; setIdentifier(username.toLowerCase()); } @Override public AuthenticationProvider getAuthenticationProvider() { return authProvider; } @Override public Credentials getCredentials() { return credentials; } public String getAccessToken() { return accessToken; } public String getObjectId() { return objectId; } }
AzureTRE/templates/workspace_services/guacamole/guacamole-server/guacamole-auth-azure/src/main/java/org/apache/guacamole/auth/azuretre/user/AzureTREAuthenticatedUser.java/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/guacamole-server/guacamole-auth-azure/src/main/java/org/apache/guacamole/auth/azuretre/user/AzureTREAuthenticatedUser.java", "repo_id": "AzureTRE", "token_count": 727 }
121
{ "$schema": "http://json-schema.org/draft-07/schema", "$id": "https://github.com/microsoft/AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-export-reviewvm/template_schema.json", "type": "object", "title": "Export review Virtual Machine", "description": "Windows virtual machine for export review", "required": [ ], "authorizedRoles": [ "AirlockManager" ], "properties": { "os_image": { "$id": "#/properties/os_image", "type": "string", "title": "Windows image", "description": "Select Windows image to use for VM", "enum": [ "Server 2019 Data Science VM" ] }, "vm_size": { "$id": "#/properties/vm_size", "type": "string", "title": "VM Size", "description": "Select size of VM", "enum": [ "2 CPU | 8GB RAM" ], "updateable": true }, "airlock_request_sas_url": { "$id": "#/properties/airlock_request_sas_url", "type": "string", "title": "Airlock request SAS Token", "description": "SAS Token for airlock request", "updateable": false, "sensitive": true } } }
AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-export-reviewvm/template_schema.json/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-export-reviewvm/template_schema.json", "repo_id": "AzureTRE", "token_count": 568 }
122
#!/bin/bash set -o errexit set -o pipefail # set -o nounset # Uncomment this line to see each command for debugging (careful: this will show secrets!) # set -o xtrace # Remove apt sources not included in sources.list file sudo rm -f /etc/apt/sources.list.d/* # Update apt packages from configured Nexus sources sudo apt-get update # Install xrdp so Guacamole can connect via RDP sudo apt-get install xrdp -y sudo adduser xrdp ssl-cert # Install desktop environment if image doesn't have one already if [ "${INSTALL_UI}" -eq 1 ]; then sudo apt-get install xorg xfce4 xfce4-goodies dbus-x11 x11-xserver-utils -y echo xfce4-session > ~/.xsession fi # Fix for blank screen on DSVM (/sh -> /bash due to conflict with profile.d scripts) sudo sed -i 's|!/bin/sh|!/bin/bash|g' /etc/xrdp/startwm.sh # Make sure xrdp service starts up with the system sudo systemctl enable xrdp if [ "${SHARED_STORAGE_ACCESS}" -eq 1 ]; then # Install required packages sudo apt-get install autofs -y # Pass in required variables storageAccountName="${STORAGE_ACCOUNT_NAME}" storageAccountKey="${STORAGE_ACCOUNT_KEY}" httpEndpoint="${HTTP_ENDPOINT}" fileShareName="${FILESHARE_NAME}" mntRoot="/fileshares" credentialRoot="/etc/smbcredentials" mntPath="$mntRoot/$fileShareName" # shellcheck disable=SC2308 smbPath=$(echo "$httpEndpoint" | cut -c7-"$(expr length "$httpEndpoint")")$fileShareName smbCredentialFile="$credentialRoot/$storageAccountName.cred" # Create required file paths sudo mkdir -p "$mntPath" sudo mkdir -p "/etc/smbcredentials" sudo mkdir -p $mntRoot ### Auto FS to persist storage # Create credential file if [ ! -f "$smbCredentialFile" ]; then echo "username=$storageAccountName" | sudo tee "$smbCredentialFile" > /dev/null echo "password=$storageAccountKey" | sudo tee -a "$smbCredentialFile" > /dev/null else echo "The credential file $smbCredentialFile already exists, and was not modified." fi # Change permissions on the credential file so only root can read or modify the password file. sudo chmod 600 "$smbCredentialFile" # Configure autofs echo "$fileShareName -fstype=cifs,rw,dir_mode=0777,credentials=$smbCredentialFile :$smbPath" | sudo tee /etc/auto.fileshares > /dev/null echo "$mntRoot /etc/auto.fileshares --timeout=60" | sudo tee /etc/auto.master > /dev/null # Restart service to register changes sudo systemctl restart autofs # Autofs mounts when accessed for 60 seconds. Folder created for constant visible mount sudo ln -s "$mntPath" "/$fileShareName" fi ### Anaconda Config if [ "${CONDA_CONFIG}" -eq 1 ]; then export PATH="/anaconda/condabin":$PATH export PATH="/anaconda/bin":$PATH export PATH="/anaconda/envs/py38_default/bin":$PATH conda config --add channels "${NEXUS_PROXY_URL}"/repository/conda-mirror/main/ --system conda config --add channels "${NEXUS_PROXY_URL}"/repository/conda-repo/main/ --system conda config --remove channels defaults --system conda config --set channel_alias "${NEXUS_PROXY_URL}"/repository/conda-mirror/ --system fi # Docker install and config sudo apt-get install -y ca-certificates curl gnupg lsb-release sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-compose-plugin jq jq -n --arg proxy "${NEXUS_PROXY_URL}:8083" '{"registry-mirrors": [$proxy]}' > /etc/docker/daemon.json sudo systemctl daemon-reload sudo systemctl restart docker # R config sudo echo -e "local({\n r <- getOption(\"repos\")\n r[\"Nexus\"] <- \"""${NEXUS_PROXY_URL}\"/repository/r-proxy/\"\n options(repos = r)\n})" | sudo tee /etc/R/Rprofile.site
AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-linuxvm/terraform/vm_config.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-linuxvm/terraform/vm_config.sh", "repo_id": "AzureTRE", "token_count": 1262 }
123
Remove-Item -LiteralPath "C:\AzureData" -Force -Recurse $ErrorActionPreference = "Stop" if( ${SharedStorageAccess} -eq 1 ) { $Command = "net use z: \\${StorageAccountFileHost}\${FileShareName} /u:AZURE\${StorageAccountName} ${StorageAccountKey}" $Command | Out-File "C:\ProgramData\Start Menu\Programs\StartUp\attach_storage.cmd" -encoding ascii } $PipConfigFolderPath = "C:\ProgramData\pip\" If(!(Test-Path $PipConfigFolderPath)) { New-Item -ItemType Directory -Force -Path $PipConfigFolderPath } $PipConfigFilePath = $PipConfigFolderPath + "pip.ini" $ConfigBody = @" [global] index = ${nexus_proxy_url}/repository/pypi/pypi index-url = ${nexus_proxy_url}/repository/pypi/simple trusted-host = ${nexus_proxy_url} "@ # We need to write the ini file in UTF8 (No BOM) as pip won't understand Powershell's default encoding (unicode) $Utf8NoBomEncoding = New-Object System.Text.UTF8Encoding $False [System.IO.File]::WriteAllLines($PipConfigFilePath, $ConfigBody, $Utf8NoBomEncoding) ### Anaconda Config if( ${CondaConfig} -eq 1 ) { conda config --add channels ${nexus_proxy_url}/repository/conda-mirror/main/ --system conda config --add channels ${nexus_proxy_url}/repository/conda-repo/main/ --system conda config --remove channels defaults --system conda config --set channel_alias ${nexus_proxy_url}/repository/conda-mirror/ --system } # Docker proxy config $DaemonConfig = @" { "registry-mirrors": ["${nexus_proxy_url}:8083"] } "@ $DaemonConfig | Out-File -Encoding Ascii ( New-Item -Path $env:ProgramData\docker\config\daemon.json -Force ) # R config # $RconfigFilePathWindows = C:\Progra~1\R\4.1.2\etc\Rprofile.site #Add-Content $RconfigFilePathWindows "local({`n r <- getOption(`"repos`")`n r[`"Nexus`"] <- `"${nexus_proxy_url}/repository/r-proxy/`"`n options(repos = r)`n})" # echo "local({`n r <- getOption(`"repos`")`n r[`"Nexus`"] <- `"${nexus_proxy_url}/repository/r-proxy/`"`n options(repos = r)`n})" > $RconfigFilePathWindows $RConfig = @" local({ r <- getOption("repos") r["Nexus"] <- "${nexus_proxy_url}/repository/r-proxy/" options(repos = r) }) "@ $RConfig | Out-File -Encoding Ascii ( New-Item -Path $Env:ProgramFiles\R\R-4.1.2\etc\Rprofile.site -Force )
AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-windowsvm/terraform/vm_config.ps1/0
{ "file_path": "AzureTRE/templates/workspace_services/guacamole/user_resources/guacamole-azure-windowsvm/terraform/vm_config.ps1", "repo_id": "AzureTRE", "token_count": 877 }
124
{ "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#", "contentVersion": "1.0.0.0", "parameters": { "vnet_name": { "type": "String" }, "location": { "type": "String", "metadata": { "description": "Specifies the location for all resources." } }, "workspace_name": { "type": "String" }, "cluster_name": { "type": "String" }, "subnet_name": { "type": "String" }, "admin_username": { "type": "String", "defaultValue": "azureuser" }, "admin_user_password": { "type": "SecureString" }, "vm_size_sku": { "type": "String", "defaultValue": "Standard_ND24s" }, "min_node_count": { "type": "Int", "defaultValue": 0 }, "max_node_count": { "type": "Int" } }, "variables": {}, "resources": [ { "type": "Microsoft.MachineLearningServices/workspaces/computes", "apiVersion": "2021-01-01", "name": "[concat(parameters('workspace_name'),'/',parameters('cluster_name'))]", "location": "[parameters('location')]", "identity": { "type": "SystemAssigned" }, "properties": { "computeType": "AmlCompute", "computeLocation": "[parameters('location')]", "properties": { "vmSize": "[parameters('vm_size_sku')]", "vmPriority": "Dedicated", "scaleSettings": { "minNodeCount": "[parameters('min_node_count')]", "maxNodeCount": "[parameters('max_node_count')]" }, "userAccountCredentials": { "adminUserName": "[parameters('admin_username')]", "adminUserPassword": "[parameters('admin_user_password')]" }, "remoteLoginPortPublicAccess": "Enabled", "enableNodePublicIp": false, "subnet": { "id": "[resourceId('Microsoft.Network/virtualNetworks/subnets', parameters('vnet_name'), parameters('subnet_name'))]" } } } } ], "outputs": { "cluster_principal_id": { "value": "[reference(resourceId('Microsoft.MachineLearningServices/workspaces/computes', parameters('workspace_name'),parameters('cluster_name')),'2020-05-15-preview', 'Full').identity.principalId]", "type": "String" } } }
AzureTRE/templates/workspace_services/innereye/terraform/nopipcompute/deploypl_compute_cluster.json/0
{ "file_path": "AzureTRE/templates/workspace_services/innereye/terraform/nopipcompute/deploypl_compute_cluster.json", "repo_id": "AzureTRE", "token_count": 1562 }
125
{ "$schema": "http://json-schema.org/draft-07/schema", "$id": "https://github.com/microsoft/AzureTRE/templates/workspace_services/mlflow/template_schema.json", "type": "object", "title": "MLflow", "description": "MLflow server to manage machine learning lifecycle.", "required": [], "properties": { "display_name": { "type": "string", "title": "Name for the workspace service", "description": "The name of the workspace service to be displayed to users", "default": "MLflow", "updateable": true }, "description": { "type": "string", "title": "Description of the workspace service", "description": "Description of the workspace service", "default": "MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry.", "updateable": true }, "overview": { "type": "string", "title": "Workspace Service Overview", "description": "Long form description of the workspace service, in markdown syntax", "default": "MLflow is an open source platform to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. Documentation can be found here: [https://mlflow.org/docs/latest/index.html](https://mlflow.org/docs/latest/index.html)" }, "is_exposed_externally": { "$id": "#/properties/is_exposed_externally", "type": "boolean", "title": "Expose externally", "description": "Is MLflow accessible from outside of the workspace network.", "default": false } }, "uiSchema": { "is_exposed_externally": { "classNames": "tre-hidden" } } }
AzureTRE/templates/workspace_services/mlflow/template_schema.json/0
{ "file_path": "AzureTRE/templates/workspace_services/mlflow/template_schema.json", "repo_id": "AzureTRE", "token_count": 595 }
126
{ "$schema": "http://json-schema.org/draft-07/schema", "$id": "https://github.com/microsoft/AzureTRE/templates/workspace_services/sql/template_schema.json", "type": "object", "title": "MySQL Workspace Service", "description": "Provides MySQL within the workspace", "required": [], "properties": { "sql_sku": { "$id": "#/properties/sql_sku", "type": "string", "title": "MySQL server SKU", "description": "MySQL server SKU", "updateable": true, "enum": [ "B | 4GB 2vCores", "GP | 8GB 2vCores", "BC | 16GB 2vCores" ], "default": "B | 4GB 2vCores" }, "storage_mb": { "$id": "#/properties/storage_mb", "type": "number", "title": "Max storage allowed for a server", "description": "Max storage allowed for a server", "default": 5120 }, "db_name": { "$id": "#/properties/db_name", "type": "string", "title": "Database name", "description": "Database name", "default": "tredb" } } }
AzureTRE/templates/workspace_services/mysql/template_schema.json/0
{ "file_path": "AzureTRE/templates/workspace_services/mysql/template_schema.json", "repo_id": "AzureTRE", "token_count": 465 }
127
#!/bin/bash set -o errexit set -o pipefail set -o nounset link_name="core" result=$(az network private-dns link vnet list --resource-group "${RESOURCE_GROUP}" -z "${DNS_ZONE_NAME}" --query "[?name=='${link_name}'] | length(@)") if [[ "${result}" == 0 ]]; then az network private-dns link vnet create \ --name ${link_name} --resource-group "${RESOURCE_GROUP}" --virtual-network "${VNET}" --zone-name "${DNS_ZONE_NAME}" \ --registration-enabled false else echo "Zone already linked." fi
AzureTRE/templates/workspace_services/ohdsi/scripts/postgres_dns_link.sh/0
{ "file_path": "AzureTRE/templates/workspace_services/ohdsi/scripts/postgres_dns_link.sh", "repo_id": "AzureTRE", "token_count": 186 }
128
variable "location" { type = string } variable "tre_id" { type = string } variable "ws_resource_group_name" { type = string } variable "enable_local_debugging" { type = bool } variable "services_subnet_id" { type = string } variable "airlock_processor_subnet_id" { type = string } variable "short_workspace_id" { type = string } variable "tre_workspace_tags" { type = map(string) } variable "arm_environment" { type = string }
AzureTRE/templates/workspaces/base/terraform/airlock/variables.tf/0
{ "file_path": "AzureTRE/templates/workspaces/base/terraform/airlock/variables.tf", "repo_id": "AzureTRE", "token_count": 157 }
129
output "vnet_id" { value = azurerm_virtual_network.ws.id } output "services_subnet_id" { value = azurerm_subnet.services.id } output "vaultcore_zone_id" { value = data.azurerm_private_dns_zone.vaultcore.id } output "filecore_zone_id" { value = data.azurerm_private_dns_zone.filecore.id } output "blobcore_zone_id" { value = data.azurerm_private_dns_zone.blobcore.id } output "dfscore_zone_id" { value = data.azurerm_private_dns_zone.dfscore.id } output "airlock_processor_subnet_id" { value = data.azurerm_subnet.airlockprocessor.id } output "azure_monitor_dns_zone_id" { value = azurerm_private_dns_zone.azure_monitor.id } output "azure_monitor_oms_opinsights_dns_zone_id" { value = azurerm_private_dns_zone.azure_monitor_oms_opinsights.id } output "azure_monitor_ods_opinsights_dns_zone_id" { value = azurerm_private_dns_zone.azure_monitor_ods_opinsights.id } output "azure_monitor_agentsvc_dns_zone_id" { value = azurerm_private_dns_zone.azure_monitor_agentsvc.id }
AzureTRE/templates/workspaces/base/terraform/network/outputs.tf/0
{ "file_path": "AzureTRE/templates/workspaces/base/terraform/network/outputs.tf", "repo_id": "AzureTRE", "token_count": 423 }
130
import React, { useContext } from 'react'; import { Nav, INavLinkGroup } from '@fluentui/react/lib/Nav'; import { useNavigate } from 'react-router-dom'; import { AppRolesContext } from '../../contexts/AppRolesContext'; import { RoleName } from '../../models/roleNames'; export const LeftNav: React.FunctionComponent = () => { const navigate = useNavigate(); const appRolesCtx = useContext(AppRolesContext); const navLinkGroups: INavLinkGroup[] = [ { links: [ { name: 'Workspaces', url: '/', key: '/', icon: 'WebAppBuilderFragment' } ], }, ]; // show shared-services link if TRE Admin if (appRolesCtx.roles.includes(RoleName.TREAdmin)) { navLinkGroups[0].links.push( { name: 'Shared Services', url: '/shared-services', key: 'shared-services', icon: 'Puzzle' }); } return ( <Nav onLinkClick={(e, item) => { e?.preventDefault(); item?.url && navigate(item.url) }} ariaLabel="TRE Left Navigation" groups={navLinkGroups} /> ); };
AzureTRE/ui/app/src/components/root/LeftNav.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/root/LeftNav.tsx", "repo_id": "AzureTRE", "token_count": 461 }
131
import React, { } from 'react'; import { IStackStyles, IStackTokens, Stack, Text } from '@fluentui/react'; import { ResourceCard } from '../shared/ResourceCard'; import { Resource } from '../../models/resource'; interface ResourceCardListProps { resources: Array<Resource>, selectResource?: (resource: Resource) => void, updateResource: (resource: Resource) => void, removeResource: (resource: Resource) => void emptyText: string, readonly?: boolean isExposedExternally?: boolean } export const ResourceCardList: React.FunctionComponent<ResourceCardListProps> = (props: ResourceCardListProps) => { return ( <> { props.resources.length > 0 ? <Stack horizontal wrap styles={stackStyles} tokens={wrapStackTokens}> { props.resources.map((r:Resource, i:number) => { return ( <Stack.Item key={i} style={gridItemStyles} > <ResourceCard resource={r} selectResource={(resource: Resource) => props.selectResource && props.selectResource(resource)} onUpdate={(resource: Resource) => props.updateResource(resource)} onDelete={(resource: Resource) => props.removeResource(resource)} itemId={i} readonly={props.readonly} isExposedExternally={r.properties.is_exposed_externally === undefined ? props.isExposedExternally : r.properties.is_exposed_externally} /> </Stack.Item> ) }) } </Stack> : <Text variant="large" block>{props.emptyText}</Text> } </> ); }; const stackStyles: IStackStyles = { root: { width: 'calc(100% - 20px)' }, }; const wrapStackTokens: IStackTokens = { childrenGap: 20 }; const gridItemStyles: React.CSSProperties = { alignItems: 'left', display: 'flex', width: 300, background: '#f9f9f9' };
AzureTRE/ui/app/src/components/shared/ResourceCardList.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/ResourceCardList.tsx", "repo_id": "AzureTRE", "token_count": 855 }
132
import React, { useCallback, useContext, useEffect, useState } from 'react'; import { ColumnActionsMode, CommandBar, CommandBarButton, ContextualMenu, DirectionalHint, getTheme, IColumn, ICommandBarItemProps, Icon, IContextualMenuItem, IContextualMenuProps, Persona, PersonaSize, SelectionMode, ShimmeredDetailsList, Stack } from '@fluentui/react'; import { HttpMethod, useAuthApiCall } from '../../../hooks/useAuthApiCall'; import { ApiEndpoint } from '../../../models/apiEndpoints'; import { WorkspaceContext } from '../../../contexts/WorkspaceContext'; import { AirlockRequest, AirlockRequestAction, AirlockRequestStatus, AirlockRequestType } from '../../../models/airlock'; import moment from 'moment'; import { Route, Routes, useNavigate } from 'react-router-dom'; import { AirlockViewRequest } from './AirlockViewRequest'; import { LoadingState } from '../../../models/loadingState'; import { APIError } from '../../../models/exceptions'; import { ExceptionLayout } from '../ExceptionLayout'; import { AirlockNewRequest } from './AirlockNewRequest'; import { WorkspaceRoleName } from '../../../models/roleNames'; import { useAccount, useMsal } from '@azure/msal-react'; import { getFileTypeIconProps } from '@fluentui/react-file-type-icons'; export const Airlock: React.FunctionComponent = () => { const [airlockRequests, setAirlockRequests] = useState([] as AirlockRequest[]); const [requestColumns, setRequestColumns] = useState([] as IColumn[]); const [orderBy, setOrderBy] = useState('updatedWhen'); const [orderAscending, setOrderAscending] = useState(false); const [filters, setFilters] = useState(new Map<string, string>()); const [loadingState, setLoadingState] = useState(LoadingState.Loading); const [contextMenuProps, setContextMenuProps] = useState<IContextualMenuProps>(); const [apiError, setApiError] = useState<APIError>(); const workspaceCtx = useContext(WorkspaceContext); const apiCall = useAuthApiCall(); const theme = getTheme(); const navigate = useNavigate(); const { accounts } = useMsal(); const account = useAccount(accounts[0] || {}); // Get the airlock request data from API const getAirlockRequests = useCallback(async () => { setApiError(undefined); setLoadingState(LoadingState.Loading); try { let requests: AirlockRequest[]; if (workspaceCtx.workspace) { // Add any selected filters and orderBy let query = '?'; filters.forEach((value, key) => { query += `${key}=${value}&`; }); if (orderBy) { query += `order_by=${orderBy}&order_ascending=${orderAscending}&`; } // Call the Airlock requests API const result = await apiCall( `${ApiEndpoint.Workspaces}/${workspaceCtx.workspace.id}/${ApiEndpoint.AirlockRequests}${query.slice(0, -1)}`, HttpMethod.Get, workspaceCtx.workspaceApplicationIdURI ); // Map the inner requests and the allowed user actions to state requests = result.airlockRequests.map((r: { airlockRequest: AirlockRequest, allowedUserActions: Array<AirlockRequestAction> }) => { const request = r.airlockRequest; request.allowedUserActions = r.allowedUserActions; return request; }); } else { // TODO: Get all requests across workspaces requests = []; } setAirlockRequests(requests); setLoadingState(LoadingState.Ok); } catch (err: any) { err.userMessage = 'Error fetching airlock requests'; setApiError(err); setLoadingState(LoadingState.Error); } }, [apiCall, workspaceCtx.workspace, workspaceCtx.workspaceApplicationIdURI, filters, orderBy, orderAscending]); // Fetch new requests on first load and whenever filters/orderBy selection changes useEffect(() => { getAirlockRequests(); }, [filters, orderBy, orderAscending, getAirlockRequests]); const orderRequests = (column: IColumn) => { setOrderBy((o) => { // If already selected, invert ordering if (o === column.key) { setOrderAscending((previous) => !previous); return column.key; } return column.key; }); }; // Open a context menu in the requests list for filtering and sorting const openContextMenu = useCallback((column: IColumn, ev: React.MouseEvent<HTMLElement>, options: Array<string>) => { const filterOptions = options.map(option => { return { key: option, name: option, canCheck: true, checked: filters?.has(column.key) && filters.get(column.key) === option, onClick: () => { // Set filter or unset if already selected setFilters((f) => { if (f.get(column.key) === option) { f.delete(column.key); } else { f.set(column.key, option); } // Return as a new map to trigger re-rendering return new Map(f); }); } } }); const items: IContextualMenuItem[] = [ { key: 'sort', name: 'Sort', iconProps: { iconName: 'Sort' }, onClick: () => orderRequests(column) }, { key: 'filter', name: 'Filter', iconProps: { iconName: 'Filter' }, subMenuProps: { items: filterOptions, } } ]; setContextMenuProps({ items: items, target: ev.currentTarget as HTMLElement, directionalHint: DirectionalHint.bottomCenter, gapSpace: 0, onDismiss: () => setContextMenuProps(undefined), }); }, [filters]); // Set the columns on initial render useEffect(() => { const orderByColumn = (ev: React.MouseEvent<HTMLElement>, column: IColumn) => { orderRequests(column); }; const columns: IColumn[] = [ { key: 'fileIcon', name: 'fileIcon', minWidth: 16, maxWidth: 16, isIconOnly: true, onRender: (request: AirlockRequest) => { if (request.status === AirlockRequestStatus.Draft) { return <Icon iconName="FolderOpen" style={{verticalAlign:'bottom', fontSize: 14}} /> } else if (request.files?.length > 0 && request.files[0].name) { const fileType = request.files[0].name.split('.').pop(); return <Icon {...getFileTypeIconProps({ extension: fileType })} style={{verticalAlign:'bottom'}} /> } else { return <Icon iconName="Page" style={{verticalAlign:'bottom', fontSize: 14}} /> } } }, { key: 'title', name: 'Title', ariaLabel: 'Title of the airlock request', minWidth: 150, maxWidth: 300, isResizable: true, fieldName: 'title' }, { key: 'createdBy', name: 'Creator', ariaLabel: 'Creator of the airlock request', minWidth: 150, maxWidth: 200, isResizable: true, onRender: (request: AirlockRequest) => <Persona size={ PersonaSize.size24 } text={request.createdBy?.name} />, isFiltered: filters.has('creator_user_id') }, { key: 'type', name: 'Type', ariaLabel: 'Whether the request is import or export', minWidth: 70, maxWidth: 100, isResizable: true, fieldName: 'type', columnActionsMode: ColumnActionsMode.hasDropdown, isSorted: orderBy === 'type', isSortedDescending: !orderAscending, onColumnClick: (ev, column) => openContextMenu(column, ev, Object.values(AirlockRequestType)), onColumnContextMenu: (column, ev) => (column && ev) && openContextMenu(column, ev, Object.values(AirlockRequestType)), isFiltered: filters.has('type') }, { key: 'status', name: 'Status', ariaLabel: 'Status of the request', minWidth: 70, isResizable: true, fieldName: 'status', columnActionsMode: ColumnActionsMode.hasDropdown, isSorted: orderBy === 'status', isSortedDescending: !orderAscending, onColumnClick: (ev, column) => openContextMenu(column, ev, Object.values(AirlockRequestStatus)), onColumnContextMenu: (column, ev) => (column && ev) && openContextMenu(column, ev, Object.values(AirlockRequestStatus)), isFiltered: filters.has('status'), onRender: (request: AirlockRequest) => request.status.replace("_", " ") }, { key: 'createdTime', name: 'Created', ariaLabel: 'When the request was created', minWidth: 120, data: 'number', isResizable: true, fieldName: 'createdTime', isSorted: orderBy === 'createdTime', isSortedDescending: !orderAscending, onRender: (request: AirlockRequest) => { return <span>{ moment.unix(request.createdWhen).format('DD/MM/YYYY') }</span>; }, onColumnClick: orderByColumn }, { key: 'updatedWhen', name: 'Updated', ariaLabel: 'When the request was last updated', minWidth: 120, data: 'number', isResizable: true, fieldName: 'updatedWhen', isSorted: orderBy === 'updatedWhen', isSortedDescending: !orderAscending, onRender: (request: AirlockRequest) => { return <span>{ moment.unix(request.updatedWhen).fromNow() }</span>; }, onColumnClick: orderByColumn } ]; setRequestColumns(columns); }, [openContextMenu, filters, orderAscending, orderBy]); const handleNewRequest = async (newRequest: AirlockRequest) => { await getAirlockRequests(); navigate(`/workspaces/${newRequest.workspaceId}/requests/${newRequest.id}`); }; const quickFilters: ICommandBarItemProps[] = [ { key: 'reset', text: 'Clear filters', iconProps: { iconName: 'ClearFilter' }, onClick: () => setFilters(new Map()) } ]; // If we can access the user's msal account, give option to filter by their user id if (account) { quickFilters.unshift({ key: 'myRequests', text: 'My requests', iconProps: { iconName: 'EditContact' }, onClick: () => { const userId = account.localAccountId.split('.')[0]; setFilters(new Map([['creator_user_id', userId]])); } }); } // Only show "Awaiting my review" filter if user in airlock manager role if (workspaceCtx.roles?.includes(WorkspaceRoleName.AirlockManager)) { quickFilters.unshift({ key: 'awaitingMyReview', text: 'Awaiting my review', iconProps: { iconName: 'TemporaryUser' }, // Currently we don't have assigned reviewers so this will be all requests in review status onClick: () => setFilters(new Map([['status', 'in_review']])) }); } return ( <> <Stack className="tre-panel"> <Stack.Item> <Stack horizontal horizontalAlign="space-between"> <h1 style={{marginBottom: 0, marginRight: 30}}>Airlock</h1> <Stack.Item grow> <CommandBar items={quickFilters} ariaLabel="Quick filters" /> </Stack.Item> <CommandBarButton iconProps={{ iconName: 'refresh' }} text="Refresh" style={{ background: 'none', color: theme.palette.themePrimary }} onClick={() => getAirlockRequests()} /> <CommandBarButton iconProps={{ iconName: 'add' }} text="New request" style={{ background: 'none', color: theme.palette.themePrimary }} onClick={() => navigate('new')} /> </Stack> </Stack.Item> </Stack> { apiError && <ExceptionLayout e={apiError} /> } <div className="tre-resource-panel" style={{padding: '0px'}}> <ShimmeredDetailsList items={airlockRequests} columns={requestColumns} selectionMode={SelectionMode.none} getKey={(item) => item?.id} onItemInvoked={(item) => navigate(item.id)} className="tre-table" enableShimmer={loadingState === LoadingState.Loading} /> { contextMenuProps && <ContextualMenu {...contextMenuProps}/> } { airlockRequests.length === 0 && loadingState !== LoadingState.Loading && <div style={{textAlign: 'center', padding: '50px 10px 100px 10px'}}> <h4>No requests found</h4> { filters.size > 0 ? <small>There are no requests matching your selected filter(s).</small> : <small>Looks like there are no airlock requests yet. Create a new request to get started.</small> } </div> } </div> <Routes> <Route path="new" element={ <AirlockNewRequest onCreateRequest={handleNewRequest}/> } /> <Route path=":requestId" element={ <AirlockViewRequest requests={airlockRequests} onUpdateRequest={getAirlockRequests}/> } /> </Routes> </> ); };
AzureTRE/ui/app/src/components/shared/airlock/Airlock.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/shared/airlock/Airlock.tsx", "repo_id": "AzureTRE", "token_count": 5547 }
133
import { getTheme, Icon, mergeStyles, Stack } from '@fluentui/react'; import React, { useContext } from 'react'; import { WorkspaceContext } from '../../contexts/WorkspaceContext'; export const WorkspaceHeader: React.FunctionComponent = () => { const workspaceCtx = useContext(WorkspaceContext); return ( <> <Stack className={contentClass}> <Stack.Item className='tre-workspace-header'> <h4 style={{fontWeight: '400'}}> <Icon iconName="CubeShape" style={{ marginRight: '8px', fontSize: '22px', verticalAlign: 'bottom' }} /> {workspaceCtx.workspace?.properties?.display_name} </h4> </Stack.Item> </Stack> </> ); }; const theme = getTheme(); const contentClass = mergeStyles([ { backgroundColor: theme.palette.themeDarker, color: theme.palette.white, lineHeight: '15px', padding: '0 20px', boxShadow: '0 1px 8px 0px #ccc' } ]);
AzureTRE/ui/app/src/components/workspaces/WorkspaceHeader.tsx/0
{ "file_path": "AzureTRE/ui/app/src/components/workspaces/WorkspaceHeader.tsx", "repo_id": "AzureTRE", "token_count": 371 }
134
export enum ApiEndpoint { Workspaces = 'workspaces', WorkspaceServices = 'workspace-services', UserResources = 'user-resources', SharedServices = 'shared-services', AirlockRequests = 'requests', AirlockLink = 'link', AirlockSubmit = 'submit', AirlockCancel = 'cancel', AirlockReview = 'review', AirlockCreateReviewResource = 'review-user-resource', WorkspaceTemplates = 'workspace-templates', WorkspaceServiceTemplates = 'workspace-service-templates', UserResourceTemplates = 'user-resource-templates', SharedServiceTemplates = 'shared-service-templates', Operations = 'operations', History = 'history', InvokeAction = 'invoke-action', Costs = 'costs', Metadata = ".metadata", Health = "health" }
AzureTRE/ui/app/src/models/apiEndpoints.ts/0
{ "file_path": "AzureTRE/ui/app/src/models/apiEndpoints.ts", "repo_id": "AzureTRE", "token_count": 265 }
135
import { ReportHandler } from 'web-vitals'; const reportWebVitals = (onPerfEntry?: ReportHandler) => { if (onPerfEntry && onPerfEntry instanceof Function) { import('web-vitals').then(({ getCLS, getFID, getFCP, getLCP, getTTFB }) => { getCLS(onPerfEntry); getFID(onPerfEntry); getFCP(onPerfEntry); getLCP(onPerfEntry); getTTFB(onPerfEntry); }); } }; export default reportWebVitals;
AzureTRE/ui/app/src/reportWebVitals.ts/0
{ "file_path": "AzureTRE/ui/app/src/reportWebVitals.ts", "repo_id": "AzureTRE", "token_count": 182 }
136
# Support Welcome to the BitBLAS support page! BitBLAS is a cutting-edge framework designed for generating high-performance CUDA/HIP code for BLAS operators. Whether you're working on projects like BitNet, GPTQ, or similar, BitBLAS is here to accelerate your development with its robust features. ## How to File Issues and Get Help ### Reporting Bugs or Requesting Features If you encounter a bug or have a feature request, we encourage you to file an issue through our GitHub Issues page. Please follow these steps: 1. **Search Existing Issues**: Before creating a new issue, please search the existing ones to avoid duplicates. 2. **Create a New Issue**: If your issue is new, go ahead and file it as a new issue. Provide as much detail as possible to help us understand and address it efficiently. ### Seeking Help and Questions For questions and help with using BitBLAS, we offer the following channels: - **GitHub Discussions**: For community support, sharing ideas, and discussing best practices, please visit our [GitHub Discussions](https://github.com/YOUR_REPO/discussions). - **Stack Overflow**: Use the tag `BitBLAS` when posting questions. This is monitored by our team and the community. ## Microsoft Support Policy Support for BitBLAS is primarily provided through the above-mentioned community channels. We strive to address issues and questions in a timely manner, leveraging the collective knowledge and experience of the BitBLAS community. ## Contributing to BitBLAS We warmly welcome contributions to the BitBLAS project. Whether it's improving the documentation, adding new features, or fixing bugs, your contributions are invaluable to us. Please refer to our [CONTRIBUTING.md](./CONTRIBUTING.md) file for more details on how to contribute. Before submitting a pull request, you may need to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. The CLA process is straightforward and only needs to be completed once.
BitBLAS/SUPPORT.md/0
{ "file_path": "BitBLAS/SUPPORT.md", "repo_id": "BitBLAS", "token_count": 473 }
137