Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); ArrayList<Integer> a = new ArrayList<>(); for(int i=0; i<n; i++){ a.add(Integer.parseInt(sc.next())); } ArrayList<Integer> a1 = new ArrayList<>(a); ArrayList<Integer> a2 = new ArrayList<>(a); int ans1 = 0; for(int i=0; i<n; i++){ if (i%2 == 0){ int b = Math.max(1 - a1.subList(0, i+1).stream().mapToInt(Integer::intValue).sum(), 0); a1.set(i, a1.get(i) + b); ans1 += b; }else { int b = Math.max(a1.subList(0, i+1).stream().mapToInt(Integer::intValue).sum() + 1, 0); a1.set(i, a1.get(i) - b); ans1 += b; } } int ans2 = 0; for(int i=0; i<n; i++){ if (i%2 == 0){ int b = Math.max(a2.subList(0, i+1).stream().mapToInt(Integer::intValue).sum() + 1, 0); a2.set(i, a2.get(i) - b); ans2 += b; }else { int b = Math.max(1 - a2.subList(0, i+1).stream().mapToInt(Integer::intValue).sum(), 0); a2.set(i, a2.get(i) + b); ans2 += b; } } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N; cin >> N; vector<long long> data(N); vector<long long> rui(N + 1); long long K = 0; long long G = 0; for (int(i) = int(0); (i) < int(N); (i)++) { cin >> data[i]; rui[i + 1] = data[i] + rui[i]; if ((i % 2) == 0) { K += rui[i + 1]; } else { G += rui[i + 1]; } } long long p = 0; long long ans = 0; for (int(i) = int(1); (i) < int(N + 1); (i)++) { if (K < G) { if ((i % 2) == 0) { if (rui[i] + p <= 0) { ans += (rui[i] + p) * -1 + 1; p += (rui[i] + p) * -1 + 1; } } else { if (rui[i] + p >= 0) { ans += (rui[i] + p) + 1; p += (rui[i] + p) * -1 - 1; } } } else { if ((i % 2) == 1) { if (rui[i] + p <= 0) { ans += (rui[i] + p) * -1 + 1; p += (rui[i] + p) * -1 + 1; } } else { if (rui[i] + p >= 0) { ans += (rui[i] + p) + 1; p += (rui[i] + p) * -1 - 1; } } } } cout << (ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base ::sync_with_stdio(0); cin.tie(0); cout.tie(0); int n, curr = 0, prev; long long t = 0; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; prev = curr; curr += a[i]; if (i != 0) { if (prev < 0 && curr <= 0) { t += -curr + 1; curr = 1; } else if (prev > 0 && curr >= 0) { t += curr + 1; curr = -1; } } } cout << t; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = [int(i) for i in input().split()] sam = a[0] old = sam num = 0 for i in range(1, len(a)): sam += a[i] if sam >= 0 and old > 0: num += (abs(sam) + 1) sam -= (sam + 1) elif sam <= 0 and old < 0: num += (abs(sam) + 1) sam -= (sam + 1) old = sam print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s = [a[0]] for i in range(1, n): s.append(s[-1]+a[i]) cnt_a = 0 base = 0 for i in range(n): if (base + s[i] > 0) and (i % 2 == 1) or (base + s[i] < 0) and (i % 2 == 0): cnt_a += (1 + abs(base + s[i])) base += (1 + abs(base + s[i])) * (-1) ** i cnt_b = 0 base = 0 for i in range(n): if (base + s[i] < 0) and (i % 2 == 1) or (base + s[i] > 0) and (i % 2 == 0): cnt_b += (1 + abs(base + s[i])) base -= (1 + abs(base + s[i])) * (-1) ** i print(min(cnt_a, cnt_b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
main :: IO() main = do getLine lis <- words <$> getLine let numlis = map read lis print $ solve numlis 0 solve :: [Int] -> Int -> Int solve [] x = 0 solve (x:xs) 0 = solve xs x solve (x:xs) m | m > 0 = max 0 (sum+1) + solve xs (min sum (-1)) | m < 0 = max 0 (1-sum) + solve xs (max sum 1) where sum = m+x
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
if __name__ == '__main__': N = input() array = raw_input().split() ans = 0 total = int(array[0]) totalZero = False if total == 0: totalZero = True flag = False if total >= 0: flag = True for a in array[1:]: if totalZero == True: ans += 1 if a > 0: total = -1 flag = False else: total = 1 flag = True totalZero = False total += int(a) if total > 0 and flag == True: ans += total + 1 total = -1 elif total < 0 and flag ==False: ans += -1 * total + 1 total = 1 elif total == 0: totalZero = True if total > 0: flag = True elif total < 0: flag = False if totalZero == True: ans += 1 print ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using i_i = pair<int, int>; using ll_ll = pair<ll, ll>; using d_ll = pair<double, ll>; using ll_d = pair<ll, double>; using d_d = pair<double, double>; template <class T> using vec = vector<T>; static constexpr ll LL_INF = 1LL << 60; static constexpr int I_INF = 1 << 28; static constexpr double PI = static_cast<double>(3.14159265358979323846264338327950288); static constexpr double EPS = numeric_limits<double>::epsilon(); static map<type_index, const char* const> scanType = {{typeid(int), "%d"}, {typeid(ll), "%lld"}, {typeid(double), "%lf"}, {typeid(char), "%c"}}; template <class T> static void scan(vector<T>& v); [[maybe_unused]] static void scan(vector<string>& v, bool isWord = true); template <class T> static inline bool chmax(T& a, T b); template <class T> static inline bool chmin(T& a, T b); template <class T> static inline T gcd(T a, T b); template <class T> static inline T lcm(T a, T b); template <class A, size_t N, class T> static void Fill(A (&arr)[N], const T& val); template <class T> T mod(T a, T m); template <class Monoid> struct SegmentTree { using F = function<Monoid(Monoid, Monoid)>; int sz; vector<Monoid> seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) { sz = 1; while (sz < n) sz <<= 1; seg.assign(2 * sz, M1); } void set(int k, const Monoid& x) { seg[k + sz] = x; } void build() { for (int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(int k, const Monoid& x) { k += sz; seg[k] = x; while (k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) L = f(L, seg[a++]); if (b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int& k) const { return seg[k + sz]; } template <class C> int find_subtree(int a, const C& check, Monoid& M, bool type) { while (a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if (check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template <class C> int find_first(int a, const C& check) { Monoid L = M1; if (a <= 0) { if (check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) { Monoid nxt = f(L, seg[a]); if (check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template <class C> int find_last(int b, const C& check) { Monoid R = M1; if (b >= sz) { if (check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for (b += sz; a < b; a >>= 1, b >>= 1) { if (b & 1) { Monoid nxt = f(seg[--b], R); if (check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; int main(int argc, char* argv[]) { ll n; cin >> n; vec<ll> a(n); scan(a); SegmentTree<ll> seg( n, [](ll x, ll y) { return x + y; }, 0LL); for (int i = (0); i < (n); i++) { seg.set(i, a[i]); } seg.build(); ll ans = 0; bool next_sign = (a[0] < 0) ? true : false; if (a[0] == 0) { seg.update(0, 1LL); next_sign = false; ans++; } for (int i = (2); i < (n + 1); i++) { ll sum = seg.query(0, i); if ((next_sign && sum > 0) || (!next_sign && sum < 0)) { next_sign = !next_sign; continue; } ll to = (next_sign) ? 1 : -1; ll diff = abs(sum - to); ans += diff; seg.update(i - 1, seg[i - 1] + (to - sum)); next_sign = !next_sign; } ll ans2 = 0; for (int i = (0); i < (n); i++) { seg.update(i, a[i]); } next_sign = (a[0] < 0) ? true : false; if (a[0] == 0) { seg.update(0, -1LL); next_sign = true; ans2++; } for (int i = (2); i < (n + 1); i++) { ll sum = seg.query(0, i); if ((next_sign && sum > 0) || (!next_sign && sum < 0)) { next_sign = !next_sign; continue; } ll to = (next_sign) ? 1 : -1; ll diff = abs(sum - to); ans2 += diff; seg.update(i - 1, seg[i - 1] + (to - sum)); next_sign = !next_sign; } ((cout) << (min(ans, ans2)) << (endl)); return 0; } template <class T> static void scan(vector<T>& v) { auto tFormat = scanType[typeid(T)]; for (T& n : v) { scanf(tFormat, &n); } } static void scan(vector<string>& v, bool isWord) { if (isWord) { for (auto& n : v) { cin >> n; } return; } int i = 0, size = v.size(); string s; getline(cin, s); if (s.size() != 0) { i++; v[0] = s; } for (; i < size; ++i) { getline(cin, v[i]); } } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template <class T> inline T gcd(T a, T b) { return __gcd(a, b); } template <class T> inline T lcm(T a, T b) { T c = min(a, b), d = max(a, b); return c * (d / gcd(c, d)); } template <class A, size_t N, class T> void Fill(A (&arr)[N], const T& val) { std::fill((T*)arr, (T*)(arr + N), val); } template <class T> T mod(T a, T m) { return (a % m + m) % m; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using itn = int; using namespace std; int GCD(int a, int b) { return b ? GCD(b, a % b) : a; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } vector<int> sum(n + 1, 0); int evenSum = 0, oddSum = 0; int cnt1 = 0, cnt2 = 0; for (int i = 0; i < n; i++) { sum[i + 1] = a[i] + sum[i]; } ll add1 = 0, add2 = 0; for (int i = 1; i < n + 1; i++) { ll tmp = sum[i] + add1; if (i % 2) { if (tmp >= 0) { int b = sum[i] + add1 + 1; oddSum += b; add1 -= b; } if (tmp <= 0) { int b = 1 - (sum[i] + add2); evenSum += b; add2 += b; } } else { if (tmp <= 0) { int b = 1 - (sum[i] + add1); oddSum += b; add1 -= b; } if (tmp <= 0) { int b = sum[i] + add2 + 1; evenSum += b; add2 -= b; } } } cout << min(oddSum, evenSum) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) a_1 = a ans = 0 ans_2 = 0 o = 0 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "+" elif a[0] < 0: f = "-" else: o += a[i-1] if f == "+": if a[i] + o > 0: c = -1 - o ans += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + o < 0: c = 1 - o ans += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + o == 0: a[i] += 1 ans += 1 f = "+" o = 0 a = a_1 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "-" ans_2 += abs(-1 - a[0]) a[i] = -1 elif a[0] < 0: ans_2 += abs(1 - a[0]) a[i] = 1 f = "+" else: o += a[i-1] if f == "+": if a[i] + o > 0: c = -1 - o ans_2 += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + o < 0: c = 1 - o ans_2 += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + o == 0: a[i] += 1 ans += 1 f = "+" #print(a) print(min(ans,ans_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL; template <typename T, typename U> inline void amin(T &x, U y) { if (y < x) x = y; } template <typename T, typename U> inline void amax(T &x, U y) { if (x < y) x = y; } signed main() { long long n; cin >> n; vector<long long> a(n); for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i]; long long sum = 0; long long prev = 0; sum += a[0]; long long ans = 0; if (sum != 0) { for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans += sum + 1; sum = -1; } else if (sum < 0) { ans += abs(sum) + 1; sum = 1; } else { ans++; sum = (prev < 0 ? 1 : -1); } } } } else { ans = INF; } sum = 0; prev = 0; long long ans2 = 0; sum += a[0]; if (sum > 0) { ans2 += sum + 1; sum = -1; } else if (sum < 0) { ans2 += abs(sum) + 1; sum = 1; } else { ans2++; sum = 1; } for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans2 += sum + 1; sum = -1; } else if (sum < 0) { ans2 += abs(sum) + 1; sum = 1; } else { ans2++; sum = (prev < 0 ? 1 : -1); } } } sum = 0; prev = 0; long long ans3 = 0; sum += a[0]; if (sum > 0) { ans3 += sum + 1; sum = -1; } else if (sum < 0) { ans3 += abs(sum) + 1; sum = 1; } else { ans3++; sum = -1; } for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans3 += sum + 1; sum = -1; } else if (sum < 0) { ans3 += abs(sum) + 1; sum = 1; } else { ans3++; sum = (prev < 0 ? 1 : -1); } } } cout << min(ans, min(ans, ans2)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long op = 0LL; long long sum = 0LL; sum = a[0]; for (int i = 1; i < n; i++) { if (!(sum * (sum + a[i]) < 0)) { long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1); op += abs(tmp_a - a[i]); sum = sum + tmp_a; } else { sum += a[i]; } } long long op_m = op; if (a[0] > 0) { sum = -1LL; op = a[0] + 1; } else { sum = 1LL; op = -1 * a[0] + 1; } for (int i = 1; i < n; i++) { if (!(sum * (sum + a[i]) < 0)) { long long tmp_a = sum < 0 ? abs(sum) + 1 : -1 * (abs(sum) + 1); op += abs(tmp_a - a[i]); sum = sum + tmp_a; } else { sum += a[i]; } } op = min(op, op_m); cout << op << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100004]; int main() { scanf("%d", &n); for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]); long long ans = 0; printf("1000000000000000000\n"); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; long long s[maxn]; long long ans[maxn]; int main() { int n, j; cin >> n; long long sum = 0; for (int i = 1; i <= n; i++) { cin >> s[i]; } for (int i = 1; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] == 0) { if (s[i + 1] <= 0) { sum += -s[i + 1] + 1; ans[i] = -s[i + 1] + 1; } else if (s[i + 1] > 0) { sum += s[i + 1] + 1; ans[i] = -s[i + 1] - 1; } } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } cout << sum << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int N; cin >> N; vector<int> A(N); for (long long i = 0; i < long long(N); i++) { cin >> A[i]; } int ansA = 0; int sumA = 0; for (long long i = 0; i < long long(N); i++) { sumA += A[i]; if (i % 2 == 0) { if (sumA <= 0) { sumA += (abs(A[i]) + 1); ansA += (abs(A[i]) + 1); } } else { if (sumA >= 0) { sumA -= (abs(A[i]) + 1); ansA += (abs(A[i]) + 1); } } } int ansB = 0; int sumB = 0; for (long long i = 0; i < long long(N); i++) { sumB += A[i]; if (i % 2 != 0) { if (sumB <= 0) { sumB += (abs(A[i]) + 1); ansB += (abs(A[i]) + 1); } } else { if (sumB >= 0) { sumB -= (abs(A[i]) + 1); ansB += (abs(A[i]) + 1); } } } cout << min(ansA, ansB) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int calc(bool firstPositive, int a[], int n) { bool positive = firstPositive; int cost = 0; long sum = 0; for (int i = 0; i < n; ++i) { bool sumpos = (sum + a[i]) >= 0; if (sumpos != positive) { while (((sum + a[i]) >= 0) == sumpos) { a[i] += sumpos ? -1 : 1; ++cost; } } if ((sum + a[i]) == 0) { a[i] += sumpos ? -1 : 1; ++cost; } sum += a[i]; positive = !positive; } return cost; } int main(int argc, char *argv[]) { int n; std::cin >> n; int a[1 << 20], b[1 << 20]; for (int i = 0; i < n; ++i) { std::cin >> a[i]; b[i] = a[i]; } std::cout << std::min(calc(true, a, n), calc(false, b, n)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { cin.tie(0); ios::sync_with_stdio(false); int64_t n; cin >> n; vector<int64_t> a(n); for (int64_t i = 0; i < n; i++) cin >> a[i]; int64_t sum1 = 0, cost1 = 0; for (int64_t i = 0; i < n; i++) { sum1 += a[i]; int64_t diff = abs(sum1) + 1; if (i % 2 == 0 && sum1 < 0) { sum1 += diff; cost1 += diff; } if (i % 2 == 1 && sum1 > 0) { sum1 -= diff; cost1 += diff; } if (sum1 == 0) { if (i % 2 == 0) { sum1--; cost1++; } if (i % 2 == 1) { sum1++; cost1++; } } } int64_t sum2 = 0, cost2 = 0; for (int64_t i = 0; i < n; i++) { sum2 += a[i]; int64_t diff = abs(sum2) + 1; if (i % 2 == 0 && sum2 > 0) { sum2 -= diff; cost2 += diff; } if (i % 2 == 1 && sum2 < 0) { sum2 += diff; cost2 += diff; } if (sum2 == 0) { if (i % 2 == 0) { sum2++; cost2++; } if (i % 2 == 1) { sum2--; cost2++; } } } cout << min(cost1, cost2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0], kaisu = 0; if (sum == 0) { kaisu++; sum++; } for (int i = 1; i < n; i++) { long long presum = sum; sum += a[i]; if (presum > 0) { if (sum >= 0) { kaisu += sum + 1; a[i] = a[i] - sum - 1; sum = -1; } } if (presum < 0) { if (sum <= 0) { kaisu += 1 - sum; sum = 1; } } } cout << kaisu << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) import sys sum=a[0] cnt=0 if a[0]==0: sum+=1 cnt+=1 for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<=0: cnt+=(1-z) sum=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z cnt_plus=cnt sum=-1 cnt=1 for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<=0: cnt+=(1-z) sum=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z cnt_sbst=cnt print(cnt_sbst) print(cnt_plus) print(min(cnt_plus,cnt_sbst)) sys.exit() for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<=0: cnt+=(1-z) sum=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z print(cnt) # 6 # 0 0 -1 3 5 0
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> constexpr long long INFL = 1LL << 60; constexpr int INF = 1 << 30; using namespace std; using ll = long long; using P = tuple<int, int>; using iarr = valarray<int>; int main() { int N; cin >> N; int a[100000]; for (int i = 0; i < N; ++i) cin >> a[i]; ll partial_sum = 0; ll cnt = 0; int index = 0; for (int i = 0; i < N; ++i) { if (a[i] != 0) { if (i == 0) { partial_sum = a[i]; index = i + 1; break; } else { partial_sum += 1 + 2 * (i - 1) + abs(a[i]); index = i + 1; break; } } } if (index == 0) { cout << 1 + 2 * (N - 1) << endl; return 0; } for (int i = index; i < N; ++i) { if (partial_sum > 0) { if (a[i] + partial_sum > 0) { cnt += abs(-(partial_sum + 1) - a[i]); a[i] = -(partial_sum + 1); partial_sum = -1; } else if (a[i] + partial_sum == 0) { cnt += 1; a[i] = -1; partial_sum = -1; } else { partial_sum += a[i]; } } else { if (a[i] + partial_sum < 0) { cnt += abs(-(partial_sum - 1) - a[i]); a[i] = -(partial_sum - 1); partial_sum = 1; } else if (a[i] + partial_sum == 0) { cnt += 1; a[i] = 1; partial_sum = 1; } else { partial_sum += a[i]; } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; using st = string; using db = double; using vll = vector<long long>; using vvll = vector<vll>; using vst = vector<st>; using vchar = vector<char>; ll mod = 1000000007; ll sum(vll a, ll n) { return accumulate(a.begin(), a.begin() + n + 1, 0); } int main() { ll n; cin >> n; vll a(n); for (auto& i : a) cin >> i; vll a1 = a, a2 = a; ll ans1 = 0, ans2 = 0; ll pointer = 0; while (pointer < n) { if (pointer % 2 == 0) { if (sum(a1, pointer) > 0) pointer++; else { ans1 += -1 * sum(a1, pointer) + 1; a1.at(pointer) += -1 * sum(a1, pointer) + 1; pointer++; } } else { if (sum(a1, pointer) < 0) pointer++; else { ans1 += sum(a1, pointer) + 1; a1.at(pointer) -= sum(a1, pointer) + 1; pointer++; } } } pointer = 0; while (pointer < n) { if (pointer % 2 == 1) { if (sum(a2, pointer) > 0) pointer++; else { ans2 += -1 * sum(a2, pointer) + 1; a2.at(pointer) += -1 * sum(a2, pointer) + 1; pointer++; } } else { if (sum(a2, pointer) < 0) pointer++; else { ans2 += sum(a2, pointer) + 1; a2.at(pointer) -= sum(a2, pointer) + 1; pointer++; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using static System.Math; using static System.Console; using System.Collections.Generic; using System.Linq; using System; class Program { #region Reader static string ReadStr => Console.ReadLine(); static string[] ReadStrs => Console.ReadLine().Split(' '); static int ReadInt => Convert.ToInt32(Console.ReadLine().Trim()); static int[] ReadInts => Console.ReadLine().Trim().Split(' ').Select(s => Convert.ToInt32(s)).ToArray(); static long ReadLong => Convert.ToInt64(Console.ReadLine().Trim()); static long[] ReadLongs => Console.ReadLine().Trim().Split(' ').Select(s => Convert.ToInt64(s)).ToArray(); static List<int[]> ReadPairs(int N) { List<int[]> ans = new List<int[]>(); for (int i = 0; i < N; i++) { ans.Add(ReadInts); } return ans; } static List<long[]> ReadPairsLong(int N) { List<long[]> ans = new List<long[]>(); for (int i = 0; i < N; i++) { ans.Add(ReadLongs); } return ans; } #endregion #region Method const int mod = 1000000007; public static int Mod(int a, int mod) { return a % mod >= 0 ? a % mod : a % mod + mod; } public static long Mod(long a, long mod = mod) { return a % mod >= 0 ? a % mod : a % mod + mod; } bool eq<T, U>() => typeof(T).Equals(typeof(U)); T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T)); T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s)) : eq<T, long>() ? ct<T, long>(long.Parse(s)) : eq<T, double>() ? ct<T, double>(double.Parse(s)) : eq<T, char>() ? ct<T, char>(s[0]) : ct<T, string>(s); void Multi<T>(out T a) => a = cv<T>(ReadStr); void Multi<T, U>(out (T,U) ans) { var ar = ReadStrs; ans =(cv<T>(ar[0]), cv<U>(ar[1])); } void Multi<T, U, V>(out (T,U,V) ans) { var ar = ReadStrs; ans =(cv<T>(ar[0]), cv<U>(ar[1]),cv<V>(ar[2])); } void Multi<T,U>(out T a,out U b) { var ar = ReadStrs; a = cv<T>(ar[0]); b = cv<U>(ar[1]); } void Multi<T, U, V>(out T a,out U b,out V c) { var ar = ReadStrs; a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); } #endregion public static Dictionary<int, int> PrimeFactors(int n) { int i = 2; int tmp = n; Dictionary<int, int> d = new Dictionary<int, int>(); while (i * i <= n) //※1 { if (tmp % i == 0) { tmp /= i; if (d.ContainsKey(i)) d[i]++; else d.Add(i, 1); } else { i++; } } if (tmp != 1) { if (d.ContainsKey(tmp)) d[tmp]++; else d.Add(tmp, 1); } return d; } static List<long> Divisor(long N) { List<long> ans = new List<long>(); int max = (int)Math.Sqrt(N); for (int i = 1; i < max; i++) { if (N % i == 0) { ans.Add(i); ans.Add(N / i); } } if (N % max == 0) { if (N / max == max) ans.Add(max); else { ans.Add(max); ans.Add(N / max); } } return ans; } #region Mod public static long GetInv(long a, long mod = 1000000007) { return PowerMod(a, mod - 2, mod); } public static long Combination(long a, long b, long mod = 1000000007) { if (b < 0 || b > a) return 0; if (b > a / 2) b = a - b; long numerator = Factorial(a, mod); long denominator = (Factorial(b, mod) * Factorial(a - b, mod)) % mod; return (numerator * GetInv(denominator, mod)) % mod; } public static long Factorial(long n, long mod = 1000000007) { if (n == 0) return 1; if (n == 1) return 1; long ans = n; for (int i = 2; i < n; i++) { ans = (ans * i) % mod; } return ans; } private static long PowerMod(long a, long n, long mod = 1000000007) { if (n == 0) return 1; if (n == 1) return a; long p = PowerMod(a, n / 2, mod); if (n % 2 == 1) return ((p * p) % mod * a) % mod; else return (p * p) % mod; } #endregion static HashSet<int> Primes(int limit) { bool[] done = new bool[limit+1]; var ans = new HashSet<int>(); for (int i = 2; i <= limit; i++) { if (done[i]) continue; ans.Add(i); int index = i; while (index<=limit) { done[index] = true; index += i; } } return ans; } #region SegmentTree /// <summary> /// 行う演算は結合法則を満たす必要あり /// </summary> public class SegmentTree<T> where T : IComparable { /// <summary> /// 完全二分木 /// </summary> public T[] Data { get; } /// <summary> /// 完全二分木に含まれる葉の数 /// </summary> private int LeavesCount { get; } /// <summary> /// 数列(問題などで与えられる)の要素数 /// </summary> public int Count { get; } /// <summary> /// 葉のうち使われなかったもの、そしてQueryで引数として取得した範囲がDataのインデックスの外である場合に使う /// </summary> public T Default { get; } public SegmentTree(T[] data, T def) { //初期値の設定 Count = data.Length; Default = def; LeavesCount = (int)Pow(2, Ceiling(Log(data.Length, 2))); Data = new T[LeavesCount * 2]; // //完全二分木の全要素を初期化 for (int i = 0; i < LeavesCount * 2; i++) { Data[i] = def; } //dataを用いて必要な要素をすべて埋める for (int i = 0; i < data.Length; i++) { this[i] = data[i]; } } public T this[int index] { get { //取得したい要素の位置は、実際は LeavesCount-1+index となる index = LeavesCount - 1 + index; return Data[index]; } set { //偏光したい要素の位置は、実際は LeavesCount-1+index となる index = LeavesCount - 1 + index; //子を変更 Data[index] = value; //親たちも含めて、要素を変更 while (index > 0) { //indexを親のインデックスに更新 index = GetParentIndex(index); //要素を更新 Data[index] = DecideNewElementFromTwoChildren(index); } } } /// <summary> /// 唯一の親のインデックスを返す /// </summary> /// <param name="childIndex"></param> /// <returns></returns> private int GetParentIndex(int childIndex) { return (childIndex - 1) / 2; } /// <summary> /// 二つの子のインデックスを返す /// </summary> /// <param name="parentIndex"></param> /// <returns>小さいほうはl、大きいほうはr</returns> private (int l, int r) GetChildIndexes(int parentIndex) { return (2 * parentIndex + 1, 2 * parentIndex + 2); } /// <summary> /// 親の値を二つの子から決定する /// </summary> /// <param name="index"></param> /// <returns></returns> private T DecideNewElementFromTwoChildren(int index) { var children = GetChildIndexes(index); return Select(Data[children.l], Data[children.r]); } /// <summary> /// [a,b)の範囲で回答を探す /// </summary> /// <param name="a"></param> /// <param name="halfOpen_b"></param> /// <returns></returns> public T Query(int a, int halfOpen_b) { return _Query(a, halfOpen_b, 0, LeavesCount, 0); } private T _Query(int a, int b, int l, int r, int current) { //Φ if (a >= r || b <= l) { return Default; } //部分集合 else if (a <= l && b >= r) { return Data[current]; } //一部 else { //(1) 範囲[l,r)を分割し、子lの回答と子rの回答を取得 //(2) 二つの回答を比べて、適切(Selectメソッド)な方を返す //(1) var children = GetChildIndexes(current); T t1 = _Query(a, b, l, (l + r) / 2, children.l); T t2 = _Query(a, b, (l + r) / 2, r, children.r); //(2) return Select(t1, t2); } } /// <summary> /// カスタマイズするところ。二つの子の値から、親の値を決定する方法を定める。 /// </summary> /// <param name="t1">子の値1</param> /// <param name="t2">子の値2</param> /// <returns></returns> private T Select(T t1, T t2) { return t1.CompareTo(t2) < 0 ? t2 : t1; } } #endregion static void Main() { int N = ReadInt; int[] As = ReadInts; long sum = As[0]; long cost = 0; for (int i = 1; i < N; i++) { if (sum * (sum+As[i]) < 0) { sum += As[i]; continue; } if (sum < 0) { cost += Abs(sum * -1 + 1-As[i]); sum =1; } else { cost += Abs(sum * -1 - 1 - As[i]); sum = -1; } } WriteLine(cost); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys def input(): return sys.stdin.readline().strip() def mapint(): return map(int, input().split()) sys.setrecursionlimit(10**9) N = int(input()) As = list(mapint()) cum = As.pop(0) cum2 = cum ans = 0 for a in As: if cum*(cum+a)>=0: ans += abs(cum+a)+1 cum = -1 if cum>0 else 1 else: cum += a ans2 = abs(cum2)+1 cum2 = 1 if cum2<0 else -1 for a in As: if cum2*(cum2+a)>=0: ans2 += abs(cum2+a)+1 cum2 = -1 if cum2>0 else 1 else: cum2 += a print(min(ans, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 temp = a[0] for i in range(1, n): tar = temp + a[i] if (tar * temp < 0): temp = tar else: add = abs(tar) + 1 ans += add if (temp > 0): temp = -1 else: temp = 1 #print(tar, ans) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; vector<int> answer(2); int sumi; bool flag = true; cin >> t; vector<int> A(t); for (int i = 0; i < t; i++) { cin >> A[i]; } for (int j = 0; j < 2; j++) { for (int i = 0; i < t; i++) { sumi += A[i]; if (sumi == 0) { answer[i] += 1; if (flag) { sumi = -1; } else { sumi = 1; } } else if (sumi > 0 == flag) { answer[i] += abs(sumi) + 1; if (sumi > 0) { sumi = -1; } else { sumi = 1; } } flag = !flag; } flag = false; } cout << min(answer[0], answer[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; int ans1 = 0; vector<long long int> sums(n); if (a[0] <= 0) { ans1 -= a[0] - 1; sums[0] = 1; } else sums[0] = a[0]; for (int i = 0; i < (n - 1); i++) { if (i % 2 == 0) { if (sums[i] + a[i + 1] >= 0) { ans1 += sums[i] + a[i + 1] + 1; sums[i + 1] = -1; } else sums[i + 1] = sums[i] + a[i + 1]; } else { if (sums[i] + a[i + 1] <= 0) { ans1 -= sums[i] + a[i + 1] - 1; sums[i + 1] = 1; } else sums[i + 1] = sums[i] + a[i + 1]; } } int ans2 = 0; if (a[0] >= 0) { ans2 += a[0] + 1; sums[0] = -1; } else sums[0] = a[0]; for (int i = 0; i < (n - 1); i++) { if (i % 2 == 0) { if (sums[i] + a[i + 1] <= 0) { ans2 -= sums[i] + a[i + 1] - 1; sums[i + 1] = 1; } else sums[i + 1] = sums[i] + a[i + 1]; } else { if (sums[i] + a[i + 1] >= 0) { ans2 += sums[i] + a[i + 1] + 1; sums[i + 1] = -1; } else sums[i + 1] = sums[i] + a[i + 1]; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); int N=sc.nextInt(); long[] k=new long[N]; for(int i=0; i<N; i++) { k[i]=sc.nextLong(); } for(int i=1; i<N; i++) { k[i]=k[i-1]+k[i]; } long counter=0; if(k[0]>0) { counter=1; } else { counter=-1; } long[] tasu=new long[N]; long kaz=0; for(int i=0; i<N; i++) { tasu[i]=0; } for(int i=0; i<N; i++) { long tmp=counter*(k[i]+tasu[i]); if(tmp>0) { //条件を満たすのでOK } else if(tmp<0){ if((k[i]+tasu[i])>0) { long tt=(k[i]+tasu[i])+1; kaz+=tt; tasu[i]-=tt; } else if((k[i]+tasu[i])<0) { long tt=((k[i]+tasu[i])-1)*-1; kaz+=tt; tasu[i]+=tt; } } else if(tmp==0) { if(counter==-1) { tasu[i]--; } else if(counter==1) { tasu[i]++; } kaz++; } if(i!=N-1) { tasu[i+1]=tasu[i]; } counter*=-1; } System.out.println(kaz); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; ll min(ll a, ll b) { if (a >= b) return b; else return a; } ll max(ll a, ll b) { if (a >= b) return a; else return b; } ll gcd(ll a, ll b) { if (b == 0) return a; return gcd(b, a % b); } ll lcm(ll a, ll b) { ll g = gcd(a, b); return a / g * b; } const ll Z = 1000000007; const ll INF = 1 << 30; const ll INF2 = 9000000000000000000LL; bool flag = true; bool fl = false; bool f = false; bool used[210]; bool graph[100][100]; bool visited[8]; int abc[26] = {0}; int main() { ll n, a[100000], b[100000], ansA = 0, ansB = 0; std::cin >> n; for (int i = 0; i < n; i++) { std::cin >> a[i]; b[i] = a[i]; } for (int i = 0; i < n - 1;) { if (a[i] <= 0) ansA += abs(1 - a[i]), a[i] = 1; i++; a[i] += a[i - 1]; if (a[i] >= 0) ansA += abs(a[i] + 1), a[i] = -1; i++; a[i] += a[i - 1]; } for (int i = 0; i < n - 1;) { if (b[i] >= 0) ansB += abs(b[i] + 1), b[i] = -1; i++; b[i] += b[i - 1]; if (b[i] <= 0) ansB += abs(1 - b[i]), b[i] = 1; i++; b[i] += b[i - 1]; } std::cout << min(ansA, ansB) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000]; int main() { int n; long long sum = 0; int ans = 0; bool flag = true; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } if (a[0] < 0) { flag = false; } sum += a[0]; for (int i = 1; i < n; i++) { sum += a[i]; if (flag == true) { if (sum >= 0) { ans += (sum + 1); sum = -1; } flag = false; } else { if (sum <= 0) { ans += (sum * -1 + 1); sum = 1; } flag = true; } cerr << ans << endl; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n, 0); for (long long i = 0; i < n; i++) { cin >> a[i]; } long long now_sum = a[0], cost = 0; int before; if (a[0] > 0) before = 1; else before = -1; for (long long i = 1; i < n; i++) { now_sum += a[i]; if (now_sum == 0) { now_sum -= a[i]; if (before == 1) { a[i]--; } else if (before == -1) { a[i]++; } now_sum += a[i]; cost++; continue; } if (before == 1 && now_sum > 0) { cost += abs(now_sum) + 1; now_sum -= a[i]; a[i] -= cost; now_sum += a[i]; } if (before == -1 && now_sum < 0) { cost += abs(now_sum) + 1; now_sum -= a[i]; a[i] += cost; now_sum += a[i]; } if (now_sum > 0) before = 1; else before = -1; } cout << cost << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import "fmt" func main() { var n int fmt.Scan(&n) sum := 0 cnt := 0 plus := false a := make([]int, n) for i := 0; i < n; i++ { fmt.Scan(&a[i]) } var base int for i :=0; i <n; i++ { if a[i] != 0 { base = i break } } if base % 2 == 0 { plus = true } else { plus = false } if a[base] < 0 { plus = !plus } for i := 0; i < n; i++ { sum += a[i] if plus { for sum <= 0 { sum++ cnt++ } plus = !plus } else { for sum >= 0 { sum-- cnt++ } plus = !plus } } fmt.Println(cnt) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N, ans = 0; cin >> N; long long sum = 0; for (int i = 0; i < N; i++) { long long a; cin >> a; long long nowsum = a + sum; if (i == 0) sum += a; else { if ((nowsum < 0) != (sum < 0)) { if (nowsum == 0) { if (sum < 0) nowsum++; else nowsum--; ans++; } } else { if (nowsum < 0) { for (;;) { if (nowsum > 0) break; nowsum++; ans++; } } else { for (;;) { if (nowsum < 0) break; nowsum--; ans++; } } } sum = nowsum; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> using namespace std; using namespace __gnu_pbds; typedef long long ll; typedef pair<int,int> pii; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #define error(x) cerr << #x << " = " << x << endl #define sz(x) (int)(x).size() #define eb emplace_back #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound const int INF = 1e9 + 7; int n, arr[100005]; ll f() { ll res = 0; ll sum = 0; for (int i = 0; i < n; ++i) { if (i&1) { if (sum + arr[i] >= 0) { res += llabs(sum + arr[i] + 1); sum = 1; } else { sum += arr[i]; } } else { if (sum + arr[i] <= 0) { res += llabs(sum + arr[i] - 1); sum = 1; } else { sum += arr[i]; } } } return res; } int main(void) { ios_base::sync_with_stdio(0), cin.tie(nullptr); cin >> n; for (int i = 0; i < n; ++i) cin >> arr[i]; ll res = f(); for (int i = 0; i < n; ++i) arr[i] *= -1; res = min(res,f()); cout << res << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline void YesNo(bool b) { cout << (b ? "Yes" : "No") << endl; } inline void YESNO(bool b) { cout << (b ? "YES" : "NO") << endl; } inline void Yay(bool b) { cout << (b ? "Yay!" : ":(") << endl; } int main(void) { cin.tie(0); ios::sync_with_stdio(false); cout << setprecision(15); int N; cin >> N; vector<long long> v(N); for (int i = 0, i_max = (N); i < i_max; ++i) cin >> v[i]; for (int i = 0, i_max = (N - 1); i < i_max; ++i) v[i + 1] += v[i]; long long count = 0; long long sum = 0; long long pre = -v[0]; for (int i = 0, i_max = (N); i < i_max; ++i) { v[i] += sum; if (pre * v[i] < 0) { pre = v[i]; continue; } if (v[i] == 0) { ++count; if (pre > 0) { --sum; --v[i]; } else { ++sum; ++v[i]; } } else { count += abs(v[i]) + 1; if (pre > 0) { sum -= v[i] + 1; v[i] = -1; } else { sum -= v[i] - 1; v[i] = 1; } } pre = v[i]; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> v(n); cin >> v[0]; for (int i = (1); (i) < (n); (i)++) { cin >> v[i]; } int result_a = 0, result_b = abs(v[0]) + 1; vector<int> tmp(n); tmp[0] = v[0]; for (int i = (1); (i) < (n); (i)++) { tmp[i] = v[i] + tmp[i - 1]; if (tmp[i] * tmp[i - 1] >= 0) { result_a += abs(tmp[i]) + 1; tmp[i] = ((tmp[i - 1] > 0) ? -1 : 1); } } tmp[0] = v[0] > 0 ? -1 : 1; for (int i = (1); (i) < (n); (i)++) { tmp[i] = v[i] + tmp[i - 1]; if (tmp[i] * tmp[i - 1] >= 0) { result_b += abs(tmp[i]) + 1; tmp[i] = ((tmp[i - 1] > 0) ? -1 : 1); } } cout << min(result_a, result_b) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100001]; int main() { long long n, ai; cin >> n; cin >> ai; a[0] = ai; long long sum, sum1; long long ans = 0, ans1 = 0; if (ai == 0) ans = 1, ans1 = 1, sum = 1, sum1 = -1; else if (ai > 0) ans1 = ai + 1, sum = ai, sum1 = -1; else ans = ai + 1, sum = 1, sum1 = ai; for (int i = (1); i < (n); ++i) { cin >> ai; a[i] = ai; if (sum > 0) { if (sum < -ai) sum += ai; else { ans += ai + sum + 1; sum = -1; } } else { if (-sum < ai) sum += ai; else { ans += -sum + 1 - ai; sum = 1; } } } for (int i = (1); i < (n); ++i) { ai = a[i]; if (sum1 > 0) { if (sum1 < -ai) sum1 += ai; else { ans1 += ai + sum1 + 1; sum1 = -1; } } else { if (-sum1 < ai) sum1 += ai; else { ans1 += -sum1 + 1 - ai; sum1 = 1; } } } cout << min(ans, ans1) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.Vector.Unboxed as VU import qualified Data.ByteString.Char8 as B import Data.Char solve :: VU.Vector Int -> Int -> Int solve vec n | VU.length vec == 2 && VU.sum vec == 0 = 1 | VU.length vec == 2 && VU.sum vec /= 0 = 0 | otherwise = minimum $ map fst [f, g] where t = VU.take 2 vec d = VU.drop 2 vec f = VU.foldl' step (fst $ init t) d g = VU.foldl' step (snd $ init t) d init :: VU.Vector Int -> ((Int, Int), (Int, Int)) init vec | a + b == 0 = ((1, 1), (1, negate 1)) | a + b > 0 = ((0, a + b), (1 + a + b, negate 1)) | otherwise = ((0, a + b), (abs (1 - (a+b)), 1)) where a = VU.head vec b = VU.last vec step :: (Int, Int) -> Int -> (Int, Int) step (res, acc) x | acc + x == 0 = (res + 1, negate (signum acc)) | (signum acc) /= signum (acc + x) = (res, acc + x) | otherwise = let aim = negate $ signum acc y = aim - (acc + x) in (res + abs y, aim) main = do n <- readLn :: IO Int as <- VU.unfoldrN n (B.readInt . B.dropWhile isSpace) <$> B.getLine print $ solve as n
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr auto INF = 100000000000; constexpr auto mod = 1000000007; struct edge { int to, cost; }; long long modpow(long long a, long long n, long long mod) { long long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } long long modinv(long long a, long long m) { long long b = m, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= m; if (u < 0) u += m; return u; } long long int c(long long int a, long long int b, long long int m) { long long int ans = 1; for (long long int i = 0; i < b; i++) { ans *= a - i; ans %= m; } for (long long int i = 1; i <= b; i++) { ans *= modinv(i, m); ans %= m; } return ans; } void dijkdtra(int s, int v, vector<int>& d, vector<vector<edge>>& G) { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> que; d[s] = 0; que.push(pair<int, int>(0, s)); while (!que.empty()) { pair<int, int> p = que.top(); que.pop(); int V = p.second; if (d[V] < p.first) continue; for (int i = 0; i < G[V].size(); i++) { edge e = G[V][i]; if (d[e.to] > d[V] + e.cost) { d[e.to] = d[V] + e.cost; que.push(pair<int, int>(d[e.to], e.to)); } } } } long long int binary_search(vector<int>& s, long long int a) { long long int l = -1; long long int r = (int)s.size(); while (r - l > 1) { long long int mid = l + (r - l) / 2; if (s[mid] >= a) r = mid; else l = mid; } return r; } int k(long long n) { int x = 0; while (n) { x += n % 10; n /= 10; } return x; } long long max(long long x, long long y) { if (x < y) return y; return x; } int main() { long long n, ans; cin >> n; vector<long long> a(n), t(n), s(n); for (int i = (0); i < (n); i++) { cin >> a[i]; t[i] = a[i]; s[i] = a[i]; } long long int w = a[0]; if (w <= 0) { w = 1; } for (int i = (1); i < (n); i++) { if (i % 2 == 0) { if (abs(w) >= a[i]) { a[i] = abs(w) + 1; } w += a[i]; } else { if (w >= abs(a[i])) { a[i] = -1 * (w + 1); } w += a[i]; } } w = t[0]; if (w >= 0) { w = -1; } for (int i = (1); i < (n); i++) { if (i % 2 == 1) { if (abs(w) >= t[i]) { t[i] = abs(w) + 1; } w += t[i]; } else { if (w >= abs(t[i])) { t[i] = -1 * (w + 1); } w += t[i]; } } long long cost1 = 0, cost2 = 0; for (int i = (0); i < (n); i++) { cost1 += abs(s[i] - a[i]); cost2 += abs(s[i] - t[i]); } ans = min(cost1, cost2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#![allow(non_snake_case)] #![allow(dead_code)] #![allow(unused_macros)] #![allow(unused_imports)] use std::str::FromStr; use std::io::*; use std::collections::*; use std::cmp::*; struct Scanner<I: Iterator<Item = char>> { iter: std::iter::Peekable<I>, } macro_rules! exit { () => {{ exit!(0) }}; ($code:expr) => {{ if cfg!(local) { writeln!(std::io::stderr(), "===== Terminated =====") .expect("failed printing to stderr"); } std::process::exit($code); }} } impl<I: Iterator<Item = char>> Scanner<I> { pub fn new(iter: I) -> Scanner<I> { Scanner { iter: iter.peekable(), } } pub fn safe_get_token(&mut self) -> Option<String> { let token = self.iter .by_ref() .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect::<String>(); if token.is_empty() { None } else { Some(token) } } pub fn token(&mut self) -> String { self.safe_get_token().unwrap_or_else(|| exit!()) } pub fn get<T: FromStr>(&mut self) -> T { self.token().parse::<T>().unwrap_or_else(|_| exit!()) } pub fn vec<T: FromStr>(&mut self, len: usize) -> Vec<T> { (0..len).map(|_| self.get()).collect() } pub fn mat<T: FromStr>(&mut self, row: usize, col: usize) -> Vec<Vec<T>> { (0..row).map(|_| self.vec(col)).collect() } pub fn char(&mut self) -> char { self.iter.next().unwrap_or_else(|| exit!()) } pub fn chars(&mut self) -> Vec<char> { self.get::<String>().chars().collect() } pub fn mat_chars(&mut self, row: usize) -> Vec<Vec<char>> { (0..row).map(|_| self.chars()).collect() } pub fn line(&mut self) -> String { if self.peek().is_some() { self.iter .by_ref() .take_while(|&c| !(c == '\n' || c == '\r')) .collect::<String>() } else { exit!(); } } pub fn peek(&mut self) -> Option<&char> { self.iter.peek() } } fn main() { let cin = stdin(); let cin = cin.lock(); let mut sc = Scanner::new(cin.bytes().map(|c| c.unwrap() as char)); let n: usize = sc.get(); let a: Vec<i64> = sc.vec(n); let mut p = 0; let mut ans1 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s >= 0 { ans1 += s.abs()+1; s += -s - 1; } else if s * p > 0 || s == 0 { ans1 += s.abs()+1; s += if p > 0 { -s - 1 } else { s + 1 }; } p = s; } let mut p = 0; let mut ans2 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s <= 0 { ans2 += s.abs()+1; s += s + 1; } else if s * p > 0 || s == 0 { ans2 += s.abs()+1; s += if p > 0 { -s - 1 } else { s + 1 }; } p = s; } println!("{}", min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) cum_n = A.pop(0) count = 0 for i in range(len(A)): temp_n = A.pop(0) temp_cum_n = cum_n + temp_n if i==0 and cum_n==0: count += 1 if temp_n > 0: cum_n = -1 else: cum_n = 1 elif cum_n*temp_cum_n >= 0: count += abs(temp_cum_n)+1 if temp_cum_n > 0: cum_n = -1 else: cum_n = 1 else: cum_n = temp_cum_n print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], sum[n], sum2[n]; cin >> a[0]; sum[0] = a[0]; long long int ans = 0; for (int i = 1; i < n; i++) cin >> a[i]; if (sum[0] > 0) { int ans2 = 0, ans3 = 0; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] >= 0) { ans2 += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ans2 += 1 - sum[i]; sum[i] = 1; } } } ans3 += sum[0] + 1; sum[0] = -1; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] <= 0) { ans3 += 1 - sum[i]; sum[i] = 1; } } else { if (sum[i] >= 0) { ans3 += sum[i] + 1; sum[i] = -1; } } } ans = min(ans2, ans3); } else if (sum[0] < 0) { int ans2 = 0, ans3 = 0; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] <= 0) { ans2 += 1 - sum[i]; sum[i] = 1; } } else { if (sum[i] >= 0) { ans2 += sum[i] + 1; sum[i] = -1; } } } ans3 += 1 - sum[0]; sum[0] = 1; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] >= 0) { ans3 += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ans3 += 1 - sum[i]; sum[i] = 1; } } } ans = min(ans2, ans3); } else { long long int ans2 = 1, ans3 = 1; sum[0] = 1; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (i & 1) { if (sum[i] >= 0) { ans2 += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ans2 += 1 - sum[i]; sum[i] = 1; } } } sum2[0] = -1; for (int i = 1; i < n; i++) { sum2[i] = sum2[i - 1] + a[i]; if (i & 1) { if (sum2[i] <= 0) { ans3 += 1 - sum2[i]; sum2[i] = 1; } } else { if (sum2[i] >= 0) { ans3 += sum2[i] + 1; sum2[i] = -1; } } } ans = min(ans2, ans3); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, i; long long sum, ans; long long int a[100005]; int main() { cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; } ans = 0; sum = 0; for (i = 1; i <= n; i++) { if (a[i] == 0) { sum++; } else break; } if (sum % 2 == 0 && sum != 0) { if (a[sum + 1] > 0) { a[1] = 1; ans += 1; } else { a[1] = -1; ans += 1; } } else if (sum % 2 != 0) { if (a[sum + 1] > 0) { a[1] = -1; ans += 1; } else { a[1] = 1; ans += 1; } } sum = a[1]; for (i = 2; i <= n; i++) { if (sum == 0) { if (a[i - 1] > 0) { ans++; sum--; } else { ans++; sum++; } } if (sum > 0) { if (a[i] + sum >= 0) { ans += a[i] + sum + 1; sum = -1; } else { sum += a[i]; } } else { if (a[i] + sum <= 0) { ans += abs(a[i] + sum) + 1; sum = 1; } else { sum += a[i]; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) L = np.array([int(i) for i in input().split()]) if L[0] < 0: L = -L count = 0 s = L[0] if L[0] == 0: if L[1] > 0: L[0] = -1 else: L[0] = 1 count += 1 loopnum = n//2 if n%2 == 0: loopnum -= 1 for i in range(loopnum): s = s + L[2*i+1] if s >= 0: subt = s + 1 count += subt s = s - subt #print("s, count = {0}, {1}".format(s, count)) s = s + L[2*i+2] if s <= 0: subt = s - 1 count -= subt s = s + subt #print("s, count = {0}, {1}".format(s, count)) if n%2 == 0: s = s + L[-1] if s >= 0: subt = s + 1 count += subt print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) import sys sum=a[0] cnt=0 if a[0]==0: sum+=1 cnt+=1 for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if a[i-1]>0: sum=-1 cnt+=1 elif a[i-1]<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z cnt_plus=cnt for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if a[i-1]>0: sum=-1 cnt+=1 elif a[i-1]<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z cnt_sbst=cnt print(min(cnt_plus,cnt_sbst)) sys.exit() for i in range(1,n): if sum<0: z=sum+a[i] if z>0: sum=z elif z<0: cnt+=(1-z) sum=1 else: if a[i-1]>0: sum=-1 cnt+=1 elif a[i-1]<0: sum=1 cnt+=1 elif sum>0: z=sum+a[i] if z>=0: cnt+=(z+1) sum=-1 elif z<0: sum=z print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] S = a[0] ans = 0 for _a in a[1:]: if (S < 0 and _a > -S) or (S > 0 and _a < -S): S += _a continue else: if S < 0: ans += -S + 1 - _a S = 1 elif S > 0: ans += _a + S + 1 S = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import System.IO import Control.Monad import Control.Applicative import Data.List main = do n <- getLine as <- map read . words <$> getLine putStrLn . show . head . [xs | xs <- iterate mani as, jouken n xs] mani [] = [] mani [a] = [a-1, a+1] mani (a:as) = [(a-1) : x | x <- mani as] ++ [(a+1) : x | x <- mani as] subsum xs j = sum . take j $ xs jouken n xs = length [i | i <- [1 .. n-1], (subsum xs i) * (subsum xs (i+1)) >= 0] == 0
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for(int i = 0; i < (int)(n); i++) #define all(x) (x).begin(),(x).end() #define pb push_back typedef long long ll; const int INF = 1000000000; const long INF64 = 1000000000000000ll; const ll MOD = 1000000007ll; int main(){ ll n; std::cin >> n; std::vector<ll> a(n); rep(i,n)std::cin >> a[i]; ll ans1=0,ans2=0; ll sum=0; ll han=-1; rep(i,n){ han*=-1; sum+=a[i]; if(han<0){ ans1+=max(0,sum+1); sum-=max(0,sum+1); }else{ ans1-=min(0,sum-1); sum-=min(0,sum-1); } // std::cout << ans1 << std::endl; } han=1;sum=0; rep(i,n){ han*=-1; sum+=a[i]; if(han<0){ ans2+=max(0,sum+1); sum-=max(0,sum+1); }else{ ans2-=min(0,sum-1); sum-=min(0,sum-1); } // std::cout <<sum<<' '<< ans2 << std::endl; } std::cout << min(ans1,ans2) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) currentSum = 0 count1 = 0 count2 = 0 count3 = 0 count4 = 0 for i in range(N): restSum = currentSum currentSum += A[i] if currentSum <= 0 and restSum < 0: count1 += abs(currentSum) + 1 currentSum = 1 elif currentSum >= 0 and restSum > 0: count1 += abs(currentSum) + 1 currentSum = -1 elif currentSum == 0 and restSum == 0: count1 += 1 currentSum = -1 currentSum = 0 for i in range(N): restSum = currentSum currentSum += A[i] if currentSum <= 0 and restSum < 0: count2 += abs(currentSum) + 1 currentSum = 1 elif currentSum >= 0 and restSum > 0: count2 += abs(currentSum) + 1 currentSum = -1 elif currentSum == 0 and restSum == 0: count2 += 1 currentSum = 1 currentSum = 0 for i in range(N): restSum = currentSum currentSum += A[i] if currentSum <= 0 and restSum < 0: count3 += abs(currentSum) + 1 currentSum = 1 elif currentSum >= 0 and restSum > 0: count3 += abs(currentSum) + 1 currentSum = -1 elif A[0] <= 0 and restSum == 0: count3 += 1 currentSum = 1 currentSum = 0 for i in range(N): restSum = currentSum currentSum += A[i] if currentSum <= 0 and restSum < 0: count4 += abs(currentSum) + 1 currentSum = 1 elif currentSum >= 0 and restSum > 0: count4 += abs(currentSum) + 1 currentSum = -1 elif A[0] >= 0 and restSum == 0: count4 += 1 currentSum = -1 print(count1, count2, count3, count4)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a_list = list(map(int,input().split())) count = 0 summary = 0 previous = '' for i,a in enumerate(a_list): if i == 0: if a > 0: previous = '+' elif a < 0: previous = '-' else: flag = False for idx,num in enumerate(a_list): if num != 0: flag = True if num > 0: if i % 2 == 1: previous = '-' a = -1 else: previous = '+' a = 1 else: if i % 2 == 0: previous = '-' a = -1 else: previous = '+' a = 1 if flag == False: previous = '+' a = 1 count += 1 summary += a else: if previous == '+': if summary + a < 0: a_result = a else: a_result = (-1)*abs(-1-summary) count += abs(a-a_result) previous = '-' else: if summary + a > 0: a_result = a else: a_result = abs(1-summary) count += abs(a-a_result) previous = '+' summary += a_result print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const int INF = 0x3f3f3f3f; static const long long INFL = 0x3f3f3f3f3f3f3f3fLL; template <typename T, typename U> inline void amin(T &x, U y) { if (y < x) x = y; } template <typename T, typename U> inline void amax(T &x, U y) { if (x < y) x = y; } signed main() { long long n; cin >> n; vector<long long> a(n); for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i]; long long sum = 0; long long prev = 0; sum += a[0]; long long ans = 0; for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans += sum + 1; sum = -1; } else if (sum < 0) { ans += abs(sum) + 1; sum = 1; } else { ans++; sum = (prev < 0 ? 1 : -1); } } } sum = 0; prev = 0; long long ans2 = 0; sum += a[0]; if (sum > 0) { ans2 += sum + 1; sum = -1; } else if (sum < 0) { ans2 += abs(sum) + 1; sum = 1; } else { ans2++; sum = 1; } for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans2 += sum + 1; sum = -1; } else if (sum < 0) { ans2 += abs(sum) + 1; sum = 1; } else { ans2++; sum = (prev < 0 ? 1 : -1); } } } sum = 0; prev = 0; long long ans3 = 0; sum += a[0]; if (sum > 0) { ans3 += sum + 1; sum = -1; } else if (sum < 0) { ans3 += abs(sum) + 1; sum = 1; } else { ans3++; sum = -1; } for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) { prev = sum; sum += a[i]; if (prev * sum < 0) { continue; } else { if (sum > 0) { ans3 += sum + 1; sum = -1; } else if (sum < 0) { ans3 += abs(sum) + 1; sum = 1; } else { ans3++; sum = (prev < 0 ? 1 : -1); } } } cout << min(ans, min(ans3, ans2)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count1, count2, sum1, sum2; count1 = count2 = sum1 = sum2 = 0; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; int a0 = a[0]; while (a[0] <= 0) { a[0]++; count1++; } sum1 = a[0]; for (int i = 1; i < n; i++) { sum1 += a[i]; if (i % 2 == 1) { while (sum1 >= 0) { sum1--; count1++; } } else { while (sum1 <= 0) { sum1++; count1++; } } } a[0] = a0; while (a[0] >= 0) { a[0]--; count2++; } sum2 = a[0]; for (int i = 1; i < n; i++) { sum2 += a[i]; if (i % 2 == 1) { while (sum2 <= 0) { sum2++; count2++; } } else { while (sum2 >= 0) { sum2--; count2++; } } } if (count1 >= count2) cout << count2 << endl; else cout << count1 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) B = A.copy() gokei = 0 ans1 = 0 for i in range(N): gokei = sum(A[:i+1]) # 偶数番目を負に if i % 2 == 0: if gokei >= 0: ans1 += abs(-1 - gokei) A[i] -= abs(-1 - gokei) if i % 2 == 1: if gokei <= 0: ans1 += 1 - gokei A[i] += (1 - gokei) gokei = 0 ans2 = 0 for i in range(N): gokei = sum(B[:i+1]) # 偶数番目を正に if i % 2 == 0: if gokei <= 0: ans2 += 1 - gokei B[i] += (1 - gokei) else: if gokei >= 0: ans2 += abs(-1 - gokei) B[i] -= abs(-1 - gokei) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
macro_rules! input { (source = $s:expr, $($r:tt)*) => { let mut iter = $s.split_whitespace(); input_inner!{iter, $($r)*} }; ($($r:tt)*) => { let mut s = { use std::io::Read; let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); s }; let mut iter = s.split_whitespace(); input_inner!{iter, $($r)*} }; } macro_rules! input_inner { ($iter:expr) => {}; ($iter:expr, ) => {}; ($iter:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($iter, $t); input_inner!{$iter $($r)*} }; } macro_rules! read_value { ($iter:expr, ( $($t:tt),* )) => { ( $(read_value!($iter, $t)),* ) }; ($iter:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>() }; ($iter:expr, chars) => { read_value!($iter, String).chars().collect::<Vec<char>>() }; ($iter:expr, usize1) => { read_value!($iter, usize) - 1 }; ($iter:expr, $t:ty) => { $iter.next().unwrap().parse::<$t>().expect("Parse error") }; } fn main() { input!{ n: usize, a: [i32; n], }; let mut ans_minus = 0; let mut ans_plus = 0; let mut tmp = 0; for (i, v) in a.iter().enumerate(){ if i % 2 == 0{ tmp = tmp + v; if tmp >= 0{ ans_minus += tmp + 1; tmp = -1; } } else { tmp = tmp + v; if tmp <= 0{ ans_minus += -tmp + 1; tmp = 1; } } } let mut tmp = 0; for (i, v) in a.iter().enumerate(){ if i % 2 == 1{ tmp = tmp + v; if tmp >= 0{ ans_plus += tmp + 1; tmp = -1; } } else { tmp = tmp + v; if tmp <= 0{ ans_plus += -tmp + 1; tmp = 1; } } } println!( "{}", if ans_minus < ans_plus { ans_minus}else{ans_plus} ); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int[] A = new int[N]; for (int i = 0; i < N; ++i) { A[i] = sc.nextInt(); } sc.close(); int sum1 = 0; int sum2 = 0; int ans1 = 0; int ans2 = 0; for (int i = 0; i < N; ++i) { sum1 += A[i]; if (i % 2 == 0 && sum1 >= 0) { ans1 += sum1 +1; sum1 = -1; } else if (i % 2 != 0 && sum1 <= 0) { ans1 += Math.abs(sum1) + 1; sum1 = 1; } } for (int i = 0; i < N; ++i) { sum2 += A[i]; if (i % 2 == 0 && sum2 <= 0) { ans2 += sum1 +1; sum2 = 1; } else if (i % 2 != 0 && sum2 >= 0) { ans2 += Math.abs(sum2) + 1; sum2 = -1; } } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) def judge(count): idx = 0 for i in range(2,n+1): if count == -1: if sum(a[0:i]) < 0: pass else: check = sum(a[0:i]) + 1 j = a[i-1] a[i-1] = j - check idx += check elif count == 1: if sum(a[0:i]) > 0: pass else: check = 1 - sum(a[0:i]) j = a[i-1] a[i-1] = check+ j idx += check count *= -1 return idx if a[0] > 0: b = judge(-1) print(b) elif a[0] < 0: c = judge(1) print(c) else: a[0] = 1 b = judge(-1) a[0] = -1 c = judge(1) print(min(b,c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.PrintWriter; import java.util.Scanner; public class Main{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); //入力 int n = sc.nextInt(); long[] a = new long[n]; for(int i = 0; i < n; i++){ a[i] = sc.nextLong(); } sc.close(); //処理 long ans = -1; boolean bool = true; for(int count = 0; count < 2; count++){ long temp = 0; bool ^= true; boolean f = bool; long sum = 0; for(int i = 0; i < n; i++){ sum += a[i]; if(sum > 0 == f){ //nothing }else{ temp += Math.abs(sum) + 1; if(f){ sum = 1; }else{ sum = -1; } } f ^= true; } if(ans == -1){ ans = temp; }else{ ans = Math.min(ans, temp); } } //出力 out.println(ans); out.flush(); } static class Pair{ int w,v; public Pair(int a, int b){ this.w = a; this.v = b; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; int C[200000]; int count = 0; cin >> N; for (int i = 0; i < N; i++) { cin >> C[i]; } int sum = C[0]; for (int i = 1; i < N; i++) { if (sum < 0) { sum += C[i]; while (sum <= 0) { sum++; cout << sum << endl; count++; } continue; } if (sum > 0) { sum += C[i]; while (sum >= 0) { sum--; cout << sum << endl; count++; } continue; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int N[100000]; cin >> n; for (int i = 0; i < n; i++) { cin >> N[i]; } int ans = 0; if (N[0] == 0) { if (N[1] >= 0) { N[0] = -1; } if (N[1] < 0) { N[0] = 1; } ans = 1; } int sum = N[0]; if (N[0] > 0) { for (int i = 1; i < n; i++) { sum = sum + N[i]; if (i % 2 == 0 && sum <= 0) { N[i] = N[i] - sum + 1; ans = ans - sum + 1; sum = 1; } if (i % 2 == 1 && sum >= 0) { N[i] = N[i] - sum - 1; ans = ans + sum + 1; sum = -1; } } } if (N[0] < 0) { for (int i = 1; i < n; i++) { sum = sum + N[i]; if (i % 2 == 0 && sum >= 0) { N[i] = N[i] - sum - 1; ans = ans + sum + 1; sum = -1; } if (i % 2 == 1 && sum <= 0) { N[i] = N[i] - sum + 1; ans = ans - sum + 1; sum = 1; } } } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100100]; int main() { cin >> n; for (long long i = 1; i < n + 1; i++) cin >> a[i]; long long check = 0; long long ans = 0; for (long long i = 1; i < n + 1; i++) { check += a[i]; if (i % 2 != 0 && check < 0) { ans += abs(1 - check); check = 1; } else if (i % 2 == 0 && check > 0) { ans += abs(check + 1); check = -1; } } check = 0; long long tmp = 0; for (long long i = 1; i < n + 1; i++) { check += a[i]; if (i % 2 != 0 && check >= 0) { tmp += abs(check + 1); check = -1; } else if (i % 2 == 0 && check <= 0) { tmp += abs(1 - check); check = -1; } } cout << min(tmp, ans) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0, cumsum = a[0]; if (a[0] == 0) { int i = 1; while (a[i] == 0 && i < n) i++; if (i == n || (a[i] < 0 && i % 2 == 1) || (a[i] > 0 && i % 2 == 0)) cumsum = 1; else cumsum = -1; ans += 1; } for (int i = 1; i < n; i++) { if (cumsum > 0) { if (cumsum + a[i] >= 0) { ans += cumsum + a[i] + 1; cumsum = -1; } else cumsum += a[i]; } else { if (cumsum + a[i] <= 0) { ans += 1 - cumsum - a[i]; cumsum = 1; } else cumsum += a[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split(' '))) result = 0 h = 0 if a[0] == 0: a[0] += 1 result += 1 h = 1 counter = a[0] for i in range(1, n): if counter < 0: counter += a[i] if counter == 0: counter += 1 result +=1 elif counter > 0: continue else: result += 1-counter counter = 1 else: counter += a[i] if counter == 0: counter -= 1 result += 1 elif counter < 0: continue else: result += counter+1 counter = -1 out = [] out.append(result) result = 0 if h == 1: result = 1 if a[0] > 0: result += a[0] +1 counter = -1 else: result += 1-a[0] counter = 1 for i in range(1, n): if counter < 0: counter += a[i] if counter == 0: counter += 1 result += 1 elif counter > 0: continue else: result += 1-counter counter = 1 else: counter += a[i] if counter == 0: counter -= 1 result +=1 elif counter < 0: continue else: result += counter+1 counter = -1 out.append(result) print(min(out))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, sum = 0; cin >> n; bool plus = true; vector<int> t(n); for (int i = 0; i < (n); i++) { int a; cin >> t[i]; a = t[i]; while (plus && sum + a <= 0) { a++; ansa++; } while (!plus && sum + a >= 0) { a--; ansa++; } sum += a; plus = !plus; } plus = false; sum = 0; for (int i = 0; i < (n); i++) { int a; a = t[i]; while (plus && sum + a >= 0) { a++; ansb++; } while (!plus && sum + a <= 0) { a--; ansb++; } sum += a; plus = !plus; } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n=int(raw_input()) a=map(int,raw_input().split(' ')) p_s=a[0] c=0 for i in range(1,n): s=p_s+a[i] #print i,p_s,s if s==0: if i==n-1: a[i]+=1 c+=1 else: if a[i]>=0: a[i]+=1 c+=1 else: a[i]-=1 c+=1 s=p_s+a[i] if p_s*s>=0: if p_s>0: c+=abs(p_s*-1 - 1 - a[i]) a[i]=p_s*-1 - 1 else: c+=abs(p_s*-1 + 1 - a[i]) a[i]=p_s*-1 + 1 p_s=p_s+a[i] #print c,a print c
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, a[100000]; cin >> N; for (int i = 0; i < N; ++i) cin >> a[i]; int counter = 0; long long b[100000]; if (a[0] == 0) { ++a[0]; ++counter; b[0] = a[0]; for (int i = 1; i < N; ++i) { b[i] = b[i - 1] + a[i]; if (b[i - 1] * b[i] >= 0) { if (i % 2 == 0) { counter += abs(1 - b[i]); b[i] = 1; } else { counter += abs((-1) - b[i]); b[i] = -1; } } } } else if (a[0] > 0) { b[0] = a[0]; for (int i = 1; i < N; ++i) { b[i] = b[i - 1] + a[i]; if (b[i - 1] * b[i] >= 0) { if (i % 2 == 0) { counter += abs(1 - b[i]); b[i] = 1; } else { counter += abs((-1) - b[i]); b[i] = -1; } } } } else { b[0] = a[0]; for (int i = 1; i < N; ++i) { b[i] = b[i - 1] + a[i]; if (b[i - 1] * b[i] >= 0) { if (i % 2 == 0) { counter += abs((-1) - b[i]); b[i] = -1; } else { counter += abs(1 - b[i]); b[i] = 1; } } } } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const auto INF = (ll)1e9; using v = vector<ll>; using p = pair<ll, ll>; using m = map<ll, ll>; using vv = vector<v>; int gcd(int a, int b) { return a == 0 ? b : gcd(a, a % b); } int main() { int n; cin >> n; auto a = vector<ll>(n + 1, 0); for (int i = 0; i < n; i++) { cin >> a[i]; } ll sum = 0; ll c = 0; for (ll i = 0; i < n; i++) { if (sum + a[i] == 0) { if (a[i] >= a[i + 1]) { sum = -1; } else { sum = 1; } c++; } else if (sum > 0 && sum + a[i] > 0) { c += abs(-1 - sum - a[i]); sum = -1; } else if (sum < 0 && sum + a[i] < 0) { c += abs(+1 - sum - a[i]); sum = 1; } else { sum += a[i]; } } cout << c; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; vector<long long int> B(N); B[0] = A[0]; for (int i = 1; i < N; i++) B[i] = B[i - 1] + A[i]; int ans = 0; int base = 0; for (int i = 1; i < N; i++) { if ((B[i] + base) * (B[i - 1] + base) > 0) { if (B[i] + base > 0) { ans += abs(B[i] + base) + 1; base -= abs(B[i] + base) + 1; continue; } else if (B[i] + base < 0) { ans += abs(B[i] + base) + 1; base += abs(B[i] + base) + 1; continue; } } if (B[i - 1] + base == 0) { if (B[i] + base > 0) { ans += 1; base -= 1; continue; } else if (B[i] + base < 0) { ans += 1; base += 1; continue; } } if (i == N - 1 && B[i] + base == 0) ans++; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n, 0); for (long long i = 0; i < n; i++) { cin >> a[i]; } long long now_sum = a[0], cost = 0; int before; if (a[0] > 0) before = 1; else before = -1; for (long long i = 1; i < n; i++) { now_sum += a[i]; if (now_sum == 0) { now_sum -= a[i]; if (before == 1) { a[i]--; } else if (before == -1) { a[i]++; } now_sum += a[i]; cost++; } if (before == 1 && now_sum > 0) { cost += abs(now_sum) + 1; now_sum -= a[i]; a[i] -= cost; now_sum += a[i]; } if (before == -1 && now_sum < 0) { cost += abs(now_sum) + 1; now_sum -= a[i]; a[i] += cost; now_sum += a[i]; } if (now_sum > 0) before = 1; else before = -1; } cout << cost << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } int count1 = 0; int sum1 = 0; // 最初の和が正 for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { while (sum1 <= 0) { sum1++; count1++; } } else { while (sum1 >= 0) { sum1--; count1++; } } } int count2 = 0; int sum2 = 0; // 最初の和が負 for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { while (sum2 >= 0) { sum2--; count2++; } } else { while (sum2 <= 0) { sum2++; count2++; } } } int ans = Integer.min(count1, count2); System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<int> a(n); int cnt = 0; int sum = 0; cin >> a[0]; sum += a[0]; for (int i = 1; i < n; ++i) { cin >> a[i]; if (sum > 0) { if (sum + a[i] == 0) { a[i] -= 1; cnt++; } else if (sum + a[i] > 0) { int b = sum + a[i]; a[i] -= (b + 1); cnt += (b + 1); } else { ; } } else { if (sum + a[i] == 0) { a[i] += 1; cnt++; } else if (sum + a[i] < 0) { int b = -(sum + a[i]); a[i] += (b + 1); cnt += (b + 1); } else { ; } } sum += a[i]; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys from functools import reduce import copy import math from pprint import pprint import collections import bisect sys.setrecursionlimit(4100000) def inputs(num_of_input): ins = [input() for i in range(num_of_input)] return ins def int_inputs(num_of_input): ins = [int(input()) for i in range(num_of_input)] return ins def solve(inputs): A = string_to_int(inputs[0]) def j(x): if x > 0: return 1 elif x == 0: return 0 else: return -1 end_0 = None next_0 = None for i, a in enumerate(A): if a == 0: end_0 = i elif end_0 is not None: next_0 = j(a) break else: break sum_n = None count = 0 is_prev = None for i, a in enumerate(A): if sum_n is None: if end_0: if not next_0: sum_n = 1 else: if end_0 % 2 != 0: if next_0 == 1: sum_n = 1 else: sum_n = -1 else: if next_0 == 1: sum_n = -1 else: sum_n = 1 count += 1 else: sum_n = a is_prev = j(sum_n) else: tmp_sum_n = sum_n + a if is_prev == 1 and j(tmp_sum_n) >= 0: count += abs(tmp_sum_n) + 1 tmp_sum_n -= (abs(tmp_sum_n) + 1) elif is_prev == -1 and j(tmp_sum_n) <= 0: count += abs(tmp_sum_n) + 1 tmp_sum_n += abs(tmp_sum_n) + 1 sum_n = tmp_sum_n is_prev = j(sum_n) return count def string_to_int(string): return list(map(int, string.split())) if __name__ == "__main__": input() ret = solve(inputs(1)) print(ret)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int []a = new int [n]; for(int i = 0; i < n ;i++) { a[i] = sc.nextInt(); } sc.close(); long ans = Math.min(count(n,a,0),count(n,a,1)); System.out.println(ans); } private static long count(int n, int []a, int pat) { long count = 0; long sum = 0; sum += a[0]; int temp = (int)Math.pow(-1, 1+pat); if(sum == 0) { count++; sum = temp; } for(int i = 1 ; i < n ; i++) { sum += a[i]; temp *= -1; if((long)temp * sum <= 0) { count += Math.abs(sum) + 1 ; sum = temp; } } return count; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void chmax(T &a, T b) { if (a < b) a = b; } template <class T> void chmin(T &a, T b) { if (a > b) a = b; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; long long sum = a[0]; long long change = 0LL; if (sum > 0) { for (int i = 1; i < n; i++) { if (i % 2 == 1 && sum + a[i] >= 0) { sum += a[i]; change += abs(-1LL - sum); sum = -1LL; } else if (i % 2 == 0 && sum + a[i] <= 0) { sum += a[i]; change += abs(1LL - sum); sum = 1LL; } else { sum += a[i]; } } } else { for (int i = 1; i < n; i++) { if (i % 2 == 0 && sum + a[i] >= 0) { sum += a[i]; change += abs(-1LL - sum); sum = -1LL; } else if (i % 2 == 1 && sum + a[i] <= 0) { sum += a[i]; change += abs(1 - sum); sum = 1LL; } else { sum += a[i]; } } } cout << change; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import Control.Monad import Data.List main=do _<-getLine (a:as)<-map read.words<$>getLine::IO[Int] print $ if a /= 0 then min (sum.snd $ mapAccumL f a as) ((+) (1 + (abs a)) $ sum $ snd $ mapAccumL f (a`div`(abs a)) as) else min ((+) 1 $ sum $ snd $ mapAccumL f 1 as) ((+) 1 $ sum $ snd $ mapAccumL f (-1) as) f a b | signum a * signum (a+b) < 0 = (a+b,0) | a < 0 = (1, 1-(a+b)) | otherwise = ((-1), 1+(a+b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (long long int i = 0LL; i < N; i++) { cin >> A[i]; } int cnt = 0; if (A[0] < 0LL) { long long int M = A[0]; for (long long int i = 1; i < N; i++) { if (i % 2 == 1) { if (M + A[i] >= 0) { continue; } else { long long int tmp = M + A[i]; cnt += abs(tmp); A[i] += abs(tmp); } } else { if (M + A[i] < 0) { continue; } else { long long int tmp = M + A[i]; cnt += abs(tmp) + 1; A[i] -= abs(tmp) - 1; } M += A[i]; } } } else { long long int M = A[0]; for (long long int i = 1; i < N; i++) { if (i % 2 == 0) { if (M + A[i] >= 0) { continue; } else { long long int tmp = M + A[i]; cnt += abs(tmp); A[i] += abs(tmp); } } else { if (M + A[i] < 0) { continue; } else { long long int tmp = M + A[i]; cnt += abs(tmp) + 1; A[i] -= abs(tmp) - 1; } M += A[i]; } } } cout << cnt; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int( input()) A = list( map( int, input().split())) ansp = 0 sums = A[0] if sums == 0: ansp += 1 sums += 1 for i in range(1,n): sums += A[i] if i%2 == 1: if sums < 0: pass else: ansp += abs(-1-sums) sums = -1 else: if sums > 0: pass else: ansp += abs(1 - sums) sums = 1 sums = A[0] ansm = 0 if sums == 0: ansm += 1 sums -= 1 for i in range(1,n): sums += A[i] if i%2 == 0: if sums < 0: pass else: ansm += abs(-1-sums) sums = -1 else: if sums > 0: pass else: ansm += abs(1 - sums) sums = 1 print( min(ansp, ansm))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = tuple(map(int, input().split(' '))) cs = A[0] ans = 0 for na in A[1:]: if cs >= 0: cs += na if cs < 0: continue ans += cs + 1 cs = -1 else: cs += na if cs > 0: continue ans += -cs + 1 cs = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) point = a[0] ans = 0 for i in a[1:]: if point*i < 0: if abs(point) < abs(i): point += i else: ans += (abs(point)+1) - abs(i) point = -int(point/abs(point)) else: ans += (abs(point)+1) + i point = -int(point/abs(point)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> S(N + 1); S[0] = 0; for (int i = 1; i <= N; ++i) { cin >> S[i]; S[i] += S[i - 1]; } int ians = (1 << 30); for (int j = -1; j <= 1; j += 2) { vector<int> S_(S); int ans = 0; int add = 0; int sign = j; for (int i = 1; i <= N; ++i) { S_[i] += add; int sign_i = ((S_[i] >> 31) << 1) + 1; if (S_[i] == 0) { ans += 1; add += -sign; S_[i] += -sign; } else if (sign_i == sign) { ans += abs(-sign_i - S_[i]); add += -sign_i - S_[i]; S_[i] = -sign_i; } sign = -sign; } ians = min(ans, ians); } cout << ians << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i a_list = gets.split.map(&:to_i) def calc(list, first_is_positive) first = list[0] count = if first_is_positive first > 0 ? 0 : 1 - first else first < 0 ? 0 : (-1 - first).abs end sum = first_is_positive ? first + count : first - count list[1..-1].each do |a| if sum > 0 # plus to minus if a >= 0 count += (a + sum) + 1 sum = -1 else if sum + a < 0 sum += a else count += (sum + a) + 1 sum = -1 end end else # minus to plus if a >= 0 if sum + a > 0 sum += a else count += (sum + a).abs + 1 sum = -1 end else count += (a + sum).abs + 1 sum = 1 end end end count end ans = [ calc(a_list, true), calc(a_list, false) ].min puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 100000000; int dx[] = {0, 1, -1, 0, 1, -1, 1, -1}; int dy[] = {1, 0, 0, -1, 1, -1, -1, 1}; int main() { int n; cin >> n; long long sum1 = 0, sum2 = 0; int ans1 = 0, ans2 = 0; for (int i = 0; i < n; i++) { int a; cin >> a; sum1 += a; sum2 += a; if (i % 2) { if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } if (sum2 <= 0) { ans2 += -sum2 + 1; sum2 = 1; } } else { if (sum1 <= 0) { ans1 += -sum1 + 1; sum1 = 1; } if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) sum = a[0] ans = 0 for i in range(1,n): if (sum+a[i])*sum > 0: if sum > 0: ans += sum + a[i] + 1 sum = -1 else: ans += -sum -a[i] + 1 sum = 1 else: if sum < 0 and sum+a[i]==0: sum = 1 ans +=1 elif sum > 0 and sum+a[i]==0: sum = -1 ans +=1 else: sum += a[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = input() a = [int(i) for i in input().split()] cou = len(a) counter = 0 X = a[0] ans = 0 for i in a: if X > 0: b = -1 - X ans += abs(b - a[i]) X = -1 counter += 1 if counter == cou - 1: break else: b = 1 - X ans += abs(b - a[i]) X = 1 counter += 1 if counter == cou - 1: break print (ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def chk(a,t): # t=True(奇数項が正), t=False(偶数項が正) cnt=0 # 操作回数 x=0 # 塁積和 for i in a: x+=i if t==True and x<=0: # 正項予定なのに累積が負か0 cnt+=1-x x=x+(1-x) # 今回のcntで符号変更 elif t==False and x>=0: # 負項予定なのに累積が正か0 cnt+=1+x x=x-(1+x) # 今回のcntで符号変換 t = not t # 次の項は符号が逆 return cnt print(min(chk(a,True),chk(a,False)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) li = list(map(int,input().split())) ans = 0 cnt = 0 s = 0 for i in range(n): if i == 0: ans += li[i] if ans > 0: s = 1 else: s = -1 else: ans += li[i] if ans <= 0 and s == -1: cnt += -ans + 1 ans = 1 if ans >= 0 and s == 1: cnt += ans + 1 ans = -1 s *= -1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); int n; cin >> n; int a[100010]; for (int i = 0; i < n; ++i) cin >> a[i]; int cur1 = 0; int cur2 = 0; int ans1 = 0; int ans2 = 0; for (int i = 0; i < n; ++i) { cur1 += a[i]; if (i % 2 == 0) { if (cur1 <= 0) { ans1 = ans1 - cur1 + 1; cur1 = 1; } } if (i % 2 == 1) { if (cur1 >= 0) { ans1 = ans1 + cur1 + 1; cur1 = -1; } } } for (int i = 0; i < n; ++i) { cur2 += a[i]; if (i % 2 == 1) { if (cur2 <= 0) { ans2 = ans2 - cur2 + 1; cur2 = 1; } } if (i % 2 == 0) { if (cur2 >= 0) { ans2 = ans2 + cur2 + 1; cur2 = -1; } } cout << cur2 << endl; } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a_array = np.array([int(elem) for elem in input().split(' ')]) def calculate_cumulative_sum(a_array, n): cumul_sum_array = np.zeros(n, dtype=np.int32) cumul_sum_array[0] = a_array[0] for i in range(1, n): cumul_sum_array[i] = cumul_sum_array[i - 1] + a_array[i] return cumul_sum_array def check_1(cumul_sum_array): result = (cumul_sum_array != 0).all() return result def check_2(cumul_sum_array): odd = np.sign(cumul_sum[::2]) even = np.sign(cumul_sum[1::2]) odd_sign = np.unique(odd) even_sign = np.unique(even) return (len(odd_sign) == 1) * (len(even_sign) == 1) * (odd_sign[0] != even_sign[0]) cumul_sum = calculate_cumulative_sum(a_array, n) count = {'plus': 0, 'minus': 0} def calc_num_manipulation(cumul_sum, start, n): cumul_sum = cumul_sum.copy() count = 0 for i in range(n): if check_1(cumul_sum) and check_2(cumul_sum): break else: if i == 0: diff = cumul_sum[i] - start count += abs(diff) cumul_sum[i:] -= diff else: if cumul_sum[i - 1] < 0 and cumul_sum[i] <= 0: diff = cumul_sum[i] - 1 count += abs(diff) cumul_sum[i:] -= diff elif cumul_sum[i - 1] > 0 and cumul_sum[i] >= 0: diff = cumul_sum[i] - (-1) count += abs(diff) cumul_sum[i:] -= diff else: continue return count count['plus'] = calc_num_manipulation(cumul_sum, 1, n) count['minus'] = calc_num_manipulation(cumul_sum, -1, n) print(min(count.values()))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) cnt = 0 sum = [0]*n sum[0] = a[0] for i in range(1,n): sum[i] = sum[i-1]+a[i] if sum[i]*sum[i-1]<0: continue if sum[i-1]*a[i]<0: cnt += abs(sum[i-1])-abs(a[i])+1 else: cnt += abs(sum[i-1])+abs(a[i])+1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { static int ANS; static int N; public static void main(String[] args) { Scanner sc = new Scanner(System.in); N = Integer.parseInt(sc.nextLine()); long[] a = new long[N]; long[] sum = new long[N]; long tsum = 0L; for (int i = 0; i < N; i++) { long elm = Long.parseLong(sc.next()); a[i] = elm; tsum += elm; sum[i] = tsum; } solve(sum, a, 0); System.out.println(ANS); } private static void solve(long[] sum, long[] a, int start) { for (int i = start; i < N - 1; i++) { long one = sum[i]; long two = sum[i + 1]; if (two == 0) { if (one >= 0) { ANS++; a[i + 1]--; sumStream(sum, a); solve(sum, a, i); } else { ANS++; a[i + 1]++; sumStream(sum, a); solve(sum, a, i); } } if (one >= 0 && two >= 0) { ANS += Math.abs(two) + 1; a[i + 1] -= Math.abs(two) + 1; sumStream(sum, a); solve(sum, a, i); } if (one < 0 && two < 0) { ANS += Math.abs(two) + 1; a[i + 1] += Math.abs(two) + 1; sumStream(sum, a); solve(sum, a, i); } } } private static void sumStream(long[] sum, long[] a) { long limit = a.length; long tsum = 0L; for (int i = 0; i < limit; i++) { tsum += a[i]; sum[i] = tsum; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3,no-stack-protector") #pragma GCC optimize("unroll-loops") #pragma GCC target("avx") using namespace std; using Graph = vector<vector<int64_t>>; const double pi = M_PI; const int64_t MOD = 1000000007; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int64_t n; cin >> n; vector<int64_t> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int64_t ans = 0, tem = a[0]; for (int i = 1; i < n; i++) { if ((0 < tem + a[i] && tem < 0) || (tem + a[i] < 0 && 0 < tem)) { tem += a[i]; } else { if (0 <= tem + a[i] && 0 <= tem) { ans += abs(-1 - (tem + a[i])); tem = -1; } else { ans += abs(1 - (tem + a[i])); tem = 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Runtime.CompilerServices; namespace V { partial class Solver { public void Solve() { //var n = Read; Write(SolveLong()); //YesNo(SolveBool()); } public long SolveLong() { var n = Read; var a = Arr(n); var a0 = a[0]; var res1 = Slv(a, a0 > 0 ? -1 : a0); var res2 = Slv(a, a0 < 0 ? 1 : a0); return Math.Min(res1, res2); } long Slv(IReadOnlyList<long> a, long initial) { var res = Math.Abs(initial - a[0]); var sum = initial; foreach (var aa in a.Skip(1)) { var s2 = sum + aa; if (sum > 0 && s2 >= 0) { res += Math.Abs(s2 + 1); s2 = -1; } else if (sum < 0 && s2 <= 0) { res += Math.Abs(s2 - 1); s2 = 1; } sum = s2; } return res; } public bool SolveBool() { var n = Read; var res = false; return res; } } } namespace V { class StartingPoint { static void Main(string[] args) { try { var streamReader = args.Any() ? new StreamReader(args[0]) : new StreamReader(Console.OpenStandardInput()); var streamWriter = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false }; var scanner = new Scanner(streamReader); var printer = new Printer(streamWriter); var solver = new Solver(scanner, printer); solver.Solve(); streamWriter.Flush(); } catch (Exception e) { Console.WriteLine(e); if (args.Any() == false) throw e; } if (args.Any()) Console.ReadKey(); } } partial class Solver { public Solver(Scanner sc, Printer pr) { this.sc = sc; this.pr = pr; } private readonly Scanner sc; private readonly Printer pr; private IEnumerable<int> Loop(int n) => C.Loop(n); private IEnumerable<long> Loop(long n) => C.Loop(n); private int RdInt => sc.Int; private int ReadInt => sc.Int; private long Rd => sc.Long; private long Read => sc.Long; private long ReadLong => sc.Long; private double RdDouble => sc.Double; private double ReadDouble => sc.Double; private string Str => sc.Str; private string RdStr => sc.Str; private string ReadStr => sc.Str; private int[] ArrInt(int n) => sc.Ints(n); private int[] ArrInt(long n) => sc.Ints(n); private long[] Arr(int n) => sc.Longs(n); private long[] Arr(long n) => sc.Longs(n); private long[] ArrLong(int n) => sc.Longs(n); private long[] ArrLong(long n) => sc.Longs(n); private double[] ArrDouble(int n) => sc.Doubles(n); private double[] ArrDouble(long n) => sc.Doubles(n); private string[] ArrStr(int n) => sc.Strs(n); private string[] ArrStr(long n) => sc.Strs(n); private void Wr(string s) => pr.Write(s); private void Wr(object obj) => pr.Write(obj); private void Wr<T>(IEnumerable<T> ts) => pr.Write(ts); private void Wr(params object[] objs) => pr.Write(objs); private void Write(string s) => pr.Write(s); private void Write(object obj) => pr.Write(obj); private void Write<T>(IEnumerable<T> ts) => pr.Write(ts); private void Write(params object[] objs) => pr.Write(objs); private void YesNo(bool b) => Write(b ? "Yes" : "No"); private void YESNO(bool b) => Write(b ? "YES" : "NO"); } class Scanner { private readonly TextReader reader; public Scanner(TextReader reader) { this.reader = reader; } private Queue<string> strQueue = new Queue<string>(); public string Str { get { if (strQueue.Count > 0) return strQueue.Dequeue(); string[] strs = null; do { strs = reader.ReadLine().Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries); } while (strs.Any() == false); foreach (var s in strs.Skip(1)) strQueue.Enqueue(s); return strs[0]; } } public int Int => int.Parse(this.Str); public long Long => long.Parse(this.Str); public double Double => double.Parse(this.Str); public static bool TypeEquals<T1, T2>() => typeof(T1).Equals(typeof(T2)); public static T1 ChangeTypes<T1, T2>(T2 t2) => (T1)System.Convert.ChangeType(t2, typeof(T1)); public static T1 Convert<T1>(string s) => TypeEquals<T1, int>() ? ChangeTypes<T1, int>(int.Parse(s)) : TypeEquals<T1, long>() ? ChangeTypes<T1, long>(long.Parse(s)) : TypeEquals<T1, double>() ? ChangeTypes<T1, double>(int.Parse(s)) : TypeEquals<T1, char>() ? ChangeTypes<T1, char>(s[0]) : ChangeTypes<T1, string>(s); public Pair<TX, TY> P2<TX, TY>() => new Pair<TX, TY>(Convert<TX>(this.Str), Convert<TY>(this.Str)); public Pair3<TX, TY, TZ> P3<TX, TY, TZ>() => new Pair3<TX, TY, TZ>(Convert<TX>(this.Str), Convert<TY>(this.Str), Convert<TZ>(this.Str)); public Pair4<TX, TY, TZ, TW> P4<TX, TY, TZ, TW>() => new Pair4<TX, TY, TZ, TW>(Convert<TX>(this.Str), Convert<TY>(this.Str), Convert<TZ>(this.Str), Convert<TW>(this.Str)); } static class ScannerExtension { public static int[] Ints(this Scanner scanner, int n) => scanner.Ints((long)n); public static int[] Ints(this Scanner scanner, long n) => scanner.ScanStrs<int>(n).ToArray(); public static long[] Longs(this Scanner scanner, int n) => scanner.Longs((long)n); public static long[] Longs(this Scanner scanner, long n) => scanner.ScanStrs<long>(n).ToArray(); public static double[] Doubles(this Scanner scanner, int n) => scanner.Doubles((long)n); public static double[] Doubles(this Scanner scanner, long n) => scanner.ScanStrs<double>(n).ToArray(); public static string[] Strs(this Scanner scanner, int n) => scanner.Strs((long)n); public static string[] Strs(this Scanner scanner, long n) => scanner.ScanStrs<string>(n).ToArray(); private static IEnumerable<T> ScanStrs<T>(this Scanner scanner, long n) { for (long i = 0; i < n; i++) yield return Scanner.Convert<T>(scanner.Str); } public static Pair<TX, TY>[] Pairs<TX, TY>(this Scanner scanner, int n) => scanner.Pairs<TX, TY>((long)n); public static Pair<TX, TY>[] Pairs<TX, TY>(this Scanner scanner, long n) => scanner.ScanPairs<TX, TY>(n).ToArray(); public static Pair<long, long>[] Pairs(this Scanner scanner, int n) => scanner.Pairs((long)n); public static Pair<long, long>[] Pairs(this Scanner scanner, long n) => scanner.ScanPairs<long, long>(n).ToArray(); public static Pair<int, int>[] PairsInt(this Scanner scanner, int n) => scanner.PairsInt((long)n); public static Pair<int, int>[] PairsInt(this Scanner scanner, long n) => scanner.ScanPairs<int, int>(n).ToArray(); private static IEnumerable<Pair<TX, TY>> ScanPairs<TX, TY>(this Scanner scanner, long n) { for (long i = 0; i < n; i++) yield return scanner.P2<TX, TY>(); } public static Pair3<TX, TY, TZ>[] Pairs3<TX, TY, TZ>(this Scanner scanner, int n) => scanner.Pairs3<TX, TY, TZ>((long)n); public static Pair3<TX, TY, TZ>[] Pairs3<TX, TY, TZ>(this Scanner scanner, long n) => scanner.ScanPairs3<TX, TY, TZ>(n).ToArray(); public static Pair3<long, long, long>[] Pairs3(this Scanner scanner, int n) => scanner.Pairs3((long)n); public static Pair3<long, long, long>[] Pairs3(this Scanner scanner, long n) => scanner.ScanPairs3<long, long, long>(n).ToArray(); public static Pair3<int, int, int>[] Pairs3Int(this Scanner scanner, int n) => scanner.Pairs3Int((long)n); public static Pair3<int, int, int>[] Pairs3Int(this Scanner scanner, long n) => scanner.ScanPairs3<int, int, int>(n).ToArray(); private static IEnumerable<Pair3<TX, TY, TZ>> ScanPairs3<TX, TY, TZ>(this Scanner scanner, long n) { for (long i = 0; i < n; i++) yield return scanner.P3<TX, TY, TZ>(); } public static Pair4<TX, TY, TZ, TW>[] Pairs4<TX, TY, TZ, TW>(this Scanner scanner, int n) => scanner.Pairs4<TX, TY, TZ, TW>((long)n); public static Pair4<TX, TY, TZ, TW>[] Pairs4<TX, TY, TZ, TW>(this Scanner scanner, long n) => scanner.ScanPairs4<TX, TY, TZ, TW>(n).ToArray(); public static Pair4<long, long, long, long>[] Pairs4(this Scanner scanner, int n) => scanner.Pairs4((long)n); public static Pair4<long, long, long, long>[] Pairs4(this Scanner scanner, long n) => scanner.ScanPairs4<long, long, long, long>(n).ToArray(); public static Pair4<int, int, int, int>[] Pairs4Int(this Scanner scanner, int n) => scanner.Pairs4Int((long)n); public static Pair4<int, int, int, int>[] Pairs4Int(this Scanner scanner, long n) => scanner.ScanPairs4<int, int, int, int>(n).ToArray(); private static IEnumerable<Pair4<TX, TY, TZ, TW>> ScanPairs4<TX, TY, TZ, TW>(this Scanner scanner, long n) { for (long i = 0; i < n; i++) yield return scanner.P4<TX, TY, TZ, TW>(); } } class Pair<TX, TY> { public TX X { get; } public TY Y { get; } public Pair(TX x, TY y) { this.X = x; this.Y = y; } } class Pair : Pair<long, long> { public Pair(long x, long y) : base(x, y) { } } class PairInt : Pair<int, int> { public PairInt(int x, int y) : base(x, y) { } } class Pair3<TX, TY, TZ> { public TX X { get; } public TY Y { get; } public TZ Z { get; } public Pair3(TX x, TY y, TZ z) { this.X = x; this.Y = y; this.Z = z; } } class Pair3 : Pair3<long, long, long> { public Pair3(long x, long y, long z) : base(x, y, z) { } } class Pair3Int : Pair3<int, int, int> { public Pair3Int(int x, int y, int z) : base(x, y, z) { } } class Pair4<TX, TY, TZ, TW> { public TX X { get; } public TY Y { get; } public TZ Z { get; } public TW W { get; } public Pair4(TX x, TY y, TZ z, TW w) { this.X = x; this.Y = y; this.Z = z; this.W = w; } } class Pair4 : Pair4<long, long, long, long> { public Pair4(long x, long y, long z, long w) : base(x, y, z, w) { } } class Pair4Int : Pair4<int, int, int, int> { public Pair4Int(int x, int y, int z, int w) : base(x, y, z, w) { } } class Printer { private readonly TextWriter writer; public Printer(TextWriter writer) { this.writer = writer; } public void Write(string obj) { writer.WriteLine(obj); } public void Write(object obj) { writer.WriteLine(obj); } public void Write<T>(IEnumerable<T> ts) { writer.WriteLine(string.Join(" ", ts)); } public void Write(params object[] objs) { writer.WriteLine(string.Join(" ", objs)); } } static class Extension { [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool SafeAdd<T>(this HashSet<T> ts, T t) { if (ts.Contains(t)) { return false; } else { ts.Add(t); return false; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool SafeRemove<T>(this HashSet<T> ts, T t) { if (ts.Contains(t)) { ts.Remove(t); return true; } else { return false; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void SafeSet<T>(this Dictionary<T, long> ts, T t, long value) { if (ts.ContainsKey(t)) ts[t] = value; else ts.Add(t, value); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void SafePlus<T>(this Dictionary<T, long> ts, T t, long value) { if (ts.ContainsKey(t)) ts[t] += value; else ts.Add(t, value); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void SafeSub<T>(this Dictionary<T, long> ts, T t, long value) { if (ts.ContainsKey(t)) ts[t] -= value; else ts.Add(t, value); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void SafeMult<T>(this Dictionary<T, long> ts, T t, long value) { if (ts.ContainsKey(t)) ts[t] *= value; else ts.Add(t, value); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void SafeDiv<T>(this Dictionary<T, long> ts, T t, long value) { if (ts.ContainsKey(t)) ts[t] /= value; else ts.Add(t, value); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static HashSet<T> ToHashSet<T>(this IEnumerable<T> ts) => new HashSet<T>(ts.Distinct()); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long ToDigit(this char c) => (long)(c - '0'); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long ToSmallAbcIndex(this char c) => (long)(c - 'a'); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long ToLargeAbcIndex(this char c) => (long)(c - 'A'); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long Count<T1, T2>(this IGrouping<T1, T2> gs) => gs.LongCount(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static string ToStr(this IEnumerable<char> cs) => new string(cs.ToArray()); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long ToLong(this IEnumerable<char> s) { var basis = 1L; var res = 0L; foreach (var c in s) { var d = c.ToSmallAbcIndex() + 1; res += d * basis; basis *= 27; } return res; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool TryMin<T>(this ref T current, T newer) where T : struct, IComparable<T> { if (current.CompareTo(newer) <= 0) return false; current = newer; return true; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static bool TryMax<T>(this ref T current, T newer) where T : struct, IComparable<T> { if (current.CompareTo(newer) >= 0) return false; current = newer; return true; } } class C { public class SegmentTree<T> { private readonly int valueCount; private readonly int baseCount; private readonly int baseIndex; private readonly T[] nodes; private readonly Func<T, T, T> func; private readonly T defaultValue; public SegmentTree(IReadOnlyList<T> ts, Func<T, T, T> func, T filling = default(T)) { this.func = func; this.defaultValue = filling; valueCount = ts.Count; baseCount = 1; while (valueCount > baseCount) baseCount <<= 1; nodes = new T[baseCount * 2 - 1]; baseIndex = baseCount - 1; for (int i = 0; i < ts.Count; i++) nodes[baseIndex + i] = ts[i]; for (int i = ts.Count; i < baseCount; i++) nodes[baseIndex + i] = filling; for (int i = baseIndex - 1; i >= 0; i--) nodes[i] = func.Invoke(nodes[i * 2 + 1], nodes[i * 2 + 2]); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Update(int index, T t) { var i = baseIndex + index; nodes[i] = t; while (i > 0) { i -= 1; i /= 2; nodes[i] = func.Invoke(nodes[i * 2 + 1], nodes[i * 2 + 2]); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public T Query(int leftIndex, int rightNextIndex) { T left = defaultValue; T right = defaultValue; int l = leftIndex + baseCount - 1; int r = rightNextIndex + baseCount - 1; for (; l < r; l >>= 1, r >>= 1) { if ((l & 1) == 0) { left = func.Invoke(left, nodes[l]); } if ((r & 1) == 0) { r--; right = func.Invoke(right, nodes[r]); } } return func.Invoke(left, right); } } public class SegmentTree { public static SegmentTree<int> Sum(IReadOnlyList<int> values) => new SegmentTree<int>(values, (x, y) => x + y); public static SegmentTree<long> Sum(IReadOnlyList<long> values) => new SegmentTree<long>(values, (x, y) => x + y); public static SegmentTree<double> Sum(IReadOnlyList<double> values) => new SegmentTree<double>(values, (x, y) => x + y); public static SegmentTree<int> Mult(IReadOnlyList<int> values) => new SegmentTree<int>(values, (x, y) => x * y, 1); public static SegmentTree<long> Mult(IReadOnlyList<long> values) => new SegmentTree<long>(values, (x, y) => x * y, 1); public static SegmentTree<double> Mult(IReadOnlyList<double> values) => new SegmentTree<double>(values, (x, y) => x * y, 1); public static SegmentTree<int> Min(IReadOnlyList<int> values) => new SegmentTree<int>(values, Math.Min, int.MaxValue); public static SegmentTree<long> Min(IReadOnlyList<long> values) => new SegmentTree<long>(values, Math.Min, long.MaxValue); public static SegmentTree<double> Min(IReadOnlyList<double> values) => new SegmentTree<double>(values, Math.Min, double.MaxValue); public static SegmentTree<int> Max(IReadOnlyList<int> values) => new SegmentTree<int>(values, Math.Max, int.MinValue); public static SegmentTree<long> Max(IReadOnlyList<long> values) => new SegmentTree<long>(values, Math.Max, long.MinValue); public static SegmentTree<double> Max(IReadOnlyList<double> values) => new SegmentTree<double>(values, Math.Max, double.MinValue); } public class UnionFind { private int[] parents; [MethodImpl(MethodImplOptions.AggressiveInlining)] public UnionFind(int count) { parents = Enumerable.Repeat(-1, count).ToArray(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool TryUnite(int x, int y) { var rootX = GetRoot(x); var rootY = GetRoot(y); if (rootX == rootY) return false; if (parents[rootY] < parents[rootX]) { var temp = rootX; rootX = rootY; rootY = temp; } parents[rootX] += parents[rootY]; parents[rootY] = rootX; return true; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Find(int x, int y) => GetRoot(x) == GetRoot(y); [MethodImpl(MethodImplOptions.AggressiveInlining)] public int GetRoot(int x) { while (parents[x] >= 0) x = parents[x]; return x; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long GetSize(int x) => -parents[GetRoot(x)]; } public class IterTools { /// <summary> /// 組み合わせ(重複なし) /// n = 4, k = 3 => (0,1,2) (0,1,3) (0,2,3) (1,2,3) /// </summary> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<IReadOnlyList<long>> Combinations(long n, long k) { if (k <= 0) yield break; long[] indices = new long[k]; long pointer = 0; while (pointer >= 0) { if (indices[pointer] < n) { if (pointer >= k - 1) { yield return indices; indices[pointer]++; } else { indices[pointer + 1] = indices[pointer] + 1; pointer++; } } else { pointer--; if (pointer >= 0) indices[pointer]++; } } } /// <summary> /// 組み合わせ(重複なし) /// n = 4, k = 3 => (0,1,2) (0,1,3) (0,2,3) (1,2,3) /// </summary> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<IReadOnlyList<T>> Combinations<T>(T[] ts, long k) { if (k <= 0) yield break; long[] indices = new long[k]; T[] container = new T[k]; long pointer = 0; long n = ts.LongLength; while (pointer >= 0) { if (indices[pointer] < n) { container[pointer] = ts[indices[pointer]]; if (pointer >= k - 1) { yield return container; indices[pointer]++; } else { indices[pointer + 1] = indices[pointer] + 1; pointer++; } } else { pointer--; if (pointer >= 0) indices[pointer]++; } } } /// <summary> /// 組み合わせ(重複あり) /// n = 3, k = 2 => (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) /// </summary> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<IReadOnlyList<long>> CombinationsWithReplacement(long n, long k) { if (k <= 0) yield break; long[] container = new long[k]; long pointer = 0; while (pointer >= 0) { if (container[pointer] < n) { if (pointer >= k - 1) { yield return container; container[pointer]++; } else { container[pointer + 1] = 0; pointer++; } } else { pointer--; if (pointer >= 0) container[pointer]++; } } } /// <summary> /// 組み合わせ(重複あり) /// n = 3, k = 2 => (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2) /// </summary> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<IReadOnlyList<T>> CombinationsWithReplacement<T>(T[] ts, long k) { if (k <= 0) yield break; long[] indices = new long[k]; T[] container = new T[k]; long pointer = 0; long n = ts.LongLength; while (pointer >= 0) { if (indices[pointer] < n) { container[pointer] = ts[indices[pointer]]; if (pointer >= k - 1) { yield return container; indices[pointer]++; } else { indices[pointer + 1] = 0; pointer++; } } else { pointer--; if (pointer >= 0) indices[pointer]++; } } } /// <summary> /// 順列 /// n = 3, k = 2 => (0,1) (0,2) (1,0) (1,2) (2,0) (2,1) /// </summary> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<IReadOnlyList<long>> Permutations(long n, long k) { if (k <= 0) yield break; HashSet<long> enumed = new HashSet<long>(); long[] container = new long[k]; long pointer = 0; while (pointer >= 0) { if (container[pointer] < n) { if (enumed.Contains(container[pointer])) { container[pointer]++; } else if (pointer >= k - 1) { yield return container; container[pointer]++; } else { enumed.Add(container[pointer]); container[pointer + 1] = 0; pointer++; } } else { pointer--; if (pointer >= 0) { enumed.Remove(container[pointer]); container[pointer]++; } } } } /// <summary> /// 順列 /// n = 3, k = 2 => (0,1) (0,2) (1,0) (1,2) (2,0) (2,1) /// </summary> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<IReadOnlyList<T>> Permutations<T>(T[] ts, long k) { if (k <= 0) yield break; HashSet<long> enumed = new HashSet<long>(); long[] indices = new long[k]; T[] container = new T[k]; long pointer = 0; long n = ts.LongLength; while (pointer >= 0) { if (indices[pointer] < n) { if (enumed.Contains(indices[pointer])) { indices[pointer]++; } else if (pointer >= k - 1) { container[pointer] = ts[indices[pointer]]; yield return container; indices[pointer]++; } else { container[pointer] = ts[indices[pointer]]; enumed.Add(indices[pointer]); indices[pointer + 1] = 0; pointer++; } } else { pointer--; if (pointer >= 0) { enumed.Remove(indices[pointer]); indices[pointer]++; } } } } } public class Tree { public Tree() { toNodes = new Dictionary<long, long[]>(); } public Tree(Scanner sc, long n, bool base1 = true, bool singleDirection = false) { Adjust(sc.Pairs(n), base1, singleDirection); } public Tree(Pair<long, long>[] edges, bool base1 = true, bool singleDirection = false) { Adjust(edges, base1, singleDirection); } public Tree(IEnumerable<long> ps, IEnumerable<long> qs, bool base1 = true, bool singleDirection = false) { Adjust(ps.Zip(qs, (p, q) => new Pair<long, long>(p, q)).ToArray(), base1, singleDirection); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private void Adjust(Pair<long, long>[] edges, bool base1, bool singleDirection) { var arrows = base1 ? edges.Select(x => new { from = x.X - 1, to = x.Y - 1 }) : edges.Select(x => new { from = x.X, to = x.Y }); if (singleDirection == false) arrows = arrows.Concat(arrows.Select(x => new { from = x.to, to = x.from })); toNodes = arrows.GroupBy(x => x.from).ToDictionary(x => x.Key, x => x.Select(xs => xs.to).ToArray()); } private long[] empty = new long[0]; private Dictionary<long, long[]> toNodes; public long[] To(long from) { long[] res = null; if (toNodes.TryGetValue(from, out res)) return res; else return empty; } public IEnumerable<Pair<long, long>> GetRouteEdges(long from, long to) { return GetRouteEdgesImpl(from, to).Skip(1); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private IEnumerable<Pair<long, long>> GetRouteEdgesImpl(long from, long to) { var routeNodes = GetRouteNodes(from, to); var current = -1L; foreach (var next in routeNodes) { yield return new Pair<long, long>(current, next); current = next; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public IEnumerable<long> GetRouteNodes(long from, long to) { Stack<long> routeNodes = new Stack<long>(); HashSet<long> checkedNodes = new HashSet<long>(); GetRouteNodes(from, to, routeNodes, checkedNodes); return routeNodes.Reverse(); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private bool GetRouteNodes(long current, long dest, Stack<long> routeNodes, HashSet<long> checkedNodes) { routeNodes.Push(current); checkedNodes.Add(current); if (current == dest) return true; foreach (var next in toNodes[current]) { if (checkedNodes.Contains(next)) continue; if (GetRouteNodes(next, dest, routeNodes, checkedNodes)) return true; } routeNodes.Pop(); return false; } /// <summary> /// 木の直径(一番長い枝)を求める /// </summary> /// <returns>木の直径(一番長い枝)</returns> public long GetDiameter() { long firstFarthest = 0; long _1 = 0; GetDiameterImpl(-1, 0, 0, ref _1, ref firstFarthest); long maxDistance = 0; long _2 = 0; GetDiameterImpl(-1, firstFarthest, 0, ref maxDistance, ref _2); return maxDistance; } private void GetDiameterImpl(long from, long current, long distance, ref long maxDistance, ref long farthest) { if (distance > maxDistance) { maxDistance = distance; farthest = current; } foreach (var to in To(current)) { if (from == to) continue; GetDiameterImpl(current, to, distance + 1, ref maxDistance, ref farthest); } } } public class PriorityQueue<TKey, TState> where TKey : IComparable<TKey> { public int Count { get; private set; } private readonly Func<TState, TKey> keySelector; private readonly bool desc; private TState[] states = new TState[65536]; private TKey[] keys = new TKey[65536]; [MethodImpl(MethodImplOptions.AggressiveInlining)] public PriorityQueue(Func<TState, TKey> keySelector, bool desc = false) { this.keySelector = keySelector; this.desc = desc; } public TState Top { [MethodImpl(MethodImplOptions.AggressiveInlining)] get { ValidateNonEmpty(); return states[1]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public TState Dequeue() { var top = Top; var item = states[Count]; var key = keys[Count]; Count--; int index = 1; while (true) { if ((index << 1) >= Count) { if (index << 1 > Count) break; if (key.CompareTo(keys[index << 1]) <= 0 ^ desc) break; states[index] = states[index << 1]; keys[index] = keys[index << 1]; index <<= 1; } else { var nextIndex = keys[index << 1].CompareTo(keys[(index << 1) + 1]) <= 0 ^ desc ? (index << 1) : (index << 1) + 1; if (key.CompareTo(keys[nextIndex]) <= 0 ^ desc) break; states[index] = states[nextIndex]; keys[index] = keys[nextIndex]; index = nextIndex; } } states[index] = item; keys[index] = key; return top; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Enqueue(TState state) { var key = keySelector.Invoke(state); Count++; int index = Count; if (states.Length == Count) Extend(states.Length * 2); while ((index >> 1) != 0) { if (keys[index >> 1].CompareTo(key) <= 0 ^ desc) break; states[index] = states[index >> 1]; keys[index] = keys[index >> 1]; index >>= 1; } states[index] = state; keys[index] = key; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private void Extend(int newSize) { TState[] newStates = new TState[newSize]; TKey[] newKeys = new TKey[newSize]; states.CopyTo(newStates, 0); keys.CopyTo(newKeys, 0); states = newStates; keys = newKeys; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private void ValidateNonEmpty() { if (Count == 0) throw new IndexOutOfRangeException(); } } public class BinaryIndexTree { long length; long[] binaryIndexedTree; [MethodImpl(MethodImplOptions.AggressiveInlining)] public BinaryIndexTree(long length) { this.length = length; binaryIndexedTree = new long[length + 1]; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(long indexZeroBase, long additional) { // i += i & -i // 1が立っている最下位ビットを足す、の意味 for (long i = indexZeroBase + 1; i <= length; i += i & -i) { binaryIndexedTree[i] += additional; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long Sum(long indexZeroBase) { long result = 0; // i += i & -i // 1が立っている最下位ビットを引く、の意味 for (long i = indexZeroBase + 1; i > 0; i -= i & -i) { result += binaryIndexedTree[i]; } return result; } } public static class BinarySearch { [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetCountLarger<T>(T x, IList<T> listOrdered) where T : IComparable { return listOrdered.Count - GetCountSmallerOrEqual(x, listOrdered); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetCountLargerOrEqual<T>(T x, IList<T> listOrdered) where T : IComparable { return listOrdered.Count - GetCountSmaller(x, listOrdered); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetCountSmaller<T>(T x, IList<T> listOrdered) where T : IComparable { return GetLastIndexLess(x, listOrdered) + 1; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetCountSmallerOrEqual<T>(T x, IList<T> listOrdered) where T : IComparable { return GetFirstIndexGreater(x, listOrdered); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetFirstIndexGreater<T>(T x, IList<T> listOrdered) where T : IComparable { return GetFirstIndexGreater(x, listOrdered, 0, listOrdered.Count - 1); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetFirstIndexGreater<T>(T x, IList<T> listOrdered, int low, int high) where T : IComparable { var count = listOrdered.Count; if (count == 0) return low; if (listOrdered[high].CompareTo(x) <= 0) return high + 1; while (low < high) { var mid = (low + high) / 2; if (listOrdered[mid].CompareTo(x) > 0) high = mid; else low = mid + 1; } return low; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetLastIndexLess<T>(T x, IList<T> listOrdered) where T : IComparable { return GetLastIndexLess(x, listOrdered, 0, listOrdered.Count - 1); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long GetLastIndexLess<T>(T x, IList<T> listOrdered, int low, int high) where T : IComparable { var count = listOrdered.Count; if (count == 0) return low - 1; if (listOrdered[0].CompareTo(x) >= 0) return low - 1; while (low < high) { var mid = (low + high + 1) / 2; if (listOrdered[mid].CompareTo(x) < 0) low = mid; else high = mid - 1; } return low; } } public static class BellmanFord { public class Vertex { public long Distance { get; set; } public Vertex() { Distance = long.MaxValue; } } public class Edge { public int From { get; private set; } public int To { get; private set; } public long Weight { get; private set; } public Edge(int from, int to, long weight) { From = from; To = to; Weight = weight; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void GetReachable(int origin, ref HashSet<int> reached, ref Dictionary<int, int[]> paths) { if (reached.Contains(origin)) return; reached.Add(origin); if (paths.ContainsKey(origin) == false) return; foreach (var p in paths[origin]) GetReachable(p, ref reached, ref paths); } /// <summary> /// null: 負の無限大 /// long.MaxValue: たどり着けない /// その他: 距離 /// </summary> [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long? RunBellmanFord(int vertexCount, List<Edge> rawEdges, int source, int dest) { var forwards = rawEdges.GroupBy(x => x.From).ToDictionary(x => x.Key, x => x.Select(xs => xs.To).ToArray()); var reverses = rawEdges.GroupBy(x => x.To).ToDictionary(x => x.Key, x => x.Select(xs => xs.From).ToArray()); var fromSource = new HashSet<int>(); var toDest = new HashSet<int>(); GetReachable(source, ref fromSource, ref forwards); GetReachable(dest, ref toDest, ref reverses); var edges = rawEdges .Where(e => fromSource.Contains(e.From)) .Where(e => fromSource.Contains(e.To)) .Where(e => toDest.Contains(e.From)) .Where(e => toDest.Contains(e.To)) .ToArray(); // initialize distances var vertices = new List<Vertex>(); for (int i = 0; i < vertexCount; i++) vertices.Add(new Vertex()); vertices[source].Distance = 0L; // update distances for (int i = 0; i < vertices.Count; i++) { foreach (var e in edges) { var from = vertices[e.From]; var to = vertices[e.To]; if (from.Distance == long.MaxValue) continue; var newDistance = from.Distance + e.Weight; if (to.Distance > newDistance) { to.Distance = newDistance; } } } // check negative cycle foreach (var e in edges) { var from = vertices[e.From]; var to = vertices[e.To]; if (from.Distance + e.Weight < to.Distance) return null; } return vertices[dest].Distance; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long Gcd(int a, int b) => Gcd((long)a, (long)b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long Gcd(long a, long b) { if (a < b) return GcdImpl(b, a); else return GcdImpl(a, b); } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static long GcdImpl(long a, long b) { var remainder = a % b; if (remainder == 0) return b; else return GcdImpl(b, remainder); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long Lcm(int a, int b) => Lcm((long)a, (long)b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long Lcm(long a, long b) { return a / Gcd(a, b) * b; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long Pow(int n, int p) => Pow((long)n, (long)p); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long Pow(long n, long p) { var res = 1L; for (long i = 0; i < p; i++) res *= n; return res; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Dictionary<long, long> Factorize(int n) => Factorize((long)n); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Dictionary<long, long> Factorize(long n) { var res = new Dictionary<long, long>(); var r = n; for (long i = 2; i * i <= r; i++) { var c = 0L; while (r % i == 0) { c++; r /= i; } if (c > 0) res.Add(i, c); } if (r > 1) res.Add(r, 1); return res; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<long> Divisors(int n) => Divisors((long)n); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<long> Divisors(long n) { var cache = new Stack<long>(); for (long i = 1; i * i <= n; i++) { if (n % i == 0) { yield return i; cache.Push(i); } } var r = cache.Peek(); if (r * r == n) cache.Pop(); while (cache.Count > 0) { var i = cache.Pop(); yield return n / i; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long InversionNumberCountWithCompression<T>(IList<T> list) where T : IComparable<T> { var compressed = list .Select((n, i) => new { n, i }) .GroupBy(x => x.n) .OrderBy(x => x.Key) .Select((g, i) => new { g, i }) .SelectMany(x => x.g.Select(xs => new { order = xs.i, index = x.i })) .OrderBy(x => x.index) .Select(x => x.order); return InversionNumberCount(compressed, list.Count); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long InversionNumberCountWithMinusCheck(IList<int> list) { var min = list.Min(); var max = list.Max(); if (min < 0) return InversionNumberCount(list.Select(x => x - min), max - min); else return InversionNumberCount(list, max); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static long InversionNumberCount(IEnumerable<int> list, int maxValue) { var bit = new BinaryIndexTree(maxValue + 1); var res = 0L; var i = 0; foreach (var n in list) { res += i - bit.Sum(n); bit.Add(n, +1); i++; } return res; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<int> Loop(int n) { for (int i = 0; i < n; i++) yield return i; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<long> Loop(long n) { for (long i = 0L; i < n; i++) yield return i; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static IEnumerable<T> Repeat<T>(T t, long n) { for (long i = 0L; i < n; i++) yield return t; } } struct Mint { public static long Divider { set { divider = value; } } private static long divider = 1000000007L; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void Set998244353() { divider = 998244353L; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static void Set1000000009() { divider = 1000000009L; } public long Value { get; } public override string ToString() => this.Value.ToString(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public Mint(long value) { this.Value = value % divider; if (this.Value < 0) this.Value += divider; } //public static implicit operator Mint(long a) => new Mint(a % divider); //public static implicit operator Mint(int a) => new Mint(a % divider); //public static explicit operator long(Mint a) => a.Value; //public static explicit operator int(Mint a) => (int)a.Value; [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator +(Mint a, Mint b) => new Mint((a.Value + b.Value) % divider); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator +(Mint a, long b) => a + new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator +(Mint a, int b) => a + new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator -(Mint a, Mint b) { var t = (a.Value - b.Value) % divider; if (t < 0L) t += divider; return new Mint(t); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator -(Mint a, long b) => a - new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator -(Mint a, int b) => a - new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator *(Mint a, Mint b) => new Mint((a.Value * b.Value) % divider); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator *(Mint a, long b) => a * new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator *(Mint a, int b) => a * new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator /(Mint a, Mint b) => new Mint((a.Value * InvImpl(b.Value)) % divider); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator /(Mint a, long b) => a / new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint operator /(Mint a, int b) => a / new Mint(b); [MethodImpl(MethodImplOptions.AggressiveInlining)] public Mint Pow(long p) => new Mint(PowImpl(Value, p)); [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint Pow(long a, long p) => new Mint(PowImpl(a, p)); [MethodImpl(MethodImplOptions.AggressiveInlining)] private static long PowImpl(long a, long p) { if (p == 0L) return 1L; if (p == 1L) return a; var halfP = p / 2L; var halfPowered = PowImpl(a, halfP); var powered = halfPowered * halfPowered % divider; return p % 2L == 0L ? powered : powered * a % divider; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint Inv(long a) => new Mint(InvImpl(a)); private static readonly Dictionary<long, long> invCache = new Dictionary<long, long>(); [MethodImpl(MethodImplOptions.AggressiveInlining)] private static long InvImpl(long a) { long cache; if (invCache.TryGetValue(a, out cache)) return cache; var result = PowImpl(a, divider - 2L); invCache.Add(a, result); return result; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint Fac(long a) => new Mint(FacImpl(a)); private static long[] facCache = new long[262144]; private static long cachedFac = 0L; [MethodImpl(MethodImplOptions.AggressiveInlining)] private static long FacImpl(long a) { if (a >= divider) return 0L; facCache[0] = 1L; if (facCache.LongLength <= a) { long newSize = facCache.LongLength; while (newSize <= a) { newSize *= 2; } ExtendFacCache(newSize); } if (cachedFac < a) { var val = facCache[cachedFac]; var start = cachedFac + 1L; for (long i = start; i <= a; i++) { val = (val * i) % divider; facCache[i] = val; } cachedFac = a; } return facCache[a]; } [MethodImpl(MethodImplOptions.AggressiveInlining)] private static void ExtendFacCache(long newSize) { long[] newFacCache = new long[newSize]; facCache.CopyTo(newFacCache, 0); facCache = newFacCache; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint Perm(long n, long r) => new Mint(PermImpl(n, r)); [MethodImpl(MethodImplOptions.AggressiveInlining)] private static long PermImpl(long n, long r) { if (n < r) return 0L; if (r <= 0L) return 1L; var nn = FacImpl(n); var nr = FacImpl(n - r); return (nn * InvImpl(nr)) % divider; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint Comb(long n, long r) => new Mint(CombImpl(n, r)); [MethodImpl(MethodImplOptions.AggressiveInlining)] private static long CombImpl(long n, long r) { if (n < r) return 0L; if (n == r) return 1L; if (n - r < r) return CombImpl(n, n - r); var nn = FacImpl(n); var nr = FacImpl(n - r); var rr = FacImpl(r); var nrrr = (nr * rr) % divider; return (nn * InvImpl(nrrr)) % divider; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public static Mint CombOneByOne(long n, long r) { if (n < r) return new Mint(0); if (n == r) return new Mint(1); if (n - r < r) return CombOneByOne(n, n - r); var res = new Mint(1); for (long i = 1; i <= r; i++) { res *= n - i + 1; res /= i; } return res; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; int INF = 1e9; template <typename T> struct BIT { int n; vector<T> d; BIT(int n = 0) : n(n), d(n + 1) {} void add(int i, T x = 1) { for (i++; i <= n; i += i & -i) { d[i] += x; } } T sum(int i) { T x = 0; for (i++; i > 0; i -= i & -i) { x += d[i]; } return x; } }; int main() { int n; cin >> n; vector<int> a(n); BIT<ll> tree1(100005), tree2(100005); for (int i = 0; i < (n); ++i) { cin >> a[i]; tree1.add(i, a[i]); tree2.add(i, a[i]); } ll ans = 1e18; ll count = 0; ll flag; if (a[0] > 0) flag = 1; else flag = -1; for (int i = 1; i < n; i++) { ll sum = tree1.sum(i); if (sum * flag >= 0) { tree1.add(i, -(llabs(sum) + 1) * flag); count += llabs(sum) + 1; } flag *= -1; } ans = min(ans, count); if (a[0] > 0) flag = 1; else flag = -1; count = 0; for (int i = 0; i < n; i++) { ll sum = tree2.sum(i); if (sum * flag >= 0) { tree2.add(i, -(llabs(sum) + 1) * flag); count += llabs(sum) + 1; } flag *= -1; } ans = min(ans, count); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = list(map(int,input().split())) b = copy.copy(a) sum_a = [] sum_b = [] ans_a = 0 ans_b = 0 for i in range(n): if i%2==0: if sum(a[:i+1])>0: sum_a.append(sum(a[:i+1])) tmp = 0 else: tmp = abs(sum(a[:i+1]))+1 a[i] += tmp ans_a += tmp sum_a.append(sum(a[:i+1])) else: if sum(a[:i+1])<0: sum_a.append(sum(a[:i+1])) tmp = 0 else: tmp = abs(sum(a[:i+1]))+1 a[i] -= tmp ans_a += tmp sum_a.append(sum(a[:i+1])) if i%2==1: if sum(b[:i+1])>0: sum_b.append(sum(b[:i+1])) tmp = 0 else: tmp = abs(sum(b[:i+1]))+1 b[i] += tmp ans_b += tmp sum_b.append(sum(b[:i+1])) else: if sum(b[:i+1])<0: sum_b.append(sum(b[:i+1])) tmp = 0 else: tmp = abs(sum(b[:i+1]))+1 b[i] -= tmp ans_b += tmp sum_b.append(sum(b[:i+1])) #print(a) #print(sum_a) print(min(ans_a,ans_b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define int ll #define abs(x) llabs((x)) using namespace std; typedef long long ll; int main() { int n; cin>>n; int a[n]; for(int i=0;i<n;i++){ cin>>a[i]; } int count=0; int ans=0; for(int i=0;i<n;i++){ count+=a[i]; if(i%2==0){ if(count<=0){ ans+=abs(count)+1; count=1; } } else{ if(count>=0){ ans+=count+1; count=-1; } } } int count2=0; int ans2=0; for(int i=0;i<n;i++){ count2+=a[i]; if(i%2==1){ if(count2<=0){ ans2+=abs(count2)+1; count2=1; } } else{ if(count2>=0){ ans2+=count2+1; count2=-1; } } } cout<<min(ans,ans2)<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const int MOD = 10000007; static const int MAX = 100005; int N; int A[MAX], S[MAX]; int change(bool pos) { int k = -1, diff = 0, cnt = 0, counter; if (pos) { for (int i = (0); i < (N); i++) { if (S[i] + diff > 0 && i % 2 == 0) continue; else if (S[i] + diff < 0 && i % 2 == 1) continue; else { k = i; if (k % 2 == 0) { counter = abs(1 - (S[k] + diff)); diff += 1 - (S[k] + diff); cnt += counter; } else { counter = abs((S[k] + diff) + 1); diff += -1 - (S[k] + diff); cnt += counter; } } } } else { for (int i = (0); i < (N); i++) { if (S[i] + diff > 0 && i % 2 == 1) continue; else if (S[i] + diff < 0 && i % 2 == 0) continue; else { k = i; if (k % 2 == 1) { counter = abs(1 - (S[k] + diff)); diff += 1 - (S[k] + diff); cnt += counter; } else { counter = abs(1 + (S[k] + diff)); diff += -1 - (S[k] + diff); cnt += counter; } } } } return cnt; } int main() { cin >> N; int sum = 0; for (int i = (0); i < (N); i++) { int a; cin >> a; A[i] = a; sum += a; S[i] = sum; } bool pos = true; int plus, minus; plus = change(pos); pos = false; minus = change(pos); cout << min(plus, minus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[110000], ans1, ans2, sum1, sum2; int main(void) { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { if (sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } } else { if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } } for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } else { if (sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> void chmax(T &a, T b) { if (a < b) a = b; } template <class T> void chmin(T &a, T b) { if (a > b) a = b; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; long long sum = a[0]; long long change = 0LL; if (sum > 0) { for (int i = 1; i < n; i++) { if (i % 2 == 1 && sum + a[i] >= 0) { sum += a[i]; change += abs(-1LL - sum); sum = -1LL; } else if (i % 2 == 0 && sum + a[i] <= 0) { sum += a[i]; change += abs(1LL - sum); sum = 1LL; } else { sum += a[i]; } } } else { for (int i = 1; i < n; i++) { if (i % 2 == 0 && sum + a[i] >= 0) { sum += a[i]; change += abs(-1LL - sum); sum = -1LL; } else if (i % 2 == 1 && sum + a[i] <= 0) { sum += a[i]; change += abs(1LL - sum); sum = 1LL; } else { sum += a[i]; } } } cout << change; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100010], sum[100010], ans, s; long long delta; int main() { scanf("%d", &n); sum[0] = 0LL; for (int i = 1; i <= n; i++) { scanf("%lld", &a[i]); sum[i] = sum[i - 1] + a[i]; } ans = 0LL; delta = 0LL; if (sum[1] == 0) { delta = 1LL; ans = 1LL; sum[1] = 1; } for (int i = 2; i <= n; i++) { sum[i] += delta; if (sum[i - 1] < 0) { if (sum[i] <= 0) { ans += 1 - sum[i]; delta += 1 - sum[i]; sum[i] = 1; } } else if (sum[i] >= 0) { ans += sum[i] + 1; delta -= sum[i] + 1; sum[i] = -1; } } s = 0LL; delta = 0LL; if (sum[1] < 0) { s += 1 - sum[1]; delta += 1 - sum[1]; sum[1] = 1; } else { s += sum[1] + 1; delta -= sum[1] + 1; sum[1] = -1; } for (int i = 2; i <= n; i++) { sum[i] += delta; if (sum[i - 1] < 0) { if (sum[i] <= 0) { s += 1 - sum[i]; delta += 1 - sum[i]; sum[i] = 1; } } else if (sum[i] >= 0) { s += sum[i] + 1; delta -= sum[i] + 1; sum[i] = -1; } } printf("%lld\n", min(s, ans)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; int INF = 1e9; template <typename T> struct BIT { int n; vector<T> d; BIT(int n = 0) : n(n), d(n + 1) {} void add(int i, T x = 1) { for (i++; i <= n; i += i & -i) { d[i] += x; } } T sum(int i) { T x = 0; for (i++; i > 0; i -= i & -i) { x += d[i]; } return x; } }; int sign(ll n) { if (n > 0) return 1; else if (n < 0) return -1; else return 0; } int main() { int n; cin >> n; vector<ll> a(n); BIT<ll> tree1(100005), tree2(100005); for (int i = 0; i < (n); ++i) { cin >> a[i]; tree1.add(i, a[i]); tree2.add(i, a[i]); } ll ans = 1e18; ll count = 0; for (int i = 0; i < n; i++) { ll sum = tree1.sum(i); int flag = 1 - i % 2 * 2; if (sum * flag <= 0) { tree1.add(i, -(llabs(sum) + 1) * sign(sum)); count += llabs(sum) + 1; } } ans = min(ans, count); count = 0; for (int i = 0; i < n; i++) { ll sum = tree2.sum(i); int flag = -1 + i % 2 * 2; if (sum * flag <= 0) { tree2.add(i, -(llabs(sum) + 1) * sign(sum)); count += llabs(sum) + 1; } } ans = min(ans, count); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.io.*; public class Main{ static final Reader sc = new Reader(); static final PrintWriter out = new PrintWriter(System.out,false); public static void main(String[] args) throws Exception { int n = sc.nextInt(); long[] a = new long[n]; for(int i=0;i<n;i++){ a[i] = sc.nextLong(); } long counter = 0; long total = a[0]; for(int i=1;i<n;i++){ if(total>0 && total+a[i]<0){ total += a[i]; } else if(total<0 && total+a[i]>0){ total += a[i]; } else{ long x = 0; if(total>0){ x = -1 - total - a[i]; total = -1; } else{ x = 1 - total - a[i]; total = 1; } counter += (long)Math.abs(x); } //out.println(total+" "+counter); } out.println(counter); out.flush(); sc.close(); out.close(); } static void trace(Object... o) { System.out.println(Arrays.deepToString(o));} } class Reader { private final InputStream in; private final byte[] buf = new byte[1024]; private int ptr = 0; private int buflen = 0; public Reader() { this(System.in);} public Reader(InputStream source) { this.in = source;} private boolean hasNextByte() { if (ptr < buflen) return true; ptr = 0; try{ buflen = in.read(buf); }catch (IOException e) {e.printStackTrace();} if (buflen <= 0) return false; return true; } private int readByte() { if (hasNextByte()) return buf[ptr++]; else return -1;} private boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} private void skip() { while(hasNextByte() && !isPrintableChar(buf[ptr])) ptr++;} public boolean hasNext() {skip(); return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); boolean minus = false; long num = readByte(); if(num == '-'){ num = 0; minus = true; }else if (num < '0' || '9' < num){ throw new NumberFormatException(); }else{ num -= '0'; } while(true){ int b = readByte(); if('0' <= b && b <= '9') num = num * 10 + (b - '0'); else if(b == -1 || !isPrintableChar(b)) return minus ? -num : num; else throw new NoSuchElementException(); } } public int nextInt() { long num = nextLong(); if (num < Integer.MIN_VALUE || Integer.MAX_VALUE < num) throw new NumberFormatException(); return (int)num; } public double nextDouble() { return Double.parseDouble(next()); } public char nextChar() { if (!hasNext()) throw new NoSuchElementException(); return (char)readByte(); } public String nextLine() { while (hasNextByte() && (buf[ptr] == '\n' || buf[ptr] == '\r')) ptr++; if (!hasNextByte()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (b != '\n' && b != '\r') { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int[] nextIntArray(int n) { int[] res = new int[n]; for (int i=0; i<n; i++) res[i] = nextInt(); return res; } public char[] nextCharArray(int n) { char[] res = new char[n]; for (int i=0; i<n; i++) res[i] = nextChar(); return res; } public void close() {try{ in.close();}catch(IOException e){ e.printStackTrace();}}; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) ans = 0 s = 0 if a[0] == 0: ans += 1 a[0] = 1 s = a[0] for i in range(1,n): if s+a[i] == 0: if s < 0: ans += 1 s = 1 else: ans += 1 s = -1 else: if s > 0: if s + a[i] >= 0: ans += abs(a[i]+s+1) s = -1 else: s += a[i] else: if s + a[i] <= 0: ans += abs(-a[i]-s+1) s = 1 else: s += a[i] print(ans)