Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a_sum(n);
long long a;
long long kiyu = 0;
long long sum_m = 0;
long long sum_p = 0;
long long ans_m = 0;
long long ans_p = 0;
for (long long i = 0; i < n; i++) {
cin >> a;
kiyu += a;
a_sum[i] = kiyu;
}
for (long long i = 0; i < n; i++) {
if (i % 2 == 0) {
if (a_sum[i] + sum_m >= 0) {
ans_m = ans_m + (a_sum[i] + sum_m + 1);
sum_m = sum_m - (a_sum[i] + sum_m + 1);
}
} else {
if (a_sum[i] + sum_m <= 0) {
ans_m = ans_m - (a_sum[i] + sum_m - 1);
sum_m = sum_m - (a_sum[i] + sum_m - 1);
}
}
}
for (long long i = 0; i < n; i++) {
if (i % 2 == 0) {
if (a_sum[i] + sum_p <= 0) {
ans_p = ans_p - (a_sum[i] + sum_p - 1);
sum_p = sum_p - (a_sum[i] + sum_p - 1);
}
} else {
if (a_sum[i] + sum_p >= 0) {
ans_p = ans_p + (a_sum[i] + sum_p + 1);
sum_p = sum_p + (a_sum[i] + sum_p + 1);
}
}
}
cout << min(ans_p, ans_m) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) {
cin >> a.at(i);
}
int sum = a.at(0);
bool p = false;
bool n = false;
int num = 0;
if (a.at(0) > 0) {
p = true;
for (int i = 1; i < N; i++) {
sum += a.at(i);
if (p) {
while (sum >= 0) {
sum--;
num++;
}
p = false;
n = true;
continue;
}
if (n) {
while (sum <= 0) {
sum++;
num++;
}
n = false;
p = true;
continue;
}
}
} else if (a.at(0) == 0) {
int num_1 = 0;
int num_2 = 0;
p = true;
sum++;
for (int i = 1; i < N; i++) {
sum += a.at(i);
if (p) {
while (sum >= 0) {
sum--;
num_1++;
}
p = false;
n = true;
continue;
}
if (n) {
while (sum <= 0) {
sum++;
num_1++;
}
n = false;
p = true;
continue;
}
}
p = false;
n = true;
sum--;
for (int i = 1; i < N; i++) {
sum += a.at(i);
if (p) {
while (sum >= 0) {
sum--;
num_2++;
}
p = false;
n = true;
continue;
}
if (n) {
while (sum <= 0) {
sum++;
num_2++;
}
n = false;
p = true;
continue;
}
}
num = min(num_1, num_2);
} else if (a.at(0) < 0) {
n = true;
for (int i = 1; i < N; i++) {
sum += a.at(i);
if (p) {
while (sum >= 0) {
sum--;
num++;
}
p = false;
n = true;
continue;
}
if (n) {
while (sum <= 0) {
sum++;
num++;
}
n = false;
p = true;
continue;
}
}
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
#include <string>
#include <cstring>
#include <math.h>
#include <limits.h>
#include <map>
#include <algorithm>
#include <functional>
using namespace std;
int main() {
int n;
vector<long long> A;
int j;
bool is_plus;
long long ans = 0;
long long sum = 0;
cin >> n;
for ( int i = 0; i < n; i++ ) {
long long a;
cin >> a;
A.push_back(a);
}
// for ( j = 0; j < n; j++ ) {
// if ( abs(A[j]) ) { break; }
// }
// if ( j == n ) {
// cout << A.size()*2-1 << endl;
// return 0;
// }
// if ( j ) {
// ans += ( j+1 )*2 - 1;
// sum = ( A[j] > 0 ) ? -1: 1;
// }
// else {
// sum = 0;
// ans = 0;
// }
for ( int i = 0; i < n; i++ ) {
if ( !i ) {
if ( A[i] == 0 ) {
if ( A[i+1] >= 0 ) { sum = -1; }
else { sum = 1; }
ans+;;
}
else {
sum = A[i];
}
continue;
}
bool is_plus = sum > 0;
sum += A[i];
if ( sum == 0 ) {
ans += 1;
sum = is_plus ? -1 : 1;
}
else if ( is_plus == (sum > 0) ) {
ans += abs(sum)+1;
sum = is_plus ? -1 : 1;
}
}
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr long long MOD = 1e9 + 7;
int dx[8] = {1, 0, -1, 0, 1, 1, -1, -1};
int dy[8] = {0, 1, 0, -1, 1, -1, 1, -1};
long long A, B, C, D, E, F, G, H, N, M, L, K, P, Q, R, W, X, Y, Z;
string S, T;
long long ans = 0;
template <typename T>
istream &operator>>(istream &is, vector<T> &vec) {
for (T &x : vec) is >> x;
return is;
}
signed main() {
cin >> N;
vector<int> a(N);
cin >> a;
for (int i = 0; i < (int)(N - 1); i++) {
a[i + 1] = a[i] + a[i + 1];
}
if (a[0] < 0) {
for (int i = 0; i < (int)(N); i++) a[i] *= -1;
}
int base = 0;
for (int i = 0; i < (int)(N); i++) {
if (i == 0) continue;
if (i & 1) {
int tmp = (a[i] + base) - (-1);
if (tmp > 0) {
ans += tmp;
base -= tmp;
}
} else {
int tmp = 1 - (a[i] + base);
if (tmp > 0) {
ans += tmp;
base += tmp;
}
}
}
int tmp = ans;
ans = 0;
for (int i = 0; i < (int)(N); i++) a[i] *= -1;
base = 1 - a[0];
for (int i = 0; i < (int)(N); i++) {
if (i == 0) continue;
if (i & 1) {
int tmp = -1 - (a[i] + base);
if (tmp > 0) {
ans += tmp;
base -= tmp;
}
} else {
int tmp = 1 - (a[i] + base);
if (tmp > 0) {
ans += tmp;
base += tmp;
}
}
}
ans = max((long long)tmp, ans);
cout << ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
int d[n];
for(int i=0;i<n;i++) {
cin >> d[i];
}
int count=0;
int sum=d[0];
int f =0;
if(d[0]>0){
f=-1;
}
if(d[0]<0){
f=1;
}
for(int i=1;i<n;i++){
sum+=d[i];
if(sum>0){
if(f==1){
f=-1;
continue;
}
if(f==-1){
count+=sum+1;
sum=-1;
f=1;
continue;
}
}
if(sum<0){
if(f==-1){
f=1;
continue;
}
if(f==1){
count+=1-sum;
sum=1;
f=-1;
continue;
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
int n;
cin >> n;
int a[n];
long long int s = 0;
long long int ans = INT_MAX;
int i;
for (i = 0; i < n; i++) cin >> a[i];
s = a[0];
long long int p = 0;
if (s > 0) {
for (i = 1; i < n; i++) {
if (i % 2) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += 1 + s + a[i];
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += 1 - s - a[i];
s = 1;
}
}
}
s = -1;
ans = min(ans, p);
p = a[0] + 1;
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += abs(1 + s + a[i]);
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += abs(1 - s - a[i]);
s = 1;
}
}
}
ans = min(ans, p);
cout << ans << endl;
} else if (s < 0) {
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += abs(1 + s + a[i]);
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += abs(1 - s - a[i]);
s = 1;
}
}
}
s = 1;
ans = min(ans, p);
p = (-1) * a[0] + 1;
for (i = 1; i < n; i++) {
if (i % 2 == 1) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += abs(1 + s + a[i]);
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += abs(1 - s - a[i]);
s = 1;
}
}
}
ans = min(ans, p);
cout << ans << endl;
} else {
p = 1;
s = 1;
for (i = 1; i < n; i++) {
if (i % 2) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += abs(1 + s + a[i]);
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += abs(1 - s - a[i]);
s = 1;
}
}
}
s = -1;
ans = min(ans, p);
p = 1;
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
if (s + a[i] < 0) {
s += a[i];
} else {
p += abs(1 + s + a[i]);
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
p += abs(1 - s - a[i]);
s = 1;
}
}
}
ans = min(ans, p);
cout << ans << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | if(a[0]==0){
ans1++;
sum0=1;
}else{
sum0=a[0];
}
REP(i,1,n){
sum1=sum0+a[i];
if(sum1*sum0<0){
}else if(sum1*sum0>0){
ans1+=abs(sum1)+1;
sum1=-1*sum0/abs(sum0);
}else{
ans1++;
sum1=-1*sum0/abs(sum0);
}
sum0=sum1;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
signed main() {
long long n;
std::cin >> n;
std::vector<long long> a(n);
for (long long i = 0; i < (n); i++) std::cin >> a[i];
const long long INF = 1e18;
long long mincount = INF;
for (long long x = 0; x < (2); x++) {
long long sum = a[0];
long long count = 0;
if (sum == 0) continue;
if (x == 1) {
if (sum > 0) {
count += sum + 1;
sum = -1;
} else if (sum < 0) {
count += 1 - sum;
sum = 1;
}
}
for (long long i = 1; i < n; i++) {
if ((sum + a[i]) * sum >= 0) {
if (sum > 0) {
count += a[i] + sum + 1;
sum = -1;
} else if (sum < 0) {
count += 1 - a[i] - sum;
sum = 1;
}
} else
sum += a[i];
}
mincount = std::min(count, mincount);
}
std::cout << (mincount) << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | n = input()
a = map(int ,raw_input().split())
if a[0] > 0:
sign = 1
if a[0] < 0:
sign = -1
c = 0
sum = a[0]
for i in xrange(1,n):
temp = a[i]+sum
if temp == 0 and sum > 0:
c += 1
sum = -1
continue
if temp == 0 and sum < 0:
c += 1
sum = 1
continue
if temp < 0 and sum > 0 :
sum = temp
continue
if temp > 0 and sum < 0:
sum = temp
continue
if temp > 0 and sum > 0:
c += abs(sum + a[i]) + 1
sum = -1
continue
if temp < 0 and sum <0 :
c += abs(sum + a[i]) + 1
sum = 1
continue
print c |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int ans_a = 0, sum_a = 0;
for (int i = 0; i < n; i++) {
sum_a += a[i];
if ((i % 2 != 0) && (sum_a >= 0)) {
ans_a += abs(sum_a) + 1;
sum_a -= abs(sum_a) + 1;
} else if ((i % 2 == 0) && (sum_a <= 0)) {
ans_a += abs(sum_a) + 1;
sum_a += abs(sum_a) + 1;
}
}
int ans_b = 0, sum_b = 0;
for (int i = 0; i < n; i++) {
sum_b += a[i];
if ((i % 2 != 0) && (sum_b <= 0)) {
ans_b += abs(sum_b) + 1;
sum_b += abs(sum_b) + 1;
} else if ((i % 2 == 0) && (sum_b >= 0)) {
ans_b += abs(sum_b) + 1;
sum_b -= abs(sum_b) + 1;
}
}
int ans = ans_a < ans_b ? ans_a : ans_b;
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef vector<vector<int> > vii;
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)n; i++) cin >> a[i];
long long sum = a[0], op_cnt = 0;
for (int i = (int)1; i < (int)n; i++) {
if (sum < 0 && sum + a[i] <= 0) {
op_cnt += (0 - sum - a[i]) + 1;
sum = 1;
} else if (sum >= 0 && sum + a[i] >= 0) {
op_cnt += sum + a[i] + 1;
sum = -1;
} else
sum += a[i];
}
cout << op_cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
# Here your code
N = int(input())
a = [int(i) for i in input().split()]
result = 0
before_sum =a[0]
after_sum =a[0]
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result += 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
print(result)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
int ju = 0;
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
if (i % 2 == 0 && a[i] >= 0) ju++;
if (i % 2 == 1 && a[i] < 0) ju++;
}
long long int sum = 0, ans = 0;
if (ju >= n / 2) {
for (int i = 0; i < (int)(n); i++) {
sum += a[i];
if (sum <= 0 && i % 2 == 0) {
ans += abs(1 - sum);
sum = 1;
} else if (sum >= 0 && i % 2 == 1) {
ans += abs(-1 - sum);
sum = -1;
}
}
} else {
for (int i = 0; i < (int)(n); i++) {
sum += a[i];
if (sum >= 0 && i % 2 == 0) {
ans += abs(-1 - sum);
sum = -1;
} else if (sum <= 0 && i % 2 == 1) {
ans += abs(1 - sum);
sum = 1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
sum = a[0]
change = 0
for i in range(1,n):
val = 0
tempsum = sum+a[i]
if sum < 0 and tempsum <=0:
val = 1 - tempsum
if sum > 0 and tempsum >=0:
val = -1 - tempsum
sum = tempsum + val
change += abs(val)
print(change) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
class Main {
int n;
int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Main m = new Main(sc);
m.solve();
sc.close();
}
Main(Scanner sc) {
n = sc.nextInt();
a = new int[n];
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
}
void solve() {
int sign = (a[0]>=0)?1:-1;
int cnt = (a[0]==0)?1:0;
long sum = (a[0]==0)?1:a[0];
//System.out.println(sum);
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt += Math.abs(sum) + 1;
sum = -sign;
}
//System.out.println(sum);
sign *= -1;
}
System.out.println(cnt);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double PI = 3.1415926535897932384626433832795;
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
bool isDiffer(long long a, long long b) {
if (b == 0) return false;
if (((a > 0) && (b < 0)) || ((a < 0) && (b > 0)))
return true;
else
return false;
}
int main() {
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> v;
for (int i = 0; i < n; i++) {
long long t;
cin >> t;
v.push_back(t);
}
long long ans = 0;
if (v[0] == 0) {
v[0] = -1;
ans += 1;
}
long long os = v[0];
for (int i = 1; i < n; i++) {
if (!isDiffer(os, v[i] + os)) {
long long ob = (os >= 0) ? -1 : 1;
ans += abs(ob - os - v[i]);
v[i] = ob - os;
}
os += v[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | require 'prime'
include Math
def max(a,b); a > b ? a : b end
def min(a,b); a < b ? a : b end
def swap(a,b); a, b = b, a end
def gif; gets.to_i end
def gff; gets.to_f end
def gsf; gets.chomp end
def gi; gets.split.map(&:to_i) end
def gf; gets.split.map(&:to_f) end
def gs; gets.chomp.split.map(&:to_s) end
def gc; gets.chomp.split('') end
def pr(num); num.prime_division end
def digit(num); num.to_s.length end
def array(s,ini=nil); Array.new(s){ini} end
def darray(s1,s2,ini=nil); Array.new(s1){Array.new(s2){ini}} end
def rep(num); num.times{|i|yield(i)} end
def repl(st,en,n=1); st.step(en,n){|i|yield(i)} end
def f(sum,a,count)
repl 1,a.size-1 do |i|
sum << a[i]+sum[i-1]
if sum[i-1] > 0
if sum[i] >= 0
count += sum[i]+1
sum[i] = -1
end
elsif sum[i-1] < 0
if sum[i] <= 0
count += 1-sum[i]
sum[i] = 1
end
end
end
return count
end
n = gif
a = gi
sum2 = []
sum3 = []
ans2 = nil
ans3 = nil
sum2 << 1
ans2 = f sum2,a,(1-a[0]).abs
sum3 << -1
ans3 = f sum3,a,(1+a[0]).abs
puts min ans2,ans3
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #例の答えはあってる。
n=int(input())
x=list(map(int,input().split()))
k=x[0]
s=""
if x[0]>0:
s="True"
else:
s="Folus"
l=0
for i in range(1,n):
k+=x[i]
if k>=0 and s=="True":
l+=k+1
k=-1
s="Folus"
elif k<=0 and s=="Folus":
l+=k*(-1)+1
k=1
s="True"
else:
if s=="True":
s="Folus"
else:
s="True"
print(l) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n=int(input())
a=list(map(int,input().split()))
b=copy.copy(a)
ct1=0
if a[0]<=0:
a[0]=1
ct1+=1-a[0]
for i in range(1,n):
if i%2==1:
if sum(a[0:i+1])>=0:
ct1+=sum(a[0:i+1])+1
a[i]=-sum(a[0:i])-1
else:
if sum(a[0:i+1])<=0:
ct1+=1-sum(a[0:i+1])
a[i]=-sum(a[0:i])+1
ct2=0
if b[0]>=0:
b[0]=-1
ct2+=b[0]-1
for i in range(1,n):
if i%2==0:
if sum(b[0:i+1])>=0:
ct2+=sum(b[0:i+1])+1
b[i]=-sum(b[0:i])-1
else:
if sum(b[0:i+1])<=0:
ct2+=1-sum(b[0:i+1])
b[i]=-sum(b[0:i])+1
print(min(ct1,ct2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
import math
if __name__ == "__main__":
n = int(input())
nums = list(map(int, input().split()))
acm = nums[0]
counts = 0
for num in nums[1:]:
if acm * (acm+num)>0:
counts += abs(acm+num)+1
acm = -acm//abs(acm)
elif acm * (acm+num)<0:
acm = acm+num
else:
if acm == 0:
counts += 1
acm = 1
else:
counts += 1
acm = -acm//abs(acm)
print(counts) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int32_t main() {
uint64_t N;
cin >> N;
long long total, sign;
unsigned long long count;
cin >> total;
if (total == 0) {
total = 1;
sign = 1;
count = 1;
} else {
sign = total / abs(total);
count = 0;
}
for (uint64_t i = 1; i < N; i++) {
sign *= -1;
long long val;
cin >> val;
total += val;
if ((total == 0) || (sign * total < 0)) {
count += abs(sign - total);
total = sign;
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define rrep(i,n) for(int i=(int)(n-1);i>=0;i--)
#define FOR(i,n,m) for(int i=n;i<=(int)(m);i++)
#define RFOR(i,n,m) for(int i=(int)(n);i>=m;i--)
#define all(x) (x).begin(),(x).end()
#define sz(x) int(x.size())
typedef long long ll;
const int INF = 1e9;
const int MOD = 1e9+7;
const ll LINF = 1e18;
const double PI=3.14159265358979323846;
using namespace std;
vector<int> dx={1,0,-1,0};
vector<int> dy={0,1,0,-1};
template<class T>
vector<T> make_vec(size_t a){
return vector<T>(a);
}
template<class T, class... Ts>
auto make_vec(size_t a, Ts... ts){
return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
ll gcd (ll x,ll y) {
if (x < y) swap(x, y);
if (y == 0) return x;
return gcd(x % y, y);
}
int main() {
int n;
cin>>n;
vector<ll> a(n);
rep(i,n) cin>>a[i];
ll ans=LINF;
{
ll add=0;
ll sum=0;
int now=1;
rep(i,n) {
sum+=a[i];
if(now==1 && sum<=0) {
add+=1-sum;
sum+=add;
}
if(now==-1 && sum>=0) {
add+=sum+1;
sum-=add;
}
now*=-1;
}
ans=min(ans,add);
}
{
ll add=0;
ll sum=0;
int now=-1;
rep(i,n) {
sum+=a[i];
if(now==1 && sum<=0) {
add+=1-sum;
sum+=add;
}
if(now==-1 && sum>=0) {
add+=sum+1;
sum-=add;
}
now*=-1;
}
ans=min(ans,add);
}
cout<<ans<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | function Main(s) {
var s = s.split("\n");
var n = parseInt(s[0], 10);
var a = s[1].split(" ").map(e => parseInt(e, 10));
var acc = 0, cnt = 0, arr = [];
for (var i = 0; i < n; i++) {
acc += a[i];
if (i === 0) {
if (acc === 0) {
if (a[i + 1] >= 0) {
acc--;
cnt++;
} else {
acc++;
cnt++;
}
}
} else {
if (arr[i - 1] > 0) {
if (acc >= 0) {
cnt += (acc + 1);
acc -= (acc + 1);
}
} else {
if (acc <= 0) {
cnt += (Math.abs(acc) + 1);
acc += (Math.abs(acc) + 1);
}
}
}
arr.push(acc);
}
console.log(cnt);
}
Main(require("fs").readFileSync("/dev/stdin", "utf8"));
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long res, standard, n, a[100000], sum;
long long ans = 1000000000000000LL;
int get_sign(int x) {
if (0 < x)
return 1;
else if (x < 0)
return -1;
else
return 0;
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
res = 0, standard = 1, sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (standard != get_sign(sum)) {
int add = abs(sum) + 1;
res += add;
if (sum >= 0)
sum -= add;
else if (sum < 0)
sum += add;
}
standard *= (-1);
}
ans = min(ans, res);
res = 0, standard = -1, sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (standard != get_sign(sum)) {
int add = abs(sum) + 1;
res += add;
if (sum >= 0)
sum -= add;
else if (sum < 0)
sum += add;
}
standard *= (-1);
}
ans = min(ans, res);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vpii = vector<pair<int, int>>;
using vpll = vector<pair<ll, ll>>;
int main(void) {
int N;
cin >> N;
vector<ll> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
ll ans = 0;
ll cur = A[0];
if (cur == 0) {
ans++;
int i = 1;
while (A[i] == 0 && i < N) i++;
if (i == N)
cur++;
else if (A[i] > 0 && i % 2 == 0)
cur++;
else if (A[i] > 0 && i % 2 == 1)
cur--;
else if (A[i] < 0 && i % 2 == 0)
cur--;
else
cur++;
}
for (int i = 1; i < N; i++) {
if (cur > 0 && cur + A[i] > 0) {
ans += abs(-1 - (cur + A[i]));
cur = -1;
} else if (cur > 0 && cur + A[i] == 0) {
ans++;
cur = -1;
} else if (cur < 0 && cur + A[i] == 0) {
ans++;
cur = 1;
} else if (cur < 0 && cur + A[i] < 0) {
ans += abs(1 - abs(cur + A[i]));
cur = 1;
} else
cur += A[i];
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int f(vector<int> a, int sign) {
int ans = 0;
if (sign > 0 && a.at(0) <= 0) {
ans += -a.at(0) + 1;
a.at(0) += -a.at(0) + 1;
}
if (sign < 0 && a.at(0) >= 0) {
ans += a.at(0) + 1;
a.at(0) -= a.at(0) + 1;
}
int sum = a.at(0);
for (int i = 1; i < a.size(); i++) {
if (sum > 0 && a.at(i) + sum >= 0) {
ans += a.at(i) + sum + 1;
a.at(i) -= a.at(i) + sum + 1;
}
if (sum < 0 && a.at(i) + sum <= 0) {
ans += -(a.at(i) + sum - 1);
a.at(i) += -(a.at(i) + sum - 1);
}
sum += a.at(i);
}
return ans;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
cout << min(f(a, 1), f(a, -1));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, a;
cin >> n;
int ans = 0;
vector<int> vec(n);
for (int i = 0; i < n; i++) {
cin >> a;
vec.at(i) = a;
}
int now1 = 0, now2 = 0, cnt1 = 0, cnt2 = 0;
for (int i = 0; i < n; i++) {
now1 += vec[i];
now2 += vec[i];
if (now1 <= 0) {
cnt1 += abs(now1) + 1;
now1 = 1;
}
if (now2 >= 0) {
cnt2 += abs(now2) + 1;
now2 = -1;
}
swap(now1, now2);
swap(cnt1, cnt2);
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input().strip())
A = list(map(int, input().strip().split(" ")))
def solver(_sign):
s = A[0]
count = 0
if _sign and s <= 0: # head is positive
count += abs(s) + 1
s = 1
elif s >= 0: # head is negative
count += abs(s) + 1
s = -1
for a in A[1:]:
prev = s
sign = prev > 0
s += a
if s == 0:
count += 1
if sign: # previous is positive
s = -1
else: # prev is negative
s = 1
elif sign == (s > 0): # previous and current have the same sign
count += abs(s)+1
if s > 0:
s = -1
else:
s = 1
else:
pass
return count
print(min(solver(True), solver(False)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n, sum = 0, f = 0, ans = 0;
cin >> n;
vector<long long int> a(10000000);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sum += a[0];
if (sum > 0) {
f = -1;
} else if (sum < 0) {
f = 1;
} else {
if (a[1] < 0) {
ans++;
f = -1;
a[0] = 1;
} else {
ans++;
f = 1;
a[0] = -1;
}
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (f * sum > 0) {
} else {
ans += abs(sum) + 1;
sum = f;
a[i] += f * (abs(sum) + 1);
}
f *= -1;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
int n, a[100010];
long sgn, cont = 0, ans = 0;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
}
cont += a[0];
if (cont > 0)
sgn = 1;
else if (cont < 0)
sgn = -1;
else {
ans++;
int i = 0;
for (; a[i] == 0; i++) {
sgn = -1 * sgn;
}
sgn = (a[i] > 0) ? sgn : -1 * sgn;
}
for (int i = 1; i < n; i++) {
cont += a[i];
if (cont * sgn < 0) {
sgn = -1 * sgn;
} else if (cont * sgn >= 0) {
ans = ans + 1 + cont * sgn;
sgn = -1 * sgn;
cont = sgn;
}
}
printf("%ld", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
ans1 = ans2 = 0
s = s2 = a[0]
if a[0] < 0:
s = 1
ans1 = -a[0] + 1
if a[0] > 0:
s2 = -1
ans2 = a[0] + 1
for i in range(1, len(a)):
s += a[i]
if i % 2 == 1 and s >= 0:
ans1 += s + 1
s = -1
elif i % 2 == 0 and s <= 0:
ans1 += -s + 1
s = 1
s2 += a[i]
if i % 2 == 0 and s2 >= 0:
ans2 += s2 + 1
s2 = -1
elif i % 2 == 1 and s2 <= 0:
ans2 += -s2 + 1
s2 = 1
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> S(N + 1);
for (int i = 1; i <= N; ++i) {
cin >> S[i];
S[i] += S[i - 1];
}
int ians = (1 << 30);
for (int j = -1; j <= 1; j += 2) {
vector<int> S_(S);
int ans = 0;
int add = 0;
int sign = j;
for (int i = 1; i <= N; ++i) {
S_[i] += add;
int sign_i = S_[i] / abs(S_[i]);
if (sign_i == sign) {
ans += abs(-sign_i - S_[i]);
add += -sign_i - S_[i];
S_[i] = -sign_i;
} else if (S_[i] == 0) {
ans += 1;
add += -sign;
S_[i] += -sign;
}
sign = -sign;
}
ians = min(ans, ians);
}
cout << ians << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | input()
a = list(map(int, input().split()))
s = a[0]
ret = 0
for i in a[1:]:
if s * i > 0:
t = s + i
k = 1 if t > 0 else -1
ret += k * t + 1
s = -k
else:
if s * (s+i) < 0:
s = s+i
else:
ret += s+i+1
s = -1 if s > 0 else 1
print(ret) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[200005] = {0};
int main() {
long long n, i;
cin >> n;
for (i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
}
long long sum1 = 0, sum2 = 0;
long long ans1 = 0, ans2 = 0;
sum1 += a[1], sum2 += a[1];
for (i = 2; i <= n; i++) {
sum1 += a[i];
if (i % 2 == 0 && sum1 >= 0) {
ans1 += sum1 + 1;
sum1 = -1;
} else if (i % 2 != 0 && sum1 <= 0) {
ans1 += 1 - sum1;
sum1 = 1;
}
}
for (i = 2; i <= n; i++) {
sum2 += a[i];
if (i % 2 == 0 && sum2 <= 0) {
ans2 += 1 - sum2;
sum2 = 1;
} else if (i % 2 == 1 && sum2 >= 0) {
ans2 += sum2 + 1;
sum2 = -1;
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import "fmt"
func main() {
var n int
fmt.Scan(&n)
sum := 0
cnt := 0
plus := false
a := make([]int, n)
for i := 0; i < n; i++ {
fmt.Scan(&a[i])
}
var base int
for i :=0; i <n; i++ {
if a[i] != 0 {
base = i
break
}
}
if base % 2 == 0 {
plus = true
} else {
plus = false
}
if a[base] < 0 {
plus = !plus
}
for i := 0; i < n; i++ {
sum += a[i]
if plus {
for sum <= 0 {
sum++
cnt++
}
plus = !plus
} else {
for sum >= 0 {
sum--
cnt++
}
plus = !plus
}
fmt.Println(sum, cnt)
}
fmt.Println(cnt)
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int &x : a) {
cin >> x;
}
bool plus;
long sum = 0;
int count_plus = 0;
plus = false;
for (int i = 0; i < n; i++) {
plus = !plus;
sum += a.at(i);
if (plus) {
if (sum > 0) {
continue;
} else {
count_plus += 1 - sum;
sum = 1;
}
} else {
if (sum < 0) {
continue;
} else {
count_plus += 1 + sum;
sum = -1;
}
}
}
int count_minus = 0;
plus = true;
sum = 0;
for (int i = 0; i < n; i++) {
plus = !plus;
sum += a.at(i);
if (plus) {
if (sum > 0) {
continue;
} else {
count_minus += 1 - sum;
sum = 1;
}
} else {
if (sum < 0) {
continue;
} else {
count_minus += 1 + sum;
sum = -1;
}
}
}
cout << min(count_plus, count_minus) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
al = list(map(int, input().split()))
m = n//2
mm = n % 2
temp = al[0]
res = 0
def ddd(temp,al,m,mm,res):
if temp > 0 and mm ==1:
for i in range(1,m+1):
temp +=al[i*2-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
temp +=al[i*2]
if temp >0:
pass
else:
res +=1-temp
temp = 1
return(res)
if temp > 0 and mm ==0:
for i in range(1,m):
temp +=al[i*2-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
temp +=al[i*2]
if temp >0:
pass
else:
res +=1-temp
temp = 1
temp += al[n-1]
if temp <0:
pass
else:
res += temp+1
temp = -1
return(res)
if temp < 0 and mm ==1:
for i in range(1,m+1):
temp +=al[i*2-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
temp +=al[i*2]
if temp <0:
pass
else:
res +=temp+1
temp = -1
return(res)
if temp < 0 and mm ==0:
for i in range(1,m):
temp +=al[i*2-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
temp +=al[i*2]
if temp <0:
pass
else:
res +=temp+1
temp = -1
temp += al[n-1]
if temp >0:
pass
else:
res += 1-temp
temp = 1
return(res)
if al[0]==0:
temp = 1
res = 1
dpl =ddd(temp,al,m,mm,res)
temp = -1
res = 1
dmi =ddd(temp,al,m,mm,res)
print(min(dpl,dmi))
else:
print(ddd(temp,al,m,mm,res)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def z(s,l):
for i in range(n-1):
r=l+a[i+1]
if r*l>=0:
if l<=0:
s+=1-r
r=1
else:
s+=1+r
r=-1
l=r
return s
n=int(input())
a=list(map(int,input().split()))
s1=0
l1=a[0]
if a[0]<=0:
s1=1-a[0]
l1=1
s2=0
l2=a[0]
if a[0]>=0:
s1=a[0]-1
l1=-1
print(min(z(s1,l1),z(s2,l2))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
std::vector<int> seq, sum;
int main() {
int n;
std::cin >> n;
seq.resize(n);
sum.resize(n);
std::cin >> seq[0];
sum[0] = seq[0];
for (int i = 1; i < n; i++) {
std::cin >> seq[i];
sum[i] = sum[i - 1] + seq[i];
}
bool is_plus = true;
long ans = 0;
long dif = 0;
if (sum[0] <= 0) {
dif = 1 - sum[0];
ans = dif;
}
for (int i = 1; i < sum.size(); i++) {
if (is_plus && sum[i] + dif >= 0) {
long tmp = -(sum[i] + dif) - 1;
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
} else if (!is_plus && sum[i] + dif <= 0) {
long tmp = 1 - (sum[i] + dif);
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
}
is_plus = !is_plus;
}
long ya = ans;
ans = 0;
is_plus = false;
if (sum[0] > 0) {
dif = -1 - sum[0];
ans = -dif;
} else {
dif = 0;
}
for (int i = 1; i < sum.size(); i++) {
if (is_plus && sum[i] + dif >= 0) {
long tmp = -(sum[i] + dif) - 1;
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
} else if (!is_plus && sum[i] + dif <= 0) {
long tmp = 1 - (sum[i] + dif);
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
}
is_plus = !is_plus;
}
std::cout << (ya < ans ? ya : ans) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <cstdio>
#include <algorithm>
using namespace std;
int main(){
int n;
scanf("%d", &n);
int a[n];
for (int i = 0; i < n; i++) scanf(" %d", &a[i]);
int S = a[0];
int j = 0;
for (int i = 1; i < n; i++){
if (S * (S+a[i]) < 0){
S += a[i];
}
else if (S+a[i] == 0){
j += 1;
if (S > 0) S = -1;
else (S < 0) S = 1;
}
else {
j += abs(S + a[i]) + 1;
if (S < 0) S = 1;
else if (S > 0) S = -1;
}
}
}
printf("%d\n", j);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
n = int(input())
A = list(map(int, input().split()))
res = 0
sums = []
for i in range(n):
if i == 0:
sums.append(sum(A[:i]) + A[i])
if A[i] == 0:
index = -1
for j in range(n):
if A[j] != 0:
index = A.index(A[j])
break
if index == -1:
res += 3
A[i] = 1
A[i+1] = -2
sums[i] = 1
elif (index % 2 and A[index] > 0) or (index % 2 == 0 and A[index] < 0):
A[i] = -1
sums[i] = -1
res += 1
else:
A[i] = 1
sums[i] = 1
res += 1
else:
sums.append(sums[i-1] + A[i])
if sums[i] == 0:
if sums[i-1] > 0:
A[i] -= 1
sums[i] = sums[i-1] + A[i]
res += 1
else:
A[i] += 1
sums[i] = sums[i-1] + A[i]
res += 1
elif (sums[i-1] > 0) and (sums[i] > 0):
res += A[i] - (-sums[i-1] - 1)
A[i] = -sums[i-1] - 1
sums[i] = sums[i-1] + A[i]
elif (sums[i-1] < 0) and (sums[i] < 0):
res += 1 - (sums[i-1] + A[i])
A[i] = abs(sums[i-1]) + 1
sums[i] = sums[i-1] + A[i]
print(res)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> A(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
}
vector<long long> S1(N);
vector<long long> S2(N);
S1[0] = A[0];
S2[0] = 0;
int cnt1 = 0;
int cnt2 = 0;
for (int i = 0; i < N; i++) {
if (i) {
S1[i] = S1[i - 1] + A[i];
S2[i] = S2[i] + A[i];
}
if (!(i % 2)) {
if (S1[i] < 0) {
cnt1 += 1 - S1[i];
S1[i] = 1;
}
if (S2[i] > 0) {
cnt2 += S2[i] + 1;
S2[i] = -1;
}
} else {
if (S1[i] > 0) {
cnt1 += S1[i] + 1;
S1[i] = -1;
}
if (S2[i] < 0) {
cnt2 += 1 - S2[i];
S2[i] = 1;
}
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
ans1,ans2 = 0,0
res = A[0]
for i in range(1,N):
res += A[i]
if i%2==1:
if res >= 0:
ans1 += res+1
res = -1
else:
if res <= 0:
ans1 -= res-1
res = 1
res = A[0]
for i in range(1,N):
res += A[i]
if i%2==1:
if res <= 0:
ans2 -= res-1
res = 1
else:
if res >= 0:
ans2 += res+1
res = -1
print(min(ans1,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long A[100010] = {};
bool flag = false;
long long tmp, sum;
long long ans[] = {0, 0};
cin >> n;
for (int i = 0; i < n; i++) cin >> A[i];
if (A[0] == 0) {
flag = true;
A[0] = 1;
ans[0]++;
}
tmp = 0, sum = 0;
for (int i = 0; i < n; i++) {
tmp = sum + A[i];
if (tmp == 0) {
ans[0]++;
if (A[i] > 0)
tmp = 1;
else
tmp = -1;
} else {
if ((tmp > 0 && sum > 0) || (tmp < 0 && sum < 0)) {
if (tmp > 0)
tmp = -1;
else
tmp = 1;
ans[0] += abs((tmp - sum) - A[i]);
}
}
sum = tmp;
}
if (flag) {
A[0] = -1;
ans[1]++;
}
tmp = 0, sum = 0;
for (int i = 0; i < n; i++) {
tmp = sum + A[i];
if (tmp == 0) {
ans[1]++;
if (A[i] > 0)
tmp = 1;
else
tmp = -1;
} else {
if ((tmp > 0 && sum > 0) || (tmp < 0 && sum < 0)) {
if (tmp > 0)
tmp = -1;
else
tmp = 1;
ans[1] += abs((tmp - sum) - A[i]);
}
}
sum = tmp;
}
cout << min(ans[0], ans[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int a[n], c[n];
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; i < n; i++) c[i] = a[i];
int count = 0, count2 = 0, sum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (sum + a[i] <= 0) {
int b = (abs(sum) + 1);
count += abs(b - a[i]);
a[i] = b;
}
sum += a[i];
} else {
if (sum + a[i] >= 0) {
int b = -1 * (abs(sum) + 1);
count += abs(b - a[i]);
a[i] = b;
}
sum += a[i];
}
}
sum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if (sum + c[i] <= 0 || c[i] <= 0) {
int b = (abs(sum) + 1);
count2 += abs(b - c[i]);
c[i] = b;
}
sum += c[i];
} else {
if (sum + c[i] >= 0 || c[i] >= 0) {
int b = -1 * (abs(sum) + 1);
count2 += abs(b - c[i]);
c[i] = b;
}
sum += c[i];
}
}
cout << min(count, count2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MOD = 1e9 + 7;
const long long LINF = 1e18;
long long n;
vector<long long> a;
long long count(long long sum) {
long long cnt = 0;
for (long long i = 1; i < n; ++i) {
if (sum > 0) {
sum += a[i];
if (sum >= 0) {
cnt += abs(sum) + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
}
}
return cnt;
}
int main() {
cin >> n;
long long ans = LINF;
a.resize(n);
for (long long i = 0; i < n; ++i) {
cin >> a[i];
}
if (a[0] == 0) {
ans = min(ans, count(1) + 1);
ans = min(ans, count(-1) + 1);
} else {
long long sum = a[0];
ans = min(ans, count(sum));
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N;
vector<int> a;
int solve(bool b) {
long long count = 0;
long long sum = a[0];
if (a[0] == 0) {
sum = b ? 1 : -1;
count++;
} else if (b && a[0] < 0) {
sum = 1;
count = 1 - a[0];
} else if (!b && a[0] > 0) {
sum = -1;
count = a[0] + 1;
}
for (int i = 1; i < N; i++) {
if (sum * a[i] < 0 && abs(sum) < abs(a[i])) {
sum += a[i];
} else {
if (sum > 0) {
count += a[i] + sum + 1;
sum = -1;
} else {
count += 1 - sum - a[i];
sum = 1;
}
}
}
return count;
}
int main() {
cin >> N;
a.resize(N);
for (int i = 0; i < N; i++) cin >> a[i];
cout << min(solve(true), solve(false)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
L = np.array([int(i) for i in input().split()])
count = 0
s = L[0]
#if L[0] == 0:
# if L[1] > 0:
# L[0] = -1
# else:
# L[0] = 1
# count += 1
# print(L)
loopnum = n//2
if n%2 == 0:
loopnum -= 1
#+-+-...
for i in range(loopnum):
s = s + L[2*i+1]
if s >= 0:
subt = s + 1
count += subt
s = s - subt
s = s + L[2*i+2]
if s <= 0:
subt = s - 1
count -= subt
s = s - subt
if n%2 == 0:
s = s + L[-1]
if s >= 0:
subt = s + 1
count += subt
cand1 = count
count = 0
s = L[0]
#-+-+...
for i in range(loopnum):
s = s + L[2*i+1]
if s <= 0:
subt = s - 1
count -= subt
s = s - subt
s = s + L[2*i+2]
if s >= 0:
subt = s + 1
count += subt
s = s - subt
if n%2 == 0:
s = s + L[-1]
if s <= 0:
subt = s - 1
count -= subt
cand2 = count
#print(cand1)
#print(cand2)
print(min(cand1,cand2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const long long INF = 1e18;
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
long long n, ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
sum1 = a[0];
if (sum1 == 0) {
sum1 = (a[1] > 0 ? -1 : 1);
ans1++;
}
for (long long i = 1; i < n; i++) {
if (sum1 > 0 && sum1 + a[i] < 0) {
sum1 += a[i];
} else if (sum1 < 0 && sum1 + a[i] > 0) {
sum1 += a[i];
} else if (sum1 > 0 && a[i] + sum1 > 0) {
ans1 += sum1 + a[i] + 1;
} else {
ans1 += -a[i] - sum1 + 1;
}
}
a[0] *= -1;
if (sum2 == 0) {
sum2 = (a[1] > 0 ? -1 : 1);
ans2++;
}
for (long long i = 1; i < n; i++) {
if (sum2 > 0 && sum2 + a[i] < 0) {
sum2 += a[i];
} else if (sum2 < 0 && sum2 + a[i] > 0) {
sum2 += a[i];
} else if (sum2 > 0 && a[i] + sum2 > 0) {
ans2 += sum2 + a[i] + 1;
} else {
ans2 += -a[i] - sum2 + 1;
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def solve():
n = int(input())
a = list(map(int, input().split()))
i = 0
sum = 0
ans = 0
for i in range(n-1):
sum += a[i]
if sum > 0 and sum+a[i+1] > 0:
tmp = -1 - sum
ans += abs(tmp - a[i+1])
a[i+1] = tmp
elif sum < 0 and sum+a[i+1] < 0:
tmp = 1 - sum
ans += abs(tmp - a[i+1])
a[i+1] = tmp
print(ans)
print(a)
if __name__ == "__main__":
solve()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = [int(i) for i in input().split()]
b=a.copy()
s0p = a[0]
s0n = b[0]
countp = 0
countn = 0
if a.count(0)==n:
print(2*n+1)
exit()
"""
if s0p<=0:
while s0p<=0:
s0p+=1
countp+=1
if s0n>=0:
while s0n>=0:
s0n-=1
countn+=1
"""
for i in range(1,n):
s1 = s0p+a[i]
if s0p*s1>=0:
if s1>0:
a[i]-=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1<0:
a[i]+=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1==0:
if s0p>0:
a[i]-=1
countp+=1
elif s0p<0:
a[i]+=1
countp+=1
s0p += a[i]
"""
for i in range(1,n):
s1 = s0n+b[i]
if s0n*s1>=0:
if s1>0:
b[i]-=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1<0:
b[i]+=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1==0:
if s0n>0:
b[i]-=1
countn+=1
elif s0n<0:
b[i]+=1
countn+=1
s0n += b[i]
"""
print(countp if countp<=countn else(countn))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> A(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
}
long long sum = 0;
long long cnt1 = 0;
for (int i = 0; i < N; i++) {
sum += A[i];
if (i % 2 == 0 && sum <= 0) {
cnt1 += 1 - sum;
sum = 1;
}
if (i % 2 == 1 && sum >= 0) {
cnt1 += sum + 1;
sum = -1;
}
}
long long sum2 = 0;
long long cnt2 = 0;
for (int i = 0; i < N; i++) {
sum += A[i];
if (i % 2 == 0 && sum2 >= 0) {
cnt2 += sum2 + 1;
sum2 = -1;
}
if (i % 2 == 1 && sum2 <= 0) {
cnt2 += 1 - sum2;
sum2 = 1;
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(int a) {
if (a > 0)
return 1;
else if (a < 0)
return -1;
else
return 0;
}
int main(void) {
int n;
cin >> n;
int sum = 0, s = 1;
int a;
int num = 0;
for (int i = 0; i < n; i++) {
cin >> a;
sum += a;
if (i != 0 && (sign(s) == sign(sum) || sum == 0)) {
num += abs(sum) + 1;
sum = sign(s) * -1;
s *= -1;
} else {
s = sign(sum);
}
}
cout << num << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
def read_input():
n = int(input())
alist = list(map(int, input().split()))
return n, alist
def get_sign(x):
if x > 0:
return 1
elif x < 0:
return -1
return 0
def submit():
n, alist = read_input()
s = alist[0]
sign = get_sign(s)
edit = 0
for a in alist[1:]:
temp = s + a
temp_sign = get_sign(temp)
if sign == temp_sign:
edit += temp_sign * temp
temp -= temp
if temp == 0:
edit += 1
temp -= sign
s = temp
sign = get_sign(s)
print(edit)
if __name__ == '__main__':
submit() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
vector<int> s(n);
for (int &x : a) {
cin >> x;
}
s.at(0) = a.at(0);
for (int i = 1; i < n; i++) {
s.at(i) = s.at(i - 1) + a.at(i);
}
int count = 0;
if (a.at(0) == 0) {
a.at(0)++;
count++;
for (int x : s) {
x++;
}
}
bool is_next_plus;
if (s.at(0) > 0) {
is_next_plus = false;
} else {
is_next_plus = true;
}
for (int i = 1; i < n; i++) {
if (is_next_plus) {
is_next_plus = !is_next_plus;
if (s.at(i) > 0) {
continue;
} else {
int diff = 1 - s.at(i);
count += diff;
for (int j = i; j < n; j++) {
s.at(j) += diff;
}
}
} else {
is_next_plus = !is_next_plus;
if (s.at(i) < 0) {
continue;
} else {
int diff = 1 + s.at(i);
count += diff;
for (int j = i; j < n; j++) {
s.at(j) -= diff;
}
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
unsigned solve(unsigned N, const std::vector<long> &a, int flag) {
unsigned c = 0;
long s = 0;
for (unsigned n = 0; n < N; ++n) {
long b = s + a[n];
if (n % 2 == flag) {
if (b <= 0) {
c += std::abs((+1) - b);
s = +1;
} else {
s = b;
}
} else {
if (b >= 0) {
c += std::abs((-1) - b);
s = -1;
} else {
s = b;
}
}
}
return c;
}
int main() {
unsigned N;
std::cin >> N;
std::vector<long> a(N);
for (unsigned n = 0; n < N; ++n) {
std::cin >> a[n];
}
std::cout << std::min(solve(N, a, 0), solve(N, a, 1)) << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int c1 = 0, s1 = 0, c2 = 0, s2 = 0;
for (int i = 0; i < n; i++) {
s1 += a[i];
s2 += a[i];
if (i % 2 == 0) {
if (s1 <= 0) {
c1 += 1 - s1;
s1 = 1;
}
if (s2 >= 0) {
c2 += s2 + 1;
s2 = -1;
}
} else {
if (s2 <= 0) {
c2 += 1 - s2;
s2 = 1;
}
if (s1 >= 0) {
c1 += s1 + 1;
s1 = -1;
}
}
}
cout << min(c1, c2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = 0;
if (a[0] == 0) {
a[0] = 1;
long long total = a[0];
long long temp;
long long ans1 = 0;
ans1++;
for (int i = 1; i < n; i++) {
temp = a[i];
if (total > 0) {
if (total + a[i] >= 0) {
a[i] = -(total + 1);
}
total += a[i];
ans1 += abs(a[i] - temp);
a[i] = temp;
} else if (total < 0) {
if (total + a[i] <= 0) {
a[i] = (-total + 1);
}
total += a[i];
ans1 += abs(a[i] - temp);
a[i] = temp;
}
}
a[0] = -1;
total = a[0];
long long ans2 = 1;
for (int i = 1; i < n; i++) {
temp = a[i];
if (total > 0) {
if (total + a[i] >= 0) {
a[i] = -(total + 1);
}
total += a[i];
ans2 += abs(a[i] - temp);
a[i] = temp;
} else if (total < 0) {
if (total + a[i] <= 0) {
a[i] = (-total + 1);
}
total += a[i];
ans2 += abs(a[i] - temp);
a[i] = temp;
}
}
ans = min(ans1, ans2);
} else {
long long total = a[0];
long long temp;
long long ans1 = 0;
for (int i = 1; i < n; i++) {
temp = a[i];
if (total > 0) {
if (total + a[i] >= 0) {
a[i] = -(total + 1);
}
total += a[i];
ans1 += abs(a[i] - temp);
a[i] = temp;
} else if (total < 0) {
if (total + a[i] <= 0) {
a[i] = (-total + 1);
}
total += a[i];
ans1 += abs(a[i] - temp);
a[i] = temp;
}
}
temp = a[0];
a[0] = -a[0];
total = a[0];
long long ans2 = abs(a[0] - temp);
for (int i = 1; i < n; i++) {
temp = a[i];
if (total > 0) {
if (total + a[i] >= 0) {
a[i] = -(total + 1);
}
total += a[i];
ans2 += abs(a[i] - temp);
a[i] = temp;
} else if (total < 0) {
if (total + a[i] <= 0) {
a[i] = (-total + 1);
}
total += a[i];
ans2 += abs(a[i] - temp);
a[i] = temp;
}
}
ans = min(ans1, ans2);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
using namespace std;
using vl = vector<long long>;
using vvl = vector<vector<long long>>;
using vs = vector<string>;
const int mod = 1000000007;
class mint {
public:
long long x;
mint(long long x = 0) : x((x % mod + mod) % mod) {}
mint operator-() const { return mint(-x); }
mint& operator+=(const mint& a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint& a) {
if ((x += mod - a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint& a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint& a) const {
mint res(*this);
return res += a;
}
mint operator-(const mint& a) const {
mint res(*this);
return res -= a;
}
mint operator*(const mint& a) const {
mint res(*this);
return res *= a;
}
mint pow(long long t) const {
if (!t) return 1;
mint a = pow(t >> 1);
a *= a;
if (t & 1) a *= *this;
return a;
}
mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint& a) { return (*this) *= a.inv(); }
mint operator/(const mint& a) const {
mint res(*this);
return res /= a;
}
friend ostream& operator<<(ostream& os, const mint& m) {
os << m.x;
return os;
}
};
long long modpow(long long x, long long n, long long p = 1000000007) {
if (n == 0) return 1 % p;
if (n % 2 == 0)
return modpow(x * x % p, n / 2, p);
else
return x * modpow(x, n - 1, p) % p;
}
void Main() {
long long N;
cin >> N;
vl v(N);
for (long long i = 0; i < N; i++) cin >> v[i];
long long flg = (v[0] > 0);
long long ans = 0;
long long acc = v[0];
for (long long i = 1; i < N; i++) {
acc += v[i];
if (flg && acc >= 0) {
ans += acc + 1;
acc = -1;
} else if (!flg && acc <= 0) {
ans += -acc + 1;
acc = 1;
}
flg ^= 1;
}
cout << ans << "\n";
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
long long t = 1;
for (long long i = 0; i < t; i++) Main();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int cnt = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (sum + a[i] == 0) {
cnt++;
if (i == 0) {
sum = a[1] > 0 ? -1 : 1;
} else {
sum = sum > 0 ? -1 : 1;
}
} else if (sum > 0 && sum + a[i] > 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum < 0 && sum + a[i] < 0) {
cnt += 1 - sum - a[i];
sum = 1;
} else {
sum += a[i];
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
N = int(input())
a_s = input().split()
for i in range(N):
a_s[i] = int(a_s[i])
a_s = np.array(a_s)
def get_sign(x):
if x>0:
return +1
elif x<0:
return -1
else:
return 0
ans = 0
S0 = None
for i,a in enumerate(a_s):
if i==0:
S = a
if S == 0:
ans += 1
if np.all(a_s[1:])==0:
S = +1
else:
for i in range(1,N):
if a_s[i]!=0:
S = get_sign(a_s[i])*(-1)
break
else:
S = S0 + a
if get_sign(S0) == get_sign(S):
ans += abs(get_sign(S)*(-1) - S)
S = get_sign(S)*(-1)
elif get_sign(S)==0:
ans += 1
S = get_sign(S0)*(-1)
S0 = S
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | N = gets.to_i
a = gets.split.map(&:to_i)
# 偶数番目を負に
ans_even = 0
a_even = a.dup
# 奇数番目を負に
ans_odd = 0
a_odd = a.dup
if a_even[0] >= 0
while a_even[0] > 0
a_even[0] -= 1
ans_even += 1
end
elsif a_odd[0] <= 0
while a_odd[0] < 0
a_odd[0] += 1
ans_odd += 1
end
end
sum_even = 0
sum_odd = 0
a_even.each_with_index do |ai, i|
if sum_even + ai == 0
if i % 2 == 0
a_even[i] -= 1
ans_even += 1
else
a_even[i] += 1
ans_even += 1
end
end
if sum_even*(sum_even+a_even[i]) > 0
if i % 2 == 0
while sum_even + a_even[i] >= 0
a_even[i] -= 1
ans_even += 1
end
else
while sum_even + a_even[i] <= 0
a_even[i] += 1
ans_even += 1
end
end
end
sum_even += a_even[i]
end
a_odd.each_with_index do |ai, i|
if sum_odd + ai == 0
if i % 2 == 1
a_odd[i] -= 1
ans_odd += 1
else
a_odd[i] += 1
ans_odd += 1
end
end
if sum_odd*(sum_odd+a_odd[i]) > 0
if i % 2 == 1
while sum_odd + a_odd[i] >= 0
a_odd[i] -= 1
ans_odd += 1
end
else
while sum_odd + a_odd[i] <= 0
a_odd[i] += 1
ans_odd += 1
end
end
end
sum_odd += a_odd[i]
end
puts [ans_even, ans_odd].min |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
now=a[0]
flag=abs(a[0])//a[0]
c=0
#print(c,flag)
for i in range(1,n):
tmp=now+a[i]
if not tmp*flag<0:
c+=abs(flag*-1-tmp)
now=flag*-1
else:
now=tmp
flag*=-1
#print(c,flag)
print(c) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double PI = 3.1415926535897932384626433832795;
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
bool isDiffer(long long a, long long b) {
if (b == 0) return false;
if (((a > 0) && (b < 0)) || ((a < 0) && (b > 0)))
return true;
else
return false;
}
int main() {
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> v;
vector<long long> vv;
for (int i = 0; i < n; i++) {
long long t;
cin >> t;
v.push_back(t);
vv.push_back(t);
}
long long ans[2] = {0};
if (v[0] == 0) {
v[0] = 1;
ans[0] += 1;
ans[1] += 1;
}
for (int j = 0; j < 2; j++) {
v[0] = (j == 0) ? (v[0] * -1) : v[0];
long long os = v[0];
for (int i = 1; i < n; i++) {
if (!isDiffer(os, v[i] + os)) {
long long ob = (os >= 0) ? -1 : 1;
ans[j] += llabs(ob - os - v[i]);
v[i] = ob - os;
}
os += v[i];
}
v = vv;
}
cout << min(ans[0], ans[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
arr = gets.chomp.split(" ").map(&:to_i)
count = 0
def check(i,arr)
if arr[i] > 0
arr[1] -= 1
elsif arr[i] < 0
arr[1] += 1
else
if i == arr.size - 1
arr[1] += 1
return
end
check(i+1,arr)
end
end
num = arr[0] + arr[1]
if num == 0
if arr[2] > 0
arr[1] -= 1
elsif arr[2] < 0
arr[1] += 1
else
check(3,arr)
end
end
num = arr[0] + arr[1]
(2...arr.size).each do |i|
diff = num + arr[i]
# puts %(num : #{num})
# puts %(diff : #{diff})
if num > 0
if diff > 0
arr[i] -= diff.abs+1
count += diff.abs+1
end
else
if diff < 0
arr[i] += diff.abs+1
count += diff.abs+1
end
end
if diff == 0
if num > 0
arr[i] -= 1
else
arr[i] += 1
end
count += 1
end
num += arr[i]
end
#p arr
puts count |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include"bits/stdc++.h"
using namespace std;
int main(){
int n;
cin>>n;
vector<int> x;
int temp,ans=0;
for(int i=0;i!=n;++i){
cin>>temp;
x.push_back(temp);
}
if(!x[0]){
x[0]=1;
++ans;
int val,ind;
for(int i=0;i!=n;++i){
if(!x[i]){
val=x[i];
ind=i;
break;
}
}
if((val>0 && ind%2) || (val<0 && !(ind%2))
x[0]=-1;
}
int sum=x[0];
for(int i=1;i!=n;++i){
int sum2=sum+x[i];
if(sum*sum2>=0){
ans+=abs(sum2)+1;
if(sum<0)
sum2=1;
else
sum2=-1;
}
sum=sum2;
}
cout<<ans;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using static System.Math;
using static AtCoderTemplate.MyExtensions;
using static AtCoderTemplate.MyInputOutputs;
using static AtCoderTemplate.MyNumericFunctions;
using static AtCoderTemplate.MyAlgorithm;
namespace AtCoderTemplate {
public class Program {
public static void Main (string[] args) {
var n = ReadInt ();
var a = ReadLongs ();
// evenが+
var evenCount = 0L; {
var sum0 = a[0] > 0 ? a[0] : 1;
var count = a[0] > 0 ? 0 : Abs (a[0]);
foreach (var i in Enumerable.Range (1, n - 1)) {
var sum1 = sum0 + a[i];
if (IsEven (i) && sum1 < 0) {
count += Abs (sum1) + 1;
sum0 = 1;
} else if (IsOdd (i) && sum1 > 0) {
count += Abs (sum1) + 1;
sum0 = -1;
} else {
sum0 = sum1;
}
}
if (sum0 == 0) count += 1;
evenCount = count;
}
var oddCount = 0L; {
var sum0 = a[0] < 0 ? a[0] : -1;
var count = a[0] < 0 ? 0 : Abs (a[0]);
foreach (var i in Enumerable.Range (1, n - 1)) {
var sum1 = sum0 + a[i];
if (IsOdd (i) && sum1 < 0) {
count += Abs (sum1) + 1;
sum0 = 1;
} else if (IsEven (i) && sum1 > 0) {
count += Abs (sum1) + 1;
sum0 = -1;
} else {
sum0 = sum1;
}
}
if (sum0 == 0) count += 1;
oddCount = count;
}
Print (Min (evenCount, oddCount));
}
}
public static class MyInputOutputs {
/* Input & Output*/
public static int ReadInt () {
return int.Parse (Console.ReadLine ());
}
public static long ReadLong () {
return long.Parse (Console.ReadLine ());
}
public static List<int> ReadInts () {
return Console.ReadLine ().Split (' ').Select (c => int.Parse (c)).ToList ();
}
public static List<long> ReadLongs () {
return Console.ReadLine ().Split (' ').Select (c => long.Parse (c)).ToList ();
}
public static List<List<int>> ReadIntColumns (int n) {
/*
入力例
A1 B1
A2 B2
...
An Bn
出力例
[[A1,A2,...,An], [B1,B2,...,Bn]]
*/
var rows = Enumerable.Range (0, n).Select (i => ReadInts ()).ToList ();
var m = rows.FirstOrDefault ()?.Count () ?? 0;
return Enumerable.Range (0, m).Select (i => rows.Select (items => items[i]).ToList ()).ToList ();
}
public static List<List<long>> ReadLongColumns (int n) {
/*
入力例
A1 B1
A2 B2
...
An Bn
出力例
[[A1,A2,...,An], [B1,B2,...,Bn]]
*/
var rows = Enumerable.Range (0, n).Select (i => ReadLongs ()).ToList ();
var m = rows.FirstOrDefault ()?.Count () ?? 0;
return Enumerable.Range (0, m).Select (i => rows.Select (items => items[i]).ToList ()).ToList ();
}
public static void Print<T> (T item) {
Console.WriteLine (item);
}
public static void PrintIf<T1, T2> (bool condition, T1 trueResult, T2 falseResult) {
if (condition) {
Console.WriteLine (trueResult);
} else {
Console.WriteLine (falseResult);
}
}
public static void PrintRow<T> (IEnumerable<T> list) {
/* 横ベクトルで表示
A B C D ...
*/
if (!list.IsEmpty ()) {
Console.Write (list.First ());
foreach (var item in list.Skip (1)) {
Console.Write ($" {item}");
}
}
Console.Write ("\n");
}
public static void PrintColomn<T> (IEnumerable<T> list) {
/* 縦ベクトルで表示
A
B
C
D
...
*/
foreach (var item in list) {
Console.WriteLine (item);
}
}
public static void Print2DArray<T> (IEnumerable<IEnumerable<T>> sources) {
foreach (var row in sources) {
PrintRow (row);
}
}
}
public static class MyNumericFunctions {
public static bool IsEven (int a) {
return a % 2 == 0;
}
public static bool IsEven (long a) {
return a % 2 == 0;
}
public static bool IsOdd (int a) {
return !IsEven (a);
}
public static bool IsOdd (long a) {
return !IsEven (a);
}
/// <summary>
/// 順列の総数を得る
/// O(N-K)
/// </summary>
/// <param name="n">全体の数</param>
/// <param name="k">並べる数</param>
/// <param name="divisor">返り値がlongを超えないようにdivisorで割った余りを得る</param>
/// <returns>nPk (をdivisorで割った余り)</returns>
public static long nPk (int n, int k, long divisor) {
if (k > n) {
return 0L;
} else {
return Enumerable.Range (n - k + 1, k).Aggregate (1L, ((i, m) => (i * m) % divisor));
}
}
public static long nPk (int n, int k) {
if (k > n) {
return 0L;
} else {
return Enumerable.Range (n - k + 1, k).Aggregate (1L, ((i, m) => (i * m)));
}
}
/// <summary>
/// 階乗を得る
/// O(N)
/// </summary>
/// <param name="n"></param>
/// <param name="divisor">返り値がlongを超えないようにdivisorで割った余りを得る</param>
/// <returns>n! (をdivisorで割った余り)</returns>
public static long Fact (int n, long divisor) {
return nPk (n, n, divisor);
}
public static long Fact (int n) {
return nPk (n, n);
}
/// <summary>
/// 組み合わせの総数を得る
/// </summary>
/// <param name="n"></param>
/// <param name="k"></param>
/// <returns>nCk</returns>
public static long nCk (int n, int k) {
if (k > n) {
return 0L;
} else {
return nPk (n, k) / Fact (k);
}
}
/// <summary>
/// 最大公約数を得る
/// O(log N)
/// </summary>
/// <param name="m">自然数</param>
/// <param name="n">自然数</param>
/// <returns></returns>
public static long GCD (long m, long n) {
// GCD(m,n) = GCD(n, m%n)を利用
// m%n = 0のとき、mはnで割り切れるので、nが最大公約数
if (m <= 0L || n <= 0L) throw new ArgumentOutOfRangeException ();
if (m < n) return GCD (n, m);
while (m % n != 0L) {
var n2 = m % n;
m = n;
n = n2;
}
return n;
}
/// <summary>
/// 最小公倍数を得る
/// O(log N)
/// </summary>
/// <param name="m"></param>
/// <param name="n"></param>
/// <returns></returns>
public static long LCM (long m, long n) {
var ans = checked ((long) (BigInteger.Multiply (m, n) / GCD (m, n)));
return ans;
}
/// <summary>
/// 約数列挙(非順序)
/// O(√N)
/// </summary>
/// <param name="m">m > 0</param>
/// <returns></returns>
public static IEnumerable<long> Divisor (long m) {
if (m == 0) throw new ArgumentOutOfRangeException ();
var front = Enumerable.Range (1, (int) Sqrt (m))
.Select (i => (long) i)
.Where (d => m % d == 0);
return front.Concat (front.Where (x => x * x != m).Select (x => m / x));
}
/// <summary>
/// 公約数列挙(非順序)
/// O(√N)
/// </summary>
/// <param name="m">m > 0</param>
/// <param name="n">n > 0</param>
/// <returns></returns>
public static IEnumerable<long> CommonDivisor (long m, long n) {
if (m < n) return CommonDivisor (n, m);
return Divisor (m).Where (md => n % md == 0);
}
}
public static class MyAlgorithm {
/// <summary>
/// 二分探索法
/// O(log N)
/// </summary>
/// <param name="list">探索するリスト</param>
/// <param name="predicate">条件の述語関数</param>
/// <param name="ng">条件を満たさない既知のindex</param>
/// <param name="ok">条件を満たす既知のindex</param>
/// <typeparam name="T">順序関係を持つ型(IComparableを実装する)</typeparam>
/// <returns>条件を満たすindexの内、境界に最も近いものを返す</returns>
public static int BinarySearch<T> (IList<T> list, Func<T, bool> predicate, int ng, int ok)
where T : IComparable<T> {
while (Abs (ok - ng) > 1) {
int mid = (ok + ng) / 2;
if (predicate (list[mid])) {
ok = mid;
} else {
ng = mid;
}
}
return ok;
}
/// <summary>
/// 辺の集まりを操作するオブジェクト
/// </summary>
public class Edge {
long[, ] edge;
public int NodeNum { get; }
public Edge (int nodeNum, long overDistance) {
var edge = new long[nodeNum, nodeNum];
foreach (var i in Enumerable.Range (0, nodeNum)) {
foreach (var j in Enumerable.Range (0, nodeNum)) {
if (i != j) {
edge[i, j] = overDistance;
} else {
edge[i, j] = 0;
}
}
}
this.edge = edge;
this.NodeNum = nodeNum;
}
public Edge (Edge edge) {
this.edge = new long[edge.NodeNum, edge.NodeNum];
foreach (var i in Enumerable.Range (0, edge.NodeNum)) {
foreach (var j in Enumerable.Range (0, edge.NodeNum)) {
this.edge[i, j] = edge.GetLength (i, j);
}
}
this.NodeNum = edge.NodeNum;
}
public List<List<long>> ToList () {
return Enumerable.Range (0, NodeNum).Select (i =>
Enumerable.Range (0, NodeNum).Select (j =>
edge[i, j]
).ToList ()
).ToList ();
}
public void Add (int node1, int node2, long distance) {
edge[node1, node2] = distance;
}
public long GetLength (int node1, int node2) {
return edge[node1, node2];
}
}
/// <summary>
/// ワーシャルフロイド法
/// O(N^3)
/// </summary>
/// <param name="edge">Edgeオブジェクト</param>
/// <param name="nodeNum">ノードの数</param>
/// <returns>各ノード間の最短距離を辺として持つEdgeオブジェクト</returns>
public static Edge WarshallFloyd (Edge edge) {
var res = new Edge (edge);
foreach (var b in Enumerable.Range (0, edge.NodeNum)) {
foreach (var a in Enumerable.Range (0, edge.NodeNum)) {
foreach (var c in Enumerable.Range (0, edge.NodeNum)) {
res.Add (a, c, Min (res.GetLength (a, c), res.GetLength (a, b) + res.GetLength (b, c)));
}
}
}
return res;
}
}
public static class MyExtensions {
// AppendとPrependが、.NET Standard 1.6からの追加で、Mono 4.6.2 はそれに対応して仕様はあるが、実装がない
public static IEnumerable<T> Append<T> (this IEnumerable<T> source, T element) {
return source.Concat (Enumerable.Repeat (element, 1));
}
public static IEnumerable<T> Prepend<T> (this IEnumerable<T> source, T element) {
return Enumerable.Repeat (element, 1).Concat (source);
}
// TakeLastとSkipLastが、.Net Standard 2.1からの追加で、Mono 4.6.2 はそれに対応していない
public static IEnumerable<T> TakeLast<T> (this IEnumerable<T> source, int count) {
return source.Skip (source.Count () - count);
}
public static IEnumerable<T> SkipLast<T> (this IEnumerable<T> source, int count) {
return source.Take (source.Count () - count);
}
public static bool IsEmpty<T> (this IEnumerable<T> source) {
return !source.Any ();
}
/// <summary>
/// インデックスiの位置の要素からk個取り除く
/// O(N)
/// </summary>
public static IEnumerable<T> TakeAwayRange<T> (this IEnumerable<T> source, int i, int count) {
return source.Take (i).Concat (source.Skip (i + count));
}
/// <summary>
/// インデックスiの位置の要素を取り除く
/// O(N)
/// </summary>
public static IEnumerable<T> TakeAwayAt<T> (this IEnumerable<T> source, int i) {
return source.TakeAwayRange (i, 1);
}
/// <summary>
/// インデックスiの位置にシーケンスを挿入する
/// O(N + K)
/// </summary>
public static IEnumerable<T> InsertEnumAt<T> (this IEnumerable<T> source, int i, IEnumerable<T> inserted) {
return source.Take (i).Concat (inserted).Concat (source.Skip (i));
}
/// <summary>
/// 順列を得る
/// O(N!)
/// </summary>
public static IEnumerable<IEnumerable<T>> Perm<T> (this IEnumerable<T> source, int n) {
if (n == 0 || source.IsEmpty () || source.Count () < n) {
return Enumerable.Empty<IEnumerable<T>> ();
} else if (n == 1) {
return source.Select (i => new List<T> { i });
} else {
var nexts = source.Select ((x, i) =>
new { next = source.Take (i).Concat (source.Skip (i + 1)), selected = source.Take (i + 1).Last () });
return nexts.SelectMany (next => Perm (next.next, n - 1).Select (item => item.Prepend (next.selected)));
}
}
/// <summary>
/// シーケンスの隣り合う要素を2引数の関数に適用したシーケンスを得る
/// </summary>
/// <para>O(N)</para>
/// <param name="source">元のシーケンス</param>
/// <param name="func">2引数関数</param>
/// <example>[1,2,3,4].MapAdjacent(f) => [f(1,2), f(2,3), f(3,4)]</example>
public static IEnumerable<TR> MapAdjacent<T1, TR> (this IEnumerable<T1> source, Func<T1, T1, TR> func) {
var list = source.ToList ();
return Enumerable.Range (1, list.Count - 1)
.Select (i => func (list[i - 1], list[i]));
}
/// <summary>
/// 累積項を要素にもつシーケンスを得る(初項は、first)
/// <para>O(N)</para>
/// </summary>
/// <param name="source">元のシーケンス</param>
/// <param name="func">2引数関数f</param>
/// <param name="first">func(first, source[0])のための初項</param>
/// <example> [1,2,3].Scanl1(f,0) => [0, f(0,1), f(f(0,1),2), f(f(f(0,1),2),3)]</example>
public static IEnumerable<TR> Scanl<T, TR> (this IEnumerable<T> source, TR first, Func<TR, T, TR> func) {
var list = source.ToList ();
var result = new List<TR> { first };
foreach (var i in Enumerable.Range (0, source.Count ())) {
result.Add (func (result[i], list[i]));
}
return result;
}
/// <summary>
/// 累積項を要素にもつシーケンスを得る(初項は、source.First())
/// <para>O(N)</para>
/// </summary>
/// <param name="source">元のシーケンス</param>
/// <param name="func">2引数関数f</param>
/// <example> [1,2,3].Scanl1(f) => [1, f(1,2), f(f(1,2),3)]</example>
public static IEnumerable<T> Scanl1<T> (this IEnumerable<T> source, Func<T, T, T> func) {
var list = source.ToList ();
var result = new List<T> { list[0] };
foreach (var i in Enumerable.Range (1, source.Count () - 1)) {
result.Add (func (result[i - 1], list[i]));
}
return result;
}
/// <summary>
/// 昇順にソートしたインデックスを得る
/// </summary>
/// <para>O(N * log N)</para>
public static IEnumerable<int> SortIndex<T> (this IEnumerable<T> source) {
return source
.Select ((item, i) => new { Item = item, Index = i })
.OrderBy (x => x.Item)
.Select (x => x.Index);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
original_A = [int(x) for x in input().split()]
ans = []
for k in range(2):
A = original_A.copy()
count = 0
if k%2:
if A[0] >= 0:
A[0] = -1
count += (abs(A[0]) +1)
else:
if A[0] < 0:
A[0] = 1
count += (abs(A[0]) +1)
sum_before = A[0]
#print('***', k, A, '***')
for i in range(n):
if i == 0:
continue
sum_for_i = sum_before + A[i]
#print('[',i,']: before',sum_before,'after',sum_for_i, 'before', A)
if sum_for_i == 0 and sum_before > 0:
#print("case 1")
A[i] -= 1
count += 1
elif sum_for_i == 0 and sum_before <0:
#print("case 2")
A[i] += 1
count += 1
elif sum_before >0 and sum_for_i>0:
#print("case 3")
count += (abs(sum_for_i)+1)
A[i] -= (abs(sum_for_i)+1)
elif sum_before <0 and sum_for_i<0:
#print("case 4")
count += (abs(sum_for_i)+1)
A[i] += (abs(sum_for_i)+1)
#print('[',i,']: ','modified', A, 'count', count)
sum_before += A[i]
ans.append(count)
print(min(ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vb = vector<bool>;
using vvb = vector<vb>;
using mii = map<int, int>;
using pqls = priority_queue<long long>;
using pqlg = priority_queue<long long, vector<long long>, greater<long long>>;
using mll = map<long long, long long>;
using pll = pair<long long, long long>;
using sll = set<long long>;
long long divup(long long a, long long b);
long long kaijou(long long i);
long long P(long long n, long long k);
long long C(long long n, long long k);
long long GCD(long long a, long long b);
long long LCM(long long a, long long b);
bool prime(long long N);
double distance(vector<long long> p, vector<long long> q, long long n);
void press(vector<long long> &v);
void ranking(vector<long long> &v);
void erase(vector<long long> &v, long long i);
void unique(vector<long long> &v);
void printv(vector<long long> v);
vector<ll> keta(ll x);
long long modpow(long long a, long long n, long long mod);
long long modinv(long long a, long long mod);
vector<long long> inputv(long long n);
vector<long long> yakusuu(int n);
map<long long, long long> soinsuu(long long n);
vector<vector<long long>> maze(long long i, long long j, vector<string> &s);
vector<long long> eratos(long long n);
set<long long> eraset(long long n);
long long divup(long long a, long long b) {
long long x = abs(a);
long long y = abs(b);
long long z = (x + y - 1) / y;
if ((a < 0 && b > 0) || (a > 0 && b < 0))
return -z;
else if (a == 0)
return 0;
else
return z;
}
long long kaijou(long long i) {
if (i == 0) return 1;
long long j = 1;
for (long long k = 1; k <= i; k++) {
j *= k;
}
return j;
}
long long P(long long n, long long k) {
if (n < k) return 0;
long long y = 1;
for (long long i = 0; i < k; i++) {
y *= (n - i);
}
return y;
}
long long C(long long n, long long k) {
if (n < k) return 0;
return P(n, k) / kaijou(k);
}
long long GCD(long long a, long long b) {
if (a < b) swap(a, b);
long long d = a % b;
if (d == 0) {
return b;
}
return GCD(b, d);
}
long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; }
bool prime(long long N) {
if (N == 1) {
return false;
}
if (N < 0) return false;
long long p = sqrt(N);
for (long long i = 2; i <= p; i++) {
if (N % i == 0) {
return false;
}
}
return true;
}
double distance(vector<long long> p, vector<long long> q, long long n) {
double x = 0;
for (long long i = 0; i < n; i++) {
x += pow((p.at(i) - q.at(i)), 2);
}
return sqrt(x);
}
void press(vector<long long> &v) {
long long n = v.size();
vector<long long> w(n);
map<long long, long long> m;
for (auto &p : v) {
m[p] = 0;
}
long long i = 0;
for (auto &p : m) {
p.second = i;
i++;
}
for (long long i = 0; i < n; i++) {
w.at(i) = m[v.at(i)];
}
v = w;
return;
}
void ranking(vector<long long> &v) {
long long n = v.size();
map<long long, long long> m;
long long i;
for (i = 0; i < n; i++) {
m[v.at(i)] = i;
}
vector<long long> w(n);
i = 0;
for (auto &p : m) {
v.at(i) = p.second;
i++;
}
return;
}
void erase(vector<long long> &v, long long i) {
long long n = v.size();
if (i > n - 1) return;
for (long long j = i; j < n - 1; j++) {
v.at(j) = v.at(j + 1);
}
v.pop_back();
return;
}
void unique(vector<long long> &v) {
long long n = v.size();
set<long long> s;
long long i = 0;
while (i < n) {
if (s.count(v.at(i))) {
erase(v, i);
n--;
} else {
s.insert(v.at(i));
i++;
}
}
return;
}
void printv(vector<long long> v) {
cout << "{ ";
for (auto &p : v) {
cout << p << ",";
}
cout << "}" << endl;
}
vector<ll> keta(ll x) {
if (x == 0) return {0};
ll n = log10(x) + 1;
vll w(n, 0);
for (ll i = 0; i < n; i++) {
ll p;
p = x % 10;
x = x / 10;
w[n - 1 - i] = p;
}
return w;
}
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); }
vector<long long> inputv(long long n) {
vector<long long> v(n);
for (long long i = 0; i < n; i++) {
cin >> v[i];
}
return v;
}
vector<long long> yakusuu(long long n) {
vector<long long> ret;
for (long long i = 1; i <= sqrt(n); ++i) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) {
ret.push_back(n / i);
}
}
}
sort(ret.begin(), ret.end());
return ret;
}
map<long long, long long> soinsuu(long long n) {
map<long long, long long> m;
long long p = sqrt(n);
while (n % 2 == 0) {
n /= 2;
if (m.count(2)) {
m[2]++;
} else {
m[2] = 1;
}
}
for (long long i = 3; i * i <= n; i += 2) {
while (n % i == 0) {
n /= i;
if (m.count(i)) {
m[i]++;
} else {
m[i] = 1;
}
}
}
if (n != 1) m[n] = 1;
return m;
}
vector<vector<long long>> maze(ll i, ll j, vector<string> &s) {
ll h = s.size();
ll w = s[0].size();
queue<vector<long long>> q;
vector<vector<long long>> dis(h, vll(w, -1));
q.push({i, j});
dis[i][j] = 0;
while (!q.empty()) {
auto v = q.front();
q.pop();
if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) {
dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] - 1, v[1]});
}
if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) {
dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] - 1});
}
if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) {
dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] + 1, v[1]});
}
if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) {
dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] + 1});
}
}
return dis;
}
long long modC(long long n, long long k, long long mod) {
if (n < k) return 0;
long long p = 1, q = 1;
for (long long i = 0; i < k; i++) {
p = p * (n - i) % mod;
q = q * (i + 1) % mod;
}
return p * modinv(q, mod) % mod;
}
long long POW(long long a, long long n) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a;
a = a * a;
n >>= 1;
}
return res;
}
vector<long long> eratos(long long n) {
if (n < 2) return {};
vll v(n - 1);
for (long long i = 0; i < n - 1; i++) {
v[i] = i + 2;
}
ll i = 0;
while (i < n - 1) {
ll p = v[i];
for (ll j = i + 1; j < n - 1; j++) {
if (v[j] % p == 0) {
v.erase(v.begin() + j);
n--;
}
}
i++;
}
v.resize(n - 1);
return v;
}
set<long long> eraset(long long n) {
set<long long> s;
vll v = eratos(n);
for (auto &t : v) {
s.insert(t);
}
return s;
}
vll line(ll x1, ll y1, ll x2, ll y2) {
vector<ll> v(3);
v[0] = y1 - y2;
v[1] = x2 - x1;
v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2);
return v;
}
double dis(vll v, ll x, ll y) {
double s = sqrt(v[0] * v[0] + v[1] * v[1]);
return (double)abs(v[0] * x + v[1] * y + v[2]) / s;
}
ll const mod = 1e9 + 7;
int main() {
ll n;
cin >> n;
auto a = inputv(n);
ll l = 0;
ll res = 0;
for (long long i = 0; i < n; i++) {
if (l == 0) {
for (long long j = 0; j < n; j++) {
if (a[j] != 0) {
a[0] = a[j] / abs(a[j]);
if (j & 1 && j != 0) a[0] *= (-1);
break;
}
}
if (!a[0]) a[0] = 1;
res++;
l += a[0];
} else if (l < 0) {
if (a[i] < -l + 1) {
res += -l + 1 - a[i];
a[i] = -l + 1;
l = 1;
} else {
l += a[i];
}
} else if (l > 0) {
if (a[i] > -l - 1) {
res += abs(a[i] - (-l - 1));
a[i] = -l - 1;
l = -1;
} else {
l += a[i];
}
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import System.IO
import Control.Monad
import Data.List
main = do
n <- getLine
as <- fmap read . words <<= getLine
putStrLn . show . head . [xs | xs <- iterate mani as, jouken n xs]
mani [] = []
mani [a] = [a-1, a+1]
mani (a:as) = [(a-1) : x | x <- mani as] ++ [(a+1) : x | x <- mani as]
subsum xs j = sum . take j $ xs
jouken n xs = length [i | i <- [1 .. n-1], (subsum xs i) * (subsum xs (i+1)) >= 0] == 0 |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
n = int(input())
a = [int(n) for n in input().split()]
sum = [0]*n
sum[0] = a[0]
ans = 0
for i in range(1,n):
sum[i] = sum[i-1]
while((sum[i]+a[i])*sum[i-1] >= 0):
if(sum[i-1] > 0):
ans+=sum[i-1] + a[i]+1
a[i]-=sum[i-1] + a[i]+1
else:
ans+=1 - sum[i-1] - a[i]
a[i]+=1 - sum[i-1] - a[i]
print(a)
sum[i] += a[i]
print(ans)
# print(a)
# print(sum)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
d1 = [0] * (n + 1)
d2 = [0] * (n + 1)
ans1 = 0
ans2 = 0
for i in range(n):
d1[i+1] += d1[i] + a[i]
d2[i+1] += d2[i] + a[i]
# - + - + - の順番
for i in range(n):
d1[i+1] = d1[i] + a[i]
if(i % 2 == 0 and d1[i+1] >= 0):
ans1 += abs(d1[i+1])+1
d1[i + 1] = -1
if(i % 2 == 1 and d1[i+1] <= 0):
ans1 += abs(d1[i+1])+1
d1[i + 1] = 1
#print(d1, ans1)
#print(ans1)
#print()
# + - + - + の順番
for i in range(n):
d2[i+1] = d2[i] + a[i]
if(i % 2 == 1 and d2[i+1] >= 0):
ans2 += abs(d1[i + 1]) + 1
d2[i+1] = -1
if(i % 2 == 0 and d2[i+1] <= 0):
ans2 += abs(d2[i + 1]) + 1
d2[i+1] = 1
#print(d2, ans2)
#print(ans2)
#print()
ans = min(ans1, ans2)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int DX[] = {1, 1, 0, -1, -1, -1, 0, 1};
int DY[] = {0, -1, -1, -1, 0, 1, 1, 1};
int n;
ll a[100010];
ll hoge() {
ll ans = 0;
ll temp = 0;
for (int(i) = 0; (i) < (n); (i)++) {
if (temp > 0 && temp + a[i] > 0) {
ans += abs(-1 - temp - a[i]);
temp = -1;
} else if (temp < 0 && temp + a[i] < 0) {
ans += abs(1 - temp - a[i]);
temp = 1;
} else if (temp + a[i] == 0) {
if (temp > 0) {
temp = -1;
} else {
temp = 1;
}
ans += 1;
} else {
temp += a[i];
}
}
return ans;
}
void solve() {
cin >> n;
for (int(i) = 0; (i) < (n); (i)++) cin >> a[i];
ll ans1 = hoge();
ll temp = 0;
if (a[0] > 0) {
temp += (a[0] * (-1) - 1);
a[0] = -1;
} else if (a[0] < 0) {
temp = (a[0] * (-1) + 1);
a[0] = 1;
} else {
temp = 1;
a[0] = -1;
}
ll ans2 = hoge() + temp;
cout << min(ans1, ans2) << endl;
}
int main() {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
res = 0
sum = 0
for i in range(n - 1):
sum += a[i]
if sum * (sum+a[i+1]) >= 0:
if sum > 0:
temp = -1 - sum-a[i+1]
a[i+1] += temp
res += abs(temp)
else:
temp = 1 - sum-a[i+1]
a[i+1] += temp
res += temp
print(res) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
def read_input():
n = int(input())
alist = list(map(int, input().split()))
return n, alist
def get_sign(x):
if x > 0:
return 1
elif x < 0:
return -1
return 0
def submit():
n, alist = read_input()
s = alist[0]
sign = get_sign(s)
edit = 0
for a in alist[1:]:
temp = s + a
temp_sign = get_sign(temp)
if sign == temp_sign:
edit += temp_sign * temp
temp -= temp_sign * temp
if temp == 0:
edit += 1
temp -= sign
s = temp
sign = get_sign(s)
print(edit)
if __name__ == '__main__':
submit() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ttl = a[0]
cst = 0
if a[0]>0:
flg = 1
elif a[0] == 0:
for i in range(1,n):
if a[i]==0:
continue
elif a[i]>0:
cst += 1
ttl -= 1
flg = -1
break
elif a[i]<0:
cst += 1
ttl += 1
flg = 1
break
else:
flg = -1
for i in range(1,n):
ttl += a[i]
if ttl*flg < 0:
flg *= -1
else:
if flg > 0:
memo = abs(ttl)+abs(-1)
ttl -= memo
cst += memo
elif flg < 0:
memo = abs(ttl)+abs(-1)
ttl += memo
cst += memo
flg *= -1
print(cst)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<int, int>;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
int sum = 0;
int sign = 1;
int ans_p = 0;
for (int i = 0; i < (n); ++i) {
sum += a[i];
if ((sign > 0) && (sum <= 0)) {
ans_p += (1 - sum);
sum = 1;
} else if ((sign < 0) && (sum >= 0)) {
ans_p += abs(-1 - sum);
sum = -1;
}
sign = sign == 1 ? -1 : 1;
}
sum = 0;
sign = -1;
int ans_n = 0;
for (int i = 0; i < (n); ++i) {
sum += a[i];
if ((sign > 0) && (sum <= 0)) {
ans_n += (1 - sum);
sum = 1;
} else if ((sign < 0) && (sum >= 0)) {
ans_n += abs(-1 - sum);
sum = -1;
}
sign = sign == 1 ? -1 : 1;
}
if (ans_p > ans_n) {
cout << ans_n << endl;
} else {
cout << ans_p << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
ans = 0
prev_sm = A[0] # total to i - 1
for i in range(1, N):
# if prev_sum is plus and a is more minus than prev_sum.
if prev_sm > 0 and prev_sm + A[i] < 0:
prev_sm += A[i]
continue
# if prev_sum is plus and a is larger than or equal to prev_sum.
elif prev_sm > 0 and prev_sm + A[i] >= 0:
ans += prev_sm + A[i] + 1
A[i] -= prev_sm + A[i] + 1
prev_sm += A[i]
# if prev_sum is minus and a is more plus than prev_sum.
elif prev_sm < 0 and prev_sm + A[i] > 0:
prev_sm += A[i]
continue
# if prev_sum is minus and a is more smaller than or equal to prev_sum.
elif prev_sm < 0 and prev_sm + A[i] <= 0:
ans += -(prev_sm + A[i] - 1)
A[i] += -(prev_sm + A[i] + 1)
prev_sm += A[i]
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void answer1() {
cin.tie(0);
ios_base::sync_with_stdio(false);
int n;
cin >> n;
vector<int> a(n);
for (int& a_i : a) {
cin >> a_i;
}
int count = 0;
int sum = 0;
int count2 = 0;
int sum2 = 0;
bool is_positive = a.at(0) > 0;
for (int i = 0; i < a.size(); i++) {
sum += a.at(i);
if (is_positive) {
if (sum <= 0) {
int diff = 1 - sum;
count += diff;
sum += diff;
}
if (sum2 >= 0) {
int diff = 1 + sum2;
count2 += diff;
sum2 -= diff;
}
} else {
if (sum >= 0) {
int diff = 1 + sum;
count += diff;
sum -= diff;
}
if (sum2 <= 0) {
int diff = 1 - sum2;
count2 += diff;
sum2 += diff;
}
}
is_positive = !is_positive;
}
cout << min(count, count2) << endl;
}
int main() { answer1(); }
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
n, *a = map(int, sys.stdin.read().split())
def main():
c1 = c2 = s1 = s2 = 0
for i in range(n):
s1 += a[i]
s2 += a[i]
if i & 1:
if s1 >= 0:
c1 += s1 + 1
s1 = -1
if s2 <= 0:
c2 += 1 - s2
s2 = 1
else:
if s1 <= 0:
c1 += 1 - s2
s1 = 1
if s2 >= 0:
c2 += s2 + 1
s2 = -1
print(min(c1, c2))
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, a[100000];
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
int preans, ans = 0, sum = 0;
for (int i = 0, j = 0; j < 2; i++) {
int presum = sum, cnt = 0;
sum += a[i];
if (presum < 0) {
if (sum <= 0) {
while (sum <= 0) {
sum++;
cnt++;
}
}
} else if (presum > 0) {
if (sum >= 0) {
while (sum >= 0) {
sum--;
cnt++;
}
}
} else
continue;
ans += cnt;
if (i == n - 1) {
if (!j)
preans = ans;
else
ans = min(preans, ans);
j++;
i = 0;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long wa = a[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
if (wa > 0) {
wa += a[i];
if (wa > 0) {
ans += wa + 1;
wa -= (wa + 1);
} else if (wa == 0) {
ans++;
wa--;
}
} else if (wa < 0) {
wa += a[i];
if (wa < 0) {
ans += -wa + 1;
wa += -wa + 1;
} else if (wa == 0) {
ans++;
wa++;
}
} else {
if (a[i] > 0)
wa--;
else
wa++;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int sumi = 0;
int sumi1 = 0;
int countPlus = 0;
int countMinus = 0;
int[] a = new int[n];
for(int i = 0; i < n; i++) {
a[i] = scan.nextInt();
}
// 奇数がプラス
for(int i = 0; i < n; i++) {
sumi1 = sumi + a[i];
if((i + 1) % 2 == 1) {
if(sumi1 <= 0) {
countPlus += Math.abs(sumi1) + 1;
sumi1 += Math.abs(sumi1) + 1;
}
} else if((i + 1) % 2 == 0) {
if(sumi1 >= 0) {
countPlus += Math.abs(sumi1) + 1;
sumi1 -= Math.abs(sumi1) + 1;
}
}
sumi = sumi1;
}
sumi = 0;
sumi1 = 0;
// 奇数がマイナス
for(int i = 0; i < n; i++) {
sumi1 = sumi + a[i];
if((i + 1) % 2 == 1) {
if(sumi1 >= 0) {
countMinus += Math.abs(sumi1) + 1;
sumi1 -= Math.abs(sumi1) + 1;
}
} else if((i + 1) % 2 == 0) {
if(sumi1 <= 0) {
countMinus += Math.abs(sumi1) + 1;
sumi1 += Math.abs(sumi1) + 1;
}
}
sumi = sumi1;
}
if(countPlus < countMinus) {
System.out.println(countPlus);
} else {
System.out.println(countMinus);
}
scan.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
const int mod = 1000000007;
const int INF = 1000000000;
const long long LINF = 1e18;
const int MAX = 510000;
int code(long long int n) {
if (n < 0)
return 1;
else if (n > 0)
return 0;
else
return 2;
}
int main() {
int n;
long long int sum = 0;
long long int ans = 0;
long long int ans2 = 0;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = a.at(0);
if (sum != 0) {
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << ans << endl;
return 0;
} else if (sum == 0) {
sum = -1;
ans = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
sum = 1;
ans2 = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans2++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans2 += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << min(ans, ans2) << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int N;
cin >> N;
vector<ll> a(N);
for (int i = 0; i < N; i++) cin >> a.at(i);
ll sumO = a.at(0), sumE = a.at(0), countO = 0, countE = 0;
for (int i = 1; i < N; i++) {
ll O = a.at(i), E = a.at(i);
if (i % 2 == 0) {
if (sumE + E <= 0) {
countE += abs(1 - (sumE + E));
E = 1 - sumE;
}
if (sumO + O >= 0) {
countO += abs(-1 - (sumO + O));
O = -1 - sumO;
}
} else {
if (sumO + O <= 0) {
countO += abs(1 - (sumO + O));
O = 1 - sumO;
}
if (sumE + E >= 0) {
countE += abs(-1 - (sumE + E));
E = -1 - sumE;
}
}
sumE += E;
sumO += O;
}
cout << min(countE, countO) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
string divide[4] = {"dream", "dreamer", "erase", "eraser"};
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
int sum = 0;
int plus = 0;
for (int i = 0; i < n; ++i) {
if (i % 2 == 0) {
if (sum + a[i] <= 1) {
plus += 1 - (sum + a[i]);
sum = 1;
} else
sum += a[i];
} else {
if (sum + a[i] >= -1) {
plus += 1 + (sum + a[i]);
sum = -1;
} else
sum += a[i];
}
}
int minus = 0;
for (int i = 0; i < n; ++i) {
if (i % 2 == 1) {
if (sum + a[i] <= 1) {
minus += 1 - (sum + a[i]);
sum = 1;
} else
sum += a[i];
} else {
if (sum + a[i] >= -1) {
minus += 1 + (sum + a[i]);
sum = -1;
} else
sum += a[i];
}
}
cout << min(plus, minus) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(int x) {
if (x > 0)
return 1;
else if (x < 0)
return 0;
else
return -1;
}
int f(int t, int pre, int s) {
if (s == 0)
return abs(-1 - pre - t);
else
return abs((1 - t) - pre);
}
int main() {
int n, a[100005];
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
int ans1 = 0, ans2 = 0;
int s = 1, x = 0, tmp;
for (int i = 1; i <= n; i++, s ^= 1) {
tmp = x;
x += a[i];
if (sign(x) != s) ans1 += f(tmp, a[i], s);
if (not s)
x = min(-1, x);
else
x = max(1, x);
}
s = 0, x = 0;
for (int i = 1; i <= n; i++, s ^= 1) {
tmp = x;
x += a[i];
if (sign(x) != s) ans2 += f(tmp, a[i], s);
if (not s)
x = min(-1, x);
else
x = max(1, x);
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = [int(i) for i in input().split()]
sam = a[0]
old = sam
num = 0
for i in range(1, len(a)):
sam += a[i]
if sam >= 0 and old > 0:
num += (abs(sam) + 1)
sam -= (sam + 1)
elif sam <= 0 and old < 0:
num += (abs(sam) + 1)
sam -= (sam - 1)
old = sam
print(num)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
static std::uint64_t solve(const std::vector<int>& va, int initSum,
std::uint64_t initCnt = 0) {
int sum = initSum;
std::uint64_t cnt = initCnt;
for (std::remove_reference<decltype(va)>::type::size_type i = 1;
i < va.size(); i++) {
auto nextSum = sum + va[i];
if (nextSum >= 0 && sum >= 0) {
cnt += nextSum + 1;
sum = -1;
} else if (nextSum <= 0 && sum <= 0) {
cnt += -nextSum + 1;
sum = 1;
} else {
sum = nextSum;
}
}
return cnt;
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int n;
std::cin >> n;
std::vector<int> va(n);
for (auto&& e : va) {
std::cin >> e;
}
std::cout << std::min(solve(va, va[0]),
solve(va, va[0] > 0 ? -1 : 1, std::abs(va[0]) + 1))
<< std::endl;
return EXIT_SUCCESS;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
long long sumi = 0, val1 = 0;
int ne = 0;
if (a.at(0) == 0) {
while (a.at(ne) == 0) {
if (ne == 0)
val1++;
else
val1 += 2;
ne++;
if (ne == n) break;
}
}
long long val2 = val1;
for (int i = ne; i < n; i++) {
if (a.at(0) == 0 && sumi == 0) {
if (ne % 2 == 0)
sumi = -1;
else
sumi = 1;
}
if (i == 0) {
sumi = a.at(i);
continue;
}
if (i % 2 == 1) {
if (sumi + a.at(i) < 0)
sumi += a.at(i);
else {
val1 += (sumi + a.at(i) + 1);
sumi = -1;
}
} else {
if (sumi + a.at(i) > 0)
sumi += a.at(i);
else {
val1 += (abs(sumi + a.at(i)) + 1);
sumi = 1;
}
}
}
for (int i = ne; i < n; i++) {
if (a.at(0) == 0 && sumi == 0) {
if (ne % 2 == 0)
sumi = 1;
else
sumi = -1;
}
if (i == 0) {
sumi = a.at(i);
continue;
}
if (i % 2 == 1) {
if (sumi + a.at(i) > 0)
sumi += a.at(i);
else {
val2 += (abs(sumi + a.at(i)) + 1);
sumi = 1;
}
} else {
if (sumi + a.at(i) < 0)
sumi += a.at(i);
else {
val2 += (sumi + a.at(i) + 1);
sumi = -1;
}
}
}
cout << min(val1, val2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | object Main {
def main(args: Array[String]): Unit = {
import scala.io.StdIn.readLine
val _ = readLine
val datA = readLine.split(" ").map(_.toInt)
val work = datA.map(a => (a, 0)).foldLeft((0, 0)){ case ((sum, count),(a, _)) =>
if (sum > 0) {
if (sum + a >= 0) (-1, count + math.abs(sum + a) + 1)
else (sum + a, count)
}
else if (sum < 0) {
if (sum + a <= 0) (1, count + math.abs(sum + a) + 1)
else (sum + a, count)
} else {
(a, count)
}
}
val ans = work._2
println(ans)
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
c = 0
sum = a[0]
for i in range(1, n):
if not (np.sign(sum) != np.sign(sum + a[i]) and sum + a[i] != 0):
if sum > 0:
c += a[i] + sum + 1
sum = -1
else:
c += -a[i] - sum + 1
sum = 1
else:
sum += a[i]
print(c) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | if __name__ == '__main__':
N = input()
array = raw_input().split()
ans = 0
total = int(array[0])
totalZero = False
if total == 0:
totalZero = True
flag = False
if total >= 0:
flag = True
for a in array[1:]:
if totalZero == True:
ans += 1
if a > 0:
total = -1
else:
total = 1
totalZero = False
total += int(a)
if total > 0 and flag == True:
while True:
ans += 1
total -= 1
if total == -1:
flag = False
break
elif total < 0 and flag ==False:
while True:
ans += 1
total += 1
if total == 1:
flag == True
break
elif total == 0:
totalZero = True
if total > 0:
flag = True
elif total < 0:
flag = False
if totalZero == True:
ans += 1
print ans
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#include <boost/range/irange.hpp>
#include <boost/range/adaptors.hpp>
using namespace std;
using namespace boost;
using namespace boost::adaptors;
using uint = unsigned int;
using ll = long long int;
using ull = unsigned long long int;
int main() {
ll n;
cin >> n;
ll count{0}, s_now{0}, s_prev{0};
vector<ll> as(n, 0);
for (auto &&i: irange(0LL, n)){
cin >> as.at(i);
}
bool flag{false};
bool direction;
for (auto &&i: irange(0LL, n)){
if (as.at(i)!=0){
direction = (i%2 != 0);
flag = true;
break;
}
}
if (!flag)return as.size();
if (as.at(0)==0){
count++;
s_prev = direction ? 1 : -1;
}
for (auto &&i: irange(1LL, n)){
s_now += as.at(i);
// cout << " new s: " << s_now << endl;
if (s_prev * s_now >= 0){
// cout << "kakikae because: " << s_prev * s_now << endl;
ll target = s_prev < 0 ? 1 : -1;
// cout << "from: " << s_now << " to: " << target << endl;
count += abs(target - s_now);
// cout << "count: " << count << endl;
s_now = target;
}
s_prev = s_now;
// cout << "old s: " << s_prev;
}
cout << count;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt();
int sum = 0, ans = 0, ans2 = 0;
// 偶数位置までの和:正、奇数位置までの和:負
for(int i = 0 ; i < n ; i++) {
if(i % 2 == 0) {
if(sum + a[i] >= 0) {
ans += sum + a[i] + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if(sum + a[i] <= 0) {
ans += 1 - (sum + a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
sum = 0;
// 偶数位置までの和:正、奇数位置までの和:負
for(int i = 0 ; i < n ; i++) {
if(i % 2 == 1) {
if(sum + a[i] >= 0) {
ans2 += sum + a[i] + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if(sum + a[i] <= 0) {
ans2 += 1 - (sum + a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
System.out.println(ans2);
System.out.println(Math.min(ans, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | program ec12;
var
a,s:array[0..100000] of longint;
n,m,i,j,ans,sum1,sum2,ans1:longint;
begin
readln(n);
ans:=0;
ans1:=0;
s[0]:=0;
for i:=1 to n do
read(a[i]);
if a[1]>0 then
begin
sum1:=a[1];
ans:=0;
ans1:=a[1]+1;
sum2:=-1;
end
else
begin
if a[1]=0 then
begin
sum1:=1;
sum2:=-1;
ans:=1;
ans1:=1;
end
else
begin
ans:=(-a[1])+1;
sum1:=1;
ans1:=0;
end;
end;
for i:=2 to n do
begin
if sum1>0 then
begin
if sum1+a[i]>=0 then
begin
inc(ans,sum1+a[i]+1);
sum1:=-1;
end
else
sum1:=sum1+a[i];
end
else
begin
if sum1+a[i]<=0 then
begin
inc(ans,abs(sum1+a[i])+1);
sum1:=1;
end
else
sum1:=sum1+a[i];
end;
if sum2>0 then
begin
if sum2+a[i]>=0 then
begin
inc(ans1,sum2+a[i]+1);
sum2:=-1;
end
else
sum2:=sum2+a[i];
end
else
begin
if sum2+a[i]<=0 then
begin
inc(ans1,abs(sum2+a[i])+1);
sum2:=1;
end
else
sum2:=sum2+a[i];
end;
end;
if ans<ans1 then
writeln(ans)
else
writeln(ans1);
end. |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
cntA, sumA = 0, 0
for i in range(N):
sumA += A[i]
if i % 2 == 0:
if sumA < 0:
cntA += abs(sumA) + 1
sumA += abs(sumA) + 1
else:
if sumA > 0:
cntA += abs(sumA) + 1
sumA -= abs(sumA) + 1
cntB, sumB = 0, 0
for i in range(N):
sumB += A[i]
if i % 2 != 0:
if sumB < 0:
cntB += abs(sumB) + 1
sumB += abs(sumB) + 1
else:
if sumB > 0:
cntB += abs(sumB) + 1
sumB -= abs(sumB) + 1
print(min(cntA, cntB)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | parseInt(x) = parse(Int, x)
function main()
n = readline() |> parseInt
a = map(parseInt, split(readline()))
b = Array{Int}(n)
k = 0
if a[1] > 0
b[1] = 1
k += abs(a[1]-1)
else
b[1] = -1
k += abs(a[1]+1)
end
for i in 2:n
b[i] = a[i]+b[i-1]
if b[i]*b[i-1] >= 0
if b[i-1] < 0
k += abs(b[i]-1)
b[i] = 1
else
k += abs(b[i]+1)
b[i] = -1
end
end
end
c = Array{Int}(n)
l = 0
if a[1] > 0
c[1] = -1
l += abs(a[1]+1)
else
c[1] = 1
l += abs(a[1]-1)
end
for i in 2:n
c[i] = a[i]+c[i-1]
if c[i]*c[i-1] >= 0
if c[i-1] < 0
l += abs(c[i]-1)
c[i] = 1
else
l += abs(c[i]+1)
c[i] = -1
end
end
end
print(min(k,l))
end
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int a[100010];
int solve(int sign) {
int ans = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sign * sum <= 0) {
ans += 1 - sum * sign;
sum = sign;
}
sign *= -1;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long t = 1;
while (t--) {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
cout << min(solve(1), solve(-1));
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
as = gets.split.map(&:to_i)
cnt1 = 0
sum = as[0]
n.times.with_index(1) do |_,i|
break if as[i].nil?
prev = sum < 0 ? "n" : "p"
tmp = sum
sum += as[i]
if prev == "n"
if sum == 0
sum += 1
cnt1 += 1
elsif sum < 0
sum = 1
cnt1 += tmp.abs - as[i].abs + 1
end
else
if sum == 0
sum -= 1
cnt1 += 1
elsif sum > 0
sum = -1
cnt1 += as[i].abs + tmp + 1
end
end
end
cnt2 = 0
sum = as[0] * -1
n.times.with_index(1) do |_,i|
break if as[i].nil?
prev = sum < 0 ? "n" : "p"
tmp = sum
sum += as[i]
if prev == "n"
if sum == 0
sum += 1
cnt2 += 1
elsif sum < 0
sum = 1
cnt2 += tmp.abs - as[i].abs + 1
end
else
if sum == 0
sum -= 1
cnt2 += 1
elsif sum > 0
sum = -1
cnt2 += as[i].abs + tmp + 1
end
end
end
puts [cnt1, cnt2].min
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.