Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) c,f=0,l[0]/abs(l[0]) s=l[0] for i in range(1,n): t=s+l[i] if s*t>=0: s=-1*f c+=abs(t)+1 else: f=-1*f s=s+l[i] print(int(c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np from copy import deepcopy n = int(input()) a = list(map(int, input().split())) c = [0] * n for i in range(n): c[i] = c[i - 1] + a[i] c = np.array(c) ans1, ans2 = 0, 0 tmp = deepcopy(c) for i in range(n): t = tmp[i] if i % 2 == 0 and tmp[i] >= 0: tmp -= t + 1 ans1 += t + 1 elif i % 2 == 1 and tmp[i] <= 0: tmp += -t + 1 ans1 += -t + 1 tmp = deepcopy(c) for i in range(n): t = tmp[i] if i % 2 == 1 and tmp[i] >= 0: tmp -= t + 1 ans2 += t + 1 elif i % 2 == 0 and tmp[i] <= 0: tmp += -t + 1 ans2 += -t + 1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const unsigned long long MOD = 1000000000 + 7; int main() { int n; cin >> n; int cnt = 0; int sum = 0; for (int i = 0; i < n; i++) { int a; cin >> a; int s = a + sum; if (sum < 0 && s <= 0) { cnt += 1 - s; sum = 1; } else if (sum > 0 && s >= 0) { cnt += 1 + s; sum = -1; } else { sum = s; } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
l = int(input()) n = [int(i) for i in input().split()] ans = [] ans.append(n[0]) count = 0 for i in range(1, l): nsum = sum(n[j] for j in range(0, i)) while(True): #print("i:" + str(i)) #print("n:" + str(n[i])) #print(("nsum:" + str(nsum))) if (n[i-1] < 0 and n[i] <= 0) or (n[i-1] > 0 and n[i] >= 0) or (nsum * (nsum + n[i]) >= 0): if n[i-1] < 0: count += 1 n[i] += 1 else: count += 1 n[i] -= 1 else: ans.append(n[i]) break print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) ls = list(map(int, input().split())) def calc(ls): count = 0 acc = ls[0] sign = acc // abs(acc) for x in ls[1:]: y = acc + x if y == 0 or y // abs(y) == sign: z = -sign - y count += abs(z) acc = -sign else: acc = y sign *= -1 return count if ls[0] != 0: count = calc(ls) else: ls0 = ls.copy() ls0[0] = 1 ls1 = ls.copy() ls1[0] = -1 count = min(calc(ls0), calc(ls1)) + 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void chmax(T &a, T b) { if (a < b) a = b; } template <class T> void chmin(T &a, T b) { if (a > b) a = b; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; long long sum = a[0]; long long change = 0LL; if (sum > 0) { for (int i = 1; i < n; i++) { if (i % 2 == 1 && sum + a[i] >= 0) { sum += a[i]; change += abs(-1 - sum); sum = -1; } else if (i % 2 == 0 && sum + a[i] <= 0) { sum += a[i]; change += abs(1 - sum); sum = 1; } else { sum += a[i]; } } } else { for (int i = 1; i < n; i++) { if (i % 2 == 0 && sum + a[i] >= 0) { sum += a[i]; change += abs(-1 - sum); sum = -1; } else if (i % 2 == 1 && sum + a[i] <= 0) { sum += a[i]; change += abs(1 - sum); sum = 1; } else { sum += a[i]; } } } cout << change; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) L = np.array([int(i) for i in input().split()]) count = 0 s = L[0] if L[0] == 0: if L[1] > 0: L[0] = -1 else: L[0] = 1 count += 1 # print(L) loopnum = n//2 if n%2 == 0: loopnum -= 1 #+-+-... for i in range(loopnum): s = s + L[2*i+1] if s >= 0: subt = s + 1 count += subt s = s - subt s = s + L[2*i+2] if s <= 0: subt = s - 1 count -= subt s = s - subt if n%2 == 0: s = s + L[-1] if s >= 0: subt = s + 1 count += subt cand1 = count count = 0 s = L[0] #-+-+... for i in range(loopnum): s = s + L[2*i+1] if s <= 0: subt = s - 1 count -= subt s = s - subt s = s + L[2*i+2] if s >= 0: subt = s + 1 count += subt s = s - subt if n%2 == 0: s = s + L[-1] if s <= 0: subt = s - 1 count -= subt cand2 = count #print(cand1) #print(cand2) print(min(cand1,cand2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int N[100000]; cin >> n; for (int i = 0; i < n; i++) { cin >> N[i]; } int ans = 0; int sum = N[0]; if (N[0] == 0) { if (N[1] >= 0) { N[0] = -1; } if (N[1] < 0) { N[0] = 1; } } if (N[0] > 0) { for (int i = 1; i < n; i++) { sum = sum + N[i]; if (i % 2 == 0 && sum <= 0) { N[i] = N[i] - sum + 1; ans = ans - sum + 1; sum = 1; } if (i % 2 == 1 && sum >= 0) { N[i] = N[i] - sum - 1; ans = ans + sum + 1; sum = -1; } } } if (N[0] < 0) { for (int i = 1; i < n; i++) { sum = sum + N[i]; if (i % 2 == 0 && sum >= 0) { N[i] = N[i] - sum - 1; ans = ans + sum + 1; sum = -1; } if (i % 2 == 1 && sum >= 0) { N[i] = N[i] - sum + 1; ans = ans - sum + 1; sum = 1; } } } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; namespace ABC059C { class Program { // -1 4 3 2 -5 4 // -1 4 -4 2 -5 5 -> 8 static long sequentialize(int[] a) { var n = a.Length; var sum = a[0]; var changeCount = 0L; int v = a[0] > 0 ? 1 : -1; for (int i = 1; i < n; i++) { var temp = sum + a[i]; if (sum > 0 && temp > 0) { // tempを-1にしたい var prev = a[i]; a[i] = -sum - 1; changeCount += Math.Abs(prev - a[i]); } else if (sum < 0 && temp < 0) { // tempを+1にしたい var prev = a[i]; a[i] = -sum + 1; changeCount += Math.Abs(prev - a[i]); } else if (temp == 0) { changeCount += 1; a[i] = v; } sum += a[i]; v = -v; } return changeCount; } static void Solve() { var n = Input.NextInt(); var a = Input.NextInt(n).ToArray(); var b = new int[n]; a.CopyTo(b, 0); var changeCount1 = sequentialize(a); // 先頭の符号反転 b[0] = b[0] / -b[0]; var changeCount2 = sequentialize(b) + Math.Abs(b[0]) + 1; Console.WriteLine(Math.Min(changeCount1, changeCount2)); } #region Competitive Template public static void Main(string[] args) { var needsFlushOutput = true; if (needsFlushOutput) { // 細かく出力しないようにする var sw = new System.IO.StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; Console.SetOut(sw); } // 仮想的に標準入力をセットする // NextLine系を使っていると使えない //Input.SetText(""); Solve(); Console.Out.Flush(); } static class Input { static char[] separator = { ' ' }; public static bool IsEof { get; set; } static Queue<string> q { get; set; } static Input() { IsEof = false; q = new Queue<string>(); } /// <summary> /// 入力予約 /// </summary> /// <param name="items"></param> public static void SetText(IEnumerable<string> items) { foreach (var item in items) { SetText(item); } } /// <summary> /// 入力予約 /// </summary> /// <param name="s"></param> /// <returns></returns> public static bool SetText(string s) { if (s == null) return false; foreach (var elem in s.Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries)) { q.Enqueue(elem); } return true; } /// <summary> /// 内部queueに入力からの値をsplitして格納する /// </summary> /// <returns></returns> static bool read() { var s = Console.ReadLine(); if (s == null) return false; foreach (var elem in s.Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries)) { q.Enqueue(elem); } if (!q.Any()) return read(); return true; } /// <summary> /// 次のstringを一つ読み込む /// </summary> /// <returns></returns> public static string Next() { if (!q.Any()) { if (!read()) { IsEof = true; return ""; } } return q.Dequeue(); } public static int NextInt() => int.Parse(Next()); public static long NextLong() => long.Parse(Next()); public static double NextDouble() => double.Parse(Next()); public static List<string> Next(int n) => Enumerable.Range(0, n).Select(_ => Next()).ToList(); public static List<int> NextInt(int n) => Next(n).Select(x => int.Parse(x)).ToList(); public static List<long> NextLong(int n) => Next(n).Select(x => long.Parse(x)).ToList(); public static List<double> NextDouble(int n) => Next(n).Select(x => double.Parse(x)).ToList(); public static List<string> NextLine() => Console.ReadLine().Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries).ToList(); public static List<int> NextIntLine() => NextLine().Select(x => int.Parse(x)).ToList(); public static List<long> NextLongLine() => NextLine().Select(x => long.Parse(x)).ToList(); public static List<double> NextDoubleLine() => NextLine().Select(x => double.Parse(x)).ToList(); } #endregion } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
a = list(map(int,input().split())) def judge(count): idx = 0 for i in range(2,n+1): if count == -1: if sum(a[0:i]) < 0: pass else: check = sum(a[0:i]) + 1 j = a[i-1] a[i-1] = j - check idx += check elif count == 1: if sum(a[0:i]) > 0: pass else: check = 1 - sum(a[0:i]) j = a[i-1] a[i-1] = check+ j idx += check count *= -1 return idx if a[0] > 0: b = judge(-1) print(b) elif a[0] < 0: c = judge(1) print(c) else: a[0] = 1 b = judge(-1) a[0] = -1 c = judge(1) print(min(b,c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; ll ts = 1000000007; ll sum, sum2, ans, i; int main() { ios::sync_with_stdio(false); cin.tie(0); ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) cin >> a[i]; bool can = false; ll ans = 0, sum = a[0], nextSum = a[0]; for (int i = 1; i < n; i++) { nextSum += a[i]; if (sum < 0 && nextSum < 0 || sum > 0 && nextSum > 0 || nextSum == 0) { ll N; if (nextSum >= 0) N = nextSum + 1; if (nextSum < 0) N = nextSum - 1; ans += abs(N); nextSum -= a[i]; for (int j = 0; j < abs(N); j++) { if (a[0] >= 0 && i % 2 == 1 || a[0] <= 0 && i % 2 == 0) a[i]--; else a[i]++; } nextSum += a[i]; sum = nextSum; } else { sum = nextSum; } } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int dptemp[100010]; int s1[100010], dp[100010]; int mi = 0x3f3f3f3f, n, a, sum, pri1, pri2, all; scanf("%d", &n); dp[0] = 0; for (a = 1; a <= n; a++) { scanf("%d", &s1[a]); dp[a] = s1[a] + dp[a - 1]; dptemp[a] = dp[a]; } sum = 0; all = 0; if (dp[1] == 0) { dp[1]++; sum++; all = 1; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] >= 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; for (a = 1; a <= n; a++) dp[a] = dptemp[a]; dp[1]--; sum--; all = 1; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] > 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; } else if (dp[1] > 0) { sum = 0; all = 0; for (a = 1; a <= n; a++) dp[a] = dptemp[a]; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] >= 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; } else { sum = 0; all = 0; for (a = 2; a <= n; a++) { dp[a] = (dp[a - 1] + s1[a]); if (dp[a - 1] > 0) { if (dp[a] > 0) { sum -= (dp[a] + 1); all += (dp[a] + 1); dp[a] = -1; } } else { if (dp[a] <= 0) { sum += (-dp[a] + 1); all += (-dp[a] + 1); dp[a] = 1; } } } if (all < mi) mi = all; } printf("%d\n", mi); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> an(n); for (int i = 0; i < n; ++i) { cin >> an[i]; } int cnt_min = INT_MAX; for (int j = 0; j < 2; ++j) { int sign = j == 0 ? -1 : 1; int accum = an[0]; int cnt = 0; if (accum * sign <= 0) { auto x = sign - accum; accum += x; cnt += abs(x); } for (int i = 1; i < n; ++i) { auto new_accum = accum + an[i]; if (new_accum * accum >= 0) { int x = -sign - new_accum; new_accum += x; cnt += abs(x); } int new_sign = new_accum > 0 ? 1 : -1; accum = new_accum; sign = new_sign; } if (cnt < cnt_min) { cnt_min = cnt; } } cout << cnt_min << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) nList = list(map(int,input().split())) gokei = nList[0] count1 = 0 for i in range(1,n): gokei_tmp =gokei+ nList[i] if (gokei < 0 and gokei_tmp > 0) or (gokei > 0 and gokei_tmp < 0): gokei = gokei_tmp else: count1 += abs(gokei_tmp) gokei_tmp -= gokei_tmp if gokei > 0: gokei_tmp -= 1 else: gokei_tmp += 1 count1 += 1 gokei = gokei_tmp gokei = nList[0] count2 = abs(gokei) if nList[0] > 0: gokei -= gokei -1 else: gokei -= gokei +1 count2 += 1 for i in range(1,n): gokei_tmp =gokei+ nList[i] if (gokei < 0 and gokei_tmp > 0) or (gokei > 0 and gokei_tmp < 0): gokei = gokei_tmp else: count2 += abs(gokei_tmp) gokei_tmp -= gokei_tmp if gokei > 0: gokei_tmp -= 1 else: gokei_tmp += 1 count2 += 1 gokei = gokei_tmp if count1 >= count2: print(count2) else: print(count1)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } int cnt1 = 0; int cnt2 = 0; int now1 = a[0]; int now2 = a[0]; for (int i = 1; i < (int)(n); i++) { now1 += a[i]; if (i % 2 != 0) { if (now1 >= 0) { cnt1 += now1 + 1; now1 = -1; } } else { if (now1 <= 0) { cnt1 += 1 - now1; now1 = 1; } } } for (int i = 1; i < (int)(n); i++) { now2 += a[i]; if (i % 2 != 0) { if (now2 <= 0) { cnt2 += 1 - now2; now2 = 1; } } else { if (now2 >= 0) { cnt2 += 1 + now2; now2 = -1; } } } int ans = min(cnt1, cnt2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) A=list(map(int,input().split())) count=0 tmp=A[1]+A[0] for i in range(2,n): if tmp<0: if tmp+A[i]<=0: count+= abs(1-(A[i]+tmp)) tmp=1 else: tmp+=A[i] continue else: if tmp+A[i]>=0: count+=abs(-1-(A[i]+tmp)) tmp=-1 else: tmp+=A[i] continue print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long l1[n + 1]; long long x = 0, s = 0; for (int i = 1; i <= n; i++) { cin >> l1[i]; x += l1[i]; if (i >= 2) { if (x - l1[i] <= 0 && x <= 0) { s += abs((-x + l1[i] + 1) - l1[i]); l1[i] = l1[i] - x + 1; x = 1; } else if (x - l1[i] >= 0 && x >= 0) { s += abs(-(x - l1[i] + 1) - l1[i]); l1[i] = -(x - l1[i] + 1); x = -1; } } } cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int cnt = 0; int total = a[0]; if (total == 0) { total = 1; cnt++; } for (int i = 1; i < n; i++) { if (total > 0) { int temp = total; temp += a[i]; if (temp >= 0) { cnt += temp + 1; total = -1; continue; } else { total = temp; continue; } } if (total < 0) { int temp = total; temp += a[i]; if (temp <= 0) { cnt += (-temp + 1); total = 1; continue; } else { total = temp; continue; } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from itertools import accumulate def sol(sign=1): add = 0 ans = 0 for i in range(1,N): acmA[i] += add if sign == 1: if (i%2==0 and acmA[i-1]*acmA[i]<0) or (i%2==1 and acmA[i-1]*acmA[i]>0) :continue else: if (i%2==1 and acmA[i-1]*acmA[i]<0) or (i%2==0 and acmA[i-1]*acmA[i]>0) :continue tmp_add = -acmA[i]-1 if acmA[i] > 0 else -acmA[i]+1 #print(i, tmp_add, acmA[i]) acmA[i] += tmp_add add += tmp_add ans +=abs(tmp_add) return ans N = int(input()) A = list(map(int,input().split())) acmA = list(accumulate(A)) print(min(sol(1),sol(-1))) #print(acmA)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int n, a[111111], hoge, huga, nyaa = 0, nyan = 0; int main() { scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } if (!a[0]) { hoge = 1; huga = -1; nyaa = nyan = 1; } else { hoge = ((a[0]) > (-a[0]) ? (a[0]) : (-a[0])); huga = ((a[0]) > (-a[0]) ? (-a[0]) : (a[0])); nyaa += abs(a[0] - hoge); nyan += abs(a[0] - huga); } int p = 1; for (int i = 1; i < n; i++) { hoge += a[i]; if (p) { if (hoge >= 0) { nyaa += hoge + 1; hoge = -1; } } else { if (hoge <= 0) { nyaa += 1 - hoge; hoge = 1; } } huga += a[i]; if (p) { if (huga <= 0) { nyan += 1 - huga; huga = 1; } } else { if (huga >= 0) { nyan += huga + 1; huga = -1; } } p ^= 1; } printf("%d\n", ((nyaa) > (nyan) ? (nyan) : (nyaa))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void scan(vector<T>& a, long long n, istream& cin) { T c; for (long long(i) = 0; (i) < (n); ++(i)) { cin >> c; a.push_back(c); } } using vs = vector<string>; using vi = vector<long long>; using pii = pair<long long, long long>; using psi = pair<string, long long>; using vvi = vector<vi>; using pss = pair<string, string>; using vpii = vector<pii>; template <class T> bool valid(T x, T w) { return 0 <= x && x < w; } long long dx[4] = {1, -1, 0, 0}; long long dy[4] = {0, 0, 1, -1}; long long dp[1000000]; signed main() { ios::sync_with_stdio(false); cin.tie(0); ; ; ; long long n; cin >> n; vi a; for (long long(i) = 0; (i) < (n); ++(i)) { long long c; cin >> c; a.push_back(c); } long long s = a[0]; for (long long(i) = 0; (i) < (n - 1); ++(i)) { if (s * (s + a[i + 1]) < 0) { s += a[i + 1]; dp[i + 1] = dp[i]; } else { dp[i + 1] = dp[i] + abs(s + a[i + 1]) + 1; s = s < 0 ? 1 : -1; } } cout << dp[n - 1] << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long inf = LLONG_MAX; long double pi = M_PI; void Yes() { cout << "Yes" << endl; } void No() { cout << "No" << endl; } void YES() { cout << "YES" << endl; } void NO() { cout << "NO" << endl; } template <typename T> struct segment_tree { long long n; long long m = 1; vector<T> v; T id_e; T seg_func(T a, T b) { return a + b; } void init(vector<T> a, T b) { id_e = b; while (m < a.size()) m *= 2; n = 2 * m - 1; vector<T> w(n); v = w; for (long long i = 0; i < a.size(); i++) v[m - 1 + i] = a[i]; for (long long i = a.size(); i < m; i++) v[m - 1 + i] = id_e; for (long long i = m - 2; i >= 0; i--) { v[i] = seg_func(v[2 * i + 1], v[2 * i + 2]); } } void change(long long a, T b) { a += m - 1; v[a] = b; while ((a - 1) / 2 != a) { a = (a - 1) / 2; v[a] = seg_func(v[2 * a + 1], v[2 * a + 2]); } } T subsub(long long a, long long b, long long cur, long long l, long long r) { if (a <= l && r <= b) return v[cur]; if (r < a || b < l) return id_e; if (l < r) { return seg_func(subsub(a, b, 2 * cur + 1, l, (l + r) / 2), subsub(a, b, 2 * cur + 2, (l + r) / 2 + 1, r)); } } T subsum(long long a, long long b) { if (a == b) return v[m - 1 + a]; T ans = id_e; long long cur = 0, l = 0, r = m - 1; ans = seg_func(ans, subsub(a, b, cur, l, r)); return ans; } }; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) cin >> a[i]; segment_tree<long long> seg1, seg2; seg1.init(a, 0); seg2.init(a, 0); long long ans1 = 0, ans2 = 0; for (long long i = 0; i < n; i++) { long long x = seg1.subsum(0, i), y = seg2.subsum(0, i); if (i == 0) { if (x <= 0) { seg1.change(i, 1); ans1 += 1 - x; } if (y >= 0) { seg2.change(i, -1); ans2 += x + 1; } } else { long long xx = seg1.subsum(0, i - 1), yy = seg2.subsum(0, i - 1); if (xx > 0 && x >= 0) { seg1.change(i, a[i] - (x + 1)); ans1 += x + 1; } else if (xx < 0 && x <= 0) { seg1.change(i, a[i] + (1 - x)); ans1 += 1 - x; } if (yy > 0 && y >= 0) { seg2.change(i, a[i] - (y + 1)); ans2 += y + 1; } else if (yy < 0 && y <= 0) { seg2.change(i, a[i] + (1 - y)); ans2 += 1 - y; } } cout << seg2.subsum(0, i) << endl; } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
// AtCoder-Template.cpp : このファイルには 'main' 関数が含まれています。プログラム実行の開始と終了がそこで行われます。 // #include <iostream> #include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <cmath> #include <cstdio> #include <cstring> #include <deque> #include <fstream> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <set> #include <vector> using namespace std; using ll = long long; #define fst first #define snd second #define FOR(i,N) for(auto i=0; i<N; ++i) #define FORREV(i,N,_cnt) for(auto i=N-1,cnt=_cnt; cnt > 0; --i, --cnt) #define ALL(x) x.begin(), x.end() /* clang-format off */ template <class T, size_t D> struct _vec { using type = vector<typename _vec<T, D - 1>::type>; }; template <class T> struct _vec<T, 0> { using type = T; }; template <class T, size_t D> using vec = typename _vec<T, D>::type; template <class T> vector<T> make_v(size_t size, const T& init) { return vector<T>(size, init); } template <class... Ts> auto make_v(size_t size, Ts... rest) { return vector<decltype(make_v(rest...))>(size, make_v(rest...)); } template <class T> inline void chmin(T& a, const T& b) { if (b < a) a = b; } template <class T> inline void chmax(T& a, const T& b) { if (b > a) a = b; } /* clang-format on */ int main() { #ifdef DEBUG ifstream ifs("in.txt"); cin.rdbuf(ifs.rdbuf()); #endif ll N; cin >> N; vector<ll> A(N); FOR(i, N) cin >> A[i]; // RUISEKI vector<ll> Rui(N); Rui[0] = A[0]; ll ans = 0; if (Rui[0] == 0) { ans += 1; Rui[0] = 1; } FOR(i, N - 1) { Rui[i + 1] += Rui[i] + A[i + 1]; if (i + 1 >= 1 and Rui[i+1] * Rui[i] >= 0) { if (Rui[i + 1] * Rui[i] == 0 and Rui[i] > 0) { ans += 1; Rui[i + 1] = -1; } else if (Rui[i + 1] * Rui[i] == 0 and Rui[i] < 0) { ans += 1; Rui[i + 1] = 1; } else { // 両方とも同じ符号になった場合 if (Rui[i + 1] > 0) { ans += Rui[i + 1] + 1; Rui[i + 1] = -1; } else { ans += - Rui[i + 1] + 1; Rui[i + 1] = 1; } } } } /////////////////////////////////////////////// ///////// /////////////// /////////////////////////////////////////////// Rui.clear(); Rui.resize(N); Rui[0] = A[0]; ll tmp = 0; if (Rui[0] == 0) { tmp += Rui[0] ; Rui[0] = -1; } FOR(i, N - 1) { Rui[i + 1] += Rui[i] + A[i + 1]; if (i + 1 >= 1 and Rui[i + 1] * Rui[i] >= 0) { if (Rui[i + 1] * Rui[i] == 0 and Rui[i] > 0) { tmp += 1; Rui[i + 1] = -1; } else if (Rui[i + 1] * Rui[i] == 0 and Rui[i] < 0) { tmp += 1; Rui[i + 1] = 1; } else { // 両方とも同じ符号になった場合 if (Rui[i + 1] > 0) { tmp += Rui[i + 1] + 1; Rui[i + 1] = -1; } else { tmp += -Rui[i + 1] + 1; Rui[i + 1] = 1; } } } } chmin(ans, tmp); cout << ans << endl; //cout << 0 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) b=list(map(int,input().split())) a=b condition='' cnt=0 wa=0 for i in range(n): wa+=a[i] if i == 0: if a[i]>0: condition='minus' else: condition='plus' elif condition == 'plus': condition='minus' if wa<=0: cnt+=abs(wa)+1 a[i]+=abs(wa)+1 wa+=abs(wa)+1 elif condition == 'minus': condition='plus' if wa>=0: cnt+=abs(wa)+1 a[i]-=abs(wa)+1 wa-=abs(wa)+1 cnt1=cnt a=b condition='' cnt=0 wa=0 for i in range(n): a[i]=a[i]/abs(a[i])*(-1) cnt+=abs(a[i])+1 wa+=a[i] if i == 0: if a[i]>0: condition='minus' else: condition='plus' elif condition == 'plus': condition='minus' if wa<=0: cnt+=abs(wa)+1 a[i]+=abs(wa)+1 wa+=abs(wa)+1 elif condition == 'minus': condition='plus' if wa>=0: cnt+=abs(wa)+1 a[i]-=abs(wa)+1 wa-=abs(wa)+1 cnt2=cnt print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0], count = 0; for (int i = 1; i < n; i++) { if (sum > 0) { if (sum + a[i] >= 0) { count += abs(a[i] - (-1 - sum)); a[i] = -1 - sum; } } else { if (sum + a[i] <= 0) { count += abs(a[i] - (1 - sum)); a[i] = 1 - sum; } } sum += a[i]; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) n_list = list(map(int, input().split())) count = 0 prev_sum = n_list[0] for i in n_list[1:]: if prev_sum < 0: if -prev_sum >= i: count += abs((-prev_sum + 1) - i) i = -prev_sum + 1 else: if -prev_sum < i: count += abs((-prev_sum - 1) - i) i = -prev_sum - 1 prev_sum += i print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans = 0; long long sum = 0; for (int i = 0; i < n; i++) { if (i == 0) { sum = a[i]; continue; } if (sum > 0) { if (sum + a[i] >= 0) { ans += sum + a[i] + 1; sum += a[i] - (sum + a[i] + 1); continue; } } else { if (sum + a[i] <= 0) { ans -= sum + a[i] - 1; sum += a[i] - (sum + a[i] - 1); continue; } } sum += a[i]; } sum = 0; long long tmp = 0; for (int i = 0; i < n; i++) { if (i == 0) { sum = a[i] > 0 ? -1 : 1; tmp += a[i] > 0 ? a[i] + 1 : -(a[i] - 1); continue; } if (sum > 0) { if (sum + a[i] >= 0) { tmp += sum + a[i] + 1; sum += a[i] - (sum + a[i] + 1); continue; } } else { if (sum + a[i] <= 0) { tmp -= sum + a[i] - 1; sum += a[i] - (sum + a[i] - 1); continue; } } sum += a[i]; } cout << (ans < tmp ? ans : tmp) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int r(int a) { if (a % 2 == 0) return -1; else return 1; } int main() { int n, i; long long a[1000], ans = 0, ans2 = 0, tmp = 0, tmp2 = 0; scanf("%d", &n); for (i = 0; i < n; i++) scanf("%lld", &a[i]); for (i = 0; i < n; i++) { tmp += a[i]; tmp2 += a[i]; if (tmp * r(i) <= 0) { ans += tmp * r(i + 1) + 1; tmp = r(i); } if (tmp2 * r(1 + i) <= 0) { ans2 += tmp2 * r(i) + 1; tmp2 = r(i + 1); } } printf("%lld\n", ans2 < ans ? ans2 : ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int body(std::vector<int>& a) { int ans = 0; std::vector<int> s(a.size()); s.at(0) = a.at(0); for (unsigned int i = 1; i < a.size(); i++) { s.at(i) = s.at(i - 1) + a.at(i); } int diff = 0; for (unsigned int i = 1; i < s.size(); i++) { s.at(i) += diff; int n = 0; if (s.at(i - 1) > 0 && s.at(i) >= 0) { n = s.at(i) + 1; ans += n; diff -= n; s.at(i) += diff; } else if (s.at(i - 1) < 0 && s.at(i) <= 0) { n = -s.at(i) + 1; ans += n; diff += n; s.at(i) += diff; } } return ans; } int main(int argc, char** argv) { int n; std::cin >> n; std::vector<int> a(n); for (int i = 0; i < n; i++) { std::cin >> a.at(i); } int ans; if (a.at(0) != 0) { ans = body(a); } else { a.at(0) = -1; int ans_a = body(a); a.at(0) = 1; int ans_b = body(a); ans = std::min(ans_a, ans_b); } std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy import sys input = sys.stdin.readline N = int(input()) a = list(map(int, input().split())) ans1, ans2 = 0, 0 f = a[0] if f == 0: f = 1 ans1 += 1 for i in range(1, N): if f * (f + a[i]) < 0: f += a[i] continue ans1 += abs(f + a[i]) + 1 if f > 0: f = -1 else: f = 1 f = -a[0] if f == 0: f = -1 ans1 += 1 for i in range(1, N): if f * (f + a[i]) < 0: f += a[i] continue ans2 += abs(f + a[i]) + 1 if f > 0: f = -1 else: f = 1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long cost1 = 0; long long sum1 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 > 0) continue; else if (i % 2 == 0 && sum1 < 0) { cost1 += abs(sum1) + 1; sum1 = 1; } else if (i % 2 == 1 && sum1 > 0) { cost1 += abs(sum1) + 1; sum1 = -1; } else { continue; } } long long cost2 = 0; long long sum2 = 0; for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0 && sum2 > 0) { cost2 += abs(sum2) + 1; sum2 = -1; } else if (i % 2 == 0 && sum2 < 0) { continue; } else if (i % 2 == 1 && sum2 > 0) { continue; } else { cost2 += abs(sum2) + 1; sum2 = 1; } } long long ans = min(cost1, cost2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i nums = gets.split.map(&:to_i) cumulative = nums.shift ans = 0 nums.each do |num| if cumulative > 0 cumulative += num if cumulative >= 0 decrement = cumulative.abs + 1 ans += decrement cumulative -= decrement end else cumulative += num if cumulative <= 0 increment = cumulative.abs + 1 ans += increment cumulative += increment end end end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int inf = (1 << 30); const int mod = 1000000007; using ll = long long; using namespace std; int main() { ll n; cin >> n; vector<ll> a(n); for (auto &k : a) cin >> k; ll sum = a[0]; ll sign = (sum > 0) ? 1 : -1; ll ans = 0; for (int i = 1; i < n; ++i) { sign *= -1; ll tempsum = sum + a[i]; ll sumsign = (tempsum > 0) ? 1 : -1; if (sumsign != sign) { ans += abs(abs(sum - sign) * sign - a[i]); sum = sign; } else { sum += a[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sumi = a[0]; long long sump = a[0]; long long cnt = 0; for (int i = 0; i < n - 1; i++) { sump += a[i + 1]; if (sumi < 0) { if (sump <= 0) { cnt += 1 - sump; sump = 1; } } else if (sumi > 0) { if (sump >= 0) { cnt += sump + 1; sump = -1; } } sumi = sump; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) num_list = list(map(int, input().split())) count = 0 sum_ = num_list[0] if sum_ > 0: for i in range(1, n): sum_ += num_list[i] if i%2 == 0: if sum_ <= 0: count += abs(sum_) + 1 sum_ = 1 else: if sum_ >= 0: count += abs(sum_) + 1 sum_ = -1 print(count) elif sum_ < 0: for i in range(1, n): sum_ += num_list[i] if i%2 == 1: if sum_ <= 0: count += abs(sum_) + 1 sum_ = 1 else: if sum_ >= 0: count += abs(sum_) + 1 sum_ = -1 print(count) else: sum_ = 1 for i in range(1, n): sum_ += num_list[i] if i%2 == 0: if sum_ <= 0: count += abs(sum_) + 1 sum_ = 1 else: if sum_ >= 0: count += abs(sum_) + 1 sum_ = -1 count1 = count sum_ = -1 for i in range(1, n): sum_ += num_list[i] if i%2 == 1: if sum_ <= 0: count += abs(sum_) + 1 sum_ = 1 else: if sum_ >= 0: count += abs(sum_) + 1 sum_ = -1 count2 = count print(min(count1, count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) A=list(map(int,input().split())) count=0 if abs(A[1]-A[0])!=0: tmp=A[1]+A[0] if tmp>0 and A[0]>0: count+=abs(-1-(A[1]+A[0])) tmp=-1 elif tmp<0 and A[0]<0: count+=abs(1-(A[1]+A[0])) tmp=1 else: count+=abs(-1-(A[1]+A[0])) tmp=-1 for i in range(2,n): if tmp<0: if tmp+A[i]<=0: count+= abs(1-(A[i]+tmp)) tmp=1 else: tmp+=A[i] continue else: if tmp+A[i]>=0: count+=abs(-1-(A[i]+tmp)) tmp=-1 else: tmp+=A[i] continue print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll MOD = 1000000007; const double PI = 3.14159265358979; const ll INF = pow(10, 18); string abc = "abcdefghijklmnopqrstuvwxyz"; string ABC = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; int main() { ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) { cin >> a[i]; } ll ans = INF; ll cnt = 0; ll k; vector<ll> sum(n, 0); sum[0] = a[0]; if (a[0] == 0) { cnt++; sum[0] = 1; } for (ll i = 1; i < n; i++) { sum[i] = a[i] + sum[i - 1]; if (sum[i] * sum[i - 1] >= 0) { k = sum[i]; sum[i] = -sum[i - 1] / abs(sum[i - 1]); cnt += abs(k - sum[i]); } } ans = min(ans, cnt); cnt = 0; if (a[0] == 0) { sum[0] = -1; cnt++; } else { k = a[0]; sum[0] = -abs(a[0]) / a[0]; cnt += abs(sum[0] - k); } for (ll i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i - 1]; if (sum[i] * sum[i - 1] >= 0) { k = sum[i]; sum[i] = -abs(sum[i - 1]) / sum[i - 1]; cnt += abs(k - sum[i]); } } ans = min(ans, cnt); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) ans = 1e9 for sign in (1, -1): s = sign res, acc = 0, 0 for a in A: acc += a if acc * s <= 0: res += abs(acc-s) acc = s s *= -1 print(acc, a, res) ans = min(ans, res) print() print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.Closeable; import java.io.IOException; import java.util.ArrayDeque; import java.util.NoSuchElementException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author HBonsai */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); CPushpush solver = new CPushpush(); solver.solve(1, in, out); out.close(); } static class CPushpush { public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.nextInt(); int[] a = in.nextIntArray(n); ArrayDeque<Integer> q = new ArrayDeque<>(); for (int i = 0; i < n; i++) { if (i % 2 == (n - 1) % 2) { q.addFirst(a[i]); } else { q.addLast(a[i]); } } StringBuilder ans = new StringBuilder(); while (!q.isEmpty()) { ans.append(q.poll()).append(' '); } out.println(ans); } } static class FastScanner implements Closeable { private final InputStream in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; public FastScanner(InputStream in) { this.in = in; } private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public int[] nextIntArray(final int n) { final int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt(); } return res; } public void close() { try { in.close(); } catch (IOException e) { e.printStackTrace(); } } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int A[100005], N; long long ch(int init) { int t = A[0]; long long res = init; for (int i = 1; i < N; i++) { if (t + A[i] == 0 || t * (t + A[i]) > 0) { if (t > 0) { res += abs(t + 1 + A[i]); t = -1; } else { res += abs(t) + 1 - A[i]; t = 1; } } else { t += A[i]; } } return res; } int main() { scanf("%d", &N); for (int i = 0; i < N; i++) scanf("%d", &A[i]); long long t = ch(0), a, p; a = -A[1]; a > 0 ? a++ : a--; p = abs(a - A[0]); t = min(t, ch(p)); printf("%lld\n", t); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; long long int A, all; unsigned long long score = 0; int buff; bool flag = true; cin >> N; cin >> A; all = A; for (int i = 0; i < N - 1; i++) { cin >> A; if (flag == true) { if (all + A == 0) { flag = false; score += 1; A = 0 - all; } else if (all * (all + A) > 0) { long long int buff; if (all > 0) { buff = 0 - 1 - all; } else { buff = 1 - all; } score += abs(A - buff); A = buff; } } else { flag = true; if (A > 0) { all = 0 - 1; } else { all = 1; } if (all + A == 0) { flag = false; score += 1; A = 0 - all; } } all += A; } cout << score << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX = 1e5 + 111; int n; int a[MAX]; long long calc(int id, long long sum) { long long ans = 0; for (int i = id; i < n; ++i) { long long cur = sum + a[i]; if (sum < 0 && cur > 0) { sum = cur; continue; } if (sum > 0 && cur < 0) { sum = cur; continue; } if (cur == 0) { if (sum < 0) cur = 1; else cur = -1; sum = cur; ans++; continue; } if (sum < 0) { ans += 1 - cur; cur = 1; } else { ans += cur + 1; cur = -1; } sum = cur; } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; int id = -1; for (int i = 0; i < n; ++i) { cin >> a[i]; if (a[i] != 0 && id == -1) id = i; } if (id == -1) { cout << 1 + (n - 1) * 2; return 0; } if (id != 0) { long long ans1 = calc(id, -1); long long ans2 = calc(id, 1); cout << min(ans1, ans2) + 1 + 2 * (id - 1); } else { long long ans1 = calc(1, 1) + abs(a[0] - 1); long long ans2 = calc(1, -1) + abs(a[0] + 1); cout << min(ans1, ans2); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; long long int a[n]; for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int oddcount = 0, evencount = 0; long long int oddsum = 0, evensum = 0; bool oddplus = true, evenplus = false; for (int i = 0; i < (n); i++) { oddsum += a[i]; evensum += a[i]; if (oddplus && oddsum <= 0) { oddcount += 1 - oddsum; oddsum = 1; } else if (!oddplus && oddsum >= 0) { oddcount += 1 + oddsum; oddsum = -1; } if (evenplus && evensum <= 0) { evencount += 1 - evensum; evensum = 1; } else if (!evenplus && evensum >= 0) { evencount += 1 + evensum; evensum = -1; } oddplus = !oddplus; evenplus = !evenplus; cout << a[i] << " :" << "a[i]" << endl; cout << evensum << " :" << "evensum" << endl; cout << evencount << " :" << "evencount" << endl; } cout << fmin(oddcount, evencount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, x, a[100001], ans = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; a[i] == 0; ++i) { ans = 2 * (i + 1) - 1; x = i + 1; } int sum1 = a[x], sum2 = a[x]; for (int i = x + 1; i < n; i++) { sum2 += a[i]; if (sum2 >= 0 && sum1 > 0) { ans += abs(sum2) + 1; a[i] = a[i] - abs(sum2) - 1; sum2 = sum2 - abs(sum2) - 1; } if (sum2 <= 0 && sum1 < 0) { ans += abs(sum2) + 1; a[i] = a[i] + abs(sum2) + 1; sum2 = sum2 + abs(sum2) + 1; } sum1 = sum2; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; vector<long long int> B(N); B[0] = A[0]; for (int i = 1; i < N; i++) B[i] = B[i - 1] + A[i]; long long int ans = 0; long long int base = 0; for (int i = 1; i < N; i++) { if ((B[i] + base) * (B[i - 1] + base) > 0) { if (B[i] + base > 0) { ans += abs(B[i] + base) + 1; base -= abs(B[i] + base) + 1; continue; } else if (B[i] + base < 0) { ans += abs(B[i] + base) + 1; base += abs(B[i] + base) + 1; continue; } } if (i < N - 1) { if (B[i] + base == 0) { if (B[i + 1] + base > 0) { ans += 1; base -= 1; continue; } else if (B[i + 1] + base < 0) { ans += 1; base += 1; continue; } } } else { if (B[i] + base == 0) ans++; } if (i == 1 && B[i - 1] + base == 0) { if (B[i] + base > 0) { ans++; base -= 1; } else { ans++; base += 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100010]; int main(void) { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); int cnt; cin >> cnt; for (int i = 0; i < cnt; ++i) { cin >> a[i]; } int sum = 0; int ans1 = 0; for (int i = 0; i < cnt; ++i) { if (i % 2 == 0 && sum + a[i] > 0) { sum += a[i]; } else if (i % 2 == 0 && sum + a[i] <= 0) { ans1 += (1 - sum - a[i]); sum += (1 - sum); } else if (i % 2 == 1 && sum + a[i] >= 0) { ans1 += (a[i] - (-1 - sum)); sum += (-1 - sum); } else { sum += a[i]; } } int ans2 = 0; sum = 0; for (int i = 0; i < cnt; ++i) { if (i % 2 == 1 && sum + a[i] > 0) { sum += a[i]; } else if (i % 2 == 1 && sum + a[i] <= 0) { ans2 += (1 - sum - a[i]); sum += (1 - sum); } else if (i % 2 == 0 && sum + a[i] >= 0) { ans2 += (a[i] - (-1 - sum)); sum += (-1 - sum); } else { sum += a[i]; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int INF = (long long int)1e18; int main() { int n; cin >> n; long long int ans1 = 0, ans2 = 0; ; vector<int> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; long long int t = a[0]; for (int i = (1); i < (n); ++i) { if ((t > 0 && t + a[i] >= 0) || (t < 0 && t + a[i] <= 0)) { ans1 += abs(t + a[i]) + 1; if (t > 0) { t = -1; } else { t = 1; } } else { t += a[i]; } } t = a[0] > 0 ? -1 : 1; ans2 += abs(a[0]) + 1; for (int i = (1); i < (n); ++i) { if ((t > 0 && t + a[i] >= 0) || (t < 0 && t + a[i] <= 0)) { ans2 += abs(t + a[i]) + 1; if (t > 0) { t = -1; } else { t = 1; } } else { t += a[i]; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> v(n), pref(n, 0); for (int i = 0; i < n; i++) { cin >> v[i]; pref[i] = pref[i - (i > 0)] + v[i]; } int x; int ans = 0; for (int i = 1; i < n; i++) { if (pref[i] > 0 && pref[i - 1] > 0) { x = abs(v[i]) + 1; ans += x; for (int j = i; j < n; j++) { pref[j] -= x; } } else if (pref[i] < 0 && pref[i - 1] < 0) { x = abs(v[i]) + 1; ans += x; for (int j = i; j < n; j++) { pref[j] += x; } } else if (pref[i] == 0) { if (pref[i - 1] > 0) { ans++; for (int j = i; j < n; j++) { pref[j]--; } } else { ans++; for (int j = i; j < n; j++) { pref[j]++; } } } } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> #include<iomanip> using namespace std; typedef long long ll; typedef long l; typedef pair<int,int> P; #define rep(i,n) for(int i=0;i<n;i++) #define fs first #define sc second #define pb push_back #define mp make_pair #define eb emplace_back #define ALL(A) A.begin(),A.end() const int INF=1000000001; const double PI=3.141592653589; const ll LMAX=1000000000000001; ll gcd(ll a,ll b){if(a<b)swap(a,b);while((a%b)!=0){a=b;b=a%b;}return b;} int dx[]={-1,0,1,0}; int dy[]={0,1,0,-1}; int main(){ int n; cin>>n; vector<ll> a(n); rep(i,n) cin>>a[i]; bool f[]={1,0}; ll ans=LMAX; rep(j,2){ ll sum=0; ll c=0; bool F=f[j]; rep(i,n){ if(F){ if(sum+a[i]<0) sum+=a[i]; else{ c+=abs(sum+a[i])+1; sum=-1; } }else{ if(sum+a[i]>0) sum+=a[i]; else{ c+=abs(sum+a[i])+1; sum=1; } } } ans=min(ans,c); } cout<<c<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { cin.tie(0); ios::sync_with_stdio(false); int64_t n; cin >> n; vector<int64_t> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int64_t sum1 = 0LL, cost1 = 0LL; for (int i = 0; i < n; i++) { sum1 += a[i]; int64_t diff = abs(sum1) + 1LL; if (i % 2 == 0 && sum1 < 0LL) { sum1 += diff; cost1 += diff; } if (i % 2 == 1 && sum1 > 0LL) { sum1 -= diff; cost1 += diff; } if (sum1 == 0LL) { if (i % 2 == 0) { sum1--; cost1++; } if (i % 2 == 1) { sum1++; cost1++; } } } int64_t sum2 = 0LL, cost2 = 0LL; for (int i = 0; i < n; i++) { sum2 += a[i]; int64_t diff = abs(sum2) + 1LL; if (i % 2 == 0 && sum2 > 0LL) { sum2 -= diff; cost2 += diff; } if (i % 2 == 1 && sum2 < 0LL) { sum2 += diff; cost2 += diff; } if (sum2 == 0LL) { if (i % 2 == 0) { sum2++; cost2++; } if (i % 2 == 1) { sum2--; cost2++; } } } cout << min(cost1, cost2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) ans = 0 s = A[0] if s > 0: flag = 1 else: flag = -1 for i in range(1,N): s += A[i] if flag == 1 and s >= 0: ans += s + 1 s = -1 elif flag == -1 and s <= 0: ans += 1 - s s = 1 flag *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!/usr/bin/env python3 n = int(input()) a = list(map(int,input().split())) cnt = 0 current_sum = a[0]#現在の操作後の値 # 正負どちらを起点にするかで2通り考える必要がある。 # a[0]に従うパターン for i in range(n-1): if current_sum * (current_sum + a[i+1]) < 0:#符号が違う current_sum += a[i+1] cnt += 0#そのまま elif current_sum < 0: cnt += 1 - (current_sum + a[i+1]) current_sum = 1 else: cnt += (current_sum + a[i+1]) +1 current_sum = -1 case1 = cnt cnt = abs(a[0])+1 current_sum = -1 * a[0] // abs(a[0])#現在の操作後の値 for i in range(n-1): if current_sum * (current_sum + a[i+1]) < 0:#符号が違う current_sum += a[i+1] cnt += 0#そのまま elif current_sum < 0: cnt += 1 - (current_sum + a[i+1]) current_sum = 1 else: cnt += (current_sum + a[i+1]) +1 current_sum = -1 #print(cnt,case1) print(min(cnt,case1))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n, *A = map(int, open(0).read().split()) B = [A[0]] C = [A[0]] D = [0] for i in range(1, n): if (C[i-1] + A[i]) * C[i-1] < 0: B.append(A[i]) C.append(C[i-1] + A[i]) D.append(D[i-1]) else: if C[i-1] > 0: B.append(-(C[i-1]+1)) C.append(-1) D.append(D[i-1] + C[i-1]+1 + A[i]) else: B.append(-C[i-1]+1) C.append(1) D.append(D[i-1] + -C[i-1]+1 - A[i]) print(D[-1])
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); long long N; cin >> N; long long a[N]; long long sum = 0, cnt = 0; for (long long i = 0; i < N; i++) cin >> a[i]; for (long long i = 0; i < N; i++) { if (sum > 0 && sum + a[i] > 0) { if (a[i] < 0) cnt += sum + a[i] + 1; else cnt += abs(sum + a[i]) + 1; sum = -1; } else if (sum < 0 && sum + a[i] < 0) { if (a[i] > 0) cnt += abs(sum) - a[i] + 1; else cnt += abs(sum + a[i]) + 1; sum = 1; } else if (sum + a[i] == 0) { if (a[i] >= 0) { sum++; cnt++; } else { sum--; cnt++; } } else sum += a[i]; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n,a=int(input()),list(map(int,input().split()));ans=0 if a==[0]*n:print(n*2-1);exit() ma=[0,0] for i in range(1,n): if ma[0]<abs(a[i]):ma[0]=abs(a[i]);ma[1]=i if a[ma[1]]>0:m=(1if ma[1]%2==0else-1) else:m=(1if ma[1]%2!=0else-1) if a[0]*m<=0:ans+=abs(m-a[0]) m*=-1 b=[a[0]];m=(1if a[0]<0else-1) for i in range(1,n): b.append(b[i-1]+a[i]) if b[i-1]*b[i]>=0: ans+=abs(m-b[i]) b[i]=m m*=-1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr long long MOD = 1e9 + 7; long long dx[8] = {1, 0, -1, 0, 1, 1, -1, -1}; long long dy[8] = {0, 1, 0, -1, 1, -1, 1, -1}; long long A, B, C, D, E, F, G, H, N, M, L, K, P, Q, R, W, X, Y, Z; string S, T; long long ans = 0; template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (T &x : vec) is >> x; return is; } signed main() { cin >> N; vector<long long> a(N); cin >> a; for (long long i = 0; i < (long long)(N - 1); i++) { a[i + 1] = a[i] + a[i + 1]; } if (a[0] < 0) { for (long long i = 0; i < (long long)(N); i++) a[i] *= -1; } long long base = 0; for (long long i = 0; i < (long long)(N); i++) { if (i == 0) continue; if (i & 1) { long long tmp = (a[i] + base) - (-1); if (tmp > 0) { ans += tmp; base -= tmp; } } else { long long tmp = 1 - (a[i] + base); if (tmp > 0) { ans += tmp; base += tmp; } } } long long tmp = ans; ans = 0; for (long long i = 0; i < (long long)(N); i++) a[i] *= -1; base = 1 - a[0]; for (long long i = 0; i < (long long)(N); i++) { if (i == 0) continue; if (i & 1) { long long tmp = -1 - (a[i] + base); if (tmp > 0) { ans += tmp; base -= tmp; } } else { long long tmp = 1 - (a[i] + base); if (tmp > 0) { ans += tmp; base += tmp; } } } ans = max((long long)tmp, ans); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import java.util.* fun main(args: Array<String>) { val sc = Scanner(System.`in`) val n = sc.nextInt() val a = (0 until n).map { sc.next().toLong() } println(problem059c(n, a)) } fun problem059c(n: Int, a: List<Long>): Long { val count1 = compute(n, a) val a = a.toMutableList() val a0 = a[0] var count = 0L if (a0 > 0) { val tmp = a0 + 1 a[0] = a0 - tmp count += tmp } else { val tmp = a0 - 1 a[0] = a0 - tmp count -= tmp } val count2 = compute(n, a) + count return Math.min(count1, count2) } fun compute(n: Int, a: List<Long>): Long { val a = a.toMutableList() var count = 0L var sum = 0L for (i in 0 until n) { if (sum + a[i] == 0L) { if (a[i] < 0) { a[i] = a[i] - 1 } else { a[i] = a[i] + 1 } } sum += a[i] if (i >= n - 1) { continue } val sum2 = sum + a[i + 1] if (sum * sum2 < 0) { continue } else { if (sum > 0) { val tmp = sum2 + 1 a[i + 1] = sum2 - tmp count += tmp } else { val tmp = sum2 - 1 a[i + 1] = sum2 - tmp count -= tmp } } } return count }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, no, ans; int main() { cin >> n; int a; for (int i = 0; i < n; i++) { cin >> a; if (i == 0) { no = a; } else { if (no > 0) { no += a; if (no >= 0) { ans += no + 1; no = -1; } } else { no += a; if (no <= 0) { ans += no * -1 + 1; no = 1; } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; template <typename T> void putv(vector<T>& V) { for (auto x : V) cout << x << " "; cout << endl; } template <class T> vector<T> getv(long long n) { vector<T> Vector_temp; for (int(i) = 0; (i) < (n); (i)++) { T input; cin >> input; Vector_temp.emplace_back(input); } return Vector_temp; } long long gcd(long long c, long long b) { while (1) { if (c % b != 0) { long long tmp = b; b = c % b; c = tmp; } else { return b; } } } int main() { long long n; cin >> n; vector<long long> a((n), 0); ; a = getv<long long>(n); long long sum = 0; sum = a[0]; int b = -1; if (sum > 0) { b = 1; } long long ans = 0; for (int(i) = 1; (i) < n; (i)++) { sum += a[i]; if (b > 0) { if (sum >= 0) { ans += sum + 1; sum = -1; } b = -1; } else { if (sum <= 0) { ans += ((-sum) + 1); sum = 1; } b = 1; } } cout << (ans) << endl; ; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def f(a) g = lambda{|car, cdr, total=0| sum = car r = [car] cdr.each{|curr| case sum <=> 0 when 1; r << new_curr = [curr, -sum-1].min sum += new_curr total += curr - new_curr when -1; r << new_curr = [curr, -sum+1].max sum += new_curr total += new_curr - curr end } # p r total += 1 if sum == 0 total } x = g.(a[0], a[1..-1]) y = g.(a[0] > 0 ? -1 : 1, a[1..-1], a[0].abs+1) [x, y].min end N = gets.to_i A = gets.split.take(N).map(&:to_i) p f(A)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) def sol(S): ret = 0 for a in A[1:]: b = a if S * (S + b) > 0: b = (abs(S) + 1) * (1 if S < 0 else -1) if S + b == 0: b = b - 1 if b < 0 else b + 1 ret += abs(b - a) S += b return ret ans = min( sol(A[0]), sol(-1 if A[0] >= 0 else 0) + abs(A[0]) + (1 if A[0] >= 0 else 0) ) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n + 1, 0); for (long long &x : a) cin >> x; long long ans = 0; if (a[0] == 0) { int cnt = 0, memo; for (int i = 0; i < n && a[i] == 0; i++) { cnt++; int m = 1 + i; memo = m; } if (memo == n) { a[0] = 1; ans++; } if (a[memo] > 0 && cnt % 2 != 0) { a[0] = -1; ans++; } if (a[memo] > 0 && cnt % 2 == 0) { a[0] = 1; ans++; } if (a[memo] < 0 && cnt % 2 != 0) { a[0] = 1; ans++; } if (a[memo] < 0 && cnt % 2 == 0) { a[0] = -1; ans++; } } long long sum = a[0]; if (a[0] > 0) { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum >= 0) { sum--; ans++; } } if (i % 2 == 0) { while (sum <= 0) { sum++; ans++; } } } } if (a[0] < 0) { for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == 1) { while (sum <= 0) { sum++; ans++; } } if (i % 2 == 0) { while (sum >= 0) { sum--; ans++; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.FileReader; import java.io.FileWriter; import java.util.Arrays; import java.util.Collections; import java.util.ArrayList; import java.util.List; import java.util.HashSet; import java.util.Comparator; import java.util.Set; import java.util.HashMap; import java.util.Map; public class Main { // 標準入力 static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); // 標準入力数値配列用 int static int[] inputval() throws Exception { String[] strarray = br.readLine().trim().split(" "); int[] intarray = new int[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /* 標準入力数値配列用 long */ static long[] inputLongArr() throws Exception { String[] strarray = br.readLine().trim().split(" "); long[] longarray = new long[strarray.length]; for (int i = 0; i < longarray.length; i++) { longarray[i] = Long.parseLong(strarray[i]); } return longarray; } // 標準入力数値リスト用 int static List<Integer> inputIntList() throws Exception { List<String> strList = Arrays.asList(br.readLine().trim().split(" ")); List<Integer> intList = new ArrayList<Integer>(); for (String elem : strList){ intList.add(Integer.parseInt(elem)); } return intList; } // 標準入力数値配列用 integer 降順ソート用 static Integer[] inputvalInteger() throws Exception { String[] strarray = br.readLine().trim().split(" "); Integer[] intarray = new Integer[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /*標準入力long*/ static long inputLong() throws Exception { return Long.parseLong(br.readLine()); } /*標準入力long*/ static int inputInt() throws Exception { return Integer.parseInt(br.readLine()); } public static void main(String[] args) throws Exception { // write your code here int n = inputInt(); long [] al = inputLongArr(); long sum = al[0]; long sum2 = al[0]; long ans = 0; long ans2 = 0; boolean nextPlusF = al[0] < 0; for(int i=1;i<n;i++){ sum += al[i]; if(nextPlusF && sum <=0){ ans += 1-sum; sum += ans; }else if ((! nextPlusF) && sum >= 0){ ans += sum +1; sum -= ans; } nextPlusF = !nextPlusF; } nextPlusF = !(al[0] < 0); for(int i=1;i<n;i++){ sum2 += al[i]; if(nextPlusF && sum2 <=0){ ans2 += 1-sum2; sum2 += ans2; }else if ((! nextPlusF) && sum2 >= 0){ ans2 += sum2 +1; sum2 -= ans2; } nextPlusF = !nextPlusF; } System.out.println(Math.min(ans,ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long int> list(n); for (int i = 0; i < n; i++) { cin >> list.at(i); } long long int count = 0, sum = 0; bool flag = true; for (int i = 0; i < n; i++) { if (flag) { sum = list.at(i); if (sum == 0) { if (i == 0) { count += 1; } else { count += 2; } } else { flag = false; sum = sum / abs(sum) * (abs(sum) - 1); } } else { long long int temp_sum = sum; sum += list.at(i); if (sum * temp_sum >= 0) { count += abs(sum) + 1; if (temp_sum > 0) { sum = -1; } else { sum = 1; } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100010], sum[100010], ans, s; long long delta; int main() { scanf("%d", &n); sum[0] = 0LL; for (int i = 1; i <= n; i++) { scanf("%lld", &a[i]); sum[i] = sum[i - 1] + a[i]; } ans = 0LL; delta = 0LL; for (int i = 2; i <= n; i++) { sum[i] += delta; if (sum[i - 1] < 0) { if (sum[i] <= 0) { ans += 1 - sum[i]; delta += 1 - sum[i]; sum[i] = 1; } } else if (sum[i] >= 0) { ans += sum[i] + 1; delta -= sum[i] + 1; sum[i] = -1; } } s = 0LL; delta = 0LL; if (sum[1] < 0) { s += 1 - sum[1]; delta += 1 - sum[1]; sum[1] = 1; } else { s += sum[1] + 1; delta -= sum[1] + 1; sum[1] = -1; } for (int i = 2; i <= n; i++) { sum[i] += delta; if (sum[i - 1] < 0) { if (sum[i] <= 0) { s += 1 - sum[i]; delta += 1 - sum[i]; sum[i] = 1; } } else if (sum[i] >= 0) { s += sum[i] + 1; delta -= sum[i] + 1; sum[i] = -1; } } printf("%lld\n", min(s, ans)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void dump_func() {} template <class Head, class... Tail> void dump_func(Head&& head, Tail&&... tail) { cerr << head; if (sizeof...(Tail) == 0) { cerr << " "; } else { cerr << ", "; } dump_func(std::move(tail)...); } template <typename T> ostream& operator<<(ostream& os, vector<T>& vec) { os << "{"; for (int i = 0; i < vec.size(); i++) { os << vec[i] << (i + 1 == vec.size() ? "" : ", "); } os << "}"; return os; } int dy[] = {0, 0, 1, -1, 0}; int dx[] = {1, -1, 0, 0, 0}; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int a[n]; for (int i = 0; i < (int)(n); i++) cin >> a[i]; int res = -1; int s = 0; int flag = 1; int c = 0; for (int i = 0; i < (int)(n); i++) { s += a[i]; if (flag * s > 0) { } else { c += abs(s) + 1; s = flag; } flag *= -1; } res = c; s = 0; flag = -1; c = 0; for (int i = 0; i < (int)(n); i++) { s += a[i]; if (flag * s > 0) { } else { c += abs(s) + 1; s = flag; } flag *= -1; } res = min(c, res); cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main{ public static void main(String[]args){ Scanner sc = new Scanner(System.in); int N = Integer.parseInt(sc.nextLine()); long ans = 0; long now = sc.nextInt(); for(int i = 1; i < N; i++){ int A = sc.nextInt(); if(now > 0){ if(now + A >= 0){ ans += now+A+1; now = -1; }else{ now = now+A; } }else if(now < 0){ if(now + A <= 0){ ans += Math.abs(now+A)+1; now = 1; }else{ now = now+A; } }else{ if(A < 0){ ans++; now++; }else if(A > 0){ ans++; now--; }else{ ans++; } } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long res1 = 0, res2 = 0; long long sum1[n], sum2[n]; if (a[0] < 0) { sum1[0] = -a[0] + 1; sum2[0] = a[0]; res1 = res1 + abs(-a[0] + 1); } else if (a[0] > 0) { sum1[0] = a[0]; sum2[0] = -a[0] - 1; res2 = res2 + abs(-a[0] - 1); } else if (a[0] == 0) { sum1[0] = 1; res1 = res1 + 1; sum2[0] = -1; res2 = res2 + 1; } for (int i = 1; i < n; i++) { sum1[i] = sum1[i - 1] + a[i]; long long sum = sum1[i]; if (sum1[i] < 0 && sum1[i - 1] < 0) { sum1[i] += -sum + 1; res1 += abs(-sum + 1); } else if (sum1[i] > 0 && sum1[i - 1] > 0) { sum1[i] += -sum - 1; res1 += abs(-sum - 1); } if (sum1[i] == 0) { sum1[i] = (i % 2 == 0) ? sum1[i] + 1 : sum1[i] - 1; res1 += 1; } sum2[i] = sum2[i - 1] + a[i]; sum = sum2[i]; if (sum2[i] <= 0 && sum2[i - 1] < 0) { sum2[i] += -sum + 1; res2 += abs(-sum + 1); } else if (sum2[i] >= 0 && sum2[i - 1] > 0) { sum2[i] += -sum - 1; res2 += abs(-sum - 1); } if (sum2[i] == 0) { sum2[i] = (i % 2 == 0) ? sum2[i] - 1 : sum2[i] + 1; res2 += 1; } } cout << min(res1, res2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; ll min(ll a, ll b) { if (a >= b) return b; else return a; } ll max(ll a, ll b) { if (a >= b) return a; else return b; } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g * b; } const ll Z = 1000000007; const ll INF = 1 << 30; const ll INF2 = 9000000000000000000LL; bool flag = true; bool fl = false; bool f = false; bool used[210]; bool graph[100][100]; bool visited[8]; int abc[26] = {0}; int main() { ll n, a[100000], b[100000], ansA = 0, ansB = 0; std::cin >> n; for (int i = 0; i < n; i++) { std::cin >> a[i]; b[i] = a[i]; } for (int i = 0; i <= n - 1;) { if (a[i] <= 0) ansA += abs(1 - a[i]), a[i] = 1; i++; if (i == n) break; a[i] += a[i - 1]; if (a[i] >= 0) ansA += abs(a[i] + 1), a[i] = -1; i++; a[i] += a[i - 1]; } for (int i = 0; i <= n - 1;) { if (b[i] >= 0) ansB += abs(b[i] + 1), b[i] = -1; i++; if (i == n) break; b[i] += b[i - 1]; if (b[i] <= 0) ansB += abs(1 - b[i]), b[i] = 1; i++; b[i] += b[i - 1]; } std::cout << min(ansA, ansB) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int N; cin >> N; vector<long long> a(N); for (int i = 0; i < N; i++) { cin >> a[i]; } long long sum = 0; long long cnt = 0; for (int i = 0; i < N; i++) { if (sum + a[i] == 0) { if (sum < 0) { cnt++; a[i]++; } else if (sum > 0) { cnt++; a[i]--; } else { if (a[i + 1] > 0) a[i]++; else if (a[i + 1] < 0) a[i]--; else a[i]++; cnt++; } } if (sum < 0 && sum + a[i] < 0) { int diff = abs(sum + a[i]) + 1; cnt += diff; a[i] += diff; } else if (sum > 0 && sum + a[i] > 0) { int diff = abs(sum + a[i]) + 1; cnt += diff; a[i] -= diff; } sum += a[i]; } for (int i = 0; i < N; i++) { cerr << a[i] << " "; } cerr << endl; cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); ++i) { cin >> a.at(i); } int c = 0; int ans = 0; bool ch = true; int co = 0; if (a.at(0) != 0) { for (int i = 0; i < (int)(n); ++i) { if (ch) { if (co + a.at(i) >= 0) { c += co + a.at(i) + 1; co = -1; } else { co += a.at(i); } ch = false; } else { if (co + a.at(i) <= 0) { c += 1 - co - a.at(i); co = 1; } else { co += a.at(i); } ch = true; } } ch = false; co = 0; for (int i = 0; i < (int)(n); ++i) { if (ch) { if (co + a.at(i) >= 0) { ans += co + a.at(i) + 1; co = -1; } else { co += a.at(i); } ch = false; } else { if (co + a.at(i) <= 0) { ans += 1 - co - a.at(i); co = 1; } else { co += a.at(i); } ch = true; } } ans = min(ans, c); cout << ans << endl; } else { for (int i = 0; i < (int)(n); ++i) { if (ch) { if (co + a.at(i) >= 0) { c += co + a.at(i) + 1; co = -1; } else { co += a.at(i); } ch = false; } else { if (co + a.at(i) <= 0) { c += 1 - co - a.at(i); co = 1; } else { co += a.at(i); } ch = true; } } ch = false; co = 0; for (int i = 0; i < (int)(n); ++i) { if (ch) { if (co + a.at(i) >= 0) { ans += co + a.at(i) + 1; co = -1; } else { co += a.at(i); } ch = false; } else { if (co + a.at(i) <= 0) { ans += 1 - co - a.at(i); co = 1; } else { co += a.at(i); } ch = true; } } ans = min(ans, c); cout << ans << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
program main implicit none integer(8) :: i, j, k, nc integer(8) :: n, sum, sign integer(8) , allocatable :: a(:) read(*,*) n allocate( a(n) ) read(*,*) a if( a(1) .le. 0 ) then sign = -1 else sign = 1 end if sum = a(1) nc = 0 do i = 2, n sign = sign *(-1) if( (sum+a(i))*sign < 0 ) then nc = nc+abs(sum+a(i))+1 a(i) = sign*(abs(sum+a(i))+1) +a(i) end if sum = sum + a(i) end do write(*,'(i0)') nc end program main
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def solve(): n = int(input()) a = list(map(int, input().split())) i = 0 sum = 0 ans = 0 for i in range(n-1): sum += a[i] if sum > 0 and sum+a[i+1] > 0: tmp = -1 - sum ans += abs(tmp - a[i+1]) a[i+1] = tmp elif sum < 0 and sum+a[i+1] < 0: tmp = 1 - sum ans += abs(tmp - a[i+1]) a[i+1] = tmp if sum > 0 and sum+a[n-1] > 0: tmp = -1 -sum ans += abs(tmp - a[n-1]) a[n-1] = tmp elif sum < 0 and sum+a[n-1] < 0: tmp = 1 - sum ans += abs(tmp - a[i-1]) a[n-1] = tmp print(ans) # print(a) if __name__ == "__main__": solve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using P = pair<int, int>; using ll = long long; int main() { int n; cin >> n; int a[114514]; int sum[114514]; for (int i = 0; i < n; i++) cin >> a[i]; sum[0] = a[0]; for (int i = 1; i < n; i++) sum[i] = sum[i - 1] + a[i]; int p = 0, ans1 = 0; for (int i = 0; i < n; i++) { int k = sum[i] + p; if (i % 2 == 0) { if (k < 0) { ans1 += 1 - k; p += 1 - k; } else if (k == 0) { p++; ans1 += 1; } } else { if (k > 0) { ans1 += k + 1; p -= k + 1; } else if (k == 0) { p--; ans1 += 1; } } } p = 0; int ans2 = 0; for (int i = 0; i < n; i++) { int k = sum[i] + p; if (i % 2 == 0) { if (k > 0) { ans2 += k + 1; p -= k + 1; } else if (k == 0) { p--; ans2 += 1; } } else { if (k < 0) { ans2 += 1 - k; p += 1 - k; } else if (k == 0) { p++; ans2 += 1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import Control.Monad import Data.List main=do _<-getLine (a:as)<-map read.words<$>getLine::IO[Integer] print.sum.snd$ mapAccumL f a as f a b | a*(a+b) < 0 = (a+b,0) | a < 0 = (1, 1-(a+b)) | otherwise = ((-1), 1+(a+b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans1 = 0 ans2 = 0 cur = a[0] for i in range(1, n): cun = a[i] # iが偶数のときプラス if i % 2 == 0: # プラスじゃないとき if a[i] + cur <= 0: ans1 += -(a[i] + cur) + 1 cun = -cur + 1 # iが奇数のときマイナス else: # マイナスじゃないとき if a[i] + cur >= 0: ans1 += a[i] + cur + 1 cun = -cur - 1 cur += cun for i in range(1, n): cun = a[i] # iが偶数のときマイナス if i % 2 == 0: # マイナスじゃないとき if a[i] + cur >= 0: ans2 += a[i] + cur + 1 cun = -cur - 1 # iが奇数のときプラス else: # プラスじゃないとき if a[i] + cur <= 0: ans2 += -(a[i] + cur) + 1 cun = -cur + 1 cur += cun print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long array[n]; for (int i = 0; i < n; i++) { cin >> array[i]; } long long answer = 0; long long sum = 0; for (int i = 0; i < n; i++) { if (sum == 0) sum += array[i]; else if (sum < 0) { if (sum + array[i] > 0) { sum += array[i]; } else { answer += abs((-1) * sum + 1 - array[i]); sum = 1; } } else { if (sum + array[i] < 0) { sum += array[i]; } else { answer += abs((-1) * sum - 1 - array[i]); sum = -1; } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[100000], sum[2][100000], c[2]; int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] == 0) { sum[0][0] = 1; sum[1][0] = -1; c[0] = c[1] = 1; } else { sum[0][0] = sum[1][0] = a[0]; } for (int i = 1; i < n; i++) { for (int j = 0; j < 2; j++) { if (sum[j][i - 1] > 0) { if (sum[j][i - 1] + a[i] >= 0) { c[j] += abs(sum[j][i - 1] + a[i]) + 1; sum[j][i] = -1; } else sum[j][i] = sum[j][i - 1] + a[i]; } else { if (sum[j][i - 1] + a[i] > 0) sum[j][i] = sum[j][i - 1] + a[i]; else { c[j] += abs(sum[j][i - 1] + a[i]) + 1; sum[j][i] = 1; } } } } cout << min(c[0], c[1]) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, -1, 0, 0}; int dy[4] = {0, 0, 1, -1}; int main() { std::ios::sync_with_stdio(false); std::cin.tie(0); int n; cin >> n; int b[100001]; for (int i = 0; i < (n); i++) { int l; cin >> l; b[i] = l; } for (int i = 0; i < (n); i++) b[i + 1] += b[i]; long long int sm = 0; for (int i = 1; i < n; i++) { if (b[i - 1] * b[i] < 0) continue; int target = (b[i - 1] > 0) ? -1 : 1; sm += abs(b[i] - target); int dif = -b[i] + target; for (int j = i; j < n; j++) { b[j] += dif; } } cout << (sm) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int check(long long int a) { if (a > 0) return 1; if (a < 0) return 2; return 0; } int main() { long long int sum, n, i, cnt = 0; cin >> n; long long int x, a[n], h[n]; for (i = 0; i < n; i++) cin >> a[i]; sum = a[0]; if (sum == 0) cnt++, sum++; h[0] = sum; for (i = 1; i < n; i++) { if (sum == 0) { cnt++; if (h[i - 1] > 0) h[i] = sum = 1; else h[i] = sum = -1; sum = 1; continue; } if (check(sum + a[i]) == check(sum)) { if (sum < 0) { x = 1 - sum; cnt += (x - a[i]); sum = 1; } else { x = -1 - sum; cnt += (a[i] - x); sum = -1; } } else sum += a[i]; h[i] = sum; } cout << cnt; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); vector<long long int> VL(N), VR(N); long long int t = 0LL; for (int i = 0; i < N; i++) { cin >> A[i]; t += A[i]; VL[i] = VR[i] = t; } long long int l = 0LL, r = 0LL; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (VL[i] > 0) { continue; } else { l += 1 - VL[i]; VL[i] = 1; if (i < N - 1) { VL[i + 1] = VL[i] + A[i + 1]; } } } else { if (VL[i] < 0) { continue; } else { l += VL[i] + 1; VL[i] = -1; if (i < N - 1) { VL[i + 1] = VL[i] + A[i + 1]; } } } } for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (VR[i] < 0) { continue; } else { r += VR[i] + 1; VR[i] = -1; if (i < N - 1) { VR[i + 1] = VR[i] + A[i + 1]; } } } else { if (VR[i] > 0) { continue; } else { r += 1 - VR[i]; VR[i] = 1; if (i < N - 1) { VR[i + 1] = VR[i] + A[i + 1]; } } } } cout << min(l, r) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Text; namespace ABC059C { class Program { // -1 4 3 2 -5 4 // -1 4 -4 2 -5 5 -> 8 static int sequentialize(int[] a) { var n = a.Length; var sum = a[0]; var changeCount = 0; int v = a[0] > 0 ? 1 : -1; for (int i = 1; i < n; i++) { var temp = sum + a[i]; if (sum > 0 && temp > 0) { // tempを-1にしたい var prev = a[i]; a[i] = -sum - 1; changeCount += Math.Abs(prev - a[i]); } else if (sum < 0 && temp < 0) { // tempを+1にしたい var prev = a[i]; a[i] = -sum + 1; changeCount += Math.Abs(prev - a[i]); } else if (temp == 0) { changeCount += 1; a[i] = v; } sum += a[i]; v = -v; } return changeCount; } static void Solve() { var n = Input.NextInt(); var a = Input.NextInt(n).ToArray(); var b = new int[n]; a.CopyTo(b, 0); var changeCount1 = sequentialize(a); // 先頭の符号反転 b[0] = b[0] / -b[0]; var changeCount2 = sequentialize(b) + Math.Abs(b[0]) + 1; Console.WriteLine(Math.Min(changeCount1, changeCount2)); } #region Competitive Template public static void Main(string[] args) { var needsFlushOutput = true; if (needsFlushOutput) { // 細かく出力しないようにする var sw = new System.IO.StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; Console.SetOut(sw); } // 仮想的に標準入力をセットする // NextLine系を使っていると使えない //Input.SetText(""); Solve(); Console.Out.Flush(); } static class Input { static char[] separator = { ' ' }; public static bool IsEof { get; set; } static Queue<string> q { get; set; } static Input() { IsEof = false; q = new Queue<string>(); } /// <summary> /// 入力予約 /// </summary> /// <param name="items"></param> public static void SetText(IEnumerable<string> items) { foreach (var item in items) { SetText(item); } } /// <summary> /// 入力予約 /// </summary> /// <param name="s"></param> /// <returns></returns> public static bool SetText(string s) { if (s == null) return false; foreach (var elem in s.Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries)) { q.Enqueue(elem); } return true; } /// <summary> /// 内部queueに入力からの値をsplitして格納する /// </summary> /// <returns></returns> static bool read() { var s = Console.ReadLine(); if (s == null) return false; foreach (var elem in s.Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries)) { q.Enqueue(elem); } if (!q.Any()) return read(); return true; } /// <summary> /// 次のstringを一つ読み込む /// </summary> /// <returns></returns> public static string Next() { if (!q.Any()) { if (!read()) { IsEof = true; return ""; } } return q.Dequeue(); } public static int NextInt() => int.Parse(Next()); public static long NextLong() => long.Parse(Next()); public static double NextDouble() => double.Parse(Next()); public static List<string> Next(int n) => Enumerable.Range(0, n).Select(_ => Next()).ToList(); public static List<int> NextInt(int n) => Next(n).Select(x => int.Parse(x)).ToList(); public static List<long> NextLong(int n) => Next(n).Select(x => long.Parse(x)).ToList(); public static List<double> NextDouble(int n) => Next(n).Select(x => double.Parse(x)).ToList(); public static List<string> NextLine() => Console.ReadLine().Trim().Split(separator, StringSplitOptions.RemoveEmptyEntries).ToList(); public static List<int> NextIntLine() => NextLine().Select(x => int.Parse(x)).ToList(); public static List<long> NextLongLine() => NextLine().Select(x => long.Parse(x)).ToList(); public static List<double> NextDoubleLine() => NextLine().Select(x => double.Parse(x)).ToList(); } #endregion } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int64_t> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); int64_t t = 0LL, res1 = 0LL, res2 = 0LL; for (int i = 0; i < N; i++) { t += a.at(i); if (i % 2 == 0) { if (t <= 0) { res1 += (1 - t); t = 1LL; } } else { if (t >= 0) { res1 += abs(-1 - t); t = -1LL; } } } t = 0LL; for (int i = 0; i < N; i++) { t += a.at(i); if (i % 2 == 1) { if (t <= 0) { res2 += (1 - t); t = 1LL; } } else { if (t >= 0) { res2 += abs(-1 - t); t = -1LL; } } } int res = min(res1, res2); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>; using vb = vector<bool>; using vvb = vector<vb>; using mii = map<int, int>; using pqls = priority_queue<long long>; using pqlg = priority_queue<long long, vector<long long>, greater<long long>>; using mll = map<long long, long long>; using pll = pair<long long, long long>; using sll = set<long long>; long long divup(long long a, long long b); long long kaijou(long long i); long long P(long long n, long long k); long long C(long long n, long long k); long long GCD(long long a, long long b); long long LCM(long long a, long long b); bool prime(long long N); double distance(vector<long long> p, vector<long long> q, long long n); void press(vector<long long> &v); void ranking(vector<long long> &v); void erase(vector<long long> &v, long long i); void unique(vector<long long> &v); void printv(vector<long long> v); vector<ll> keta(ll x); long long modpow(long long a, long long n, long long mod); long long modinv(long long a, long long mod); vector<long long> inputv(long long n); vector<long long> yakusuu(int n); map<long long, long long> soinsuu(long long n); vector<vector<long long>> maze(long long i, long long j, vector<string> &s); vector<long long> eratos(long long n); set<long long> eraset(long long n); long long divup(long long a, long long b) { long long x = abs(a); long long y = abs(b); long long z = (x + y - 1) / y; if ((a < 0 && b > 0) || (a > 0 && b < 0)) return -z; else if (a == 0) return 0; else return z; } long long kaijou(long long i) { if (i == 0) return 1; long long j = 1; for (long long k = 1; k <= i; k++) { j *= k; } return j; } long long P(long long n, long long k) { if (n < k) return 0; long long y = 1; for (long long i = 0; i < k; i++) { y *= (n - i); } return y; } long long C(long long n, long long k) { if (n < k) return 0; return P(n, k) / kaijou(k); } long long GCD(long long a, long long b) { if (a < b) swap(a, b); long long d = a % b; if (d == 0) { return b; } return GCD(b, d); } long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; } bool prime(long long N) { if (N == 1) { return false; } if (N < 0) return false; long long p = sqrt(N); for (long long i = 2; i <= p; i++) { if (N % i == 0) { return false; } } return true; } double distance(vector<long long> p, vector<long long> q, long long n) { double x = 0; for (long long i = 0; i < n; i++) { x += pow((p.at(i) - q.at(i)), 2); } return sqrt(x); } void press(vector<long long> &v) { long long n = v.size(); vector<long long> w(n); map<long long, long long> m; for (auto &p : v) { m[p] = 0; } long long i = 0; for (auto &p : m) { p.second = i; i++; } for (long long i = 0; i < n; i++) { w.at(i) = m[v.at(i)]; } v = w; return; } void ranking(vector<long long> &v) { long long n = v.size(); map<long long, long long> m; long long i; for (i = 0; i < n; i++) { m[v.at(i)] = i; } vector<long long> w(n); i = 0; for (auto &p : m) { v.at(i) = p.second; i++; } return; } void erase(vector<long long> &v, long long i) { long long n = v.size(); if (i > n - 1) return; for (long long j = i; j < n - 1; j++) { v.at(j) = v.at(j + 1); } v.pop_back(); return; } void unique(vector<long long> &v) { long long n = v.size(); set<long long> s; long long i = 0; while (i < n) { if (s.count(v.at(i))) { erase(v, i); n--; } else { s.insert(v.at(i)); i++; } } return; } void printv(vector<long long> v) { cout << "{ "; for (auto &p : v) { cout << p << ","; } cout << "}" << endl; } vector<ll> keta(ll x) { if (x == 0) return {0}; ll n = log10(x) + 1; vll w(n, 0); for (ll i = 0; i < n; i++) { ll p; p = x % 10; x = x / 10; w[n - 1 - i] = p; } return w; } long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); } vector<long long> inputv(long long n) { vector<long long> v(n); for (long long i = 0; i < n; i++) { cin >> v[i]; } return v; } vector<long long> yakusuu(long long n) { vector<long long> ret; for (long long i = 1; i <= sqrt(n); ++i) { if (n % i == 0) { ret.push_back(i); if (i * i != n) { ret.push_back(n / i); } } } sort(ret.begin(), ret.end()); return ret; } map<long long, long long> soinsuu(long long n) { map<long long, long long> m; long long p = sqrt(n); while (n % 2 == 0) { n /= 2; if (m.count(2)) { m[2]++; } else { m[2] = 1; } } for (long long i = 3; i * i <= n; i += 2) { while (n % i == 0) { n /= i; if (m.count(i)) { m[i]++; } else { m[i] = 1; } } } if (n != 1) m[n] = 1; return m; } vector<vector<long long>> maze(ll i, ll j, vector<string> &s) { ll h = s.size(); ll w = s[0].size(); queue<vector<long long>> q; vector<vector<long long>> dis(h, vll(w, -1)); q.push({i, j}); dis[i][j] = 0; while (!q.empty()) { auto v = q.front(); q.pop(); if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) { dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] - 1, v[1]}); } if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) { dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] - 1}); } if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) { dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1; q.push({v[0] + 1, v[1]}); } if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) { dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1; q.push({v[0], v[1] + 1}); } } return dis; } long long modC(long long n, long long k, long long mod) { if (n < k) return 0; long long p = 1, q = 1; for (long long i = 0; i < k; i++) { p = p * (n - i) % mod; q = q * (i + 1) % mod; } return p * modinv(q, mod) % mod; } long long POW(long long a, long long n) { long long res = 1; while (n > 0) { if (n & 1) res = res * a; a = a * a; n >>= 1; } return res; } vector<long long> eratos(long long n) { if (n < 2) return {}; vll v(n - 1); for (long long i = 0; i < n - 1; i++) { v[i] = i + 2; } ll i = 0; while (i < n - 1) { ll p = v[i]; for (ll j = i + 1; j < n - 1; j++) { if (v[j] % p == 0) { v.erase(v.begin() + j); n--; } } i++; } v.resize(n - 1); return v; } set<long long> eraset(long long n) { set<long long> s; vll v = eratos(n); for (auto &t : v) { s.insert(t); } return s; } vll line(ll x1, ll y1, ll x2, ll y2) { vector<ll> v(3); v[0] = y1 - y2; v[1] = x2 - x1; v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2); return v; } double dis(vll v, ll x, ll y) { double s = sqrt(v[0] * v[0] + v[1] * v[1]); return (double)abs(v[0] * x + v[1] * y + v[2]) / s; } ll const mod = 1e9 + 7; int main() { ll n; cin >> n; auto a = inputv(n); ll l = 0; ll res = 0; for (long long i = 0; i < n; i++) { if (i == 0 && a[0] == 0) { for (long long j = 0; j < n - 1; j++) { if (a[j + 1]) { a[0] = a[j + 1] / abs(a[j + 1]); if ((j + 1) & 1) a[0] *= (-1); break; } } if (!a[0]) a[0] = 1; res++; } else if (l < 0) { if (a[i] < -l + 1) { res += -l + 1 - a[i]; a[i] = -l + 1; l = 1; } else { l += a[i]; } } else if (l > 0) { if (a[i] > -l - 1) { res += abs(a[i] - (-l - 1)); a[i] = -l - 1; l = -1; } else { l += a[i]; } } else if (i == 0) { l = a[0]; } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100100]; for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0, sum = a[0]; int sign = (a[0] > 0 ? 1 : -1); for (int i = 1; i < n; i++) { sum += a[i]; if (sum == 0) { sum += -sign; ans++; } if (sign > 0 && sum > 0) { long long x = sum + 1; sum -= x; ans += x; } else if (sign < 0 && sum < 0) { long long y = abs(sum) + 1; sum += y; ans += y; } sign *= -1; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
#!/usr/bin/env python # -*- coding: utf-8 -*- def seiyasum(num,alist): sum1 = 0 for a in range(num): sum1 = sum1+a return sum1 n = int(raw_input()) a = map(int,raw_input().split(" ")) k = a[0] answer = 0 for m in range(n-1): i = a[m+1] if(k > 0): l = -1 else: l = 1 while((k+i)*k>=0): i = i + l answer = answer + 1 k = k+i print answer
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n; cin >> n; long long a[n]; for (long long i = 0; i < n; i++) cin >> a[i]; long long counter = 0; if (a[0] >= 0) { for (long long i = 1; i < n; i++) { long long total = 0; for (int j = 0; j <= i; j++) { total += a[j]; } if (i % 2 == 0 && total <= 0) { counter += abs(total - 1); a[i] += abs(total - 1); } else if (i % 2 != 0 && total >= 0) { counter += abs(total - (-1)); a[i] -= abs(total - (-1)); } } } else { for (long long i = 1; i < n; i++) { long long total = 0; for (long long j = 0; j <= i; j++) { total += a[j]; } if (i % 2 == 0 && total >= 0) { counter += abs(total - (-1)); a[i] -= abs(total - (-1)); } else if (i % 2 != 0 && total <= 0) { counter += abs(total - 1); a[i] += abs(total - 1); } } } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
use std::io::prelude::*; fn input<T>() -> T where T: std::str::FromStr, { let stdin = std::io::stdin(); let token: String = stdin .lock() .bytes() .map(|c| c.unwrap() as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect(); token.parse().ok().unwrap() } fn main() { let n: usize = input(); let a: Vec<i64> = (0..n).map(|_| input()).collect(); let sum: Vec<i64> = a .iter() .scan(0, |acc, &a| { *acc += a; Some(*acc) }) .collect(); let mut x = 0; let mut ans = 0; for i in 1..n { if (sum[i - 1] + x > 0 && sum[i] + x < 0) || (sum[i - 1] + x < 0 && sum[i] + x > 0) { continue; } if sum[i - 1] + x > 0 { ans += sum[i] + x + 1; x -= sum[i] + x + 1; } else { ans += -sum[i] - x + 1; x -= sum[i] + x - 1; } } println!("{}", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException{ Sequence solver = new Sequence(); solver.readInput(); solver.solve(); solver.writeOutput(); } static class Sequence { private int n; private long a[]; private int output; private Scanner scanner; public Sequence() { this.scanner = new Scanner(System.in); } public void readInput() { n = Integer.parseInt(scanner.next()); a = new long[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(scanner.next()); } } private int count(boolean sign) { int count=0; long sum=0; for(int i=0; i<n; i++) { sum += a[i]; if((i%2==0) == sign) { // a[i]までの合計を正にするとき if(sum<=0) { count += Math.abs(sum)+1; sum = 1; } } else if((i%2==0) != sign){ // a[i]までの合計を負にするとき if(0<=sum) { count += Math.abs(sum)+1; sum = -1; } } } return count; } public void solve() { output = Math.min(count(true), count(false)); } public void writeOutput() { System.out.println(output); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int calc(int n, int* a, bool isPositive) { int nCount = 0, sum = 0; for (int i = 0; i < n; i++) { if (isPositive) { if ((a[i] + sum) < 0) { sum += a[i]; } else { nCount += abs(a[i] + sum) + 1; sum = -1; } isPositive = !isPositive; } else { if ((a[i] + sum) > 0) { sum += a[i]; } else { nCount += abs(a[i] + sum) + 1; sum = 1; } isPositive = !isPositive; } } return nCount; } int main() { int n; int a[100005]; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; bool isPositive; int nCount[2]; isPositive = true; nCount[0] = calc(n, a, isPositive); isPositive = false; nCount[1] = calc(n, a, isPositive); cout << min(nCount[0], nCount[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int Inf = 1e9; const double EPS = 1e-9; int gcd(int a, int b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } int lcm(int a, int b) { return a * b / gcd(a, b); } int bitCount(long bits) { bits = (bits & 0x55555555) + (bits >> 1 & 0x55555555); bits = (bits & 0x33333333) + (bits >> 2 & 0x33333333); bits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f); bits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff); return (bits & 0x0000ffff) + (bits >> 16 & 0x0000ffff); } int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int ans = Inf; int cnt = 0; vector<int> a(n), b(n); for (int i = 0; i < (int)n; ++i) { cin >> a[i]; b[i] = a[i]; } int sum = a[0]; for (int i = 1; i < (int)n; ++i) { sum += a[i]; if (i % 2 == 1 && sum >= 0) { int diff = abs(sum) + 1; cnt += diff; sum = -1; } else if (i % 2 == 0 && sum <= 0) { int diff = abs(sum) + 1; cnt += diff; sum = 1; } } ans = min(ans, cnt); cnt = 0; sum = b[0]; for (int i = 1; i < (int)n; ++i) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { int diff = abs(sum) + 1; cnt += diff; sum = -1; } else if (i % 2 == 1 && sum <= 0) { int diff = abs(sum) + 1; cnt += diff; sum = 1; } } ans = min(ans, cnt); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(lambda x: int(x), input().split())) sum_last=a[0] ans=0 for i in a[1:]: sum_cur=sum_last+i if sum_cur*sum_last>=0: ans+=abs(sum_cur)+1 if sum_last>0: sum_last=-1 else: sum_last=1 else: sum_last=sum_cur print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[] = {1, 0, -1, 0}; int dy[] = {0, 1, 0, -1}; int n; long long solve(vector<long long> a, bool flag) { long long sum = a[0], ans; if (flag) ans = 0; else { ans = abs(a[0]) + 1; if (a[0] < 0) { sum = 1; } else { sum = -1; } } for (int i = 1; i < n; i++) { long long tmp = sum; sum += a[i]; if (sum >= 0 && tmp > 0) { ans += abs(sum) + 1; sum = -1; } else if (sum <= 0 && tmp < 0) { ans += abs(sum) + 1; sum = 1; } } return ans; } int main() { cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; cout << min(solve(a, true), solve(a, false)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long Num[1111111]; long long Sum[1111111]; long long Out; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%lld", &Num[i]); if (Num[1] > 0) { for (int i = 1; i <= n; i++) { Sum[i] = Sum[i - 1] + Num[i]; if (i % 2 == 0) { if (Sum[i] >= 0) { Out += (Sum[i] + 1); Sum[i] = -1; } } else { if (Sum[i] <= 0) { Out += (1 - Sum[i]); Sum[i] = 1; } } } } else { for (int i = 1; i <= n; i++) { Sum[i] = Sum[i - 1] + Num[i]; if (i % 2 == 1) { if (Sum[i] >= 0) { Out += (Sum[i] + 1); Sum[i] = -1; } } else { if (Sum[i] <= 0) { Out += (1 - Sum[i]); Sum[i] = 1; } } } } printf("%lld\n", Out); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MaxN = 1e5 + 5; int box[MaxN]; int n; int main() { while (~scanf("%d", &n)) { for (int i = 1; i <= n; i++) scanf("%d", &box[i]); long long sum = box[1]; long long ans = 0; for (int i = 2; i <= n; i++) { long long temp = sum + box[i]; if (temp * sum >= 0) { ans += abs(temp) + 1; if (sum > 0) sum = -1; else sum = 1; } else sum = temp; } printf("%lld\n", ans); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int,input().split())) cnt = 0 sum = A[0] for i in range(1,n): if abs(sum)>=abs(A[i]): cnt += abs(sum+A[i]) + 1 if sum>0: A[i] -=abs(sum+A[i]) + 1 else: A[i] +=abs(sum+A[i]) + 1 sum += A[i] print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def check1(a): sum = 0 for i in range(len(a)): if(i % 2 == 0): sum += a[i] if(a[i] >= 0 or sum >= 0): return (i, -1) else: sum += a[i] if(a[i] <= 0 or sum <= 0): return (i, 1) return True def check2(a): sum = 0 for i in range(len(a)): if(i % 2 == 0): sum += a[i] if(a[i] <= 0 or sum <= 0): return (i, 1) else: sum += a[i] if(a[i] >= 0 or sum >= 0): return (i, -1) return True n = input() b = input().split() a = [int(b[i]) for i in range(len(b))] a2 = list(a) ans1 = 0 ans2 = 0 while(True): c = check1(a) if(c == True): break a[c[0]] += c[1] ans1 += 1 while(True): c = check2(a2) if(check2(a2) == True): break a2[c[0]] += c[1] ans2 += 1 print(ans1) if(ans1<ans2) else print(ans2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<iostream> using namespace std; int main(){ int n, ans=0, d=0; cin >> n; int a[n]; cin >> a[0]; int sum[0]=a[0]; for(int i=1; i<n; i++){ cin >> a[i]; sum[i] = sum[i-1] + a[i]; } for(int i=1; i<n; i++){ if((sum[i-1]+d)*(sum[i]+d)>=0){ d -= sum[i]+1; ans += abs(sum[i]+1); } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
gets seq = gets.split.map(&:to_i) def foo(seq) cnt = 0 sum = seq.shift seq.each{|a| if sum < 0 if sum + a > 0 sum += a else cnt += 1 - (sum + a) sum = 1 end else if sum + a < 0 sum += a else cnt += 1 + (sum + a) sum = -1 end end ## p [a, sum, cnt] } return cnt end if seq[0] != 0 p foo(seq) else seq.shift p [foo([1] + seq), foo([-1] + seq)].min end
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef vector<vector<int> > vii; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)n; i++) cin >> a[i]; long long sum = a[0], op_cnt = 0; for (int i = (int)1; i < (int)n; i++) { if (sum < 0 && sum + a[i] < 0) { op_cnt += (-1) * (sum + a[i]) + 1; sum = 1; } else if (sum > 0 && sum + a[i] > 0) { op_cnt += sum + a[i] + 1; sum = -1; } else sum += a[i]; } cout << op_cnt << endl; }