Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n, buf, max, ans; int flg, flg1; ans = 0; max = 0; buf = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < n; i++) { if (i == 0 && a[i] == 0) { if (a[1] < 0) { a[i] = 1; ans = 1; } else if (a[1] > 0) { a[i] = -1; ans = 1; } } buf += a[i]; if (i == 0) { if (a[i] < 0) flg = -1; if (a[i] > 0) flg = 1; } else { if (buf < 0) flg = -1; if (buf > 0) flg = 1; } if (i != 0) { if (flg == flg1) { if (buf > 0) { ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1; buf = -1; flg = -1; } else if (buf < 0) { ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1; buf = 1; flg = 1; } else if (buf == 0) { ans += 1; if (flg1 == 1) flg = -1; if (flg1 == -1) flg = 1; } } } flg1 = flg; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; import java.util.Arrays; public class Main{ static int n; static long[] a; static final boolean DEBUG = false; public static void main(String[] args){ Scanner sc = new Scanner(System.in); n = sc.nextInt(); a = new long[n]; for(int i = 0; i < n; i++){ a[i] = sc.nextInt(); } long count = 0, count2 = 0; long sum = a[0]; long sum2 = a[0] < 0 ? 1 : -1; count2 = Math.abs(sum2 - a[0]); for(int i = 1; i < n; i++){ long val = a[i], val2 = a[i]; if(!((sum > 0 && sum + a[i] < 0) || (sum < 0 && sum + a[i] > 0))){ val = -sum + ((sum < 0) ? 1 : -1); count += Math.abs(val - a[i]); } if(!((sum2 > 0 && sum2 + a[i] < 0) || (sum2 < 0 && sum2 + a[i] > 0))){ val2 = -sum2 + ((sum2 < 0) ? 1 : -1); count2 += Math.abs(val2 - a[i]); } sum += val; sum2 += val2; } if(DEBUG){ System.out.println(Arrays.toString(a)); } System.out.println(Math.min(count, count2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> data; while (n--) { int a; cin >> a; data.push_back(a); } int sum1 = 0, sum2 = 0; int ans1 = 0, ans2 = 0; for (int i = 0; i < data.size(); i++) { sum1 += data[i], sum2 += data[i]; if (i % 2 == 0) { if (sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } if (sum2 >= 0) { ans2 += sum2 - (-1); sum2 = -1; } } else { if (sum1 >= 0) { ans1 += sum1 - (-1); sum1 = -1; } if (sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(_) for _ in input().split()] dp = A[0] count = 0 is_positive = dp > 0 for i in range(1, N): dp += A[i] if (dp > 0) == is_positive: count += abs(dp)+1 dp = 1-2*is_positive is_positive = dp > 0 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> vec; for (int i = 0; i < n; i++) { int aux; cin >> aux; vec.push_back(aux); } long long sumA = 0; long long sumB = 0; long long auxA = vec[0]; long long auxB; if (auxA > 0) { auxB = -1; sumB += auxA + 1; } else if (auxA < 0) { auxB = 1; sumB += abs(auxA) + 1; } else { auxA = 0; auxB = 0; sumA++; sumB++; } long long sumAuxA = auxA; long long sumAuxB = auxB; for (int i = 1; i < n; i++) { if (sumAuxA > 0) { sumAuxA += vec[i]; sumAuxB += vec[i]; if (sumAuxA >= 0) { sumA += sumAuxA + 1; sumAuxA = -1; } if (sumAuxB <= 0) { sumB += abs(sumAuxB) + 1; sumAuxB = 1; } } else { sumAuxA += vec[i]; sumAuxB += vec[i]; if (sumAuxA <= 0) { sumA += abs(sumAuxA) + 1; sumAuxA = 1; } if (sumAuxB >= 0) { sumB += sumAuxB + 1; sumAuxB = -1; } } } cout << min(sumA, sumB); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; vector<int> rev_a = a; int result = 0; bool isPlus = a[0] > 0 ? true : false; int sum = a[0]; for (int i = 1; i < n; i++) { int temp_sum = sum + a[i]; if (isPlus) { if (temp_sum >= 0) { result += temp_sum + 1; a[i] -= temp_sum + 1; } } else { if (temp_sum <= 0) { result += -temp_sum + 1; a[i] += -temp_sum + 1; } } isPlus = !isPlus; sum += a[i]; } int rev_result = 0; isPlus = a[0] > 0 ? true : false; if (isPlus) { rev_result += a[0] + 1; a[0] -= a[0] + 1; isPlus = !isPlus; } for (int i = 1; i < n; i++) { int temp_sum = sum + rev_a[i]; if (isPlus) { if (temp_sum >= 0) { rev_result += temp_sum + 1; rev_a[i] -= temp_sum + 1; } } else { if (temp_sum <= 0) { rev_result += -temp_sum + 1; rev_a[i] += -temp_sum + 1; } } isPlus = !isPlus; sum += rev_a[i]; } if (rev_result < result) cout << rev_result << endl; else cout << result << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) num = a[0] ans = 0 if a[0]>0: for i in range(1,n): num += a[i] if i%2==1: if num>=0: ans += num+1 num = -1 else: if num<=0: ans += 1-num num = 1 else: for i in range(1,n): num += a[i] if i%2==1: if num <= 0: ans += 1-num num = 1 else: if num >= 0: ans += num+1 num = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<cstdio> using namespace std; int main(){ int n, d, a = 0, b = 0, cnta = 0, cntb = 0, i, ans; scnaf("%d", &n); for(i = 0; i < n; i++){ scanf("%d", &d); a += d; b += d; if(i%2){ if(a > -1){cnta += a + 1; a = -1;} if(b < 1){cntb += 1 - b; b = 1;} }else{ if(b > -1){cntb += b + 1; b = -1;} if(a < 1){cnta += 1 - a; a = 1;} } } ans = (cnta > cntb) ? cnta : cntb; cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include <ctype.h> #include <stdint.h> #include <string.h> #include <wchar.h> #include <math.h> #define N_MAX (100) #define P_MAX (100) #define DP_ARRAY_SIZE (N_MAX * P_MAX / 32 + 1) #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define ABS(a) ((a) < 0 ? -(a) : (a)) #define ABSS(a, b) ((a) > (b) ? (a) - (b) : (b) - (a)) int compare_sz_asc(const void* a, const void* b) { return *((size_t*)a) < *((size_t*)b) ? -1 : 1; } int compare_sz_desc(const void* a, const void* b) { return *((size_t*)a) > * ((size_t*)b) ? -1 : 1; } int compare_i64_asc(const void* a, const void* b) { return *((int64_t*)a) < *((int64_t*)b) ? -1 : 1; } int compare_i64_desc(const void* a, const void* b) { return *((int64_t*)a) > * ((int64_t*)b) ? -1 : 1; } int compare_c_asc(const void* a, const void* b) { return *((char*)a) < *((char*)b) ? -1 : 1; } int compare_c_desc(const void* a, const void* b) { return *((char*)a) > * ((char*)b) ? -1 : 1; } static size_t powSz(const size_t base, const size_t exp) { if (exp == 0) { return 1; } if (exp == 1) { return base; } if (exp % 2 == 0) { return powSz(base * base, exp / 2); } else { return base * powSz(base, exp - 1); } } static size_t comb(const size_t n, const size_t r) { size_t result = 1; for (size_t i = 0; i < r; i++) { result *= n - i; result /= i + 1; } return result; } static uint64_t combU64(const uint64_t n, const uint64_t r) { uint64_t result = 1; for (uint64_t i = 0; i < r; i++) { result *= n - i; result /= i + 1; } return result; } static size_t gcdZu(size_t m, size_t n) { size_t temp; while (m % n != 0) { temp = n; n = m % n; m = temp; } return n; } static uint64_t gcdU64(uint64_t m, uint64_t n) { uint64_t temp; while (m % n != 0) { temp = n; n = m % n; m = temp; } return n; } static int64_t a[100000]; int main(void) { size_t n; scanf("%zu\n", &n); for (size_t i = 0; i < n; i++) { scanf("%"PRId64, &a[i]); } size_t cnt[2] = { 0,0 }; int64_t base[2] = { 1,-1 }; for (size_t i = 0; i < n; i++) { cnt[0] = (size_t)ABSS(base[0], a[i]); cnt[1] = (size_t)ABSS(base[1], a[i]); base[0] = -base[0]; base[1] = -base[1]; } printf("%zu", MIN(cnt[0], cnt[1])); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; template <class T> void cout_vec(const vector<T> &vec1) { for (long long i = 0; i < long long(vec1.size()); i++) { cout << vec1[i] << ' '; } cout << '\n'; } int main() { cin.tie(0); ios::sync_with_stdio(false); long long n; cin >> n; vector<long long> a(n + 1), sum(n + 1, 0); for (long long i = 1; i < n + 1; i++) cin >> a[i]; long long ans = 0; for (long long i = 1; i < n + 1; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[1] == 0) { if (a[i] > 0) { sum[1]--; ans++; } else { sum[1]++; ans++; } continue; } if (sum[i] == 0) { if (sum[i - 1] < 0) { sum[i]++; ans++; } else { sum[i]--; ans++; } } if (sum[i] > 0 && sum[i - 1] > 0) { sum[i] = -1; ans += a[i] + sum[i - 1] + 1; } if (sum[i] < 0 && sum[i - 1] < 0) { sum[i] = 1; ans += 1 - a[i] - sum[i - 1]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long> a1(n); vector<long> a2(n); for (int i = 0; i < n; i++) { cin >> a1.at(i); a2.at(i) = a1.at(i); } int ans1 = 0; int flag1 = 1; long sum = 0; for (int i = 0; i < n; i++) { sum += a1.at(i); if (flag1 == 1) { flag1 = -1; if (sum <= 0) { ans1 += -sum + 1; sum = 1; } } else if (flag1 == -1) { flag1 = 1; if (sum >= 0) { ans1 += sum + 1; sum = -1; } } } int ans2 = 0; flag1 = -1; sum = 0; for (int i = 0; i < n; i++) { sum += a2.at(i); if (flag1 == 1) { flag1 = -1; if (sum <= 0) { ans2 += -sum + 1; sum = 1; } } else if (flag1 == -1) { flag1 = 1; if (sum >= 0) { ans2 += sum + 1; sum = -1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) even_is_negative = 0 odd_is_nagative = 0 for i in range(n): if i % 2 == 0 and a[i] < 0: even_is_negative += 1 elif i % 2 == 1 and a[i] < 0: odd_is_nagative += 1 # print(even_is_negative) # print(odd_is_nagative) sum = a[0] change = 0 if even_is_negative >= odd_is_nagative: for i in range(1, n): if i % 2 == 1 and sum + a[i] <= 0: change += abs(sum + a[i]) + 1 sum = 1 # print("a " + str(sum)) elif i % 2 == 0 and sum + a[i] >= 0: change += sum + a[i] + 1 sum = -1 # print("b " + str(sum)) else: sum += a[i] # print("c " + str(sum)) if even_is_negative < odd_is_nagative: for i in range(1, n): if i % 2 == 1 and sum + a[i] >= 0: change += sum + a[i] + 1 sum = -1 # print("a " + str(sum) + str(change)) elif i % 2 == 0 and sum + a[i] <= 0: change += abs(sum + a[i]) + 1 sum = 1 # print("b " + str(sum)+ str(change)) else: sum += a[i] # print("c " + str(sum)+ str(change)) if sum == 0: print(change + 1) else: print(change)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; long long s[maxn]; long long ans[maxn]; int main() { int n, j; cin >> n; long long sum = 0; for (int i = 1; i <= n; i++) { cin >> s[i]; } for (int i = 1; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] == 0) { if (s[i + 1] < 0) { sum += -s[i + 1] + 1; ans[i] = 2; s[i + 1] = -1; } else if (s[i + 1] > 0) { sum += s[i + 1] + 1; ans[i] = -2; s[i + 1] = 1; } else { s[i + 1] = -2; ans[i] = 1; sum += 3; } } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } cout << sum << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) X=list(map(int,input().split())) res=X[0] cnt=0 if X[0]==0: cnt+=1 res=1 for i in range(1,n): res+=X[i] if res>=0 and res-X[i]>0: cnt+=(1+res) res=-1 elif res<=0 and res-X[i]<0: cnt+=(1-res) res=1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans=10**10 s=0 cnt=0 for i in range(n): s+=a[i] if i%2==0: if s>=0: cnt += s + 1 s = -1 else: if s<=0: cnt += -s + 1 s = 1 ans=min(ans,cnt) s=0 cnt=0 for i in range(n): s+=a[i] if i%2==1: if s>=0: cnt += s + 1 s = -1 else: if s<=0: cnt += -s + 1 s = 1 ans=min(ans,cnt) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long ans = 0; long long now; cin >> now; if (now == 0) { now++; ans++; } for (long long(i) = (0); (i) < (n - 1); ++i) { long long tmp; cin >> tmp; if (now > 0) { now += tmp; if (now >= 0) { ans += now + 1; now = -1; } } else { now += tmp; if (now <= 0) { ans -= (now - 1); now = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0; long long s_i = 0; for (int i = 0; i < n; i++) { if (i == 0) { if (a[i] == 0) { if (a[i + 1] > 0) { ans += 1; s_i = -1; } else { s_i = 1; } } else { s_i = a[i]; } } else { if (s_i > 0) { if (s_i + a[i] <= -1) { s_i = s_i + a[i]; } else { ans += abs(-1 - s_i - a[i]); s_i = -1; } } else { if (s_i + a[i] >= 1) { s_i = s_i + a[i]; } else { ans += abs(1 - s_i - a[i]); s_i = 1; } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define rep(i,n) for (int i=0; i < (int)(n); i++) #define rep2(i, s, n) for (int i = (s); i < (int)(n); i++) using ll = long long; using VL = vector<ll>; using VVL = vector<vector<ll>>; using P = pair<ll, ll>; // chmin, chmax関数 template<typename T, typename U, typename Comp=less<>> bool chmax(T& xmax, const U& x, Comp comp={}) { if(comp(xmax, x)) { xmax = x; return true; } return false; } template<typename T, typename U, typename Comp=less<>> bool chmin(T& xmin, const U& x, Comp comp={}) { if(comp(x, xmin)) { xmin = x; return true; } return false; } //--------------------------- int main(){ ll n, tmp=0; cin >> n; VL sum(n); rep(i,n){ ll a; cin >> a; tmp += a; sum[i] = tmp; } ll ans = (ll)1 << 60; // INF // cout << ans << endl; if(sum[0] == 0){ // sum[0] = 1: even is pos, odd is neg ll accum=1, cnt=1; rep2(i,1,n){ ll x = sum[i] + accum; if(i%2==0 && x <= 0){ accum += abs(x) + 1; cnt += abs(x) + 1; }else if(i%2==1 && x >= 0){ accum -= abs(x) + 1; cnt += abs(x) + 1; } } chmin(ans, cnt); // sum[0] = -1: even is neg, odd is pos accum=-1, cnt=1; rep2(i,1,n){ ll x = sum[i] + accum; if(i%2==0 && x >= 0){ accum -= abs(x) + 1; cnt += abs(x) + 1; }else if(i%2==1 && x <= 0){ accum += abs(x) + 1; cnt += abs(x) + 1; } } chmin(ans, cnt); }else if(sum[0] > 0){ // even is pos, odd is neg ll accum=0, cnt=0; rep2(i,1,n){ ll x = sum[i] + accum; if(i%2==0 && x <= 0){ accum += abs(x) + 1; cnt += abs(x) + 1; }else if(i%2==1 && x >= 0){ accum -= abs(x) + 1; cnt += abs(x) + 1; } } chmin(ans, cnt); }else{ ll accum=-1, cnt=1; rep2(i,1,n){ ll x = sum[i] + accum; if(i%2==0 && x >= 0){ accum -= abs(x) + 1; cnt += abs(x) + 1; }else if(i%2==1 && x <= 0){ accum += abs(x) + 1; cnt += abs(x) + 1; } } chmin(ans, cnt); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, chk; long long ans = 0; scanf("%d", &n); vector<int> a(n); for (auto& e : a) scanf("%d", &e); chk = a[0]; for (int i = 1; i < n; i++) { if (i % 2) { chk += a[i]; if (chk >= 0) { ans += chk + 1; chk = -1; } } else { chk += a[i]; if (chk <= 0) { ans += -1 * chk + 1; chk = 1; } } } printf("%lld", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define rep(i,n) for(int i=0;i<n;i++) #define FOR(i,start,end) for(int i=start;i<=end;i++) const int INF = 1001001001; typedef long long ll; const ll MOD=1000000007; using namespace std; template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template<class T>auto MAX(const T& a) { return *max_element(a.begin(),a.end()); } template<class T>auto MIN(const T& a) { return *min_element(a.begin(),a.end()); } template<class T, class U>U SUM(const T& a, const U& v) { return accumulate(a.begin(),a.end(), v); } template<class T, class U>U COUNT(const T& a, const U& v) { return count(a.begin(),a.end(), v); } template<class T, class U>int LOWER(const T& a, const U& v) { return lower_bound(a.begin(),a.end(), v) - a.begin(); } template<class T, class U>int UPPER(const T& a, const U& v) { return upper_bound(a.begin(),a.end(), v) - a.begin(); } int GCD(int a, int b) { return b ? GCD(b, a%b) : a; } int LCM(int a, int b) { int g = GCD(a, b); return a / g * b; } //--------------------------------------------------------------------------------------------------- template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) { } ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; } ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; } template<typename T, int FAC_MAX> struct Comb { vector<T> fac, ifac; Comb(){fac.resize(FAC_MAX,1);ifac.resize(FAC_MAX,1);FOR(i,1,FAC_MAX-1)fac[i]=fac[i-1]*i; ifac[FAC_MAX-1]=T(1)/fac[FAC_MAX-1];for(int i=FAC_MAX-2;i>=1;i--)ifac[i]=ifac[i+1]*T(i+1);} T aPb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b]; } T aCb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b] * ifac[b]; } T nHk(int n, int k) { if (n == 0 && k == 0) return T(1); if (n <= 0 || k < 0) return 0; return aCb(n + k - 1, k); } // nHk = (n+k-1)Ck : n is separator T pairCombination(int n) {if(n%2==1)return T(0);return fac[n]*ifac[n/2]/(T(2)^(n/2));} // combination of paris for n }; typedef ModInt<1000000007> mint; int main(void){ // Your code here! int n; cin >> n; vector<ll> a(n); rep(i,n) cin >> a[i]; // +-+-.... ll sh = 0; ll nw = 0; rep(i,n) { nw += a[i]; if(i%2 == 0) { if(nw<= 0) { sh += 1 - nw; nw = 1; } } if(i%2 != 0) { if(nw>=0){ sh += nw + 1; nw = -1; } } } // -+-+... ll hs = 0; nw = 0; rep(i,n) { if(i%2 == 0) if(nw>=0) hs += 1 + nw,nw = -1; if(i%2 != 0) if(nw <= 0) hs+= 1 - nw,nw = 1; } cout << min(hs,sh) << endl; } // 基本的にはlong long を使いましょう
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static uint64_t calc_count(vector<long long> &vec, int64_t sign) { unsigned long long count = 0; long long total = vec[0]; if (total == 0) { total = sign; count++; } else { sign = total / abs(total); } for (uint64_t i = 1; i < vec.size(); i++) { sign *= -1; total += vec[i]; if ((total == 0) || (sign * total < 0)) { count += abs(sign - total); total = sign; } } return count; } int32_t main() { uint64_t N; cin >> N; vector<long long> vec; for (uint64_t i = 0; i < N; i++) { long long val; cin >> val; vec.push_back(val); } cout << min(calc_count(vec, 1), calc_count(vec, -1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long s = a[0]; long long cnt = 0; if (s == 0) { if (a[1] > 0) { s = -1; cnt++; } else { s = 1; cnt++; } } for (int i = 1; i < n; i++) { if (s > 0) { if (s + a[i] < 0) s += a[i]; else { cnt += abs(s + a[i]) + 1; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { cnt += abs(s + a[i]) + 1; s = 1; } } } cout << cnt; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; ++i) cin >> a.at(i); long long cnt, tmp = 0, sum = a.at(0), x; for (int j = 0; j < 2; j++) { cnt = 0; if (j == 1) { cnt = abs(a.at(0)) + 1; if (a.at(0) > 0) a.at(0) = -1; else a.at(0) = 1; sum = a.at(0); } if (a.at(0) >= 0) for (int i = 1; i < n; i++) { x = 0; if (i % 2 == 1) { if (a.at(i) >= 0 || sum + a.at(i) >= 0) x = -1 - a.at(i) - sum; } else { if (a.at(i) < 0 || sum + a.at(i) < 0) x = 1 - a.at(i) - sum; } cnt += abs(x); sum += a.at(i) + x; } else { for (int i = 1; i < n; i++) { x = 0; if (i % 2 == 1) { if (a.at(i) <= 0 || sum + a.at(i) <= 0) x = 1 - a.at(i) - sum; } else { if (a.at(i) > 0 || sum + a.at(i) > 0) x = -1 - a.at(i) - sum; } cnt += abs(x); sum += a.at(i) + x; } } if (j == 0) tmp = cnt; if (tmp > cnt) tmp = cnt; } cout << tmp << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; long long int a[n]; for (long long int i = 0; i < n; i++) cin >> a[i]; long long int f = 0; long long int sum = a[0]; long long int op = 0; if (sum > 0) f = 1; for (long long int i = 1; i < n; i++) { sum += a[i]; if (f == 1) { if (sum < 0) f = 0; else { op += abs(sum) + 1; f = 0; sum = -1; } } else { if (sum > 0) f = 1; else { op += abs(sum) + 1; f = 1; sum = 1; } } } cout << op; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Text; using System.Linq; using System.Collections; using System.Collections.Generic; using static System.Console; using static System.Math; namespace AtCorder { public class Program { public static void Main(string[] args) { new Program().Solve(new ConsoleInput(Console.In, ' ')); } public void Solve(ConsoleInput cin) { var n = cin.ReadInt; var a = cin.ReadLongArray(n); var ans = 0L; var pre = a[0]; for(int i = 1; i < n; i++) { var now = pre + a[i]; if(pre * now < 0) { pre += a[i]; continue; } if(now > 0) { ans += now + 1; a[i] -= now + 1; } else if(now < 0) { ans += 1 - now; a[i] += 1 - now; } else { if(i < n - 1) { if(a[i + 1] < 0) { a[i]--; } else { a[i]++; } } else { a[i]++; } ans++; } pre += a[i]; } WriteLine(ans); } public long C(int X, int Y) { if (Y == 0 || Y == X) { return 1; } if (X < Y) { return 0; } var Pascal = new long[X + 1, X + 1]; for (int i = 0; i <= X; i++) { Pascal[i, 0] = 1L; Pascal[i, i] = 1L; } for (int i = 2; i <= X; i++) { for (int j = 1; j < i; j++) { Pascal[i, j] = Pascal[i - 1, j] + Pascal[i - 1, j - 1]; } } return Pascal[X, Y]; } public class ConsoleInput { private readonly System.IO.TextReader _stream; private char _separator = ' '; private Queue<string> inputStream; public ConsoleInput(System.IO.TextReader stream, char separator = ' ') { this._separator = separator; this._stream = stream; inputStream = new Queue<string>(); } public string Read { get { if (inputStream.Count != 0) return inputStream.Dequeue(); string[] tmp = _stream.ReadLine().Split(_separator); for (int i = 0; i < tmp.Length; ++i) inputStream.Enqueue(tmp[i]); return inputStream.Dequeue(); } } public string ReadLine { get { return _stream.ReadLine(); } } public int ReadInt { get { return int.Parse(Read); } } public long ReadLong { get { return long.Parse(Read); } } public double ReadDouble { get { return double.Parse(Read); } } public string[] ReadStrArray(long N) { var ret = new string[N]; for (long i = 0; i < N; ++i) ret[i] = Read; return ret; } public int[] ReadIntArray(long N) { var ret = new int[N]; for (long i = 0; i < N; ++i) ret[i] = ReadInt; return ret; } public long[] ReadLongArray(long N) { var ret = new long[N]; for (long i = 0; i < N; ++i) ret[i] = ReadLong; return ret; } } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> static long long int solve(const std::vector<long long int>& va, long long int initSum, long long int initCnt = 0) { long long int sum = initSum; long long int cnt = initCnt; for (std::remove_reference<decltype(va)>::type::size_type i = 1; i < va.size(); i++) { auto nextSum = sum + va[i]; if (nextSum >= 0 && sum > 0) { cnt += nextSum + 1; sum = -1; } else if (nextSum <= 0 && sum < 0) { cnt += -nextSum + 1; sum = 1; } else { sum = nextSum; } } return cnt; } signed main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); long long int n; std::cin >> n; std::vector<long long int> va(n); for (auto&& e : va) { std::cin >> e; } std::cout << std::min(solve(va, va[0]), solve(va, va[0] > 0 ? -1 : 1, std::abs(va[0]) + 1)) << std::endl; return EXIT_SUCCESS; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using String = std::string; using llong = long long; using boolean = bool; using Pii = std::pair<int, int>; using Vi = std::vector<int>; using Vii = std::vector<Pii>; constexpr int dx[] = {1, 0, -1, 0, 1, 1, -1, -1}; constexpr int dy[] = {0, 1, 0, -1, 1, -1, 1, -1}; constexpr int INF = 0x3f3f3f3f; constexpr llong LINF = 0x3f3f3f3f3f3f3f3fLL; namespace { template <class A, class B> A power(llong x, llong n, llong mod) { llong ans = 1; while (n > 0) { if (n & 1) ans = (ans * x) % mod; x = (x * x) % mod; n >>= 1; } return ans; } template <class A, class B> A power(A x, B n) { return power(x, n, 1000000007); } template <class A> A gcd(A x, A y) { return x % y ? gcd(y, x % y) : y; } template <class A, class B> A lcm(A x, B y) { return (x / gcd(x, y) * y); } template <class A> inline A abs(A n) { return (n < 0) ? -n : n; } template <class A, class B> inline bool chmax(A &a, const B &b) { return b > a ? a = b, true : false; } template <class A, class B> inline bool chmin(A &a, const B &b) { return b < a ? a = b, true : false; } inline boolean isMovable(int x, int y, int w, int h) { return (x >= 0 && y >= 0 && x < w && y < h); } } // namespace namespace Rlyeh { llong a[100100], left; llong cnt, tmp; signed call_of_Cthulhu(signed datum) { llong n; std::cin >> n; for (llong i = 0; i < n; i++) { std::cin >> a[i]; } left += a[0]; for (llong i = 1; i < n; i++) { boolean isNegative = left < 0; left += a[i]; if (isNegative && left <= 0) { cnt += 1 - left; left = 1; } else if (!isNegative && 0 <= left) { cnt += 1 + left; left = -1; } } std::cout << cnt << '\n'; return 0; } } // namespace Rlyeh signed main() { std::cin.tie(0); std::ios::sync_with_stdio(false); llong main_result = Rlyeh::call_of_Cthulhu(114514); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long now; cin >> now; long long ans = 0; for (long long(i) = (0); (i) < (n - 1); ++i) { long long tmp; cin >> tmp; if (now > 0) { now += tmp; if (now >= 0) { ans += now + 1; now = -1; } } else { now += tmp; if (now <= 0) { ans -= (now - 1); now = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INFTY = 1001001001; int main() { int N; cin >> N; vector<long long> a(N + 1), b(N + 1); for (int i = 0; i < N; ++i) { cin >> a[i]; b[i] = a[i]; if (i != 0) { a[i] += a[i - 1]; b[i] += b[i - 1]; } } long long ans = INFTY; bool sign; for (int j = 0; j < 2; ++j) { sign = j; if (sign) { for (int i = 0; i < N + 1; ++i) { a[i] = b[i]; } } long long v = 0, count = 0; for (int i = 0; i < N; ++i) { if (sign) { if (a[i] >= 0) { count += abs(-a[i] - 1); v -= abs(-a[i] - 1); } } else { if (a[i] <= 0) { count += abs(-a[i] + 1); v += abs(-a[i] + 1); } } a[i + 1] += v; sign = !(sign); } ans = min(ans, count); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; // ABC 6-C // http://abc006.contest.atcoder.jp/tasks/abc006_3 public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } long answer = 0; if (nums[0] == 0) { answer = solve(nums, 0, 0); } else { answer = solve(nums, nums[0], 1); } System.out.println(answer); // // long sum = 0; // long answer = 0; // // for (int i = 0; i < n; i++) { // int a = in.nextInt(); // // if (sum < 0 && sum + a < 0) { // answer += 1 + Math.abs(sum + a); // sum = 1; // } else if (sum > 0 && sum + a > 0) { // answer += 1 + sum + a; // sum = -1; // } else if (sum + a == 0) { // answer++; // if (sum < 0) { // sum = 1; // } else { // sum = -1; // } // } else { // sum += a; // } // } // System.out.println(answer); } public static long solve(int[] nums, long sum, int index) { if (index == nums.length) { return 0; } if (sum < 0 && sum + nums[index] < 0) { return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1); } else if (sum > 0 && sum + nums[index] > 0) { return 1 + sum + nums[index] + solve(nums, -1, index + 1); } else if (sum + nums[index] == 0 || sum == 0) { return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); } else { return solve(nums, sum + nums[index], index + 1); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.chomp.split(" ").map(&:to_i) $count = [0,0] def check(i,arr,t) if i > arr.size - 1 arr[t] += 1 $count += 1 return end if arr[i] > 0 arr[t] -= 1 $count += 1 elsif arr[i] < 0 arr[t] += 1 $count += 1 else check(i+1,arr,t) end end flg = true 2.times do |j| tmp_arr = Marshal.load(Marshal.dump(arr)) sum = tmp_arr[0] + tmp_arr[1] if sum == 0 if flg tmp_arr[1] -= 1 else tmp_arr[2] += 1 end $count[j] += 1 end sum = tmp_arr[0] + tmp_arr[1] (2...tmp_arr.size).each do |i| diff = sum + tmp_arr[i] # puts %(sum : #{sum}) # puts %(diff : #{diff}) if sum > 0 if diff > 0 tmp_arr[i] -= diff.abs+1 $count[j] += diff.abs+1 elsif diff == 0 tmp_arr[i] -= 1 $count[j] += 1 end else if diff < 0 tmp_arr[i] += diff.abs+1 $count[j] += diff.abs+1 elsif diff == 0 tmp_arr[i] += 1 $count[j] += 1 end end sum += tmp_arr[i] end end #p $count #p arr puts $count.min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for(int i = 0; i<n; i++) { a[i] = sc.nextInt(); } int min = Integer.MAX_VALUE; int tmp = 0; int cnt = 0; for(int i = 0; i<n; i++) { tmp+=a[i]; System.err.println(i+" "+tmp); if(i%2==0) { if(tmp<=0) { cnt += 1 - tmp; tmp = 1; } }else { if(tmp>=0) { cnt += tmp + 1; tmp = -1; } } } min = cnt; cnt = 0; tmp = 0; System.err.println(min); for(int i = 0; i<n; i++) { tmp+=a[i]; if(i%2==1) { if(tmp<=0) { cnt += 1 - tmp; tmp = 1; } }else { if(tmp>=0) { cnt += tmp + 1; tmp = -1; } } } min = Math.min(min, cnt); System.out.println(min); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int check(vector<int> a) { int time = 0; int pre_sum = a.at(0); int n = a.size(); if (a.at(0) < 0) { for (int i = 1; i < n; i++) { int sum = pre_sum + a.at(i); if (i % 2 == 1 && sum <= 0) { time += abs(sum - 1); sum = 1; } else if (i % 2 == 0 && sum >= 0) { time += abs(sum + 1); sum = -1; } pre_sum = sum; } } else if (a.at(0) > 0) { for (int i = 1; i < n; i++) { int sum = pre_sum + a.at(i); if (i % 2 == 0 && sum <= 0) { time += abs(sum - 1); sum = 1; } else if (i % 2 == 1 && sum >= 0) { time += abs(sum + 1); sum = -1; } pre_sum = sum; } } return time; } int zerocheck(vector<int> a) { a.at(0) = 1; int time1 = check(a) + 1; a.at(0) = -1; int time2 = check(a) + 1; int time = min(time1, time2); return time; } int main() { int n; cin >> n; int time = 0; vector<int> a(n); for (auto& x : a) { cin >> x; } if (a.at(0) == 0) { time = zerocheck(a); } else { time = check(a); } cout << time << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (auto& x : a) { cin >> x; } bool start; for (int i = 0; i < n; i++) { if (a[i] > 0) { start = (i % 2 == 0); break; } else if (a[i] < 0) { start = (i % 2 == 1); break; } if (i == n - 1) { cout << n << endl; return 0; } } long long sum = 0; long long ans = 0; bool plus = start; for (int i = 0; i < n; i++) { sum += a[i]; if (plus && sum <= 0) { ans += 1 - sum; sum = 1; } else if (!plus && sum >= 0) { ans += sum + 1; sum = -1; } plus = !plus; } vector<int> b(n); for (int i = 0; i < n; i++) { b[i] = -1 * a[i]; } for (int i = 0; i < n; i++) { if (b[i] > 0) { start = (i % 2 == 0); break; } else if (b[i] < 0) { start = (i % 2 == 1); break; } if (i == n - 1) { cout << n << endl; return 0; } } sum = 0; long long ans2 = 0; plus = start; for (int i = 0; i < n; i++) { sum += b[i]; if (plus && sum <= 0) { ans2 += 1 - sum; sum = 1; } else if (!plus && sum >= 0) { ans2 += sum + 1; sum = -1; } plus = !plus; } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; vector<int> a(100000); int ans1 = 0, ans2 = 0, sum = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { if (i % 2 != 0 && sum + a[i] >= 0) { ans1 += abs(sum * (-1) - 1 - a[i]); sum = -1; } else if (i % 2 == 0 && sum + a[i] <= 0) { ans1 += abs(sum * (-1) + 1 - a[i]); sum = 1; } else sum += a[i]; } sum = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && sum + a[i] >= 0) { ans2 += abs(sum * (-1) - 1 - a[i]); sum = -1; } else if (i % 2 != 0 && sum + a[i] <= 0) { ans2 += abs(sum * (-1) + 1 - a[i]); sum = 1; } else sum += a[i]; } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) list_a = list(map(int, input().split())) sum_a = list_a[0] count_t = 0 if sum_a < 0: count_t += 1 + abs(sum_a) for i in range(1, n): if sum_a > 0: if sum_a + list_a[i] >= 0: diff = abs(-1 - list_a[i] - sum_a) else: diff = 0 sum_a = sum_a + list_a[i] - diff count_t += diff else: if sum_a + list_a[i] <= 0: diff = abs(1 - sum_a - list_a[i]) else: diff = 0 sum_a = sum_a + list_a[i] + diff count_t += diff sum_a = list_a[0] count_f = 0 if sum_a > 0: count_f += 1 + abs(sum_a) for i in range(1, n): if sum_a > 0: if sum_a + list_a[i] >= 0: diff = abs(-1 - list_a[i] - sum_a) else: diff = 0 sum_a = sum_a + list_a[i] - diff count_f += diff else: if sum_a + list_a[i] <= 0: diff = abs(1 - sum_a - list_a[i]) else: diff = 0 sum_a = sum_a + list_a[i] + diff count_f += diff print(min(count_t, count_f))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s, ans, i = 0, 0, 0 while a[i] == 0 and i < n: ans += 2 i += 1 ans = max(0, ans - 1) if i == n: print(ans) exit() if ans > 0: if abs(a[i]) == 1: ans += 1 s = a[i] // abs(a[i]) else: s = a[0] i += 1 for j in range(i, n): if abs(a[j]) > abs(s) and a[j] // abs(a[j]) != s // abs(s): s += a[j] else: pre_s = s s = -1 * s // abs(s) ans += abs(a[j] - s + pre_s) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long MOD = 1000000007; const int MAX_N = 100000005; int n; int a[MAX_N]; int check(long long sum, long long ans) { for (int i = 1; i < n; i++) { long long t = sum + a[i]; if ((sum >= 0 && t < 0) || (sum < 0 && t >= 0)) { sum = t; if (sum == 0) { sum = 1; ans++; } continue; } long long at; if (sum >= 0) at = -1 - sum; else at = 1 - sum; ans = ans + abs(a[i] - at); sum = sum + at; } return ans; } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } long long another; if (a[0] >= 0) another = -1; else another = 1; long long a1 = check(a[0], 0); long long a2 = check(another, abs(a[0] - another)); long long ans = min(a1, a2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] change = 0 if a[0]==0: idx=0 while a[idx]==0: idx+=1 for i in range(idx-1,-1,-1): val = 0 tempsum = sum+a[i] if sum < 0 and tempsum <=0: val = 1 - tempsum if sum > 0 and tempsum >=0: val = -1 - tempsum sum = tempsum + val change += abs(val) sum = a[0] for i in range(1,n): val = 0 tempsum = sum+a[i] if sum < 0 and tempsum <=0: val = 1 - tempsum if sum > 0 and tempsum >=0: val = -1 - tempsum sum = tempsum + val change += abs(val) print(change)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = 1LL << 60; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } int sum = a[0]; int ans = 0; for (int i = 1; i < n; i++) { int tmp_sum = sum + a[i]; if (sum > 0) { while (tmp_sum >= 0) { --tmp_sum; ++ans; } } else if (sum < 0) { while (tmp_sum <= 0) { ++tmp_sum; ++ans; } } sum = tmp_sum; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int solve(const vector<int>& a) { long long int ans = 0; int cur = a[0]; for (int i = 1; i < a.size(); i++) { if (cur < 0 and cur + a[i] <= 0) { ans += 1 - (cur + a[i]); cur = 1; } else if (cur > 0 and cur + a[i] >= 0) { ans += cur + a[i] + 1; cur = -1; } else { cur += a[i]; } } return ans; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long int ans = (1LL << 60); if (a[0] == 0) { a[0] = 1; ans = min(ans, solve(a)); a[0] = -1; ans = min(ans, solve(a)); ans++; } else { ans = solve(a); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using static Assistant.Input; using static Assistant.Debug; using System.Linq; using Assistant; namespace ABC059C { class Program { static void Main(string[] args) { var n = RInt; var a = RInts; long ans = 0; if (a[0] != 0) { ans = cand(a[0], a); } else { ans = Math.Min(cand(1, a), cand(-1, a)); } Console.WriteLine(ans); } static long cand(int sum, int[] a) { long ret = 0; for (int i = 1; i < a.Length; i++) { if (sum < 0) { sum += a[i]; if (sum < 1) { ret += 1 - sum; sum = 1; } } else if (sum > 0) { sum += a[i]; if (sum > -1) { ret += sum + 1; sum = -1; } } } return ret; } } } namespace Assistant { static class Input { static List<string> line = new List<string>(); static int index = 0; static String RNext() { if (line.Count <= index) line.AddRange(Console.ReadLine().Split()); return line[index++]; } public static int RInt => int.Parse(RNext()); public static long RLong => long.Parse(RNext()); public static int[] RInts => Console.ReadLine().Split().Select(int.Parse).ToArray(); public static long[] RLongs => Console.ReadLine().Split().Select(long.Parse).ToArray(); public static string RString => RNext(); //以下未テスト public static int[] RIntsC(int c) => Enumerable.Repeat(0, c).Select(x => int.Parse(RNext())).ToArray(); public static long[] RLongsC(int c) => Enumerable.Repeat(0, c).Select(x => long.Parse(RNext())).ToArray(); public static char[][] RMap(int h) => Enumerable.Repeat(0, h).Select(x => Console.ReadLine().ToCharArray()).ToArray(); } public struct Mlong { long _v; const long mod = 1000000007; public Mlong(long n = 0) : this() { _v = n >= mod ? n % mod : n; } public static implicit operator Mlong(long _x) => new Mlong(_x); public static implicit operator long(Mlong _x) => _x._v; public static Mlong operator +(Mlong m1, Mlong m2) { long m = m1._v + m2._v; return m >= mod ? m - mod : m; } public static Mlong operator -(Mlong m1, Mlong m2) { long m = m1._v - m2._v; return m >= 0 ? m : m + mod; } public static Mlong operator *(Mlong m1, Mlong m2) => m1._v * m2._v % mod; public static Mlong operator /(Mlong m1, Mlong m2) => m1._v * ModPow(m2._v, mod - 2) % mod; public static long ModPow(long a, long n) { if (n == 0) return 1; else if (n % 2 == 1) return a * ModPow(a, n - 1) % mod; else return ModPow(a * a % mod, n / 2); } static Mlong[] fac, finv, inv; public static void nCkInit(int max) { fac = new Mlong[max]; finv = new Mlong[max]; inv = new Mlong[max]; fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < max; i++) { fac[i] = fac[i - 1] * i; inv[i] = mod - inv[mod % i] * (mod / i); finv[i] = finv[i - 1] * inv[i]; } } public static Mlong nCk(int n, int k) { if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * finv[k] * finv[n - k]; } } static class Debug { static public void Draw2D<T>(T[,] map, int mode = 1) { #if DEBUG int W = map.GetLength(0); int H = map.GetLength(1); string[,] map2 = new string[W + 1, H + 1]; for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (i == 0 && j == 0) map2[i, j] = 0.ToString(); else if (i == 0) map2[i, j] = (j - 1).ToString(); else if (j == 0) map2[i, j] = (i - 1).ToString(); else map2[i, j] = map[i - 1, j - 1].ToString(); } } for (int i = 0; i < W + 1; i++) { for (int j = 0; j < H + 1; j++) { if (mode == 0) Console.Write(map2[i, j].Last()); if (mode == 1) Console.Write(map2[i, j] + " "); } Console.WriteLine(); } Console.WriteLine(); #endif } public static void Draw1D<T>(T[] array, int mode = 0) { #if DEBUG Console.WriteLine(string.Join(" ", array)); #endif } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll=long long; #define int ll #define FOR(i,a,b) for(int i=int(a);i<int(b);i++) #define REP(i,b) FOR(i,0,b) int read(){ int i; scanf("%lld",&i); return i; } int sign(int s){ return (s>0?1:-1); } signed main(){ // your code goes here int N = read(); int a[N]; int sum[N]={0}; int count=0; REP(i,N){ a[i] = read(); //cout << a[i]; } if(a[0] == 0){ a[0] = -sign(a[0]); count++; } sum[0] = a[0]; FOR(i,1,N){ sum[i] = sum[i-1]+a[i]; if(sum[i] == 0){ sum[i] -= sum[i-1]; count++; } else if(sign(sum[i])==sign(sum[i-1])){ count += abs(sum[i-1])+1; sum[i] = sum[i]-a[i]; a[i] = -sign(sum[i])*(a[i]+sum[i]+1); } } cout << count; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys fastinput=sys.stdin.readline n=int(fastinput()) ai=[int(i) for i in fastinput().split()] #プラス始まり goukei=0 sousa=0 for a in ai: goukei+=a if a%2:#even:plus if goukei<=0: sousa+=1-goukei goukei=1 else:#odd:minus if goukei>=0: sousa+=goukei+1 goukei=-1 ans1=sousa #マイナス始まり goukei=0 sousa=0 for a in ai: goukei+=a if not a%2:#odd:plus if goukei<=0: sousa+=1-goukei goukei=1 else:#even:minus if goukei>=0: sousa+=goukei+1 goukei=-1 ans2=sousa print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) L = np.array([int(i) for i in input().split()]) if L[0] < 0: L = -L count = 0 s = L[0] if L[0] == 0: if L[1] > 0: L[0] = -1 else: L[0] = 1 count += 1 loopnum = n//2 if n%2 == 0: loopnum -= 1 for i in range(loopnum): s = s + L[2*i+1] if s >= 0: subt = s + 1 count += subt s = s - subt #print("s, count = {0}, {1}".format(s, count)) s = s + L[2*i+2] if s <= 0: subt = s - 1 count -= subt s = s - subt #print("s, count = {0}, {1}".format(s, count)) if n%2 == 0: s = s + L[-1] if s >= 0: subt = s + 1 count += subt print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> std::string IntToString(long long a) { char x[100]; sprintf(x, "%lld", a); std::string s = x; return s; } long long StringToInt(std::string a) { char x[100]; long long res; strcpy(x, a.c_str()); sscanf(x, "%lld", &res); return res; } inline void printIntVal(long long a) { std::cout << "The Value is: " << IntToString(a) << std::endl; } inline void printStringVal(std::string a) { std::cout << "The Value of is: " << a << std::endl; } inline std::string GetString() { char x[1000005]; scanf("%s", x); std::string s = x; return s; } inline int GetInt() { int x; scanf("%d", &x); return x; } inline std::string uppercase(std::string s) { int n = (int)s.size(); for (int i = 0; i < n; i++) if (s[i] >= 'a' && s[i] <= 'z') s[i] = s[i] - 'a' + 'A'; return s; } inline std::string lowercase(std::string s) { int n = (int)s.size(); ; for (int i = 0; i < n; i++) if (s[i] >= 'A' && s[i] <= 'Z') s[i] = s[i] - 'A' + 'a'; return s; } inline void OPEN(std::string s) { freopen((s + ".in").c_str(), "r", stdin); freopen((s + ".out").c_str(), "w", stdout); } inline long long CharToInt(char c) { return (c - '0'); } inline void printVector(std::vector<int> in) { std::cout << "["; for (int i = 0; i < in.size(); i++) { if (i == in.size() - 1) { std::cout << in.at(i) << "]" << std::endl; } else { std::cout << in.at(i) << ","; } } } bool checkCons(std::vector<int> in) { int sum = 0; for (int i = 0; i < in.size(); i++) { sum += in.at(i); } printVector(in); std::cout << sum << std::endl; if (sum == 0) { return false; } int sum2 = 0; for (int i = 0; i < in.size() - 1; i++) { sum2 += in.at(i); } if ((sum >= 0 && sum2 < 0) || (sum < 0 && sum2 >= 0)) { return true; } else { return false; } } int main() { int num_ops = 0; std::vector<int> vals; int n = GetInt(); for (int i = 0; i < n; i++) { vals.push_back(GetInt()); } bool pos; int sum = 0; for (int i = 0; i < vals.size() - 1; i++) { sum += vals.at(i); } if (sum >= 0) { pos = true; } else { pos = false; } int iter = 0; while (!checkCons(vals)) { num_ops++; if (pos) { vals.at(vals.size() - 1) -= 1; } else { vals.at(vals.size() - 1) += 1; } } std::cout << num_ops << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
parseInt(x) = parse(Int, x) function main() n = readline() |> parseInt a = map(parseInt, split(readline())) b = Array{Int}(n) b[1] = a[1] k = 0 for i in 2:n b[i] = a[i]+b[i-1] if b[i]*b[i-1] >= 0 if b[i-1] < 0 k += abs(b[i]-1) b[i] = 1 else k += abs(b[i]+1) b[i] = -1 end end end c = Array{Int}(n) l = 0 if a[1] > 0 c[1] = -1 l += abs(a[1]+1) else c[1] = 1 l += abs(a[1]-1) end for i in 2:n c[i] = a[i]+c[i-1] if c[i]*c[i-1] >= 0 if c[i-1] < 0 l += abs(c[i]-1) c[i] = 1 else l += abs(c[i]+1) c[i] = -1 end end end d = Array{Int}(n) m = 0 if a[1] > 0 d[1] = 1 m += abs(a[1]-1) else d[1] = -1 m += abs(a[1]+1) end for i in 2:n d[i] = a[i]+d[i-1] if d[i]*d[i-1] >= 0 if d[i-1] < 0 m += abs(d[i]-1) d[i] = 1 else m += abs(d[i]+1) m[i] = -1 end end end print(min(k,l,m)) end main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N; cin >> N; long long A[N]; for (long long i = 0; i < N; i++) cin >> A[i]; long long numSign = 1, sum = 0, actNum = 0; for (long long i = 0; i < N; i++) { if (A[i] > 0) break; else if (A[i] < 0) { numSign *= -1; break; } else numSign *= -1; } for (long long i = 0; i < N; i++) { sum += A[i]; if (numSign == 1) { if (sum <= 0) { actNum += 1 - sum; sum = 1; } } else { if (sum >= 0) { actNum += sum - -1; sum = -1; } } numSign *= -1; } cout << actNum << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int inf = 999999999; const double pi = acos(-1); long long a[100005] = {}; int main() { long long n, ans = 0, wa = 0; cin >> n; for (int i = (0); i < (int)(n); i++) cin >> a[i]; wa = a[0]; for (int i = (1); i < (int)(n); i++) { if (wa >= 0) { long long tes = wa + a[i]; if (tes < 0) { wa = tes; } else { ans += -(-1 - tes); wa = -1; } } else { long long tes = wa + a[i]; if (tes > 0) { wa = tes; } else { ans += 1 - tes; wa = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
program ec12; var a,s:array[0..100000] of longint; n,m,i,j,ans:longint; begin readln(n); ans:=0; s[0]:=0; for i:=1 to n do read(a[i]); for i:=1 to n do begin s[i]:=s[i-1]+a[i]; if i>1 then begin if s[i-1]<0 then begin if s[i]<=0 then begin if s[i]=0 then begin inc(ans); s[i]:=1; end else inc(ans,(-s[i])+1); end; end else begin if s[i]>=0 then begin if s[i]=0 then begin inc(ans); s[i]:=-1; end else begin inc(ans,s[i]+1); s[i]:=-1; end; end; end; end else begin if a[1]=0 then begin if a[2]>0 then begin inc(ans,a[2]+1); s[1]:=-1; end else begin inc(ans,(-a[2])+1); s[1]:=1; end; end; end; end; writeln(ans); end.
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int gcd(int a, int b) { return (b == 0) ? a : gcd(b, a % b); } int main() { int n; cin >> n; ; vector<ll> a(n); for (int i = 0; i < (n); i++) { cin >> a[i]; }; ll ans = 0; ll tempSum = a[0]; if (a[0] == 0) { tempSum = 1; ans = 1; } for (int i = 1; i < n; i++) { if (tempSum > 0 && tempSum + a[i] >= 0) { ans += fabs(tempSum + a[i]) + 1; tempSum = -1; } else if (tempSum < 0 && tempSum + a[i] <= 0) { ans += fabs(tempSum + a[i]) + 1; tempSum = 1; } else { tempSum += a[i]; } } ll ans1 = ans; ans = 0; tempSum = -a[0]; if (a[0] == 0) { tempSum = -1; ans = 1; } for (int i = 1; i < n; i++) { if (tempSum > 0 && tempSum + a[i] >= 0) { ans += fabs(tempSum + a[i]) + 1; tempSum = -1; } else if (tempSum < 0 && tempSum + a[i] <= 0) { ans += fabs(tempSum + a[i]) + 1; tempSum = 1; } else { tempSum += a[i]; } } cout << min(ans, ans1) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def solve(): ans = 0 N = int(input()) A = list(map(int, input().split())) total = A[0] if total==0: for i in range(1,N): if A[i]!=0: total = pow(-1,i)*A[i]//abs(A[i]) break else: return 2*N-1 for i in range(1,N): new_total = total+A[i] if total*(new_total)>=0: new_total = (-1)*total//abs(total) ans += abs(new_total-(total+A[i])) total = new_total return ans print(solve())
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using static System.Console; using static System.Convert; class Program { static void Main(string[] args) { var length = ToInt32(ReadLine()); long result = 0; var nums = Array.ConvertAll(ReadLine().Split(' '), long.Parse); var sum = nums[0]; if (sum == 0) { sum++; result++; } var lastSum = sum; for(var i = 1; i < length; i++) { sum += nums[i]; while (!IsDifferentSign(lastSum, sum)||sum==0) { if (!IsDifferentSign(lastSum, sum)) { result += Math.Abs(sum) + 1; sum = lastSum > 0 ? -1 : 1;} if (sum == 0) { sum = lastSum > 0 ? --sum : ++sum; result++; } } lastSum = sum; } WriteLine(result); } private static bool IsDifferentSign(long lastSum,long sum) { return (lastSum > 0 && sum < 0) || (lastSum < 0 && sum > 0); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long num_operate(long n, long sum, long* a) { long j; for (long i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) sum += a[i]; else { j += abs(sum + a[i]) + 1; if (sum < 0) sum = 1; else if (sum > 0) sum = -1; } } return j; } int main() { cin.tie(0); ios::sync_with_stdio(false); long n; cin >> n; vector<long> a(n); for (long i = 0; i < n; i++) cin >> a[i]; long sum = a[0]; if (sum == 0) { long cnt1 = num_operate(n, 1, &a.front()); long cnt2 = num_operate(n, -1, &a.front()); cout << min(cnt1, cnt2) << endl; } else { long cnt = num_operate(n, sum, &a.front()); cout << cnt << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; ll sum = 0; cin >> sum; ll ans = 0; for (int i = 0; i < n - 1; ++i) { int a; cin >> a; sum += a; if (((sum - a > 0) == (sum > 0)) or ((sum - a < 0) == (sum < 0))) { ll need = sum > 0 ? -(sum + 1) : -(sum - 1); sum += need; ans += abs(need); } else if (sum == 0) { ll need = sum - a > 0 ? -1 : 1; sum += need; ans += abs(need); } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int count(vector<int> a, bool positive) { int total = 0, count = 0, diff = 0; for (int i = 0; i < a.size(); i++) { diff = 0; if (positive && (a[i] + total <= 0)) { diff = (1 - total) - a[i]; } else if (!positive && (a[i] + total >= 0)) { diff = (-1 - total) - a[i]; } positive = (positive) ? false : true; a[i] += diff; count += abs(diff); total += a[i]; } return count; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; cout << min(count(a, true), count(a, false)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) ans=0 tmp=0 for i in range(N): tmp+=a[i] if i%2==0: if tmp<=0: ans+=abs(tmp)+1 tmp=1 else: if tmp>=0: ans+=abs(tmp)+1 tmp=-1 tmp=0 tmp2=0 for i in range(N): tmp+=a[i] if i %2==0: if tmp>=0: tmp2+=abs(tmp)+1 tmp=-1 else: if tmp<=0: tmp2+=abs(tmp)+1 tmp=1 print(min(ans,tmp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def 解() iN = int(input()) aA = [int(_) for _ in input().split()] iL = len(aA) iStart = 0 if sum(aA[0::2]) < sum(aA[2::2]): iStart = 1 iC = 0 aD = [0]*iL if 0 % 2 == iStart : if aA[0] < 0: aA[0] = 1 iC += -1 * aA[0] + 1 else: if 0 < aA[0] : aA[0] = -1 iC += aA[0] + 1 aD[0] = aA[0] for i in range(1,iL): aD[i] = aD[i-1]+aA[i] if i % 2 == iStart: if aD[i] <= 0: iC += -1*aD[i] +1 aD[i] = 1 else: if aD[i] >= 0: iC += aD[i] +1 aD[i] = -1 print(iC) 解()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] sum_a = 0 ans = 0 zero = 0 #数列aの先頭に並ぶ0の個数 for x in a: if sum_a > 0 and sum_a + x >= 0: ans += sum_a + x + 1 #sum_aを-1にするのにかかるコスト sum_a = -1 elif sum_a < 0 and sum_a + x <= 0: ans += -(sum_a + x) + 1 #sum_aを+1にするのにかかるコスト sum_a = 1 else: sum_a += x if sum_a == 0: zero += 1 if zero != 0: ans += 2*zero - 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); vector<int> a; for (int i = 0; i < n; i++) { int an; scanf("%d", &an); a.push_back(an); } if (a[0] != 0) { long long op_count = 0; long long now_sum = 0; long long adding = a[0] > 0 ? -1 : 1; for (int i = 0; i < n; i++) { now_sum += a[i]; adding *= -1; if (now_sum == 0) { a[i] += adding; now_sum += adding; op_count++; continue; } if (adding > 0) { const long long last = 1 - now_sum; if (last > 1) { a[i] += last; now_sum += last; op_count += abs(last); } } else { const long long last = -1 - now_sum; if (last < -1) { a[i] += last; now_sum += last; op_count += abs(last); } } } printf("%lld\n", op_count); } else { int n_copy = n; vector<int> a_copy; copy(a.begin(), a.end(), a_copy.begin()); long long final_op_count = INT_MAX; for (int a0 = -1; a0 >= 1; a0 += 2) { a[0] = a0; n = n_copy; copy(a_copy.begin(), a_copy.end(), a.begin()); long long op_count = 0; long long now_sum = 0; long long adding = a[0] > 0 ? -1 : 1; for (int i = 0; i < n; i++) { now_sum += a[i]; adding *= -1; if (now_sum == 0) { a[i] += adding; now_sum += adding; op_count++; continue; } if (adding > 0) { const long long last = 1 - now_sum; if (last > 1) { a[i] += last; now_sum += last; op_count += abs(last); } } else { const long long last = -1 - now_sum; if (last < -1) { a[i] += last; now_sum += last; op_count += abs(last); } } } if (op_count < final_op_count) { final_op_count = op_count; } } printf("%lld\n", final_op_count); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long n; scanf("%ld", &n); long long a[n]; for (int i = 0; i < n; i++) scanf(" %lld", &a[i]); int S = a[0]; int j = 0; for (int i = 1; i < n; i++) { if (S * (S + a[i]) < 0) { S += a[i]; } else { if (S < 0) { j += 1 - S - a[i]; S = 1; } else { j += S + a[i] + 1; S = -1; } } } printf("%d\n", j); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main{ static int[] dh = {0, 0, 1, -1, -1, -1, 1, 1}; static int[] dw = {-1, 1, 0, 0, -1, 1, -1, 1}; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for(int i = 0; i < n; i++) { a[i] = sc.nextInt(); } long ans = 0; long sum = 0; for(int i = 0; i < n; i++) { sum += a[i]; if(sum == 0) { if(sum - a[i] < 0) sum += 1; else sum -= 1; ans++; } if(i == 0) continue; if(sum - a[i] < 0 && sum < 0) { ans += Math.abs(sum) + 1; sum = 1; } else if(sum - a[i] > 0 && sum > 0){ ans += Math.abs(sum) + 1; sum = -1; } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long> L(N); for (int i = 0; i < N; i++) { cin >> L.at(i); } long long v = 0, res = 0, le = 0; bool change_flag = true; for (int i = 0; i < N; i++) { if (i == 0) { v = L.at(i); } else { if (v > 0 && v + L.at(i) >= 0) { le = -1 - v - L.at(i); L.at(i) += le; v += L.at(i); res += -le; le = 0; } else if (v < 0 && v + L.at(i) <= 0) { le = 1 - v - L.at(i); L.at(i) += le; v += L.at(i); res += le; le = 0; } else { v += L.at(i); } } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int MGN = 8; const int ARY_SZ_MAX = 10000000; using namespace std; using ll = long long; using ull = unsigned long long; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vl = vector<ll>; using vvl = vector<vl>; using vd = vector<double>; using vs = vector<string>; using pii = pair<int, int>; using pll = pair<ll, ll>; using psi = pair<string, int>; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; vl A(N); for (int i = int(0); i < int(N); ++i) cin >> A[i]; ll ans = (INT_MAX / 2); vl a(N, 0); vl s(N, 0); for (int i = int(0); i < int(N); ++i) a[i] = A[i]; ll cnt = 0; s[0] = a[0]; if (s[0] <= 0) { ll dif = abs(s[0]) + 1; cnt += dif; a[0] += dif; s[0] = 1; } for (int i = int(1); i < int(N); ++i) { s[i] = s[i - 1] + A[i]; if (i % 2 == 1 && s[i] >= 0) { ll dif = abs(s[i]) + 1; cnt += dif; a[i] -= dif; s[i] = -1; } else if (i % 2 == 0 && s[i] <= 0) { ll dif = abs(s[i]) + 1; cnt += dif; a[i] += dif; s[i] = 1; } } ans = min(ans, cnt); for (int i = int(0); i < int(N); ++i) a[i] = A[i]; cnt = 0; s[0] = A[0]; if (s[0] >= 0) { ll dif = abs(s[0]) + 1; cnt += dif; a[0] -= dif; s[0] = -1; } for (int i = int(1); i < int(N); ++i) { s[i] = s[i - 1] + A[i]; if (i % 2 == 1 && s[i] <= 0) { ll dif = abs(s[i]) + 1; cnt += dif; a[i] += dif; s[i] = 1; } else if (i % 2 == 0 && s[i] >= 0) { ll dif = abs(s[i]) + 1; cnt += dif; a[i] -= dif; s[i] = -1; } } ans = min(ans, cnt); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) A=list(map(int,input().split())) b=0 count=0 x=0 if A[0]>0: x=-1 else: x=1 for a in A: b+=a if x==1: if b<0: x=-1 else: count+=1+b b=-1 x=-1 else: if b>0: x=1 else: count+=1-b b=1 x=1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main(args: Array<String>) { val n = readLine()!!.toInt() val l = readLine()!!.split(" ").map { it.toInt() } var s_pls = 0 var s_mns = 0 var tmp = 0 var pls_cnt = 0 var mns_cnt = 0 for(i in 0 until n){ s_pls += l[i] s_mns += l[i] if(i % 2 == 0){ if(s_pls <= 0){ pls_cnt += 1 - s_pls s_pls = 1 } if(s_mns >= 0){ mns_cnt += 1 + s_mns s_mns = -1 } } else{ if(s_mns <= 0){ mns_cnt += 1 - s_mns s_mns = 1 } if(s_pls >= 0){ pls_cnt += 1 + s_pls s_pls = -1 } } } println(Math.min(Math.abs(pls_cnt), Math.abs(mns_cnt))) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String args[]){ Scanner scanner = new Scanner(System.in); int count = 0; int l[] = new int[scanner.nextInt()]; int x[] = new int[l.length]; for (int i = 0;i < l.length;++i){ l[i] = Integer.valueOf(scanner.next()); if(i > 0){ x[i] = l[i] + x[i - 1]; } else{ x[i] = l[i]; } } for (int i = 1;i < l.length;++i){ int p = x[i - 1]; int q = x[i]; if(q == 0||(q < 0&&p < 0)||(q > 0&&p > 0)){ int c = 1 + ((p > 0) ? 1 : -1) * q; count += c; int d = ((p > 0) ? -1 : 1) * c; l[i] += d; for (int j = i;j < l.length;++j){ x[j] += d; } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int num_integer; if (scanf("%d", &num_integer) != 1) { puts("num_integer input error."); return 1; } int integer, sum_p = 0, sum_m = 0; int unsigned op_count_p = 0, op_count_m = 0; for (int i = 0; i < num_integer; i++) { if (scanf("%d", &integer) != 1) { puts("integer input error."); } sum_p += integer; sum_m += integer; if (i % 2 == 0) { if (sum_p <= 0) { op_count_p += -sum_p + 1; sum_p = 1; } if (sum_m >= 0) { op_count_m += sum_m + 1; sum_m = -1; } } else { if (sum_p >= 0) { op_count_p += sum_p + 1; sum_p = -1; } if (sum_m <= 0) { op_count_m += -sum_m + 1; sum_m = 1; } } } printf("%u", (op_count_p < op_count_m) ? op_count_p : op_count_m); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n], cntplus = 0, cntplus1 = 0, cntminus = 0, cntminus1 = 0; for (int i = 0; i < n; i++) cin >> a[i]; if (a[0] > 0) { int s = a[0]; for (int i = 1; i < n; i++) { if (i % 2) { if (0 <= s + a[i]) { cntplus += s + a[i] + 1; a[i] = -1 - s; } } else { if (s + a[i] <= 0) { cntplus += 1 - (s + a[i]); a[i] = 1 - s; } } s += a[i]; } s = -1; cntplus1 += a[0] + 1; for (int i = 1; i < n; i++) { if (i % 2) { if (s + a[i] <= 0) { cntplus1 += 1 - (s + a[i]); a[i] = 1 - s; } } else { if (0 <= s + a[i]) { cntplus1 += s + a[i] + 1; a[i] = -1 - s; } } s += a[i]; } cout << min(cntplus, cntplus1) << endl; } else { int s = a[0]; for (int i = 1; i < n; i++) { if (i % 2) { if (s + a[i] <= 0) { cntminus += 1 - (s + a[i]); a[i] = 1 - s; } } else { if (0 <= s + a[i]) { cntminus += s + a[i] + 1; a[i] = -1 - s; } } s += a[i]; } s = 1; cntminus1 += -a[0] + 1; for (int i = 1; i < n; i++) { if (i % 2) { if (0 <= s + a[i]) { cntminus1 += s + a[i] + 1; a[i] = -1 - s; } } else { if (s + a[i] <= 0) { cntminus1 += 1 - (s + a[i]); a[i] = 1 - s; } } s += a[i]; } cout << min(cntminus, cntminus1) << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ https://abc059.contest.atcoder.jp/tasks/arc072_a WA """ import sys from sys import stdin input = stdin.readline def check_sign(n): if n > 0: return 1 elif n < 0: return -1 else: return 0 def solve(A): p_ans = 0 n_ans = 0 i_ans = 0 # 最初をプラス側に振った場合の解 total = A[0] prev_sign = check_sign(total) if prev_sign == 0: p_ans += 1 total += 1 prev_sign = 1 for a in A[1:]: total += a sign = check_sign(total) if sign == 0: total -= prev_sign p_ans += 1 elif prev_sign != sign: prev_sign = sign else: p_ans += (abs(total) + 1) if prev_sign < 0: total = 1 prev_sign = 1 else: total = -1 prev_sign = -1 # 最初をマイナス側に振った場合の解 total = A[0] prev_sign = check_sign(total) if prev_sign == 0: n_ans += 1 total -= 1 prev_sign = -1 for a in A[1:]: total += a sign = check_sign(total) if sign == 0: total -= prev_sign n_ans += 1 elif prev_sign != sign: prev_sign = sign else: n_ans += (abs(total) + 1) if prev_sign < 0: total = 1 prev_sign = 1 else: total = -1 prev_sign = -1 # total = A[0] prev_sign = check_sign(total) if prev_sign == 0: i_ans += 1 total += 1 prev_sign = 1 else: i_ans += (total + 1) if prev_sign > 0: prev_sign = -1 total = -1 else: prev_sign = 1 total = 1 for a in A[1:]: total += a sign = check_sign(total) if sign == 0: total -= prev_sign i_ans += 1 elif prev_sign != sign: prev_sign = sign else: i_ans += (abs(total) + 1) if prev_sign < 0: total = 1 prev_sign = 1 else: total = -1 prev_sign = -1 return min(p_ans, n_ans, i_ans) def main(args): n = int(input()) A = [int(x) for x in input().split()] ans = solve(A) print(ans) if __name__ == '__main__': main(sys.argv[1:])
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sum(int k, vector<int> &bit) { k++; int s = 0; while (k >= 1) { s += bit[k - 1]; k -= k & -k; } return s; } int add(int k, int x, int n, vector<int> &bit) { k++; while (k <= n) { bit[k - 1] += x; k += k & -k; } } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, ans = 0, s = 0, aux; bool swtc; cin >> n; vector<int> nums(n), soma(n), bit(n + 1, 0); for (int i = 0; i < n; i++) { cin >> nums[i]; add(i, nums[i], n, bit); } if (sum(0, bit) > 0) swtc = true; else swtc = false; for (int i = 1; i < n; i++) { aux = sum(i, bit); if (aux > 0 and !swtc) swtc = true; else if (aux < 0 and swtc) swtc = false; else { if (swtc) { ans += aux + 1; add(i, -(aux + 1), n, bit); swtc = false; } else { ans += abs(aux - 1); add(i, abs(aux - 1), n, bit); swtc = true; } } } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long array[n]; for (int i = 0; i < n; ++i) cin >> array[i]; int min1 = 0; int sum1 = 0; for (int i = 0; i < n; ++i) { sum1 += array[i]; if (i % 2 == 0) { if (sum1 <= 0) { min1 += abs(sum1) + 1; sum1 = 1; } } else { if (sum1 >= 0) { min1 += abs(sum1) + 1; sum1 = -1; } } } int min2 = 0; int sum2 = 0; for (int i = 0; i < n; ++i) { sum2 += array[i]; if (i % 2 == 1) { if (sum2 <= 0) { min2 += abs(sum2) + 1; sum2 = 1; } } else { if (sum2 >= 0) { min2 += abs(sum2) + 1; sum2 = -1; } } } cout << min(min1, min2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) A=list(map(int,input().split())) cur=A[0] ans=0 isplus=True ind=1 if cur<0: isplus=False if cur==0: # すべて0の場合 allzero=True firstNotZero=0 firstNotZeroInd=0 for i in range(N): if A[i]!=0: firstNotZero=A[i] firstNotZeroInd=i allzero=False break if allzero: print(2*N-1) exit(0) # 0以外が出てくる場合 ans+=(firstNotZeroInd)*2-1 if firstNotZero>0: cur=-1 ind=firstNotZeroInd isplus=False else: cur=1 ind=firstNotZeroInd isplus=True for i in range(ind,N): if isplus: if cur+A[i]>=0: diff=abs((cur+A[i])-(-1)) ans+=diff cur=-1 else: cur+=A[i] isplus=False else: if cur+A[i]<=0: diff=abs((cur+A[i])-1) ans+=diff cur=1 else: cur+=A[i] isplus=True print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n, a[100010]; long sgn = 1, cont = 0, ans = 0; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } cont += a[0]; for (int i = 1; i < n; i++) { cont += a[i]; if (cont * sgn < 0) { sgn = -1 * sgn; } else if (cont * sgn >= 0) { ans = ans + 1 + cont * sgn; sgn = -1 * sgn; cont = sgn; } } printf("%ld", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int ddx[8] = {0, 1, 1, 1, 0, -1, -1, -1}; const int ddy[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dx[4] = {0, 1, 0, -1}; const int dy[4] = {1, 0, -1, 0}; static const int NIL = -1; int n; static const int pos = 1; static const int neg = -1; bool judge(int tmp) { if (tmp > 0) return true; else return false; } int main(int argc, char const *argv[]) { cin.tie(0); ios::sync_with_stdio(false); cin >> n; int a[n]; for (int i = (0); i < (n); ++i) cin >> a[i]; int tmp = 0; int sum = 0; tmp = a[0]; bool sign; sign = judge(tmp); for (int i = (1); i < (n); ++i) { if (sign) { tmp += a[i]; if (tmp >= 0) { sum += abs(neg - tmp); tmp = neg; } sign = judge(tmp); } else { tmp += a[i]; if (tmp <= 0) { sum += abs(pos - tmp); tmp = pos; } sign = judge(tmp); } } cout << sum << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) scanf("%lld", a + i); long long initial_plus = ((-1 - a[0]) > (0) ? (-1 - a[0]) : (0)); long long initial_minus = ((1 + a[0]) > (0) ? (1 + a[0]) : (0)); long long sum = 0; sum = ((a[0]) > (1) ? (a[0]) : (1)); for (int i = 1; i < n; i++) { if ((sum + a[i]) * sum >= 0ll) { if (sum < 0ll) { initial_plus += 1 - sum - a[i]; sum = 1; } else { initial_plus += sum + a[i] + 1; sum = -1; } } else { sum += a[i]; } } sum = ((a[0]) > (-1) ? (-1) : (a[0])); for (int i = 1; i < n; i++) { if ((sum + a[i]) * sum >= 0ll) { if (sum < 0ll) { initial_minus += 1 - sum - a[i]; sum = 1; } else { initial_minus += sum + a[i] + 1; sum = -1; } } else { sum += a[i]; } } printf("%lld\n", ((initial_plus) > (initial_minus) ? (initial_minus) : (initial_plus))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> A(n, 0); for (int i = 0; i < n; i++) cin >> A[i]; int cnt = 0, acm = 0, ans = 0; for (int i = 0; i < n; i++) { if (i % 2) { if (acm + A[i] > 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = 1; } } else { if (acm + A[i] < 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = -1; } } } ans = cnt; cnt = 0; acm = 0; for (int i = 0; i < n; i++) { if ((i + 1) % 2) { if (acm + A[i] > 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = 1; } } else { if (acm + A[i] < 0) acm += A[i]; else { cnt += abs(acm + A[i]) + 1; acm = -1; } } } ans = min(ans, cnt); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) p = a[0] result = 0 for i in range(1, n): t = p + a[i] if p < 0 and t <= 0: result += 1 - t t = 1 elif p > 0 and t >= 0: result += t + 1 t = -1 p = t print(result)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) cnt1=cnt2=sm1=sm2=0 for x,y in enumerate(a): sm1+=y if x%2 ==1: if sm1<1: cnt1 += 1-sm1 sm1=1 elif sm1>-1: cnt2+= 1+sm2 sm2=-1 for x,y in enumerate(a): sm2+=y if x%2 ==0: if sm2<1: cnt2 += 1-sm2 sm2=1 elif sm1>-1: cnt1 += 1+sm1 sm1=-1 print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, temp; long long count = 0; long a[100000]; cin >> n; long long sum = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < n - 1; i++) { sum += a[i]; if (sum + a[i + 1] == 0) { if (sum > 0) { a[i + 1] -= 1; count += 1; } else { a[i + 1] += 1; count += 1; } } if (sum > 0 && sum + a[i + 1] > 0) { temp = a[i + 1]; a[i + 1] = sum * (-1) - 1; count += abs(a[i + 1] - temp); } else if (sum < 0 && sum + a[i + 1] < 0) { temp = a[i + 1]; a[i + 1] = 1 + sum * (-1); count += abs(a[i + 1] - temp); } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { long long int i, a, n, num; long long int sum = 0, bsum = 0, ans = 0, m = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a); bsum = sum; sum += a; if (bsum > 0) { if (sum > 0) { num = sum; do { num--; ans++; m++; } while (num >= 0); sum -= m; m = 0; } if (sum = 0) { ans++; sum -= 1; } } if (bsum < 0) { if (sum < 0) { num = sum; do { num++; ans++; m++; } while (num <= 0); sum += m; m = 0; } if (sum = 0) { ans++; sum += 1; } } } printf("%d\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vl = vector<long long>; using vvl = vector<vl>; using P = pair<long long, long long>; using PP = pair<long long, P>; using vp = vector<P>; using vpp = vector<PP>; using vs = vector<string>; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return true; } return false; } template <class T> bool chmin(T &a, const T &b) { if (a > b) { a = b; return true; } return false; } const long long MOD = 1000000007LL; const int INF = 1 << 30; const long long LINF = 1LL << 60; int main() { int n; cin >> n; vl vec(n); for (int i = (0); i < (n); i++) { cin >> vec[i]; } long long ans = LINF; long long sum = 0; long long cnt = 0; for (int i = (0); i < (n); i++) { sum += vec[i]; if (i % 2) { if (sum >= 0) { sum = -1; cnt += abs(sum) + 1; } } else { if (sum <= 0) { sum = 1; cnt += abs(sum) + 1; } } } chmin(ans, cnt); cerr << cnt << endl; sum = 0; cnt = 0; for (int i = (0); i < (n); i++) { sum += vec[i]; if (i % 2) { if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } } else { if (sum >= 0) { cnt += abs(sum) + 1; sum = -1; } } } chmin(ans, cnt); cerr << cnt << endl; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vi = vector<int>; int solve(int ans, int S, vi &a, int N) { for (int i = (1); i < (N); ++i) { if (S > 0) { S += a.at(i); if (S >= 0) { ans += (S + 1); S = -1; } } else { S += a.at(i); if (S <= 0) { ans += (-S + 1); S = 1; } } } return ans; } int main() { int N; cin >> N; vi a(N); for (int i = (0); i < (N); ++i) { cin >> a.at(i); } int ans = 0; int S = a.at(0); if (S == 0) { ans++; ans = min(solve(ans, -1, a, N), solve(ans, 1, a, N)); } else { ans = solve(ans, S, a, N); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <vector> #include <iostream> #include <utility> #include <algorithm> #include <string> #include <deque> #include <queue> #include <tuple> #include <queue> #include <functional> #include <cmath> #include <iomanip> #include <map> #include <set> #include <numeric> #include <unordered_map> #include <unordered_set> #include <complex> #include <iterator> #include <array> #include <memory> #include <stack> #define vi vector<int> #define vvi vector<vector<int> > #define ll long long int #define vl vector<ll> #define vvl vector<vector<ll>> #define vb vector<bool> #define vc vector<char> #define vs vector<string> #define ld long double #define INF 1e9 #define EPS 0.0000000001 #define rep(i,n) for(int i=0;i<n;i++) #define loop(i,s,n) for(int i=s;i<n;i++) #define all(in) in.begin(), in.end() template<class T, class S> void cmin(T &a, const S &b) { if (a > b)a = b; } template<class T, class S> void cmax(T &a, const S &b) { if (a < b)a = b; } #define MAX 9999999 using namespace std; typedef pair<int, int> pii; typedef pair<double,double>pdd; typedef pair<ll,ll>pll; #define int ll signed main(){ int n; cin>>n; vi v(n); bool flag = false; rep(i,n)cin>>v[i]; vi sum(n); int ans=0; rep(i,n)sum[i]=v[i]; rep(i,n){ if(!i){ if(sum[0]>0)flag=true; else if(sum[0]<0)flag=false; else { sum[0]=1; ans++; flag=true; } continue; } sum[i]+=sum[i-1]; if(flag){ if(sum[i]<0)flag=false;a else{ ans+=(abs(sum[i])+1); sum[i]= -1; flag=false; } }else{ if(sum[i]>0)flag=true; else { ans+=(abs(sum[i])+1); sum[i]= 1; flag=true; } } } //rep(i,n)cout<<sum[i]<<" "; //cout<<endl; cout<<ans<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n; std::cin >> n; int counter = 0; long seq = 0; scanf("%d ", &seq); long first_sum = seq; bool prevsign = first_sum >= 0 ? true : false; for (int i = 1; i < n; i++) { scanf("%d", &seq); if (i < n - 1) scanf(" "); if (!(prevsign ^ (first_sum + seq > 0 ? true : false)) || !(first_sum + seq)) { long nseq = (!prevsign ? 1 : -1) - first_sum; counter += (int)abs(nseq - seq); first_sum += nseq; } else first_sum += seq; prevsign = !prevsign; } std::cout << counter; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
from strutils import split, parseInt, parseFloat from sequtils import map import macros macro unpack*(input: seq; count: static[int]): untyped = result = quote do: () when NimMinor <= 13: # 本当にここが区切りかどうかは知らない for i in 0..<count: result[0].add quote do: `input`[`i`] else: for i in 0..<count: result.add quote do: `input`[`i`] # count == 0 のとき unpackしない # count > 0 のとき count個分 unpack した結果の tuple を返す type UnselectableTypeError = object of Exception template input(typ: typedesc; count: static[Natural] = 0): untyped = let line = stdin.readLine.split when count == 0: when typ is int: line.map(parseInt) elif typ is float: line.map(parseFloat) elif typ is string: line else: raise newException(UnselectableTypeError, "You selected a type other than int, float or string") else: when typ is int: line.map(parseInt).unpack(count) elif typ is float: line.map(parseFloat).unpack(count) elif typ is string: line.unpack(count) else: raise newException(UnselectableTypeError, "You selected a type other than int, float or string") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # from math import nextPowerOfTwo from sequtils import newSeqWith type SegmentTree*[T: SomeNumber] = ref object of RootObj tree: seq[T] leafCount: Natural initValue: T mergeProc: proc (x, y: T): T {.closure.} proc merge[T](this: SegmentTree[T]; l, r: Natural): T = this.mergeProc(this.tree[l], this.tree[r]) proc toSegmentTree*[T](a: openArray[T]; initValue: T; mergeProc: proc (x, y: T): T {.closure.}): SegmentTree[T] = let leafCount = a.len.nextPowerOfTwo result = SegmentTree[T](tree: newSeqWith[T](2 * leafCount - 1, initValue), leafCount: leafCount, initValue: initValue, mergeProc: mergeProc) for i, ai in a: result.tree[i + result.leafCount - 1] = ai for i in countdown(result.leafCount - 2, 0): result.tree[i] = result.merge(2 * i + 1, 2 * i + 2) proc update*[T](this: SegmentTree[T]; i, v: int): SegmentTree[T] = result = this var j = result.leafCount + i - 1 result.tree[j] = v while j > 0: j = (j - 1) div 2 result.tree[j] = result.merge(2 * j + 1, 2 * j + 2) proc update*[T](this: var SegmentTree[T]; i, v: int) = var j = this.leafCount + i - 1 this.tree[j] = v while j > 0: j = (j - 1) div 2 this.tree[j] = this.merge(2 * j + 1, 2 * j + 2) proc query*[T](this: SegmentTree[T]; requiredRange: Slice[int]; k = 0; coveredRange: Slice[Natural] = 0.Natural..int.high.Natural): T = let l = coveredRange.a r = coveredRange.b if r == int.high and this.leafCount != int.high: return this.query(requiredRange, k, l..(this.leafCount - 1).Natural) if r < requiredRange.a or requiredRange.b < l: return this.initValue if requiredRange.a <= l and r <= requiredRange.b: return this.tree[k] let lv = this.query(requiredRange, 2 * k + 1, l..((l + r) div 2).Natural) rv = this.query(requiredRange, 2 * k + 2, ((l + r + 1) div 2).Natural..r) return this.mergeProc(lv, rv) let n = input(int, 1) var a = input(int, 0).toSegmentTree(0, proc (x, y: int): int = x + y) result = 0 for i in 1..<n: let sum = a.query(0..i) preSum = a.query(0..(i - 1)) if sum > 0 and preSum > 0 or sum < 0 and preSum < 0 or sum == 0: let p = preSum.abs - 1 c = sum.abs - p + 1 result += p + c if sum <= 0: a.update(i - 1, a.tree[a.leafCount + i - 2] + p) a.update(i, a.tree[a.leafCount + i - 1] + c) else: a.update(i - 1, a.tree[a.leafCount + i - 2] - p) a.update(i, a.tree[a.leafCount + i - 1] - c) echo result
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 10E9; const long long MOD = 1000000007; const long double PI = 3.1415926; template <class T> T &chmin(T &a, const T &b) { return a = min(a, b); } template <class T> T &chmax(T &a, const T &b) { return a = max(a, b); } long long int n, m, k, ans = 0, sum = 0, cnt = 0; string s; int main() { long long int n; cin >> n; vector<long long int> acc(n); long long int x = 0; for (long long int i = (long long int)(0); i < (long long int)(n); i++) { cin >> acc[i]; acc[i] += x; x = acc[i]; } bool minus = acc[0] > 0; long long int tmp = 0; for (long long int i = (long long int)(1); i < (long long int)(n); i++) { if ((minus && acc[i] + tmp >= 0) || (!minus && acc[i] + tmp <= 0)) { ans += llabs(acc[i] + tmp) + 1; if (!minus) tmp += (llabs(acc[i] + tmp) + 1); else tmp -= (llabs(acc[i] + tmp) + 1); } minus = !minus; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int64_t min(int64_t a, int64_t b) { if (a > b) { return b; } else { return a; } } int64_t solve(vector<int> a) { bool nextposi = (a.at(0) < 0); int64_t ans = 0; int64_t sum = a.at(0); for (int i = 1; i < a.size(); i++) { sum += a.at(i); if (nextposi != (sum > 0)) { if (nextposi == 1) { ans += abs(sum - 1); sum = 1; } else { ans += abs(sum + 1); sum = -1; } } nextposi = !nextposi; } return ans; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int64_t ans = 0; if (a.at(0) == 0) { a.at(0) = 1; ans = solve(a); a.at(0) = -1; ans = min(ans, solve(a)) + 1; } else { ans = solve(a); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, suma = 0, sumb = 0; cin >> n; for (int i = 0; i < (n); i++) { int c; cin >> c; if (i % 2 == 0) { if (suma + c <= 0) { ansa += 1 - c - suma; suma = 1; } if (sumb + c >= 0) { ansb += sumb + c + 1; sumb = -1; } } else { if (suma + c >= 0) { ansa += suma + c + 1; suma = 1; } if (sumb + c <= 0) { ansb += 1 - c - sumb; sumb = -1; } } } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main { int n; int[] a; public static void main(String[] args) { Scanner sc = new Scanner(System.in); Main m = new Main(sc); m.solve(); sc.close(); } Main(Scanner sc) { n = sc.nextInt(); a = new int[n]; for(int i=0;i<n;i++){ a[i] = sc.nextInt(); } } void solve() { int sign = (a[0]>=0)?1:-1; long cnt = (a[0]==0)?1:0; long sum = (a[0]==0)?1:a[0]; for(int i=1;i<n;i++){ sum += a[i]; if(sum*sign>=0){ cnt += Math.abs(sum) + 1; sum = -sign; } sign *= -1; } System.out.println(cnt); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n; std::cin >> n; int64_t a[n]; for (int i = 0; i < n; ++i) { std::cin >> a[i]; } size_t cnt1 = 0; int64_t sum = 0; bool plus = true; for (int i = 0; i < n; ++i) { sum += a[i]; if (plus) { if (sum == 0) { ++cnt1; sum += 1; } else if (sum < 0) { cnt1 += (-sum + 1); sum = 1; } plus = false; } else { if (sum == 0) { --cnt1; sum -= 1; } else if (sum > 0) { cnt1 += (sum + 1); sum = -1; } plus = true; } } size_t cnt2 = 0; sum = 0; plus = false; for (int i = 0; i < n; ++i) { sum += a[i]; if (plus) { if (sum == 0) { ++cnt2; sum += 1; } else if (sum < 0) { cnt2 += (-sum + 1); sum = 1; } plus = false; } else { if (sum == 0) { --cnt2; sum -= 1; } else if (sum > 0) { cnt2 += (sum + 1); sum = -1; } plus = true; } } std::cout << std::min(cnt1, cnt2) << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.FileReader; import java.io.FileWriter; import java.util.Arrays; import java.util.Collections; import java.util.ArrayList; import java.util.List; import java.util.HashSet; import java.util.Comparator; import java.util.Set; import java.util.HashMap; import java.util.Map; public class Main { // 標準入力 static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); // 標準入力数値配列用 int static int[] inputval() throws Exception { String[] strarray = br.readLine().trim().split(" "); int[] intarray = new int[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /* 標準入力数値配列用 long */ static long[] inputLongArr() throws Exception { String[] strarray = br.readLine().trim().split(" "); long[] longarray = new long[strarray.length]; for (int i = 0; i < longarray.length; i++) { longarray[i] = Long.parseLong(strarray[i]); } return longarray; } // 標準入力数値リスト用 int static List<Integer> inputIntList() throws Exception { List<String> strList = Arrays.asList(br.readLine().trim().split(" ")); List<Integer> intList = new ArrayList<Integer>(); for (String elem : strList){ intList.add(Integer.parseInt(elem)); } return intList; } // 標準入力数値配列用 integer 降順ソート用 static Integer[] inputvalInteger() throws Exception { String[] strarray = br.readLine().trim().split(" "); Integer[] intarray = new Integer[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /*標準入力long*/ static long inputLong() throws Exception { return Long.parseLong(br.readLine()); } /*標準入力long*/ static int inputInt() throws Exception { return Integer.parseInt(br.readLine()); } public static void main(String[] args) throws Exception { // write your code here int n = inputInt(); long [] al = inputLongArr(); boolean nextPlusF = al[0] < 0; long sum2; long ans2; if (nextPlusF){ sum2 = 1; ans2 = 1 - (al[0]); }else{ sum2 = -1; ans2 = al[0] + 1; } long ans = 0; long sum = al[0]; for(int i=1;i<n;i++){ sum += al[i]; if(nextPlusF && sum <=0){ ans += 1-sum; sum += 1-sum; }else if ((! nextPlusF) && sum >= 0){ ans += sum +1; sum -= sum +1; } nextPlusF = !nextPlusF; } nextPlusF = !(al[0] < 0); for(int i=1;i<n;i++){ sum2 += al[i]; if(nextPlusF && sum2 <=0){ ans2 += 1-sum2; sum2 += 1-sum2; }else if ((! nextPlusF) && sum2 >= 0){ ans2 += sum2 +1; sum2 -= sum2 +1; } nextPlusF = !nextPlusF; } System.out.println(Math.min(ans,ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int ans = 0; int ans2 = 0; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int dp[10010]; dp[0] = 0; bool flag = true; for (int i = 0; i < n; i++) { if (flag == true && dp[i] + a[i] >= 0) { dp[i + 1] = -1; ans += abs(a[i] - (-1 - dp[i])); } else if (flag == false && dp[i] + a[i] <= 0) { dp[i + 1] = 1; ans += abs(a[i] - (1 - dp[i])); } else { dp[i + 1] = dp[i] + a[i]; } flag = !flag; } flag = false; for (int i = 0; i < n; i++) { if (flag == true && dp[i] + a[i] >= 0) { dp[i + 1] = -1; ans2 += abs(a[i] - (-1 - dp[i])); } else if (flag == false && dp[i] + a[i] <= 0) { dp[i + 1] = 1; ans2 += abs(a[i] - (1 - dp[i])); } else { dp[i + 1] = dp[i] + a[i]; } flag = !flag; } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): _ = input() a = tuple(int(s) for s in input().split()) print(solve(a)) def solve(a): if a[0] > 0: return min(rec(a[0], a[1:], 0), rec(-1, a[1:], a[0] + 1)) else: return min(rec(a[0], a[1:], 0), rec(1, a[1:], 1 - a[0])) def rec(s, a, r): if not a: return r elif s < 0: n = max(s + a[0], 1) return rec(n, a[1:], r + (n - (s + a[0]))) else: n = min(s + a[0], -1) return rec(n, a[1:], r + s + a[0] - n) main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> #include<stack> #include<queue> #include<vector> #include<set> #include<map> #include<string> using namespace std; typedef long long ll; typedef unsigned long long ull; const ll INFF=0x3f3f3f3f3f3f3f3f; ll a[1000010]; int n; ll solve() { ll sum=0; ll oo=a[0]; for(int i=1;i<n;i++) { if(oo<0) { oo+=a[i]; if(oo<=0) { sum+=1-oo; oo=1; } continue; } else { oo+=a[i]; if(oo>=0) { sum+=oo+1; oo=-1; } } } return sum; } int main() { scanf("%d",&n); ll sum=0; for(int i=0;i<n;i++) { scanf("%lld",&a[i]); } if(a[0]==0) { a[0]=1; ll sum1=solve(); a[0]=-1; ll sum2=solve(); sum=min(sum1,sum2)+1; } else { ll sum0=solve(); a[0]=1; ll sum1=solve()+abs(1-a[0]); a[0]=-1; ll sum2=solve()+abs(-1-a[0]); sum=min(sum0,min(sum1,sum2)); } printf("%lld\n",sum); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!usr/bin/env python3 from collections import defaultdict from collections import deque from heapq import heappush, heappop import sys import math import bisect import random import itertools sys.setrecursionlimit(10**5) stdin = sys.stdin bisect_left = bisect.bisect_left bisect_right = bisect.bisect_right def LI(): return list(map(int, stdin.readline().split())) def LF(): return list(map(float, stdin.readline().split())) def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split())) def II(): return int(stdin.readline()) def IF(): return float(stdin.readline()) def LS(): return list(map(list, stdin.readline().split())) def S(): return list(stdin.readline().rstrip()) def IR(n): return [II() for _ in range(n)] def LIR(n): return [LI() for _ in range(n)] def FR(n): return [IF() for _ in range(n)] def LFR(n): return [LI() for _ in range(n)] def LIR_(n): return [LI_() for _ in range(n)] def SR(n): return [S() for _ in range(n)] def LSR(n): return [LS() for _ in range(n)] mod = 1000000007 inf = float('INF') #A def A(): a = input().split() a = list(map(lambda x: x.capitalize(), a)) a,b,c = a print(a[0]+b[0]+c[0]) return #B def B(): a = II() b = II() if a > b: print("GREATER") if a < b: print("LESS") if a == b: print("EQUAL") return #C def C(): n = II() a = LI() if a[0] == 0: suma = 1 b = 1 else: suma = a[0] b = 0 for i in a[1:]: if (suma + i) * suma < 0: suma += i continue b += abs(suma + i) + 1 suma = -1 * (suma > 0) or 1 ans = b if a[0] == 0: suma = -1 b = 1 else: suma = -a[0] b = 2 * abs(a[0]) for i in a[1:]: if (suma + i) * suma < 0: suma += i continue suma = -1 * (suma > 0) or 1 b += abs(suma + i) + 1 print(min(ans,b)) return #D def D(): s = S() for i in range(len(s) - 1): if s[i] == s[i+1]: print(i + 1, i + 2) return for i in range(len(s) - 2): if s[i] == s[i + 2]: print(i + 1, i + 3) return print(-1, -1) return #Solve if __name__ == '__main__': C()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> v(n); for (int i = 0; i < (int)(n); i++) cin >> v[i]; int ans = 0; int crnt = v[0]; int pre = v[0]; if (v[0] < 0) { ans += abs(v[0]) + 1; crnt = 1; pre = 1; } for (int i = 1; i < n; i++) { pre = crnt; crnt += v[i]; if (crnt * pre >= 0) { if (pre > 0) { ans += crnt + 1; crnt -= crnt + 1; } else { ans += abs(crnt) + 1; crnt += abs(crnt) + 1; } } } int fans = 0; crnt = v[0]; pre = v[0]; if (crnt > 0) { fans += v[0] + 1; crnt = -1; pre = -1; } for (int i = 1; i < n; i++) { pre = crnt; crnt += v[i]; if (crnt * pre >= 0) { if (pre > 0) { fans += crnt + 1; crnt -= crnt + 1; } else { fans += abs(crnt) + 1; crnt += abs(crnt) + 1; } } } cout << min(fans, ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i a_list = gets.split.map(&:to_i) count = 0 sum = nil a_list.each.with_index do |a, i| if i == 0 if a == 0 sum = a_list[1] > 0 ? -1 : 1 count += 1 else sum = a end else if sum > 0 # plus to minus if a >= 0 count += (a + sum) + 1 sum = -1 else if sum + a < 0 sum += a else count += (sum + a) + 1 sum = -1 end end else # minus to plus if a >= 0 if sum + a > 0 sum += a else count += (sum + a).abs + 1 sum = -1 end else count += (a + sum).abs + 1 sum = 1 end end end end puts count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(int(i) for i in input().split()) b = [i for i in a] def solve(cnt,A,N): for i in range(1, N): if sum(A[0:i])>0: if sum(A[0:i+1])>=0: r = A[i] A[i]=-sum(A[0:i])-1 cnt+=abs(r-A[i]) else: if sum(A[0:i+1])<=0: r = A[i] A[i]=-sum(A[0:i])+1 cnt+=abs(r-A[i]) return cnt cnt1=0 if b[0]<=0: ini=b[0] b[0]=1 cnt1=abs(1-ini) ans1=solve(cnt1,b,n) cnt2=0 if a[0]>=0: ini=a[0] a[0]=-1 cnt2=abs(-1-ini) ans2=solve(cnt2,a,n) print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long chk1, chk2, ans1 = 0, ans2 = 0; scanf("%d", &n); vector<long> a(n); for (auto& e : a) scanf("%ld", &e); chk1 = a[0] + a[1]; chk2 = a[0] + a[1]; if (chk1 <= 0) { ans1 = -1 * chk1 + 1; chk1 = 1; } if (chk2 >= 0) { ans2 = chk2 + 1; chk2 = -1; } for (int i = 2; i < n; i++) { chk1 += a[i]; chk2 += a[i]; if (i % 2) { if (chk1 <= 0) { ans1 += -1 * chk1 + 1; chk1 = 1; } if (chk2 >= 0) { ans2 += chk2 + 1; chk2 = -1; } } else { if (chk1 >= 0) { ans1 += chk1 + 1; chk1 = -1; } if (chk2 <= 0) { ans2 += -1 * chk2 + 1; chk2 = 1; } } } printf("%lld\n", min(ans1, ans2)); return 0; }