text
stringlengths
5
22M
id
stringlengths
12
177
metadata
dict
__index_level_0__
int64
0
1.37k
MODEL_PATH=${1} SAVE_PATH=${2} GPU_NUM=16 python -m torch.distributed.launch --nproc_per_node ${GPU_NUM} verifier_multi_es.py --model_path ${MODEL_PATH} --output_dir ${SAVE_PATH} #python verifier_multi_es.py --model_path ${MODEL_PATH} --output_dir ${SAVE_PATH}
ContextualSP/logigan/pre-training/run_ver_es.sh/0
{ "file_path": "ContextualSP/logigan/pre-training/run_ver_es.sh", "repo_id": "ContextualSP", "token_count": 105 }
238
# coding=utf-8 import numpy as np from collections import defaultdict import re from nltk.corpus import stopwords from enum import Enum from itertools import permutations import re import json import random from collections import OrderedDict import pickle # words = stopwords.words('english') from collections import defaultdict from functools import reduce class Sample: def __init__(self, query, sparql, tag): self.query = query self.sparql = sparql self.tag = tag def string(): return '\t'.join([self.query, self.sparql, self.tag]) class Helper: def __init__(self): self.stop_words = ["Did", "and", ",", "'s", "M0", "M1", "M2", "M3", "M4", "M5","M6", "whose", "Whose", \ "What", "did", "Was", "was", "Which", "Were", "were", "that", "M", "a"] self.stop_words += stopwords.words('english') self.dict = defaultdict(list) data = open("./data/phrase_table") for i in data: i = eval(i.strip())[0] self.dict[i[0]].append(i[1]) def count_var(self, lf): value = {'?x0':2.5, '?x1':2, '?x2':1.5, '?x3':1, '?x4':0.5, '?x5':0} a1, r, a2 = lf.split() cn1, cn2, cn3, cn4 = 0, 0, 0, 0 if a1.startswith("?x"): cn1 = 5 cn1 += value[a1] if a2.startswith("?x"): cn2 = 3 cn2 += value[a2] if r == 'a': cn3 = -1 return cn1 + cn2 + cn3 def term_extract(self, query, type): ## 0520 ##改了新版的兼容 识别Did M terms = [] entities = [] if query.startswith("Did M") or query.startswith("Was M") or query.startswith("Were M") or query.startswith("Was a"): if type in ['mcd2', 'mcd3']: nl_pattern = query.split()[0] +" " + query.split()[1] terms.append((nl_pattern, [f'?x0#is#{query.split()[1]}'], (0, 1))) else: nl_pattern = query.split()[0] +" M" terms.append((nl_pattern, ['?x0#is#M'], (0, 1))) query = query.split() idx = 0 ####三元组 while idx < len(query): if re.match(r'M[0-9]', query[idx]): entities.append(( query[idx:idx+1],query[idx:idx+1] ,(idx, idx))) idx += 1 elif idx +1 <= len(query) and ' '.join(query[idx:idx+1]) in self.dict: terms.append((' '.join(query[idx:idx+1]), self.dict.get(' '.join(query[idx:idx+1])), (idx, idx))) idx += 1 else: idx +=1 ## 二元组 idx = 0 while idx < len(query) - 3: if idx +3 <= len(query) and ' '.join(query[idx:idx+3]) in self.dict: terms.append((' '.join(query[idx:idx+3]), self.dict.get(' '.join(query[idx:idx+3])),(idx, idx+2))) idx += 1 idx = 0 while idx < len(query) - 2: if idx +2 <= len(query) and' '.join(query[idx:idx+2]) in self.dict: terms.append(( ' '.join(query[idx:idx+2]), self.dict.get(' '.join(query[idx:idx+2])), (idx, idx+1))) idx += 1 terms = sorted(terms, key = lambda s:s[2][0]) # print(query, entities, terms) return entities, terms pass def fill_skeleton(self, query, skeleton, split): ## 通过query + 对齐的双语词典align的结果得到候选的candidate triples ## 候选的cndidate_triples通过给定的skeleton来过滤 ## 就是?x a M, ?x nationality 以及 gender的都做区分 ## v3的版本是把原始的M P ?x 换成了?x版本 无M开头的sparql def preprocess_sparql(query): tokens = [] for token in query: # Replace 'ns:' prefixes. if token.startswith('ns:'): token = token[3:] # Replace mid prefixes. if token.startswith('m.'): token = 'm_' + token[2:] tokens.append(token) return ' '.join(tokens) def check_valid(skeleton_list, skeleton_pattern): skeleton_pattern = re.sub(r'\?x[0-9]', "?x", skeleton_pattern) # skeleton = re.sub(r'\?x[0-9]', "?x", skeleton) for skeleton in skeleton_list: if re.sub(r'\?x[0-9]', "?x", skeleton) not in skeleton_pattern: return False return True def transform_term_to_pattern(term): term_split = [] for i in term.split(): term_split += i.split("|||") skeleton_list = [] term_list = [] for i in term_split: if i.startswith("FILTER"): continue i = preprocess_sparql(i.split("#")) a1, r, a2 = i.split() if a1.startswith("?x") and a2.startswith("?x"): ## ?x P ?x skeleton_list.append(f"{a1} P {a2}") elif a1.startswith("?x") and a2.startswith("M"): ## ?x P M skeleton_list.append(f"{a1} P M") elif a1.startswith("?x") and r == "a": ## ?x a M => ?x P M skeleton_list.append(f"{a1} a M") else: skeleton_list.append(f"{a1} V S") term_list.append(i) skeleton_str = [] return skeleton_list, ' . '.join(term_list) entities, terms = self.term_extract(query, split) candidate_terms = defaultdict(set) for term in terms: for sub_term in term[1]: sub_pattern , sub_term = transform_term_to_pattern(sub_term) if check_valid(sub_pattern, skeleton): candidate_terms[" ".join(sub_pattern)].add(sub_term) candidate_triplets = defaultdict(list) # print("candidate_term:", candidate_terms) for candidate_skeleton, candidate_terms in candidate_terms.items(): # a1, r, a2 = candidate_term.split("#") for candidate_term in candidate_terms: candidate_term = candidate_term.replace("#", " ") if candidate_term.count("M") == 1: if candidate_term.startswith("?x0 is M") and split in ['mcd2', 'mcd3']: candidate_triplets[candidate_skeleton] += [candidate_term] else: candidate_triplets[candidate_skeleton] += [''.join(candidate_term.replace("M", entity[0][0])) for entity in entities] elif candidate_term.count("M") == 2: candidate_term = list(candidate_term) index_m = candidate_term.index('M') candidate_term[index_m] = 'W' index_m = candidate_term.index('M') candidate_term[index_m] = 'Y' candidate_term = ''.join(candidate_term) for i in permutations(entities, 2): a1, a2 = i[0][0][0], i[1][0][0] # print(a1, a2, candidate_term) candidate_term_ = candidate_term.replace("W", a1) candidate_term_ = candidate_term_.replace("Y", a2) candidate_triplets[candidate_skeleton].append(candidate_term_) else: candidate_triplets[candidate_skeleton].append(candidate_term) return candidate_triplets def abstract_sparql_to_sketch(self,sparql): ## 20200519 ## 把 M P ?x -> ?x0 is M ?x0 P M ##首先把M开头的三元组排在最前面 sparql = sparql.replace("SELECT count(*) WHERE { ", " ") sparql = sparql.replace("SELECT DISTINCT ?x0 WHERE { ", " ") sparql = sparql.replace("M", "?M") sparql_list = [i.replace("?M", "M") for i in sorted(sparql.strip().split(" . "))] Mflag = True if sparql_list[0].startswith("M") else False FILTER_list, OTHER_list = [], [] skeleton_list = [] for item in sparql_list: if item.startswith("FILTER"): FILTER_list.append(item) continue OTHER_list.append(item) a1, r, a2 = item.strip().split() # print(a1, r, a2) if a1.startswith("?x") and a2.startswith("?x"): skeleton_list.append(f"{a1} P {a2}") elif a1.startswith("?x") and a2.startswith("M"): skeleton_list.append(f"{a1} P M") elif a2.startswith("?x") and a1.startswith("M"): skeleton_list.append("?xx P M") skeleton_list.append(f"?xx P {a2}") elif a1.startswith("M") and a2.startswith("M"): ##这里其实是?x0 is M . ?x0 P M ##合并一下就是?x0 P M skeleton_list.append(f"?xx P M") elif a1.startswith("?x") and r == "a": skeleton_list.append(f"{a1} a M") elif a1.startswith("M") and r == "a": skeleton_list.append("?xx P M") skeleton_list.append(f"?xx a M") elif re.match(r'M[0-9]', a1): skeleton_list.append("?xx P M") skeleton_list.append(f"?xx V S") else: skeleton_list.append(f"{a1} V S") skeleton_set = list(set(skeleton_list)) skeleton_set.sort() skeleton_str = [] OTHER_list.sort() sparql = ' . '.join(OTHER_list+FILTER_list) if Mflag: for token in " . ".join(skeleton_set).split(): if token.startswith("?x") and token !='?xx': token = token[:2]+str(int(token[-1])+1) skeleton_str.append(token) skeleton_str = " ".join(skeleton_str).replace("?xx", "?x0").split(" . ") skeleton_str.sort() return sparql, " . ".join(skeleton_str) else: return sparql, " . ".join(skeleton_set) def generate_traversal_path(self, sparql): def trans_tuple_str(tuple_list): t_all = tuple_list[0] for i in range(1, len(tuple_list)): if isinstance(tuple_list[i], tuple): t_all += tuple_list[i] else: return False return ' '.join(t_all) results, triples, FILTER_triples = [], [], [] for clf in sparql.split(" . "): if clf.startswith("FILTER"): continue elif len(clf.split()) != 3: continue a1, r, a2 = clf.split() var_cnt = self.count_var(clf) triples.append((a1, r, a2, var_cnt)) split_dict = defaultdict(list) sorted_triples = sorted(triples, key=lambda k: k[-1]) ##划分方法 for triple in sorted_triples: if isinstance(triple, tuple) and len(triple) == 4: arg1, rel, arg2, _ = triple triple = (arg1, rel, arg2) ## 对于两个变量的三元组 ## 把他们尽可能的插入之前已有的三元组中 ## [?x0 ?x1] [?x1, ?x2] [?x2, ?x3] if arg1.startswith('?x') and arg2.startswith('?x'): ##对于链式 的特定修正!!! ## 每次需要更新他们匹配的组 arg_max = arg1 if arg1 > arg2 else arg2 arg_min = arg2 if arg1 > arg2 else arg1 if len(split_dict[arg_max]) > 0: for cur_list in split_dict[arg_max]: cur_list_ = cur_list[:] cur_list_.insert(0, triple) split_dict[arg_min].append(cur_list_) else: split_dict[arg_max].append([triple]) ## 如果只有一个变量 ## 看能不能为之前添加的做补充 ## 形如(?x, r, M)为之前(M, r, ?x)的做补充 elif arg1.startswith('?x') and not arg1.startswith("?x0"): flag = True for t in split_dict[arg1]: if t[0][0] != arg1: t.append(triple) flag = False if flag: split_dict[arg1].append([triple]) # print("h:",split_dict) ##都没有 为该变量的第一个三元组关系 elif (arg1.startswith("M") and arg2.startswith("?x") and not arg2.startswith("?x0")): flag =True for t in split_dict[arg2]: t.append(triple) flag = False if flag: split_dict[arg2].append([triple]) else: variable = arg2 if arg2.startswith("?x") else arg1 split_dict[variable].append([triple]) else: split_dict[triple] = [triple] final_split = [] for v in split_dict.values(): for vv in v: vv_len = len(vv) xidx, xflag = 0, False for idx in range(vv_len): vv[idx] = ' '.join(vv[idx]) if not xflag and vv[idx].startswith("?x"): xidx, xflag = idx, True vv = ' . '.join(vv[:xidx] + sorted(list(set(vv[xidx:vv_len]))) + vv[vv_len:]) if not (vv.startswith('?x') and int(vv[2])> 0): ##去掉不合法的?x final_split.append(vv) return final_split def distribute_triples_to_skeleton(self, skeleton_groups, candidate_triplets): fn = lambda x, code=',': reduce(lambda x, y: [str(i)+code+str(j) for i in x for j in y], x) ans = [] def replace_variable(pattern, candidates): a1, _, a2 = pattern.split() modify_candidates = [] for idx, candidate in enumerate(candidates): a1_c, r_c, a2_c = candidate.split() a1_c = a1 if a1_c == "?x" else a1_c a2_c = a2 if a2_c == "?x" else a2_c modify_candidates.append(' '.join([a1_c, r_c, a2_c])) # print("modify:", modify_candidates) return modify_candidates for skeleton_group in skeleton_groups: skeleton_group = skeleton_group.split(" . ") if len(skeleton_group) == 1: if skeleton_group[0] in candidate_triplets: ans += candidate_triplets.get(skeleton_group[0]) temp_candidates = candidate_triplets.get(re.sub(r'\?x[0-9]', '?x', skeleton_group[0]), []) ans += replace_variable(skeleton_group[0], temp_candidates) else: triples_groups = [replace_variable(skeleton_item, candidate_triplets.get(re.sub(r'\?x[0-9]', '?x', skeleton_item), [])) for skeleton_item in skeleton_group] ans += fn(triples_groups, ' . ') return ans def generate_samples(self, query, sparql, triples, type): pos_ans, neg_ans = [], [] valid_cnt = len([i for i in sparql.split(" . ") if not i.startswith("FILTER")]) coverage_sparql = set() for triple_group in triples: flag = True for triple in triple_group.split(" . "): # print(triple) if triple not in sparql: flag = False continue else: coverage_sparql.add(triple) # print(flag, triple_group) if flag: pos_ans.append(Sample(query, triple_group, flag).__dict__) # print(triple_group) else: neg_ans.append(Sample(query, triple_group, flag).__dict__) coverage = True if len(coverage_sparql) == valid_cnt else False if type == "train": return coverage, pos_ans + random.sample(neg_ans, min(len(neg_ans), len(pos_ans))) else: return coverage, pos_ans+neg_ans def mask(self, query, sparqls): ## return (orignal query, sparql), (masked query,sparql) entities = re.findall(r"M[0-9]",query) mask_query, mask_sparqls = query, [] if len(entities) <=1: return (query, sparqls), (query, sparqls, dict()) else: stack_tokens = [] entity_tokens = [] stack_state = False mask_mapping = dict() token_mapping = dict() query_tokens = query.split() for idx in range(len(query_tokens)): token = query_tokens[idx] if token.startswith("M") and (idx + 1 == len(query_tokens) or (idx+1 < len(query_tokens) and query_tokens[idx+1]!="'")): stack_tokens.append(token) entity_tokens.append(token) stack_state = True elif stack_state and (token == "," or token == "and"): stack_tokens.append(token) else: if len(entity_tokens) > 1: if stack_tokens[-1] == 'and' or stack_tokens[-1] == ',': stack_tokens = stack_tokens[:-1] mask_mapping[' '.join(stack_tokens)] = entity_tokens[0] token_mapping[entity_tokens[0]] = entity_tokens[1:] stack_tokens, stack_state, entity_tokens = [], False, [] if len(entity_tokens) > 1: if stack_tokens[-1] == 'and' or stack_tokens[-1] == ',': stack_tokens = stack_tokens[:-1] mask_mapping[' '.join(stack_tokens)] = entity_tokens[0] token_mapping[entity_tokens[0]] = entity_tokens[1:] for key, v in mask_mapping.items(): mask_query = mask_query.replace(key, v) if len(mask_mapping) == 0: return (query, sparqls), (query, sparqls, dict()) for sparql_info in sparqls: flag = True for key, v in token_mapping.items(): for vv in v: if vv in re.findall(r"M[0-9]",sparql_info[0]) : flag = False if flag: mask_sparqls.append(sparql_info) assert len(mask_sparqls) <= len(sparqls), print("mask mapping", mask_mapping,token_mapping, "\n",(query, sparqls),"\n", (mask_query, mask_sparqls, token_mapping)) return (query, sparqls), (mask_query, mask_sparqls, token_mapping) if __name__ == '__main__': helper = Helper() for split in ["mcd1","mcd2","mcd3"]: word_dict =[word.strip() for word in open(f"./data/{split}/vocab.cfq.tokens").readlines()] src_vocab, sketch_vocab = set(), set() for type in ['test']: src_data = open(f'./data/{split}/{type}/{type}_encode.txt') tgt_data = open(f'./data/{split}/{type}/{type}_decode.txt') sketch_data = open(f'./output/{split}-sketch-output') tgt_list, poset_sketch_list, data_samples = [], [], [] mapping_classification_data = defaultdict(list) for src, trg, sketch in zip(src_data, tgt_data, sketch_data): src, trg, sketch = src.strip(), trg.strip(), sketch.strip() trg = re.findall(r'[{](.*?)[}]', trg)[0].strip() ## abstract sparql to sketch poset_abstract_sketch = helper.generate_traversal_path(sketch) #### primitive prediction candidate_triplets = helper.fill_skeleton(src, sketch, split) final_triplets = helper.distribute_triples_to_skeleton(poset_abstract_sketch, candidate_triplets) _, samples = helper.generate_samples(src, trg, final_triplets, type) data_samples += samples json.dump(data_samples, open(f"./data/{split}/{type}/{type}_predict_classification.json", "w")) mask_sample_info = [f"sentence1\tsentence2\tgold_label"] mask_full_info = [f"ori_sentence1\tsentence1\tsentence2\tgold_label\tmapping_entities"] for idx, item in enumerate(data_samples): query, sparql, tag = item.get('query'), item.get('sparql'), item.get('tag') mapping_classification_data[query].append((sparql, tag)) for key, v in mapping_classification_data.items(): query_info, mask_info = helper.mask(key, v) for vv in mask_info[1]: mask_sample_info.append(f"{mask_info[0]}\t{vv[0]}\t{vv[1]}") mask_full_info.append(f"{key}\t{mask_info[0]}\t{vv[0]}\t{vv[1]}\t{mask_info[-1]}") open(f"./data/{split}/{type}/{type}_mask_predict_classification.csv", "w").write("\n".join(mask_sample_info)) open(f"./data/{split}/{type}/{type}_mask_predict_mapping.csv", "w").write("\n".join(mask_full_info))
ContextualSP/poset_decoding/preprocess_hierarchical_inference.py/0
{ "file_path": "ContextualSP/poset_decoding/preprocess_hierarchical_inference.py", "repo_id": "ContextualSP", "token_count": 8130 }
239
Contributing to MatchZoo-py ---------- > Note: MatchZoo-py is developed under Python 3.6. Welcome! MatchZoo-py is a community project that aims to work for a wide range of NLP and IR tasks such as Question Answering, Information Retrieval, Paraphrase identification etc. Your experience and what you can contribute are important to the project's success. Discussion ---------- If you've run into behavior in MatchZoo-py you don't understand, or you're having trouble working out a good way to apply it to your code, or you've found a bug or would like a feature it doesn't have, we want to hear from you! Our main forum for discussion is the project's [GitHub issue tracker](https://github.com/NTMC-Community/MatchZoo-py/issues). This is the right place to start a discussion of any of the above or most any other topic concerning the project. For less formal discussion we have a chat room on WeChat (mostly Chinese speakers). MatchZoo-py core developers are almost always present; feel free to find us there and we're happy to chat. Please add *YQ-Cai1198593462* as your WeChat friend, she will invite you to join the chat room. First Time Contributors ----------------------- MatchZoo-py appreciates your contribution! If you are interested in helping improve MatchZoo-py, there are several ways to get started: * Work on [new models](https://github.com/NTMC-Community/awaresome-neural-models-for-semantic-match). * Work on [tutorials](https://github.com/NTMC-Community/MatchZoo-py/tree/master/tutorials). * Work on [documentation](https://github.com/NTMC-Community/MatchZoo-py/tree/master/docs). * Try to answer questions on [the issue tracker](https://github.com/NTMC-Community/MatchZoo-py/issues). Submitting Changes ------------------ Even more excellent than a good bug report is a fix for a bug, or the implementation of a much-needed new model. (*) We'd love to have your contributions. (*) If your new feature will be a lot of work, we recommend talking to us early -- see below. We use the usual GitHub pull-request flow, which may be familiar to you if you've contributed to other projects on GitHub -- see below. Anyone interested in MatchZoo-py may review your code. One of the MatchZoo-py core developers will merge your pull request when they think it's ready. For every pull request, we aim to promptly either merge it or say why it's not yet ready; if you go a few days without a reply, please feel free to ping the thread by adding a new comment. For a list of MatchZoo-py core developers, see [README](https://github.com/NTMC-Community/MatchZoo-py/blob/master/README.md). Contributing Flow ------------------ 1. Fork the latest version of [MatchZoo-py](https://github.com/NTMC-Community/MatchZoo-py) into your repo. 2. Create an issue under [NTMC-Community/MatchZoo-py](https://github.com/NTMC-Community/MatchZoo-py/issues), write description about the bug/enhancement. 3. Clone your forked MatchZoo into your machine, add your changes together with associated tests. 4. Run `make push` with terminal, ensure all unit tests & integration tests passed on your computer. 5. Push to your forked repo, then send the pull request to the official repo. In pull request, you need to create a link to the issue you created using `#[issue_id]`, and describe what has been changed. 6. Wait [continuous integration](https://travis-ci.org/NTMC-Community/MatchZoo-py) passed. 7. Wait [Codecov](https://codecov.io/gh/NTMC-Community/MatchZoo-py) generate the coverage report. 8. We'll assign reviewers to review your code. Your PR will be merged if: - Funcitonally benefit for the project. - Passed Countinuous Integration (all unit tests, integration tests and [PEP8](https://www.python.org/dev/peps/pep-0008/) check passed). - Test coverage didn't decreased, we use [pytest](https://docs.pytest.org/en/latest/). - With proper docstrings, see codebase as examples. - With type hints, see [typing](https://docs.python.org/3/library/typing.html). - All reviewers approved your changes. **Thanks and let's improve MatchZoo-py together!**
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/CONTRIBUTING.md/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/CONTRIBUTING.md", "repo_id": "ContextualSP", "token_count": 1136 }
240
from .preparer import Preparer from .prepare import prepare
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/auto/preparer/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/auto/preparer/__init__.py", "repo_id": "ContextualSP", "token_count": 15 }
241
import matchzoo as mz from matchzoo.dataloader import DataLoader class DataLoaderBuilder(object): """ DataLoader Bulider. In essense a wrapped partial function. Example: >>> import matchzoo as mz >>> padding_callback = mz.dataloader.callbacks.BasicPadding() >>> builder = mz.dataloader.DataLoaderBuilder( ... stage='train', callback=padding_callback ... ) >>> data_pack = mz.datasets.toy.load_data() >>> preprocessor = mz.preprocessors.BasicPreprocessor() >>> data_processed = preprocessor.fit_transform(data_pack) >>> dataset = mz.dataloader.Dataset(data_processed, mode='point') >>> dataloder = builder.build(dataset) >>> type(dataloder) <class 'matchzoo.dataloader.dataloader.DataLoader'> """ def __init__(self, **kwargs): """Init.""" self._kwargs = kwargs def build(self, dataset, **kwargs) -> DataLoader: """ Build a DataLoader. :param dataset: Dataset to build upon. :param kwargs: Additional keyword arguments to override the keyword arguments passed in `__init__`. """ return mz.dataloader.DataLoader( dataset, **{**self._kwargs, **kwargs} )
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/dataloader_builder.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/dataloader/dataloader_builder.py", "repo_id": "ContextualSP", "token_count": 541 }
242
from .load_data import load_data
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/snli/__init__.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/datasets/snli/__init__.py", "repo_id": "ContextualSP", "token_count": 10 }
243
"""Base task.""" import typing import abc import torch from torch import nn from matchzoo.engine import base_metric from matchzoo.utils import parse_metric, parse_loss class BaseTask(abc.ABC): """Base Task, shouldn't be used directly.""" TYPE = 'base' def __init__(self, losses=None, metrics=None): """ Base task constructor. :param losses: Losses of task. :param metrics: Metrics for evaluating. """ self._losses = self._convert(losses, parse_loss) self._metrics = self._convert(metrics, parse_metric) self._assure_losses() self._assure_metrics() def _convert(self, identifiers, parse): if not identifiers: identifiers = [] elif not isinstance(identifiers, list): identifiers = [identifiers] return [ parse(identifier, self.__class__.TYPE) for identifier in identifiers ] def _assure_losses(self): if not self._losses: first_available = self.list_available_losses()[0] self._losses = self._convert(first_available, parse_loss) def _assure_metrics(self): if not self._metrics: first_available = self.list_available_metrics()[0] self._metrics = self._convert(first_available, parse_metric) @property def losses(self): """:return: Losses used in the task.""" return self._losses @property def metrics(self): """:return: Metrics used in the task.""" return self._metrics @losses.setter def losses( self, new_losses: typing.Union[ typing.List[str], typing.List[nn.Module], str, nn.Module ] ): self._losses = self._convert(new_losses, parse_loss) @metrics.setter def metrics( self, new_metrics: typing.Union[ typing.List[str], typing.List[base_metric.BaseMetric], str, base_metric.BaseMetric ] ): self._metrics = self._convert(new_metrics, parse_metric) @classmethod @abc.abstractmethod def list_available_losses(cls) -> list: """:return: a list of available losses.""" @classmethod @abc.abstractmethod def list_available_metrics(cls) -> list: """:return: a list of available metrics.""" @property @abc.abstractmethod def output_shape(self) -> tuple: """:return: output shape of a single sample of the task.""" @property @abc.abstractmethod def output_dtype(self): """:return: output data type for specific task."""
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/base_task.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/engine/base_task.py", "repo_id": "ContextualSP", "token_count": 1188 }
244
"""Matching Tensor module.""" import typing import torch import torch.nn as nn import torch.nn.functional as F class MatchingTensor(nn.Module): """ Module that captures the basic interactions between two tensors. :param matching_dims: Word dimension of two interaction texts. :param channels: Number of word interaction tensor channels. :param normalize: Whether to L2-normalize samples along the dot product axis before taking the dot product. If set to True, then the output of the dot product is the cosine proximity between the two samples. :param init_diag: Whether to initialize the diagonal elements of the matrix. Examples: >>> import matchzoo as mz >>> matching_dim = 5 >>> matching_tensor = mz.modules.MatchingTensor( ... matching_dim, ... channels=4, ... normalize=True, ... init_diag=True ... ) """ def __init__( self, matching_dim: int, channels: int = 4, normalize: bool = True, init_diag: bool = True ): """:class:`MatchingTensor` constructor.""" super().__init__() self._matching_dim = matching_dim self._channels = channels self._normalize = normalize self._init_diag = init_diag self.interaction_matrix = torch.empty( self._channels, self._matching_dim, self._matching_dim ) if self._init_diag: self.interaction_matrix = self.interaction_matrix.uniform_(-0.05, 0.05) for channel_index in range(self._channels): self.interaction_matrix[channel_index].fill_diagonal_(0.1) self.interaction_matrix = nn.Parameter(self.interaction_matrix) else: self.interaction_matrix = nn.Parameter(self.interaction_matrix.uniform_()) def forward(self, x, y): """ The computation logic of MatchingTensor. :param inputs: two input tensors. """ if self._normalize: x = F.normalize(x, p=2, dim=-1) y = F.normalize(y, p=2, dim=-1) # output = [b, c, l, r] output = torch.einsum( 'bld,cde,bre->bclr', x, self.interaction_matrix, y ) return output
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/matching_tensor.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/modules/matching_tensor.py", "repo_id": "ContextualSP", "token_count": 1024 }
245
import nltk from .unit import Unit class Lemmatization(Unit): """Process unit for token lemmatization.""" def transform(self, input_: list) -> list: """ Lemmatization a sequence of tokens. :param input_: list of tokens to be lemmatized. :return tokens: list of lemmatizd tokens. """ lemmatizer = nltk.WordNetLemmatizer() return [lemmatizer.lemmatize(token, pos='v') for token in input_]
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/lemmatization.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/preprocessors/units/lemmatization.py", "repo_id": "ContextualSP", "token_count": 187 }
246
"""Ranking task.""" from matchzoo.engine import base_task class Ranking(base_task.BaseTask): """Ranking Task. Examples: >>> ranking_task = Ranking() >>> ranking_task.metrics = ['map', 'ndcg'] >>> ranking_task.output_shape (1,) >>> ranking_task.output_dtype <class 'float'> >>> print(ranking_task) Ranking Task """ TYPE = 'ranking' @classmethod def list_available_losses(cls) -> list: """:return: a list of available losses.""" return ['mse'] @classmethod def list_available_metrics(cls) -> list: """:return: a list of available metrics.""" return ['map'] @property def output_shape(self) -> tuple: """:return: output shape of a single sample of the task.""" return 1, @property def output_dtype(self): """:return: target data type, expect `float` as output.""" return float def __str__(self): """:return: Task name as string.""" return 'Ranking Task'
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/tasks/ranking.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/matchzoo/tasks/ranking.py", "repo_id": "ContextualSP", "token_count": 443 }
247
import os import shutil from pathlib import Path import matchzoo from matchzoo import utils from matchzoo.engine.base_model import BaseModel def test_timer(): timer = utils.Timer() start = timer.time timer.stop() assert timer.time timer.resume() assert timer.time > start def test_list_recursive_subclasses(): assert utils.list_recursive_concrete_subclasses( BaseModel ) def test_average_meter(): am = utils.AverageMeter() am.update(1) assert am.avg == 1.0 am.update(val=2.5, n=2) assert am.avg == 2.0 def test_early_stopping(): es = utils.EarlyStopping( patience=1, key='key', ) result = {'key': 1.0} es.update(result) assert es.should_stop_early is False es.update(result) assert es.should_stop_early is True state = es.state_dict() new_es = utils.EarlyStopping() assert new_es.should_stop_early is False new_es.load_state_dict(state) assert new_es.best_so_far == 1.0 assert new_es.is_best_so_far is False assert new_es.should_stop_early is True def test_get_file(): _url = "https://raw.githubusercontent.com/NTMC-Community/" \ "MatchZoo-py/master/LICENSE" file_path = utils.get_file( 'LICENSE', _url, extract=True, cache_dir=matchzoo.USER_DATA_DIR, cache_subdir='LICENSE', verbose=1 ) num_lines = 203 assert len(open(file_path, 'rb').readlines()) == num_lines file_hash = utils._hash_file(file_path, algorithm='md5') file_path2 = utils.get_file( 'LICENSE', _url, extract=False, md5_hash=file_hash, cache_dir=matchzoo.USER_DATA_DIR, cache_subdir='LICENSE', verbose=1 ) file_hash2 = utils._hash_file(file_path2, algorithm='md5') assert file_hash == file_hash2 file_dir = matchzoo.USER_DATA_DIR.joinpath('LICENSE') if os.path.exists(file_dir): shutil.rmtree(file_dir)
ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/test_utils.py/0
{ "file_path": "ContextualSP/poset_decoding/traversal_path_prediction/MatchZoo-py/tests/test_utils.py", "repo_id": "ContextualSP", "token_count": 862 }
248
#!/usr/bin/env bash export model_file=checkpoints_sparc/sparc_concat_none_model export validation_file=dataset_sparc/dev.json export validation_out_file=dataset_sparc/dev.jsonl export prediction_out_file=predict.jsonl python postprocess.py --valid_file ${validation_file} --valid_out_file ${validation_out_file} allennlp predict \ --include-package dataset_reader.sparc_reader \ --include-package models.sparc_parser \ --include-package predictor.sparc_predictor \ --predictor sparc \ --dataset-reader-choice validation \ --batch-size 1 \ --cuda-device 0 \ --output-file ${model_file}/${prediction_out_file} \ ${model_file}/model.tar.gz ${validation_out_file}
ContextualSP/semantic_parsing_in_context/bash_files/linux/predict.bash/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/bash_files/linux/predict.bash", "repo_id": "ContextualSP", "token_count": 234 }
249
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging from typing import List, Union, Optional from context.db_context import SparcDBContext from context.copy_production_rule_field import CopyProductionRule from typing import Dict import copy from context.grammar import A, C, T, Keywords, Statement from constant import SpecialSymbol logger = logging.getLogger(__name__) class ConditionStatelet: """ This class is designed to bring more SQL related common sense into current decoding phase. The main principle is: 1. The accompanying Column and Table should be consistent. 2. The same column cannot be repeated under the Select -> A A and so on. (FIXME: we do not support this now) """ def __init__(self, possible_actions: List[CopyProductionRule], db_context: SparcDBContext, enable_prune: bool = True): self.possible_actions = [action[0] for action in possible_actions] self.action_history = [] self.valid_tables = self._get_valid_tables(db_context) self.current_stack: List[Union[str, List[str]]] = [] self.used_terminals = [] self.parent_path = [] self.enable_prune = enable_prune @staticmethod def _get_valid_tables(db_context: Optional[SparcDBContext]) -> Dict[str, List[str]]: col_valid_tables = {} if db_context is not None: for entity_name in db_context.knowledge_graph.neighbors_with_table: # record column to table entity_parts = entity_name.split(':') if entity_parts[0] == 'column': col_name = entity_parts[-1] tab_name = entity_parts[-2] # if not if col_name not in col_valid_tables: col_valid_tables[col_name] = [] col_valid_tables[col_name].append(tab_name) return col_valid_tables else: return {} def take_action(self, production_rule: str) -> 'ConditionStatelet': if not self.enable_prune: return self # the action to copy is actually correct special_str = SpecialSymbol.copy_delimiter # larger than 1 action is segment copy if special_str in production_rule and production_rule.count(special_str) >= 2: return self elif special_str in production_rule: production_rule = production_rule.replace(special_str, '') # clean stack new_sql_state = copy.deepcopy(self) lhs, rhs = production_rule.split(' -> ') # append current production rule new_sql_state.action_history.append(production_rule) new_sql_state.current_stack.append([lhs, []]) if lhs not in [C.__name__, T.__name__]: rhs_tokens = rhs.split(' ') else: # default terminal not append into current stack # record when lhs equal to C.__name__ parent_path = [new_sql_state.current_stack[i][0] for i in range(len(new_sql_state.current_stack))] # record parent path new_sql_state.parent_path = copy.deepcopy(parent_path) parent_path.append(rhs) new_sql_state.used_terminals.append(':'.join(parent_path)) rhs_tokens = [] for token in rhs_tokens: is_terminal = token in Keywords if not is_terminal: new_sql_state.current_stack[-1][1].append(token) while len(new_sql_state.current_stack) > 0 and \ len(new_sql_state.current_stack[-1][1]) == 0: finished_item = new_sql_state.current_stack[-1][0] del new_sql_state.current_stack[-1] if finished_item == Statement.__name__: break # pop the non-terminals if new_sql_state.current_stack[-1][1][0] == finished_item: new_sql_state.current_stack[-1][1] = new_sql_state.current_stack[-1][1][1:] # append current stack return new_sql_state def get_valid_actions(self, valid_actions: dict): if not self.enable_prune: return valid_actions current_clause = self._get_current_clause() # used terminals to avoid repeated role, specially for Select -> A A A ... valid_actions_ids = [] for key, items in valid_actions.items(): valid_actions_ids += [(key, rule_id) for rule_id in valid_actions[key][2]] valid_actions_rules = [self.possible_actions[rule_id] for rule_type, rule_id in valid_actions_ids] # k is the group index actions_to_remove = {k: set() for k in valid_actions.keys()} # if not None if current_clause: # repeat constraints for rule_id, rule in zip(valid_actions_ids, valid_actions_rules): rule_type, rule_id = rule_id # rhs is the key for querying lhs, rhs = rule.split(' -> ') # C, T should be in the same table if lhs == T.__name__: # take the rhs column_name = self.action_history[-1].split(' -> ')[1] # column name is *, no limited tables if column_name == '*': continue assert column_name in self.valid_tables valid_table_name = self.valid_tables[column_name] if rhs not in valid_table_name: actions_to_remove[rule_type].add(rule_id) unique_key = ':'.join(self.parent_path) + lhs + ':' + rhs # repeated column/table if unique_key in self.used_terminals: actions_to_remove[rule_type].add(rule_id) # now we only prevent linked rules new_valid_actions = {} new_global_actions = self._remove_actions(valid_actions, 'global', actions_to_remove['global']) if 'global' in valid_actions else None new_linked_actions = self._remove_actions(valid_actions, 'linked', actions_to_remove['linked']) if 'linked' in valid_actions else None if new_linked_actions is not None: new_valid_actions['linked'] = new_linked_actions if new_global_actions is not None: new_valid_actions['global'] = new_global_actions for key in valid_actions.keys(): if key == 'copy_seg' or key == 'copy_token': new_valid_actions[key] = valid_actions[key] return new_valid_actions def _get_current_clause(self): relevant_clauses = [ A.__name__ ] for rule in self.current_stack[::-1]: # the first nonterminal which should be parsed if rule[0] in relevant_clauses: return rule[0] return None @staticmethod def _remove_actions(valid_actions, key, ids_to_remove): if len(ids_to_remove) == 0: return valid_actions[key] if len(ids_to_remove) == len(valid_actions[key][2]): return None current_ids = valid_actions[key][2] keep_ids = [] keep_ids_loc = [] for loc, rule_id in enumerate(current_ids): if rule_id not in ids_to_remove: keep_ids.append(rule_id) keep_ids_loc.append(loc) items = list(valid_actions[key]) items[0] = items[0][keep_ids_loc] items[1] = items[1][keep_ids_loc] items[2] = keep_ids if len(items) >= 4: items[3] = items[3][keep_ids_loc] return tuple(items)
ContextualSP/semantic_parsing_in_context/models/states_machine/condition_state_let.py/0
{ "file_path": "ContextualSP/semantic_parsing_in_context/models/states_machine/condition_state_let.py", "repo_id": "ContextualSP", "token_count": 3650 }
250
# Copyright (c) Facebook, Inc. and Microsoft Corporation. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Dict, List import torch from genre.utils import chunk_it from transformers import BartForConditionalGeneration, BartTokenizer logger = logging.getLogger(__name__) class GENREHubInterface(BartForConditionalGeneration): def sample( self, sentences: List[str], num_beams: int = 5, num_return_sequences=5, **kwargs ) -> List[str]: input_args = { k: v.to(self.device) for k, v in self.tokenizer.batch_encode_plus( sentences, padding=True, return_tensors="pt" ).items() } outputs = self.generate( **input_args, min_length=0, max_length=1024, num_beams=num_beams, num_return_sequences=num_return_sequences, output_scores=True, return_dict_in_generate=True, **kwargs ) return chunk_it( [ { "text": text, "logprob": score, } for text, score in zip( self.tokenizer.batch_decode( outputs.sequences, skip_special_tokens=True ), outputs.sequences_scores, ) ], num_return_sequences, ) def encode(self, sentence): return self.tokenizer.encode(sentence, return_tensors="pt")[0] class GENRE(BartForConditionalGeneration): @classmethod def from_pretrained(cls, model_name_or_path): model = GENREHubInterface.from_pretrained(model_name_or_path) model.tokenizer = BartTokenizer.from_pretrained(model_name_or_path) return model
ContextualSP/unified_parser_text_to_sql/genre/hf_model.py/0
{ "file_path": "ContextualSP/unified_parser_text_to_sql/genre/hf_model.py", "repo_id": "ContextualSP", "token_count": 936 }
251
""" Based on https://github.com/ryanzhumich/editsql/blob/master/preprocess.py """ import argparse import json import os import re import stanza import sqlparse from tqdm import tqdm from semparse.contexts.spider_db_context import SpiderDBContext from semparse.sql.spider_utils import disambiguate_items, fix_number_value from semparse.sql.spider_utils import read_dataset_schema keyword = ['select', 'distinct', 'from', 'join', 'on', 'where', 'group', 'by', 'order', 'asc', 'desc', 'limit', 'having', 'and', 'not', 'or', 'like', 'between', 'in', 'sum', 'count', 'max', 'min', 'avg', '(', ')', ',', '>', '<', '=', '==', '>=', '!=', '<=', 'union', 'except', 'intersect', '\'value\''] stanza.download('en') stanza_model = stanza.Pipeline(lang='en', processors='tokenize,pos,lemma') # stanza_model=None def write_interaction(interaction_list, split, output_dir): interaction = [] for db_id in interaction_list: interaction += interaction_list[db_id] json_split = os.path.join(output_dir, split + '.json') with open(json_split, 'w', encoding="utf-8") as outfile: json.dump(interaction, outfile, indent=2, ensure_ascii=False) return def read_database_schema(table_path): schema_tokens = {} column_names = {} database_schemas_dict = {} with open(table_path, 'r', encoding='UTF-8') as f: database_schemas = json.load(f) def get_schema_tokens(table_schema): column_names_surface_form = [] column_names = [] column_names_original = table_schema['column_names_original'] table_names = table_schema['table_names'] table_names_original = table_schema['table_names_original'] for i, (table_id, column_name) in enumerate(column_names_original): if table_id >= 0: table_name = table_names_original[table_id] column_name_surface_form = '{}.{}'.format(table_name, column_name) else: # this is just * column_name_surface_form = column_name column_names_surface_form.append(column_name_surface_form.lower()) column_names.append(column_name.lower()) # also add table_name.* for table_name in table_names_original: column_names_surface_form.append('{}.*'.format(table_name.lower())) return column_names_surface_form, column_names for table_schema in database_schemas: database_id = table_schema['db_id'] if 'column_names_original' not in table_schema: table_schema["column_names_original"] = table_schema["column_names"] table_schema["table_names_original"] = table_schema["table_names"] table_schema['table_names_original'] = [t.lower() for t in table_schema['table_names_original']] table_schema['foreign_keys_col'] = [i[0] for i in table_schema['foreign_keys']] structure_schema = [] for t in table_schema['foreign_keys']: primary_col, foreign_col = t primary_col = table_schema['column_names_original'][primary_col] primary_col_tab = table_schema['table_names_original'][primary_col[0]].lower() foreign_col = table_schema['column_names_original'][foreign_col] foreign_col_tab = table_schema['table_names_original'][foreign_col[0]].lower() structure_schema.append(f"( {primary_col_tab} , {foreign_col_tab} )") structure_schema = list(sorted(set(structure_schema))) table_schema['permutations'] = [structure_schema] database_schemas_dict[database_id] = table_schema schema_tokens[database_id], column_names[database_id] = get_schema_tokens(table_schema) if 'column_rewrite_names' in table_schema: for i in range(len(table_schema['column_rewrite_names'])): table_schema['column_rewrite_names'][i] = [table_schema['column_names'][i][-1]] + \ table_schema['column_rewrite_names'][i][-1] table_schema['column_rewrite_names'] = [list(set(map(lambda x: x.lower().replace(' ', ''), i))) for i in table_schema['column_rewrite_names']] for i in range(len(table_schema['table_rewrite_names'])): table_schema['table_rewrite_names'][i] = [table_schema['table_names'][i]] + \ table_schema['table_rewrite_names'][i] table_schema['table_rewrite_names'] = [list(set(map(lambda x: x.lower().replace(' ', ''), i))) for i in table_schema['table_rewrite_names']] return schema_tokens, column_names, database_schemas_dict def remove_from_with_join(format_sql_2): used_tables_list = [] format_sql_3 = [] table_to_name = {} table_list = [] old_table_to_name = {} old_table_list = [] for sub_sql in format_sql_2.split('\n'): if 'select ' in sub_sql: # only replace alias: t1 -> table_name, t2 -> table_name, etc... if len(table_list) > 0: for i in range(len(format_sql_3)): for table, name in table_to_name.items(): format_sql_3[i] = format_sql_3[i].replace(table, name) old_table_list = table_list old_table_to_name = table_to_name table_to_name = {} table_list = [] format_sql_3.append(sub_sql) elif sub_sql.startswith('from'): new_sub_sql = None sub_sql_tokens = sub_sql.split() for t_i, t in enumerate(sub_sql_tokens): if t == 'as': table_to_name[sub_sql_tokens[t_i + 1]] = sub_sql_tokens[t_i - 1] table_list.append(sub_sql_tokens[t_i - 1]) elif t == ')' and new_sub_sql is None: # new_sub_sql keeps some trailing parts after ')' new_sub_sql = ' '.join(sub_sql_tokens[t_i:]) if len(table_list) > 0: # if it's a from clause with join if new_sub_sql is not None: format_sql_3.append(new_sub_sql) used_tables_list.append(table_list) else: # if it's a from clause without join table_list = old_table_list table_to_name = old_table_to_name assert 'join' not in sub_sql if new_sub_sql is not None: sub_sub_sql = sub_sql[:-len(new_sub_sql)].strip() assert len(sub_sub_sql.split()) == 2 used_tables_list.append([sub_sub_sql.split()[1]]) format_sql_3.append(sub_sub_sql) format_sql_3.append(new_sub_sql) elif 'join' not in sub_sql: assert len(sub_sql.split()) == 2 or len(sub_sql.split()) == 1 if len(sub_sql.split()) == 2: used_tables_list.append([sub_sql.split()[1]]) format_sql_3.append(sub_sql) else: print('bad from clause in remove_from_with_join') exit() else: format_sql_3.append(sub_sql) if len(table_list) > 0: for i in range(len(format_sql_3)): for table, name in table_to_name.items(): format_sql_3[i] = format_sql_3[i].replace(table, name) used_tables = [] for t in used_tables_list: for tt in t: used_tables.append(tt) used_tables = list(set(used_tables)) return format_sql_3, used_tables, used_tables_list def remove_from_without_join(format_sql_3, column_names, schema_tokens): format_sql_4 = [] table_name = None for sub_sql in format_sql_3.split('\n'): if 'select ' in sub_sql: if table_name: for i in range(len(format_sql_4)): tokens = format_sql_4[i].split() for ii, token in enumerate(tokens): if token in column_names and tokens[ii - 1] != '.': if (ii + 1 < len(tokens) and tokens[ii + 1] != '.' and tokens[ ii + 1] != '(') or ii + 1 == len(tokens): if '{}.{}'.format(table_name, token) in schema_tokens: tokens[ii] = '{} . {}'.format(table_name, token) format_sql_4[i] = ' '.join(tokens) format_sql_4.append(sub_sql) elif sub_sql.startswith('from'): sub_sql_tokens = sub_sql.split() if len(sub_sql_tokens) == 1: table_name = None elif len(sub_sql_tokens) == 2: table_name = sub_sql_tokens[1] else: print('bad from clause in remove_from_without_join') print(format_sql_3) exit() else: format_sql_4.append(sub_sql) if table_name: for i in range(len(format_sql_4)): tokens = format_sql_4[i].split() for ii, token in enumerate(tokens): if token in column_names and tokens[ii - 1] != '.': if (ii + 1 < len(tokens) and tokens[ii + 1] != '.' and tokens[ii + 1] != '(') or ii + 1 == len( tokens): if '{}.{}'.format(table_name, token) in schema_tokens: tokens[ii] = '{} . {}'.format(table_name, token) format_sql_4[i] = ' '.join(tokens) return format_sql_4 def add_table_name(format_sql_3, used_tables, column_names, schema_tokens): # If just one table used, easy case, replace all column_name -> table_name.column_name if len(used_tables) == 1: table_name = used_tables[0] format_sql_4 = [] for sub_sql in format_sql_3.split('\n'): if sub_sql.startswith('from'): format_sql_4.append(sub_sql) continue tokens = sub_sql.split() for ii, token in enumerate(tokens): if token in column_names and tokens[ii - 1] != '.': if (ii + 1 < len(tokens) and tokens[ii + 1] != '.' and tokens[ii + 1] != '(') or ii + 1 == len( tokens): if '{}.{}'.format(table_name, token) in schema_tokens: tokens[ii] = '{} . {}'.format(table_name, token) format_sql_4.append(' '.join(tokens)) return format_sql_4 def get_table_name_for(token): table_names = [] for table_name in used_tables: if '{}.{}'.format(table_name, token) in schema_tokens: table_names.append(table_name) if len(table_names) == 0: return 'table' if len(table_names) > 1: return None else: return table_names[0] format_sql_4 = [] for sub_sql in format_sql_3.split('\n'): if sub_sql.startswith('from'): format_sql_4.append(sub_sql) continue tokens = sub_sql.split() for ii, token in enumerate(tokens): # skip * if token == '*': continue if token in column_names and tokens[ii - 1] != '.': if (ii + 1 < len(tokens) and tokens[ii + 1] != '.' and tokens[ii + 1] != '(') or ii + 1 == len(tokens): table_name = get_table_name_for(token) if table_name: tokens[ii] = '{} . {}'.format(table_name, token) format_sql_4.append(' '.join(tokens)) return format_sql_4 def normalize_space(format_sql): format_sql_1 = [' '.join( sub_sql.strip().replace(',', ' , ').replace('.', ' . ').replace('(', ' ( ').replace(')', ' ) ').split()) for sub_sql in format_sql.split('\n')] format_sql_1 = '\n'.join(format_sql_1) format_sql_2 = format_sql_1.replace('\njoin', ' join').replace(',\n', ', ').replace(' where', '\nwhere').replace( ' intersect', '\nintersect').replace('\nand', ' and').replace('order by t2 .\nstart desc', 'order by t2 . start desc') format_sql_2 = format_sql_2.replace('select\noperator', 'select operator').replace('select\nconstructor', 'select constructor').replace( 'select\nstart', 'select start').replace('select\ndrop', 'select drop').replace('select\nwork', 'select work').replace( 'select\ngroup', 'select group').replace('select\nwhere_built', 'select where_built').replace('select\norder', 'select order').replace( 'from\noperator', 'from operator').replace('from\nforward', 'from forward').replace('from\nfor', 'from for').replace( 'from\ndrop', 'from drop').replace('from\norder', 'from order').replace('.\nstart', '. start').replace( '.\norder', '. order').replace('.\noperator', '. operator').replace('.\nsets', '. sets').replace( '.\nwhere_built', '. where_built').replace('.\nwork', '. work').replace('.\nconstructor', '. constructor').replace('.\ngroup', '. group').replace( '.\nfor', '. for').replace('.\ndrop', '. drop').replace('.\nwhere', '. where') format_sql_2 = format_sql_2.replace('group by', 'group_by').replace('order by', 'order_by').replace('! =', '!=').replace( 'limit value', 'limit_value') return format_sql_2 def normalize_final_sql(format_sql_5): format_sql_final = format_sql_5.replace('\n', ' ').replace(' . ', '.').replace('group by', 'group_by').replace( 'order by', 'order_by').replace('! =', '!=').replace('limit value', 'limit_value') # normalize two bad sqls if 't1' in format_sql_final or 't2' in format_sql_final or 't3' in format_sql_final or 't4' in format_sql_final: format_sql_final = format_sql_final.replace('t2.dormid', 'dorm.dormid') # This is the failure case of remove_from_without_join() format_sql_final = format_sql_final.replace( 'select city.city_name where city.state_name in ( select state.state_name where state.state_name in ( select river.traverse where river.river_name = value ) and state.area = ( select min ( state.area ) where state.state_name in ( select river.traverse where river.river_name = value ) ) ) order_by population desc limit_value', 'select city.city_name where city.state_name in ( select state.state_name where state.state_name in ( select river.traverse where river.river_name = value ) and state.area = ( select min ( state.area ) where state.state_name in ( select river.traverse where river.river_name = value ) ) ) order_by city.population desc limit_value') return format_sql_final def normalize_original_sql(sql): sql = [i.lower() for i in sql] sql = ' '.join(sql).strip(';').replace("``", "'").replace("\"", "'").replace("''", "'") sql = sql.replace(')from', ') from') sql = sql.replace('(', ' ( ') sql = sql.replace(')', ' ) ') sql = re.sub('\s+', ' ', sql) sql = re.sub(r"(')(\S+)", r"\1 \2", sql) sql = re.sub(r"(\S+)(')", r"\1 \2", sql).split(' ') sql = ' '.join(sql) sql = sql.strip(' ;').replace('> =', '>=').replace('! =', '!=') return sql.split(' ') def parse_sql(sql_string, db_id, column_names, schema_tokens, schema): format_sql = sqlparse.format(sql_string, reindent=True) format_sql_2 = normalize_space(format_sql) format_sql_3, used_tables, used_tables_list = remove_from_with_join(format_sql_2) format_sql_3 = '\n'.join(format_sql_3) format_sql_4 = add_table_name(format_sql_3, used_tables, column_names, schema_tokens) format_sql_4 = '\n'.join(format_sql_4) format_sql_5 = remove_from_without_join(format_sql_4, column_names, schema_tokens) format_sql_5 = '\n'.join(format_sql_5) format_sql_final = normalize_final_sql(format_sql_5) return format_sql_final def read_spider_split(dataset_path, table_path, database_path): with open(dataset_path) as f: split_data = json.load(f) print('read_spider_split', dataset_path, len(split_data)) schemas = read_dataset_schema(table_path, stanza_model) interaction_list = {} for i, ex in enumerate(tqdm(split_data)): db_id = ex['db_id'] ex['query_toks_no_value'] = normalize_original_sql(ex['query_toks_no_value']) turn_sql = ' '.join(ex['query_toks_no_value']) turn_sql = turn_sql.replace('select count ( * ) from follows group by value', 'select count ( * ) from follows group by f1') ex['query_toks_no_value'] = turn_sql.split(' ') ex = fix_number_value(ex) try: ex['query_toks_no_value'] = disambiguate_items(db_id, ex['query_toks_no_value'], tables_file=table_path, allow_aliases=False) except: print(ex['query_toks']) continue final_sql_parse = ' '.join(ex['query_toks_no_value']) final_utterance = ' '.join(ex['question_toks']).lower() if stanza_model is not None: lemma_utterance_stanza = stanza_model(final_utterance) lemma_utterance = [word.lemma for sent in lemma_utterance_stanza.sentences for word in sent.words] original_utterance = final_utterance else: original_utterance = lemma_utterance = final_utterance.split(' ') # using db content db_context = SpiderDBContext(db_id, lemma_utterance, tables_file=table_path, dataset_path=database_path, stanza_model=stanza_model, schemas=schemas, original_utterance=original_utterance) value_match, value_alignment, exact_match, partial_match = db_context.get_db_knowledge_graph(db_id) if value_match != []: print(value_match, value_alignment) if db_id not in interaction_list: interaction_list[db_id] = [] interaction = {} interaction['id'] = i interaction['database_id'] = db_id interaction['interaction'] = [{'utterance': final_utterance, 'db_id': db_id, 'query': ex['query'], 'question': ex['question'], 'sql': final_sql_parse, 'value_match': value_match, 'value_alignment': value_alignment, 'exact_match': exact_match, 'partial_match': partial_match, }] interaction_list[db_id].append(interaction) return interaction_list def preprocess_dataset(dataset, dataset_dir, output_dir, table_path, database_path): # for session in ['train', 'dev']: for session in ['dev']: dataset_path = os.path.join(dataset_dir, f'{session}.json') interaction_list = read_spider_split(dataset_path, table_path, database_path) write_interaction(interaction_list, session, output_dir) return interaction_list def preprocess(dataset, dataset_dir, table_path, database_path, output_dir): # directory if not os.path.exists(output_dir): os.mkdir(output_dir) # read schema print('Reading spider database schema file') schema_tokens, column_names, database_schemas = read_database_schema(table_path) print('total number of schema_tokens / databases:', len(schema_tokens)) output_table_path = os.path.join(output_dir, 'tables.json') with open(output_table_path, 'w') as outfile: json.dump([v for k, v in database_schemas.items()], outfile, indent=4) # process (SQL, Query) pair in train/dev preprocess_dataset(dataset, dataset_dir, output_dir, table_path, database_path) return if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--dataset", choices=('spider', 'sparc', 'cosql'), default='spider') args = parser.parse_args() dataset = args.dataset dataset_dir = f'./data/{dataset}/' table_path = f'./data/{dataset}/tables.json' database_path = f'./data/{dataset}/database' output_dir = f'./data/{dataset}_schema_linking_tag' preprocess(dataset, dataset_dir, table_path, database_path, output_dir)
ContextualSP/unified_parser_text_to_sql/step1_schema_linking.py/0
{ "file_path": "ContextualSP/unified_parser_text_to_sql/step1_schema_linking.py", "repo_id": "ContextualSP", "token_count": 10676 }
252
""" Based on https://github.com/ElementAI/Unisar/blob/master/Unisar/api.py """ import os import subprocess from typing import Optional import torch from genre.fairseq_model import GENRE from semparse.contexts.spider_db_context import SpiderDBContext from semparse.sql.spider import load_original_schemas, load_tables from semparse.sql.spider_utils import read_dataset_schema from step1_schema_linking import read_database_schema from step2_serialization import build_schema_linking_data from step3_evaluate import decode_with_constrain, get_alias_schema, post_processing_sql class UnisarAPI(object): def __init__(self, logdir: str, config_path: str): self.model = self.inferer.load_model(logdir, step=None) def convert_csv_to_sqlite(csv_path: str): # TODO: infer types when importing db_path = csv_path + ".sqlite" if os.path.exists(db_path): os.remove(db_path) subprocess.run(["sqlite3", db_path, ".mode csv", f".import {csv_path} Data"]) return db_path class UnisarAPI(object): """Run Unisar model on a given database.""" def __init__(self, log_dir: str, db_path: str, schema_path: Optional[str], stanza_model): self.log_dir = log_dir self.db_path = db_path self.schema_path = schema_path self.stanza_model = stanza_model # if self.db_path.endswith(".sqlite"): # pass # elif self.db_path.endswith(".csv"): # self.db_path = convert_csv_to_sqlite(self.db_path) # else: # raise ValueError("expected either .sqlite or .csv file") self.schema = read_dataset_schema(self.schema_path, stanza_model) _, _, self.database_schemas = read_database_schema(self.schema_path) self.model = GENRE.from_pretrained(self.log_dir).eval() if torch.cuda.is_available(): self.model.cuda() def infer_query(self, question, db_id): ###step-1 schema-linking lemma_utterance_stanza = self.stanza_model(question) lemma_utterance = [word.lemma for sent in lemma_utterance_stanza.sentences for word in sent.words] db_context = SpiderDBContext(db_id, lemma_utterance, tables_file=self.schema_path, dataset_path=self.db_path, stanza_model=self.stanza_model, schemas=self.schema, original_utterance=question) value_match, value_alignment, exact_match, partial_match = db_context.get_db_knowledge_graph(db_id) item = {} item['interaction'] = [{'db_id': db_id, 'question': question, 'sql': '', 'value_match': value_match, 'value_alignment': value_alignment, 'exact_match': exact_match, 'partial_match': partial_match, }] ###step-2 serialization source_sequence, _ = build_schema_linking_data(schema=self.database_schemas[db_id], question=question, item=item, turn_id=0, linking_type='default') slml_question = source_sequence[0] ###step-3 prediction schemas, eval_foreign_key_maps = load_tables(self.schema_path) original_schemas = load_original_schemas(self.schema_path) alias_schema = get_alias_schema(schemas) rnt = decode_with_constrain(slml_question, alias_schema[db_id], self.model) predict_sql = rnt[0]['text'] if isinstance(rnt[0]['text'], str) else rnt[0]['text'][0] score = rnt[0]['score'].tolist() predict_sql = post_processing_sql(predict_sql, eval_foreign_key_maps[db_id], original_schemas[db_id],schemas[db_id]) return { "slml_question": slml_question, "predict_sql": predict_sql, "score": score } def execute(self, query): ### TODO: replace the query with value version pass # conn = sqlite3.connect(self.db_path) # # Temporary Hack: makes sure all literals are collated in a case-insensitive way # query = add_collate_nocase(query) # results = conn.execute(query).fetchall() # conn.close() # return results
ContextualSP/unified_parser_text_to_sql/unisar/api.py/0
{ "file_path": "ContextualSP/unified_parser_text_to_sql/unisar/api.py", "repo_id": "ContextualSP", "token_count": 2320 }
253
import random import numpy as np import time import torch import torch.backends.cudnn as cudnn from pathlib import Path from lib.datasets import build_dataset from lib import utils from supernet_engine import evaluate from model.supernet_transformer import Vision_TransformerSuper import argparse import os import yaml from lib.config import cfg, update_config_from_file def decode_cand_tuple(cand_tuple): depth = cand_tuple[0] return depth, list(cand_tuple[1:depth+1]), list(cand_tuple[depth + 1: 2 * depth + 1]), cand_tuple[-1] class EvolutionSearcher(object): def __init__(self, args, device, model, model_without_ddp, choices, val_loader, test_loader, output_dir): self.device = device self.model = model self.model_without_ddp = model_without_ddp self.args = args self.max_epochs = args.max_epochs self.select_num = args.select_num self.population_num = args.population_num self.m_prob = args.m_prob self.crossover_num = args.crossover_num self.mutation_num = args.mutation_num self.parameters_limits = args.param_limits self.min_parameters_limits = args.min_param_limits self.val_loader = val_loader self.test_loader = test_loader self.output_dir = output_dir self.s_prob =args.s_prob self.memory = [] self.vis_dict = {} self.keep_top_k = {self.select_num: [], 50: []} self.epoch = 0 self.checkpoint_path = args.resume self.candidates = [] self.top_accuracies = [] self.cand_params = [] self.choices = choices def save_checkpoint(self): info = {} info['top_accuracies'] = self.top_accuracies info['memory'] = self.memory info['candidates'] = self.candidates info['vis_dict'] = self.vis_dict info['keep_top_k'] = self.keep_top_k info['epoch'] = self.epoch checkpoint_path = os.path.join(self.output_dir, "checkpoint-{}.pth.tar".format(self.epoch)) torch.save(info, checkpoint_path) print('save checkpoint to', checkpoint_path) def load_checkpoint(self): if not os.path.exists(self.checkpoint_path): return False info = torch.load(self.checkpoint_path) self.memory = info['memory'] self.candidates = info['candidates'] self.vis_dict = info['vis_dict'] self.keep_top_k = info['keep_top_k'] self.epoch = info['epoch'] print('load checkpoint from', self.checkpoint_path) return True def is_legal(self, cand): assert isinstance(cand, tuple) if cand not in self.vis_dict: self.vis_dict[cand] = {} info = self.vis_dict[cand] if 'visited' in info: return False depth, mlp_ratio, num_heads, embed_dim = decode_cand_tuple(cand) sampled_config = {} sampled_config['layer_num'] = depth sampled_config['mlp_ratio'] = mlp_ratio sampled_config['num_heads'] = num_heads sampled_config['embed_dim'] = [embed_dim]*depth n_parameters = self.model_without_ddp.get_sampled_params_numel(sampled_config) info['params'] = n_parameters / 10.**6 if info['params'] > self.parameters_limits: print('parameters limit exceed') return False if info['params'] < self.min_parameters_limits: print('under minimum parameters limit') return False print("rank:", utils.get_rank(), cand, info['params']) eval_stats = evaluate(self.val_loader, self.model, self.device, amp=self.args.amp, mode='retrain', retrain_config=sampled_config) test_stats = evaluate(self.test_loader, self.model, self.device, amp=self.args.amp, mode='retrain', retrain_config=sampled_config) info['acc'] = eval_stats['acc1'] info['test_acc'] = test_stats['acc1'] info['visited'] = True return True def update_top_k(self, candidates, *, k, key, reverse=True): assert k in self.keep_top_k print('select ......') t = self.keep_top_k[k] t += candidates t.sort(key=key, reverse=reverse) self.keep_top_k[k] = t[:k] def stack_random_cand(self, random_func, *, batchsize=10): while True: cands = [random_func() for _ in range(batchsize)] for cand in cands: if cand not in self.vis_dict: self.vis_dict[cand] = {} info = self.vis_dict[cand] for cand in cands: yield cand def get_random_cand(self): cand_tuple = list() dimensions = ['mlp_ratio', 'num_heads'] depth = random.choice(self.choices['depth']) cand_tuple.append(depth) for dimension in dimensions: for i in range(depth): cand_tuple.append(random.choice(self.choices[dimension])) cand_tuple.append(random.choice(self.choices['embed_dim'])) return tuple(cand_tuple) def get_random(self, num): print('random select ........') cand_iter = self.stack_random_cand(self.get_random_cand) while len(self.candidates) < num: cand = next(cand_iter) if not self.is_legal(cand): continue self.candidates.append(cand) print('random {}/{}'.format(len(self.candidates), num)) print('random_num = {}'.format(len(self.candidates))) def get_mutation(self, k, mutation_num, m_prob, s_prob): assert k in self.keep_top_k print('mutation ......') res = [] iter = 0 max_iters = mutation_num * 10 def random_func(): cand = list(random.choice(self.keep_top_k[k])) depth, mlp_ratio, num_heads, embed_dim = decode_cand_tuple(cand) random_s = random.random() # depth if random_s < s_prob: new_depth = random.choice(self.choices['depth']) if new_depth > depth: mlp_ratio = mlp_ratio + [random.choice(self.choices['mlp_ratio']) for _ in range(new_depth - depth)] num_heads = num_heads + [random.choice(self.choices['num_heads']) for _ in range(new_depth - depth)] else: mlp_ratio = mlp_ratio[:new_depth] num_heads = num_heads[:new_depth] depth = new_depth # mlp_ratio for i in range(depth): random_s = random.random() if random_s < m_prob: mlp_ratio[i] = random.choice(self.choices['mlp_ratio']) # num_heads for i in range(depth): random_s = random.random() if random_s < m_prob: num_heads[i] = random.choice(self.choices['num_heads']) # embed_dim random_s = random.random() if random_s < s_prob: embed_dim = random.choice(self.choices['embed_dim']) result_cand = [depth] + mlp_ratio + num_heads + [embed_dim] return tuple(result_cand) cand_iter = self.stack_random_cand(random_func) while len(res) < mutation_num and max_iters > 0: max_iters -= 1 cand = next(cand_iter) if not self.is_legal(cand): continue res.append(cand) print('mutation {}/{}'.format(len(res), mutation_num)) print('mutation_num = {}'.format(len(res))) return res def get_crossover(self, k, crossover_num): assert k in self.keep_top_k print('crossover ......') res = [] iter = 0 max_iters = 10 * crossover_num def random_func(): p1 = random.choice(self.keep_top_k[k]) p2 = random.choice(self.keep_top_k[k]) max_iters_tmp = 50 while len(p1) != len(p2) and max_iters_tmp > 0: max_iters_tmp -= 1 p1 = random.choice(self.keep_top_k[k]) p2 = random.choice(self.keep_top_k[k]) return tuple(random.choice([i, j]) for i, j in zip(p1, p2)) cand_iter = self.stack_random_cand(random_func) while len(res) < crossover_num and max_iters > 0: max_iters -= 1 cand = next(cand_iter) if not self.is_legal(cand): continue res.append(cand) print('crossover {}/{}'.format(len(res), crossover_num)) print('crossover_num = {}'.format(len(res))) return res def search(self): print( 'population_num = {} select_num = {} mutation_num = {} crossover_num = {} random_num = {} max_epochs = {}'.format( self.population_num, self.select_num, self.mutation_num, self.crossover_num, self.population_num - self.mutation_num - self.crossover_num, self.max_epochs)) # self.load_checkpoint() self.get_random(self.population_num) while self.epoch < self.max_epochs: print('epoch = {}'.format(self.epoch)) self.memory.append([]) for cand in self.candidates: self.memory[-1].append(cand) self.update_top_k( self.candidates, k=self.select_num, key=lambda x: self.vis_dict[x]['acc']) self.update_top_k( self.candidates, k=50, key=lambda x: self.vis_dict[x]['acc']) print('epoch = {} : top {} result'.format( self.epoch, len(self.keep_top_k[50]))) tmp_accuracy = [] for i, cand in enumerate(self.keep_top_k[50]): print('No.{} {} Top-1 val acc = {}, Top-1 test acc = {}, params = {}'.format( i + 1, cand, self.vis_dict[cand]['acc'], self.vis_dict[cand]['test_acc'], self.vis_dict[cand]['params'])) tmp_accuracy.append(self.vis_dict[cand]['acc']) self.top_accuracies.append(tmp_accuracy) mutation = self.get_mutation( self.select_num, self.mutation_num, self.m_prob, self.s_prob) crossover = self.get_crossover(self.select_num, self.crossover_num) self.candidates = mutation + crossover self.get_random(self.population_num) self.epoch += 1 self.save_checkpoint() def get_args_parser(): parser = argparse.ArgumentParser('DeiT training and evaluation script', add_help=False) parser.add_argument('--batch-size', default=64, type=int) # evolution search parameters parser.add_argument('--max-epochs', type=int, default=20) parser.add_argument('--select-num', type=int, default=10) parser.add_argument('--population-num', type=int, default=50) parser.add_argument('--m_prob', type=float, default=0.2) parser.add_argument('--s_prob', type=float, default=0.4) parser.add_argument('--crossover-num', type=int, default=25) parser.add_argument('--epochs', type=int, default=30) parser.add_argument('--mutation-num', type=int, default=25) parser.add_argument('--param-limits', type=float, default=23) parser.add_argument('--min-param-limits', type=float, default=18) # config file parser.add_argument('--cfg',help='experiment configure file name',required=True,type=str) # custom parameters parser.add_argument('--platform', default='pai', type=str, choices=['itp', 'pai', 'aml'], help='Name of model to train') parser.add_argument('--teacher_model', default='', type=str, help='Name of teacher model to train') parser.add_argument('--relative_position', action='store_true') parser.add_argument('--max_relative_position', type=int, default=14, help='max distance in relative position embedding') parser.add_argument('--scale', action='store_true') parser.add_argument('--gp', action='store_true') parser.add_argument('--change_qkv', action='store_true') # Model parameters parser.add_argument('--model', default='', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--input-size', default=224, type=int) parser.add_argument('--patch_size', default=16, type=int) parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') parser.add_argument('--model-ema', action='store_true') parser.add_argument('--no-model-ema', action='store_false', dest='model_ema') # parser.set_defaults(model_ema=True) parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='') parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='') # custom model argument parser.add_argument('--rpe_type', type=str, default='bias', choices=['bias', 'direct']) parser.add_argument('--post_norm', action='store_true') parser.add_argument('--no_abs_pos', action='store_true') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.05, help='weight decay (default: 0.05)') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "cosine"') parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--lr-power', type=float, default=1.0, help='power of the polynomial lr scheduler') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + \ "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train-interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--repeated-aug', action='store_true') parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug') parser.set_defaults(repeated_aug=True) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0. (default: 0.8)') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)') parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # Dataset parameters parser.add_argument('--data-path', default='/datasets01_101/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--data-set', default='IMNET', choices=['CIFAR', 'IMNET', 'INAT', 'INAT19', 'EVO_IMNET'], type=str, help='Image Net dataset path') parser.add_argument('--inat-category', default='name', choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'], type=str, help='semantic granularity') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--amp', action='store_true') parser.add_argument('--no-amp', action='store_false', dest='amp') parser.set_defaults(amp=True) return parser def main(args): update_config_from_file(args.cfg) utils.init_distributed_mode(args) device = torch.device(args.device) print(args) args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) # save config for later experiments with open(os.path.join(args.output_dir, "config.yaml"), 'w') as f: f.write(args_text) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(args.seed) cudnn.benchmark = True args.prefetcher = not args.no_prefetcher dataset_val, args.nb_classes = build_dataset(is_train=False, args=args, folder_name="subImageNet") dataset_test, _ = build_dataset(is_train=False, args=args, folder_name="val") if args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() if args.dist_eval: if len(dataset_val) % num_tasks != 0: print( 'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) sampler_test = torch.utils.data.DistributedSampler( dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) sampler_test = torch.utils.data.SequentialSampler(dataset_test) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) sampler_test = torch.utils.data.SequentialSampler(dataset_test) data_loader_test = torch.utils.data.DataLoader( dataset_test, batch_size=int(2 * args.batch_size), sampler=sampler_test, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) data_loader_val = torch.utils.data.DataLoader( dataset_val, batch_size=int(2 * args.batch_size), sampler=sampler_val, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) print(f"Creating SuperVisionTransformer") print(cfg) model = Vision_TransformerSuper(img_size=args.input_size, patch_size=args.patch_size, embed_dim=cfg.SUPERNET.EMBED_DIM, depth=cfg.SUPERNET.DEPTH, num_heads=cfg.SUPERNET.NUM_HEADS,mlp_ratio=cfg.SUPERNET.MLP_RATIO, qkv_bias=True, drop_rate=args.drop, drop_path_rate=args.drop_path, gp=args.gp, num_classes=args.nb_classes, max_relative_position=args.max_relative_position, relative_position=args.relative_position, change_qkv=args.change_qkv, abs_pos=not args.no_abs_pos) model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') print("resume from checkpoint: {}".format(args.resume)) model_without_ddp.load_state_dict(checkpoint['model']) choices = {'num_heads': cfg.SEARCH_SPACE.NUM_HEADS, 'mlp_ratio': cfg.SEARCH_SPACE.MLP_RATIO, 'embed_dim': cfg.SEARCH_SPACE.EMBED_DIM , 'depth': cfg.SEARCH_SPACE.DEPTH} t = time.time() searcher = EvolutionSearcher(args, device, model, model_without_ddp, choices, data_loader_val, data_loader_test, args.output_dir) searcher.search() print('total searching time = {:.2f} hours'.format( (time.time() - t) / 3600)) if __name__ == '__main__': parser = argparse.ArgumentParser('AutoFormer evolution search', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
Cream/AutoFormer/evolution.py/0
{ "file_path": "Cream/AutoFormer/evolution.py", "repo_id": "Cream", "token_count": 11718 }
254
import torch import torch.nn as nn import torch.nn.functional as F class LayerNormSuper(torch.nn.LayerNorm): def __init__(self, super_embed_dim): super().__init__(super_embed_dim) # the largest embed dim self.super_embed_dim = super_embed_dim # the current sampled embed dim self.sample_embed_dim = None self.samples = {} self.profiling = False def profile(self, mode=True): self.profiling = mode def sample_parameters(self, resample=False): if self.profiling or resample: return self._sample_parameters() return self.samples def _sample_parameters(self): self.samples['weight'] = self.weight[:self.sample_embed_dim] self.samples['bias'] = self.bias[:self.sample_embed_dim] return self.samples def set_sample_config(self, sample_embed_dim): self.sample_embed_dim = sample_embed_dim self._sample_parameters() def forward(self, x): self.sample_parameters() return F.layer_norm(x, (self.sample_embed_dim,), weight=self.samples['weight'], bias=self.samples['bias'], eps=self.eps) def calc_sampled_param_num(self): assert 'weight' in self.samples.keys() assert 'bias' in self.samples.keys() return self.samples['weight'].numel() + self.samples['bias'].numel() def get_complexity(self, sequence_length): return sequence_length * self.sample_embed_dim
Cream/AutoFormer/model/module/layernorm_super.py/0
{ "file_path": "Cream/AutoFormer/model/module/layernorm_super.py", "repo_id": "Cream", "token_count": 607 }
255
""" Search cell """ import _init_paths import os import torch import json import numpy as np import lib.utils.genotypes as gt from tensorboardX import SummaryWriter from lib.models.model_test import ModelTest from lib.utils import utils from lib.config import AugmentConfig from lib.core.augment_function import validate # config config = AugmentConfig() # make apex optional if config.distributed: # DDP = torch.nn.parallel.DistributedDataParallel try: import apex from apex.parallel import DistributedDataParallel as DDP from apex import amp, optimizers from apex.fp16_utils import * except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to run this example.") # tensorboard writer = SummaryWriter(log_dir=os.path.join(config.path, "tb")) writer.add_text('config', config.as_markdown(), 0) logger = utils.get_logger(os.path.join(config.path, "{}.log".format(config.name))) if config.local_rank == 0: config.print_params(logger.info) if 'cifar' in config.dataset: from lib.datasets.cifar import get_augment_datasets elif 'imagenet' in config.dataset: from lib.datasets.imagenet import get_augment_datasets else: raise Exception("Not support dataser!") def main(): logger.info("Logger is set - training start") # set seed np.random.seed(config.seed) torch.manual_seed(config.seed) torch.cuda.manual_seed_all(config.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True if config.distributed: config.gpu = config.local_rank % torch.cuda.device_count() torch.cuda.set_device(config.gpu) # distributed init torch.distributed.init_process_group(backend='nccl', init_method=config.dist_url, world_size=config.world_size, rank=config.local_rank) config.world_size = torch.distributed.get_world_size() config.total_batch_size = config.world_size * config.batch_size else: config.total_batch_size = config.batch_size loaders, samplers = get_augment_datasets(config) train_loader, valid_loader = loaders train_sampler, valid_sampler = samplers file = open(config.cell_file, 'r') js = file.read() r_dict = json.loads(js) if config.local_rank == 0: logger.info(r_dict) file.close() genotypes_dict = {} for layer_idx, genotype in r_dict.items(): genotypes_dict[int(layer_idx)] = gt.from_str(genotype) model_main = ModelTest(genotypes_dict, config.model_type, config.res_stem, init_channel=config.init_channels, \ stem_multiplier=config.stem_multiplier, n_nodes=4, num_classes=config.n_classes) resume_state = torch.load(config.resume_path, map_location='cpu') model_main.load_state_dict(resume_state, strict=False) model_main = model_main.cuda() if config.distributed: model_main = DDP(model_main, delay_allreduce=True) top1, top5 = validate(valid_loader, model_main, 0, 0, writer, logger, config) if config.local_rank == 0: print("Final best Prec@1 = {:.4%}, Prec@5 = {:.4%}".format(top1, top5)) if __name__ == "__main__": main()
Cream/CDARTS/CDARTS/test.py/0
{ "file_path": "Cream/CDARTS/CDARTS/test.py", "repo_id": "Cream", "token_count": 1266 }
256
from six.moves import cPickle as pickle from .base import BaseFileHandler class PickleHandler(BaseFileHandler): def load_from_fileobj(self, file, **kwargs): return pickle.load(file, **kwargs) def load_from_path(self, filepath, **kwargs): return super(PickleHandler, self).load_from_path( filepath, mode='rb', **kwargs) def dump_to_str(self, obj, **kwargs): kwargs.setdefault('protocol', 2) return pickle.dumps(obj, **kwargs) def dump_to_fileobj(self, obj, file, **kwargs): kwargs.setdefault('protocol', 2) pickle.dump(obj, file, **kwargs) def dump_to_path(self, obj, filepath, **kwargs): super(PickleHandler, self).dump_to_path( obj, filepath, mode='wb', **kwargs)
Cream/CDARTS/CDARTS_detection/mmcv/fileio/handlers/pickle_handler.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/fileio/handlers/pickle_handler.py", "repo_id": "Cream", "token_count": 331 }
257
from torch.nn.parallel import DataParallel from .scatter_gather import scatter_kwargs class MMDataParallel(DataParallel): def scatter(self, inputs, kwargs, device_ids): return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
Cream/CDARTS/CDARTS_detection/mmcv/parallel/data_parallel.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/parallel/data_parallel.py", "repo_id": "Cream", "token_count": 88 }
258
from __future__ import division from math import cos, pi from .hook import Hook class LrUpdaterHook(Hook): def __init__(self, by_epoch=True, warmup=None, warmup_iters=0, warmup_ratio=0.1, **kwargs): # validate the "warmup" argument if warmup is not None: if warmup not in ['constant', 'linear', 'exp']: raise ValueError( '"{}" is not a supported type for warming up, valid types' ' are "constant" and "linear"'.format(warmup)) if warmup is not None: assert warmup_iters > 0, \ '"warmup_iters" must be a positive integer' assert 0 < warmup_ratio <= 1.0, \ '"warmup_ratio" must be in range (0,1]' self.by_epoch = by_epoch self.warmup = warmup self.warmup_iters = warmup_iters self.warmup_ratio = warmup_ratio self.base_lr = [] # initial lr for all param groups self.regular_lr = [] # expected lr if no warming up is performed def _set_lr(self, runner, lr_groups): for param_group, lr in zip(runner.optimizer.param_groups, lr_groups): param_group['lr'] = lr def get_lr(self, runner, base_lr): raise NotImplementedError def get_regular_lr(self, runner): return [self.get_lr(runner, _base_lr) for _base_lr in self.base_lr] def get_warmup_lr(self, cur_iters): if self.warmup == 'constant': warmup_lr = [_lr * self.warmup_ratio for _lr in self.regular_lr] elif self.warmup == 'linear': k = (1 - cur_iters / self.warmup_iters) * (1 - self.warmup_ratio) warmup_lr = [_lr * (1 - k) for _lr in self.regular_lr] elif self.warmup == 'exp': k = self.warmup_ratio**(1 - cur_iters / self.warmup_iters) warmup_lr = [_lr * k for _lr in self.regular_lr] return warmup_lr def before_run(self, runner): # NOTE: when resuming from a checkpoint, if 'initial_lr' is not saved, # it will be set according to the optimizer params for group in runner.optimizer.param_groups: group.setdefault('initial_lr', group['lr']) self.base_lr = [ group['initial_lr'] for group in runner.optimizer.param_groups ] def before_train_epoch(self, runner): if not self.by_epoch: return self.regular_lr = self.get_regular_lr(runner) self._set_lr(runner, self.regular_lr) def before_train_iter(self, runner): cur_iter = runner.iter if not self.by_epoch: self.regular_lr = self.get_regular_lr(runner) if self.warmup is None or cur_iter >= self.warmup_iters: self._set_lr(runner, self.regular_lr) else: warmup_lr = self.get_warmup_lr(cur_iter) self._set_lr(runner, warmup_lr) elif self.by_epoch: if self.warmup is None or cur_iter > self.warmup_iters: return elif cur_iter == self.warmup_iters: self._set_lr(runner, self.regular_lr) else: warmup_lr = self.get_warmup_lr(cur_iter) self._set_lr(runner, warmup_lr) class FixedLrUpdaterHook(LrUpdaterHook): def __init__(self, **kwargs): super(FixedLrUpdaterHook, self).__init__(**kwargs) def get_lr(self, runner, base_lr): return base_lr class StepLrUpdaterHook(LrUpdaterHook): def __init__(self, step, gamma=0.1, **kwargs): assert isinstance(step, (list, int)) if isinstance(step, list): for s in step: assert isinstance(s, int) and s > 0 elif isinstance(step, int): assert step > 0 else: raise TypeError('"step" must be a list or integer') self.step = step self.gamma = gamma super(StepLrUpdaterHook, self).__init__(**kwargs) def get_lr(self, runner, base_lr): progress = runner.epoch if self.by_epoch else runner.iter if isinstance(self.step, int): return base_lr * (self.gamma**(progress // self.step)) exp = len(self.step) for i, s in enumerate(self.step): if progress < s: exp = i break return base_lr * self.gamma**exp class ExpLrUpdaterHook(LrUpdaterHook): def __init__(self, gamma, **kwargs): self.gamma = gamma super(ExpLrUpdaterHook, self).__init__(**kwargs) def get_lr(self, runner, base_lr): progress = runner.epoch if self.by_epoch else runner.iter return base_lr * self.gamma**progress class PolyLrUpdaterHook(LrUpdaterHook): def __init__(self, power=1., min_lr=0., **kwargs): self.power = power self.min_lr = min_lr super(PolyLrUpdaterHook, self).__init__(**kwargs) def get_lr(self, runner, base_lr): if self.by_epoch: progress = runner.epoch max_progress = runner.max_epochs else: progress = runner.iter max_progress = runner.max_iters coeff = (1 - progress / max_progress)**self.power return (base_lr - self.min_lr) * coeff + self.min_lr class InvLrUpdaterHook(LrUpdaterHook): def __init__(self, gamma, power=1., **kwargs): self.gamma = gamma self.power = power super(InvLrUpdaterHook, self).__init__(**kwargs) def get_lr(self, runner, base_lr): progress = runner.epoch if self.by_epoch else runner.iter return base_lr * (1 + self.gamma * progress)**(-self.power) class CosineLrUpdaterHook(LrUpdaterHook): def __init__(self, target_lr=0.001, **kwargs): self.target_lr = target_lr super(CosineLrUpdaterHook, self).__init__(**kwargs) def get_lr(self, runner, base_lr): if self.by_epoch: progress = runner.epoch max_progress = runner.max_epochs else: progress = runner.iter max_progress = runner.max_iters return self.target_lr + 0.5 * (base_lr - self.target_lr) * \ (1 + cos(pi * (progress / max_progress)))
Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/lr_updater.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/runner/hooks/lr_updater.py", "repo_id": "Cream", "token_count": 3057 }
259
from .io import Cache, VideoReader, frames2video from .processing import convert_video, resize_video, cut_video, concat_video from .optflow import (flowread, flowwrite, quantize_flow, dequantize_flow, flow_warp) __all__ = [ 'Cache', 'VideoReader', 'frames2video', 'convert_video', 'resize_video', 'cut_video', 'concat_video', 'flowread', 'flowwrite', 'quantize_flow', 'dequantize_flow', 'flow_warp' ]
Cream/CDARTS/CDARTS_detection/mmcv/video/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmcv/video/__init__.py", "repo_id": "Cream", "token_count": 168 }
260
import torch from .max_iou_assigner import MaxIoUAssigner from ..geometry import bbox_overlaps class ApproxMaxIoUAssigner(MaxIoUAssigner): """Assign a corresponding gt bbox or background to each bbox. Each proposals will be assigned with `-1`, `0`, or a positive integer indicating the ground truth index. - -1: don't care - 0: negative sample, no assigned gt - positive integer: positive sample, index (1-based) of assigned gt Args: pos_iou_thr (float): IoU threshold for positive bboxes. neg_iou_thr (float or tuple): IoU threshold for negative bboxes. min_pos_iou (float): Minimum iou for a bbox to be considered as a positive bbox. Positive samples can have smaller IoU than pos_iou_thr due to the 4th step (assign max IoU sample to each gt). gt_max_assign_all (bool): Whether to assign all bboxes with the same highest overlap with some gt to that gt. ignore_iof_thr (float): IoF threshold for ignoring bboxes (if `gt_bboxes_ignore` is specified). Negative values mean not ignoring any bboxes. ignore_wrt_candidates (bool): Whether to compute the iof between `bboxes` and `gt_bboxes_ignore`, or the contrary. """ def __init__(self, pos_iou_thr, neg_iou_thr, min_pos_iou=.0, gt_max_assign_all=True, ignore_iof_thr=-1, ignore_wrt_candidates=True): self.pos_iou_thr = pos_iou_thr self.neg_iou_thr = neg_iou_thr self.min_pos_iou = min_pos_iou self.gt_max_assign_all = gt_max_assign_all self.ignore_iof_thr = ignore_iof_thr self.ignore_wrt_candidates = ignore_wrt_candidates def assign(self, approxs, squares, approxs_per_octave, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None): """Assign gt to approxs. This method assign a gt bbox to each group of approxs (bboxes), each group of approxs is represent by a base approx (bbox) and will be assigned with -1, 0, or a positive number. -1 means don't care, 0 means negative sample, positive number is the index (1-based) of assigned gt. The assignment is done in following steps, the order matters. 1. assign every bbox to -1 2. use the max IoU of each group of approxs to assign 2. assign proposals whose iou with all gts < neg_iou_thr to 0 3. for each bbox, if the iou with its nearest gt >= pos_iou_thr, assign it to that bbox 4. for each gt bbox, assign its nearest proposals (may be more than one) to itself Args: approxs (Tensor): Bounding boxes to be assigned, shape(approxs_per_octave*n, 4). squares (Tensor): Base Bounding boxes to be assigned, shape(n, 4). approxs_per_octave (int): number of approxs per octave gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4). gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are labelled as `ignored`, e.g., crowd boxes in COCO. gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ). Returns: :obj:`AssignResult`: The assign result. """ if squares.shape[0] == 0 or gt_bboxes.shape[0] == 0: raise ValueError('No gt or approxs') num_squares = squares.size(0) num_gts = gt_bboxes.size(0) # re-organize anchors by approxs_per_octave x num_squares approxs = torch.transpose( approxs.view(num_squares, approxs_per_octave, 4), 0, 1).contiguous().view(-1, 4) all_overlaps = bbox_overlaps(approxs, gt_bboxes) overlaps, _ = all_overlaps.view(approxs_per_octave, num_squares, num_gts).max(dim=0) overlaps = torch.transpose(overlaps, 0, 1) bboxes = squares[:, :4] if (self.ignore_iof_thr > 0) and (gt_bboxes_ignore is not None) and ( gt_bboxes_ignore.numel() > 0): if self.ignore_wrt_candidates: ignore_overlaps = bbox_overlaps(bboxes, gt_bboxes_ignore, mode='iof') ignore_max_overlaps, _ = ignore_overlaps.max(dim=1) else: ignore_overlaps = bbox_overlaps(gt_bboxes_ignore, bboxes, mode='iof') ignore_max_overlaps, _ = ignore_overlaps.max(dim=0) overlaps[:, ignore_max_overlaps > self.ignore_iof_thr] = -1 assign_result = self.assign_wrt_overlaps(overlaps, gt_labels) return assign_result
Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/assigners/approx_max_iou_assigner.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/bbox/assigners/approx_max_iou_assigner.py", "repo_id": "Cream", "token_count": 2455 }
261
from .class_names import (coco_classes, dataset_aliases, get_classes, imagenet_det_classes, imagenet_vid_classes, voc_classes) from .eval_hooks import DistEvalHook from .mean_ap import average_precision, eval_map, print_map_summary from .recall import (eval_recalls, plot_iou_recall, plot_num_recall, print_recall_summary) __all__ = [ 'voc_classes', 'imagenet_det_classes', 'imagenet_vid_classes', 'coco_classes', 'dataset_aliases', 'get_classes', 'DistEvalHook', 'average_precision', 'eval_map', 'print_map_summary', 'eval_recalls', 'print_recall_summary', 'plot_num_recall', 'plot_iou_recall' ]
Cream/CDARTS/CDARTS_detection/mmdet/core/evaluation/__init__.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/evaluation/__init__.py", "repo_id": "Cream", "token_count": 306 }
262
import torch import numpy as np from mmdet.ops import nms from ..bbox import bbox_mapping_back def merge_aug_proposals(aug_proposals, img_metas, rpn_test_cfg): """Merge augmented proposals (multiscale, flip, etc.) Args: aug_proposals (list[Tensor]): proposals from different testing schemes, shape (n, 5). Note that they are not rescaled to the original image size. img_metas (list[dict]): image info including "shape_scale" and "flip". rpn_test_cfg (dict): rpn test config. Returns: Tensor: shape (n, 4), proposals corresponding to original image scale. """ recovered_proposals = [] for proposals, img_info in zip(aug_proposals, img_metas): img_shape = img_info['img_shape'] scale_factor = img_info['scale_factor'] flip = img_info['flip'] _proposals = proposals.clone() _proposals[:, :4] = bbox_mapping_back(_proposals[:, :4], img_shape, scale_factor, flip) recovered_proposals.append(_proposals) aug_proposals = torch.cat(recovered_proposals, dim=0) merged_proposals, _ = nms(aug_proposals, rpn_test_cfg.nms_thr) scores = merged_proposals[:, 4] _, order = scores.sort(0, descending=True) num = min(rpn_test_cfg.max_num, merged_proposals.shape[0]) order = order[:num] merged_proposals = merged_proposals[order, :] return merged_proposals def merge_aug_bboxes(aug_bboxes, aug_scores, img_metas, rcnn_test_cfg): """Merge augmented detection bboxes and scores. Args: aug_bboxes (list[Tensor]): shape (n, 4*#class) aug_scores (list[Tensor] or None): shape (n, #class) img_shapes (list[Tensor]): shape (3, ). rcnn_test_cfg (dict): rcnn test config. Returns: tuple: (bboxes, scores) """ recovered_bboxes = [] for bboxes, img_info in zip(aug_bboxes, img_metas): img_shape = img_info[0]['img_shape'] scale_factor = img_info[0]['scale_factor'] flip = img_info[0]['flip'] bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip) recovered_bboxes.append(bboxes) bboxes = torch.stack(recovered_bboxes).mean(dim=0) if aug_scores is None: return bboxes else: scores = torch.stack(aug_scores).mean(dim=0) return bboxes, scores def merge_aug_scores(aug_scores): """Merge augmented bbox scores.""" if isinstance(aug_scores[0], torch.Tensor): return torch.mean(torch.stack(aug_scores), dim=0) else: return np.mean(aug_scores, axis=0) def merge_aug_masks(aug_masks, img_metas, rcnn_test_cfg, weights=None): """Merge augmented mask prediction. Args: aug_masks (list[ndarray]): shape (n, #class, h, w) img_shapes (list[ndarray]): shape (3, ). rcnn_test_cfg (dict): rcnn test config. Returns: tuple: (bboxes, scores) """ recovered_masks = [ mask if not img_info[0]['flip'] else mask[..., ::-1] for mask, img_info in zip(aug_masks, img_metas) ] if weights is None: merged_masks = np.mean(recovered_masks, axis=0) else: merged_masks = np.average( np.array(recovered_masks), axis=0, weights=np.array(weights)) return merged_masks
Cream/CDARTS/CDARTS_detection/mmdet/core/post_processing/merge_augs.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/core/post_processing/merge_augs.py", "repo_id": "Cream", "token_count": 1476 }
263
import os.path as osp import warnings import mmcv import numpy as np import pycocotools.mask as maskUtils from ..registry import PIPELINES @PIPELINES.register_module class LoadImageFromFile(object): def __init__(self, to_float32=False): self.to_float32 = to_float32 def __call__(self, results): if results['img_prefix'] is not None: filename = osp.join(results['img_prefix'], results['img_info']['filename']) else: filename = results['img_info']['filename'] img = mmcv.imread(filename) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape return results def __repr__(self): return self.__class__.__name__ + '(to_float32={})'.format( self.to_float32) @PIPELINES.register_module class LoadAnnotations(object): def __init__(self, with_bbox=True, with_label=True, with_mask=False, with_seg=False, poly2mask=True, skip_img_without_anno=True): self.with_bbox = with_bbox self.with_label = with_label self.with_mask = with_mask self.with_seg = with_seg self.poly2mask = poly2mask self.skip_img_without_anno = skip_img_without_anno def _load_bboxes(self, results): ann_info = results['ann_info'] results['gt_bboxes'] = ann_info['bboxes'] if len(results['gt_bboxes']) == 0 and self.skip_img_without_anno: if results['img_prefix'] is not None: file_path = osp.join(results['img_prefix'], results['img_info']['filename']) else: file_path = results['img_info']['filename'] warnings.warn( 'Skip the image "{}" that has no valid gt bbox'.format( file_path)) return None gt_bboxes_ignore = ann_info.get('bboxes_ignore', None) if gt_bboxes_ignore is not None: results['gt_bboxes_ignore'] = gt_bboxes_ignore results['bbox_fields'].append('gt_bboxes_ignore') results['bbox_fields'].append('gt_bboxes') return results def _load_labels(self, results): results['gt_labels'] = results['ann_info']['labels'] return results def _poly2mask(self, mask_ann, img_h, img_w): if isinstance(mask_ann, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = maskUtils.frPyObjects(mask_ann, img_h, img_w) rle = maskUtils.merge(rles) elif isinstance(mask_ann['counts'], list): # uncompressed RLE rle = maskUtils.frPyObjects(mask_ann, img_h, img_w) else: # rle rle = mask_ann mask = maskUtils.decode(rle) return mask def _load_masks(self, results): h, w = results['img_info']['height'], results['img_info']['width'] gt_masks = results['ann_info']['masks'] if self.poly2mask: gt_masks = [self._poly2mask(mask, h, w) for mask in gt_masks] results['gt_masks'] = gt_masks results['mask_fields'].append('gt_masks') return results def _load_semantic_seg(self, results): results['gt_semantic_seg'] = mmcv.imread( osp.join(results['seg_prefix'], results['ann_info']['seg_map']), flag='unchanged').squeeze() return results def __call__(self, results): if self.with_bbox: results = self._load_bboxes(results) if results is None: return None if self.with_label: results = self._load_labels(results) if self.with_mask: results = self._load_masks(results) if self.with_seg: results = self._load_semantic_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += ('(with_bbox={}, with_label={}, with_mask={},' ' with_seg={})').format(self.with_bbox, self.with_label, self.with_mask, self.with_seg) return repr_str @PIPELINES.register_module class LoadProposals(object): def __init__(self, num_max_proposals=None): self.num_max_proposals = num_max_proposals def __call__(self, results): proposals = results['proposals'] if proposals.shape[1] not in (4, 5): raise AssertionError( 'proposals should have shapes (n, 4) or (n, 5), ' 'but found {}'.format(proposals.shape)) proposals = proposals[:, :4] if self.num_max_proposals is not None: proposals = proposals[:self.num_max_proposals] if len(proposals) == 0: proposals = np.array([0, 0, 0, 0], dtype=np.float32) results['proposals'] = proposals results['bbox_fields'].append('proposals') return results def __repr__(self): return self.__class__.__name__ + '(num_max_proposals={})'.format( self.num_max_proposals)
Cream/CDARTS/CDARTS_detection/mmdet/datasets/pipelines/loading.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/datasets/pipelines/loading.py", "repo_id": "Cream", "token_count": 2656 }
264
import numpy as np import torch.nn as nn from mmcv.cnn import normal_init from .anchor_head import AnchorHead from ..registry import HEADS from ..utils import bias_init_with_prob, ConvModule from ..bbox_heads.auto_head.build_head import build_search_head @HEADS.register_module class RetinaHead(AnchorHead): def __init__(self, num_classes, in_channels, stacked_convs=4, octave_base_scale=4, scales_per_octave=3, search_head=None, conv_cfg=None, norm_cfg=None, **kwargs): self.stacked_convs = stacked_convs self.search_head = search_head self.octave_base_scale = octave_base_scale self.scales_per_octave = scales_per_octave self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg octave_scales = np.array( [2**(i / scales_per_octave) for i in range(scales_per_octave)]) anchor_scales = octave_scales * octave_base_scale super(RetinaHead, self).__init__( num_classes, in_channels, anchor_scales=anchor_scales, **kwargs) def _init_layers(self): self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() if self.search_head is not None: if 'cls' in self.search_head.branch: self.cls_convs = build_search_head(self.search_head) else: for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule(chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) if 'reg' in self.search_head.branch: self.reg_convs = build_search_head(self.search_head) else: for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.reg_convs.append( ConvModule(chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) else: for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule(chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule(chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.retina_cls = nn.Conv2d( self.feat_channels, self.num_anchors * self.cls_out_channels, 3, padding=1) self.retina_reg = nn.Conv2d( self.feat_channels, self.num_anchors * 4, 3, padding=1) def init_weights(self): for m in self.cls_convs.modules(): if isinstance(m, nn.Conv2d): normal_init(m, std=0.01) for m in self.reg_convs.modules(): if isinstance(m, nn.Conv2d): normal_init(m, std=0.01) bias_cls = bias_init_with_prob(0.01) normal_init(self.retina_cls, std=0.01, bias=bias_cls) normal_init(self.retina_reg, std=0.01) def forward_single(self, x): cls_feat = x reg_feat = x if self.search_head is not None: if 'cls' in self.search_head.branch: cls_feat = self.cls_convs(cls_feat)[0] else: for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) if 'reg' in self.search_head.branch: reg_feat = self.reg_convs(reg_feat)[0] else: for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) else: for cls_conv in self.cls_convs: cls_feat = cls_conv(cls_feat) for reg_conv in self.reg_convs: reg_feat = reg_conv(reg_feat) cls_score = self.retina_cls(cls_feat) bbox_pred = self.retina_reg(reg_feat) return cls_score, bbox_pred
Cream/CDARTS/CDARTS_detection/mmdet/models/anchor_heads/retina_head.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/anchor_heads/retina_head.py", "repo_id": "Cream", "token_count": 2445 }
265
import torch import torch.nn as nn from torch.nn import functional as F from timm.models import resume_checkpoint from .builder import * from ..registry import BACKBONES IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) def hard_sigmoid(x, inplace: bool = False): if inplace: return x.add_(3.).clamp_(0., 6.).div_(6.) else: return F.relu6(x + 3.) / 6. class HardSigmoid(nn.Module): def __init__(self, inplace: bool = False): super(HardSigmoid, self).__init__() self.inplace = inplace def forward(self, x): return hard_sigmoid(x, self.inplace) class SelectAdaptivePool2d(nn.Module): """Selectable global pooling layer with dynamic input kernel size """ def __init__(self, output_size=1, pool_type='avg', flatten=False): super(SelectAdaptivePool2d, self).__init__() self.output_size = output_size self.pool_type = pool_type self.flatten = flatten if pool_type == 'avgmax': self.pool = AdaptiveAvgMaxPool2d(output_size) elif pool_type == 'catavgmax': self.pool = AdaptiveCatAvgMaxPool2d(output_size) elif pool_type == 'max': self.pool = nn.AdaptiveMaxPool2d(output_size) else: if pool_type != 'avg': assert False, 'Invalid pool type: %s' % pool_type self.pool = nn.AdaptiveAvgPool2d(output_size) def forward(self, x): x = self.pool(x) if self.flatten: x = x.flatten(1) return x def feat_mult(self): return adaptive_pool_feat_mult(self.pool_type) def __repr__(self): return self.__class__.__name__ + ' (' \ + 'output_size=' + str(self.output_size) \ + ', pool_type=' + self.pool_type + ')' def create_conv2d(in_chs, out_chs, kernel_size, **kwargs): """ Select a 2d convolution implementation based on arguments Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d. Used extensively by EfficientNet, MobileNetv3 and related networks. """ assert 'groups' not in kwargs # only use 'depthwise' bool arg if isinstance(kernel_size, list): assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently # We're going to use only lists for defining the MixedConv2d kernel groups, # ints, tuples, other iterables will continue to pass to normal conv and specify h, w. m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs) else: depthwise = kwargs.pop('depthwise', False) groups = out_chs if depthwise else 1 if 'num_experts' in kwargs and kwargs['num_experts'] > 0: m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs) else: m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs) return m def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } def conv_bn(inp, oup, stride, groups=1, act_fn=nn.ReLU): return nn.Sequential( nn.Conv2d(inp, oup, 3, stride, 1, bias=False, groups=groups), nn.BatchNorm2d(oup), act_fn(inplace=True) ) def conv_1x1_bn(inp, oup, groups=1, act_fn=nn.ReLU): return nn.Sequential( nn.Conv2d(inp, oup, 1, 1, 0, bias=False, groups=groups), nn.BatchNorm2d(oup), act_fn(inplace=True) ) default_cfgs = { 'mobilenetv3_large_075': _cfg(url=''), 'mobilenetv3_large_100': _cfg( interpolation='bicubic', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'), 'mobilenetv3_small_075': _cfg(url=''), 'mobilenetv3_small_100': _cfg(url=''), 'mobilenetv3_rw': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', interpolation='bicubic'), 'tf_mobilenetv3_large_075': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_minimal_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_075': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_100': _cfg( url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_minimal_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), } _DEBUG = False class ChildNet(nn.Module): def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True, channel_multiplier=1.0, pad_type='', act_layer=nn.ReLU, drop_rate=0., drop_path_rate=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, global_pool='avg', pool_bn=False, zero_gamma=False): super(ChildNet, self).__init__() norm_layer = nn.SyncBatchNorm self.num_classes = num_classes self.num_features = num_features self.drop_rate = drop_rate self._in_chs = in_chans self.pool_bn = pool_bn # Stem stem_size = round_channels(stem_size, channel_multiplier) self.conv_stem = create_conv2d(self._in_chs, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size, **norm_kwargs) self.act1 = act_layer(inplace=True) self._in_chs = stem_size # Middle stages (IR/ER/DS Blocks) builder = ChildNetBuilder( channel_multiplier, 8, None, 32, pad_type, act_layer, se_kwargs, norm_layer, norm_kwargs, drop_path_rate, verbose=_DEBUG) self.blocks = nn.Sequential(*builder(self._in_chs, block_args)) # self.blocks = builder(self._in_chs, block_args) self._in_chs = builder.in_chs # Head + Pooling self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = create_conv2d(self._in_chs, self.num_features, 1, padding=pad_type, bias=head_bias) self.act2 = act_layer(inplace=True) # Classifier self.classifier = nn.Linear(self.num_features * self.global_pool.feat_mult(), self.num_classes) if pool_bn: self.pool_bn = nn.BatchNorm1d(1) efficientnet_init_weights(self, zero_gamma=zero_gamma) def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.num_classes = num_classes self.classifier = nn.Linear( self.num_features * self.global_pool.feat_mult(), num_classes) if self.num_classes else None def forward_features(self, x): # architecture = [[0], [], [], [], [], [0]] x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) outputs = [] # 24, 40, 96, 320 block_idxs = [1, 2, 4, 6] for i, block in enumerate(self.blocks): x = block(x) if i in block_idxs: outputs.append(x) # x = self.blocks(x) return tuple(outputs) def forward(self, x): x = self.forward_features(x) return x def modify_block_args(block_args, kernel_size, exp_ratio): # kernel_size: 3,5,7 # exp_ratio: 4,6 block_type = block_args['block_type'] # each type of block has different valid arguments, fill accordingly if block_type == 'cn': block_args['kernel_size'] = kernel_size elif block_type == 'er': block_args['exp_kernel_size'] = kernel_size else: block_args['dw_kernel_size'] = kernel_size if block_type == 'ir' or block_type == 'er': block_args['exp_ratio'] = exp_ratio return block_args def _gen_childnet(**kwargs): # 390M arch_list = [[0], [3, 4, 2, 0], [5, 2, 4, 0], [4, 3, 2, 2], [1, 3, 0, 1], [2, 4, 4, 2], [0]] # 290M # arch_list = [[0], [3], [3, 3], [3, 1, 3], [3, 3, 3, 3], [3, 3, 3], [0]] choices = {'kernel_size': [3, 5, 7], 'exp_ratio': [4, 6]} choices_list = [[x,y] for x in choices['kernel_size'] for y in choices['exp_ratio']] num_features = 1280 # act_layer = HardSwish act_layer = Swish arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_se0.25'], # stage 1, 112x112 in ['ir_r1_k3_s2_e4_c24_se0.25', 'ir_r1_k3_s1_e4_c24_se0.25', 'ir_r1_k3_s1_e4_c24_se0.25', 'ir_r1_k3_s1_e4_c24_se0.25'], # stage 2, 56x56 in ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k5_s1_e4_c40_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25'], # stage 3, 28x28 in ['ir_r1_k3_s2_e6_c80_se0.25', 'ir_r1_k3_s1_e4_c80_se0.25', 'ir_r1_k3_s1_e4_c80_se0.25', 'ir_r2_k3_s1_e4_c80_se0.25'], # stage 4, 14x14in ['ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25'], # stage 5, 14x14in ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s1_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25'], # stage 6, 7x7 in ['cn_r1_k1_s1_c960_se0.25'], ] # arch_def = [ # # stage 0, 112x112 in # ['ds_r1_k3_s1_e1_c16_se0.25'], # # stage 1, 112x112 in # ['ir_r1_k3_s2_e4_c24_se0.25'], # # stage 2, 56x56 in # ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r1_k5_s2_e4_c40_se0.25'], # # stage 3, 28x28 in # ['ir_r1_k3_s2_e6_c80_se0.25', 'ir_r1_k3_s2_e6_c80_se0.25', 'ir_r1_k3_s2_e6_c80_se0.25'], # # stage 4, 14x14in # ['ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', 'ir_r1_k3_s1_e6_c96_se0.25', # 'ir_r1_k3_s1_e6_c96_se0.25'], # # stage 5, 14x14in # ['ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25', 'ir_r1_k5_s2_e6_c192_se0.25'], # # stage 6, 7x7 in # ['cn_r1_k1_s1_c960_se0.25'], # ] new_arch = [] # change to child arch_def for i, (layer_choice, layer_arch) in enumerate(zip(arch_list, arch_def)): if len(layer_arch) == 1: new_arch.append(layer_arch) continue else: new_layer = [] for j, (block_choice, block_arch) in enumerate(zip(layer_choice, layer_arch)): kernel_size, exp_ratio = choices_list[block_choice] elements = block_arch.split('_') block_arch = block_arch.replace(elements[2], 'k{}'.format(str(kernel_size))) block_arch = block_arch.replace(elements[4], 'e{}'.format(str(exp_ratio))) new_layer.append(block_arch) new_arch.append(new_layer) model_kwargs = dict( block_args=decode_arch_def(new_arch), num_features=num_features, stem_size=16, # channel_multiplier=channel_multiplier, norm_kwargs=resolve_bn_args(kwargs), act_layer=act_layer, se_kwargs=dict(act_layer=nn.ReLU, gate_fn=hard_sigmoid, reduce_mid=True, divisor=8), num_classes=1000, drop_rate=0.2, drop_path_rate=0.2, global_pool='avg' ) model = ChildNet(**model_kwargs) return model @BACKBONES.register_module class SSDMobilenetV3(nn.Module): def __init__(self, input_size, width_mult=1.0, activation_type='relu', single_scale=False): super(SSDMobilenetV3, self).__init__() self.input_size = input_size self.single_scale = single_scale self.width_mult = width_mult self.backbone = _gen_childnet() # del self.backbone.blocks[3][2] # del self.backbone.blocks[3][4] #for m in self.backbone.modules(): # if isinstance(m, nn.BatchNorm2d): # m.eval() # m.weight.requires_grad = False # m.bias.requires_grad = False self.last_channel = self.backbone.blocks[-1][-1].conv.out_channels # self.backbone.blocks[-1][-1] # building last several layers self.extra_convs = [] if not self.single_scale: self.extra_convs.append(conv_1x1_bn(self.last_channel, 1280, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(1280, 256, act_fn=Swish)) self.extra_convs.append(conv_bn(256, 256, 2, groups=256, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(256, 512, groups=1, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(512, 128, act_fn=Swish)) self.extra_convs.append(conv_bn(128, 128, 2, groups=128, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(128, 256, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(256, 128, act_fn=Swish)) self.extra_convs.append(conv_bn(128, 128, 2, groups=128, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(128, 256, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(256, 64, act_fn=Swish)) self.extra_convs.append(conv_bn(64, 64, 2, groups=64, act_fn=Swish)) self.extra_convs.append(conv_1x1_bn(64, 128, act_fn=Swish)) self.extra_convs = nn.Sequential(*self.extra_convs) def init_weights(self, pretrained=None): if pretrained: state_dict = torch.load(pretrained) state_dict = state_dict['state_dict'] # resume_checkpoint(self.backbone, pretrained) self.backbone.load_state_dict(state_dict, strict=True) else: print("No pretrained model!") return def forward(self, x): outputs = self.backbone(x) x = outputs[-1] outs = [] for i, conv in enumerate(self.extra_convs): x = conv(x) if i % 3 == 0: outs.append(x) if self.single_scale: # outs.append(x) return outputs return tuple(outs)
Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/mobilenetv3.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/backbones/mobilenetv3.py", "repo_id": "Cream", "token_count": 8351 }
266
from __future__ import division import torch import torch.nn as nn from .base import BaseDetector from .test_mixins import RPNTestMixin from .. import builder from ..registry import DETECTORS from mmdet.core import (build_assigner, bbox2roi, bbox2result, build_sampler, merge_aug_masks) @DETECTORS.register_module class CascadeRCNN(BaseDetector, RPNTestMixin): def __init__(self, num_stages, backbone, neck=None, shared_head=None, rpn_head=None, bbox_roi_extractor=None, bbox_head=None, mask_roi_extractor=None, mask_head=None, train_cfg=None, test_cfg=None, pretrained=None): assert bbox_roi_extractor is not None assert bbox_head is not None super(CascadeRCNN, self).__init__() self.num_stages = num_stages self.backbone = builder.build_backbone(backbone) if neck is not None: self.neck = builder.build_neck(neck) if rpn_head is not None: self.rpn_head = builder.build_head(rpn_head) if shared_head is not None: self.shared_head = builder.build_shared_head(shared_head) if bbox_head is not None: self.bbox_roi_extractor = nn.ModuleList() self.bbox_head = nn.ModuleList() if not isinstance(bbox_roi_extractor, list): bbox_roi_extractor = [ bbox_roi_extractor for _ in range(num_stages) ] if not isinstance(bbox_head, list): bbox_head = [bbox_head for _ in range(num_stages)] assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages for roi_extractor, head in zip(bbox_roi_extractor, bbox_head): self.bbox_roi_extractor.append( builder.build_roi_extractor(roi_extractor)) self.bbox_head.append(builder.build_head(head)) if mask_head is not None: self.mask_head = nn.ModuleList() if not isinstance(mask_head, list): mask_head = [mask_head for _ in range(num_stages)] assert len(mask_head) == self.num_stages for head in mask_head: self.mask_head.append(builder.build_head(head)) if mask_roi_extractor is not None: self.share_roi_extractor = False self.mask_roi_extractor = nn.ModuleList() if not isinstance(mask_roi_extractor, list): mask_roi_extractor = [ mask_roi_extractor for _ in range(num_stages) ] assert len(mask_roi_extractor) == self.num_stages for roi_extractor in mask_roi_extractor: self.mask_roi_extractor.append( builder.build_roi_extractor(roi_extractor)) else: self.share_roi_extractor = True self.mask_roi_extractor = self.bbox_roi_extractor self.train_cfg = train_cfg self.test_cfg = test_cfg self.init_weights(pretrained=pretrained) @property def with_rpn(self): return hasattr(self, 'rpn_head') and self.rpn_head is not None def init_weights(self, pretrained=None): super(CascadeRCNN, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) if self.with_neck: if isinstance(self.neck, nn.Sequential): for m in self.neck: m.init_weights() else: self.neck.init_weights() if self.with_rpn: self.rpn_head.init_weights() if self.with_shared_head: self.shared_head.init_weights(pretrained=pretrained) for i in range(self.num_stages): if self.with_bbox: self.bbox_roi_extractor[i].init_weights() self.bbox_head[i].init_weights() if self.with_mask: if not self.share_roi_extractor: self.mask_roi_extractor[i].init_weights() self.mask_head[i].init_weights() def extract_feat(self, img): x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def forward_train(self, img, img_meta, gt_bboxes, gt_labels, gt_bboxes_ignore=None, gt_masks=None, proposals=None): x = self.extract_feat(img) losses = dict() if self.with_rpn: rpn_outs = self.rpn_head(x) rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta, self.train_cfg.rpn) rpn_losses = self.rpn_head.loss( *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) losses.update(rpn_losses) proposal_cfg = self.train_cfg.get('rpn_proposal', self.test_cfg.rpn) proposal_inputs = rpn_outs + (img_meta, proposal_cfg) proposal_list = self.rpn_head.get_bboxes(*proposal_inputs) else: proposal_list = proposals for i in range(self.num_stages): self.current_stage = i rcnn_train_cfg = self.train_cfg.rcnn[i] lw = self.train_cfg.stage_loss_weights[i] # assign gts and sample proposals sampling_results = [] if self.with_bbox or self.with_mask: bbox_assigner = build_assigner(rcnn_train_cfg.assigner) bbox_sampler = build_sampler( rcnn_train_cfg.sampler, context=self) num_imgs = img.size(0) if gt_bboxes_ignore is None: gt_bboxes_ignore = [None for _ in range(num_imgs)] for j in range(num_imgs): assign_result = bbox_assigner.assign( proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j], gt_labels[j]) sampling_result = bbox_sampler.sample( assign_result, proposal_list[j], gt_bboxes[j], gt_labels[j], feats=[lvl_feat[j][None] for lvl_feat in x]) sampling_results.append(sampling_result) # bbox head forward and loss bbox_roi_extractor = self.bbox_roi_extractor[i] bbox_head = self.bbox_head[i] rois = bbox2roi([res.bboxes for res in sampling_results]) bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) cls_score, bbox_pred = bbox_head(bbox_feats) bbox_targets = bbox_head.get_target(sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg) loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets) for name, value in loss_bbox.items(): losses['s{}.{}'.format(i, name)] = ( value * lw if 'loss' in name else value) # mask head forward and loss if self.with_mask: if not self.share_roi_extractor: mask_roi_extractor = self.mask_roi_extractor[i] pos_rois = bbox2roi( [res.pos_bboxes for res in sampling_results]) mask_feats = mask_roi_extractor( x[:mask_roi_extractor.num_inputs], pos_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) else: # reuse positive bbox feats pos_inds = [] device = bbox_feats.device for res in sampling_results: pos_inds.append( torch.ones( res.pos_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds.append( torch.zeros( res.neg_bboxes.shape[0], device=device, dtype=torch.uint8)) pos_inds = torch.cat(pos_inds) mask_feats = bbox_feats[pos_inds] mask_head = self.mask_head[i] mask_pred = mask_head(mask_feats) mask_targets = mask_head.get_target(sampling_results, gt_masks, rcnn_train_cfg) pos_labels = torch.cat( [res.pos_gt_labels for res in sampling_results]) loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels) for name, value in loss_mask.items(): losses['s{}.{}'.format(i, name)] = ( value * lw if 'loss' in name else value) # refine bboxes if i < self.num_stages - 1: pos_is_gts = [res.pos_is_gt for res in sampling_results] roi_labels = bbox_targets[0] # bbox_targets is a tuple with torch.no_grad(): proposal_list = bbox_head.refine_bboxes( rois, roi_labels, bbox_pred, pos_is_gts, img_meta) return losses def simple_test(self, img, img_meta, proposals=None, rescale=False): x = self.extract_feat(img) proposal_list = self.simple_test_rpn( x, img_meta, self.test_cfg.rpn) if proposals is None else proposals img_shape = img_meta[0]['img_shape'] ori_shape = img_meta[0]['ori_shape'] scale_factor = img_meta[0]['scale_factor'] # "ms" in variable names means multi-stage ms_bbox_result = {} ms_segm_result = {} ms_scores = [] rcnn_test_cfg = self.test_cfg.rcnn rois = bbox2roi(proposal_list) for i in range(self.num_stages): bbox_roi_extractor = self.bbox_roi_extractor[i] bbox_head = self.bbox_head[i] bbox_feats = bbox_roi_extractor( x[:len(bbox_roi_extractor.featmap_strides)], rois) if self.with_shared_head: bbox_feats = self.shared_head(bbox_feats) cls_score, bbox_pred = bbox_head(bbox_feats) ms_scores.append(cls_score) if self.test_cfg.keep_all_stages: det_bboxes, det_labels = bbox_head.get_det_bboxes( rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) bbox_result = bbox2result(det_bboxes, det_labels, bbox_head.num_classes) ms_bbox_result['stage{}'.format(i)] = bbox_result if self.with_mask: mask_roi_extractor = self.mask_roi_extractor[i] mask_head = self.mask_head[i] if det_bboxes.shape[0] == 0: segm_result = [ [] for _ in range(mask_head.num_classes - 1) ] else: _bboxes = ( det_bboxes[:, :4] * scale_factor if rescale else det_bboxes) mask_rois = bbox2roi([_bboxes]) mask_feats = mask_roi_extractor( x[:len(mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats, i) mask_pred = mask_head(mask_feats) segm_result = mask_head.get_seg_masks( mask_pred, _bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor, rescale) ms_segm_result['stage{}'.format(i)] = segm_result if i < self.num_stages - 1: bbox_label = cls_score.argmax(dim=1) rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred, img_meta[0]) cls_score = sum(ms_scores) / self.num_stages det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes( rois, cls_score, bbox_pred, img_shape, scale_factor, rescale=rescale, cfg=rcnn_test_cfg) bbox_result = bbox2result(det_bboxes, det_labels, self.bbox_head[-1].num_classes) ms_bbox_result['ensemble'] = bbox_result if self.with_mask: if det_bboxes.shape[0] == 0: segm_result = [ [] for _ in range(self.mask_head[-1].num_classes - 1) ] else: _bboxes = ( det_bboxes[:, :4] * scale_factor if rescale else det_bboxes) mask_rois = bbox2roi([_bboxes]) aug_masks = [] for i in range(self.num_stages): mask_roi_extractor = self.mask_roi_extractor[i] mask_feats = mask_roi_extractor( x[:len(mask_roi_extractor.featmap_strides)], mask_rois) if self.with_shared_head: mask_feats = self.shared_head(mask_feats) mask_pred = self.mask_head[i](mask_feats) aug_masks.append(mask_pred.sigmoid().cpu().numpy()) merged_masks = merge_aug_masks(aug_masks, [img_meta] * self.num_stages, self.test_cfg.rcnn) segm_result = self.mask_head[-1].get_seg_masks( merged_masks, _bboxes, det_labels, rcnn_test_cfg, ori_shape, scale_factor, rescale) ms_segm_result['ensemble'] = segm_result if not self.test_cfg.keep_all_stages: if self.with_mask: results = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: results = ms_bbox_result['ensemble'] else: if self.with_mask: results = { stage: (ms_bbox_result[stage], ms_segm_result[stage]) for stage in ms_bbox_result } else: results = ms_bbox_result return results def aug_test(self, img, img_meta, proposals=None, rescale=False): raise NotImplementedError def show_result(self, data, result, img_norm_cfg, **kwargs): if self.with_mask: ms_bbox_result, ms_segm_result = result if isinstance(ms_bbox_result, dict): result = (ms_bbox_result['ensemble'], ms_segm_result['ensemble']) else: if isinstance(result, dict): result = result['ensemble'] super(CascadeRCNN, self).show_result(data, result, img_norm_cfg, **kwargs)
Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/cascade_rcnn.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/detectors/cascade_rcnn.py", "repo_id": "Cream", "token_count": 9343 }
267
import numpy as np import torch import torch.nn as nn from .utils import weighted_loss from ..registry import LOSSES @weighted_loss def balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5, reduction='mean'): assert beta > 0 assert pred.size() == target.size() and target.numel() > 0 diff = torch.abs(pred - target) b = np.e**(gamma / alpha) - 1 loss = torch.where( diff < beta, alpha / b * (b * diff + 1) * torch.log(b * diff / beta + 1) - alpha * diff, gamma * diff + gamma / b - alpha * beta) return loss @LOSSES.register_module class BalancedL1Loss(nn.Module): """Balanced L1 Loss arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019) """ def __init__(self, alpha=0.5, gamma=1.5, beta=1.0, reduction='mean', loss_weight=1.0): super(BalancedL1Loss, self).__init__() self.alpha = alpha self.gamma = gamma self.beta = beta self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * balanced_l1_loss( pred, target, weight, alpha=self.alpha, gamma=self.gamma, beta=self.beta, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_bbox
Cream/CDARTS/CDARTS_detection/mmdet/models/losses/balanced_l1_loss.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/losses/balanced_l1_loss.py", "repo_id": "Cream", "token_count": 1001 }
268
# -------------------------------------------------------- # Copyright (c) 2019 Jianyuan Guo ([email protected]) # -------------------------------------------------------- # from .darts_neck_search import DartsNeck from .hit_neck_search import HitNeck def build_search_neck(cfg): """Build neck model from config dict. """ if cfg is not None: cfg_ = cfg.copy() neck_type = cfg_.pop('type') if neck_type == 'DARTS': raise NotImplementedError # return DartsNeck(**cfg_) elif neck_type == 'HitDet': return HitNeck(**cfg_) else: raise KeyError('Invalid neck type {}'.fromat(neck_type)) else: return None
Cream/CDARTS/CDARTS_detection/mmdet/models/necks/auto_neck/build_neck.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/necks/auto_neck/build_neck.py", "repo_id": "Cream", "token_count": 287 }
269
import logging import torch.nn as nn from mmcv.cnn import constant_init, kaiming_init from mmcv.runner import load_checkpoint from mmdet.core import auto_fp16 from ..backbones import ResNet, make_res_layer from ..registry import SHARED_HEADS @SHARED_HEADS.register_module class ResLayer(nn.Module): def __init__(self, depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, with_cp=False, dcn=None): super(ResLayer, self).__init__() self.norm_eval = norm_eval self.norm_cfg = norm_cfg self.stage = stage self.fp16_enabled = False block, stage_blocks = ResNet.arch_settings[depth] stage_block = stage_blocks[stage] planes = 64 * 2**stage inplanes = 64 * 2**(stage - 1) * block.expansion res_layer = make_res_layer( block, inplanes, planes, stage_block, stride=stride, dilation=dilation, style=style, with_cp=with_cp, norm_cfg=self.norm_cfg, dcn=dcn) self.add_module('layer{}'.format(stage + 1), res_layer) def init_weights(self, pretrained=None): if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None') @auto_fp16() def forward(self, x): res_layer = getattr(self, 'layer{}'.format(self.stage + 1)) out = res_layer(x) return out def train(self, mode=True): super(ResLayer, self).train(mode) if self.norm_eval: for m in self.modules(): if isinstance(m, nn.BatchNorm2d): m.eval()
Cream/CDARTS/CDARTS_detection/mmdet/models/shared_heads/res_layer.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/models/shared_heads/res_layer.py", "repo_id": "Cream", "token_count": 1165 }
270
from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup( name='deform_conv', ext_modules=[ CUDAExtension('deform_conv_cuda', [ 'src/deform_conv_cuda.cpp', 'src/deform_conv_cuda_kernel.cu', ]), CUDAExtension( 'deform_pool_cuda', ['src/deform_pool_cuda.cpp', 'src/deform_pool_cuda_kernel.cu']), ], cmdclass={'build_ext': BuildExtension})
Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/setup.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/dcn/setup.py", "repo_id": "Cream", "token_count": 229 }
271
import numpy as np import torch from . import nms_cuda, nms_cpu from .soft_nms_cpu import soft_nms_cpu def nms(dets, iou_thr, device_id=None): """Dispatch to either CPU or GPU NMS implementations. The input can be either a torch tensor or numpy array. GPU NMS will be used if the input is a gpu tensor or device_id is specified, otherwise CPU NMS will be used. The returned type will always be the same as inputs. Arguments: dets (torch.Tensor or np.ndarray): bboxes with scores. iou_thr (float): IoU threshold for NMS. device_id (int, optional): when `dets` is a numpy array, if `device_id` is None, then cpu nms is used, otherwise gpu_nms will be used. Returns: tuple: kept bboxes and indice, which is always the same data type as the input. """ # convert dets (tensor or numpy array) to tensor if isinstance(dets, torch.Tensor): is_numpy = False dets_th = dets elif isinstance(dets, np.ndarray): is_numpy = True device = 'cpu' if device_id is None else 'cuda:{}'.format(device_id) dets_th = torch.from_numpy(dets).to(device) else: raise TypeError( 'dets must be either a Tensor or numpy array, but got {}'.format( type(dets))) # execute cpu or cuda nms if dets_th.shape[0] == 0: inds = dets_th.new_zeros(0, dtype=torch.long) else: if dets_th.is_cuda: inds = nms_cuda.nms(dets_th, iou_thr) else: inds = nms_cpu.nms(dets_th, iou_thr) if is_numpy: inds = inds.cpu().numpy() return dets[inds, :], inds def soft_nms(dets, iou_thr, method='linear', sigma=0.5, min_score=1e-3): if isinstance(dets, torch.Tensor): is_tensor = True dets_np = dets.detach().cpu().numpy() elif isinstance(dets, np.ndarray): is_tensor = False dets_np = dets else: raise TypeError( 'dets must be either a Tensor or numpy array, but got {}'.format( type(dets))) method_codes = {'linear': 1, 'gaussian': 2} if method not in method_codes: raise ValueError('Invalid method for SoftNMS: {}'.format(method)) new_dets, inds = soft_nms_cpu( dets_np, iou_thr, method=method_codes[method], sigma=sigma, min_score=min_score) if is_tensor: return dets.new_tensor(new_dets), dets.new_tensor( inds, dtype=torch.long) else: return new_dets.astype(np.float32), inds.astype(np.int64)
Cream/CDARTS/CDARTS_detection/mmdet/ops/nms/nms_wrapper.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/nms/nms_wrapper.py", "repo_id": "Cream", "token_count": 1208 }
272
#include <ATen/ATen.h> #include <THC/THCAtomics.cuh> #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \ i += blockDim.x * gridDim.x) #define THREADS_PER_BLOCK 1024 inline int GET_BLOCKS(const int N) { int optimal_block_num = (N + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK; int max_block_num = 65000; return min(optimal_block_num, max_block_num); } template <typename scalar_t> __device__ scalar_t bilinear_interpolate(const scalar_t *bottom_data, const int height, const int width, scalar_t y, scalar_t x) { // deal with cases that inverse elements are out of feature map boundary if (y < -1.0 || y > height || x < -1.0 || x > width) { return 0; } if (y <= 0) y = 0; if (x <= 0) x = 0; int y_low = (int)y; int x_low = (int)x; int y_high; int x_high; if (y_low >= height - 1) { y_high = y_low = height - 1; y = (scalar_t)y_low; } else { y_high = y_low + 1; } if (x_low >= width - 1) { x_high = x_low = width - 1; x = (scalar_t)x_low; } else { x_high = x_low + 1; } scalar_t ly = y - y_low; scalar_t lx = x - x_low; scalar_t hy = 1. - ly; scalar_t hx = 1. - lx; // do bilinear interpolation scalar_t lt = bottom_data[y_low * width + x_low]; scalar_t rt = bottom_data[y_low * width + x_high]; scalar_t lb = bottom_data[y_high * width + x_low]; scalar_t rb = bottom_data[y_high * width + x_high]; scalar_t w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; scalar_t val = (w1 * lt + w2 * rt + w3 * lb + w4 * rb); return val; } template <typename scalar_t> __global__ void ROIAlignForward(const int nthreads, const scalar_t *bottom_data, const scalar_t *bottom_rois, const scalar_t spatial_scale, const int sample_num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, scalar_t *top_data) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the aligned output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const scalar_t *offset_bottom_rois = bottom_rois + n * 5; int roi_batch_ind = offset_bottom_rois[0]; scalar_t roi_start_w = offset_bottom_rois[1] * spatial_scale; scalar_t roi_start_h = offset_bottom_rois[2] * spatial_scale; scalar_t roi_end_w = (offset_bottom_rois[3] + 1) * spatial_scale; scalar_t roi_end_h = (offset_bottom_rois[4] + 1) * spatial_scale; // Force malformed ROIs to be 1x1 scalar_t roi_width = fmaxf((scalar_t)roi_end_w - roi_start_w, 0.); scalar_t roi_height = fmaxf((scalar_t)roi_end_h - roi_start_h, 0.); scalar_t bin_size_h = roi_height / pooled_height; scalar_t bin_size_w = roi_width / pooled_width; const scalar_t *offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height * width; int sample_num_h = (sample_num > 0) ? sample_num : ceil(roi_height / pooled_height); // e.g., = 2 int sample_num_w = (sample_num > 0) ? sample_num : ceil(roi_width / pooled_width); scalar_t output_val = 0; for (int iy = 0; iy < sample_num_h; iy++) { const scalar_t y = roi_start_h + ph * bin_size_h + (scalar_t)(iy + scalar_t(.5f)) * bin_size_h / (scalar_t)(sample_num_h); for (int ix = 0; ix < sample_num_w; ix++) { const scalar_t x = roi_start_w + pw * bin_size_w + (scalar_t)(ix + scalar_t(.5f)) * bin_size_w / (scalar_t)(sample_num_w); scalar_t val = bilinear_interpolate<scalar_t>(offset_bottom_data, height, width, y, x); output_val += val; } } output_val /= (sample_num_h * sample_num_w); top_data[index] = output_val; } } int ROIAlignForwardLaucher(const at::Tensor features, const at::Tensor rois, const float spatial_scale, const int sample_num, const int channels, const int height, const int width, const int num_rois, const int pooled_height, const int pooled_width, at::Tensor output) { const int output_size = num_rois * pooled_height * pooled_width * channels; AT_DISPATCH_FLOATING_TYPES_AND_HALF( features.scalar_type(), "ROIAlignLaucherForward", ([&] { const scalar_t *bottom_data = features.data<scalar_t>(); const scalar_t *rois_data = rois.data<scalar_t>(); scalar_t *top_data = output.data<scalar_t>(); ROIAlignForward<scalar_t> <<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>( output_size, bottom_data, rois_data, scalar_t(spatial_scale), sample_num, channels, height, width, pooled_height, pooled_width, top_data); })); THCudaCheck(cudaGetLastError()); return 1; } template <typename scalar_t> __device__ void bilinear_interpolate_gradient(const int height, const int width, scalar_t y, scalar_t x, scalar_t &w1, scalar_t &w2, scalar_t &w3, scalar_t &w4, int &x_low, int &x_high, int &y_low, int &y_high) { // deal with cases that inverse elements are out of feature map boundary if (y < -1.0 || y > height || x < -1.0 || x > width) { w1 = w2 = w3 = w4 = 0.; x_low = x_high = y_low = y_high = -1; return; } if (y <= 0) y = 0; if (x <= 0) x = 0; y_low = (int)y; x_low = (int)x; if (y_low >= height - 1) { y_high = y_low = height - 1; y = (scalar_t)y_low; } else { y_high = y_low + 1; } if (x_low >= width - 1) { x_high = x_low = width - 1; x = (scalar_t)x_low; } else { x_high = x_low + 1; } scalar_t ly = y - y_low; scalar_t lx = x - x_low; scalar_t hy = 1. - ly; scalar_t hx = 1. - lx; w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; return; } template <typename scalar_t> __global__ void ROIAlignBackward( const int nthreads, const scalar_t *top_diff, const scalar_t *bottom_rois, const scalar_t spatial_scale, const int sample_num, const int channels, const int height, const int width, const int pooled_height, const int pooled_width, scalar_t *bottom_diff) { CUDA_1D_KERNEL_LOOP(index, nthreads) { // (n, c, ph, pw) is an element in the aligned output int pw = index % pooled_width; int ph = (index / pooled_width) % pooled_height; int c = (index / pooled_width / pooled_height) % channels; int n = index / pooled_width / pooled_height / channels; const scalar_t *offset_bottom_rois = bottom_rois + n * 5; int roi_batch_ind = offset_bottom_rois[0]; scalar_t roi_start_w = offset_bottom_rois[1] * spatial_scale; scalar_t roi_start_h = offset_bottom_rois[2] * spatial_scale; scalar_t roi_end_w = (offset_bottom_rois[3] + 1) * spatial_scale; scalar_t roi_end_h = (offset_bottom_rois[4] + 1) * spatial_scale; // Force malformed ROIs to be 1x1 scalar_t roi_width = fmaxf((scalar_t)roi_end_w - roi_start_w, 0.); scalar_t roi_height = fmaxf((scalar_t)roi_end_h - roi_start_h, 0.); scalar_t bin_size_h = roi_height / pooled_height; scalar_t bin_size_w = roi_width / pooled_width; scalar_t *offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height * width; int offset_top = (n * channels + c) * pooled_height * pooled_width + ph * pooled_width + pw; scalar_t offset_top_diff = top_diff[offset_top]; int sample_num_h = (sample_num > 0) ? sample_num : ceil(roi_height / pooled_height); // e.g., = 2 int sample_num_w = (sample_num > 0) ? sample_num : ceil(roi_width / pooled_width); const scalar_t count = (scalar_t)(sample_num_h * sample_num_w); for (int iy = 0; iy < sample_num_h; iy++) { const scalar_t y = roi_start_h + ph * bin_size_h + (scalar_t)(iy + .5f) * bin_size_h / (scalar_t)(sample_num_h); for (int ix = 0; ix < sample_num_w; ix++) { const scalar_t x = roi_start_w + pw * bin_size_w + (scalar_t)(ix + .5f) * bin_size_w / (scalar_t)(sample_num_w); scalar_t w1, w2, w3, w4; int x_low, x_high, y_low, y_high; bilinear_interpolate_gradient<scalar_t>( height, width, y, x, w1, w2, w3, w4, x_low, x_high, y_low, y_high); scalar_t g1 = offset_top_diff * w1 / count; scalar_t g2 = offset_top_diff * w2 / count; scalar_t g3 = offset_top_diff * w3 / count; scalar_t g4 = offset_top_diff * w4 / count; if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { atomicAdd(offset_bottom_diff + y_low * width + x_low, g1); atomicAdd(offset_bottom_diff + y_low * width + x_high, g2); atomicAdd(offset_bottom_diff + y_high * width + x_low, g3); atomicAdd(offset_bottom_diff + y_high * width + x_high, g4); } } } } } int ROIAlignBackwardLaucher(const at::Tensor top_grad, const at::Tensor rois, const float spatial_scale, const int sample_num, const int channels, const int height, const int width, const int num_rois, const int pooled_height, const int pooled_width, at::Tensor bottom_grad) { const int output_size = num_rois * pooled_height * pooled_width * channels; AT_DISPATCH_FLOATING_TYPES_AND_HALF( top_grad.scalar_type(), "ROIAlignLaucherBackward", ([&] { const scalar_t *top_diff = top_grad.data<scalar_t>(); const scalar_t *rois_data = rois.data<scalar_t>(); scalar_t *bottom_diff = bottom_grad.data<scalar_t>(); if (sizeof(scalar_t) == sizeof(double)) { fprintf(stderr, "double is not supported\n"); exit(-1); } ROIAlignBackward<scalar_t> <<<GET_BLOCKS(output_size), THREADS_PER_BLOCK>>>( output_size, top_diff, rois_data, spatial_scale, sample_num, channels, height, width, pooled_height, pooled_width, bottom_diff); })); THCudaCheck(cudaGetLastError()); return 1; }
Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_align/src/roi_align_kernel.cu/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/roi_align/src/roi_align_kernel.cu", "repo_id": "Cream", "token_count": 5579 }
273
// modify from // https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/csrc/SigmoidFocalLoss.h #include <torch/extension.h> at::Tensor SigmoidFocalLoss_forward_cuda(const at::Tensor &logits, const at::Tensor &targets, const int num_classes, const float gamma, const float alpha); at::Tensor SigmoidFocalLoss_backward_cuda(const at::Tensor &logits, const at::Tensor &targets, const at::Tensor &d_losses, const int num_classes, const float gamma, const float alpha); // Interface for Python at::Tensor SigmoidFocalLoss_forward(const at::Tensor &logits, const at::Tensor &targets, const int num_classes, const float gamma, const float alpha) { if (logits.type().is_cuda()) { return SigmoidFocalLoss_forward_cuda(logits, targets, num_classes, gamma, alpha); } } at::Tensor SigmoidFocalLoss_backward(const at::Tensor &logits, const at::Tensor &targets, const at::Tensor &d_losses, const int num_classes, const float gamma, const float alpha) { if (logits.type().is_cuda()) { return SigmoidFocalLoss_backward_cuda(logits, targets, d_losses, num_classes, gamma, alpha); } } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward", &SigmoidFocalLoss_forward, "SigmoidFocalLoss forward (CUDA)"); m.def("backward", &SigmoidFocalLoss_backward, "SigmoidFocalLoss backward (CUDA)"); }
Cream/CDARTS/CDARTS_detection/mmdet/ops/sigmoid_focal_loss/src/sigmoid_focal_loss.cpp/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/mmdet/ops/sigmoid_focal_loss/src/sigmoid_focal_loss.cpp", "repo_id": "Cream", "token_count": 1138 }
274
import argparse from collections import OrderedDict import mmcv import torch arch_settings = {50: (3, 4, 6, 3), 101: (3, 4, 23, 3)} def convert_bn(blobs, state_dict, caffe_name, torch_name, converted_names): # detectron replace bn with affine channel layer state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name + '_b']) state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name + '_s']) bn_size = state_dict[torch_name + '.weight'].size() state_dict[torch_name + '.running_mean'] = torch.zeros(bn_size) state_dict[torch_name + '.running_var'] = torch.ones(bn_size) converted_names.add(caffe_name + '_b') converted_names.add(caffe_name + '_s') def convert_conv_fc(blobs, state_dict, caffe_name, torch_name, converted_names): state_dict[torch_name + '.weight'] = torch.from_numpy(blobs[caffe_name + '_w']) converted_names.add(caffe_name + '_w') if caffe_name + '_b' in blobs: state_dict[torch_name + '.bias'] = torch.from_numpy(blobs[caffe_name + '_b']) converted_names.add(caffe_name + '_b') def convert(src, dst, depth): """Convert keys in detectron pretrained ResNet models to pytorch style.""" # load arch_settings if depth not in arch_settings: raise ValueError('Only support ResNet-50 and ResNet-101 currently') block_nums = arch_settings[depth] # load caffe model caffe_model = mmcv.load(src, encoding='latin1') blobs = caffe_model['blobs'] if 'blobs' in caffe_model else caffe_model # convert to pytorch style state_dict = OrderedDict() converted_names = set() convert_conv_fc(blobs, state_dict, 'conv1', 'conv1', converted_names) convert_bn(blobs, state_dict, 'res_conv1_bn', 'bn1', converted_names) for i in range(1, len(block_nums) + 1): for j in range(block_nums[i - 1]): if j == 0: convert_conv_fc(blobs, state_dict, 'res{}_{}_branch1'.format(i + 1, j), 'layer{}.{}.downsample.0'.format(i, j), converted_names) convert_bn(blobs, state_dict, 'res{}_{}_branch1_bn'.format(i + 1, j), 'layer{}.{}.downsample.1'.format(i, j), converted_names) for k, letter in enumerate(['a', 'b', 'c']): convert_conv_fc(blobs, state_dict, 'res{}_{}_branch2{}'.format(i + 1, j, letter), 'layer{}.{}.conv{}'.format(i, j, k + 1), converted_names) convert_bn(blobs, state_dict, 'res{}_{}_branch2{}_bn'.format(i + 1, j, letter), 'layer{}.{}.bn{}'.format(i, j, k + 1), converted_names) # check if all layers are converted for key in blobs: if key not in converted_names: print('Not Convert: {}'.format(key)) # save checkpoint checkpoint = dict() checkpoint['state_dict'] = state_dict torch.save(checkpoint, dst) def main(): parser = argparse.ArgumentParser(description='Convert model keys') parser.add_argument('src', help='src detectron model path') parser.add_argument('dst', help='save path') parser.add_argument('depth', type=int, help='ResNet model depth') args = parser.parse_args() convert(args.src, args.dst, args.depth) if __name__ == '__main__': main()
Cream/CDARTS/CDARTS_detection/tools/detectron2pytorch.py/0
{ "file_path": "Cream/CDARTS/CDARTS_detection/tools/detectron2pytorch.py", "repo_id": "Cream", "token_count": 1966 }
275
import numpy as np import torch from torch.utils.data import Dataset from tqdm import trange import os from pycocotools.coco import COCO from pycocotools import mask from torchvision import transforms from dataloaders import custom_transforms as tr from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True class COCOSegmentation(Dataset): NUM_CLASSES = 21 CAT_LIST = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72] def __init__(self, args, base_dir, split='train', year='2017'): super().__init__() ann_file = os.path.join(base_dir, 'annotations/instances_{}{}.json'.format(split, year)) ids_file = os.path.join(base_dir, 'annotations/{}_ids_{}.pth'.format(split, year)) # self.img_dir = os.path.join(base_dir, 'images/{}{}'.format(split, year)) self.img_dir = os.path.join(base_dir, '{}{}'.format(split, year)) self.split = split self.coco = COCO(ann_file) self.coco_mask = mask if os.path.exists(ids_file): self.ids = torch.load(ids_file) else: ids = list(self.coco.imgs.keys()) self.ids = self._preprocess(ids, ids_file) self.args = args def __getitem__(self, index): _img, _target = self._make_img_gt_point_pair(index) sample = {'image': _img, 'label': _target} if self.split == "train": return self.transform_tr(sample) elif self.split == 'val': return self.transform_val(sample) def _make_img_gt_point_pair(self, index): coco = self.coco img_id = self.ids[index] img_metadata = coco.loadImgs(img_id)[0] path = img_metadata['file_name'] _img = Image.open(os.path.join(self.img_dir, path)).convert('RGB') cocotarget = coco.loadAnns(coco.getAnnIds(imgIds=img_id)) _target = Image.fromarray(self._gen_seg_mask( cocotarget, img_metadata['height'], img_metadata['width'])) return _img, _target def _preprocess(self, ids, ids_file): print("Preprocessing mask, this will take a while. " + \ "But don't worry, it only run once for each split.") tbar = trange(len(ids)) new_ids = [] for i in tbar: img_id = ids[i] cocotarget = self.coco.loadAnns(self.coco.getAnnIds(imgIds=img_id)) img_metadata = self.coco.loadImgs(img_id)[0] mask = self._gen_seg_mask(cocotarget, img_metadata['height'], img_metadata['width']) # more than 1k pixels if (mask > 0).sum() > 1000: new_ids.append(img_id) tbar.set_description('Doing: {}/{}, got {} qualified images'. \ format(i, len(ids), len(new_ids))) print('Found number of qualified images: ', len(new_ids)) torch.save(new_ids, ids_file) return new_ids def _gen_seg_mask(self, target, h, w): mask = np.zeros((h, w), dtype=np.uint8) coco_mask = self.coco_mask for instance in target: rle = coco_mask.frPyObjects(instance['segmentation'], h, w) m = coco_mask.decode(rle) cat = instance['category_id'] if cat in self.CAT_LIST: c = self.CAT_LIST.index(cat) else: continue if len(m.shape) < 3: mask[:, :] += (mask == 0) * (m * c) else: mask[:, :] += (mask == 0) * (((np.sum(m, axis=2)) > 0) * c).astype(np.uint8) return mask def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) def __len__(self): return len(self.ids) if __name__ == "__main__": from dataloaders import custom_transforms as tr from dataloaders.dataloader_utils import decode_segmap from torch.utils.data import DataLoader from torchvision import transforms import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser() args = parser.parse_args() args.base_size = 513 args.crop_size = 513 coco_val = COCOSegmentation(args, split='val', year='2017') dataloader = DataLoader(coco_val, batch_size=4, shuffle=True, num_workers=0) for ii, sample in enumerate(dataloader): for jj in range(sample["image"].size()[0]): img = sample['image'].numpy() gt = sample['label'].numpy() tmp = np.array(gt[jj]).astype(np.uint8) segmap = decode_segmap(tmp, dataset='coco') img_tmp = np.transpose(img[jj], axes=[1, 2, 0]) img_tmp *= (0.229, 0.224, 0.225) img_tmp += (0.485, 0.456, 0.406) img_tmp *= 255.0 img_tmp = img_tmp.astype(np.uint8) plt.figure() plt.title('display') plt.subplot(211) plt.imshow(img_tmp) plt.subplot(212) plt.imshow(segmap) if ii == 1: break plt.show(block=True)
Cream/CDARTS/CDARTS_segmentation/dataloaders/datasets/coco.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/dataloaders/datasets/coco.py", "repo_id": "Cream", "token_count": 2863 }
276
# ------------------------------------------------------------------------------ # Builds model. # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import torch from .backbone import resnet, mobilenet, mnasnet, hrnet, xception from .meta_arch import DeepLabV3, DeepLabV3Plus, PanopticDeepLab from .loss import RegularCE, OhemCE, DeepLabCE, L1Loss, MSELoss, CrossEntropyLoss def build_segmentation_model_from_cfg(config): """Builds segmentation model with specific configuration. Args: config: the configuration. Returns: A nn.Module segmentation model. """ model_map = { 'deeplabv3': DeepLabV3, 'deeplabv3plus': DeepLabV3Plus, 'panoptic_deeplab': PanopticDeepLab, } model_cfg = { 'deeplabv3': dict( replace_stride_with_dilation=config.MODEL.BACKBONE.DILATION, in_channels=config.MODEL.DECODER.IN_CHANNELS, feature_key=config.MODEL.DECODER.FEATURE_KEY, decoder_channels=config.MODEL.DECODER.DECODER_CHANNELS, atrous_rates=config.MODEL.DECODER.ATROUS_RATES, num_classes=config.DATASET.NUM_CLASSES, semantic_loss=build_loss_from_cfg(config.LOSS.SEMANTIC), semantic_loss_weight=config.LOSS.SEMANTIC.WEIGHT, ), 'deeplabv3plus': dict( replace_stride_with_dilation=config.MODEL.BACKBONE.DILATION, in_channels=config.MODEL.DECODER.IN_CHANNELS, feature_key=config.MODEL.DECODER.FEATURE_KEY, low_level_channels=config.MODEL.DEEPLABV3PLUS.LOW_LEVEL_CHANNELS, low_level_key=config.MODEL.DEEPLABV3PLUS.LOW_LEVEL_KEY, low_level_channels_project=config.MODEL.DEEPLABV3PLUS.LOW_LEVEL_CHANNELS_PROJECT, decoder_channels=config.MODEL.DECODER.DECODER_CHANNELS, atrous_rates=config.MODEL.DECODER.ATROUS_RATES, num_classes=config.DATASET.NUM_CLASSES, semantic_loss=build_loss_from_cfg(config.LOSS.SEMANTIC), semantic_loss_weight=config.LOSS.SEMANTIC.WEIGHT, ), 'panoptic_deeplab': dict( replace_stride_with_dilation=config.MODEL.BACKBONE.DILATION, in_channels=config.MODEL.DECODER.IN_CHANNELS, feature_key=config.MODEL.DECODER.FEATURE_KEY, low_level_channels=config.MODEL.PANOPTIC_DEEPLAB.LOW_LEVEL_CHANNELS, low_level_key=config.MODEL.PANOPTIC_DEEPLAB.LOW_LEVEL_KEY, low_level_channels_project=config.MODEL.PANOPTIC_DEEPLAB.LOW_LEVEL_CHANNELS_PROJECT, decoder_channels=config.MODEL.DECODER.DECODER_CHANNELS, atrous_rates=config.MODEL.DECODER.ATROUS_RATES, num_classes=config.DATASET.NUM_CLASSES, has_instance=config.MODEL.PANOPTIC_DEEPLAB.INSTANCE.ENABLE, instance_low_level_channels_project=config.MODEL.PANOPTIC_DEEPLAB.INSTANCE.LOW_LEVEL_CHANNELS_PROJECT, instance_decoder_channels=config.MODEL.PANOPTIC_DEEPLAB.INSTANCE.DECODER_CHANNELS, instance_head_channels=config.MODEL.PANOPTIC_DEEPLAB.INSTANCE.HEAD_CHANNELS, instance_aspp_channels=config.MODEL.PANOPTIC_DEEPLAB.INSTANCE.ASPP_CHANNELS, instance_num_classes=config.MODEL.PANOPTIC_DEEPLAB.INSTANCE.NUM_CLASSES, instance_class_key=config.MODEL.PANOPTIC_DEEPLAB.INSTANCE.CLASS_KEY, semantic_loss=build_loss_from_cfg(config.LOSS.SEMANTIC), semantic_loss_weight=config.LOSS.SEMANTIC.WEIGHT, center_loss=build_loss_from_cfg(config.LOSS.CENTER), center_loss_weight=config.LOSS.CENTER.WEIGHT, offset_loss=build_loss_from_cfg(config.LOSS.OFFSET), offset_loss_weight=config.LOSS.OFFSET.WEIGHT, ), } if config.MODEL.BACKBONE.META == 'resnet': backbone = resnet.__dict__[config.MODEL.BACKBONE.NAME]( pretrained=config.MODEL.BACKBONE.PRETRAINED, replace_stride_with_dilation=model_cfg[config.MODEL.META_ARCHITECTURE]['replace_stride_with_dilation'] ) elif config.MODEL.BACKBONE.META == 'mobilenet_v2': backbone = mobilenet.__dict__[config.MODEL.BACKBONE.NAME]( pretrained=config.MODEL.BACKBONE.PRETRAINED, ) elif config.MODEL.BACKBONE.META == 'mnasnet': backbone = mnasnet.__dict__[config.MODEL.BACKBONE.NAME]( pretrained=config.MODEL.BACKBONE.PRETRAINED, ) elif config.MODEL.BACKBONE.META == 'hrnet': backbone = hrnet.__dict__[config.MODEL.BACKBONE.NAME]( pretrained=config.MODEL.BACKBONE.PRETRAINED, ) elif config.MODEL.BACKBONE.META == 'xception': backbone = xception.__dict__[config.MODEL.BACKBONE.NAME]( pretrained=config.MODEL.BACKBONE.PRETRAINED, replace_stride_with_dilation=model_cfg[config.MODEL.META_ARCHITECTURE]['replace_stride_with_dilation'] ) else: raise ValueError('Unknown meta backbone {}, please first implement it.'.format(config.MODEL.BACKBONE.META)) model = model_map[config.MODEL.META_ARCHITECTURE]( backbone, **model_cfg[config.MODEL.META_ARCHITECTURE] ) # set batchnorm momentum for module in model.modules(): if isinstance(module, torch.nn.BatchNorm2d): module.momentum = config.MODEL.BN_MOMENTUM return model def build_loss_from_cfg(config): """Builds loss function with specific configuration. Args: config: the configuration. Returns: A nn.Module loss. """ if config.NAME == 'cross_entropy': # return CrossEntropyLoss(ignore_index=config.IGNORE, reduction='mean') return RegularCE(ignore_label=config.IGNORE) elif config.NAME == 'ohem': return OhemCE(ignore_label=config.IGNORE, threshold=config.THRESHOLD, min_kept=config.MIN_KEPT) elif config.NAME == 'hard_pixel_mining': return DeepLabCE(ignore_label=config.IGNORE, top_k_percent_pixels=config.TOP_K_PERCENT) elif config.NAME == 'mse': return MSELoss(reduction=config.REDUCTION) elif config.NAME == 'l1': return L1Loss(reduction=config.REDUCTION) else: raise ValueError('Unknown loss type: {}'.format(config.NAME))
Cream/CDARTS/CDARTS_segmentation/segmentation/model/build.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/build.py", "repo_id": "Cream", "token_count": 2938 }
277
# ------------------------------------------------------------------------------ # Post-processing to get instance and panoptic segmentation results. # Written by Bowen Cheng ([email protected]) # ------------------------------------------------------------------------------ import torch import torch.nn.functional as F from .semantic_post_processing import get_semantic_segmentation __all__ = ['find_instance_center', 'get_instance_segmentation', 'get_panoptic_segmentation'] def find_instance_center(ctr_hmp, threshold=0.1, nms_kernel=3, top_k=None): """ Find the center points from the center heatmap. Arguments: ctr_hmp: A Tensor of shape [N, 1, H, W] of raw center heatmap output, where N is the batch size, for consistent, we only support N=1. threshold: A Float, threshold applied to center heatmap score. nms_kernel: An Integer, NMS max pooling kernel size. top_k: An Integer, top k centers to keep. Returns: A Tensor of shape [K, 2] where K is the number of center points. The order of second dim is (y, x). """ if ctr_hmp.size(0) != 1: raise ValueError('Only supports inference for batch size = 1') # thresholding, setting values below threshold to -1 ctr_hmp = F.threshold(ctr_hmp, threshold, -1) # NMS nms_padding = (nms_kernel - 1) // 2 ctr_hmp_max_pooled = F.max_pool2d(ctr_hmp, kernel_size=nms_kernel, stride=1, padding=nms_padding) ctr_hmp[ctr_hmp != ctr_hmp_max_pooled] = -1 # squeeze first two dimensions ctr_hmp = ctr_hmp.squeeze() assert len(ctr_hmp.size()) == 2, 'Something is wrong with center heatmap dimension.' # find non-zero elements ctr_all = torch.nonzero(ctr_hmp > 0) if top_k is None: return ctr_all elif ctr_all.size(0) < top_k: return ctr_all else: # find top k centers. top_k_scores, _ = torch.topk(torch.flatten(ctr_hmp), top_k) return torch.nonzero(ctr_hmp > top_k_scores[-1]) def group_pixels(ctr, offsets): """ Gives each pixel in the image an instance id. Arguments: ctr: A Tensor of shape [K, 2] where K is the number of center points. The order of second dim is (y, x). offsets: A Tensor of shape [N, 2, H, W] of raw offset output, where N is the batch size, for consistent, we only support N=1. The order of second dim is (offset_y, offset_x). Returns: A Tensor of shape [1, H, W] (to be gathered by distributed data parallel). """ if offsets.size(0) != 1: raise ValueError('Only supports inference for batch size = 1') offsets = offsets.squeeze(0) height, width = offsets.size()[1:] # generates a coordinate map, where each location is the coordinate of that loc y_coord = torch.arange(height, dtype=offsets.dtype, device=offsets.device).repeat(1, width, 1).transpose(1, 2) x_coord = torch.arange(width, dtype=offsets.dtype, device=offsets.device).repeat(1, height, 1) coord = torch.cat((y_coord, x_coord), dim=0) ctr_loc = coord + offsets ctr_loc = ctr_loc.reshape((2, height * width)).transpose(1, 0) # ctr: [K, 2] -> [K, 1, 2] # ctr_loc = [H*W, 2] -> [1, H*W, 2] ctr = ctr.unsqueeze(1) ctr_loc = ctr_loc.unsqueeze(0) # distance: [K, H*W] distance = torch.norm(ctr - ctr_loc, dim=-1) # finds center with minimum distance at each location, offset by 1, to reserve id=0 for stuff instance_id = torch.argmin(distance, dim=0).reshape((1, height, width)) + 1 return instance_id def get_instance_segmentation(sem_seg, ctr_hmp, offsets, thing_list, threshold=0.1, nms_kernel=3, top_k=None, thing_seg=None): """ Post-processing for instance segmentation, gets class agnostic instance id map. Arguments: sem_seg: A Tensor of shape [1, H, W], predicted semantic label. ctr_hmp: A Tensor of shape [N, 1, H, W] of raw center heatmap output, where N is the batch size, for consistent, we only support N=1. offsets: A Tensor of shape [N, 2, H, W] of raw offset output, where N is the batch size, for consistent, we only support N=1. The order of second dim is (offset_y, offset_x). thing_list: A List of thing class id. threshold: A Float, threshold applied to center heatmap score. nms_kernel: An Integer, NMS max pooling kernel size. top_k: An Integer, top k centers to keep. thing_seg: A Tensor of shape [1, H, W], predicted foreground mask, if not provided, inference from semantic prediction. Returns: A Tensor of shape [1, H, W] (to be gathered by distributed data parallel). A Tensor of shape [1, K, 2] where K is the number of center points. The order of second dim is (y, x). """ if thing_seg is None: # gets foreground segmentation thing_seg = torch.zeros_like(sem_seg) for thing_class in thing_list: thing_seg[sem_seg == thing_class] = 1 ctr = find_instance_center(ctr_hmp, threshold=threshold, nms_kernel=nms_kernel, top_k=top_k) if ctr.size(0) == 0: return torch.zeros_like(sem_seg), ctr.unsqueeze(0) ins_seg = group_pixels(ctr, offsets) return thing_seg * ins_seg, ctr.unsqueeze(0) def merge_semantic_and_instance(sem_seg, ins_seg, label_divisor, thing_list, stuff_area, void_label): """ Post-processing for panoptic segmentation, by merging semantic segmentation label and class agnostic instance segmentation label. Arguments: sem_seg: A Tensor of shape [1, H, W], predicted semantic label. ins_seg: A Tensor of shape [1, H, W], predicted instance label. label_divisor: An Integer, used to convert panoptic id = semantic id * label_divisor + instance_id. thing_list: A List of thing class id. stuff_area: An Integer, remove stuff whose area is less tan stuff_area. void_label: An Integer, indicates the region has no confident prediction. Returns: A Tensor of shape [1, H, W] (to be gathered by distributed data parallel). Raises: ValueError, if batch size is not 1. """ # In case thing mask does not align with semantic prediction pan_seg = torch.zeros_like(sem_seg) + void_label thing_seg = ins_seg > 0 semantic_thing_seg = torch.zeros_like(sem_seg) for thing_class in thing_list: semantic_thing_seg[sem_seg == thing_class] = 1 # keep track of instance id for each class class_id_tracker = {} # paste thing by majority voting instance_ids = torch.unique(ins_seg) for ins_id in instance_ids: if ins_id == 0: continue # Make sure only do majority voting within semantic_thing_seg thing_mask = (ins_seg == ins_id) & (semantic_thing_seg == 1) if torch.nonzero(thing_mask).size(0) == 0: continue class_id, _ = torch.mode(sem_seg[thing_mask].view(-1, )) if class_id.item() in class_id_tracker: new_ins_id = class_id_tracker[class_id.item()] else: class_id_tracker[class_id.item()] = 1 new_ins_id = 1 class_id_tracker[class_id.item()] += 1 pan_seg[thing_mask] = class_id * label_divisor + new_ins_id # paste stuff to unoccupied area class_ids = torch.unique(sem_seg) for class_id in class_ids: if class_id.item() in thing_list: # thing class continue # calculate stuff area stuff_mask = (sem_seg == class_id) & (~thing_seg) area = torch.nonzero(stuff_mask).size(0) if area >= stuff_area: pan_seg[stuff_mask] = class_id * label_divisor return pan_seg def get_panoptic_segmentation(sem, ctr_hmp, offsets, thing_list, label_divisor, stuff_area, void_label, threshold=0.1, nms_kernel=3, top_k=None, foreground_mask=None): """ Post-processing for panoptic segmentation. Arguments: sem: A Tensor of shape [N, C, H, W] of raw semantic output, where N is the batch size, for consistent, we only support N=1. Or, a processed Tensor of shape [1, H, W]. ctr_hmp: A Tensor of shape [N, 1, H, W] of raw center heatmap output, where N is the batch size, for consistent, we only support N=1. offsets: A Tensor of shape [N, 2, H, W] of raw offset output, where N is the batch size, for consistent, we only support N=1. The order of second dim is (offset_y, offset_x). thing_list: A List of thing class id. label_divisor: An Integer, used to convert panoptic id = semantic id * label_divisor + instance_id. stuff_area: An Integer, remove stuff whose area is less tan stuff_area. void_label: An Integer, indicates the region has no confident prediction. threshold: A Float, threshold applied to center heatmap score. nms_kernel: An Integer, NMS max pooling kernel size. top_k: An Integer, top k centers to keep. foreground_mask: A Tensor of shape [N, 2, H, W] of raw foreground mask, where N is the batch size, we only support N=1. Or, a processed Tensor of shape [1, H, W]. Returns: A Tensor of shape [1, H, W] (to be gathered by distributed data parallel), int64. Raises: ValueError, if batch size is not 1. """ if sem.dim() != 4 and sem.dim() != 3: raise ValueError('Semantic prediction with un-supported dimension: {}.'.format(sem.dim())) if sem.dim() == 4 and sem.size(0) != 1: raise ValueError('Only supports inference for batch size = 1') if ctr_hmp.size(0) != 1: raise ValueError('Only supports inference for batch size = 1') if offsets.size(0) != 1: raise ValueError('Only supports inference for batch size = 1') if foreground_mask is not None: if foreground_mask.dim() != 4 and foreground_mask.dim() != 3: raise ValueError('Foreground prediction with un-supported dimension: {}.'.format(sem.dim())) if sem.dim() == 4: semantic = get_semantic_segmentation(sem) else: semantic = sem if foreground_mask is not None: if foreground_mask.dim() == 4: thing_seg = get_semantic_segmentation(foreground_mask) else: thing_seg = foreground_mask else: thing_seg = None instance, center = get_instance_segmentation(semantic, ctr_hmp, offsets, thing_list, threshold=threshold, nms_kernel=nms_kernel, top_k=top_k, thing_seg=thing_seg) panoptic = merge_semantic_and_instance(semantic, instance, label_divisor, thing_list, stuff_area, void_label) return panoptic, center
Cream/CDARTS/CDARTS_segmentation/segmentation/model/post_processing/instance_post_processing.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/segmentation/model/post_processing/instance_post_processing.py", "repo_id": "Cream", "token_count": 4375 }
278
import os import cv2 cv2.setNumThreads(0) import torch import numpy as np from random import shuffle import torch.utils.data as data class BaseDataset(data.Dataset): def __init__(self, setting, split_name, preprocess=None, file_length=None): super(BaseDataset, self).__init__() self._split_name = split_name self._img_path = setting['img_root'] self._gt_path = setting['gt_root'] self._portion = setting['portion'] if 'portion' in setting else None self._train_source = setting['train_source'] self._eval_source = setting['eval_source'] self._test_source = setting['test_source'] if 'test_source' in setting else setting['eval_source'] self._down_sampling = setting['down_sampling'] print("using downsampling:", self._down_sampling) self._file_names = self._get_file_names(split_name) print("Found %d images"%len(self._file_names)) self._file_length = file_length self.preprocess = preprocess def __len__(self): if self._file_length is not None: return self._file_length return len(self._file_names) def __getitem__(self, index): if self._file_length is not None: names = self._construct_new_file_names(self._file_length)[index] else: names = self._file_names[index] img_path = os.path.join(self._img_path, names[0]) gt_path = os.path.join(self._gt_path, names[1]) item_name = names[1].split("/")[-1].split(".")[0] img, gt = self._fetch_data(img_path, gt_path) img = img[:, :, ::-1] if self.preprocess is not None: img, gt, extra_dict = self.preprocess(img, gt) if self._split_name is 'train': img = torch.from_numpy(np.ascontiguousarray(img)).float() gt = torch.from_numpy(np.ascontiguousarray(gt)).long() if self.preprocess is not None and extra_dict is not None: for k, v in extra_dict.items(): extra_dict[k] = torch.from_numpy(np.ascontiguousarray(v)) if 'label' in k: extra_dict[k] = extra_dict[k].long() if 'img' in k: extra_dict[k] = extra_dict[k].float() output_dict = dict(data=img, label=gt, fn=str(item_name), n=len(self._file_names)) if self.preprocess is not None and extra_dict is not None: output_dict.update(**extra_dict) return output_dict def _fetch_data(self, img_path, gt_path, dtype=None): img = self._open_image(img_path, down_sampling=self._down_sampling) gt = self._open_image(gt_path, cv2.IMREAD_GRAYSCALE, dtype=dtype, down_sampling=self._down_sampling) return img, gt def _get_file_names(self, split_name): assert split_name in ['train', 'val', 'test'] source = self._train_source if split_name == "val": source = self._eval_source elif split_name == 'test': source = self._test_source file_names = [] with open(source) as f: files = f.readlines() if self._portion is not None: shuffle(files) num_files = len(files) if self._portion > 0: split = int(np.floor(self._portion * num_files)) files = files[:split] elif self._portion < 0: split = int(np.floor((1 + self._portion) * num_files)) files = files[split:] for item in files: img_name, gt_name = self._process_item_names(item) file_names.append([img_name, gt_name]) return file_names def _construct_new_file_names(self, length): assert isinstance(length, int) files_len = len(self._file_names) new_file_names = self._file_names * (length // files_len) rand_indices = torch.randperm(files_len).tolist() new_indices = rand_indices[:length % files_len] new_file_names += [self._file_names[i] for i in new_indices] return new_file_names @staticmethod def _process_item_names(item): item = item.strip() # item = item.split('\t') item = item.split(' ') img_name = item[0] gt_name = item[1] return img_name, gt_name def get_length(self): return self.__len__() @staticmethod def _open_image(filepath, mode=cv2.IMREAD_COLOR, dtype=None, down_sampling=1): # cv2: B G R # h w c img = np.array(cv2.imread(filepath, mode), dtype=dtype) if isinstance(down_sampling, int): H, W = img.shape[:2] if len(img.shape) == 3: img = cv2.resize(img, (W // down_sampling, H // down_sampling), interpolation=cv2.INTER_LINEAR) else: img = cv2.resize(img, (W // down_sampling, H // down_sampling), interpolation=cv2.INTER_NEAREST) assert img.shape[0] == H // down_sampling and img.shape[1] == W // down_sampling else: assert (isinstance(down_sampling, tuple) or isinstance(down_sampling, list)) and len(down_sampling) == 2 if len(img.shape) == 3: img = cv2.resize(img, (down_sampling[1], down_sampling[0]), interpolation=cv2.INTER_LINEAR) else: img = cv2.resize(img, (down_sampling[1], down_sampling[0]), interpolation=cv2.INTER_NEAREST) assert img.shape[0] == down_sampling[0] and img.shape[1] == down_sampling[1] return img @classmethod def get_class_colors(*args): raise NotImplementedError @classmethod def get_class_names(*args): raise NotImplementedError if __name__ == "__main__": data_setting = {'img_root': '', 'gt_root': '', 'train_source': '', 'eval_source': ''} bd = BaseDataset(data_setting, 'train', None) print(bd.get_class_names())
Cream/CDARTS/CDARTS_segmentation/tools/datasets/BaseDataset.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/tools/datasets/BaseDataset.py", "repo_id": "Cream", "token_count": 2865 }
279
#!/usr/bin/env python2 ''' Visualization demo for panoptic COCO sample_data The code shows an example of color generation for panoptic data (with "generate_new_colors" set to True). For each segment distinct color is used in a way that it close to the color of corresponding semantic class. ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os, sys import numpy as np import json import cv2 import os import PIL.Image as Image import matplotlib.pyplot as plt from skimage.segmentation import find_boundaries from panopticapi.utils import IdGenerator, rgb2id # whether from the PNG are used or new colors are generated generate_new_colors = True json_file = './panoptic_cityscapes_mul2/panoptic/predictions.json' segmentations_folder = './panoptic_cityscapes_mul2/panoptic/predictions/' img_folder = '/home2/hongyuan/data/cityscapes/leftImg8bit/val/' panoptic_coco_categories = './panoptic_coco_categories.json' output_dir = 'cityscapes_vis_results' os.makedirs(output_dir, exist_ok=True) with open(json_file, 'r') as f: coco_d = json.load(f) # ann = np.random.choice(coco_d['annotations']) with open(panoptic_coco_categories, 'r') as f: categories_list = json.load(f) categegories = {category['id']: category for category in categories_list} # find input img that correspond to the annotation img = None # for image_info in coco_d['images']: for image_info in coco_d['images']: for ann in coco_d['annotations']: if image_info['id'] == ann['image_id']: try: img = np.array( Image.open(os.path.join(img_folder, image_info['file_name'].split('_')[0], image_info['file_name'].split('gtFine_leftImg8bit.png')[0]+'leftImg8bit.png')) ) except: print("Undable to find correspoding input image.") break segmentation = np.array( Image.open(os.path.join(segmentations_folder, ann['file_name'])), dtype=np.uint8 ) segmentation_id = rgb2id(segmentation) # find segments boundaries boundaries = find_boundaries(segmentation_id, mode='thick') if generate_new_colors: segmentation[:, :, :] = 0 color_generator = IdGenerator(categegories) for segment_info in ann['segments_info']: try: color = color_generator.get_color(segment_info['category_id']) mask = segmentation_id == segment_info['id'] segmentation[mask] = color except: pass # depict boundaries segmentation[boundaries] = [0, 0, 0] if img.shape[:2] == segmentation.shape[:2]: pass else: print('img: {} shape error! img shape: {} seg shape: {}'.format(ann['image_id'], img.shape[:2], segmentation.shape[:2])) continue if len(img.shape) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) try: segmentation = cv2.addWeighted(img, 0.6, segmentation, 0.4, 0) except: import pdb; pdb.set_trace() cv2.imwrite(os.path.join(output_dir, '{}.jpg').format(ann['image_id']), img[:, :, ::-1]) cv2.imwrite(os.path.join(output_dir, '{}_mask.jpg').format(ann['image_id']), segmentation[:, :, ::-1]) #if img is None: # plt.figure() # plt.imshow(segmentation) # plt.axis('off') #else: # plt.figure(figsize=(9, 5)) # plt.subplot(121) # plt.imshow(img) # plt.axis('off') # plt.subplot(122) # plt.imshow(segmentation) # plt.axis('off') # plt.tight_layout() #plt.show()
Cream/CDARTS/CDARTS_segmentation/tools/vis/vis_cityscapes.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/tools/vis/vis_cityscapes.py", "repo_id": "Cream", "token_count": 1590 }
280
#!/usr/bin/env python3 # encoding: utf-8 import os import cv2 cv2.setNumThreads(0) import numpy as np from utils.visualize import print_iou, show_img, show_prediction from engine.evaluator import Evaluator from engine.logger import get_logger from seg_opr.metric import hist_info, compute_score logger = get_logger() class SegEvaluator(Evaluator): def func_per_iteration(self, data, device, iter=None): if self.config is not None: config = self.config img = data['data'] label = data['label'] name = data['fn'] if len(config.eval_scale_array) == 1: pred = self.whole_eval(img, None, device) else: pred = self.sliding_eval(img, config.eval_crop_size, config.eval_stride_rate, device) hist_tmp, labeled_tmp, correct_tmp = hist_info(config.num_classes, pred, label) results_dict = {'hist': hist_tmp, 'labeled': labeled_tmp, 'correct': correct_tmp} if self.save_path is not None: fn = name + '.png' cv2.imwrite(os.path.join(self.save_path, fn), pred) logger.info('Save the image ' + fn) # tensorboard logger does not fit multiprocess if self.logger is not None and iter is not None: colors = self.dataset.get_class_colors() image = img clean = np.zeros(label.shape) comp_img = show_img(colors, config.background, image, clean, label, pred) self.logger.add_image('vis', np.swapaxes(np.swapaxes(comp_img, 0, 2), 1, 2), iter) if self.show_image or self.show_prediction: colors = self.dataset.get_class_colors() image = img clean = np.zeros(label.shape) if self.show_image: comp_img = show_img(colors, config.background, image, clean, label, pred) else: comp_img = show_prediction(colors, config.background, image, pred) cv2.imwrite(name + ".png", comp_img[:,:,::-1]) return results_dict def compute_metric(self, results): hist = np.zeros((self.config.num_classes, self.config.num_classes)) correct = 0 labeled = 0 count = 0 for d in results: hist += d['hist'] correct += d['correct'] labeled += d['labeled'] count += 1 iu, mean_IU, mean_IU_no_back, mean_pixel_acc = compute_score(hist, correct, labeled) result_line = print_iou(iu, mean_pixel_acc, self.dataset.get_class_names(), True) return result_line, mean_IU
Cream/CDARTS/CDARTS_segmentation/train/eval.py/0
{ "file_path": "Cream/CDARTS/CDARTS_segmentation/train/eval.py", "repo_id": "Cream", "token_count": 1176 }
281
import torch import torch.nn as nn __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] OPS = { 'none' : lambda C_in, C_out, stride, affine, track_running_stats: Zero(C_in, C_out, stride), 'avg_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'avg', affine, track_running_stats), 'max_pool_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: POOLING(C_in, C_out, stride, 'max', affine, track_running_stats), 'nor_conv_7x7' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1), affine, track_running_stats), 'nor_conv_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats), 'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats), 'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats), 'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats), 'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats), 'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats), 'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats), } CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3'] NAS_BENCH_201 = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] DARTS_SPACE = ['none', 'skip_connect', 'dua_sepc_3x3', 'dua_sepc_5x5', 'dil_sepc_3x3', 'dil_sepc_5x5', 'avg_pool_3x3', 'max_pool_3x3'] SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK, 'nas-bench-201': NAS_BENCH_201, 'darts' : DARTS_SPACE} class ReLUConvBN(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): super(ReLUConvBN, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) ) def forward(self, x): return self.op(x) class SepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): super(SepConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats), ) def forward(self, x): return self.op(x) class DualSepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): super(DualSepConv, self).__init__() self.op_a = SepConv(C_in, C_in , kernel_size, stride, padding, dilation, affine, track_running_stats) self.op_b = SepConv(C_in, C_out, kernel_size, 1, padding, dilation, affine, track_running_stats) def forward(self, x): x = self.op_a(x) x = self.op_b(x) return x class ResNetBasicblock(nn.Module): def __init__(self, inplanes, planes, stride, affine=True): super(ResNetBasicblock, self).__init__() assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, affine) self.conv_b = ReLUConvBN( planes, planes, 3, 1, 1, 1, affine) if stride == 2: self.downsample = nn.Sequential( nn.AvgPool2d(kernel_size=2, stride=2, padding=0), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) elif inplanes != planes: self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, affine) else: self.downsample = None self.in_dim = inplanes self.out_dim = planes self.stride = stride self.num_conv = 2 def extra_repr(self): string = '{name}(inC={in_dim}, outC={out_dim}, stride={stride})'.format(name=self.__class__.__name__, **self.__dict__) return string def forward(self, inputs): basicblock = self.conv_a(inputs) basicblock = self.conv_b(basicblock) if self.downsample is not None: residual = self.downsample(inputs) else: residual = inputs return residual + basicblock class POOLING(nn.Module): def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True): super(POOLING, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, affine, track_running_stats) if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) else : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) def forward(self, inputs): if self.preprocess: x = self.preprocess(inputs) else : x = inputs return self.op(x) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Zero(nn.Module): def __init__(self, C_in, C_out, stride): super(Zero, self).__init__() self.C_in = C_in self.C_out = C_out self.stride = stride self.is_zero = True def forward(self, x): if self.C_in == self.C_out: if self.stride == 1: return x.mul(0.) else : return x[:,:,::self.stride,::self.stride].mul(0.) else: shape = list(x.shape) shape[1] = self.C_out zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) return zeros def extra_repr(self): return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) class FactorizedReduce(nn.Module): def __init__(self, C_in, C_out, stride, affine, track_running_stats): super(FactorizedReduce, self).__init__() self.stride = stride self.C_in = C_in self.C_out = C_out self.relu = nn.ReLU(inplace=False) if stride == 2: #assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) C_outs = [C_out // 2, C_out - C_out // 2] self.convs = nn.ModuleList() for i in range(2): self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) ) self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) else: raise ValueError('Invalid stride : {:}'.format(stride)) self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) def forward(self, x): x = self.relu(x) y = self.pad(x) out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1) out = self.bn(out) return out def extra_repr(self): return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
Cream/CDARTS/benchmark201/models/ops.py/0
{ "file_path": "Cream/CDARTS/benchmark201/models/ops.py", "repo_id": "Cream", "token_count": 3465 }
282
from lib.utils.util import * from timm.models.efficientnet_blocks import * # ChildNet Builder definition. class ChildNetBuilder: def __init__( self, channel_multiplier=1.0, channel_divisor=8, channel_min=None, output_stride=32, pad_type='', act_layer=None, se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0., feature_location='', verbose=False, logger=None): self.channel_multiplier = channel_multiplier self.channel_divisor = channel_divisor self.channel_min = channel_min self.output_stride = output_stride self.pad_type = pad_type self.act_layer = act_layer self.se_kwargs = se_kwargs self.norm_layer = norm_layer self.norm_kwargs = norm_kwargs self.drop_path_rate = drop_path_rate self.feature_location = feature_location assert feature_location in ('pre_pwl', 'post_exp', '') self.verbose = verbose self.in_chs = None self.features = OrderedDict() self.logger = logger def _round_channels(self, chs): return round_channels( chs, self.channel_multiplier, self.channel_divisor, self.channel_min) def _make_block(self, ba, block_idx, block_count): drop_path_rate = self.drop_path_rate * block_idx / block_count bt = ba.pop('block_type') ba['in_chs'] = self.in_chs ba['out_chs'] = self._round_channels(ba['out_chs']) if 'fake_in_chs' in ba and ba['fake_in_chs']: ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs']) ba['norm_layer'] = self.norm_layer ba['norm_kwargs'] = self.norm_kwargs ba['pad_type'] = self.pad_type # block act fn overrides the model default ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer assert ba['act_layer'] is not None if bt == 'ir': ba['drop_path_rate'] = drop_path_rate ba['se_kwargs'] = self.se_kwargs if self.verbose: self.logger.info( ' InvertedResidual {}, Args: {}'.format( block_idx, str(ba))) block = InvertedResidual(**ba) elif bt == 'ds' or bt == 'dsa': ba['drop_path_rate'] = drop_path_rate ba['se_kwargs'] = self.se_kwargs if self.verbose: self.logger.info( ' DepthwiseSeparable {}, Args: {}'.format( block_idx, str(ba))) block = DepthwiseSeparableConv(**ba) elif bt == 'cn': if self.verbose: self.logger.info( ' ConvBnAct {}, Args: {}'.format( block_idx, str(ba))) block = ConvBnAct(**ba) else: assert False, 'Uknkown block type (%s) while building model.' % bt self.in_chs = ba['out_chs'] # update in_chs for arg of next block return block def __call__(self, in_chs, model_block_args): """ Build the blocks Args: in_chs: Number of input-channels passed to first block model_block_args: A list of lists, outer list defines stages, inner list contains strings defining block configuration(s) Return: List of block stacks (each stack wrapped in nn.Sequential) """ if self.verbose: self.logger.info( 'Building model trunk with %d stages...' % len(model_block_args)) self.in_chs = in_chs total_block_count = sum([len(x) for x in model_block_args]) total_block_idx = 0 current_stride = 2 current_dilation = 1 feature_idx = 0 stages = [] # outer list of block_args defines the stacks ('stages' by some # conventions) for stage_idx, stage_block_args in enumerate(model_block_args): last_stack = stage_idx == (len(model_block_args) - 1) if self.verbose: self.logger.info('Stack: {}'.format(stage_idx)) assert isinstance(stage_block_args, list) blocks = [] # each stack (stage) contains a list of block arguments for block_idx, block_args in enumerate(stage_block_args): last_block = block_idx == (len(stage_block_args) - 1) extract_features = '' # No features extracted if self.verbose: self.logger.info(' Block: {}'.format(block_idx)) # Sort out stride, dilation, and feature extraction details assert block_args['stride'] in (1, 2) if block_idx >= 1: # only the first block in any stack can have a stride > 1 block_args['stride'] = 1 do_extract = False if self.feature_location == 'pre_pwl': if last_block: next_stage_idx = stage_idx + 1 if next_stage_idx >= len(model_block_args): do_extract = True else: do_extract = model_block_args[next_stage_idx][0]['stride'] > 1 elif self.feature_location == 'post_exp': if block_args['stride'] > 1 or (last_stack and last_block): do_extract = True if do_extract: extract_features = self.feature_location next_dilation = current_dilation if block_args['stride'] > 1: next_output_stride = current_stride * block_args['stride'] if next_output_stride > self.output_stride: next_dilation = current_dilation * block_args['stride'] block_args['stride'] = 1 if self.verbose: self.logger.info( ' Converting stride to dilation to maintain output_stride=={}'.format( self.output_stride)) else: current_stride = next_output_stride block_args['dilation'] = current_dilation if next_dilation != current_dilation: current_dilation = next_dilation # create the block block = self._make_block( block_args, total_block_idx, total_block_count) blocks.append(block) # stash feature module name and channel info for model feature # extraction if extract_features: feature_module = block.feature_module(extract_features) if feature_module: feature_module = 'blocks.{}.{}.'.format( stage_idx, block_idx) + feature_module feature_channels = block.feature_channels(extract_features) self.features[feature_idx] = dict( name=feature_module, num_chs=feature_channels ) feature_idx += 1 # incr global block idx (across all stacks) total_block_idx += 1 stages.append(nn.Sequential(*blocks)) return stages
Cream/Cream/lib/models/builders/build_childnet.py/0
{ "file_path": "Cream/Cream/lib/models/builders/build_childnet.py", "repo_id": "Cream", "token_count": 4048 }
283
# model settings model = dict( type='CascadeRCNN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='CascadeRoIHead', num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5)))
Cream/EfficientViT/downstream/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py/0
{ "file_path": "Cream/EfficientViT/downstream/configs/_base_/models/cascade_mask_rcnn_r50_fpn.py", "repo_id": "Cream", "token_count": 4560 }
284
# model settings model = dict( type='RPN', pretrained='torchvision://resnet50', backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0)))
Cream/EfficientViT/downstream/configs/_base_/models/rpn_r50_fpn.py/0
{ "file_path": "Cream/EfficientViT/downstream/configs/_base_/models/rpn_r50_fpn.py", "repo_id": "Cream", "token_count": 1066 }
285
from mmcv.runner import OptimizerHook, HOOKS try: import apex except: print('apex is not installed') @HOOKS.register_module() class DistOptimizerHook(OptimizerHook): """Optimizer hook for distributed training.""" def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval self.use_fp16 = use_fp16 def before_run(self, runner): runner.optimizer.zero_grad() def after_train_iter(self, runner): runner.outputs['loss'] /= self.update_interval if self.use_fp16: with apex.amp.scale_loss(runner.outputs['loss'], runner.optimizer) as scaled_loss: scaled_loss.backward() else: runner.outputs['loss'].backward() if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad()
Cream/EfficientViT/downstream/mmcv_custom/runner/optimizer.py/0
{ "file_path": "Cream/EfficientViT/downstream/mmcv_custom/runner/optimizer.py", "repo_id": "Cream", "token_count": 513 }
286
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class SwinMLPBlock(nn.Module): r""" Swin MLP Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.padding = [self.window_size - self.shift_size, self.shift_size, self.window_size - self.shift_size, self.shift_size] # P_l,P_r,P_t,P_b self.norm1 = norm_layer(dim) # use group convolution to implement multi-head MLP self.spatial_mlp = nn.Conv1d(self.num_heads * self.window_size ** 2, self.num_heads * self.window_size ** 2, kernel_size=1, groups=self.num_heads) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # shift if self.shift_size > 0: P_l, P_r, P_t, P_b = self.padding shifted_x = F.pad(x, [0, 0, P_l, P_r, P_t, P_b], "constant", 0) else: shifted_x = x _, _H, _W, _ = shifted_x.shape # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # Window/Shifted-Window Spatial MLP x_windows_heads = x_windows.view(-1, self.window_size * self.window_size, self.num_heads, C // self.num_heads) x_windows_heads = x_windows_heads.transpose(1, 2) # nW*B, nH, window_size*window_size, C//nH x_windows_heads = x_windows_heads.reshape(-1, self.num_heads * self.window_size * self.window_size, C // self.num_heads) spatial_mlp_windows = self.spatial_mlp(x_windows_heads) # nW*B, nH*window_size*window_size, C//nH spatial_mlp_windows = spatial_mlp_windows.view(-1, self.num_heads, self.window_size * self.window_size, C // self.num_heads).transpose(1, 2) spatial_mlp_windows = spatial_mlp_windows.reshape(-1, self.window_size * self.window_size, C) # merge windows spatial_mlp_windows = spatial_mlp_windows.reshape(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(spatial_mlp_windows, self.window_size, _H, _W) # B H' W' C # reverse shift if self.shift_size > 0: P_l, P_r, P_t, P_b = self.padding x = shifted_x[:, P_t:-P_b, P_l:-P_r, :].contiguous() else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # Window/Shifted-Window Spatial MLP if self.shift_size > 0: nW = (H / self.window_size + 1) * (W / self.window_size + 1) else: nW = H * W / self.window_size / self.window_size flops += nW * self.dim * (self.window_size * self.window_size) * (self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Module): """ A basic Swin MLP layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinMLPBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinMLP(nn.Module): r""" Swin MLP Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin MLP layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 drop_rate (float): Dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, drop=drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Linear, nn.Conv1d)): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops
Cream/MiniViT/Mini-Swin/models/swin_mlp.py/0
{ "file_path": "Cream/MiniViT/Mini-Swin/models/swin_mlp.py", "repo_id": "Cream", "token_count": 8733 }
287
# TinyCLIP: CLIP Distillation via Affinity Mimicking and Weight Inheritance :pushpin: This is an official PyTorch implementation of **[ICCV 2023]** - [TinyCLIP: CLIP Distillation via Affinity Mimicking and Weight Inheritance](https://openaccess.thecvf.com/content/ICCV2023/html/Wu_TinyCLIP_CLIP_Distillation_via_Affinity_Mimicking_and_Weight_Inheritance_ICCV_2023_paper.html) **TinyCLIP** is a novel **cross-modal distillation** method for large-scale language-image pre-trained models. The method introduces two core techniques: **affinity mimicking** and **weight inheritance**. This work unleashes the capacity of small CLIP models, fully leveraging large-scale models as well as pre-training data and striking the best trade-off between speed and accuracy. <p align="center"> <img src="./figure/TinyCLIP.jpg" width="1000"> </p> ## Highlights <p align="center"> <img src="./figure/fig1.jpg" width="500"> </p> * TinyCLIP ViT-45M/32 uses only **half parameters** of ViT-B/32 to achieves **comparable zero-shot performance**. * TinyCLIP ResNet-19M reduces the parameters by **50\%** while getting **$2\times$** inference speedup, and obtains **56.4\%** accuracy on ImageNet. ## News * *Dec.2023* TinyCLIP models have been integrated into [🤗Hugging Face Model Hub](https://huggingface.co/collections/wkcn/tinyclip-model-zoo-6581aa105311fe07be88cb0d). * *Oct.2023* Training code is released. * *Sep.2023* This is preliminary released code, including inference code and checkpoints. ## Model Zoo | Model | Weight inheritance | Pretrain | IN-1K Acc@1(%) | MACs(G) | Throughput(pairs/s) | Link | |--------------------|--------------------|---------------|----------------|---------|---------------------|------| [TinyCLIP ViT-39M/16 Text-19M](./src/open_clip/model_configs/TinyCLIP-ViT-39M-16-Text-19M.json) | manual | YFCC-15M | 63.5 | 9.5 | 1,469 | [Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-ViT-39M-16-Text-19M-YFCC15M.pt) [TinyCLIP ViT-8M/16 Text-3M](./src/open_clip/model_configs/TinyCLIP-ViT-8M-16-Text-3M.json) | manual | YFCC-15M | 41.1 | 2.0 | 4,150 | [Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-ViT-8M-16-Text-3M-YFCC15M.pt) [TinyCLIP ResNet-30M Text-29M](./src/open_clip/model_configs/TinyCLIP-ResNet-30M-Text-29M.json) | manual | LAION-400M | 59.1 | 6.9 | 1,811 | [Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-ResNet-30M-Text-29M-LAION400M.pt) [TinyCLIP ResNet-19M Text-19M](./src/open_clip/model_configs/TinyCLIP-ResNet-19M-Text-19M.json) | manual | LAION-400M | 56.4 | 4.4 | 3,024| [Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-ResNet-19M-Text-19M-LAION400M.pt) [TinyCLIP ViT-61M/32 Text-29M](./src/open_clip/model_configs/TinyCLIP-ViT-61M-32-Text-29M.json) | manual | LAION-400M | 62.4 | 5.3 | 3,191|[Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-ViT-61M-32-Text-29M-LAION400M.pt) [TinyCLIP ViT-40M/32 Text-19M](./src/open_clip/model_configs/TinyCLIP-ViT-40M-32-Text-19M.json) | manual | LAION-400M | 59.8 | 3.5 | 4,641|[Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-ViT-40M-32-Text-19M-LAION400M.pt) TinyCLIP ViT-63M/32 Text-31M | auto | LAION-400M | 63.9 | 5.6 | 2,905|[Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-auto-ViT-63M-32-Text-31M-LAION400M.pt) TinyCLIP ViT-45M/32 Text-18M | auto | LAION-400M | 61.4 | 3.7 | 3,682|[Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-auto-ViT-45M-32-Text-18M-LAION400M.pt) TinyCLIP ViT-22M/32 Text-10M | auto | LAION-400M | 53.7 | 1.9 | 5,504|[Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-auto-ViT-22M-32-Text-10M-LAION400M.pt) TinyCLIP ViT-63M/32 Text-31M | auto | LAION+YFCC-400M | 64.5 | 5.6| 2,909 | [Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-auto-ViT-63M-32-Text-31M-LAIONYFCC400M.pt) TinyCLIP ViT-45M/32 Text-18M | auto | LAION+YFCC-400M | 62.7 | 1.9 | 3,685 | [Model](https://github.com/wkcn/TinyCLIP-model-zoo/releases/download/checkpoints/TinyCLIP-auto-ViT-45M-32-Text-18M-LAIONYFCC400M.pt) Note: The configs of models with auto inheritance are generated automatically. ## Getting started :beginner: Here is the setup tutorial, evaluation and pretraining scripts. ### Install dependencies and prepare dataset - [Preparation](./docs/PREPARATION.md) ### Evaluate it - [Evaluation](./docs/EVALUATION.md) ### Model inference - [Inference](./inference.py) - [Use with 🤗Hugging Face Transformers](https://huggingface.co/collections/wkcn/tinyclip-model-zoo-6581aa105311fe07be88cb0d) ### Pretrain it - [Pretraining](./docs/PRETRAINING.md) ## Citation If this repo is helpful for you, please consider to cite it. :mega: Thank you! :) ```bibtex @InProceedings{tinyclip, title = {TinyCLIP: CLIP Distillation via Affinity Mimicking and Weight Inheritance}, author = {Wu, Kan and Peng, Houwen and Zhou, Zhenghong and Xiao, Bin and Liu, Mengchen and Yuan, Lu and Xuan, Hong and Valenzuela, Michael and Chen, Xi (Stephen) and Wang, Xinggang and Chao, Hongyang and Hu, Han}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2023}, pages = {21970-21980} } ``` ## Acknowledge Our code is based on [CLIP](https://github.com/openai/CLIP), [OpenCLIP](https://github.com/mlfoundations/open_clip), [CoFi](https://github.com/princeton-nlp/CoFiPruning) and [PyTorch](https://github.com/pytorch/pytorch). Thank contributors for their awesome contribution! ## License - [License](./LICENSE)
Cream/TinyCLIP/README.md/0
{ "file_path": "Cream/TinyCLIP/README.md", "repo_id": "Cream", "token_count": 2293 }
288
import requests import os import multiprocessing as mp from io import BytesIO import numpy as np import PIL from PIL import Image import pickle import sys def grab(line): """ Download a single image from the TSV. """ uid, split, line = line try: caption, url = line.split("\t")[:2] except: print("Parse error") return if os.path.exists(ROOT + "/%s/%d/%d.jpg" % (split, uid % 1000, uid)): print("Finished", uid) return uid, caption, url # Let's not crash if anythign weird happens try: dat = requests.get(url, timeout=20) if dat.status_code != 200: print("404 file", url) return # Try to parse this as an Image file, we'll fail out if not im = Image.open(BytesIO(dat.content)) im.thumbnail((512, 512), PIL.Image.BICUBIC) if min(*im.size) < max(*im.size) / 3: print("Too small", url) return im.save(ROOT + "/%s/%d/%d.jpg" % (split, uid % 1000, uid)) # Another try/catch just because sometimes saving and re-loading # the image is different than loading it once. try: o = Image.open(ROOT + "/%s/%d/%d.jpg" % (split, uid % 1000, uid)) o = np.array(o) print("Success", o.shape, uid, url) return uid, caption, url except: print("Failed", uid, url) except Exception as e: print("Unknown error", e) pass if __name__ == "__main__": ROOT = "cc_data" if not os.path.exists(ROOT): os.mkdir(ROOT) os.mkdir(os.path.join(ROOT, "train")) os.mkdir(os.path.join(ROOT, "val")) for i in range(1000): os.mkdir(os.path.join(ROOT, "train", str(i))) os.mkdir(os.path.join(ROOT, "val", str(i))) p = mp.Pool(300) for tsv in sys.argv[1:]: print("Processing file", tsv) assert 'val' in tsv.lower() or 'train' in tsv.lower() split = 'val' if 'val' in tsv.lower() else 'train' results = p.map(grab, [(i, split, x) for i, x in enumerate(open(tsv).read().split("\n"))]) out = open(tsv.replace(".tsv", "_output.csv"), "w") out.write("title\tfilepath\n") for row in results: if row is None: continue id, caption, url = row fp = os.path.join(ROOT, split, str(id % 1000), str(id) + ".jpg") if os.path.exists(fp): out.write("%s\t%s\n" % (caption, fp)) else: print("Drop", id) out.close() p.close()
Cream/TinyCLIP/src/data/gather_cc.py/0
{ "file_path": "Cream/TinyCLIP/src/data/gather_cc.py", "repo_id": "Cream", "token_count": 1321 }
289
import logging def setup_logging(log_file, level, include_host=False): if include_host: import socket hostname = socket.gethostname() formatter = logging.Formatter( f'%(asctime)s | {hostname} | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') else: formatter = logging.Formatter( '%(asctime)s | %(levelname)s | %(message)s', datefmt='%Y-%m-%d,%H:%M:%S') logging.root.setLevel(level) loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict] for logger in loggers: logger.setLevel(level) stream_handler = logging.StreamHandler() stream_handler.setFormatter(formatter) logging.root.addHandler(stream_handler) if log_file: file_handler = logging.FileHandler(filename=log_file) file_handler.setFormatter(formatter) logging.root.addHandler(file_handler)
Cream/TinyCLIP/src/training/logger.py/0
{ "file_path": "Cream/TinyCLIP/src/training/logger.py", "repo_id": "Cream", "token_count": 413 }
290
# Image Augmentation for TinyViT The code is based on [timm.data](https://github.com/rwightman/pytorch-image-models/tree/master/timm/data) of [pytorch-image-models](https://github.com/rwightman/pytorch-image-models) written by [Ross Wightman](https://github.com/rwightman) and the contributors. Thanks a lot! We adapt it for TinyViT. Apache License ## Code Structure File | Description ---------------------------------------------|-------------------------- [`aug_random.py`](./aug_random.py) | unify all random values of augmentation with a random generator [`dataset_wrapper.py`](./dataset_wrapper.py) | a dataset wrapper for saving logits [`manager.py`](./manager.py) | The writter and reader for logits files
Cream/TinyViT/data/augmentation/README.md/0
{ "file_path": "Cream/TinyViT/data/augmentation/README.md", "repo_id": "Cream", "token_count": 282 }
291
IMG_EXTENSIONS = ('.png', '.jpg', '.jpeg')
Cream/TinyViT/data/augmentation/parsers/constants.py/0
{ "file_path": "Cream/TinyViT/data/augmentation/parsers/constants.py", "repo_id": "Cream", "token_count": 19 }
292
# Evaluation Before evaluation, we need to prepare [the ImageNet-1k dataset](./PREPARATION.md) and [the checkpoints in model zoo](../README.md). Run the following command for evaluation: **Evaluate TinyViT with pretraining distillation** <details> <summary>Evaluate TinyViT-5M <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/22kto1k/tiny_vit_5m_22kto1k.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_5m_22kto1k_distill.pth </code></pre> </details> <details> <summary>Evaluate TinyViT-11M <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/22kto1k/tiny_vit_11m_22kto1k.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_11m_22kto1k_distill.pth </code></pre> </details> <details> <summary>Evaluate TinyViT-21M <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/22kto1k/tiny_vit_21m_22kto1k.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_21m_22kto1k_distill.pth </code></pre> </details> <details> <summary>Evaluate TinyViT-21M-384 <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/higher_resolution/tiny_vit_21m_224to384.yaml --data-path ./ImageNet --batch-size 64 --eval --resume ./checkpoints/tiny_vit_21m_22kto1k_384_distill.pth </code></pre> </details> <details> <summary>Evaluate TinyViT-21M-512 <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/higher_resolution/tiny_vit_21m_384to512.yaml --data-path ./ImageNet --batch-size 32 --eval --resume ./checkpoints/tiny_vit_21m_22kto1k_512_distill.pth </code></pre> </details> **Evaluate TinyViT trained from scratch in IN-1k** <details> <summary>Evaluate TinyViT-5M</summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/1k/tiny_vit_5m.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_5m_1k.pth </code></pre> </details> <details> <summary>Evaluate TinyViT-11M</summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/1k/tiny_vit_11m.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_11m_1k.pth </code></pre> </details> <details> <summary>Evaluate TinyViT-21M</summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/1k/tiny_vit_21m.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_21m_1k.pth </code></pre> </details> **The model pretrained on IN-22k can be evaluated directly on IN-1k** Since the model pretrained on IN-22k is not finetuned on IN-1k, the accuracy is lower than the model finetuned 22kto1k. <details> <summary>Evaluate TinyViT-5M-22k <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/22k_distill/tiny_vit_5m_22k_distill.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_5m_22k_distill.pth --opts DATA.DATASET imagenet </code></pre> </details> <details> <summary>Evaluate TinyViT-11M-22k <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/22k_distill/tiny_vit_11m_22k_distill.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_11m_22k_distill.pth --opts DATA.DATASET imagenet </code></pre> </details> <details> <summary>Evaluate TinyViT-21M-22k <img src="../.figure/distill.png"></summary> <pre><code>python -m torch.distributed.launch --nproc_per_node 8 main.py --cfg configs/22k_distill/tiny_vit_21m_22k_distill.yaml --data-path ./ImageNet --batch-size 128 --eval --resume ./checkpoints/tiny_vit_21m_22k_distill.pth --opts DATA.DATASET imagenet </code></pre> </details>
Cream/TinyViT/docs/EVALUATION.md/0
{ "file_path": "Cream/TinyViT/docs/EVALUATION.md", "repo_id": "Cream", "token_count": 1596 }
293
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .detr import build def build_model(args): return build(args)
Cream/iRPE/DETR-with-iRPE/models/__init__.py/0
{ "file_path": "Cream/iRPE/DETR-with-iRPE/models/__init__.py", "repo_id": "Cream", "token_count": 42 }
294
from __future__ import absolute_import from __future__ import division from __future__ import print_function from .cls_cvt import * from .registry import * from .build import build_model
CvT/lib/models/__init__.py/0
{ "file_path": "CvT/lib/models/__init__.py", "repo_id": "CvT", "token_count": 53 }
295
""" Copyright (C) Microsoft Corporation. All rights reserved.​ ​ Microsoft Corporation (“Microsoft”) grants you a nonexclusive, perpetual, royalty-free right to use, copy, and modify the software code provided by us ("Software Code"). You may not sublicense the Software Code or any use of it (except to your affiliates and to vendors to perform work on your behalf) through distribution, network access, service agreement, lease, rental, or otherwise. This license does not purport to express any claim of ownership over data you may have shared with Microsoft in the creation of the Software Code. Unless applicable law gives you more rights, Microsoft reserves all other rights not expressly granted herein, whether by implication, estoppel or otherwise. ​ ​ THE SOFTWARE CODE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL MICROSOFT OR ITS LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE SOFTWARE CODE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import pandas as pd import numpy as np from msanomalydetector.util import * import msanomalydetector.boundary_utils as boundary_helper from msanomalydetector._anomaly_kernel_cython import median_filter class SpectralResidual: def __init__(self, series, threshold, mag_window, score_window, sensitivity, detect_mode, batch_size): self.__series__ = series self.__values__ = self.__series__['value'].tolist() self.__threshold__ = threshold self.__mag_window = mag_window self.__score_window = score_window self.__sensitivity = sensitivity self.__detect_mode = detect_mode self.__anomaly_frame = None self.__batch_size = batch_size if self.__batch_size <= 0: self.__batch_size = len(series) self.__batch_size = max(12, self.__batch_size) self.__batch_size = min(len(series), self.__batch_size) def detect(self): if self.__anomaly_frame is None: self.__anomaly_frame = self.__detect() return self.__anomaly_frame def __detect(self): anomaly_frames = [] for i in range(0, len(self.__series__), self.__batch_size): start = i end = i + self.__batch_size end = min(end, len(self.__series__)) if end - start >= 12: anomaly_frames.append(self.__detect_core(self.__series__[start:end])) else: ext_start = max(0, end - self.__batch_size) ext_frame = self.__detect_core(self.__series__[ext_start:end]) anomaly_frames.append(ext_frame[start-ext_start:]) return pd.concat(anomaly_frames, axis=0, ignore_index=True) def __detect_core(self, series): values = series['value'].values extended_series = SpectralResidual.extend_series(values) mags = self.spectral_residual_transform(extended_series) anomaly_scores = self.generate_spectral_score(mags) anomaly_frame = pd.DataFrame({Timestamp: series['timestamp'].values, Value: values, Mag: mags[:len(values)], AnomalyScore: anomaly_scores[:len(values)]}) anomaly_frame[IsAnomaly] = np.where(anomaly_frame[AnomalyScore] > self.__threshold__, True, False) if self.__detect_mode == DetectMode.anomaly_and_margin: anomaly_index = anomaly_frame[anomaly_frame[IsAnomaly]].index.tolist() anomaly_frame[ExpectedValue] = self.calculate_expected_value(values, anomaly_index) boundary_units = boundary_helper.calculate_boundary_unit_entire(values, anomaly_frame[IsAnomaly].values) anomaly_frame[AnomalyScore] = boundary_helper.calculate_anomaly_scores( values=values, expected_values=anomaly_frame[ExpectedValue].values, units=boundary_units, is_anomaly=anomaly_frame[IsAnomaly].values ) margins = [boundary_helper.calculate_margin(u, self.__sensitivity) for u in boundary_units] anomaly_frame['unit'] = boundary_units anomaly_frame[LowerBoundary] = anomaly_frame[ExpectedValue].values - margins anomaly_frame[UpperBoundary] = anomaly_frame[ExpectedValue].values + margins isLowerAnomaly = np.logical_and(anomaly_frame[IsAnomaly].values, anomaly_frame[LowerBoundary].values > values) isUpperAnomaly = np.logical_and(anomaly_frame[IsAnomaly].values, values > anomaly_frame[UpperBoundary].values) anomaly_frame[IsAnomaly] = np.logical_or(isLowerAnomaly, isUpperAnomaly) return anomaly_frame def generate_spectral_score(self, mags): ave_mag = average_filter(mags, n=self.__score_window) safeDivisors = np.clip(ave_mag, EPS, ave_mag.max()) raw_scores = np.abs(mags - ave_mag) / safeDivisors scores = np.clip(raw_scores / 10.0, 0, 1.0) return scores def spectral_residual_transform(self, values): """ This method transform a time series into spectral residual series :param values: list. a list of float values. :return: mag: list. a list of float values as the spectral residual values """ trans = np.fft.fft(values) mag = np.sqrt(trans.real ** 2 + trans.imag ** 2) eps_index = np.where(mag <= EPS)[0] mag[eps_index] = EPS mag_log = np.log(mag) mag_log[eps_index] = 0 spectral = np.exp(mag_log - average_filter(mag_log, n=self.__mag_window)) trans.real = trans.real * spectral / mag trans.imag = trans.imag * spectral / mag trans.real[eps_index] = 0 trans.imag[eps_index] = 0 wave_r = np.fft.ifft(trans) mag = np.sqrt(wave_r.real ** 2 + wave_r.imag ** 2) return mag @staticmethod def predict_next(values): """ Predicts the next value by sum up the slope of the last value with previous values. Mathematically, g = 1/m * sum_{i=1}^{m} g(x_n, x_{n-i}), x_{n+1} = x_{n-m+1} + g * m, where g(x_i,x_j) = (x_i - x_j) / (i - j) :param values: list. a list of float numbers. :return : float. the predicted next value. """ if len(values) <= 1: raise ValueError(f'data should contain at least 2 numbers') v_last = values[-1] n = len(values) slopes = [(v_last - v) / (n - 1 - i) for i, v in enumerate(values[:-1])] return values[1] + sum(slopes) @staticmethod def extend_series(values, extend_num=5, look_ahead=5): """ extend the array data by the predicted next value :param values: list. a list of float numbers. :param extend_num: int, default 5. number of values added to the back of data. :param look_ahead: int, default 5. number of previous values used in prediction. :return: list. The result array. """ if look_ahead < 1: raise ValueError('look_ahead must be at least 1') extension = [SpectralResidual.predict_next(values[-look_ahead - 2:-1])] * extend_num return np.concatenate((values, extension), axis=0) @staticmethod def calculate_expected_value(values, anomaly_index): values = deanomaly_entire(values, anomaly_index) length = len(values) fft_coef = np.fft.fft(values) fft_coef.real = [v if length * 3 / 8 >= i or i >= length * 5 / 8 else 0 for i, v in enumerate(fft_coef.real)] fft_coef.imag = [v if length * 3 / 8 >= i or i >= length * 5 / 8 else 0 for i, v in enumerate(fft_coef.imag)] exps = np.fft.ifft(fft_coef) return exps.real
anomalydetector/msanomalydetector/spectral_residual.py/0
{ "file_path": "anomalydetector/msanomalydetector/spectral_residual.py", "repo_id": "anomalydetector", "token_count": 3693 }
296
<h1 align="center"> <img src="https://user-images.githubusercontent.com/9354770/171523113-70c7214b-8298-4d7e-abd9-81f5788f6e19.png" alt="Archai logo" width="384px" /> <br /> </h1> <div align="center"> <b>Archai</b> accelerates your Neural Architecture Search (NAS) through <b>fast</b>, <b>reproducible</b> and <b>modular</b> research, enabling the generation of efficient deep networks for various applications. </div> <br /> <div align="center"> <img src ="https://img.shields.io/github/release/microsoft/archai?style=flat-square" alt="Release version" /> <img src ="https://img.shields.io/github/issues-raw/microsoft/archai?style=flat-square" alt="Open issues" /> <img src ="https://img.shields.io/github/contributors/microsoft/archai?style=flat-square" alt="Contributors" /> <img src ="https://img.shields.io/pypi/dm/archai?style=flat-square" alt="PyPI downloads" /> <img src ="https://img.shields.io/github/license/microsoft/archai?color=red&style=flat-square" alt="License" /> </div> <br /> <div align="center"> <a href="#installation">Installation</a> • <a href="#quickstart">Quickstart</a> • <a href="#tasks">Tasks</a> • <a href="#documentation">Documentation</a> • <a href="#support">Support</a> </div> ## Installation Archai can be installed through various methods, however, it is recommended to utilize a virtual environment such as `conda` or `pyenv` for optimal results. To install Archai via PyPI, the following command can be executed: ```bash pip install archai ``` **Archai requires Python 3.8+ and PyTorch 1.7.0+ to function properly.** For further information, please consult the [installation guide](https://microsoft.github.io/archai/getting_started/installation.html). ## Quickstart In this quickstart example, we will apply Archai in Natural Language Processing to find the optimal Pareto-frontier Transformers' configurations according to a set of objectives. ### Creating the Search Space We start by importing the `TransformerFlexSearchSpace` class which represents the search space for the Transformer architecture: ```python from archai.discrete_search.search_spaces.nlp.transformer_flex.search_space import TransformerFlexSearchSpace space = TransformerFlexSearchSpace("gpt2") ``` ### Defining Search Objectives Next, we define the objectives we want to optimize. In this example, we use `NonEmbeddingParamsProxy`, `TransformerFlexOnnxLatency`, and `TransformerFlexOnnxMemory` to define the objectives: ```python from archai.discrete_search.api.search_objectives import SearchObjectives from archai.discrete_search.evaluators.nlp.parameters import NonEmbeddingParamsProxy from archai.discrete_search.evaluators.nlp.transformer_flex_latency import TransformerFlexOnnxLatency from archai.discrete_search.evaluators.nlp.transformer_flex_memory import TransformerFlexOnnxMemory search_objectives = SearchObjectives() search_objectives.add_objective( "non_embedding_params", NonEmbeddingParamsProxy(), higher_is_better=True, compute_intensive=False, constraint=(1e6, 1e9), ) search_objectives.add_objective( "onnx_latency", TransformerFlexOnnxLatency(space), higher_is_better=False, compute_intensive=False, ) search_objectives.add_objective( "onnx_memory", TransformerFlexOnnxMemory(space), higher_is_better=False, compute_intensive=False, ) ``` ### Initializing the Algorithm We use the `EvolutionParetoSearch` algorithm to conduct the search: ```python from archai.discrete_search.algos.evolution_pareto import EvolutionParetoSearch algo = EvolutionParetoSearch( space, search_objectives, None, "tmp", num_iters=5, init_num_models=10, seed=1234, ) ``` ### Performing the Search Finally, we call the `search()` method to start the NAS process: ```python algo.search() ``` The algorithm will iterate through different network architectures, evaluate their performance based on the defined objectives, and ultimately produce a frontier of Pareto-optimal results. ## Tasks To demonstrate and showcase the capabilities/functionalities of Archai, a set of end-to-end tasks are provided: * [Text Generation](https://github.com/microsoft/archai/blob/main/tasks/text_generation). * [Face Segmentation](https://github.com/microsoft/archai/blob/main/tasks/face_segmentation). ## Documentation The [official documentation](https://microsoft.github.io/archai) also provides a series of [notebooks](https://microsoft.github.io/archai/getting_started/notebooks.html). ## Support If you have any questions or feedback about the Archai project or the open problems in Neural Architecture Search, please feel free to contact us using the following information: * Email: [email protected] * Website: https://github.com/microsoft/archai/issues We welcome any questions, feedback, or suggestions you may have and look forward to hearing from you. ### Team Archai has been created and maintained by [Shital Shah](https://shital.com), [Debadeepta Dey](https://debadeepta.com), [Gustavo de Rosa](https://www.microsoft.com/en-us/research/people/gderosa), Caio Mendes, [Piero Kauffmann](https://www.microsoft.com/en-us/research/people/pkauffmann), [Chris Lovett](https://lovettsoftware.com), Allie Del Giorno, Mojan Javaheripi, and [Ofer Dekel](https://www.microsoft.com/en-us/research/people/oferd) at Microsoft Research. ### Contributions This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com. When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repositories using our CLA. This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or contact [[email protected]](mailto:[email protected]) with any additional questions or comments. ### Trademark This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies. ### License This project is released under the MIT License. Please review the [file](https://github.com/microsoft/archai/blob/main/LICENSE) for more details.
archai/README.md/0
{ "file_path": "archai/README.md", "repo_id": "archai", "token_count": 2036 }
297
from typing import Callable, Tuple import psutil import os import tracemalloc import torch from torch import profiler from torch import nn import gc def model_memory(create_model:Callable[[], nn.Module])->Tuple[nn.Module, int]: # returns model and memory occupied by the model in process gc.collect() # baseline process memory process = psutil.Process(os.getpid()) baseline_mem = process.memory_info().rss model = create_model() gc.collect() new_mem = process.memory_info().rss return model, new_mem-baseline_mem def inference_stats(model:nn.Module, **inputs)->Tuple[int, int, int]: # return memory usage in bytes, cpu time in us # We basically sum "self" time of individual ops, # i.e., not including child time. # Pytorch also has record_function which gives # higher CPU time, probably because it includes # time spent other than ops. # Sometime profiler also generates [memory] node # which has negative value of memory. with torch.no_grad(): with profiler.profile(activities=[profiler.ProfilerActivity.CPU], profile_memory=True, record_shapes=True, with_flops=True) as prof: with profiler.record_function('model_inference'): _ = model(**inputs) t = prof.key_averages() self_time, self_mem, flops, ti_memory, inf_cpu, inf_mem, inf_flops = 0, 0, 0, 0, 0, 0, 0 for ti in t: if ti.key == '[memory]': ti_memory = -ti.self_cpu_memory_usage continue if ti.key == 'model_inference': inf_mem = -ti.cpu_memory_usage inf_cpu = ti.cpu_time_total inf_flops = ti.flops continue self_mem += ti.self_cpu_memory_usage self_time += ti.self_cpu_time_total flops += ti.flops return self_mem, self_time, flops, inf_cpu
archai/archai/common/ml_perf_utils.py/0
{ "file_path": "archai/archai/common/ml_perf_utils.py", "repo_id": "archai", "token_count": 730 }
298
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import List import torch class Lighting: """Lighting transform.""" def __init__(self, std: float, eigval: List[float], eigvec: List[float]) -> None: """Initialize the lighting transform. Args: std: Standard deviation of the normal distribution. eigval: Eigenvalues of the covariance matrix. eigvec: Eigenvectors of the covariance matrix. """ self.std = std self.eigval = torch.Tensor(eigval) self.eigvec = torch.Tensor(eigvec) def __call__(self, img: torch.Tensor) -> torch.Tensor: if self.std == 0: return img alpha = img.new().resize_(3).normal_(0, self.std) rgb = ( self.eigvec.type_as(img) .clone() .mul(alpha.view(1, 3).expand(3, 3)) .mul(self.eigval.view(1, 3).expand(3, 3)) .sum(1) .squeeze() ) return img.add(rgb.view(3, 1, 1).expand_as(img))
archai/archai/datasets/cv/transforms/lighting.py/0
{ "file_path": "archai/archai/datasets/cv/transforms/lighting.py", "repo_id": "archai", "token_count": 512 }
299
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from archai.discrete_search.evaluators.functional import EvaluationFunction from archai.discrete_search.evaluators.onnx_model import AvgOnnxLatency from archai.discrete_search.evaluators.progressive_training import ( ProgressiveTraining, RayProgressiveTraining ) from archai.discrete_search.evaluators.pt_profiler import ( TorchFlops, TorchLatency, TorchPeakCpuMemory, TorchPeakCudaMemory, TorchNumParameters ) from archai.discrete_search.evaluators.ray import RayParallelEvaluator __all__ = [ 'EvaluationFunction', 'AvgOnnxLatency', 'ProgressiveTraining', 'RayProgressiveTraining', 'TorchFlops', 'TorchLatency', 'TorchPeakCpuMemory', 'TorchPeakCudaMemory', 'TorchNumParameters', 'RayParallelEvaluator' ]
archai/archai/discrete_search/evaluators/__init__.py/0
{ "file_path": "archai/archai/discrete_search/evaluators/__init__.py", "repo_id": "archai", "token_count": 264 }
300
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import time import datetime import uuid from pathlib import Path from tempfile import TemporaryDirectory from typing import Any, Dict, List, Optional, Tuple, Union import torch from overrides import overrides from archai.discrete_search.api.archai_model import ArchaiModel from archai.discrete_search.api.model_evaluator import AsyncModelEvaluator from archai.common.store import ArchaiStore class RemoteAzureBenchmarkEvaluator(AsyncModelEvaluator): """Simple adapter for benchmarking architectures asynchronously on Azure. This adapter uploads an ONNX model to a Azure Blob storage container and records the model entry on the respective Azure Table. """ def __init__( self, input_shape: Union[Tuple, List[Tuple]], store: ArchaiStore, experiment_name: str, metric_key: str, overwrite: Optional[bool] = True, max_retries: Optional[int] = 5, retry_interval: Optional[int] = 120, onnx_export_kwargs: Optional[Dict[str, Any]] = None, verbose: bool = False, benchmark_only: bool = True ) -> None: """Initialize the evaluator. Args: input_shape: Model input shape or list of model input shapes for ONNX export. connection_string: Storage account connection string. blob_container_name: Name of the blob container. table_name: Name of the table. metric_key: Column that should be used as result. partition_key: Partition key for the table used to record all entries. overwrite: Whether to overwrite existing models. max_retries: Maximum number of retries in `fetch_all`. retry_interval: Interval between each retry attempt. reset: Whether to reset the metrics. onnx_export_kwargs: Dictionary containing key-value arguments for `torch.onnx.export`. verbose: Whether to print debug messages. """ # TODO: Make this class more general / less pipeline-specific self.store = store input_shapes = [input_shape] if isinstance(input_shape, tuple) else input_shape self.sample_input = tuple([torch.rand(*input_shape) for input_shape in input_shapes]) self.experiment_name = experiment_name self.metric_key = metric_key self.overwrite = overwrite self.max_retries = max_retries self.retry_interval = retry_interval self.onnx_export_kwargs = onnx_export_kwargs or dict() self.verbose = verbose self.results = {} self.benchmark_only = benchmark_only # Architecture list self.archids = [] # Test connection string works unknown_id = str(uuid.uuid4()) _ = self.store.get_existing_status(unknown_id) _ = self.store.list_blobs(unknown_id) def _reset(self, entity): changed = False for k in ['mean', 'macs', 'params', 'stdev', 'total_inference_avg', 'error']: if k in entity: del entity[k] changed = True if changed: self.store.update_status_entity(entity) @overrides def send(self, arch: ArchaiModel, budget: Optional[float] = None) -> None: # bug in azure ml sdk requires blob store folder names not begin with digits, so we prefix with 'id_' archid = f'id_{arch.archid}' # Checks if architecture was already benchmarked entity = self.store.get_existing_status(archid) if entity is not None: if entity["status"] == "complete": if self.metric_key in entity: if self.verbose: value = entity[self.metric_key] self.archids.append(archid) print(f"Entry for {archid} already exists with {self.metric_key} = {value}") return else: # force quantization to happen again in case the model has been retrained. self._reset(entity) else: # job is still running, let it continue if self.verbose: print(f"Job for {archid} is running...") self.archids.append(archid) return entity = self.store.get_status(archid) # this is a get or create operation. if self.benchmark_only: entity["benchmark_only"] = 1 elif 'benchmark_only' in entity: del entity['benchmark_only'] self.store.update_status_entity(entity) # must be an update, not a merge. self.store.lock_entity(entity, "uploading") if arch.arch is not None: try: with TemporaryDirectory() as tmp_dir: tmp_dir = Path(tmp_dir) # Uploads ONNX file to blob storage and updates the table entry arch.arch.to("cpu") file_name = str(tmp_dir / "model.onnx") # Exports model to ONNX torch.onnx.export( arch.arch, self.sample_input, file_name, input_names=[f"input_{i}" for i in range(len(self.sample_input))], **self.onnx_export_kwargs, ) self.store.upload_blob(f'{self.experiment_name}/{archid}', file_name, "model.onnx") entity["model_date"] = self.store.get_utc_date() entity["model_name"] = "model.onnx" entity["status"] = "new" except Exception as e: entity["error"] = str(e) entity["status"] = "error" else: # then the blob store must already have a model.onnx file! blobs = self.store.list_blobs(f'{self.experiment_name}/{archid}/model.onnx') if len(blobs) < 1: print(f"model.onnx is missing for architecture {archid}") return else: entity['status'] = 'ready' self.store.unlock_entity(entity) self.archids.append(archid) if self.verbose: print(f"Sent {archid} to Remote Benchmark") @overrides def fetch_all(self) -> List[Union[float, None]]: results = [None] * len(self.archids) completed = [False] * len(self.archids) # retries defines how long we wait for progress, as soon as we see something complete we # reset this counter because we are making progress. retries = self.max_retries start = time.time() count = 0 while retries > 0: for i, archid in enumerate(self.archids): if not completed[i]: entity = self.store.get_existing_status(archid) if entity is not None: if self.metric_key in entity and entity[self.metric_key]: results[i] = entity[self.metric_key] if "error" in entity: error = entity["error"] print(f"Skipping architecture {archid} because of remote error: {error}") completed[i] = True retries = self.max_retries elif entity["status"] == "complete": print(f"Architecture {archid} is complete with {self.metric_key}={ results[i]}") completed[i] = True retries = self.max_retries if all(completed): break count = sum(1 for c in completed if c) if self.verbose: remaining = len(self.archids) - count estimate = (time.time() - start) / (count + 1) * remaining status_dict = { "complete": count, "total": len(results), "time_remaining": str(datetime.timedelta(seconds=estimate)) } print( f"Waiting for results. Current status: {status_dict}\n" f"Pending Archids: {[archid for archid, status in zip(self.archids, results) if status is None]}" ) time.sleep(self.retry_interval) retries += 1 count = sum(1 for c in completed if c) if count == 0: raise Exception("Something is wrong, the uploaded models are not being processed. Please check your SNPE remote runner setup.") # Resets state self.archids = [] return results
archai/archai/discrete_search/evaluators/remote_azure_benchmark.py/0
{ "file_path": "archai/archai/discrete_search/evaluators/remote_azure_benchmark.py", "repo_id": "archai", "token_count": 4187 }
301
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from functools import partial from typing import Optional import torch from torch import nn class NormalConvBlock(nn.Module): """Normal Convolutional Block with BatchNorm and ReLU.""" def __init__( self, in_channels: int, out_channels: int, kernel_size: Optional[int] = 3, stride: Optional[int] = 1, padding: Optional[int] = 1, bias: Optional[bool] = True, **kwargs ) -> None: """Initialize the module. Args: in_channels: Number of input channels. out_channels: Number of output channels. kernel_size: Kernel size. stride: Stride. padding: Padding. bias: Whether to use bias. """ super().__init__() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias ) self.bn = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() def forward(self, x: torch.Tensor): return self.relu(self.bn(self.conv(x))) class SeparableConvBlock(nn.Module): """Separable Convolutional Block with BatchNorm and ReLU.""" def __init__( self, in_channels: int, out_channels: int, kernel_size: Optional[int] = 3, stride: Optional[int] = 1, padding: Optional[int] = 1, expand_ratio: Optional[float] = 1.0, id_skip: Optional[bool] = False, bias: Optional[bool] = True, ): """Initialize the module. Args: in_channels: Number of input channels. out_channels: Number of output channels. kernel_size: Kernel size. stride: Stride. padding: Padding. expand_ratio: Expansion ratio. id_skip: Whether to use skip connection. bias: Whether to use bias. """ super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.expand_ratio = expand_ratio self.stride = stride self.padding = padding self.kernel_size = kernel_size self.id_skip = id_skip # Expansion phase inp = in_channels # number of input channels oup = int(in_channels * self.expand_ratio) # number of output channels if expand_ratio != 1: self._expand_conv = nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=bias) self._bn0 = nn.BatchNorm2d(num_features=oup) # Depthwise convolution phase self._depthwise_conv = nn.Conv2d( in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise kernel_size=kernel_size, stride=stride, bias=bias, padding=padding, ) self._bn1 = nn.BatchNorm2d(num_features=oup) # Output phase self._project_conv = nn.Conv2d(in_channels=oup, out_channels=out_channels, kernel_size=1, bias=bias) self._bn2 = nn.BatchNorm2d(num_features=out_channels) self._act = nn.ReLU() def forward(self, x: torch.Tensor) -> torch.Tensor: # Expansion and Depthwise Convolution out = x if self.expand_ratio != 1: out = self._bn0(self._expand_conv(out)) # No activation function here out = self._act(self._bn1(self._depthwise_conv(out))) # Pointwise conv. out = self._bn2(self._project_conv(out)) # Skip connection if self.id_skip and self.stride == 1 and self.in_channels == self.out_channels: out = out + x return out OPS = { "conv3x3": partial(NormalConvBlock, kernel_size=3, padding=1), "conv5x5": partial(NormalConvBlock, kernel_size=5, padding=2), "conv7x7": partial(NormalConvBlock, kernel_size=7, padding=3), "mbconv3x3_e1": partial(SeparableConvBlock, kernel_size=3, padding=1), "mbconv3x3_e2": partial(SeparableConvBlock, kernel_size=3, padding=1, expand_ratio=2), "mbconv5x5_e1": partial(SeparableConvBlock, kernel_size=5, padding=2), "mbconv5x5_e2": partial(SeparableConvBlock, kernel_size=5, padding=2, expand_ratio=2), } class Block(nn.Module): """Block of operations.""" def __init__(self, in_ch: int, out_ch: int, in_scale: int, out_scale: int, op_name: str) -> None: """Initialize the module. Args: in_ch: Number of input channels. out_ch: Number of output channels. in_scale: Input scale. out_scale: Output scale. op_name: Operation name. """ super().__init__() self.in_ch, self.out_ch = in_ch, out_ch self.in_scale, self.out_scale = in_scale, out_scale self.op_name = op_name assert op_name in OPS assert (out_scale % in_scale == 0) or (in_scale % out_scale == 0) if out_scale >= in_scale: self.op = nn.Sequential(OPS[op_name](in_ch, out_ch, stride=int(out_scale // in_scale))) else: self.op = nn.Sequential( OPS[op_name](in_ch, out_ch, stride=1), nn.Upsample(scale_factor=int(in_scale // out_scale), mode="nearest"), ) def forward(self, input: torch.Tensor) -> torch.Tensor: return self.op(input)
archai/archai/discrete_search/search_spaces/cv/segmentation_dag/ops.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/cv/segmentation_dag/ops.py", "repo_id": "archai", "token_count": 2558 }
302
from typing import Optional, Tuple, Union import torch from torch import nn from transformers.models.codegen.modeling_codegen import ( CodeGenConfig, fixed_pos_embedding, apply_rotary_pos_emb ) from archai.discrete_search.search_spaces.config import ArchConfig class CausalSelfAttention(nn.Module): def __init__(self, arch_config: ArchConfig, hf_config: CodeGenConfig, hidden_size: int, total_heads: int, op_heads: int, **kwargs): assert hidden_size % total_heads == 0 super().__init__() max_positions = hf_config.max_position_embeddings self.register_buffer( "causal_mask", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view( 1, 1, max_positions, max_positions ), ) self.hidden_size = hidden_size self.total_heads = total_heads self.op_heads = op_heads self.head_size = hidden_size // total_heads self.op_size = (self.hidden_size // total_heads) * op_heads self.max_positions = max_positions self.scale_attn_weights = hf_config.scale_attn_weights self.attn_dropout = nn.Dropout(hf_config.attn_pdrop) self.scale_attn = torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()) self.qkv_proj = nn.Linear(self.hidden_size, self.op_size * 3, bias=False) self.rotary_dim = getattr(hf_config, 'rotary_dim', None) def _split_heads(self, x, n_head, dim_head, mp_num): reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) return reshaped def _merge_heads(self, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into n_ctx """ if len(tensor.shape) == 5: tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() elif len(tensor.shape) == 4: tensor = tensor.permute(0, 2, 1, 3).contiguous() else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) return tensor.view(new_shape) def _attn( self, query, key, value, attention_mask=None, head_mask=None, ): # compute causal mask from causal mask buffer query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] # Keep the attention weights computation in fp32 to avoid overflow issues query = query.to(torch.float32) key = key.to(torch.float32) attn_weights = torch.matmul(query, key.transpose(-1, -2)) attn_weights = attn_weights / self.scale_attn mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.Softmax(dim=-1)(attn_weights) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def forward( self, hidden_states: Optional[torch.FloatTensor], attention_mask: Optional[torch.FloatTensor] = None, layer_past: Optional[Tuple[torch.Tensor]] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, **kwargs ) -> Union[ Tuple[torch.Tensor, Tuple[torch.Tensor]], Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]], ]: qkv = self.qkv_proj(hidden_states) # TODO(enijkamp): factor out number of logical TPU-v4 cores or make forward pass agnostic mp_num = 1 qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) local_dim = self.head_size * self.op_heads // mp_num query, value, key = torch.split(qkv_split, local_dim, dim=-1) query = self._split_heads(query, self.op_heads, self.head_size, mp_num=mp_num) key = self._split_heads(key, self.op_heads, self.head_size, mp_num=mp_num) value = self._split_heads(value, self.op_heads, self.head_size, mp_num=mp_num) value = value.permute(0, 2, 1, 3) seq_len = key.shape[1] offset = 0 if layer_past is not None: offset = layer_past[0].shape[-2] seq_len += offset if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len) k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset) q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset) key = torch.cat([k_rot, k_pass], dim=-1) query = torch.cat([q_rot, q_pass], dim=-1) key = key.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None # compute self-attention: V x Softmax(QK^T) attn_output, _ = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.op_heads, self.head_size) return attn_output, present
archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/causal_self_attn.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/causal_self_attn.py", "repo_id": "archai", "token_count": 3028 }
303
import math import torch import torch.nn.functional as F from einops import rearrange from .fftconv import fftconv_fwd, fftconv_bwd @torch.jit.script def _mul_sum(y, q): return (y * q).sum(dim=1) # reference convolution with residual connection def fftconv_ref(u, k, D, dropout_mask, gelu=True, k_rev=None): seqlen = u.shape[-1] fft_size = 2 * seqlen k_f = torch.fft.rfft(k, n=fft_size) / fft_size if k_rev is not None: k_rev_f = torch.fft.rfft(k_rev, n=fft_size) / fft_size k_f = k_f + k_rev_f.conj() u_f = torch.fft.rfft(u.to(dtype=k.dtype), n=fft_size) y = torch.fft.irfft(u_f * k_f, n=fft_size, norm='forward')[..., :seqlen] out = y + u * D.unsqueeze(-1) if gelu: out = F.gelu(out) if dropout_mask is not None: return (out * rearrange(dropout_mask, 'b H -> b H 1')).to(dtype=u.dtype) else: return out.to(dtype=u.dtype) # reference H3 forward pass def fftconv_h3_ref(k, ssm_kernel, D, q, v, head_dim=1, ssm_kernel_rev=None): seqlen = k.shape[-1] fft_size = 2 * seqlen kv = (rearrange(k, 'b (h d1) l -> b d1 1 h l', d1=head_dim) * rearrange(v, 'b (h d2) l -> b 1 d2 h l', d2=head_dim)) # b d1 d2 h l kv_f = torch.fft.rfft(kv.to(dtype=ssm_kernel.dtype), n=fft_size) / fft_size ssm_kernel_f = torch.fft.rfft(ssm_kernel, n=fft_size) # h L+1 if ssm_kernel_rev is not None: ssm_kernel_rev_f = torch.fft.rfft(ssm_kernel_rev, n=fft_size) # h L+1 ssm_kernel_f = ssm_kernel_f + ssm_kernel_rev_f.conj() y = torch.fft.irfft(kv_f * ssm_kernel_f, n=fft_size, norm='forward')[..., :seqlen] # b d1 d2 h l out = y + kv * D.unsqueeze(-1) # b d1 d2 h l q = rearrange(q, 'b (h d1) l -> b d1 1 h l', d1=head_dim) if head_dim > 1: out = _mul_sum(out, q) return rearrange(out, 'b d2 h l -> b (h d2) l').to(dtype=k.dtype) else: return rearrange(out * q, 'b 1 1 h l -> b h l').to(dtype=k.dtype) class FFTConvFunc(torch.autograd.Function): @staticmethod def forward(ctx, u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False, output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None): seqlen = u.shape[-1] fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16) k_f = torch.fft.rfft(k, n=fft_size) if k_rev is not None: k_f = k_f + torch.fft.rfft(k_rev, n=fft_size).conj() if u.stride(-1) != 1: u = u.contiguous() k_f = k_f.contiguous() D = D.contiguous() if v is not None and v.stride(-1) != 1: v = v.contiguous() if q is not None and q.stride(-1) != 1: q = q.contiguous() if dropout_mask is not None: dropout_mask = dropout_mask.contiguous() ctx.save_for_backward(u, k_f, D, dropout_mask, v, q) ctx.output_hbl_layout = output_hbl_layout ctx.head_dim = head_dim ctx.gelu = gelu ctx.fftfp16 = fftfp16 ctx.has_k_rev = k_rev is not None out = fftconv_fwd(u, k_f, D, v, head_dim, q, dropout_mask, gelu, False, False, fft_size, force_fp16_output, output_hbl_layout, fftfp16) return out @staticmethod def backward(ctx, dout): if ctx.output_hbl_layout: dout = rearrange(rearrange(dout, 'b h l -> h b l').contiguous(), 'h b l -> b h l') else: dout = dout.contiguous() u, k_f, D, dropout_mask, v, q = ctx.saved_tensors seqlen = u.shape[-1] fft_size = max(2 * 2 ** int(math.ceil(math.log2(seqlen))), 16) du, dk_f, dD, dv, dq = fftconv_bwd(dout, u, k_f, D, v, ctx.head_dim, q, dropout_mask, ctx.gelu, False, False, fft_size, ctx.output_hbl_layout, ctx.fftfp16) dk = torch.fft.irfft(dk_f, n=fft_size, norm='forward')[..., :seqlen] dk_rev = (None if not ctx.has_k_rev else torch.fft.irfft(dk_f.conj(), n=fft_size, norm='forward')[..., :seqlen]) if v is not None: dv = dv.to(dtype=v.dtype) # We do atomicAdd in fp32 so might need to convert to fp16 return du, dk, dD, None, None, None, None, dv if v is not None else None, None, dq if q is not None else None, None, dk_rev def fftconv_func(u, k, D, dropout_mask=None, gelu=True, force_fp16_output=False, output_hbl_layout=False, v=None, head_dim=1, q=None, fftfp16=False, k_rev=None): return FFTConvFunc.apply(u, k, D, dropout_mask, gelu, force_fp16_output, output_hbl_layout, v, head_dim, q, fftfp16, k_rev)
archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/ssm_utils/ssm_ops/fftconv.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/tfpp/ops/ssm_utils/ssm_ops/fftconv.py", "repo_id": "archai", "token_count": 2440 }
304
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # # Copyright (c) 2018, NVIDIA CORPORATION. # Licensed under the Apache License, Version 2.0. from typing import Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F class OptionalParameterList(nn.ParameterList): def extra_repr(self) -> str: child_lines = [] for k, p in self._parameters.items(): if p is not None: size_str = "x".join(str(size) for size in p.size()) device_str = "" if not p.is_cuda else " (GPU {})".format(p.get_device()) parastr = "Parameter containing: [{} of size {}{}]".format(torch.typename(p), size_str, device_str) child_lines.append(" (" + str(k) + "): " + parastr) tmpstr = "\n".join(child_lines) return tmpstr class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__( self, vocab_size: int, d_embed: int, d_model: int, cutoffs: Tuple[int], tie_projs: Tuple[bool], emb_projs: Optional[torch.FloatTensor] = None, emb_weights: Optional[torch.FloatTensor] = None, div_val: Optional[int] = 1, keep_order: Optional[bool] = True, ) -> None: super().__init__() self.vocab_size = vocab_size self.d_embed = d_embed self.d_model = d_model self.tie_projs = tie_projs self.div_val = div_val self.keep_order = keep_order self.cutoffs = cutoffs + [vocab_size] self.cutoffs_ends = [0] + self.cutoffs self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.cutoffs[0] + self.n_clusters # Whenever clusters are available, we need their weights and biases if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) if not emb_weights: self.out_weights = nn.ParameterList() else: self.out_weights = emb_weights self.out_biases = nn.ParameterList() self.out_projs = OptionalParameterList() self.out_shared_projs = emb_projs # Core logic for handling different dividents if div_val == 1: for i in range(len(self.cutoffs)): if d_model != d_embed: if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append(nn.Parameter(torch.FloatTensor(d_model, d_embed))) else: self.out_projs.append(None) if not emb_weights: self.out_weights.append(nn.Parameter(torch.zeros(vocab_size, d_embed))) self.out_biases.append(nn.Parameter(torch.zeros(vocab_size))) else: for i in range(len(self.cutoffs)): cutoff_start, cutoff_end = ( self.cutoffs_ends[i], self.cutoffs_ends[i + 1], ) d_embed_i = d_embed // (div_val**i) if tie_projs[i]: self.out_projs.append(None) else: self.out_projs.append(nn.Parameter(torch.FloatTensor(d_model, d_embed_i))) if not emb_weights: self.out_weights.append(nn.Parameter(torch.zeros(cutoff_end - cutoff_start, d_embed_i))) self.out_biases.append(nn.Parameter(torch.zeros(cutoff_end - cutoff_start))) def _compute_logits( self, inputs: torch.FloatTensor, weight: torch.FloatTensor, bias: torch.FloatTensor, proj: torch.FloatTensor, ) -> torch.FloatTensor: if proj is None: logits = F.linear(inputs, weight, bias=bias) else: inputs_proj = F.linear(inputs, proj.t().contiguous()) logits = F.linear(inputs_proj, weight, bias=bias) return logits def _get_shared_proj(self, idx: int) -> Union[None, torch.FloatTensor]: if self.tie_projs[idx]: if len(self.out_shared_projs) == 0: return None elif len(self.out_shared_projs) == 1: return self.out_shared_projs[0] else: return self.out_shared_projs[idx] return self.out_projs[idx] def forward(self, inputs: torch.FloatTensor, labels: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: if labels is not None: # Shift `n` tokens to predict `n+1` inputs = inputs[..., :-1, :].contiguous() inputs = inputs.view(-1, inputs.size(-1)) labels = labels[..., 1:].contiguous() labels = labels.view(-1) if inputs.size(0) != labels.size(0): raise RuntimeError("Inputs and labels should have the same size in the batch dimension.") else: inputs = inputs.view(-1, inputs.size(-1)) if self.n_clusters == 0: logits = self._compute_logits( inputs, self.out_weights[0], self.out_biases[0], self._get_shared_proj(0), ) if labels is not None: output = -F.log_softmax(logits, dim=-1).gather(1, labels.unsqueeze(1)).squeeze(1) else: output = F.log_softmax(logits, dim=-1) else: # Creates weights and biases to handle all available clusters weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: cutoff_start, cutoff_end = ( self.cutoffs_ends[i], self.cutoffs_ends[i + 1], ) weight_i = self.out_weights[0][cutoff_start:cutoff_end] bias_i = self.out_biases[0][cutoff_start:cutoff_end] else: weight_i = self.out_weights[i] bias_i = self.out_biases[i] if i == 0: weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) # Defines the head weight, bias and projection head_weight, head_bias, head_proj = ( weights[0], biases[0], self._get_shared_proj(0), ) # Calculates the head logits and their probabilities head_logits = self._compute_logits(inputs, head_weight, head_bias, head_proj) head_probs = F.log_softmax(head_logits, dim=1) if labels is not None: output = torch.zeros_like(labels, dtype=inputs.dtype, device=inputs.device) else: output = inputs.new_empty((head_logits.size(0), self.vocab_size)) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): cutoff_start, cutoff_end = cutoff_values[i], cutoff_values[i + 1] if labels is not None: # Gathers a mask of valid indexes mask_i = (labels >= cutoff_start) & (labels < cutoff_end) indexes_i = mask_i.nonzero().squeeze() if indexes_i.numel() == 0: continue target_i = labels.index_select(0, indexes_i) - cutoff_start head_probs_i = head_probs.index_select(0, indexes_i) inputs_i = inputs.index_select(0, indexes_i) else: inputs_i = inputs if i == 0: if labels is not None: probs_i = head_probs_i.gather(1, target_i[:, None]).squeeze(1) else: output[:, : self.cutoffs[0]] = head_probs[:, : self.cutoffs[0]] else: weight_i, bias_i, proj_i = ( weights[i], biases[i], self._get_shared_proj(i), ) tail_logits_i = self._compute_logits(inputs_i, weight_i, bias_i, proj_i) tail_probs_i = F.log_softmax(tail_logits_i, dim=1) cluster_probs_i = self.cutoffs[0] + i - 1 if labels is not None: tail_probs_i = tail_probs_i.gather(1, target_i[:, None]).squeeze(1) probs_i = head_probs_i[:, cluster_probs_i] + tail_probs_i else: probs_i = head_probs[:, cluster_probs_i, None] + tail_probs_i output[:, cutoff_start:cutoff_end] = probs_i if labels is not None: if self.keep_order: output.index_copy_(0, indexes_i, -probs_i) else: output[offset : offset + probs_i.size(0)].copy_(-probs_i) offset += probs_i.size(0) return output
archai/archai/discrete_search/search_spaces/nlp/transformer_flex/models/mem_transformer_utils/projected_adaptive_log_softmax.py/0
{ "file_path": "archai/archai/discrete_search/search_spaces/nlp/transformer_flex/models/mem_transformer_utils/projected_adaptive_log_softmax.py", "repo_id": "archai", "token_count": 5037 }
305
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Optional from onnx import load_model from onnxruntime.transformers.onnx_model_gpt2 import Gpt2OnnxModel from onnxruntime.transformers.optimizer import optimize_by_onnxruntime from archai.common.file_utils import create_file_name_identifier from archai.common.ordered_dict_logger import OrderedDictLogger from archai.onnx.config_utils.onnx_config_base import OnnxConfig from archai.onnx.optimization_utils.fusion_options import FusionOptions logger = OrderedDictLogger(source=__name__) AVAILABLE_ONNX_MODELS = {"gpt2": Gpt2OnnxModel, "gpt2-flex": Gpt2OnnxModel} def optimize_onnx( onnx_model_path: str, onnx_config: OnnxConfig, use_gpu: Optional[bool] = False, opt_level: Optional[int] = 1, only_ort: Optional[bool] = False, float16: Optional[bool] = False, input_int32: Optional[bool] = False, ) -> str: """Optimize an ONNX model using a combination of standard ORT-based optimization and additional transformer-based optimization. Args: onnx_model_path: Path to the ONNX model to be optimized. onnx_config: ONNX configuration of model to be optimized. use_gpu: Whether to use GPU during optimization. opt_level: Level of optimization. only_ort: Whether to only apply ORT optimization. float16: Whether to use graph with float16. input_int32: Whether to use inputs with int32. Returns: Path to the optimized ONNX model. """ logger.info(f"Optimizing model: {onnx_model_path}") assert opt_level in [0, 1, 2, 99] ort_model_path = onnx_model_path # Applies standard ORT-based optimization if opt_level > 0: disabled_optimizers = [] if opt_level > 1: # Disables some optimizers that might influence shape inference/attention fusion if not only_ort: disabled_optimizers = [ "MatMulScaleFusion", "MatMulAddFusion", "SimplifiedLayerNormFusion", "GemmActivationFusion", "BiasSoftmaxFusion", ] # Performs the standard ORT optimization ort_model_path = create_file_name_identifier(onnx_model_path, "-opt") optimize_by_onnxruntime( onnx_model_path, use_gpu=use_gpu, optimized_model_path=ort_model_path, opt_level=opt_level, disabled_optimizers=disabled_optimizers, ) if not only_ort: model_type = onnx_config.config.model_type available_models = list(AVAILABLE_ONNX_MODELS.keys()) assert model_type in available_models, f"`model_type`: {model_type} is not supported for `only_ort=False`." # Applies additional transformer-based optimization if onnx_config.is_ort_graph_optimizable: ort_model = load_model(ort_model_path) ort_model_path = create_file_name_identifier(onnx_model_path, "-opt") onnx_opt_model = AVAILABLE_ONNX_MODELS[model_type] options = FusionOptions(model_type) optimizer = onnx_opt_model(ort_model, *onnx_config.ort_graph_optimizer_args) optimizer.optimize(options) optimizer.topological_sort() if float16: ort_model_path = create_file_name_identifier(ort_model_path, "-fp16") optimizer.convert_float_to_float16(keep_io_types=True) if input_int32: optimizer.change_graph_inputs_to_int32() optimizer.save_model_to_file(ort_model_path) return ort_model_path
archai/archai/onnx/optimization.py/0
{ "file_path": "archai/archai/onnx/optimization.py", "repo_id": "archai", "token_count": 1615 }
306
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os from typing import Dict, List import matplotlib.pyplot as plt import numpy as np import torch from overrides import overrides from torch import nn from archai.common.common import get_conf, get_expdir from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.algos.divnas.analyse_activations import compute_brute_force_sol from archai.supergraph.algos.divnas.divnas_cell import Divnas_Cell from archai.supergraph.algos.divnas.divop import DivOp from archai.supergraph.datasets.data import get_data from archai.supergraph.nas.cell import Cell from archai.supergraph.nas.finalizers import Finalizers from archai.supergraph.nas.model import Model from archai.supergraph.nas.model_desc import CellDesc, EdgeDesc, ModelDesc, NodeDesc from archai.supergraph.nas.operations import Zero from archai.supergraph.utils.heatmap import heatmap logger = get_global_logger() class DivnasRankFinalizers(Finalizers): @overrides def finalize_model(self, model: Model, to_cpu=True, restore_device=True) -> ModelDesc: logger.pushd('finalize') # get config and train data loader conf = get_conf() conf_loader = conf['nas']['search']['loader'] data_loaders = get_data(conf_loader) assert data_loaders.train_dl is not None # wrap all cells in the model self._divnas_cells: Dict[Cell, Divnas_Cell] = {} for _, cell in enumerate(model.cells): divnas_cell = Divnas_Cell(cell) self._divnas_cells[cell] = divnas_cell # go through all edges in the DAG and if they are of divop # type then set them to collect activations sigma = conf['nas']['search']['divnas']['sigma'] for _, dcell in enumerate(self._divnas_cells.values()): dcell.collect_activations(DivOp, sigma) # now we need to run one evaluation epoch to collect activations # we do it on cpu otherwise we might run into memory issues # later we can redo the whole logic in pytorch itself # at the end of this each node in a cell will have the covariance # matrix of all incoming edges' ops model = model.cpu() model.eval() with torch.no_grad(): for _ in range(1): for _, (x, _) in enumerate(data_loaders.train_dl): _, _ = model(x), None # update the node covariances in all cells for dcell in self._divnas_cells.values(): dcell.update_covs() logger.popd() return super().finalize_model(model, to_cpu, restore_device) @overrides def finalize_cell(self, cell:Cell, cell_index:int, model_desc:ModelDesc, *args, **kwargs)->CellDesc: # first finalize each node, we will need to recreate node desc with final version logger.info(f'cell id {cell.desc.id}') max_final_edges = model_desc.max_final_edges node_descs: List[NodeDesc] = [] dcell = self._divnas_cells[cell] assert len(cell.dag) == len(list(dcell.node_covs.values())) for i, node in enumerate(cell.dag): node_cov = dcell.node_covs[id(node)] logger.info(f'node {i}') node_desc = self.finalize_node(node, i, cell.desc.nodes()[i],max_final_edges, node_cov, cell, i) node_descs.append(node_desc) # (optional) clear out all activation collection information dcell.clear_collect_activations() desc = cell.desc finalized = CellDesc( id = desc.id, cell_type=desc.cell_type, conf_cell=desc.conf_cell, stems=[cell.s0_op.finalize()[0], cell.s1_op.finalize()[0]], stem_shapes=desc.stem_shapes, nodes = node_descs, node_shapes=desc.node_shapes, post_op=cell.post_op.finalize()[0], out_shape=desc.out_shape, trainables_from = desc.trainables_from ) return finalized @overrides def finalize_node(self, node:nn.ModuleList, node_index:int, node_desc:NodeDesc, max_final_edges:int, cov:np.array, cell: Cell, node_id: int, *args, **kwargs)->NodeDesc: # node is a list of edges assert len(node) >= max_final_edges # covariance matrix shape must be square 2-D assert len(cov.shape) == 2 assert cov.shape[0] == cov.shape[1] # the number of primitive operators has to be greater # than equal to the maximum number of final edges # allowed assert cov.shape[0] >= max_final_edges # get the order and alpha of all ops other than 'none' in_ops = [(edge,op,alpha,i) for i, edge in enumerate(node) \ for op, alpha in edge._op.ops() if not isinstance(op, Zero)] assert len(in_ops) >= max_final_edges # order all the ops by alpha in_ops_sorted = sorted(in_ops, key=lambda in_op:in_op[2], reverse=True) # keep under consideration top half of the ops num_to_keep = max(max_final_edges, len(in_ops_sorted)//2) top_ops = in_ops_sorted[:num_to_keep] # get the covariance submatrix of the top ops only cov_inds = [] for edge, op, alpha, edge_num in top_ops: ind = self._divnas_cells[cell].node_num_to_node_op_to_cov_ind[node_id][op] cov_inds.append(ind) cov_top_ops = cov[np.ix_(cov_inds, cov_inds)] assert len(cov_inds) == len(top_ops) assert len(top_ops) >= max_final_edges assert cov_top_ops.shape[0] == cov_top_ops.shape[1] assert len(cov_top_ops.shape) == 2 # run brute force set selection algorithm # only on the top ops max_subset, max_mi = compute_brute_force_sol(cov_top_ops, max_final_edges) # note that elements of max_subset are indices into top_ops only selected_edges = [] for ind in max_subset: edge, op, alpha, edge_num = top_ops[ind] op_desc, _ = op.finalize() new_edge = EdgeDesc(op_desc, edge.input_ids) logger.info(f'selected edge: {edge_num}, op: {op_desc.name}') selected_edges.append(new_edge) # save diagnostic information to disk expdir = get_expdir() heatmap(cov_top_ops, fmt='.1g', cmap='coolwarm') savename = os.path.join( expdir, f'cell_{cell.desc.id}_node_{node_id}_cov.png') plt.savefig(savename) logger.info('') return NodeDesc(selected_edges, node_desc.conv_params)
archai/archai/supergraph/algos/divnas/divnas_rank_finalizer.py/0
{ "file_path": "archai/archai/supergraph/algos/divnas/divnas_rank_finalizer.py", "repo_id": "archai", "token_count": 2988 }
307
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from overrides import overrides from archai.common.config import Config from archai.supergraph.algos.petridish.petridish_op import PetridishOp, TempIdentityOp from archai.supergraph.algos.random.random_model_desc_builder import ( RandomModelDescBuilder, ) from archai.supergraph.nas.operations import Op class PetridishModelBuilder(RandomModelDescBuilder): @overrides def pre_build(self, conf_model_desc:Config)->None: super().pre_build(conf_model_desc) Op.register_op('petridish_normal_op', lambda op_desc, arch_params, affine: PetridishOp(op_desc, arch_params, False, affine)) Op.register_op('petridish_reduction_op', lambda op_desc, arch_params, affine: PetridishOp(op_desc, arch_params, True, affine)) Op.register_op('temp_identity_op', lambda op_desc, arch_params, affine: TempIdentityOp(op_desc)) # @overrides # def build_nodes(self, stem_shapes:TensorShapes, conf_cell:Config, # cell_index:int, cell_type:CellType, node_count:int, # in_shape:TensorShape, out_shape:TensorShape) \ # ->Tuple[TensorShapes, List[NodeDesc]]: # # For petridish we add one node with identity to s1. # # This will be our seed model to start with. # # Later in PetridishSearcher, we will add one more node in parent after each sampling. # assert in_shape[0]==out_shape[0] # reduction = (cell_type==CellType.Reduction) # # channels for conv filters # conv_params = ConvMacroParams(in_shape[0], out_shape[0]) # # identity op to connect S1 to the node # op_desc = OpDesc('skip_connect', # params={'conv': conv_params, # 'stride': 2 if reduction else 1}, # in_len=1, trainables=None, children=None) # edge = EdgeDesc(op_desc, input_ids=[1]) # new_node = NodeDesc(edges=[edge], conv_params=conv_params) # nodes = [new_node] # # each node has same out channels as in channels # out_shapes = [copy.deepcopy(out_shape) for _ in nodes] # return out_shapes, nodes
archai/archai/supergraph/algos/petridish/petridish_model_desc_builder.py/0
{ "file_path": "archai/archai/supergraph/algos/petridish/petridish_model_desc_builder.py", "repo_id": "archai", "token_count": 1031 }
308
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from abc import abstractmethod from typing import Dict, Optional, Tuple, Union from overrides import EnforceOverrides from torch.utils.data.dataset import Dataset from archai.common.config import Config TrainTestDatasets = Tuple[Optional[Dataset], Optional[Dataset]] ImgSize = Optional[Union[int, Tuple[int, int]]] class DatasetProvider(EnforceOverrides): def __init__(self, conf_dataset:Config): super().__init__() pass @abstractmethod def get_datasets(self, load_train:bool, load_test:bool, transform_train, transform_test)->TrainTestDatasets: pass @abstractmethod def get_transforms(self, img_size:ImgSize)->tuple: # of transforms pass DatasetProviderType = type(DatasetProvider) _providers: Dict[str, DatasetProviderType] = {} def register_dataset_provider(name:str, class_type:DatasetProviderType)->None: global _providers if name in _providers: raise KeyError(f'dataset provider with name {name} has already been registered') _providers[name] = class_type def get_provider_type(name:str)->DatasetProviderType: global _providers return _providers[name]
archai/archai/supergraph/datasets/dataset_provider.py/0
{ "file_path": "archai/archai/supergraph/datasets/dataset_provider.py", "repo_id": "archai", "token_count": 457 }
309
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import torchvision from overrides import overrides from torchvision.transforms import transforms from archai.common import utils from archai.common.config import Config from archai.supergraph.datasets.dataset_provider import ( DatasetProvider, ImgSize, TrainTestDatasets, register_dataset_provider, ) class Sport8Provider(DatasetProvider): def __init__(self, conf_dataset:Config): super().__init__(conf_dataset) self._dataroot = utils.full_path(conf_dataset['dataroot']) @overrides def get_datasets(self, load_train:bool, load_test:bool, transform_train, transform_test)->TrainTestDatasets: trainset, testset = None, None if load_train: trainpath = os.path.join(self._dataroot, 'sport8', 'train') trainset = torchvision.datasets.ImageFolder(trainpath, transform=transform_train) if load_test: testpath = os.path.join(self._dataroot, 'sport8', 'test') testset = torchvision.datasets.ImageFolder(testpath, transform=transform_test) return trainset, testset @overrides def get_transforms(self, img_size:ImgSize)->tuple: # MEAN, STD computed for sport8 MEAN = [0.4734, 0.4856, 0.4526] STD = [0.2478, 0.2444, 0.2667] # transformations match that in # https://github.com/antoyang/NAS-Benchmark/blob/master/DARTS/preproc.py train_transf = [ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2) ] test_transf = [transforms.Resize(256), transforms.CenterCrop(224)] normalize = [ transforms.ToTensor(), transforms.Normalize(MEAN, STD) ] train_transform = transforms.Compose(train_transf + normalize) test_transform = transforms.Compose(test_transf + normalize) return train_transform, test_transform register_dataset_provider('sport8', Sport8Provider)
archai/archai/supergraph/datasets/providers/sport8_provider.py/0
{ "file_path": "archai/archai/supergraph/datasets/providers/sport8_provider.py", "repo_id": "archai", "token_count": 969 }
310
# -*- coding: utf-8 -*- import math import torch.nn as nn import torch.nn.functional as F from archai.supergraph.models.shakeshake.shakeshake import ShakeShake, Shortcut class ShakeBottleNeck(nn.Module): def __init__(self, in_ch, mid_ch, out_ch, cardinary, stride=1): super(ShakeBottleNeck, self).__init__() self.equal_io = in_ch == out_ch self.shortcut = None if self.equal_io else Shortcut(in_ch, out_ch, stride=stride) self.branch1 = self._make_branch(in_ch, mid_ch, out_ch, cardinary, stride) self.branch2 = self._make_branch(in_ch, mid_ch, out_ch, cardinary, stride) def forward(self, x): h1 = self.branch1(x) h2 = self.branch2(x) h = ShakeShake.apply(h1, h2, self.training) h0 = x if self.equal_io else self.shortcut(x) return h + h0 def _make_branch(self, in_ch, mid_ch, out_ch, cardinary, stride=1): return nn.Sequential( nn.Conv2d(in_ch, mid_ch, 1, padding=0, bias=False), nn.BatchNorm2d(mid_ch), nn.ReLU(inplace=False), nn.Conv2d(mid_ch, mid_ch, 3, padding=1, stride=stride, groups=cardinary, bias=False), nn.BatchNorm2d(mid_ch), nn.ReLU(inplace=False), nn.Conv2d(mid_ch, out_ch, 1, padding=0, bias=False), nn.BatchNorm2d(out_ch)) class ShakeResNeXt(nn.Module): def __init__(self, depth, w_base, cardinary, label): super(ShakeResNeXt, self).__init__() n_units = (depth - 2) // 9 n_chs = [64, 128, 256, 1024] self.n_chs = n_chs self.in_ch = n_chs[0] self.c_in = nn.Conv2d(3, n_chs[0], 3, padding=1) self.layer1 = self._make_layer(n_units, n_chs[0], w_base, cardinary) self.layer2 = self._make_layer(n_units, n_chs[1], w_base, cardinary, 2) self.layer3 = self._make_layer(n_units, n_chs[2], w_base, cardinary, 2) self.fc_out = nn.Linear(n_chs[3], label) # Initialize paramters for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, x): h = self.c_in(x) h = self.layer1(h) h = self.layer2(h) h = self.layer3(h) h = F.relu(h) h = F.avg_pool2d(h, 8) h = h.view(-1, self.n_chs[3]) h = self.fc_out(h) return h def _make_layer(self, n_units, n_ch, w_base, cardinary, stride=1): layers = [] mid_ch, out_ch = n_ch * (w_base // 64) * cardinary, n_ch * 4 for i in range(n_units): layers.append(ShakeBottleNeck(self.in_ch, mid_ch, out_ch, cardinary, stride=stride)) self.in_ch, stride = out_ch, 1 return nn.Sequential(*layers)
archai/archai/supergraph/models/shakeshake/shake_resnext.py/0
{ "file_path": "archai/archai/supergraph/models/shakeshake/shake_resnext.py", "repo_id": "archai", "token_count": 1608 }
311
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Optional import tensorwatch as tw from archai.common.config import Config from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.nas.model import Model from archai.supergraph.utils.checkpoint import CheckPoint logger = get_global_logger() def checkpoint_empty(checkpoint:Optional[CheckPoint])->bool: return checkpoint is None or checkpoint.is_empty() def create_checkpoint(conf_checkpoint:Config, resume:bool)->Optional[CheckPoint]: """Creates checkpoint given its config. If resume is True then attempt is made to load existing checkpoint otherwise an empty checkpoint is created. """ checkpoint = CheckPoint(conf_checkpoint, resume) \ if conf_checkpoint is not None else None logger.info({'checkpoint_empty': checkpoint_empty(checkpoint), 'conf_checkpoint_none': conf_checkpoint is None, 'resume': resume, 'checkpoint_path': None if checkpoint is None else checkpoint.filepath}) return checkpoint def get_model_stats(model:Model, input_tensor_shape=[1,3,32,32], clone_model=True)->tw.ModelStats: # model stats is doing some hooks so do it last model_stats = tw.ModelStats(model, input_tensor_shape, clone_model=clone_model) return model_stats
archai/archai/supergraph/nas/nas_utils.py/0
{ "file_path": "archai/archai/supergraph/nas/nas_utils.py", "repo_id": "archai", "token_count": 489 }
312
# Copyright (c) @IssamLaradji. # https://github.com/IssamLaradji/sls/blob/master/src/optimizers/others/cocob.py import math from typing import Any, Callable, Dict, Iterable, Optional, Union import torch from torch import optim class CocobBackprop(optim.Optimizer): """Coin Betting optimizer with Backpropagation. It has been proposed in `Training Deep Networks without Learning Rates Through Coin Betting`. Reference: https://arxiv.org/pdf/1705.07795.pdf """ def __init__( self, params: Union[Iterable, Dict[str, Any]], alpha: Optional[float] = 100.0, eps: Optional[float] = 1e-8 ) -> None: """Initialize the optimizer. Args: params: Iterable of parameters to optimize or dicts defining parameter groups. alpha: Positive number to adjust betting fraction. Theoretical convergence gauarantee does not depend on choice of `alpha`. eps: Positive initial wealth for betting algorithm. Theoretical convergence gauarantee does not depend on choice of `eps`. """ self.alpha = alpha self.eps = eps defaults = dict(alpha=alpha, eps=eps) super(CocobBackprop, self).__init__(params, defaults) def step(self, closure: Optional[Callable] = None) -> torch.FloatTensor: loss = None if closure is not None: loss = closure() for group in self.param_groups: for param in group["params"]: if param.grad is None: continue grad = param.grad.data state = self.state[param] param_shape = param.shape # Better bets for -ve gradient neg_grad = -grad if len(state) == 0: # Happens only once at the begining of optimization start # Set initial parameter weights and zero reward state["initial_weight"] = param.data state["reward"] = param.new_zeros(param_shape) # Don't bet anything for first round state["bet"] = param.new_zeros(param_shape) # Initialize internal states useful for computing betting fraction state["neg_grads_sum"] = param.new_zeros(param_shape) state["grads_abs_sum"] = param.new_zeros(param_shape) state["max_observed_scale"] = self.eps * param.new_ones(param_shape) # load states in variables initial_weight = state["initial_weight"] reward = state["reward"] bet = state["bet"] neg_grads_sum = state["neg_grads_sum"] grads_abs_sum = state["grads_abs_sum"] max_observed_scale = state["max_observed_scale"] # Update internal states useful for computing betting fraction max_observed_scale = torch.max(max_observed_scale, torch.abs(grad)) grads_abs_sum += torch.abs(grad) neg_grads_sum += neg_grad # Based on how much the Better bets on -ve gradient prediction, # check how much the Better won (-ve if lost) win_amount = bet * neg_grad # Update better's reward. Negative reward is not allowed. reward = torch.max(reward + win_amount, torch.zeros_like(reward)) # Better decides the bet fraction based on so-far observations bet_fraction = neg_grads_sum / ( max_observed_scale * (torch.max(grads_abs_sum + max_observed_scale, self.alpha * max_observed_scale)) ) # Better makes the bet according to decided betting fraction. bet = bet_fraction * (max_observed_scale + reward) # Set parameter weights param.data = initial_weight + bet # save state back in memory state["neg_grads_sum"] = neg_grads_sum state["grads_abs_sum"] = grads_abs_sum state["max_observed_scale"] = max_observed_scale state["reward"] = reward state["bet"] = bet # For Cocob-Backprop bet_fraction need not be maintained in state. Only kept for visualization. state["bet_fraction"] = bet_fraction return loss class CocobOns(optim.Optimizer): """Coin Betting optimizer with Online Learning. It has been proposed in `Black-Box Reductions for Parameter-free Online Learning in Banach Spaces`. Reference: https://arxiv.org/pdf/1705.07795.pdf """ def __init__(self, params: Union[Iterable, Dict[str, Any]], eps: Optional[float] = 1e-8): """Initialize the optimizer. Args: params: Iterable of parameters to optimize or dicts defining parameter groups. eps: Positive initial wealth for betting algorithm. Theoretical convergence gauarantee does not depend on choice of `eps`. """ self.eps = eps defaults = dict(eps=eps) super(CocobOns, self).__init__(params, defaults) def step(self, closure: Optional[Callable] = None) -> torch.FloatTensor: loss = None if closure is not None: loss = closure() for group in self.param_groups: for param in group["params"]: if param.grad is None: continue grad = param.grad.data state = self.state[param] param_shape = param.data.shape # Clip gradients to be in (-1, 1) grad.clamp_(-1.0, 1.0) # Better bets for -ve gradient neg_grad = -grad if len(state) == 0: # Happens only once at the begining of optimization start # Set initial parameter weights and zero reward state["initial_weight"] = param.data state["wealth"] = self.eps * param.new_ones(param_shape) # Don't bet anything for first round state["bet_fraction"] = param.new_zeros(param_shape) state["bet"] = param.new_zeros(param_shape) # Initialize internal states useful for computing betting fraction state["z_square_sum"] = param.new_zeros(param_shape) # load states in memory wealth = state["wealth"] bet_fraction = state["bet_fraction"] z_square_sum = state["z_square_sum"] initial_weight = state["initial_weight"] bet = state["bet"] # Based on how much the Better bets on -ve gradient prediction, # check how much the Better won (-ve if lost) win_amount = bet * neg_grad # Update better's wealth based on what he won / lost. wealth = wealth + win_amount # Better decides the bet fraction based on so-far observations # z, A variable notations from Algo 1 in paper) z = grad / (1 - (bet_fraction * grad)) z_square_sum = z_square_sum + (z * z) A = 1 + z_square_sum bet_fraction = bet_fraction - (2 / (2 - math.log(3))) * (z / A) bet_fraction.clamp_(-0.5, 0.5) # Better makes the bet according to decided betting fraction. bet = bet_fraction * wealth # Set parameter weights param.data = initial_weight + bet # save state back in memory state["bet_fraction"] = bet_fraction state["wealth"] = wealth state["z_square_sum"] = z_square_sum state["bet"] = bet return loss
archai/archai/trainers/coin_betting_optimizer.py/0
{ "file_path": "archai/archai/trainers/coin_betting_optimizer.py", "repo_id": "archai", "token_count": 3794 }
313
__include__: "darts.yaml" # defaults are loaded from this file # XNAS's parameters nas: search: xnas: to_evict: True loader: train_batch: 64 trainer: grad_clip: 1.0 epochs: 50 optimizer: type: "sgd" lr: 0.025 decay: 0.0 momentum: 0.0 nesterov: False warmup: null # NOTE: XNAS uses 1500 epochs and lots of tricks like scheduled drop-path, label smoothing # AutoAugment and weight decay of 3.10^-4 and sgd optimizer with nesterov-momentum of 0.9. # We are deliberately choosing not to implement those features in the interest of keeping # comparisons to other algorithms fair. So all other algorithms have the same final training procedure.
archai/confs/algos/xnas.yaml/0
{ "file_path": "archai/confs/algos/xnas.yaml", "repo_id": "archai", "token_count": 281 }
314
Azure ===== This section contains examples of using Archai on Azure. .. toctree:: :maxdepth: 2 Notebooks <azure/notebooks>
archai/docs/advanced_guide/cloud/azure.rst/0
{ "file_path": "archai/docs/advanced_guide/cloud/azure.rst", "repo_id": "archai", "token_count": 45 }
315
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from archai.datasets.cv.mnist_dataset_provider import MnistDatasetProvider import torch import pytorch_lightning as pl class MNistDataModule(pl.LightningDataModule): def __init__(self, path): super().__init__() self.root = path def prepare_data(self): self.dataset_provider = MnistDatasetProvider(root=self.root) self.tr_data = self.dataset_provider.get_train_dataset() self.val_data = self.dataset_provider.get_val_dataset() self.input_shape = self.tr_data.data[0].shape def prepare_data_per_node(self): self.prepare_data() def train_dataloader(self): return torch.utils.data.DataLoader(self.tr_data, batch_size=16, shuffle=True, num_workers=4) def val_dataloader(self): return torch.utils.data.DataLoader(self.val_data, batch_size=16, shuffle=False, num_workers=4) def test_dataloader(self): # MNIST doesn't have a test dataset, so just reuse the validation dataset. return torch.utils.data.DataLoader(self.val_data, batch_size=16, shuffle=False, num_workers=4)
archai/docs/advanced_guide/cloud/azure/notebooks/multi_node_search/scripts/mnist_data_module.py/0
{ "file_path": "archai/docs/advanced_guide/cloud/azure/notebooks/multi_node_search/scripts/mnist_data_module.py", "repo_id": "archai", "token_count": 457 }
316
<jupyter_start><jupyter_text>Task: Text GenerationIn this Notebook we run Archai's [Text Generation](https://github.com/microsoft/archai/tree/main/tasks/text_generation) task on Azure Machine Learning.We'll use the following components:1. [Search](./src/search.yaml) - Run Lightweight Transformer Search (LTS) to discover architectures that perform well with regards to non-embedding parameters, latency, and memory2. [Train](./src/train.yaml) - Train a chosen architecture3. [Generate text](./src/generate_text.yaml) - Given a trained architecture and a prompt, outputs the generated textThe components are defined via Yaml (more info [here](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-create-component-pipeline-pythondefine-component-via-yaml)) which will call the corresponding Python scripts.Note: Our goal is to show how to create and run jobs without spending too much computing resources. Therefore, our goal is not to train a good model -- for this purpose please refer to the original task. Prerequisites- Python 3.7 or later- An Azure subscription- An Azure Resource Group- An Azure Machine Learning [Workspace](https://learn.microsoft.com/en-us/azure/machine-learning/quickstart-create-resourcescreate-the-workspace)This notebook also assumes you have a python environment setup using `pip install -e .[aml]` in your Archai repository root<jupyter_code>import os from pathlib import Path from IPython.display import display, Image from IPython.core.display import HTML from azure.ai.ml import load_job import archai.common.azureml_helper as aml_helper import archai.common.notebook_helper as nb_helper<jupyter_output><empty_output><jupyter_text>Get a handle to the workspaceWe load the workspace from a workspace [configuration file](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-configure-environmentlocal-and-dsvm-only-create-a-workspace-configuration-file).<jupyter_code>ml_client = aml_helper.get_aml_client_from_file("../.azureml/config.json") print(f'Using workspace: {ml_client.workspace_name} in resource group: {ml_client.resource_group_name}')<jupyter_output><empty_output><jupyter_text>Create CPU and GPU compute clustersWe provision a Linux [compute cluster](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-create-attach-compute-cluster?tabs=python) for the NAS job in this Notebook. See the [full list](https://azure.microsoft.com/en-ca/pricing/details/machine-learning/) on VM sizes and prices.We also provision a GPU compute cluster, to train the architectures and generate text.<jupyter_code>cpu_compute_name = "nas-cpu-cluster-D14-v2" cpu_compute_cluster = aml_helper.create_compute_cluster(ml_client, cpu_compute_name, size="Standard_D14_v2") gpu_compute_name = "nas-gpu-cluster-NC6" gpu_compute_cluster = aml_helper.create_compute_cluster(ml_client, gpu_compute_name, size="Standard_NC6")<jupyter_output>You already have a cluster named nas-cpu-cluster-D14-v2, we'll reuse it as is. You already have a cluster named nas-gpu-cluster-NC6, we'll reuse it as is.<jupyter_text>Create an environment based on a YAML fileAzure Machine Learning maintains a set of CPU and GPU Ubuntu Linux-based base images with common system dependencies. For the set of base images and their corresponding Dockerfiles, see the [AzureML Containers](https://github.com/Azure/AzureML-Containers) repo.<jupyter_code>archai_job_env = aml_helper.create_environment_from_file(ml_client, image="mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:latest", conda_file="conda.yaml", version="0.0.1")<jupyter_output>Environment with name aml-archai is registered to workspace, the environment version is 0.0.1<jupyter_text>Job 1: NAS (Searching for Pareto-optimal Architectures) Load the search job from a YAML file and run it.<jupyter_code>search_job = load_job(source=os.path.join("src", "search.yaml")) s_job = ml_client.create_or_update(search_job)<jupyter_output>Uploading src (0.01 MBs): 100%|##########| 10177/10177 [00:00<00:00, 10489.91it/s] <jupyter_text>Open the job overview on Azure ML Studio in your web browser (this works when you are running this notebook in VS code).<jupyter_code>import webbrowser webbrowser.open(s_job.services["Studio"].endpoint) job_name = s_job.name print(f'Started job: {job_name}')<jupyter_output>Started job: salmon_plum_t9hynvf120<jupyter_text>Download the job's output.<jupyter_code>output_name = "output_dir" download_path = "output" aml_helper.download_job_output(ml_client, job_name=s_job.name, output_name=output_name, download_path=download_path) downloaded_folder = Path(download_path) / "named-outputs" / output_name<jupyter_output><empty_output><jupyter_text>Show the Pareto Frontiers.<jupyter_code>param_vs_latency_img = Image(filename=downloaded_folder / "pareto_non_embedding_params_vs_onnx_latency.png") display(param_vs_latency_img) param_vs_memory_img = Image(filename=downloaded_folder / "pareto_non_embedding_params_vs_onnx_memory.png") display(param_vs_memory_img) latency_vs_memory_img = Image(filename=downloaded_folder / "pareto_onnx_latency_vs_onnx_memory.png") display(latency_vs_memory_img)<jupyter_output><empty_output><jupyter_text>Show the search state of the last iteration.<jupyter_code>df = nb_helper.get_search_csv(downloaded_folder) df = df[['archid', 'non_embedding_params', 'onnx_latency', 'onnx_memory', 'is_pareto']] df[(df['onnx_latency'] < 0.9) & (df['is_pareto'] == True)]<jupyter_output><empty_output><jupyter_text>Job 2: Train (Train a Pareto architecture from Transformer-Flex.) Pick an architecture id (archid) from the CSV file to perform full training.<jupyter_code>archid = "<arch-id>" print(f"Selected architecture: {archid}") arch_path = nb_helper.get_arch_abs_path(archid=archid, downloaded_folder=downloaded_folder)<jupyter_output>Selected architecture: gpt2_df106863e1a0c9c140036b05661aa88e92f07701<jupyter_text>Load the training job from a YAML file, set its input, and run it. With the GPU cluster we created it should take around 3 hours.<jupyter_code>train_job = load_job(source=os.path.join("src", "train.yaml")) train_job.inputs.arch_config_path.path = arch_path t_job = ml_client.create_or_update(train_job)<jupyter_output><empty_output><jupyter_text>Open the job overview on Azure ML Studio in your web browser (this works when you are running this notebook in VS code).<jupyter_code>import webbrowser webbrowser.open(t_job.services["Studio"].endpoint) job_name = t_job.name print(f'Started Job: {job_name}')<jupyter_output>Started Job: willing_tree_3b22csbdtg<jupyter_text>Job 3: Generating text via prompt Load the generate text job from a YAML file, set the inputs, and run it.<jupyter_code>train_job = ml_client.jobs.get(t_job.name) path = f"azureml://subscriptions/{ml_client.subscription_id}/resourcegroups/{ml_client.resource_group_name}/" \ f"workspaces/{ml_client.workspace_name}/datastores/workspaceblobstore/paths/azureml/{train_job.name}/output_dir/" if train_job and train_job.status == "Completed": gen_job = load_job(source=os.path.join("src", "generate_text.yaml")) gen_job.inputs.pre_trained_model_path.path = path gen_job.inputs.prompt = "Machine Learning" g_job = ml_client.create_or_update(gen_job) else: print(f"Job {train_job.name} is not completed yet")<jupyter_output><empty_output><jupyter_text>Open the job overview on Azure ML Studio in your web browser (this works when you are running this notebook in VS code).<jupyter_code>import webbrowser webbrowser.open(g_job.services["Studio"].endpoint) job_name = g_job.name print(f'Started Job: {job_name}')<jupyter_output>Started Job: orange_bee_dk3c1xm55z<jupyter_text>Download and show the generated text.<jupyter_code>output_name = "output_path" download_path = "generated_text" aml_helper.download_job_output(ml_client, job_name=g_job.name, output_name=output_name, download_path=download_path) downloaded_file = Path(download_path) / "named-outputs" / output_name / output_name with open(downloaded_file, "r") as f: print(f.read())<jupyter_output>Machine Learning to continue to attend the main park in the first series. The team was considered to be used to be shot in the future. The series's longest @-@ hour of the main characters and the highest @-@ time, a series, to be used in the final series. It has been played by the series of the American, which was given by the United States and was replaced by the United States during the North America. = = Plot summary = The episode received by many occasions. It was a three years, and the series of the rest of the United States for the family of the previous episode,
archai/docs/advanced_guide/cloud/azure/notebooks/text_generation/text_generation.ipynb/0
{ "file_path": "archai/docs/advanced_guide/cloud/azure/notebooks/text_generation/text_generation.ipynb", "repo_id": "archai", "token_count": 3035 }
317
Notebooks ========= These notebooks are designed to help you understand the basics and gain hands-on experience in working with Archai. .. toctree:: :maxdepth: 2 API <notebooks/api> Discrete Search <notebooks/discrete_search> Computer Vision <notebooks/cv> Natural Language Processing <notebooks/nlp>
archai/docs/getting_started/notebooks.rst/0
{ "file_path": "archai/docs/getting_started/notebooks.rst", "repo_id": "archai", "token_count": 94 }
318
<jupyter_start><jupyter_text>Discrete Search Spaces<jupyter_code>from typing import List, Optional from overrides import overrides import numpy as np import torch from torch import nn<jupyter_output><empty_output><jupyter_text>The `ArchaiModel` class The `ArchaiModel` class is a base class used to wrap all model objects. `ArchaiModel` also stores an architecture ID (`ArchaiModel.archid`) and optionally a metadata dictionary (`ArchaiModel.metadata`).<jupyter_code>from archai.discrete_search.api import ArchaiModel<jupyter_output><empty_output><jupyter_text>Let's first consider a simple PyTorch model<jupyter_code>class MyModel(nn.Module): def __init__(self, nb_layers: int = 5, kernel_size: int = 3, hidden_dim: int = 32): super().__init__() self.nb_layers = nb_layers self.kernel_size = kernel_size self.hidden_dim = hidden_dim layer_list = [] for i in range(nb_layers): in_ch = (1 if i == 0 else hidden_dim) layer_list += [ nn.Conv2d(in_ch, hidden_dim, kernel_size=kernel_size, padding=(kernel_size-1)//2), nn.BatchNorm2d(hidden_dim), nn.ReLU(), ] layer_list += [ nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Conv2d(hidden_dim, 10, kernel_size=1) ] self.model = nn.Sequential(*layer_list) def forward(self, x): return self.model(x).squeeze() def get_archid(self): return f'({self.nb_layers}, {self.kernel_size}, {self.hidden_dim})' model_obj = MyModel(nb_layers=2, kernel_size=3, hidden_dim=16)<jupyter_output><empty_output><jupyter_text>We can now wrap a `MyModel` instance into an `ArchaiModel`:<jupyter_code>model = ArchaiModel( arch=model_obj, archid=f'L={model_obj.nb_layers}, K={model_obj.kernel_size}, H={model_obj.hidden_dim}', metadata={'optional': {'metadata'}} )<jupyter_output><empty_output><jupyter_text>Architecture ids (`archid`) are used to identify a unique model architecture. The contents of `archid` can be decided by the search space designer, one good approach is to hash the architecture definition into a string. However, to keep things simple, in this example we'll just use a simple string representing with the three available architecture parameters (L, K and H).<jupyter_code>model.archid model.metadata model.arch<jupyter_output><empty_output><jupyter_text>Building a Search Space Discrete search spaces in Archai are defined using the `DiscreteSearchSpace` abstract class:```pythonclass DiscreteSearchSpace(EnforceOverrides): @abstractmethod def random_sample(self) -> ArchaiModel: ... @abstractmethod def save_arch(self, model: ArchaiModel, path: str) -> None: ... @abstractmethod def load_arch(self, path: str) -> ArchaiModel: ... @abstractmethod def save_model_weights(self, model: ArchaiModel, path: str) -> None: ... @abstractmethod def load_model_weights(self, model: ArchaiModel, path: str) -> None: ...``` To turn `MyModel` into a search space, we need to override the `DiscreteSearchSpace` abstract base class:<jupyter_code>import json from random import Random from archai.discrete_search.api import DiscreteSearchSpace class CNNSearchSpace(DiscreteSearchSpace): def __init__(self, min_layers: int = 1, max_layers: int = 12, kernel_list=(1, 3, 5, 7), hidden_list=(16, 32, 64, 128), seed: int = 1): self.min_layers = min_layers self.max_layers = max_layers self.kernel_list = kernel_list self.hidden_list = hidden_list self.rng = Random(seed) def get_archid(self, model: MyModel) -> str: return f'L={model.nb_layers}, K={model.kernel_size}, H={model.hidden_dim}' @overrides def random_sample(self) -> ArchaiModel: # Randomly chooses architecture parameters nb_layers = self.rng.randint(self.min_layers, self.max_layers) kernel_size = self.rng.choice(self.kernel_list) hidden_dim = self.rng.choice(self.hidden_list) model = MyModel(nb_layers, kernel_size, hidden_dim) # Wraps model into ArchaiModel return ArchaiModel(arch=model, archid=self.get_archid(model)) @overrides def save_arch(self, model: ArchaiModel, file: str): with open(file, 'w') as fp: json.dump({ 'nb_layers': model.arch.nb_layers, 'kernel_size': model.arch.kernel_size, 'hidden_dim': model.arch.hidden_dim }, fp) @overrides def load_arch(self, file: str): config = json.load(open(file)) model = MyModel(**config) return ArchaiModel(arch=model, archid=self.get_archid(model)) @overrides def save_model_weights(self, model: ArchaiModel, file: str): state_dict = model.arch.get_state_dict() torch.save(state_dict, file) @overrides def load_model_weights(self, model: ArchaiModel, file: str): model.arch.load_state_dict(torch.load(file)) ss = CNNSearchSpace(hidden_list=[32, 64, 128])<jupyter_output><empty_output><jupyter_text>Let's try sampling an architecture<jupyter_code>m = ss.random_sample() m<jupyter_output><empty_output><jupyter_text>Saving an architecture<jupyter_code>ss.save_arch(m, 'arch.json') open('arch.json').read()<jupyter_output><empty_output><jupyter_text>Loading an architecture without the weights<jupyter_code>ss.load_arch('arch.json')<jupyter_output><empty_output><jupyter_text>Making the search space compatible with NAS algorithms Search spaces serve as the main interface between NAS algorithms and the application. Different classes of NAS algorithms interact with architectures from the search space using specific abstract classes: Evolutionary algorithms: - User must subclass `EvolutionarySearchSpace` and implement `EvolutionarySearchSpace.mutate` and `EvolutionarySearchSpace.crossover` Bayesian Optimization algorithms: - User must subclass `BayesOptSearchSpace` and override `BayesOptSearchSpace.encode` - Encode should take an `ArchaiModel` and produce a fixed-length vector representation of that architecture. This numerical representation will be used to train surrogate models. Example: Making `CNNSearchSpace` compatible with NAS algorithsm Let's make our search space compatible with Evolutionary and Bayesian Optimization NAS algorithms. To do that, we need to subclass `EvolutionarySearchSpace` and `BayesOptSearchSpace`, and implement `mutation`, `crossover` and `encode` method.<jupyter_code>from archai.discrete_search.api.search_space import EvolutionarySearchSpace, BayesOptSearchSpace class CNNSearchSpaceExt(CNNSearchSpace, EvolutionarySearchSpace, BayesOptSearchSpace): ''' We are subclassing CNNSearchSpace just to save up space''' @overrides def mutate(self, model_1: ArchaiModel) -> ArchaiModel: config = { 'nb_layers': model_1.arch.nb_layers, 'kernel_size': model_1.arch.kernel_size, 'hidden_dim': model_1.arch.hidden_dim } if self.rng.random() < 0.2: config['nb_layers'] = self.rng.randint(self.min_layers, self.max_layers) if self.rng.random() < 0.2: config['kernel_size'] = self.rng.choice(self.kernel_list) if self.rng.random() < 0.2: config['hidden_dim'] = self.rng.choice(self.hidden_list) mutated_model = MyModel(**config) return ArchaiModel( arch=mutated_model, archid=self.get_archid(mutated_model) ) @overrides def crossover(self, model_list: List[ArchaiModel]) -> ArchaiModel: new_config = { 'nb_layers': self.rng.choice([m.arch.nb_layers for m in model_list]), 'kernel_size': self.rng.choice([m.arch.kernel_size for m in model_list]), 'hidden_dim': self.rng.choice([m.arch.hidden_dim for m in model_list]), } crossover_model = MyModel(**new_config) return ArchaiModel( arch=crossover_model, archid=self.get_archid(crossover_model) ) @overrides def encode(self, model: ArchaiModel) -> np.ndarray: return np.array([model.arch.nb_layers, model.arch.kernel_size, model.arch.hidden_dim]) ss = CNNSearchSpaceExt(hidden_list=[32, 64, 128])<jupyter_output><empty_output><jupyter_text>Now we can generate mutations, crossover and encodings from any architecture of this search space<jupyter_code>m = ss.random_sample() m.archid ss.mutate(m).archid models = [ss.random_sample() for _ in range(4)] [print(m.archid) for m in models] ss.crossover(models).archid ss.encode(m)<jupyter_output><empty_output><jupyter_text>Now we can use `CNNSearchSpaceExt` with EA and BO search algorithms Built-in Search Spaces Instead of creating a search space from scratch, Archai has a list of built-in search spaces that can be used for many Machine Learning tasks. A list of built-in search spaces can be found in `archai/discrete_search/search_spaces`. Example: Semantic Segmentation Search Space (`SegmentationDagSearchSpace`)<jupyter_code>from archai.discrete_search.search_spaces.cv import SegmentationDagSearchSpace ss = SegmentationDagSearchSpace(nb_classes=1, img_size=(64, 64), max_layers=3) ss.mutate(ss.random_sample())<jupyter_output><empty_output>
archai/docs/getting_started/notebooks/discrete_search/search_space.ipynb/0
{ "file_path": "archai/docs/getting_started/notebooks/discrete_search/search_space.ipynb", "repo_id": "archai", "token_count": 3742 }
319
Discrete Search =============== .. toctree:: :maxdepth: 2 archai.discrete_search.algos archai.discrete_search.api archai.discrete_search.evaluators archai.discrete_search.predictors archai.discrete_search.search_spaces archai.discrete_search.utils
archai/docs/reference/api/archai.discrete_search.rst/0
{ "file_path": "archai/docs/reference/api/archai.discrete_search.rst", "repo_id": "archai", "token_count": 102 }
320
DiDARTS ======= Architecture Trainer -------------------- .. automodule:: archai.supergraph.algos.didarts.didarts_arch_trainer :members: :undoc-members: Experiment Runner ----------------- .. automodule:: archai.supergraph.algos.didarts.didarts_exp_runner :members: :undoc-members:
archai/docs/reference/api/archai.supergraph.algos.didarts.rst/0
{ "file_path": "archai/docs/reference/api/archai.supergraph.algos.didarts.rst", "repo_id": "archai", "token_count": 105 }
321
Computer Vision =============== PyTorch-Lightning ----------------- Trainer ^^^^^^^ .. automodule:: archai.trainers.cv.pl_trainer :members: :undoc-members:
archai/docs/reference/api/archai.trainers.cv.rst/0
{ "file_path": "archai/docs/reference/api/archai.trainers.cv.rst", "repo_id": "archai", "token_count": 59 }
322
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import argparse import torch from transformers import AutoModelForCausalLM from archai.common.file_utils import calculate_torch_model_size from archai.quantization.ptq import dynamic_quantization_torch def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Post-Training Quantization (PTQ) with a PyTorch model.") parser.add_argument("pre_trained_model_path", type=str, help="Path to the pre-trained model file.") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() # Quantized model only uses maximum of 1 thread torch.set_num_threads(1) # Performs Post-Training Quantization (PTQ) over pre-trained model # Also loads the original pre-trained model for debugging model = AutoModelForCausalLM.from_pretrained(args.pre_trained_model_path) model_qnt = dynamic_quantization_torch(model) print(f"Model: {calculate_torch_model_size(model)}MB") print(f"Model-QNT: {calculate_torch_model_size(model_qnt)}MB") inputs = {"input_ids": torch.randint(1, 10, (1, 192))} logits = model(**inputs).logits logits_qnt = model_qnt(**inputs).logits print(f"Difference between logits: {logits_qnt - logits}")
archai/scripts/quantization/ptq_with_torch.py/0
{ "file_path": "archai/scripts/quantization/ptq_with_torch.py", "repo_id": "archai", "token_count": 450 }
323
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import argparse from typing import Dict, Type from archai.common import utils from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.algos.darts.darts_exp_runner import DartsExperimentRunner from archai.supergraph.algos.didarts.didarts_exp_runner import DiDartsExperimentRunner from archai.supergraph.algos.divnas.divnas_exp_runner import DivnasExperimentRunner from archai.supergraph.algos.gumbelsoftmax.gs_exp_runner import GsExperimentRunner from archai.supergraph.algos.manual.manual_exp_runner import ManualExperimentRunner from archai.supergraph.algos.petridish.petridish_exp_runner import ( PetridishExperimentRunner, ) from archai.supergraph.algos.random.random_exp_runner import RandomExperimentRunner from archai.supergraph.algos.xnas.xnas_exp_runner import XnasExperimentRunner from archai.supergraph.nas.exp_runner import ExperimentRunner def main(): logger = get_global_logger() runner_types: Dict[str, Type[ExperimentRunner]] = { "darts": DartsExperimentRunner, "petridish": PetridishExperimentRunner, "xnas": XnasExperimentRunner, "random": RandomExperimentRunner, "manual": ManualExperimentRunner, "gs": GsExperimentRunner, "divnas": DivnasExperimentRunner, "didarts": DiDartsExperimentRunner, } parser = argparse.ArgumentParser(description="NAS E2E Runs") parser.add_argument( "--algos", type=str, default="darts,xnas,random,didarts,petridish,gs,manual,divnas", help="NAS algos to run, seperated by comma", ) parser.add_argument("--datasets", type=str, default="cifar10", help="datasets to use, separated by comma") parser.add_argument( "--full", type=lambda x: x.lower() == "true", nargs="?", const=True, default=False, help="Run in full or toy mode just to check for compile errors", ) parser.add_argument( "--no-search", type=lambda x: x.lower() == "true", nargs="?", const=True, default=False, help="Do not run search", ) parser.add_argument( "--no-eval", type=lambda x: x.lower() == "true", nargs="?", const=True, default=False, help="Do not run eval" ) parser.add_argument( "--exp-prefix", type=str, default="throwaway", help="Experiment prefix is used for directory names" ) args, extra_args = parser.parse_known_args() if "--common.experiment_name" in extra_args: raise RuntimeError( "Please use --exp-prefix instead of --common.experiment_name so that main.py can generate experiment directories with search and eval suffix" ) for dataset in args.datasets.split(","): for algo in args.algos.split(","): algo = algo.strip() print("Running (algo, dataset): ", (algo, dataset)) runner_type: Type[ExperimentRunner] = runner_types[algo] # get the conf files for algo and dataset algo_conf_filepath = f"confs/algos/{algo}.yaml" if args.full else f"confs/algos/{algo}_toy.yaml" dataset_conf_filepath = f"confs/datasets/{dataset}.yaml" conf_filepaths = ";".join((algo_conf_filepath, dataset_conf_filepath)) runner = runner_type( conf_filepaths, base_name=f"{algo}_{dataset}_{args.exp_prefix}", # for toy and debug runs, clean exp dirs clean_expdir=utils.is_debugging() or not args.full, ) runner.run(search=not args.no_search, eval=not args.no_eval) logger.close() if __name__ == "__main__": main()
archai/scripts/supergraph/main.py/0
{ "file_path": "archai/scripts/supergraph/main.py", "repo_id": "archai", "token_count": 1539 }
324
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import tensorwatch as tw from archai.supergraph import models model_names = ["resnet18", "resnet34", "resnet101", "densenet121"] for model_name in model_names: model = getattr(models, model_name)() model_stats = tw.ModelStats(model, [1, 3, 224, 224], clone_model=False) print( f"{model_name}: flops={model_stats.Flops}, parameters={model_stats.parameters}, memory={model_stats.inference_memory}" )
archai/scripts/supergraph/performance/model_stats.py/0
{ "file_path": "archai/scripts/supergraph/performance/model_stats.py", "repo_id": "archai", "token_count": 175 }
325
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import re from setuptools import find_packages, setup dependencies = [ "azure-ai-ml==1.5.0", "azure-data-tables", "azure-identity", "azure-storage-blob", "azureml-mlflow", "datasets>=2.4.0", "deepspeed", "einops", "flake8>=5.0.4", "flash-attn", "gorilla>=0.4.0", "h5py", "hyperopt", "ipykernel", "jupyter", "lightning>=2.0.0", "matplotlib", "mldesigner", "mlflow", "nbimporter", "nbsphinx", "nbval", "onnx>=1.10.2", "onnxruntime>=1.10.0", "opencv-python", "opt_einsum", "overrides==3.1.0", "pandas", "psutil", "pydata-sphinx-theme==0.13.1", "pytest", "pyunpack", "pyyaml", "ray>=1.0.0", "scikit-learn", "send2trash>=1.8.0", "sphinx", "sphinx-book-theme", "sphinx-git", "sphinx-sitemap", "sphinx_inline_tabs", "sphinxcontrib-programoutput", "sphinxcontrib-mermaid", "statopt", "tensorboard", "tensorwatch", "tk", "tokenizers>=0.10.3", "torchinfo", "torchvision", "tqdm", "transformers==4.27.4", "xformers", ] dependencies_dict = {y: x for x, y in (re.findall(r"^(([^!=<>~ ]+)(?:[!=<>~ ].*)?$)", x)[0] for x in dependencies)} def filter_dependencies(*pkgs): for pkg in pkgs: if pkg not in dependencies_dict: raise ValueError(f"Package {pkg} not found in dependencies") return [dependencies_dict[pkg] for pkg in pkgs] extras_require = {} extras_require["cv"] = filter_dependencies( "gorilla", "opencv-python", "lightning", "scikit-learn", "torchvision", ) extras_require["nlp"] = filter_dependencies( "datasets", "einops", "opt_einsum", "tokenizers", "transformers" ) extras_require["deepspeed"] = filter_dependencies("deepspeed", "mlflow") extras_require["flash-attn"] = filter_dependencies("flash-attn") extras_require["xformers"] = filter_dependencies("xformers") extras_require["docs"] = filter_dependencies( "nbimporter", "nbsphinx", "nbval", "pandas", "pydata-sphinx-theme", "sphinx", "sphinx-book-theme", "sphinx-git", "sphinx-sitemap", "sphinx_inline_tabs", "sphinxcontrib-programoutput", "sphinxcontrib-mermaid", ) extras_require["tests"] = filter_dependencies( "azure-data-tables", "azure-identity", "azure-storage-blob", "flake8", "pytest", "tk", ) extras_require["aml"] = filter_dependencies( "azure-ai-ml", "azure-data-tables", "azure-identity", "azure-storage-blob", "azureml-mlflow", "ipykernel", "jupyter", "matplotlib", "mldesigner", "mlflow", "lightning", "torchvision", ) extras_require["tasks"] = filter_dependencies( "torchinfo" ) extras_require["dev"] = ( extras_require["cv"] + extras_require["nlp"] + extras_require["docs"] + extras_require["tests"] + extras_require["aml"] + extras_require["tasks"] + extras_require["xformers"] ) if os.name != "nt": # Support for DeepSpeed is not available on native Windows extras_require["dev"] += extras_require["deepspeed"] install_requires = filter_dependencies( "h5py", "hyperopt", "matplotlib", "onnx", "onnxruntime", "overrides", "psutil", "pyyaml", "ray", "send2trash", "statopt", "tensorboard", "tensorwatch", "tqdm", ) with open("README.md", "r", encoding="utf_8") as f: long_description = f.read() setup( name="archai", version="1.0.0", description="Platform for Neural Architecture Search", long_description=long_description, long_description_content_type="text/markdown", author="Microsoft", url="https://github.com/microsoft/archai", license="MIT", install_requires=install_requires, extras_require=extras_require, packages=find_packages(), include_package_data=True, classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Development Status :: 5 - Production/Stable", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Topic :: Software Development :: Libraries", "Topic :: Software Development :: Libraries :: Python Modules", ], )
archai/setup.py/0
{ "file_path": "archai/setup.py", "repo_id": "archai", "token_count": 1971 }
326
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import argparse import os import sys import dateutil.parser import datetime from archai.common.store import ArchaiStore CONNECTION_NAME = 'MODEL_STORAGE_CONNECTION_STRING' def parse_date(date): s = f"{date}".strip() date = dateutil.parser.isoparse(s) date = date.replace(tzinfo=datetime.timezone.utc) return date def get_usage_by_device(store: ArchaiStore, report_start, report_end): devices = {} first = None last = None for e in store.get_all_status_entities(): device = e['name'] start = parse_date(e['start']) end = parse_date(e['end']) if report_start is not None and report_start > start: continue if report_end is not None and report_end < start: continue if report_end is not None and end > report_end: end = report_end if device not in devices: devices[device] = [] devices[device] += [(start, end)] if first is None or start < first: first = start if last is None or end > last: last = end return (devices, first, last) def report(store: ArchaiStore, report_start, report_end): devices, first, last = get_usage_by_device(store, report_start, report_end) if first is None: print("No data found") return # column headings print("date,{}".format(",".join([k for k in devices]))) start = datetime.datetime(first.year, first.month, first.day, 0, 0, 0, 0, first.tzinfo) last = datetime.datetime(last.year, last.month, last.day, 23, 59, 59, 999999, first.tzinfo) while start < last: du = [] end = start + datetime.timedelta(days=1) total = (end - start).total_seconds() for k in devices: s = devices[k] used = 0 for d in s: ds = d[0] de = d[1] if ds > end or de < start: continue if ds < start: ds = start if de > end: de = end u = (de - ds).total_seconds() if u < 0: print("?") used += u x = int((used * 100) / total) du += [x] st = start.strftime("%x") print("{},{}".format(st, ",".join([str(x) for x in du]))) start = end total_seconds = (last - first).total_seconds() total_used = [] for k in devices: s = devices[k] used = 0 for d in s: u = (d[1] - d[0]).total_seconds() used += u x = int((used * 100) / total_seconds) total_used += [x] print("total,{}".format(",".join([str(x) for x in total_used]))) if __name__ == '__main__': con_str = os.getenv(CONNECTION_NAME) if not con_str: print(f"Please specify your {CONNECTION_NAME} environment variable.") sys.exit(1) parser = argparse.ArgumentParser( description='Report on Qualcomm device utilization in an optional date range. ' + 'Reports percentage utilization per day.') parser.add_argument('--start', help='Set the "start" date to start the search. (default None).') parser.add_argument('--end', help='Set the "end" date to end the search. (default None).') args = parser.parse_args() start = None end = None if args.start: start = dateutil.parser.parse(args.start) start = start.replace(tzinfo=datetime.timezone.utc) if args.end: end = dateutil.parser.parse(args.end) end = end.replace(tzinfo=datetime.timezone.utc) storage_account_name, storage_account_key = ArchaiStore.parse_connection_string(con_str) store = ArchaiStore(storage_account_name, storage_account_key, table_name='usage') report(store, start, end)
archai/tasks/face_segmentation/aml/azure/report_device_usage.py/0
{ "file_path": "archai/tasks/face_segmentation/aml/azure/report_device_usage.py", "repo_id": "archai", "token_count": 1774 }
327
#!/bin/bash MODEL_NAME="model" if [ "$1" == "--help" ] ; then echo "### Usage: convert_tf.sh [model_name]" echo "Converts the given tensorflow model to .dlc then quantizes it." echo "Default model path is 'model/model.pb'." exit 1 fi if [ "$1" != "" ]; then MODEL_NAME=$1 fi if [ ! -f "model/${MODEL_NAME}.pb" ]; then echo "### Model does not exist: model/${MODEL_NAME}.pb" exit 1 fi mkdir -p ./snpe_models # pb 2 dlc snpe-tensorflow-to-dlc \ -i "model/${MODEL_NAME}.pb" \ -d input_rgb "1,256,256,3" \ --out_node "logits_cls" \ -o "snpe_models/${MODEL_NAME}.dlc" \ --show_unconsumed_nodes #--debug # quantize snpe-dlc-quantize \ --input_dlc "snpe_models/${MODEL_NAME}.dlc" \ --input_list "data/quant/input_list.txt" \ --output_dlc "snpe_models/${MODEL_NAME}.quant.dlc" \ --use_enhanced_quantizer
archai/tasks/face_segmentation/aml/snpe/convert_tf.sh/0
{ "file_path": "archai/tasks/face_segmentation/aml/snpe/convert_tf.sh", "repo_id": "archai", "token_count": 400 }
328
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import argparse import cv2 import numpy as np import os import tqdm import pandas as pd import sys import matplotlib.pyplot as plt from sklearn.metrics import PrecisionRecallDisplay from PIL import Image # Check the outputs of the Mask C-RNN model inference def _get_dataset_image(filename, image_shape, dataset): inp_f = os.path.splitext(filename)[0] + ".png" img_file = os.path.join(dataset, inp_f) if not os.path.isfile(img_file): print(f"### dataset {img_file} not found") sys.exit(1) img = cv2.imread(img_file)[..., ::-1] # BGR to RGB img = cv2.resize(img, image_shape, interpolation=cv2.INTER_LINEAR) img = img[..., ::-1] # BGR to RGB return img def _get_dataset_gt(img_name, dataset, img_shape, use_pillow=False): seg_name = img_name + '_seg.png' gt_f = os.path.join(dataset, seg_name) if not os.path.isfile(gt_f): print(f"### ground truth {gt_f} not found") sys.exit(1) gt_seg = cv2.imread(gt_f, cv2.IMREAD_GRAYSCALE) if gt_seg.shape[:2] != img_shape: if use_pillow: img = Image.fromarray(gt_seg, 'L') img = img.resize(img_shape[:2], Image.NEAREST) gt_seg = np.array(img) else: # cv2 resize is (newHeight, newWidth) newsize = [img_shape[1], img_shape[0]] gt_seg = cv2.resize(gt_seg, newsize, interpolation=cv2.INTER_NEAREST) return gt_seg def show_output(input_shape, transpose, dataset, outputs): _, w, h, c = input_shape img_shape = (w, h) output_list = [x for x in os.listdir(outputs) if x.endswith('.raw')] output_list.sort() for out_f in output_list: img = _get_dataset_image(out_f, img_shape, dataset) logits = np.fromfile(os.path.join(outputs, out_f), dtype=np.float32) if (transpose): logits = logits.reshape((-1, img_shape[0], img_shape[1])).transpose(transpose) else: logits = logits.reshape((img_shape[0], img_shape[1], -1)) cls_seg = np.argmax(logits, axis=-1) # debug visualize norm = cv2.normalize(cls_seg, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8UC1) cls_seg_color = cv2.applyColorMap(norm, cv2.COLORMAP_JET) # concatenate on x-axis so result is 512 wide and 256 high. canvas = np.concatenate([img, cls_seg_color], axis=1) cv2.imshow('img', canvas) key = cv2.waitKey() & 0xFF if key == 27: break def softmax(x, axis): return np.exp(x) / np.sum(np.exp(x), axis=axis, keepdims=True) def normalize(x, axis): return x / np.expand_dims(np.linalg.norm(x, axis=axis), axis=axis) def get_confusion_matrix(gt_label, pred_label, valid_mask, num_classes): assert gt_label.dtype in [np.int32, np.int64] assert pred_label.dtype in [np.int32, np.int64] index = (gt_label * num_classes + pred_label).astype('int32') label_count = np.bincount(index[valid_mask].flat, minlength=num_classes * num_classes) confusion_matrix = np.zeros((num_classes, num_classes)) yy, xx = np.meshgrid(np.arange(num_classes), np.arange(num_classes), indexing='ij') ii = yy * num_classes + xx confusion_matrix[yy, xx] = label_count[ii] return confusion_matrix def get_metrics(input_shape, transpose, dataset, outputs, num_classes=19, use_pillow=False): output_list = [x for x in os.listdir(outputs) if x.endswith('.raw')] output_list.sort() if len(output_list) == 0: print("No output files matching 'outputs/*.raw' found") return print(f"Collecting metrics on {len(output_list)} output .raw files...") width, height, c = input_shape img_shape = (width, height) confusion_matx = None bins = int(1e6) pos_by_score = np.zeros((num_classes, bins + 1)) neg_by_score = np.zeros((num_classes, bins + 1)) with tqdm.tqdm(total=len(output_list)) as pbar: for out_f in output_list: img_name = os.path.splitext(os.path.basename(out_f))[0].split('.')[0] gt_seg = _get_dataset_gt(img_name, dataset, img_shape, use_pillow) ignore_mask = (gt_seg == 255) gt_seg[ignore_mask] = 0 gt_seg = gt_seg.astype(np.int32) valid_mask = np.logical_not(ignore_mask) full_path = os.path.join(outputs, out_f) logits = np.fromfile(full_path, dtype=np.float32) size = np.product(logits.shape) found_classes = int(size / (img_shape[0] * img_shape[1])) if found_classes < num_classes: raise Exception(f"Result {out_f} has unexpected number of predictions {found_classes}, " + "expecting {num_classes}") if transpose: logits = logits.reshape((found_classes, img_shape[0], img_shape[1])).transpose(transpose) else: logits = logits.reshape((img_shape[0], img_shape[1], found_classes)) probs = softmax(logits.astype(np.float64), axis=-1) pd_seg = np.argmax(probs, axis=-1) # debug visualize # gt_seg_color = cv2.applyColorMap((255 * gt_seg / 19).astype(np.uint8), cv2.COLORMAP_JET) # pd_seg_color = cv2.applyColorMap((255 * pd_seg / 19).astype(np.uint8), cv2.COLORMAP_JET) # canvas = np.concatenate([gt_seg_color, pd_seg_color], axis=1) # cv2.imshow('img', canvas) # cv2.waitKey(0) matrix = get_confusion_matrix(gt_seg, pd_seg, valid_mask, num_classes) if confusion_matx is None: confusion_matx = matrix else: confusion_matx += matrix scores = (probs * bins).round().astype(np.int32) # (b, h, w, num_classes) for c in range(num_classes): cls_mask = np.logical_and(gt_seg == c, valid_mask) # (b, h, w) cls_score = scores[..., c] # (b, h, w) pos_by_score[c] += np.bincount(cls_score[cls_mask], minlength=bins + 1) neg_by_score[c] += np.bincount(cls_score[np.logical_not(cls_mask)], minlength=bins + 1) pbar.update(1) class_names = ['background', 'skin', 'nose', 'right_eye', 'left_eye', 'right_brow', 'left_brow', 'right_ear', 'left_ear', 'mouth_interior', 'top_lip', 'bottom_lip', 'neck', 'hair', 'beard', 'clothing', 'glasses', 'headwear', 'facewear'] assert len(class_names) == 19 # compute iou and f1 gt_pos = confusion_matx.sum(1) # (num_classes,) pd_pos = confusion_matx.sum(0) # (num_classes,) tp = np.diag(confusion_matx) # (num_classes,) iou = tp / np.maximum(1, gt_pos + pd_pos - tp) # (num_classes,) f1 = 2 * tp / np.maximum(1, gt_pos + pd_pos) # (num_classes,) # compute weighted iou/f1 (excluding background and facewear class) weight = 1 / np.sqrt(gt_pos[1:18]) if len(iou) > 1: overall_iou = np.sum(iou[1:18] * weight) / np.sum(weight) overall_f1 = np.sum(f1[1:18] * weight) / np.sum(weight) else: overall_iou = iou[0] overall_f1 = f1[0] # compute precision recall curve _, ax = plt.subplots(figsize=(6, 7)) AP = [] for c in range(num_classes): # get per class total count and total positives, sorted in score descending order cls_neg = neg_by_score[c][::-1] cls_pos = pos_by_score[c][::-1] tps = np.cumsum(cls_pos) fps = np.cumsum(cls_neg) precision = tps / np.maximum(1, tps + fps) # assert np.all(np.logical_not(np.isnan(precision))) # precision[np.isnan(precision)] = 0 if tps[-1] == 0: recall = tps / 0.0000001 else: recall = tps / tps[-1] # stop when full recall attained # and reverse the outputs so recall is decreasing last_ind = tps.searchsorted(tps[-1]) sl = slice(last_ind, None, -1) precision = np.r_[precision[sl], 1] recall = np.r_[recall[sl], 0] average_precision = -np.sum(np.diff(recall) * np.array(precision)[:-1]) AP.append(average_precision) # draw figure display = PrecisionRecallDisplay( recall=recall, precision=precision, average_precision=average_precision, ) display.plot(ax=ax, name=class_names[c]) handles, labels = display.ax_.get_legend_handles_labels() # set the legend and the axes ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05]) ax.legend(handles=handles, labels=labels, loc="best") ax.set_title("Precision recall curve") chart = os.path.join(outputs, 'pr_curve.png') plt.savefig(chart) plt.close() # fixes a huge memory leak # save metrics csv_file = os.path.join(outputs, 'test_results.csv') with open(csv_file, 'w', encoding='utf-8') as f: df = pd.DataFrame(np.stack([iou, f1, AP], axis=0), columns=class_names[:num_classes], index=['iou', 'f1', 'AP']) df.loc[:, 'overall'] = pd.Series([overall_iou, overall_f1], index=['iou', 'f1']) df.to_csv(f) print(df) return (csv_file, chart, float(overall_f1)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Check the outputs of the Mask C-RNN model inference and produce ' + 'a .csv file named test_results.csv and a .png plot named pr_curve.png') parser.add_argument('--input', help='Location of the original input images ' + '(defaults to INPUT_DATASET environment variable)') parser.add_argument('--show', '-s', help='Show the outputs on screen, press space to advance to the next image ' + 'and escape to cancel', action="store_true") parser.add_argument('--output', '-o', help='Location of the outputs to analyze (default "snpe_output")', default='snpe_output') parser.add_argument('--transpose', '-t', help='Transpose channels by (1,2,0)', action="store_true") parser.add_argument('--num_classes', type=int, help="Number of classes predicted (default 19)", default=19) parser.add_argument('--pillow', help="Resize images using Pillow instead of numpy", action="store_true") parser.add_argument('--input_shape', help="Resize images this size, must match the shape of the model output " + "(default '256,256,3')") args = parser.parse_args() use_pillow = args.pillow dataset = args.input if not dataset: dataset = os.getenv("INPUT_DATASET") if not dataset: print("please provide --input or set your INPUT_DATASET environment vairable") sys.exit(1) transpose = args.transpose if transpose: transpose = (1, 2, 0) if not os.path.isdir(dataset): print("input dataset not found: " + dataset) sys.exit(1) output_dir = args.output if not os.path.isdir(output_dir): print("Experiment 'output' dir not found: " + output_dir) sys.exit(1) input_shape = (256, 256, 3) if args.input_shape: input_shape = tuple(eval(args.image_shape)) if args.show: show_output(input_shape, transpose, dataset, output_dir) else: get_metrics(input_shape, transpose, dataset, output_dir, args.num_classes, use_pillow)
archai/tasks/face_segmentation/aml/vision/collect_metrics.py/0
{ "file_path": "archai/tasks/face_segmentation/aml/vision/collect_metrics.py", "repo_id": "archai", "token_count": 5384 }
329
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import argparse import sys from archai.discrete_search.api import ArchaiModel from archai.common.config import Config from archai.discrete_search.evaluators.remote_azure_benchmark import RemoteAzureBenchmarkEvaluator from aml.util.setup import configure_store def reset_dlc(store, experiment_name, entity): """ Reset the qualcomm dlc files and associated metrics for the given entity.""" changed = False name = entity['name'] prefix = f'{experiment_name}/{name}' print(f"Resetting .dlc files for model {name}") store.delete_blobs(prefix, 'model.dlc') store.delete_blobs(prefix, 'model.quant.dlc') for k in ['mean', 'macs', 'params', 'stdev', 'total_inference_avg', 'error', 'f1_1k', 'f1_10k', 'f1_1k_f', 'f1_onnx', 'pipeline_id']: if k in entity: del entity[k] changed = True if changed: store.update_status_entity(entity) def main(): # input and output arguments parser = argparse.ArgumentParser(description="Runs Snapdragon F1 scoring on the final fully trained models produced by train_pareto.py.") parser.add_argument("--config", type=str, help="location of the aml_search.yaml file", required=True) args = parser.parse_args() config = Config(args.config, resolve_env_vars=True) aml_config = config['aml'] experiment_name = aml_config['experiment_name'] metric_key = 'final_val_iou' search_config = config['search'] ss_config = search_config['search_space'] ss_params = ss_config['params'] in_channels = ss_params['in_channels'] img_size = ss_params['img_size'] target_config = search_config.get('target', {}) # change the metric key to the one used for Snapdragon F1 scoring target_config['metric_key'] = 'f1_1k' target_name = target_config.pop('name', 'cpu') device_evaluator = None if target_name != 'snp': print(f"Snapdragon target is not configured in {args.config}") sys.exit(1) store = configure_store(aml_config) fully_trained = [ e for e in store.get_all_status_entities(status='complete') if metric_key in e ] if len(fully_trained) == 0: print(f"No 'complete' models found with required metric '{metric_key}'") sys.exit(1) # the RemoteAzureBenchmarkEvaluator only needs the archid actually, doesn't need the nn.Module. models = [] for e in fully_trained: name = e['name'] # if this has not been F1 scored yet then add it to our list. if 'benchmark_only' in e: models += [ArchaiModel(None, archid=name[3:])] # make sure we re-quantize the new fully trained model. reset_dlc(store, experiment_name, e) # kick off remote device training without the benchmark_only flag so we get the # F1 scores for these fully trained models. Note the above results_path ensures the trained # models are uploaded back to our models blob store. input_shape = (1, in_channels, *img_size[::-1]) device_evaluator = RemoteAzureBenchmarkEvaluator( input_shape=input_shape, store=store, experiment_name=experiment_name, onnx_export_kwargs={'opset_version': 11}, benchmark_only=0, # do full F1 scoring this time. **target_config ) for model in models: device_evaluator.send(model) device_evaluator.fetch_all() if __name__ == "__main__": main()
archai/tasks/face_segmentation/snp_test.py/0
{ "file_path": "archai/tasks/face_segmentation/snp_test.py", "repo_id": "archai", "token_count": 1342 }
330
# # Config file for NAS search - Debug run # # job args seed: 0 num_jobs_per_gpu: 2 num_latency_measurements: 15 num_input_per_latency_measurement: 15 # search args num_iters: 7 init_num_models: 32 num_random_mix: 32 num_crossovers: 8 mutations_per_parent: 4 max_unseen_population: 32 # Search space args r_range: [1, 2, 3, 4] e_range: [2, 3, 4, 5, 6] k_range: - 3 - 5 - 7 channel_mult_range: [0.25, 0.5, 0.75, 1.0, 1.25] depth_mult_range: [0.25, 0.5, 0.75, 1.0, 1.25] # model trainer args data_path: face_synthetics/dataset_100000 output_dir: ./output max_num_images: 20000 train_crop_size: 128 epochs: 30 batch_size: 128 lr: 0.001 opt: adamw lr_scheduler: steplr lr_step_size: 100 lr_gamma: 0.5 wd: 0.00001
archai/tasks/facial_landmark_detection/search_config.yaml/0
{ "file_path": "archai/tasks/facial_landmark_detection/search_config.yaml", "repo_id": "archai", "token_count": 324 }
331
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import shutil from archai.datasets.nlp.fast_hf_dataset_provider import FastHfDatasetProvider TEST_CACHE_DIR='test_fast_hf_dataset_cache' def test_fast_hf_dataset_provider_from_hub(): dataset_provider = FastHfDatasetProvider.from_hub( "glue", dataset_config_name="sst2", tokenizer_name="Salesforce/codegen-350M-mono", mapping_column_name=["sentence"], use_shared_memory=False, cache_dir=TEST_CACHE_DIR ) # Assert that we can individually load training, validation and test datasets with dataset_provider.get_train_dataset(seq_len=256) as train_dataset: assert len(train_dataset) == 3514 with dataset_provider.get_val_dataset(seq_len=256) as val_dataset: assert len(val_dataset) == 85 with dataset_provider.get_test_dataset(seq_len=256) as test_dataset: assert len(test_dataset) == 169 def test_fast_hf_dataset_provider_from_cache(): dataset_provider = FastHfDatasetProvider.from_cache(TEST_CACHE_DIR) # Assert that we can individually load training, validation and test datasets with dataset_provider.get_train_dataset(seq_len=256) as train_dataset: assert len(train_dataset) == 3514 with dataset_provider.get_val_dataset(seq_len=256) as val_dataset: assert len(val_dataset) == 85 with dataset_provider.get_test_dataset(seq_len=256) as test_dataset: assert len(test_dataset) == 169 shutil.rmtree(TEST_CACHE_DIR)
archai/tests/datasets/nlp/test_fast_hf_dataset_provider.py/0
{ "file_path": "archai/tests/datasets/nlp/test_fast_hf_dataset_provider.py", "repo_id": "archai", "token_count": 642 }
332
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import List, Optional from unittest.mock import MagicMock from overrides import overrides from archai.api.dataset_provider import DatasetProvider from archai.discrete_search.api.archai_model import ArchaiModel from archai.discrete_search.api.model_evaluator import ( AsyncModelEvaluator, ModelEvaluator, ) class MyModelEvaluator(ModelEvaluator): def __init__(self, dataset) -> None: super().__init__() @overrides def evaluate(self, arch: ArchaiModel, budget: Optional[float] = None) -> float: return 0.0 class MyAsyncModelEvaluator(AsyncModelEvaluator): def __init__(self, dataset) -> None: super().__init__() @overrides def send(self, arch: ArchaiModel, budget: Optional[float] = None) -> None: return MagicMock() @overrides def fetch_all(self) -> List[Optional[float]]: return list() def test_model_evaluator(): arch = ArchaiModel(arch=MagicMock(), archid="test_archid", metadata={}) dataset = MagicMock() # Assert that mocked value is returned model_evaluator = MyModelEvaluator(dataset) value = model_evaluator.evaluate(arch, budget=None) assert value == 0.0 def test_async_model_evaluator(): arch = ArchaiModel(arch=MagicMock(), archid="test_archid", metadata={}) dataset = MagicMock() # Assert that mocked method runs async_model_evaluator = MyAsyncModelEvaluator(dataset) assert async_model_evaluator.send(arch, budget=None) # Assert that mocked value is returned values = async_model_evaluator.fetch_all() assert isinstance(values, list)
archai/tests/discrete_search/api/test_model_evaluator.py/0
{ "file_path": "archai/tests/discrete_search/api/test_model_evaluator.py", "repo_id": "archai", "token_count": 615 }
333
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import pytest import torch from archai.discrete_search.search_spaces.nlp.transformer_flex.models.configuration_gpt2_flex import ( GPT2FlexConfig, ) from archai.discrete_search.search_spaces.nlp.transformer_flex.models.modeling_gpt2_flex import ( GPT2FlexLMHeadModel, GPT2FlexModel, ) @pytest.fixture def config(): return GPT2FlexConfig(vocab_size=128, n_embd=768, n_layer=2) def test_gpt2_flex_lm_head_model_init(config): model = GPT2FlexLMHeadModel(config) # Assert that the model's transformer attribute has the correct type assert isinstance(model.transformer, GPT2FlexModel) assert isinstance(model.lm_head, torch.nn.Linear) assert model.lm_head.in_features == config.n_embd assert model.lm_head.out_features == config.vocab_size def test_gpt2_flex_lm_head_model_forward_pass(config): model = GPT2FlexLMHeadModel(config) # Assert that the model is able to forward pass input_tensor = torch.randint(0, config.vocab_size, (1, 32)) output = model(input_tensor) assert output.logits.shape == (1, 32, config.vocab_size)
archai/tests/discrete_search/search_spaces/nlp/transformer_flex/models/test_modeling_gpt2_flex.py/0
{ "file_path": "archai/tests/discrete_search/search_spaces/nlp/transformer_flex/models/test_modeling_gpt2_flex.py", "repo_id": "archai", "token_count": 442 }
334
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import pytest import torch from archai.quantization.modules import ( FakeDynamicQuant, FakeDynamicQuantConv1d, FakeDynamicQuantLinear, FakeQuantEmbedding, ) @pytest.fixture def fake_quant_embedding(): return FakeQuantEmbedding(num_embeddings=5, embedding_dim=3) @pytest.fixture def fake_dynamic_quant_linear(): return FakeDynamicQuantLinear(in_features=3, out_features=2) @pytest.fixture def fake_dynamic_quant_conv1d(): return FakeDynamicQuantConv1d(in_channels=3, out_channels=2, kernel_size=3) def test_fake_quant_embedding_init(fake_quant_embedding): # Assert that the `fake_quant_embedding` is initialized correctly assert fake_quant_embedding.num_embeddings == 5 assert fake_quant_embedding.embedding_dim == 3 assert isinstance(fake_quant_embedding.weight_fake_quant, FakeDynamicQuant) def test_fake_quant_embedding_fake_quant_weight(fake_quant_embedding): # Assert that the `fake_quant_weight` has correct shape and type fake_quant_weight = fake_quant_embedding.fake_quant_weight assert fake_quant_weight.shape == (5, 3) assert isinstance(fake_quant_weight, torch.Tensor) def test_fake_quant_embedding_forward(fake_quant_embedding): x = torch.tensor([0, 1, 2, 3, 4]) # Assert that the `output` has correct shape and type output = fake_quant_embedding(x) assert output.shape == (5, 3) assert isinstance(output, torch.Tensor) def test_fake_quant_embedding_from_float(): mod = torch.nn.Embedding(num_embeddings=5, embedding_dim=3) qconfig = {} # Assert that the `quantized_mod` has correct attributes, values and types quantized_mod = FakeQuantEmbedding.from_float(mod, qconfig) assert quantized_mod.num_embeddings == mod.num_embeddings assert quantized_mod.embedding_dim == mod.embedding_dim assert quantized_mod.weight.model_parallel is False def test_fake_quant_embedding_to_float(fake_quant_embedding): # Assert that the `float_mod` has correct attributes, values and types float_mod = fake_quant_embedding.to_float() assert float_mod.num_embeddings == fake_quant_embedding.num_embeddings assert float_mod.embedding_dim == fake_quant_embedding.embedding_dim assert float_mod.weight.model_parallel is True def test_fake_dynamic_quant_linear_init(fake_dynamic_quant_linear): # Assert that the `fake_dynamic_quant_linear` is initialized correctly assert fake_dynamic_quant_linear.in_features == 3 assert fake_dynamic_quant_linear.out_features == 2 assert isinstance(fake_dynamic_quant_linear.weight_fake_quant, FakeDynamicQuant) assert isinstance(fake_dynamic_quant_linear.input_pre_process, FakeDynamicQuant) def test_fake_dynamic_quant_linear_fake_quant_weight(fake_dynamic_quant_linear): # Assert that the `fake_quant_weight` has correct shape and type fake_quant_weight = fake_dynamic_quant_linear.fake_quant_weight assert fake_quant_weight.shape == (2, 3) assert isinstance(fake_quant_weight, torch.Tensor) def test_fake_dynamic_quant_linear_forward(fake_dynamic_quant_linear): x = torch.randn(4, 3) # Assert that the `output` has correct shape and type output = fake_dynamic_quant_linear(x) assert output.shape == (4, 2) assert isinstance(output, torch.Tensor) def test_fake_dynamic_quant_linear_from_float(): mod = torch.nn.Linear(in_features=3, out_features=2) qconfig = torch.quantization.get_default_qat_qconfig("qnnpack") # Assert that the `quantized_mod` has correct attributes, values and types quantized_mod = FakeDynamicQuantLinear.from_float(mod, qconfig) assert quantized_mod.in_features == mod.in_features assert quantized_mod.out_features == mod.out_features assert torch.equal(quantized_mod.weight, mod.weight) assert torch.equal(quantized_mod.bias, mod.bias) assert isinstance(quantized_mod.weight_fake_quant, FakeDynamicQuant) assert isinstance(quantized_mod.input_pre_process, FakeDynamicQuant) def test_fake_dynamic_quant_linear_to_float(fake_dynamic_quant_linear): # Assert that the `float_mod` has correct attributes, values and types float_mod = fake_dynamic_quant_linear.to_float() assert float_mod.in_features == fake_dynamic_quant_linear.in_features assert float_mod.out_features == fake_dynamic_quant_linear.out_features assert torch.equal(float_mod.weight, fake_dynamic_quant_linear.weight_fake_quant(fake_dynamic_quant_linear.weight)) assert torch.equal(float_mod.bias, fake_dynamic_quant_linear.bias) def test_fake_dynamic_quant_conv1d_init(fake_dynamic_quant_conv1d): # Assert that the `fake_dynamic_quant_conv1d` is initialized correctly assert fake_dynamic_quant_conv1d.in_channels == 3 assert fake_dynamic_quant_conv1d.out_channels == 2 assert fake_dynamic_quant_conv1d.kernel_size == (3,) assert isinstance(fake_dynamic_quant_conv1d.weight_fake_quant, FakeDynamicQuant) assert isinstance(fake_dynamic_quant_conv1d.input_pre_process, FakeDynamicQuant) def test_fake_dynamic_quant_conv1d_fake_quant_weight(fake_dynamic_quant_conv1d): # Assert that the `fake_quant_weight` has correct shape and type fake_quant_weight = fake_dynamic_quant_conv1d.fake_quant_weight assert fake_quant_weight.shape == (2, 3, 3) assert isinstance(fake_quant_weight, torch.Tensor) def test_fake_dynamic_quant_conv1d_forward(fake_dynamic_quant_conv1d): x = torch.randn(3, 3) # Assert that the `output` has correct shape and type output = fake_dynamic_quant_conv1d(x) assert output.shape == (2, 1) assert isinstance(output, torch.Tensor) def test_fake_dynamic_quant_conv1d_from_float(): mod = torch.nn.Conv1d(in_channels=3, out_channels=2, kernel_size=3) qconfig = torch.quantization.get_default_qat_qconfig("qnnpack") # Assert that the `quantized_mod` has correct attributes, values and types quantized_mod = FakeDynamicQuantConv1d.from_float(mod, qconfig) assert quantized_mod.in_channels == mod.in_channels assert quantized_mod.out_channels == mod.out_channels assert quantized_mod.kernel_size == mod.kernel_size assert torch.equal(quantized_mod.weight, mod.weight) assert torch.equal(quantized_mod.bias, mod.bias) assert isinstance(quantized_mod.weight_fake_quant, FakeDynamicQuant) assert isinstance(quantized_mod.input_pre_process, FakeDynamicQuant) def test_fake_dynamic_quant_conv1d_to_float(fake_dynamic_quant_conv1d): # Assert that the `float_mod` has correct attributes, values and types float_mod = fake_dynamic_quant_conv1d.to_float() assert float_mod.in_channels == fake_dynamic_quant_conv1d.in_channels assert float_mod.out_channels == fake_dynamic_quant_conv1d.out_channels assert float_mod.kernel_size == fake_dynamic_quant_conv1d.kernel_size assert torch.equal(float_mod.weight, fake_dynamic_quant_conv1d.weight_fake_quant(fake_dynamic_quant_conv1d.weight)) assert torch.equal(float_mod.bias, fake_dynamic_quant_conv1d.bias)
archai/tests/quantization/test_modules.py/0
{ "file_path": "archai/tests/quantization/test_modules.py", "repo_id": "archai", "token_count": 2523 }
335
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import tempfile import torch from transformers import GPT2Config, GPT2LMHeadModel from archai.trainers.nlp.nvidia_trainer import save_checkpoint def test_save_checkpoint(): output_dir = tempfile.mkdtemp() model = GPT2LMHeadModel(config=GPT2Config(vocab_size=1, n_layer=1)) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) scaler = torch.cuda.amp.GradScaler() trainer_state = {"step": 0} # Assert that the checkpoint file exists save_checkpoint( output_dir=output_dir, model=model, optimizer=optimizer, scheduler=scheduler, scaler=scaler, trainer_state=trainer_state, fp16=False, save_all_checkpoints=False, is_best_model=False, ) checkpoint_path = os.path.join(output_dir, "checkpoint-last.pt") assert os.path.exists(checkpoint_path) # Assert that the checkpoint file contains the expected data checkpoint = torch.load(checkpoint_path) assert checkpoint["model_config"] == model.config for key in checkpoint["model_state"]: assert torch.equal(checkpoint["model_state"][key], model.state_dict()[key]) for key in checkpoint["optimizer_state"]: assert checkpoint["optimizer_state"][key] == optimizer.state_dict()[key] for key in checkpoint["scheduler_state"]: assert checkpoint["scheduler_state"][key] == scheduler.state_dict()[key] assert checkpoint["scaler_state"] is None assert checkpoint["trainer_state"] == trainer_state # Assert that the best model checkpoint file exists save_checkpoint( output_dir=output_dir, model=model, optimizer=optimizer, scheduler=scheduler, scaler=scaler, trainer_state=trainer_state, fp16=False, save_all_checkpoints=False, is_best_model=True, ) checkpoint_path = os.path.join(output_dir, "checkpoint-best.pt") assert os.path.exists(checkpoint_path) # Assert that the best model checkpoint file contains the expected data checkpoint = torch.load(checkpoint_path) assert checkpoint["model_config"] == model.config for key in checkpoint["model_state"]: assert torch.equal(checkpoint["model_state"][key], model.state_dict()[key]) for key in checkpoint["optimizer_state"]: assert checkpoint["optimizer_state"][key] == optimizer.state_dict()[key] for key in checkpoint["scheduler_state"]: assert checkpoint["scheduler_state"][key] == scheduler.state_dict()[key] assert checkpoint["scaler_state"] is None assert checkpoint["trainer_state"] == trainer_state
archai/tests/trainers/nlp/test_nvidia_trainer.py/0
{ "file_path": "archai/tests/trainers/nlp/test_nvidia_trainer.py", "repo_id": "archai", "token_count": 1049 }
336
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from msrest.exceptions import ( ClientException, ClientRequestError, AuthenticationError, ) class AzureDevOpsClientError(ClientException): pass class AzureDevOpsAuthenticationError(AuthenticationError): pass class AzureDevOpsClientRequestError(ClientRequestError): pass class AzureDevOpsServiceError(AzureDevOpsClientRequestError): """AzureDevOpsServiceError. """ def __init__(self, wrapped_exception): self.inner_exception = None if wrapped_exception.inner_exception is not None: self.inner_exception = AzureDevOpsServiceError(wrapped_exception.inner_exception) super(AzureDevOpsServiceError, self).__init__(message=wrapped_exception.message, inner_exception=self.inner_exception) self.message = wrapped_exception.message self.exception_id = wrapped_exception.exception_id self.type_name = wrapped_exception.type_name self.type_key = wrapped_exception.type_key self.error_code = wrapped_exception.error_code self.event_id = wrapped_exception.event_id self.custom_properties = wrapped_exception.custom_properties
azure-devops-python-api/azure-devops/azure/devops/exceptions.py/0
{ "file_path": "azure-devops-python-api/azure-devops/azure/devops/exceptions.py", "repo_id": "azure-devops-python-api", "token_count": 507 }
337