Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long> a(n);
for (int i = (0); i < (int)(n); i++) cin >> a[i];
long long sum = a[0];
bool f;
long ans = 0;
if (a[0] > 0)
f = 1;
else
f = 0;
for (int i = (1); i < (int)(n); i++) {
if (a[i] == 0) {
if (f)
a[i] = -1;
else
a[i] = 1;
ans++;
}
sum += a[i];
if (f) {
if (sum >= 0) {
ans += abs(-1 - sum);
a[i] -= abs(-1 - sum);
sum = -1;
}
f = 0;
} else {
if (sum <= 0) {
ans += abs(1 - sum);
a[i] += abs(1 - sum);
sum = 1;
}
f = 1;
}
}
cout << (ans) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N;
long long a[100001];
int main() {
cin >> N;
for (int i = 0; i < N; i++) {
cin >> a[i];
}
long long ans = 0;
long long ans2 = 0;
long long R = a[0];
if (a[0] <= 0) {
ans = 1 - a[0];
R = 1;
}
for (int i = 1; i < N; i++) {
if (R < 0) {
R += a[i];
if (R <= 0) {
ans += 1 - R;
R = 1;
}
} else {
R += a[i];
if (R >= 0) {
ans += R + 1;
R = -1;
}
}
}
R = a[0];
if (a[0] >= 0) {
ans2 = a[0] - 1;
R = -1;
}
for (int i = 1; i < N; i++) {
if (R < 0) {
R += a[i];
if (R <= 0) {
ans2 += 1 - R;
R = 1;
}
} else {
R += a[i];
if (R >= 0) {
ans2 += R + 1;
R = -1;
}
}
}
long long ans3 = min(ans, ans2);
cout << ans3 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ans=10**13
for i in [1,-1]:
b=0
c=0
for j in a:
b+=j
if b*i<=0:
c+=abs(b-i)
b=i
i*=-1
ans=min(ans,c)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #!/usr/bin/env ruby
#
n = STDIN.gets.to_i
a = STDIN.gets.split(' ').map{|x| x.to_i}
s_pos = Array.new(n,0)
s_neg = Array.new(n,0)
output = 0
output_n = 0
output_p = 0
if a[0] < 0
output_p += a[0].abs+1
output_n += 0
s_pos[0] = 1
s_neg[0] = a[0]
else
output_n += a[0].abs+1
output_p += 0
s_neg[0] = -1
s_pos[0] = a[0]
end
s = s_neg
1.upto(n-1) do |i|
s[i] = s[i-1] + a[i]
if s[i] == 0
change = 1
s[i] = (s[i-1] > 0) ? -1 : 1
else
if (s[i-1] > 0) ^ (s[i] > 0)
change = 0
else
change = s[i].abs+1
s[i] = (s[i-1] > 0) ? -1: 1
end
end
output += change
end
output_n = output
output = 0
s = s_pos
1.upto(n-1) do |i|
s[i] = s[i-1] + a[i]
if s[i] == 0
change = 1
s[i] = (s[i-1] > 0) ? -1 : 1
else
if (s[i-1] > 0) ^ (s[i] > 0)
change = 0
else
change = s[i].abs+1
s[i] = (s[i-1] > 0) ? -1: 1
end
end
output += change
end
output_p = output
puts [output_p,output_n].min
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long MOD = 1e9 + 7;
const long LINF = 1e13;
const long LLINF = 1e18;
template <class T>
void Swap(T& r, T& l) {
T tmp = r;
r = l;
l = tmp;
}
int main() {
long n;
cin >> n;
vector<long> a(n);
vector<long> accum(n, 0);
for (int i = 0; i < n; ++i) {
cin >> a[i];
accum[i] = a[i];
if (i > 0) accum[i] += accum[i - 1];
}
vector<long> accumtmp(n, 0);
copy(accum.begin(), accum.end(), accumtmp.begin());
for (int i = 0; i < n; ++i) {
cerr << accum[i] << endl;
}
long ans = 0;
long count = 0;
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (accumtmp[i] >= 0) {
cerr << "a[i] " << a[i] << endl;
long tmpc = -(-1 - accumtmp[i]);
count += tmpc;
for (int k = i; k < n; ++k) {
accumtmp[k] += -tmpc;
}
accumtmp[i] = -1;
}
} else {
if (accumtmp[i] <= 0) {
cerr << "a[i] " << a[i] << endl;
long tmpc = 1 - accumtmp[i];
count += tmpc;
for (int k = i; k < n; ++k) {
accumtmp[k] += tmpc;
}
}
}
}
for (int i = 0; i < n; ++i) {
cerr << accumtmp[i] << endl;
}
ans = count;
cerr << "count:" << count << endl;
count = 0;
cerr << endl;
for (int i = 0; i < n; ++i) {
cerr << accum[i] << endl;
}
copy(accum.begin(), accum.end(), accumtmp.begin());
for (int i = 1; i < n; ++i) {
if (i % 2 == 0) {
if (accumtmp[i] >= 0) {
cerr << "a[i] " << a[i] << endl;
long tmpc = -(-1 - accumtmp[i]);
count += tmpc;
for (int k = i; k < n; ++k) {
accumtmp[k] += -tmpc;
}
accumtmp[i] = -1;
}
} else {
if (accumtmp[i] <= 0) {
cerr << "a[i] " << a[i] << endl;
long tmpc = 1 - accumtmp[i];
count += tmpc;
for (int k = i; k < n; ++k) {
accumtmp[k] += tmpc;
}
}
}
}
for (int i = 0; i < n; ++i) {
cerr << accumtmp[i] << endl;
}
cerr << "count:" << count << endl;
ans = min(ans, count);
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
B = A[:]
# evenがプラスの時
sum_even = 0
ans_even = 0
for i in range(N):
sum_even += A[i]
if i % 2 == 0:
if sum_even <= 0:
ans_even += abs(sum_even) + 1
sum_even += abs(sum_even) + 1
else:
if sum_even >= 0:
ans_even += abs(sum_even) + 1
sum_even += abs(sum_even) + 1
# oddがプラスの時
sum_odd = 0
ans_odd = 0
for i in range(N):
sum_odd += A[i]
if i % 2 == 1:
if sum_odd <= 0:
ans_odd += abs(sum_odd) + 1
sum_odd += abs(sum_odd) + 1
else:
if sum_odd >= 0:
ans_odd += abs(sum_odd) + 1
sum_odd += abs(sum_odd) + 1
answer = min(ans_even, ans_odd)
print(str(answer)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MX = 1e5 + 5, INF = 5 << 28, MOD = 1e9 + 7;
long long N;
vector<long long> A;
void input() {
cin >> N;
A.resize(N);
for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) {
cin >> A[i];
}
}
void solve() {
long long ans = INF;
long long fugo = 1;
for (long long fg = (long long)(0); fg <= (long long)(1); ++fg) {
if (fg == 0) {
fugo = 1;
} else
fugo = 0;
long long prev = 0;
long long s = 0;
long long ans1 = 0;
for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) {
s += A[i];
if (fugo) {
if (s > 0) {
ans1 += 0;
} else if (s == 0) {
ans1 += 1;
s += 1;
} else {
ans1 += abs(s) + 1;
s += abs(s) + 1;
}
} else {
if (s > 0) {
ans1 += (abs(s) + 1);
s -= (abs(s) + 1);
} else if (s == 0) {
ans1 += 1;
s -= 1;
} else {
ans1 += 0;
}
}
prev = s;
fugo ^= 1;
}
ans = min(ans1, ans);
}
cout << ans << endl;
}
signed main() {
input();
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int sum;
long input;
cin >> sum;
int ans = 0;
int reigai = 0;
int ans1, ans2, sum1, sum2;
if (sum == 0) {
ans1 = 1;
ans2 = 1;
sum1 = 1;
sum2 = -1;
reigai = 1;
}
for (int i = 1; i < n; ++i) {
cin >> input;
if (reigai == 0) {
if (sum * (sum + input) >= 0) {
ans += abs(sum + input) + 1;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum += input;
} else {
if (sum1 * (sum1 + input) >= 0) {
ans1 += abs(sum1 + input) + 1;
if (sum1 < 0)
sum1 = 1;
else
sum1 = -1;
} else
sum1 += input;
if (sum2 * (sum2 + input) >= 0) {
ans2 += abs(sum2 + input) + 1;
if (sum2 < 0)
sum2 = 1;
else
sum2 = -1;
} else
sum2 += input;
}
}
if (reigai == 0)
cout << ans << endl;
else
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
cin.tie(0);
ios::sync_with_stdio(false);
int64_t n;
cin >> n;
vector<int64_t> a(n);
for (int64_t i = 0; i < n; i++) cin >> a[i];
int64_t sum1 = 0, cost1 = 0;
for (int64_t i = 0; i < n; i++) {
sum1 += a[i];
int64_t diff = abs(sum1) + 1;
if (i % 2 == 0 && sum1 < 0) {
sum1 += diff;
cost1 += diff;
}
if (i % 2 == 1 && sum1 > 0) {
sum1 -= diff;
cost1 += diff;
}
if (sum1 == 0) {
if (i % 2 == 0) {
sum1--;
cost1++;
}
if (i % 2 == 1) {
sum1++;
cost1++;
}
}
}
int64_t sum2 = 0, cost2 = 0;
for (int64_t i = 0; i < n; i++) {
sum2 += a[i];
int64_t diff = abs(sum2) + 1;
if (i % 2 == 0 && sum2 > 0) {
sum2 -= diff;
cost2 += diff;
}
if (i % 2 == 1 && sum2 < 0) {
sum2 += diff;
cost2 += diff;
}
if (sum2 == 0) {
if (i % 2 == 0) {
sum2++;
cost2++;
}
if (i % 2 == 1) {
sum2--;
cost2++;
}
}
}
cout << min(cost1, cost2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long int;
template <class T>
ostream &operator<<(ostream &os, vector<T> &v) {
for (auto i = v.begin(); i != v.end(); i++) {
os << *i << " ";
}
return os;
}
ll gcd(ll a, ll b) {
ll tmp;
if (b > a) {
tmp = a;
a = b;
b = tmp;
}
while (a % b != 0) {
tmp = b;
b = a % b;
a = tmp;
}
return b;
}
ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
int main(void) {
ll n;
vector<ll> v;
cin >> n;
for (int i = 0; i < n; i++) {
ll x;
cin >> x;
v.push_back(x);
}
ll cnt = 0;
if (v[0] == 0) {
if (v[1] >= 0) {
v[0] = -1;
} else if (v[1] < 0) {
v[0] = 1;
}
cnt++;
}
ll sum = v[0];
ll prev = v[0];
for (int i = 1; i < n; i++) {
sum += v[i];
if (prev >= 0 and sum >= 0) {
cnt += abs(-1 - sum);
sum += -1 - sum;
} else if (prev <= 0 and sum <= 0) {
cnt += abs(1 - sum);
sum += abs(1 - sum);
}
prev = sum;
}
std::cout << cnt << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MaxN = 1e5;
bool flag, ok;
long long sum, ans, anv;
int n;
int a[MaxN + 5], b[MaxN + 5];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
}
sum = a[1];
if (a[1] < 0) flag = 1, ok = 1;
if (a[1] != 0) {
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + a[i] <= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = 1 - sum;
ans += (a[i] - t);
sum += a[i];
} else
sum += a[i];
flag = 0;
} else {
if (sum + a[i] >= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = -1 - sum;
ans += (t - a[i]);
sum += a[i];
} else
sum += a[i];
flag = 1;
}
}
}
if (a[1] == 0) ans = 1 << 30;
int tr = b[1];
if (ok)
b[1] = 1, flag = 0;
else
b[1] = -1, flag = 1;
anv += (abs(b[1] - tr));
sum = b[1];
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + b[i] <= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = 1 - sum;
anv += (b[i] - t);
sum += b[i];
} else
sum += b[i];
flag = 0;
} else {
if (sum + b[i] >= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = -1 - sum;
anv += (t - b[i]);
sum += b[i];
} else
sum += b[i];
flag = 1;
}
}
printf("%lld\n", min(ans, anv));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | . |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
N = int(input())
a_s = input().split()
for i in range(N):
a_s[i] = int(a_s[i])
a_s = np.array(a_s)
def get_sign(x):
if x>0:
return +1
elif x<0:
return -1
else:
return 0
ans = 0
S0 = 0
for i,a in enumerate(a_s):
if i==0:
S = a
if S == 0:
ans += 1
if np.all(a_s[1:])==0:
S = +1
else:
for i in range(1,N):
if a_s[i]!=0:
S = get_sign(a_s[i])*((-1)**i)
break
else:
S = S0 + a
if (get_sign(S0) == get_sign(S))|(get_sign(S)==0):
if abs(S0)==1:
ans += 2 + abs(a)
a = get_sign(S0)*(-2)
S = S0 + a
else:
ans += 1 + abs(a)
a = get_sign(S0)*(-1)
S = S0 + a
else:
pass
S0 = S
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
import bisect
import heapq
import math
import random
import sys
from collections import Counter, defaultdict, deque
from decimal import ROUND_CEILING, ROUND_HALF_UP, Decimal
from functools import lru_cache, reduce
from itertools import combinations, combinations_with_replacement, product, permutations
from operator import add, mul, sub
sys.setrecursionlimit(100000)
input = sys.stdin.readline
INF = 2**62-1
def read_int():
return int(input())
def read_int_n():
return list(map(int, input().split()))
def read_float():
return float(input())
def read_float_n():
return list(map(float, input().split()))
def read_str():
return input().strip()
def read_str_n():
return list(map(str, input().split()))
def error_print(*args):
print(*args, file=sys.stderr)
def mt(f):
import time
def wrap(*args, **kwargs):
s = time.time()
ret = f(*args, **kwargs)
e = time.time()
error_print(e - s, 'sec')
return ret
return wrap
@mt
def slv(N, A):
S = [A[0]]
for a in A[1:]:
S.append(S[-1]+a)
sig = -1 if S[0] > 0 else 1
o = 0
ans = 0
for s in S:
s += o
if s == 0:
ans += 1
o -= sig
elif sig * s > 0:
ans += abs(s) + 1
o -= sig*(abs(s) + 1)
sig *= -1
return ans
def main():
N = read_int()
A = read_int_n()
print(slv(N, A))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count = 0
sum_ = 0
for i in range(n):
if sum_ * (sum_+a[i]) <0 or i == 0:
sum_ += a[i]
continue
elif sum_ > 0:
count += sum_+a[i]+1
a[i] = -sum_-1
elif sum_ < 0:
count += abs(sum_+a[i])+1
a[i] = -sum_+1
sum_ += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long linf = 1001002003004005006ll;
const int inf = 1001001001;
const int mod = 1000000007;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long tot = 0;
long long res1 = 0;
{
for (int i = 0; i < (n); ++i) {
if (i % 2 == 0) {
if (tot + a[i] > 0)
tot += a[i];
else {
res1 += abs(tot + a[i]);
tot = 1;
}
} else {
if (tot + a[i] < 0)
tot += a[i];
else {
res1 += abs(tot + a[i]) + 1;
tot = -1;
}
}
}
}
tot = 0;
long long res2 = 0;
{
for (int i = 0; i < (n); ++i) {
if (i % 2 != 0) {
if (tot + a[i] > 0)
tot += a[i];
else {
res2 += abs(tot + a[i]) + 1;
tot = 1;
}
} else {
if (tot + a[i] < 0)
tot += a[i];
else {
res2 += abs(tot + a[i]) + 1;
tot = -1;
}
}
}
}
long long ans = min(res1, res2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1000000;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (long long int i = 0; i < n; i++) cin >> a[i];
int ans_plus = 0;
vector<int> sum_plus(n, 0);
if (a[0] > 0) {
sum_plus[0] = a[0];
} else {
ans_plus += 1 - a[0];
sum_plus[0] = 1;
}
for (int i = 1; i < n; ++i) {
sum_plus[i] = sum_plus[i - 1] + a[i];
if (sum_plus[i] * sum_plus[i - 1] > 0) {
if (sum_plus[i - 1] > 0) {
ans_plus += 1 + sum_plus[i];
sum_plus[i] = -1;
} else if (sum_plus[i - 1] < 0) {
ans_plus += 1 - sum_plus[i];
sum_plus[i] = 1;
}
} else if (sum_plus[i] == 0) {
if (sum_plus[i - 1] > 0) {
sum_plus[i] = -1;
} else if (sum_plus[i - 1] < 0) {
sum_plus[i] = 1;
}
ans_plus++;
}
}
int ans_minus = 0;
vector<int> sum_minus(n);
if (a[0] < 0) {
sum_minus[0] = a[0];
} else {
ans_minus += 1 + a[0];
sum_minus[0] = -1;
}
for (int i = 1; i < n; ++i) {
sum_minus[i] = sum_minus[i - 1] + a[i];
if (sum_minus[i] * sum_minus[i - 1] > 0) {
if (sum_minus[i - 1] > 0) {
ans_minus += 1 + sum_minus[i];
sum_minus[i] = -1;
} else if (sum_minus[i - 1] < 0) {
ans_minus += 1 - sum_minus[i];
sum_minus[i] = 1;
}
} else if (sum_minus[i] == 0) {
if (sum_minus[i - 1] > 0) {
sum_minus[i] = -1;
} else if (sum_minus[i - 1] < 0) {
sum_minus[i] = 1;
}
ans_minus++;
}
}
std::cout << min(ans_minus, ans_plus) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vb = vector<bool>;
using vvb = vector<vb>;
using mii = map<int, int>;
using pqls = priority_queue<long long>;
using pqlg = priority_queue<long long, vector<long long>, greater<long long>>;
using mll = map<long long, long long>;
using pll = pair<long long, long long>;
using sll = set<long long>;
long long divup(long long a, long long b);
long long kaijou(long long i);
long long P(long long n, long long k);
long long C(long long n, long long k);
long long GCD(long long a, long long b);
long long LCM(long long a, long long b);
bool prime(long long N);
double distance(vector<long long> p, vector<long long> q, long long n);
void press(vector<long long> &v);
void ranking(vector<long long> &v);
void erase(vector<long long> &v, long long i);
void unique(vector<long long> &v);
void printv(vector<long long> v);
vector<ll> keta(ll x);
long long modpow(long long a, long long n, long long mod);
long long modinv(long long a, long long mod);
vector<long long> inputv(long long n);
vector<long long> yakusuu(int n);
map<long long, long long> soinsuu(long long n);
vector<vector<long long>> maze(long long i, long long j, vector<string> &s);
vector<long long> eratos(long long n);
set<long long> eraset(long long n);
long long divup(long long a, long long b) {
long long x = abs(a);
long long y = abs(b);
long long z = (x + y - 1) / y;
if ((a < 0 && b > 0) || (a > 0 && b < 0))
return -z;
else if (a == 0)
return 0;
else
return z;
}
long long kaijou(long long i) {
if (i == 0) return 1;
long long j = 1;
for (long long k = 1; k <= i; k++) {
j *= k;
}
return j;
}
long long P(long long n, long long k) {
if (n < k) return 0;
long long y = 1;
for (long long i = 0; i < k; i++) {
y *= (n - i);
}
return y;
}
long long C(long long n, long long k) {
if (n < k) return 0;
return P(n, k) / kaijou(k);
}
long long GCD(long long a, long long b) {
if (a < b) swap(a, b);
long long d = a % b;
if (d == 0) {
return b;
}
return GCD(b, d);
}
long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; }
bool prime(long long N) {
if (N == 1) {
return false;
}
if (N < 0) return false;
long long p = sqrt(N);
for (long long i = 2; i <= p; i++) {
if (N % i == 0) {
return false;
}
}
return true;
}
double distance(vector<long long> p, vector<long long> q, long long n) {
double x = 0;
for (long long i = 0; i < n; i++) {
x += pow((p.at(i) - q.at(i)), 2);
}
return sqrt(x);
}
void press(vector<long long> &v) {
long long n = v.size();
vector<long long> w(n);
map<long long, long long> m;
for (auto &p : v) {
m[p] = 0;
}
long long i = 0;
for (auto &p : m) {
p.second = i;
i++;
}
for (long long i = 0; i < n; i++) {
w.at(i) = m[v.at(i)];
}
v = w;
return;
}
void ranking(vector<long long> &v) {
long long n = v.size();
map<long long, long long> m;
long long i;
for (i = 0; i < n; i++) {
m[v.at(i)] = i;
}
vector<long long> w(n);
i = 0;
for (auto &p : m) {
v.at(i) = p.second;
i++;
}
return;
}
void erase(vector<long long> &v, long long i) {
long long n = v.size();
if (i > n - 1) return;
for (long long j = i; j < n - 1; j++) {
v.at(j) = v.at(j + 1);
}
v.pop_back();
return;
}
void unique(vector<long long> &v) {
long long n = v.size();
set<long long> s;
long long i = 0;
while (i < n) {
if (s.count(v.at(i))) {
erase(v, i);
n--;
} else {
s.insert(v.at(i));
i++;
}
}
return;
}
void printv(vector<long long> v) {
cout << "{ ";
for (auto &p : v) {
cout << p << ",";
}
cout << "}" << endl;
}
vector<ll> keta(ll x) {
if (x == 0) return {0};
ll n = log10(x) + 1;
vll w(n, 0);
for (ll i = 0; i < n; i++) {
ll p;
p = x % 10;
x = x / 10;
w[n - 1 - i] = p;
}
return w;
}
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); }
vector<long long> inputv(long long n) {
vector<long long> v(n);
for (long long i = 0; i < n; i++) {
cin >> v[i];
}
return v;
}
vector<long long> yakusuu(long long n) {
vector<long long> ret;
for (long long i = 1; i <= sqrt(n); ++i) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) {
ret.push_back(n / i);
}
}
}
sort(ret.begin(), ret.end());
return ret;
}
map<long long, long long> soinsuu(long long n) {
map<long long, long long> m;
long long p = sqrt(n);
while (n % 2 == 0) {
n /= 2;
if (m.count(2)) {
m[2]++;
} else {
m[2] = 1;
}
}
for (long long i = 3; i * i <= n; i += 2) {
while (n % i == 0) {
n /= i;
if (m.count(i)) {
m[i]++;
} else {
m[i] = 1;
}
}
}
if (n != 1) m[n] = 1;
return m;
}
vector<vector<long long>> maze(ll i, ll j, vector<string> &s) {
ll h = s.size();
ll w = s[0].size();
queue<vector<long long>> q;
vector<vector<long long>> dis(h, vll(w, -1));
q.push({i, j});
dis[i][j] = 0;
while (!q.empty()) {
auto v = q.front();
q.pop();
if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) {
dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] - 1, v[1]});
}
if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) {
dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] - 1});
}
if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) {
dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] + 1, v[1]});
}
if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) {
dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] + 1});
}
}
return dis;
}
long long modC(long long n, long long k, long long mod) {
if (n < k) return 0;
long long p = 1, q = 1;
for (long long i = 0; i < k; i++) {
p = p * (n - i) % mod;
q = q * (i + 1) % mod;
}
return p * modinv(q, mod) % mod;
}
long long POW(long long a, long long n) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a;
a = a * a;
n >>= 1;
}
return res;
}
vector<long long> eratos(long long n) {
if (n < 2) return {};
vll v(n - 1);
for (long long i = 0; i < n - 1; i++) {
v[i] = i + 2;
}
ll i = 0;
while (i < n - 1) {
ll p = v[i];
for (ll j = i + 1; j < n - 1; j++) {
if (v[j] % p == 0) {
v.erase(v.begin() + j);
n--;
}
}
i++;
}
v.resize(n - 1);
return v;
}
set<long long> eraset(long long n) {
set<long long> s;
vll v = eratos(n);
for (auto &t : v) {
s.insert(t);
}
return s;
}
vll line(ll x1, ll y1, ll x2, ll y2) {
vector<ll> v(3);
v[0] = y1 - y2;
v[1] = x2 - x1;
v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2);
return v;
}
double dis(vll v, ll x, ll y) {
double s = sqrt(v[0] * v[0] + v[1] * v[1]);
return (double)abs(v[0] * x + v[1] * y + v[2]) / s;
}
ll const mod = 1e9 + 7;
int main() {
ll n;
cin >> n;
auto a = inputv(n);
auto b = a;
ll l = 0;
ll res = 0;
for (long long i = 0; i < n; i++) {
if (l == 0) {
if (a[0] == 0) {
for (long long j = 0; j < n; j++) {
if (a[j] != 0) {
a[0] = a[j] / abs(a[j]);
if (j % 1) a[0] *= (-1);
res++;
break;
}
}
}
if (!a[0]) {
a[0] = 1;
res++;
}
l += a[0];
} else if (l < 0) {
if (a[i] < -l + 1) {
res += -l + 1 - a[i];
a[i] = -l + 1;
l = 1;
} else {
l += a[i];
}
} else if (l > 0) {
if (a[i] > -l - 1) {
res += abs(a[i] - (-l - 1));
a[i] = -l - 1;
l = -1;
} else {
l += a[i];
}
}
}
a = b;
ll L = 0;
ll res2 = 0;
for (long long i = 0; i < n; i++) {
if (L == 0) {
if (a[0] == 0) {
for (long long j = 0; j < n; j++) {
if (a[j] != 0) {
a[0] = a[j] / abs(a[j]);
if (j % 1) a[0] *= (-1);
res2++;
break;
}
}
}
if (!a[0]) {
a[0] = 1;
res2++;
}
L += a[0];
L *= (-1);
} else if (L < 0) {
if (a[i] < -L + 1) {
res2 += -L + 1 - a[i];
a[i] = -L + 1;
L = 1;
} else {
L += a[i];
}
} else if (L > 0) {
if (a[i] > -L - 1) {
res2 += abs(a[i] - (-L - 1));
a[i] = -L - 1;
L = -1;
} else {
L += a[i];
}
}
}
cout << min(res, res2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int N;
cin >> N;
vector<int> a(N);
for (auto& ai : a) cin >> ai;
int c = 0;
int s = a[0];
for (int i = (1); i < (N); ++i) {
if (s > 0) {
s += a[i];
if (s >= 0) {
c += s + 1;
s = -1;
}
} else {
s += a[i];
if (s <= 0) {
c += -s + 1;
s = 1;
}
}
}
cout << c << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
ll ans = 0, sum = 0;
bool f = false;
for (int i = 0; i < (int)(n); i++) {
int now = a.at(i);
if (f == false) {
if (now == 0) {
if (i + 1 < n) {
if (a.at(i + 1) != 0) f = true;
if (a.at(i + 1) > 0)
sum--;
else if (a.at(i + 1) < 0)
sum++;
}
ans++;
continue;
} else {
f = true;
}
}
if ((sum < 0 && sum + now > 0) || (sum > 0 && sum + now < 0)) {
sum += now;
} else {
ll add = abs(sum + now) + 1;
if (sum < 0)
sum = 1;
else
sum = -1;
ans += add;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"os"
"strconv"
)
func abs(x int64) int64 {
if x < 0 {
return -x
}
return x
}
func min(a, b int64) int64 {
if a < b {
return a
}
return b
}
func main() {
var n int
fmt.Scan(&n)
sc := bufio.NewScanner(os.Stdin)
sc.Split(bufio.ScanWords)
a := make([]int64, n)
for i := 0; i < n; i++ {
sc.Scan()
x, _ := strconv.Atoi(sc.Text())
a[i] = int64(x)
}
ans := int64(0)
if a[0] == 0 {
a[0] = -1
ans = solve(a, 0)
a[0] = 1
ans = min(ans, solve(a, 1))
} else if a[0] < 0 {
ans = solve(a, 0)
} else { // a[0] > 0
ans = solve(a, 1)
}
fmt.Println(ans)
}
func solve(a []int64, ra int) int64 {
s := int64(0) // S_i = \sum_i a[i]
ans := int64(0)
for i, e := range a {
if i%2 == ra {
if s+e >= 0 {
ans += abs(-1 - s - e)
s = -1
continue
}
} else {
if s+e <= 0 {
ans += abs(1 - s - e)
s = 1
continue
}
}
s += int64(e)
}
return ans
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
fastinput=sys.stdin.readline
n=int(fastinput())
ai=[int(i) for i in fastinput().split()]
#プラス始まり
goukei=0
sousa=0
for k,a in enumerate(ai):
goukei+=a
if k==0:
continue
elif not k%2:#even:plus
if goukei<=0:
sousa+=1-goukei
goukei=1
else:#odd:minus
if goukei>=0:
sousa+=goukei+1
goukei=-1
ans1=sousa
#マイナス始まり
goukei=0
sousa=0
for k,a in enumerate(ai):
goukei+=a
if k==0:
continue
if k%2:#odd:plus
if goukei<=0:
sousa+=1-goukei
goukei=1
else:#even:minus
if goukei>=0:
sousa+=goukei+1
goukei=-1
ans2=sousa
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int s = a[0];
int cnt = 0;
if (s == 0) {
if (a[1] > 0) {
s = -1;
cnt++;
} else {
s = 1;
cnt++;
}
}
for (int i = 1; i < n; i++) {
if (s > 0) {
if (s + a[i] < 0)
s += a[i];
else {
cnt += abs(s + a[i]) + 1;
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
cnt += abs(s + a[i]) + 1;
s = 1;
}
}
}
cout << cnt;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
const int mod = 1000000007;
const int INF = 1000000000;
const long long LINF = 1e18;
const int MAX = 510000;
int code(int n) {
if (n < 0)
return 1;
else if (n > 0)
return 0;
else
return 2;
}
int main() {
int n;
int sum = 0;
int ans = 0;
int ans2 = 0;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = a.at(0);
if (sum != 0) {
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << ans << endl;
return 0;
} else if (sum == 0) {
sum = -1;
ans = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
sum = 1;
ans2 = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans2++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans2 += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
s = list(map(int,input().split()))
temp = s[0]
ans = 0
#第一項が正ならば
if temp > 0:
for i in range(1,n):
temp += s[i]
if i%2 == 0:#正になってほしい
if temp <= 0:
ans += abs(temp-1)
temp = 1
else:#負になって欲しい
if temp >= 0:
ans += abs(temp+1)
temp = -1
else:
for i in range(1,n):
temp += s[i]
if i%2 == 0:
if temp >= 0:
ans += abs(temp+1)
temp = -1
else:
if temp <= 0:
ans += abs(temp-1)
temp = 1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = std::vector<int>;
using vc = std::vector<char>;
using vll = std::vector<long long>;
using vs = std::vector<string>;
using Mi = map<int, int>;
using Mll = map<ll, ll>;
using UMi = unordered_map<int, int>;
using UMll = unordered_map<ll, ll>;
using Pi = pair<int, int>;
using Pll = pair<ll, ll>;
using vPi = vector<Pi>;
using vPll = vector<Pll>;
using vvi = vector<vector<int>>;
using vvll = vector<vector<ll>>;
using vvc = vector<vector<char>>;
using vvs = vector<vector<string>>;
using pqgi = priority_queue<int, vector<int>, greater<int>>;
using pqsi = priority_queue<int, vector<int>, less<int>>;
using pqgll = priority_queue<int, vector<int>, greater<int>>;
using pssll = priority_queue<int, vector<int>, less<int>>;
template <class T>
using vec = vector<T>;
class Cpmath {
public:
template <typename T>
static T gcd(T a, T b) {
if (a == 0) return b;
return gcd(b % a, a);
}
template <typename T>
static T findGCD(vector<T>& arr, size_t n) {
T result = arr[0];
for (size_t i = 1; i < n; i++) result = gcd(arr[i], result);
return result;
}
template <typename T>
static T findLCM(vector<T>& arr, size_t n) {
T lcm = arr[0];
for (size_t i = 1; i < n; i++) {
lcm = (lcm / gcd(arr[i], lcm)) * arr[i];
}
return lcm;
}
template <typename T>
static bool is_prime(T n) {
if (n == 1) {
return false;
}
for (size_t i = 2; i <= pow(n, 0.5); i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
static ll fact(ll n) {
if (n == 0) {
return 1LL;
} else {
return n * fact(n - 1);
}
}
static ll permutation(int n, int r) {
assert(n >= r);
ll ret = 1;
for (int i = n; i > n - r; i--) {
ret *= i;
}
return ret;
}
};
class NCR {
private:
static const int MAX = 210000;
static const int MOD = 998244353;
ll fac[MAX], finv[MAX], inv[MAX];
public:
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
ll COM(int n, int k) {
if (n < k) return 0;
if (n < 0 || k < 0) {
return 0;
}
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
};
struct BipartiteMatching {
vector<vector<int>> E;
int n, m;
vector<int> match, dist;
void init(int _n, int _m) {
n = _n, m = _m;
E.resize(n + m + 2);
match.resize(n + m + 2);
dist.resize(n + m + 2);
}
bool bfs() {
queue<int> que;
for (int i = (1); i < (n + 1); i++) {
if (!match[i])
dist[i] = 0, que.push(i);
else
dist[i] = 1e9;
}
dist[0] = 1e9;
while (!que.empty()) {
int u = que.front();
que.pop();
if (u)
for (auto& v : E[u])
if (dist[match[v]] == 1e9) {
dist[match[v]] = dist[u] + 1;
que.push(match[v]);
}
}
return (dist[0] != 1e9);
}
bool dfs(int u) {
if (u) {
for (auto& v : E[u])
if (dist[match[v]] == dist[u] + 1)
if (dfs(match[v])) {
match[v] = u;
match[u] = v;
return true;
}
dist[u] = 1e9;
return false;
}
return true;
}
void add(int a, int b) {
b += n;
E[a + 1].push_back(b + 1);
E[b + 1].push_back(a + 1);
}
int whois(int x) { return match[x + 1] - 1; }
int solve() {
for (int i = (0); i < (n + m + 1); i++) match[i] = 0;
int res = 0;
while (bfs())
for (int i = (1); i < (n + 1); i++)
if (!match[i] && dfs(i)) res++;
return res;
}
};
struct SegmentTree {
private:
int n;
vector<int> node;
public:
SegmentTree(vector<int> v) {
int sz = v.size();
n = 1;
while (n < sz) n *= 2;
node.resize(2 * n - 1, 1e9);
for (int i = 0; i < sz; i++) {
node[i + n - 1] = v[i];
}
for (int i = n - 2; i >= 0; i--) {
node[i] = min(node[2 * i + 1], node[2 * i + 2]);
}
}
void update(int x, int val) {
x += (n - 1);
node[x] = val;
while (x > 0) {
x = (x - 1) / 2;
node[x] = min(node[2 * x + 1], node[2 * x + 2]);
}
}
int getmin(int a, int b, int k = 0, int l = 0, int r = -1) {
if (r < 0) {
r = n;
}
if (r <= a || b <= l) {
return 1e9;
}
if (a <= l && r <= b) {
return node[k];
}
int vl = getmin(a, b, 2 * k + 1, l, (l + r) / 2);
int vr = getmin(a, b, 2 * k + 2, (l + r) / 2, r);
return min(vl, vr);
}
};
template <class Abel>
struct WUnionFind {
vector<int> par;
vector<int> rank;
vector<Abel> diff_weight;
WUnionFind(int n = 1, Abel SUM_UNITY = 0) { init(n, SUM_UNITY); }
void init(int n = 1, Abel SUM_UNITY = 0) {
par.resize(n);
rank.resize(n);
diff_weight.resize(n);
for (int i = 0; i < n; ++i)
par[i] = i, rank[i] = 0, diff_weight[i] = SUM_UNITY;
}
int root(int x) {
if (par[x] == x) {
return x;
} else {
int r = root(par[x]);
diff_weight[x] += diff_weight[par[x]];
return par[x] = r;
}
}
Abel weight(int x) {
root(x);
return diff_weight[x];
}
bool issame(int x, int y) { return root(x) == root(y); }
bool merge(int x, int y, Abel w) {
w += weight(x);
w -= weight(y);
x = root(x);
y = root(y);
if (x == y) return false;
if (rank[x] < rank[y]) swap(x, y), w = -w;
if (rank[x] == rank[y]) ++rank[x];
par[y] = x;
diff_weight[y] = w;
return true;
}
Abel diff(int x, int y) { return weight(y) - weight(x); }
};
struct UnionFind {
vector<int> par;
UnionFind(int n) : par(n, -1) {}
void init(int n) { par.assign(n, -1); }
int root(int x) {
if (par[x] < 0)
return x;
else
return par[x] = root(par[x]);
}
bool issame(int x, int y) { return root(x) == root(y); }
bool merge(int x, int y) {
x = root(x);
y = root(y);
if (x == y) return false;
if (par[x] > par[y]) {
swap(x, y);
}
par[x] += par[y];
par[y] = x;
return true;
}
int size(int x) { return -par[root(x)]; }
};
void YN(bool a) { cout << (a ? "YES" : "NO") << "\n"; }
void Yn(bool a) { cout << (a ? "Yes" : "No") << "\n"; }
void yn(bool a) { cout << (a ? "yes" : "no") << "\n"; }
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
int dx[4] = {1, 0, -1, 0};
int dy[4] = {0, 1, 0, -1};
template <typename T>
inline int digitsum(T num) {
int ret = 0;
while (num) {
ret += num % 10;
num /= 10;
}
return ret;
}
template <typename InputIt, typename T>
inline bool argexist(InputIt first, InputIt last, const T& x) {
if (std::find(first, last, x) != last) {
return true;
} else {
return false;
}
}
template <typename InputIt, typename T>
inline int argfind(InputIt first, InputIt last, const T& x) {
auto it = find(first, last, x);
return distance(first, it);
}
template <typename InputIt>
inline int argmax(InputIt first, InputIt last) {
auto it = max_element(first, last);
return distance(first, it);
}
template <typename InputIt>
inline int argmin(InputIt first, InputIt last) {
auto it = min_element(first, last);
return distance(first, it);
}
template <typename T>
inline void erasebv(vector<T>& c, T v) {
c.erase(remove(begin(c), end(c), v), end(c));
}
template <typename T>
inline void uniq(T& c) {
c.erase(unique(begin(c), end(c)), end(c));
}
template <typename T>
inline T POP_BACK(vector<T>& que) {
T x = que.back();
que.pop_back();
return x;
}
template <typename T>
inline T POP_BACK(deque<T>& que) {
T x = que.back();
que.pop_back();
return x;
}
template <typename T>
inline T POP_FRONT(deque<T>& que) {
T x = que.front();
que.pop_front();
return x;
}
template <typename T, typename C>
inline T POP(stack<T, C>& stk) {
T x = stk.top();
stk.pop();
return x;
}
template <typename T, typename C>
inline T POP(queue<T, C>& que) {
T x = que.front();
que.pop();
return x;
}
template <typename T, typename Cont, typename Cmp>
inline T POP(priority_queue<T, Cont, Cmp>& que) {
T x = que.top();
que.pop();
return x;
}
template <typename T1, typename T2>
ostream& operator<<(ostream& s, const pair<T1, T2>& p) {
return s << "(" << p.first << ", " << p.second << ")";
}
template <typename T>
ostream& operator<<(ostream& s, const vector<T>& v) {
int len = v.size();
for (int i = 0; i < len; ++i) {
s << v[i];
if (i < len - 1) s << "\t";
}
return s;
}
template <typename T>
ostream& operator<<(ostream& s, const vector<vector<T>>& vv) {
int len = vv.size();
for (int i = 0; i < len; ++i) {
s << vv[i] << "\n";
}
return s;
}
namespace GraphLib {
using Weight = int;
struct Edge {
int src, dst;
Weight weight;
Edge(int src, int dst, Weight weight) : src(src), dst(dst), weight(weight) {}
};
bool operator<(const Edge& e, const Edge& f) {
return e.weight != f.weight ? e.weight > f.weight
: e.src != f.src ? e.src < f.src
: e.dst < f.dst;
}
using Edges = vector<Edge>;
using Graph = vector<Edges>;
using Array = vector<Weight>;
using Matrix = vector<Array>;
void DijkstraShortestPath(const Graph& g, int s, vector<Weight>& dist,
vector<int>& prev) {
int n = g.size();
dist.assign(n, 1e9);
dist[s] = 0;
prev.assign(n, -1);
priority_queue<Edge> Q;
for (Q.push(Edge(-2, s, 0)); !Q.empty();) {
Edge e = Q.top();
Q.pop();
if (prev[e.dst] != -1) continue;
prev[e.dst] = e.src;
for (auto& f : g[e.dst]) {
if (dist[f.dst] > e.weight + f.weight) {
dist[f.dst] = e.weight + f.weight;
Q.push(Edge(f.src, f.dst, e.weight + f.weight));
}
}
}
}
vector<int> DijkstraBuildPath(const vector<int>& prev, int t) {
vector<int> path;
for (int u = t; u >= 0; u = prev[u]) path.push_back(u);
reverse(path.begin(), path.end());
return path;
}
bool BellmandFordshortestPath(const Graph g, int s, vector<Weight>& dist,
vector<int>& prev) {
int n = g.size();
dist.assign(n, 1e9 + 1e9);
dist[s] = 0;
prev.assign(n, -2);
bool negative_cycle = false;
for (int k = 0; k < (int)(n); k++)
for (int i = 0; i < (int)(n); i++)
for (auto& e : g[i]) {
if (dist[e.dst] > dist[e.src] + e.weight) {
dist[e.dst] = dist[e.src] + e.weight;
prev[e.dst] = e.src;
if (k == n - 1) {
dist[e.dst] = -1e9;
negative_cycle = true;
}
}
}
return !negative_cycle;
}
vector<int> BellmanFordbuildPath(const vector<int>& prev, int t) {
vector<int> path;
for (int u = t; u >= 0; u = prev[u]) path.push_back(u);
reverse(path.begin(), path.end());
return path;
}
void visit(const Graph& g, int v, int u, Edges& brdg,
vector<vector<int>>& tecomp, stack<int>& roots, stack<int>& S,
vector<bool>& inS, vector<int>& num, int& time) {
num[v] = ++time;
S.push(v);
inS[v] = true;
roots.push(v);
for (auto& e : g[v]) {
int w = e.dst;
if (num[w] == 0)
visit(g, w, v, brdg, tecomp, roots, S, inS, num, time);
else if (u != w && inS[w])
while (num[roots.top()] > num[w]) roots.pop();
}
if (v == roots.top()) {
brdg.push_back(Edge(u, v, 1));
tecomp.push_back(vector<int>());
while (1) {
int w = S.top();
S.pop();
inS[w] = false;
tecomp.back().push_back(w);
if (v == w) break;
}
roots.pop();
}
}
void bridge(const Graph& g, Edges& brdg, vector<vector<int>>& tecomp) {
const int n = g.size();
vector<int> num(n);
vector<bool> inS(n);
stack<int> roots, S;
int time = 0;
for (int u = 0; u < (int)(n); u++)
if (num[u] == 0) {
visit(g, u, n, brdg, tecomp, roots, S, inS, num, time);
brdg.pop_back();
}
}
pair<Weight, Edges> minimumSpanningTree(const Graph& g, int r = 0) {
int n = g.size();
Edges T;
Weight total = 0;
vector<bool> visited(n);
priority_queue<Edge> Q;
Q.push(Edge(-1, r, 0));
while (!Q.empty()) {
Edge e = Q.top();
Q.pop();
if (visited[e.dst]) continue;
T.push_back(e);
total += e.weight;
visited[e.dst] = true;
for (auto& f : g[e.dst])
if (!visited[f.dst]) Q.push(f);
}
return pair<Weight, Edges>(total, T);
}
} // namespace GraphLib
ll N;
vll a;
vll s;
signed main() {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cin >> N;
a.resize(N);
vll s(N + 1, 0);
for (int i = 0; i < (int)(N); i++) {
cin >> a[i];
}
s[0] = 0;
s[1] = a[0];
bool prev_sign;
if (a[0] > 0) {
prev_sign = 1;
} else {
prev_sign = 0;
}
ll ret = 0;
for (int i = (1); i < (N); i++) {
if (prev_sign) {
ll cur_s = s[i] + a[i];
if (cur_s < 0) {
s[i + 1] = s[i] + a[i];
} else {
s[i + 1] = -1;
ret += abs(cur_s + 1);
}
prev_sign = 0;
} else {
ll cur_s = s[i] + a[i];
if (cur_s > 0) {
s[i + 1] = s[i] + a[i];
} else {
s[i + 1] = 1;
ret += abs(cur_s - 1);
}
prev_sign = 1;
}
}
cout << ret << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using itn = int;
using namespace std;
int GCD(int a, int b) { return b ? GCD(b, a % b) : a; }
int main() {
string s;
cin >> s;
for (int i = 0; i < s.size(); i++) {
for (int j = 0; j < s.size() - i; j++) {
string t;
if (j != 0) {
t = s.substr(0, j - 1);
}
t += s.substr(j + i);
if (t == "keyence") {
cout << "YES" << endl;
return 0;
}
}
}
cout << "NO" << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int K = 1e6 + 7;
const int mod = 1e9 + 7;
long long ans, sum, ls, n, x;
int main(void) {
std::ios::sync_with_stdio(false);
std::cin.tie(0);
cin >> n >> sum;
ls = sum;
while (n-- != 1) {
cin >> x;
sum += x;
if (sum == 0 && ls > 0)
sum = ls = -1, ans += 1;
else if (sum == 0 && ls < 0)
sum = ls = 1, ans += 1;
else if (sum > 0 && ls > 0)
ans += sum + 1, sum = ls = -1;
else if (sum < 0 && ls < 0)
ans += 1 - sum, ls = sum = 1;
else
ls = sum;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.*;
import java.math.BigInteger;
public class Main implements Runnable {
static ContestScanner in;
static Writer out;
public static void main(String[] args) {
new Thread(null, new Main(), "", 16 * 1024 * 1024).start();
}
public void run() {
Main main = new Main();
try {
in = new ContestScanner();
out = new Writer();
main.solve();
out.close();
in.close();
} catch (IOException e) {
e.printStackTrace();
}
}
void solve() throws IOException {
int n = in.nextInt();
long ans = 0;
long sum = in.nextLong();
for (int i = 0; i < n - 1; i++) {
long a = in.nextLong();
long target = -Long.signum(sum);
if ((a + sum) * target > 0) sum += a;
else {
ans += Math.abs(a + sum - target);
sum = target;
}
}
System.out.println(ans);
}
}
class Writer extends PrintWriter{
public Writer(String filename)throws IOException
{super(new BufferedWriter(new FileWriter(filename)));}
public Writer()throws IOException {super(System.out);}
}
class ContestScanner implements Closeable {
private BufferedReader in;private int c=-2;
public ContestScanner()throws IOException
{in=new BufferedReader(new InputStreamReader(System.in));}
public ContestScanner(String filename)throws IOException
{in=new BufferedReader(new InputStreamReader(new FileInputStream(filename)));}
public String nextToken()throws IOException {
StringBuilder sb=new StringBuilder();
while((c=in.read())!=-1&&Character.isWhitespace(c));
while(c!=-1&&!Character.isWhitespace(c)){sb.append((char)c);c=in.read();}
return sb.toString();
}
public String readLine()throws IOException{
StringBuilder sb=new StringBuilder();if(c==-2)c=in.read();
while(c!=-1&&c!='\n'&&c!='\r'){sb.append((char)c);c=in.read();}
return sb.toString();
}
public long nextLong()throws IOException,NumberFormatException
{return Long.parseLong(nextToken());}
public int nextInt()throws NumberFormatException,IOException
{return(int)nextLong();}
public double nextDouble()throws NumberFormatException,IOException
{return Double.parseDouble(nextToken());}
public void close() throws IOException {in.close();}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = (long long)1e9;
const long long MOD = (long long)1e9 + 7;
const double EPS = (double)1e-10;
struct Accelerate_Cin {
Accelerate_Cin() {
cin.tie(0);
ios::sync_with_stdio(0);
cout << fixed << setprecision(20);
};
};
signed main() {
long long n;
cin >> n;
long long sum = 0, prev = 0, cont = 0;
for (long long t = 0; t < n; t++) {
long long a;
cin >> a;
if (t == 0) sum = a;
if (t != 0) sum = prev + a;
if (sum * prev >= 0 && t != 0) {
cont += abs(sum) + 1;
if (prev < 0) sum = 1;
if (prev > 0) sum = -1;
}
prev = sum;
}
cout << cont << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
s = [sum(a[0:i+1]) for i in range(n)]
count = 0
total_delta = 0
if s[0] == 0:
delta = -1 * (s[1] // abs(s[1]))
total_delta += delta
count += 1
for i in range(1, n):
sign = (s[i-1] + total_delta) // abs(s[i-1] + total_delta)
if (s[i] + total_delta) * sign > 0 :
delta = (sign * -1) - (s[i] + total_delta)
total_delta += delta
count += abs(delta)
elif (s[i] + total_delta) == 0:
total_delta += sign * -1
count += 1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
import sys
#from operator import itemgetter
sysread = sys.stdin.buffer.readline
read = sys.stdin.buffer.read
#from heapq import heappop, heappush
#from collections import defaultdict
sys.setrecursionlimit(10**7)
#import math
#from itertools import product, accumulate, combinations, product
#import bisect
import numpy as np
#from copy import deepcopy
#from collections import deque
#from decimal import Decimal
#from numba import jit
INF = 1 << 50
EPS = 1e-8
def run():
n, *A = map(int, read().split())
v = 0
acum = []
for a in A:
v += a
acum.append(v)
# greedy
cums = 0
count = 0
if not A[0]:
V = 1
else:
V = A[0] // abs(A[0])
for a in acum[1:]:
#print(a, '---------')
V *= -1
if (a + cums) * V > 0:
continue
else:
update = abs(a + cums) + 1
cums += (update) * V
count += update
#print(V, cums, count)
print(count)
if __name__ == "__main__":
run()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long cal(int b0, int n, long long* a) {
long long b[n], ans = 0;
b[0] = b0;
for (int i = 1; i < n; i++) {
b[i] = b[i - 1] + a[i];
if (b[i] == 0) {
ans++;
b[i] = -1 * b[i - 1] / b[i - 1];
}
if (a[i] * b[i - 1] > 0 || (abs(a[i]) - abs(b[i - 1])) < 0) {
ans += abs(a[i] + b[i - 1]) + 1;
b[i] = -1 * b[i - 1] / b[i - 1];
}
}
return ans;
}
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] != 0) {
cout << cal(a[0], n, a) << endl;
} else {
cout << (cal(1, n, a) > cal(-1, n, a) ? cal(1, n, a) : cal(-1, n, a))
<< endl;
return 0;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int ans = INT_MAX, res, standard, n, a[100000], sum;
int get_sign(int x) {
if (0 < x)
return 1;
else if (x < 0)
return -1;
else
return 0;
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
res = 0, standard = 1, sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (standard != get_sign(sum)) {
int add = abs(sum) + 1;
res += add;
if (sum > 0)
sum -= add;
else if (sum < 0)
sum += add;
}
standard *= (-1);
}
ans = min(ans, res);
res = 0, standard = -1, sum = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (standard != get_sign(sum)) {
int add = abs(sum) + 1;
res += add;
if (sum > 0)
sum -= add;
else if (sum < 0)
sum += add;
}
standard *= (-1);
}
ans = min(ans, res);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import functools
n = int(input())
a = list(map(int, input().split()))
r = a[0]
@functools.lru_cache()
def memo(n):
global r
cnt = 0
for i in range(1,n):
if r>0:
if r+a[i]<0:
r+=a[i]
else:
cnt += a[i] +r +1
r = -1
elif r<0:
if r+a[i]>0:
r+=a[i]
else:
cnt += -a[i] - r+1
r = 1
return cnt
print(memo(n)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
def check1(a):
sum = 0
for i in range(len(a)):
if(i % 2 == 0):
sum += a[i]
if(sum >= 0):
return (i, -abs(sum)-1)
else:
sum += a[i]
if(sum <= 0):
return (i, abs(sum)+1)
return True
def check2(a):
sum = 0
for i in range(len(a)):
if(i % 2 == 0):
sum += a[i]
if(sum <= 0):
return (i, abs(sum)+1)
else:
sum += a[i]
if(sum >= 0):
return (i, -abs(sum)-1)
return True
n = input()
b = input().split()
a = [int(b[i]) for i in range(len(b))]
a2 = list(a)
ans1 = 0
ans2 = 0
while(True):
c = check1(a)
if(c == True):
break
a[c[0]] += c[1]
ans1 += abs(c[1])
while(True):
c = check2(a2)
if(check2(a2) == True):
break
a2[c[0]] += c[1]
ans2 += abs(c[1])
print(ans1) if(ans1<ans2) else print(ans2) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int N;
cin>>N;
vector<int> data(N);
for(int i=0;i<N;i++)cin>>data[i];
int count=0;
int ans=data[0];
int saisyo;
for(int i=1;i<N;i++){
ans+=data[i];
if(i%2==0){
while(ans<=0){
ans++;
count++;
}
}else{
while(ans>=0){
ans--;
count++;
}
}
}
saisyo=count;
count=0;
ans=data[0];
while(ans>=0){
ans--;
count++
}
for(int i=0;i<N;i++){
ans+=data[i];
if(i%2!=0){
while(ans<=0){
ans++;
count++;
}
}else{
while(ans>=0){
ans--;
count++;
}
}
}
saisyo=min(saisyo,count);
cout<<saisyo<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #![allow(unused_macros)]
#![allow(unused_mut)]
#![allow(non_snake_case)]
#![allow(unused_variables)]
#![allow(unused_imports)]
//
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
//
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
let mut next = || { iter.next().unwrap() };
input_inner!{next, $($r)*}
};
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let mut $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
macro_rules! max {
($x: expr) => ($x);
($x: expr, $($y: expr),+) => (::std::cmp::max($x, max!( $($y),+)));
}
macro_rules! min {
($x: expr) => ($x);
($x: expr, $($y: expr),+) => (::std::cmp::min($x, min!( $($y),+)));
}
// solution
use std::cmp;
use std::collections::{HashMap, HashSet, BTreeMap, BTreeSet};
fn main() {
input! {
n: usize,
a: [i64; n],
}
let mut sum1 = 0;
let mut sum2 = 0;
let mut count1 = 0;
let mut count2 = 0;
let mut sign1: i64 = 1;
let mut sign2: i64 = -1;
for aa in a.iter() {
sum1 += aa;
sum2 += aa;
if sign1*sum1 <= 0 {
count1 += sum1.abs() + sign1.abs();
sum1 = sign1;
}
if sign2*sum2 <= 0 {
count2 += sum2.abs() + sign2.abs();
sum2 = sign2;
}
sign1 = sign1 - 2*sign1;
sign2 = sign2 - 2*sign2;
}
println!("{}", cmp::min(count1, count2));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
s = [ sum(a[0:i+1]) for i in range(n)]
s2 = [ s[i]*(-1) for i in range(n)]
al = [(-1)**i for i in range(n)]
c1 = 0
for i in range(n):
if s[i]*al[i] <= 0:
c1 = c1 - s[i]*al[i] + 1
s = [s[j] if j <= i-1 else s[j] + (s[i])*al[i] + al[i] for j in range(n)]
c2 = 0
for i in range(n):
if s2[i]*al[i] <= 0:
c2 = c2 - s2[i]*al[i] + 1
s2 = [s2[j] if j <= i-1 else s2[j] - (s2[i])*al[i] + al[i] for j in range(n)]
print(min(c1,c2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a[100050];
int main() {
int n;
scanf("%d", &n);
int cnt1 = 0, cnt2 = 0;
for (int i = 0; i < n; i++) scanf("%d", &a[i]);
int lazy1 = 0, lazy2 = 0;
for (int i = 0; i < n; i++) {
int sum1 = 0, sum2 = 0;
for (int j = 0; j <= i; j++) {
sum1 += a[j];
sum2 = sum1;
}
sum1 += lazy1;
sum2 += lazy2;
if (i % 2 == 0 && sum1 <= 0) {
lazy1 += 1 - sum1;
cnt1 += 1 - sum1;
}
if (i % 2 == 0 && sum2 >= 0) {
lazy2 -= 1 + sum2;
cnt2 += sum2 + 1;
}
if (i % 2 == 1 && sum1 >= 0) {
lazy1 -= 1 + sum1;
cnt1 += sum1 + 1;
}
if (i % 2 == 1 && sum2 <= 0) {
lazy2 += 1 - sum2;
cnt2 += 1 - sum2;
}
}
printf("%d\n", min(cnt1, cnt2));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
long long input[n];
for (long long i = 0; i < n; i++) cin >> input[i];
long long pre, aft, result = 0;
pre = input[0];
for (long long i = 1; i < n; i++) {
aft = pre + input[i];
if (aft == 0) {
if (pre < 0) {
aft = 1;
} else
aft = -1;
result += 1;
}
if (aft > 0) {
if (pre > 0) {
aft = -1;
result += (2 * abs(input[i]) + 1);
}
}
if (aft < 0) {
if (pre < 0) {
aft = 1;
result += (2 * abs(input[i]) + 1);
}
}
pre = aft;
}
cout << result << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
long long s[maxn];
long long ans[maxn];
int main() {
int n, j;
cin >> n;
long long sum = 0;
for (int i = 1; i <= n; i++) {
cin >> s[i];
}
if (s[1]) {
for (int i = 1; i < n; i++) {
ans[i] = ans[i - 1] + s[i];
if (ans[i] > 0) {
if (s[i + 1] >= 0) {
sum += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
} else {
if (abs(s[i + 1]) > ans[i]) {
} else {
sum += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
}
}
} else if (ans[i] < 0) {
if (s[i + 1] > 0) {
if (abs(ans[i]) < s[i + 1]) {
} else {
sum += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
} else {
sum += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
}
}
cout << sum << endl;
} else if (!s[1]) {
sum = 0;
long long anss = 0;
ans[1] = 1;
s[2] = -2;
sum += 3;
for (int i = 2; i < n; i++) {
ans[i] = ans[i - 1] + s[i];
if (ans[i] > 0) {
if (s[i + 1] >= 0) {
sum += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
} else {
if (abs(s[i + 1]) > ans[i]) {
} else {
sum += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
}
}
} else if (ans[i] < 0) {
if (s[i + 1] > 0) {
if (abs(ans[i]) < s[i + 1]) {
} else {
sum += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
} else {
sum += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
}
}
ans[1] = -1;
s[2] = 2;
anss += 3;
for (int i = 2; i < n; i++) {
ans[i] = ans[i - 1] + s[i];
if (ans[i] > 0) {
if (s[i + 1] >= 0) {
anss += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
} else {
if (abs(s[i + 1]) > ans[i]) {
} else {
anss += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
}
}
} else if (ans[i] < 0) {
if (s[i + 1] > 0) {
if (abs(ans[i]) < s[i + 1]) {
} else {
anss += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
} else {
anss += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
}
}
cout << min(anss, sum) << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
static std::uint64_t solve(const std::vector<int>& va, int initSum,
std::uint64_t initCnt = 0) {
int sum = initSum;
std::uint64_t cnt = initCnt;
for (std::remove_reference<decltype(va)>::type::size_type i = 1;
i < va.size(); i++) {
auto nextSum = sum + va[i];
if (nextSum >= 0 && sum > 0) {
cnt += nextSum + 1;
sum = -1;
} else if (nextSum <= 0 && sum < 0) {
cnt += -nextSum + 1;
sum = 1;
} else {
sum = nextSum;
}
}
return cnt;
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int n;
std::cin >> n;
std::vector<int> va(n);
for (auto&& e : va) {
std::cin >> e;
}
std::uint64_t initCnt = 0;
if (va[0] == 0) {
va[0] = 1;
initCnt++;
}
std::cout << std::min(
solve(va, va[0], initCnt),
solve(va, va[0] > 0 ? -1 : 1, std::abs(va[0]) + 1 + initCnt))
<< std::endl;
return EXIT_SUCCESS;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args){
Scanner io = new Scanner(System.in);
int n = io.nextInt();
int[] a = new int[n+1];
for(int i=1;i<=n;i++){
a[i] = io.nextInt();
}
// + -
int sum = 0;
int now=0;
int border = 1;
int end = 0;
int ans_p=0;
for(int i=1;i<=n;i++){
sum += a[i];
end = border-sum;
if(border>0){
if(now<end){
ans_p += Math.abs(now-end);
now = end;
}
}else{
if(now>end){
ans_p += Math.abs(now-end);
now = end;
}
}
border = -border;
}
//- +
sum=0;
now=0;
border = -1;
end = 0;
int ans_m=0;
for(int i=1;i<=n;i++){
sum += a[i];
end = border-sum;
if(border>0){
if(now<end){
ans_m += Math.abs(now-end);
now = end;
}
}else{
if(now>end){
ans_m += Math.abs(now-end);
now = end;
}
}
border = -border;
}
System.out.println(Math.min(ans_p,ans_m));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
# Here your code
N = int(input())
a = [int(i) for i in input().split()]
result_1 = 0
before_sum =a[0]
if a[0] == 0:
before_sum = 1
after_sum =a[0]
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_1 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_1 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_1 += 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
if a[0] < 0:
before_sum = 1
elif a[0] >= 0:
before_sum = -1
after_sum =a[0]
result_2 = 1 + abs(before_sum)
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_2 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_2 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_2 += 1
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
print(min(result_1,result_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
sa = input().split()
a = [0 for i in range(n)]
sumeven = 0
sumodd = 0
for i,sai in enumerate(sa):
a[i] = int(sai)
if i % 2 == 0:
sumeven += a[i]
else:
sumodd += a[i]
ret = 0
sm = 0
for i,ai in enumerate(a):
if i % 2 == 1:
ret += max(-sm+1-ai,0)
sm += max(ai, -sm+1)
else:
ret += max(sm+1 + ai, 0)
sm += min(ai, -(sm+1))
ret2 = 0
sm = 0
for i,ai in enumerate(a):
if i % 2 == 0:
ret2 += max(-sm+1-ai,0)
sm += max(ai, -sm+1)
else:
ret2 += max(sm+1 + ai, 0)
sm += min(ai, -(sm+1))
print(max(ret,ret2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, s;
int count = 0;
vector<int> a;
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> s;
a.emplace_back(s);
}
if (a[0] == 0) {
count = count + 1;
}
int sum = a[0];
for (int i = 0; i < n - 1; ++i) {
if (i > 0) {
sum = sum + a[i];
}
if (sum * (sum + a[i + 1]) >= 0 && abs(sum) >= abs(sum + a[i + 1])) {
count = count + abs(sum + a[i + 1]) + 1;
if (sum + a[i + 1] < 0) {
sum = sum + abs(sum + a[i + 1]) + 1;
} else {
sum = sum - abs(sum + a[i + 1]) - 1;
}
}
if (sum * (sum + a[i + 1]) >= 0 && abs(sum) < abs(sum + a[i + 1])) {
count = count + abs(sum) + 1;
if (sum < 0) {
sum = sum + abs(sum) + 1;
} else {
sum = sum - abs(sum) - 1;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | p :: Int -> Int -> [Int] -> Int
p n x (y:[])
| x + y >= 0 = n+x+y+1
| otherwise = n
p n x (y:ys)
| x + y >= 0 = m (n+x+y+1) (-1) ys
| otherwise = m n (x+y) ys
m :: Int -> Int -> [Int] -> Int
m n x (y:[])
| x + y <= 0 = n-(x+y)+1
| otherwise = n
m n x (y:ys)
| x + y <= 0 = p (n-(x+y)+1) 1 ys
| otherwise = p n (x+y) ys
solve :: [Int] -> Int
solve (x:xs)
| x /= 0 = min (m 0 x xs) (p 0 x xs)
| x == 0 = min (p 1 (x+1) xs) (m 1 (x-1) xs)
main = getContents >>= print . solve . map read . words . last . lines |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
unsigned long long n;
cin >> n;
vector<long long> a(n);
for (unsigned long long i = 0; i < n; ++i) cin >> a[i];
unsigned long long op = 0;
long long sum = a[0];
for (unsigned long long i = 1; i < n; ++i) {
if (sum > 0) {
sum += a[i];
while (sum >= 0) {
++op;
--sum;
}
} else {
sum += a[i];
while (sum <= 0) {
++op;
++sum;
}
}
}
cout << op << endl;
return EXIT_SUCCESS;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a_lst = [int(x) for x in input().split()]
b_lst = a_lst
def my_sign(num):
return (num > 0) - (num < 0)
sum = 0
cnt_p = 0
cnt_n = 0
sum_lst = []
sum2_lst = []
for i in range(N):
if i == 0:
if a_lst[i] == 0:
a_lst[i] = 1
cnt_p += 1
sum_lst.append(a_lst[i])
else:
sum_lst.append(a_lst[i] + sum_lst[i - 1])
if my_sign(sum_lst[i]) == my_sign(sum_lst[i - 1]) or my_sign(sum_lst[i]) == 0:
cnt_p += max(-my_sign(sum_lst[i - 1]), sum_lst[i]) - min(-my_sign(sum_lst[i - 1]), sum_lst[i])
a_lst[i] += -my_sign(sum_lst[i - 1]) - sum_lst[i]
sum_lst[i] = -my_sign(sum_lst[i - 1])
for i in range(N):
if i == 0:
if b_lst[i] == 0:
b_lst[i] = -1
cnt_n += 1
sum2_lst.append(b_lst[i])
else:
sum2_lst.append(b_lst[i] + sum2_lst[i - 1])
if my_sign(sum2_lst[i]) == my_sign(sum2_lst[i - 1]) or my_sign(sum2_lst[i]) == 0:
cnt_n += max(-my_sign(sum2_lst[i - 1]), sum2_lst[i]) - min(-my_sign(sum2_lst[i - 1]), sum2_lst[i])
b_lst[i] += -my_sign(sum2_lst[i - 1]) - sum2_lst[i]
sum2_lst[i] = -my_sign(sum2_lst[i - 1])
print(min(cnt_p, cnt_n))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <typename T1, typename T2>
inline void chmin(T1& a, T2 b) {
if (a > b) a = b;
}
template <typename T1, typename T2>
inline void chmax(T1& a, T2 b) {
if (a < b) a = b;
}
using namespace std;
std::mt19937 mt((long long)time(0));
long long dx[4] = {0, 1, 0, -1};
long long dy[4] = {1, 0, -1, 0};
using Weight = long long;
using Flow = long long;
struct Edge {
long long src, dst;
Weight weight;
Flow cap;
Edge() : src(0), dst(0), weight(0) {}
Edge(long long s, long long d, Weight w) : src(s), dst(d), weight(w) {}
};
using Edges = std::vector<Edge>;
using Graph = std::vector<Edges>;
using Array = std::vector<Weight>;
using Matrix = std::vector<Array>;
void add_edge(Graph& g, long long a, long long b, Weight w = 1) {
g[a].emplace_back(a, b, w);
g[b].emplace_back(b, a, w);
}
void add_arc(Graph& g, long long a, long long b, Weight w = 1) {
g[a].emplace_back(a, b, w);
}
struct uf_tree {
std::vector<long long> parent;
long long __size;
uf_tree(long long size_) : parent(size_, -1), __size(size_) {}
void unite(long long x, long long y) {
if ((x = find(x)) != (y = find(y))) {
if (parent[y] < parent[x]) std::swap(x, y);
parent[x] += parent[y];
parent[y] = x;
__size--;
}
}
bool is_same(long long x, long long y) { return find(x) == find(y); }
long long find(long long x) {
return parent[x] < 0 ? x : parent[x] = find(parent[x]);
}
long long size(long long x) { return -parent[find(x)]; }
long long size() { return __size; }
};
template <signed M, unsigned T>
struct mod_int {
constexpr static signed MODULO = M;
constexpr static unsigned TABLE_SIZE = T;
signed x;
mod_int() : x(0) {}
mod_int(long long y)
: x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {}
mod_int(signed y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {}
mod_int& operator+=(const mod_int& rhs) {
if ((x += rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int& operator-=(const mod_int& rhs) {
if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int& operator*=(const mod_int& rhs) {
x = static_cast<signed>(1LL * x * rhs.x % MODULO);
return *this;
}
mod_int& operator/=(const mod_int& rhs) {
x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO);
return *this;
}
mod_int operator-() const { return mod_int(-x); }
mod_int operator+(const mod_int& rhs) const { return mod_int(*this) += rhs; }
mod_int operator-(const mod_int& rhs) const { return mod_int(*this) -= rhs; }
mod_int operator*(const mod_int& rhs) const { return mod_int(*this) *= rhs; }
mod_int operator/(const mod_int& rhs) const { return mod_int(*this) /= rhs; }
bool operator<(const mod_int& rhs) const { return x < rhs.x; }
mod_int inv() const {
assert(x != 0);
if (x <= static_cast<signed>(TABLE_SIZE)) {
if (_inv[1].x == 0) prepare();
return _inv[x];
} else {
signed a = x, b = MODULO, u = 1, v = 0, t;
while (b) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return mod_int(u);
}
}
mod_int pow(long long t) const {
assert(!(x == 0 && t == 0));
mod_int e = *this, res = mod_int(1);
for (; t; e *= e, t >>= 1)
if (t & 1) res *= e;
return res;
}
mod_int fact() {
if (_fact[0].x == 0) prepare();
return _fact[x];
}
mod_int inv_fact() {
if (_fact[0].x == 0) prepare();
return _inv_fact[x];
}
mod_int choose(mod_int y) {
assert(y.x <= x);
return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact();
}
static mod_int _inv[TABLE_SIZE + 1];
static mod_int _fact[TABLE_SIZE + 1];
static mod_int _inv_fact[TABLE_SIZE + 1];
static void prepare() {
_inv[1] = 1;
for (long long i = 2; i <= (long long)TABLE_SIZE; ++i) {
_inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO;
}
_fact[0] = 1;
for (unsigned i = 1; i <= TABLE_SIZE; ++i) {
_fact[i] = _fact[i - 1] * signed(i);
}
_inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv();
for (long long i = (long long)TABLE_SIZE - 1; i >= 0; --i) {
_inv_fact[i] = _inv_fact[i + 1] * (i + 1);
}
}
};
template <signed M, unsigned F>
std::ostream& operator<<(std::ostream& os, const mod_int<M, F>& rhs) {
return os << rhs.x;
}
template <signed M, unsigned F>
std::istream& operator>>(std::istream& is, mod_int<M, F>& rhs) {
long long s;
is >> s;
rhs = mod_int<M, F>(s);
return is;
}
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1];
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1];
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1];
template <signed M, unsigned F>
bool operator==(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
return lhs.x == rhs.x;
}
template <long long M, unsigned F>
bool operator!=(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
return !(lhs == rhs);
}
const signed MF = 1000010;
const signed MOD = 1000000007;
using mint = mod_int<MOD, MF>;
mint binom(long long n, long long r) {
return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r);
}
mint fact(long long n) { return mint(n).fact(); }
mint inv_fact(long long n) { return mint(n).inv_fact(); }
template <typename T, typename E>
struct SegmentTree {
typedef function<T(T, T)> F;
typedef function<T(T, E)> G;
typedef function<E(E, E)> H;
typedef function<E(E, long long)> P;
long long n;
F f;
G g;
H h;
P p;
T d1;
E d0;
vector<T> dat;
vector<E> laz;
SegmentTree(
long long n_, F f, G g, H h, T d1, E d0, vector<T> v = vector<T>(),
P p = [](E a, long long b) { return a; })
: f(f), g(g), h(h), d1(d1), d0(d0), p(p) {
init(n_);
if (n_ == (long long)v.size()) build(n_, v);
}
void init(long long n_) {
n = 1;
while (n < n_) n *= 2;
dat.clear();
dat.resize(2 * n - 1, d1);
laz.clear();
laz.resize(2 * n - 1, d0);
}
void build(long long n_, vector<T> v) {
for (long long i = 0; i < n_; i++) dat[i + n - 1] = v[i];
for (long long i = n - 2; i >= 0; i--)
dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
}
inline void eval(long long len, long long k) {
if (laz[k] == d0) return;
if (k * 2 + 1 < n * 2 - 1) {
laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]);
laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]);
}
dat[k] = g(dat[k], p(laz[k], len));
laz[k] = d0;
}
T update(long long a, long long b, E x, long long k, long long l,
long long r) {
eval(r - l, k);
if (r <= a || b <= l) return dat[k];
if (a <= l && r <= b) {
laz[k] = h(laz[k], x);
return g(dat[k], p(laz[k], r - l));
}
return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2),
update(a, b, x, k * 2 + 2, (l + r) / 2, r));
}
T update(long long a, long long b, E x) { return update(a, b, x, 0, 0, n); }
T query(long long a, long long b, long long k, long long l, long long r) {
eval(r - l, k);
if (r <= a || b <= l) return d1;
if (a <= l && r <= b) return dat[k];
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return f(vl, vr);
}
T query(long long a, long long b) { return query(a, b, 0, 0, n); }
};
class compress {
public:
static const long long MAP = 10000000;
map<long long, long long> zip;
long long unzip[MAP];
compress(vector<long long>& x) {
sort(x.begin(), x.end());
x.erase(unique(x.begin(), x.end()), x.end());
for (long long i = 0; i < x.size(); i++) {
zip[x[i]] = i;
unzip[i] = x[i];
}
}
};
unsigned euclidean_gcd(unsigned a, unsigned b) {
while (1) {
if (a < b) swap(a, b);
if (!b) break;
a %= b;
}
return a;
}
template <class T>
struct CumulativeSum2D {
vector<vector<T>> data;
CumulativeSum2D(long long W, long long H)
: data(W + 1, vector<long long>(H + 1, 0)) {}
void add(long long x, long long y, T z) {
++x, ++y;
if (x >= data.size() || y >= data[0].size()) return;
data[x][y] += z;
}
void build() {
for (long long i = 1; i < data.size(); i++) {
for (long long j = 1; j < data[i].size(); j++) {
data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];
}
}
}
T query(long long sx, long long sy, long long gx, long long gy) {
return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);
}
};
long long nC2(long long n) { return n * (n - 1) / 2; }
class node {
public:
long long depth;
long long num;
node(long long d, long long n) {
depth = d;
num = n;
}
};
CumulativeSum2D<long long> sumB(4001, 4001);
template <class T>
struct CumulativeSum {
vector<T> data;
CumulativeSum(long long sz) : data(sz, 0){};
void add(long long k, T x) { data[k] += x; }
void build() {
for (long long i = 1; i < data.size(); i++) {
data[i] += data[i - 1];
}
}
T query(long long k) {
if (k < 0) return (0);
return (data[min(k, (long long)data.size() - 1)]);
}
T query(long long left, long long right) {
return query(right) - query(left - 1);
}
};
std::vector<bool> IsPrime;
void sieve(size_t max) {
if (max + 1 > IsPrime.size()) {
IsPrime.resize(max + 1, true);
}
IsPrime[0] = false;
IsPrime[1] = false;
for (size_t i = 2; i * i <= max; ++i)
if (IsPrime[i])
for (size_t j = 2; i * j <= max; ++j) IsPrime[i * j] = false;
}
vector<int64_t> divisor(int64_t n) {
vector<int64_t> ret;
for (int64_t i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(begin(ret), end(ret));
return (ret);
}
long long binary_search(function<bool(long long)> isOk, long long ng,
long long ok) {
while (abs(ok - ng) > 1) {
long long mid = (ok + ng) / 2;
if (isOk(mid))
ok = mid;
else
ng = mid;
}
return ok;
}
std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s) {
long long n = g.size();
const Weight inf = std::numeric_limits<Weight>::max() / 8;
Edges es;
for (long long i = 0; i < n; i++)
for (auto& e : g[i]) es.emplace_back(e);
std::vector<Weight> dist(n, inf);
dist[s] = 0;
bool negCycle = false;
for (long long i = 0;; i++) {
bool update = false;
for (auto& e : es) {
if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
dist[e.dst] = dist[e.src] + e.weight;
update = true;
}
}
if (!update) break;
if (i > n) {
negCycle = true;
break;
}
}
return std::make_pair(dist, !negCycle);
}
std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s,
long long d) {
long long n = g.size();
const Weight inf = std::numeric_limits<Weight>::max() / 8;
Edges es;
for (long long i = 0; i < n; i++)
for (auto& e : g[i]) es.emplace_back(e);
std::vector<Weight> dist(n, inf);
dist[s] = 0;
bool negCycle = false;
for (long long i = 0; i < n * 2; i++) {
bool update = false;
for (auto& e : es) {
if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
dist[e.dst] = dist[e.src] + e.weight;
update = true;
if (e.dst == d && i == n * 2 - 1) negCycle = true;
}
}
if (!update) break;
}
return std::make_pair(dist, !negCycle);
}
vector<long long> Manachar(string S) {
long long len = S.length();
vector<long long> R(len);
long long i = 0, j = 0;
while (i < S.size()) {
while (i - j >= 0 && i + j < S.size() && S[i - j] == S[i + j]) ++j;
R[i] = j;
long long k = 1;
while (i - k >= 0 && i + k < S.size() && k + R[i - k] < j)
R[i + k] = R[i - k], ++k;
i += k;
j -= k;
}
return R;
}
std::vector<long long> tsort(const Graph& g) {
long long n = g.size(), k = 0;
std::vector<long long> ord(n), in(n);
for (auto& es : g)
for (auto& e : es) in[e.dst]++;
std::queue<long long> q;
for (long long i = 0; i < n; ++i)
if (in[i] == 0) q.push(i);
while (q.size()) {
long long v = q.front();
q.pop();
ord[k++] = v;
for (auto& e : g[v]) {
if (--in[e.dst] == 0) {
q.push(e.dst);
}
}
}
return *std::max_element(in.begin(), in.end()) == 0
? ord
: std::vector<long long>();
}
std::vector<Weight> dijkstra(const Graph& g, long long s) {
const Weight INF = std::numeric_limits<Weight>::max() / 8;
using state = std::tuple<Weight, long long>;
std::priority_queue<state> q;
std::vector<Weight> dist(g.size(), INF);
dist[s] = 0;
q.emplace(0, s);
while (q.size()) {
Weight d;
long long v;
std::tie(d, v) = q.top();
q.pop();
d *= -1;
if (dist[v] < d) continue;
for (auto& e : g[v]) {
if (dist[e.dst] > dist[v] + e.weight) {
dist[e.dst] = dist[v] + e.weight;
q.emplace(-dist[e.dst], e.dst);
}
}
}
return dist;
}
Matrix WarshallFloyd(const Graph& g) {
auto const INF = std::numeric_limits<Weight>::max() / 8;
long long n = g.size();
Matrix d(n, Array(n, INF));
for (long long i = (0); i < (long long)(n); i++) d[i][i] = 0;
for (long long i = (0); i < (long long)(n); i++)
for (auto& e : g[i]) d[e.src][e.dst] = std::min(d[e.src][e.dst], e.weight);
for (long long k = (0); k < (long long)(n); k++)
for (long long i = (0); i < (long long)(n); i++)
for (long long j = (0); j < (long long)(n); j++) {
if (d[i][k] != INF && d[k][j] != INF) {
d[i][j] = std::min(d[i][j], d[i][k] + d[k][j]);
}
}
return d;
}
const long long BLACK = 1, WHITE = 0;
bool isValid(vector<vector<long long>>& mapData, long long gyo,
long long retu) {
bool f = true;
for (long long i = (0); i < (long long)(gyo); i++) {
for (long long j = (0); j < (long long)(retu); j++) {
long long colorCnt = 0;
if (j > 0 && mapData[i][j] == mapData[i][j - 1]) {
colorCnt++;
}
if (i > 0 && mapData[i][j] == mapData[i - 1][j]) {
colorCnt++;
}
if (i < gyo - 1 && mapData[i][j] == mapData[i + 1][j]) {
colorCnt++;
}
if (j < retu - 1 && mapData[i][j] == mapData[i][j + 1]) {
colorCnt++;
}
if (colorCnt > 1) {
f = false;
}
}
}
return f;
}
void getNext(long long nowX, long long nowY, long long* pOutX, long long* pOutY,
long long gyo, long long retu) {
if (nowX == retu - 1) {
*pOutY = nowY + 1;
*pOutX = 0;
return;
}
*pOutX = nowX + 1;
*pOutY = nowY;
}
void dfs(vector<vector<long long>> mapData, long long nowX, long long nowY,
long long gyo, long long retu, long long* outCnt) {
if (nowX == retu - 1 && nowY == gyo - 1) {
mapData[nowY][nowX] = BLACK;
if (isValid(mapData, gyo, retu)) {
*outCnt = *outCnt + 1;
}
mapData[nowY][nowX] = WHITE;
if (isValid(mapData, gyo, retu)) {
*outCnt = *outCnt + 1;
}
return;
}
mapData[nowY][nowX] = BLACK;
long long nextX, nextY;
getNext(nowX, nowY, &nextX, &nextY, gyo, retu);
dfs(mapData, nextX, nextY, gyo, retu, outCnt);
mapData[nowY][nowX] = WHITE;
getNext(nowX, nowY, &nextX, &nextY, gyo, retu);
dfs(mapData, nextX, nextY, gyo, retu, outCnt);
}
void dec(map<long long, long long>& ma, long long a) {
ma[a]--;
if (ma[a] == 0) {
ma.erase(a);
}
}
long long N;
long long solve(long long ans, vector<long long> A, vector<long long> cu) {
for (long long i = (0); i < (long long)(N); i++) {
if (cu[i] == 0) {
ans++;
if (i == 0) {
if (cu[i + 1] < 0) {
cu[i] = 1;
} else {
cu[i] = -1;
}
} else {
if (cu[i - 1] < 0) {
cu[i] = 1;
} else {
cu[i] = -1;
}
}
}
if (i == N - 1) {
break;
}
if (cu[i] < 0 == cu[i + 1] < 0) {
if (cu[i + 1] > 0) {
ans += cu[i + 1] + 1;
cu[i + 1] -= cu[i + 1] + 1;
} else {
ans += -cu[i + 1] + 1;
cu[i + 1] += -cu[i + 1] + 1;
}
}
cu[i + 2] = cu[i + 1] + A[i + 2];
}
return ans;
}
signed main() {
cin >> N;
vector<long long> A(N + 2), A2;
vector<long long> cu(N + 2);
long long su = 0;
for (long long i = (0); i < (long long)(N); i++) {
cin >> A[i];
su += A[i];
cu[i] = su;
}
A2 = A;
long long ans1 = 0, ans2 = 0;
ans1 = solve(ans1, A, cu);
if (A[0] < 0) {
ans2 = -A[0] + 1;
A[0] = 1;
} else {
ans2 = A[0] + 1;
A[0] = -1;
}
su = 0;
for (long long i = (0); i < (long long)(N); i++) {
su += A2[i];
cu[i] = su;
}
ans2 = solve(ans2, A2, cu);
cout << min(ans1, ans2) << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
vector<int> a1(n);
vector<int> a2(n);
vector<long long> sum1(n);
vector<long long> sum2(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
a1 = a;
a2 = a;
int ans1 = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
if (i == 0)
sum1[i] = a1[i];
else
sum1[i] = sum1[i - 1] + a1[i];
if (i % 2 == 0 && sum1[i] <= 0) {
a1[i] += (1 - sum1[i]);
ans1 += (1 - sum1[i]);
sum1[i] += (1 - sum1[i]);
} else if (i % 2 == 1 && sum1[i] >= 0) {
a1[i] -= (sum1[i] + 1);
ans1 += (sum1[i] + 1);
sum1[i] -= (1 + sum1[i]);
}
}
if (sum1[n - 1] == 0) ans1++;
for (int i = 0; i < n; i++) {
if (i == 0)
sum2[i] = a2[i];
else
sum2[i] = sum2[i - 1] + a2[i];
if (i % 2 == 0 && sum2[i] >= 0) {
a2[i] -= (1 + sum2[i]);
ans2 += (sum2[i] + 1);
sum2[i] -= (1 + sum2[i]);
} else if (i % 2 == 1 && sum2[i] <= 0) {
a2[i] += (1 - sum2[i]);
ans2 += (1 - sum2[i]);
sum2[i] += (1 - sum2[i]);
}
}
if (sum2[n - 1] == 0) ans2++;
if (ans1 >= ans2)
cout << ans2 << endl;
else
cout << ans1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
ll N = 0;
cin >> N;
vector<ll> A(N, 0);
for (ll i = 0; i < N; i++) {
cin >> A.at(i);
}
ll ans = 0;
ll ansa;
vector<ll> sum(N, 0);
vector<ll> suma(N, 0);
if (A.at(0)) {
sum.at(0) = A.at(0);
ansa = abs(A.at(0) + (abs(A.at(0)) / A.at(0)));
suma.at(0) = -1 * (abs(A.at(0)) / A.at(0));
} else {
ans = 1;
ansa = -1;
sum.at(0) = 1;
suma.at(0) = -1;
}
for (size_t i = 1; i < N; i++) {
sum.at(i) = sum.at(i - 1) + A.at(i);
if (sum.at(i) * sum.at(i - 1) < 0) {
continue;
} else {
ans += abs(sum.at(i) + (abs(sum.at(i - 1)) / sum.at(i - 1)));
sum.at(i) = -1 * (abs(sum.at(i - 1)) / sum.at(i - 1));
}
}
for (size_t i = 1; i < N; i++) {
suma.at(i) = suma.at(i - 1) + A.at(i);
if (suma.at(i) * suma.at(i - 1) < 0) {
continue;
} else {
ansa += abs(suma.at(i) + (abs(suma.at(i - 1)) / suma.at(i - 1)));
suma.at(i) = -1 * (abs(suma.at(i - 1)) / suma.at(i - 1));
}
}
cout << min(ans, ansa) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1000000007;
const long long mod2 = 998244353;
const long long INF = 1e18;
const long double EPS = 1e-10;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long ans = 0;
if (a[0] == 0) {
a[0] = 1;
for (int i = 0; i < (n); ++i) {
if (a[i] != 0) {
if (a[i] > 0 && i % 2 == 1) a[i] = -1;
if (a[i] < 0 && i % 2 == 0) a[i] = -1;
break;
}
}
ans++;
}
for (int i = 0; i < (n - 1); ++i) {
a[i + 1] += a[i];
if (a[i] * a[i + 1] >= 0) {
ans += abs(a[i + 1]) + 1;
if (a[i] > 0)
a[i + 1] = -1;
else
a[i + 1] = 1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
set<string> c;
map<ll, ll> mp;
const ll inf = 100000000000000000;
const ll mod = 1000000007;
const ll mod2 = 998244353;
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll c, ll d) { return c / gcd(c, d) * d; }
int main() {
ll n;
cin >> n;
vector<ll> a(n), sum(n + 1, 0);
for (int i = 0; i < n; i++) cin >> a.at(i);
for (int i = 0; i < n; i++) sum.at(i + 1) = a.at(i) + sum.at(i);
ll ans = 0, res = 0, tmp = 0;
for (int i = 2; i < n + 1; i++) {
if ((sum.at(i) + tmp > 0 && sum.at(i - 1) < 0) ||
(sum.at(i) + tmp < 0 && sum.at(i - 1) > 0))
continue;
if (sum.at(i) == 0) {
if (sum.at(i - 1) > 0) {
sum.at(i) = -1;
tmp--;
} else {
sum.at(i) = 1;
tmp++;
}
ans++;
} else if (sum.at(i - 1) < 0) {
sum.at(i) += abs(sum.at(i)) + 1;
ans += abs(sum.at(i)) + 1;
tmp += abs(sum.at(i)) + 1;
} else {
sum.at(i) -= sum.at(i) - 1;
ans += sum.at(i) + 1;
tmp -= sum.at(i) - 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
ary = gets.split.map(&:to_i)
#even > 0
sumE = ary[0]
sumO = ary[0] > 0 ? -1 : 1
ansE = 0
ansO = ary[0].abs + 1
for i in 1 .. n - 1
if sumE * (sumE + ary[i]) >= 0
if sumE > 0
ansE += (- sumE - 1 - ary[i]).abs
sumE = -1
else
ansE += (- sumE + 1 - ary[i]).abs
sumE = 1
end
else
sumE += ary[i]
end
if sumO * (sumO + ary[i]) >= 0
if sumO > 0
ansO += (- sumO - 1 - ary[i]).abs
sumO = -1
else
ansO += (- sumO + 1 - ary[i]).abs
sumO = 1
end
else
sumO += ary[i]
end
end
puts [ansE, ansO].min
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define set0(a) memset ((a), 0 , sizeof(a))
#define set1(a) memset((a),-1,sizeof (a))
#define pi pair<int, int>
#define ps pair<string, string>
#define pl pair<long, long>
#define pll pair<long long, long long>
#define vll vector<long long>
#define vl vector<long>
#define vi vector<int>
#define vs vector<string>
#define vps vector< ps >
#define vpi vector< pi >
#define vpl vector< pl >
#define vpll vector< pll >
#define flash ios_base::sync_with_stdio(false); cin.tie(NULL);
#define tc(t,T) for(long long t=0;t<T;t++)
#define rep(i,s,n,d) for(long long i=s;i<n;i=i+d)
bool sortbysec(const pll &a,
const pll &b)
{
return (a.second < b.second);
}
void func(void)
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
}
int main(){
ll n;
cin>>n;
ll a[n];
rep(i,0,n,1){
cin>>a[i];
}
ll count1=0;
if(a[0]==0){
if(a[1]>=0){
a[0]=-1;
}
else a[0]=1;
count1++;
}
ll sum[n]={};
sum[0]=a[0];
rep(i,1,n,1){
sum[i]=sum[i-1]+a[i];
}
ll sum1=a[0];
rep(i,1,n,1){
ll d=0;
ll dif=0;
if(sum1>0){
if(a[i]+sum1>=0){
d=-1;
ll s=d-sum1;
dif=abs(a[i]-s);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
else{
if(a[i]+sum1<=0){
d=1;
ll s=d-sum1;
dif=abs(a[i]-s);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
}
cout<<count1<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <string>
#include <vector>
#include <numeric>
#include <queue>
#include <unordered_map>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <sstream>
#include <stack>
#include <map>
#include <set>
#include <ios>
#include <cctype>
#include <cstdio>
#include <functional>
#include <cassert>
#define REP(i,a) for(int i = 0;i < (a);++i)
#define FOR(i,a,b) for(int i = (a);i < (b); ++i)
#define FORR(i,a,b) for(int i = (a) - 1;i >=(b);--i)
#define ALL(obj) (obj).begin(),(obj).end()
#define SIZE(obj) (int)(obj).sizeT()
#define YESNO(cond,yes,no){cout <<((cond)?(yes):(no))<<endl; }
#define SORT(list) sort(ALL((list)));
#define RSORT(list) sort((list).rbegin(),(list).rend())
#define ASSERT(cond,mes) assert(cond && mes)
using namespace std;
using ll = long long;
constexpr int MOD = 1'000'000'007;
constexpr int INF = 1'050'000'000;
template<typename T>
T round_up(const T& a, const T& b) {
return (a + (b - 1)) / b;
}
template <typename T1, typename T2>
istream& operator>>(istream& is, pair<T1, T2>& p) {
is >> p.first >> p.second;
return is;
}
template <typename T1, typename T2>
ostream& operator<<(ostream& os, pair<T1, T2>& p) {
os << p.first << p.second;
return os;
}
template <typename T>
istream& operator>>(istream& is, vector<T>& v) {
REP(i, (int)v.size())is >> v[i];
return is;
}
template <typename T>
ostream& operator<<(ostream& os, vector<T>& v) {
REP(i, (int)v.size())os << v[i] << endl;
return os;
}
template <typename T>
T clamp(T& n, T a, T b) {
if (n < a)n = a;
if (n > b)n = b;
return n;
}
template <typename T>
static T GCD(T u, T v) {
T r;
while (v != 0) {
r = u % v;
u = v;
v = r;
}
return u;
}
template <typename T>
static T LCM(T u, T v) {
return u / GCD(u, v) * v;
}
template <typename T>
static int sign(T t) {
if (t > 0)return 1;
else if (t < 0)return -1;
else return 0;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
int N;
cin >> N;
vector<int>A(N);
cin >> A;
ll s = A[0];
ll ans = 0;
//先頭が0だった時の処理
if (s == 0) {
auto it = find_if(ALL(A), [](int a) {return a != 0; });
int index = it - A.begin();
if (index % 2 == 0)s = 1;
else s = -1;
ans++;
}
FOR(i, 1, N) {
ll next = s + A[i];
if (sign(next) == 0) {
next = -sign(s);
ans += 1;
}
else if (sign(s) == sign(next)) {
ans += abs(next - (-sign(s)));
next = -sign(s);
}
s = next;
}
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long N;
cin >> N;
vector<long long> A(N);
vector<long long> A2(N);
vector<long long> A1(N);
for (long long i = 0; i < N; i++) {
cin >> A1[i];
A2[i] = A1[i];
A[i] = A1[i];
}
long long cnt1 = 0;
long long cnt2 = 0;
long long S1 = 0;
long long S2 = 0;
for (long long i = 0; i < N; i++) {
S1 += A1[i];
if (i % 2) {
if (S1 <= 0) {
A1[i] += 1 - S1;
S1 = 1;
}
} else {
if (S1 >= 0) {
A1[i] += -1 - S1;
S1 = -1;
}
}
}
for (long long i = 0; i < N; i++) {
S2 += A2[i];
if (!i % 2) {
if (S2 >= 0) {
A2[i] += 1 - S2;
S2 = 1;
}
} else {
if (S2 >= 0) {
A2[i] += -1 - S2;
S2 = -1;
}
}
}
for (long long i = 0; i < N; i++) {
cnt1 += abs(A[i] - A1[i]);
cnt2 += abs(A[i] - A2[i]);
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int sign, n, a, cnt = 0, acm = 0;
cin >> n >> a;
acm = a;
if (a >= 0)
sign = 1;
else
sign = -1;
for (int i = 1; i < n; i++) {
cin >> a;
if ((acm + a) * sign < 0) {
acm += a;
sign *= -1;
} else {
cnt += abs(acm + a) + 1;
acm = -1 * sign;
sign *= -1;
}
}
cout << cnt << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
const ll linf = 1LL << 62;
const int inf = 999999;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
ll gcd(ll a, ll b) {
if (a % b == 0)
return b;
else
gcd(b, a % b);
}
ll lcm(ll a, ll b) { return (a / gcd(a, b)) * b; }
int main() {
int n;
bool jud;
ll ans = 0;
vector<ll> v;
cin >> n;
for (int i = 0; i < n; i++) {
ll a;
cin >> a;
v.push_back(a);
}
ll a = v[0];
if (a > 0)
jud = true;
else
jud = false;
for (int i = 1; i < n; i++) {
if (jud) {
a += v[i];
if (a < 0)
jud = false;
else {
ans += abs(a) + 1;
a -= abs(a) + 1;
jud = false;
}
} else {
a += v[i];
if (a > 0)
jud = true;
else {
ans += abs(a) + 1;
a += abs(a) + 1;
jud = true;
}
}
cout << a << endl;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
#####segfunc######
def segfunc(x,y):
return x+y
def init(init_val):
#set_val
for i in range(len(init_val)):
seg[i+num-1]=init_val[i]
#built
for i in range(num-2,-1,-1) :
seg[i]=segfunc(seg[2*i+1],seg[2*i+2])
def update(k,x):
k += num-1
seg[k] = x
while k:
k = (k-1)//2
seg[k] = segfunc(seg[k*2+1],seg[k*2+2])
def query(p,q):
if q<=p:
return ide_ele
p += num-1
q += num-2
res=ide_ele
while q-p>1:
if p&1 == 0:
res = segfunc(res,seg[p])
if q&1 == 1:
res = segfunc(res,seg[q])
q -= 1
p = p//2
q = (q-1)//2
if p == q:
res = segfunc(res,seg[p])
else:
res = segfunc(segfunc(res,seg[p]),seg[q])
return res
#####単位元######
ide_ele = 0
num =2**(n-1).bit_length()
seg=[ide_ele]*(2*num - 1)
init(a)
ans_1 = 0
pre_sum = (-1) * a[0]
for i in range(n):
q_sum = query(0,i+1)
if q_sum * pre_sum >= 0:
if pre_sum < 0:
update(i, abs(pre_sum) + 1)
else:
update(i, (-1) * (pre_sum+1))
pre_sum = query(0,i+1)
for i in range(n):
ans_1 += abs(a[i] - seg[i + num - 1])
if a[0] == 0:
a[0] = 1
ans_2 = 1
else:
ans_2 = abs(a[0] * 2)
a[0] *= -1
pre_sum = (-1) * a[0]
init(a)
for i in range(n):
q_sum = query(0,i+1)
if q_sum * pre_sum >= 0:
if pre_sum < 0:
update(i, abs(pre_sum) + 1)
else:
update(i, (-1) * (pre_sum+1))
pre_sum = query(0,i+1)
for i in range(n):
ans_2 += abs(a[i] - seg[i + num - 1])
print(min(ans_1,ans_2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int s1, s2, c1, c2;
int main() {
int n, a;
scanf("%d", n);
for (int i = 1; i <= n; i++) {
scanf("%d", a);
s1 += a;
s2 += a;
if (i % 2) {
if (s1 <= 0) c1 += 1 - s1, s1 = 1;
if (s2 >= 0) c2 += 1 + s2, s2 = -1;
} else {
if (s1 >= 0) c1 += 1 + s1, s1 = -1;
if (s2 <= 0) c2 += 1 - s2, s2 = 1;
}
}
cout << min(c1, c2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 10**10
# 1 -1 1 -1...
cost1 = 0
s = 0
for i in range(n):
t = 1 if i % 2 == 0 else -1
c = 0
if i % 2 == 0:
if s + a[i] > 0:
s += a[i]
else:
c = abs(s - t)
s += c
cost1 += abs(c - a[i])
else:
if s + a[i] < 0:
s += a[i]
else:
c = abs(s - t)
s -= c
cost1 += abs(c - a[i])
cost2 = 0
s = 0
for i in range(n):
t = -1 if i % 2 == 0 else 1
c = 0
if i % 2 == 1:
if s + a[i] > 0:
s += a[i]
else:
c = abs(s - t)
s += c
cost2 += abs(c - a[i])
else:
if s + a[i] < 0:
s += a[i]
else:
c = abs(s - t)
s -= c
cost2 += abs(- c - a[i])
print(min(cost1, cost2))
# -1 1 -1 1..
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
constexpr long long inf = 1e9 + 7;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long long N;
cin >> N;
long long sum;
cin >> sum;
long long ans = 0;
for (long long n = 1; n < N; n++) {
long long A;
cin >> A;
if (sum < 0 && sum + A <= 0) {
ans += 1 - sum - A;
A = 1 - sum;
} else if (sum > 0 && sum + A >= 0) {
ans += A + 1 + sum;
A = -1 - sum;
}
sum += A;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const long long maxLL = (long long)1 << 62;
long long a[100001] = {};
long long s[100001] = {};
int main() {
long long n;
cin >> n;
long long cnt = 0;
for (long long i = 1; i <= n; i++) {
cin >> a[i];
}
for (long long i = 1; i <= n; i++) {
s[i] = s[i - 1] + a[i];
if (i > 1) {
if (s[i] == 0) {
if (s[i - 1] > 0)
s[i] = -1;
else if (s[i - 1] < 0)
s[i] = 1;
cnt += abs(s[i]) + 1;
} else if (i > 1 && s[i - 1] * s[i] > 0) {
cnt += abs(s[i]) + 1;
if (s[i] > 0)
s[i] -= abs(s[i]) + 1;
else if (s[i] < 0)
s[i] += abs(s[i]) + 1;
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool debug = false;
int main() {
int n;
long long a[100005];
long long cnt = 0;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
bool plus;
if (sum >= 0)
plus = true;
else
plus = false;
for (int i = 1; i < n; i++) {
sum += a[i];
if (debug) cout << "sum:" << sum << endl;
if (plus) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
plus = true;
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long a[100006];
long long ans = 0;
long long sum = 0;
int i;
scanf("%d", &n);
for (i = 0; i < n; i++) scanf("%lld", &a[i]);
sum = a[0];
for (i = 1; i < n; i++) {
if (sum > 0) {
if (sum + a[i] >= 0) {
ans += a[i] + sum + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (sum + a[i] <= 0) {
ans += -sum + 1 - a[i];
sum = 1;
} else {
sum += a[i];
}
}
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
using namespace std;
using ll = long long;
signed main() {
int n;
cin >> n;
ll a[n];
int count = 0;
for (ll i = 0; i < ll(n); i++) {
cin >> a[i];
}
ll total = 0;
for (ll i = 0; i <= ll(n - 2); i++) {
total += a[i];
ll total_1 = total;
if (total > 0) {
while (true) {
if (total_1 + a[i + 1] < 0) {
break;
}
a[i + 1]--;
count++;
}
} else {
while (true) {
if (total_1 + a[i + 1] > 0) {
break;
}
a[i + 1]++;
count++;
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
vector<int> a(n);
for (int i=0; i<n; i++) cin >> a[i];
int odd = 0; even = 0; sum = 0;
for (int i=0; i<n; i++){
sum += a[i];
if(i%2==0&&sum<=0){
odd += abs(sum)+1;
sum = +1;
}
else if(i%2==1&&sum>=0){
odd += abs(sum)+1;
sum = -1;
}
}
sum = 0;
for (int i=0; i<n; i++){
sum += a[i];
if (i%2==1&&sum<=0){
even += abs(sum)+1;
sum = +1;
}
else if(i%2==0&&sum>=0){
even+=abs(sum)+1;
sum=-1;
}
}
cout << min(odd,even) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from sys import stdout
printn = lambda x: stdout.write(str(x))
inn = lambda : int(input())
inl = lambda: list(map(int, input().split()))
inm = lambda: map(int, input().split())
ins = lambda : input().strip()
DBG = True # and False
BIG = 999999999
R = 10**9 + 7
def ddprint(x):
if DBG:
print(x)
n = inn()
a = inl()
ne = sum(a[::2])
no = sum(a[1::2])
p0 = (ne>no)
cnt = 0
acc = a[0]
for i in range(1,n):
if (p0 if i%2==0 else not p0):
x = max(0, 1-a[i]-acc)
cnt += x
acc += a[i]+x
else:
x = max(0, a[i]+acc+1)
cnt += x
acc += a[i]-x
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from sys import stdin
import sys
import math
n = int(input())
a = list(map(int, stdin.readline().rstrip().split()))
pair = 0
odd = 0
for i in range(0, len(a), 2):
pair += a[i]
for i in range(1, len(a), 2):
odd += a[i]
#print(odd)
#print(pair)
count = 0
current_sum = 0
for i in range(len(a)):
## odd
if i % 2 == 1 and odd > pair:
while current_sum + a[i] < 1:
a[i] += 1
count += 1
## odd
elif i % 2 == 1 and odd < pair:
while current_sum + a[i] > -1:
a[i] -= 1
count += 1
## pair
elif i % 2 == 0 and odd > pair:
while current_sum + a[i] > -1:
a[i] -= 1
count += 1
elif i % 2 == 0 and odd < pair:
while current_sum + a[i] < 1:
a[i] += 1
count += 1
else:
print("error")
current_sum += a[i]
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("-O3")
using namespace std;
void _main();
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
_main();
}
const int inf = INT_MAX / 2;
const long long infl = 1LL << 60;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
enum PosiNega { POSITIVE = 0, NEGATIVE = 1 };
int solve(int N, long long *a, PosiNega odd_posinega) {
long long ans = 0;
long long sum = 0;
PosiNega posi_nega = odd_posinega;
for (int i = 0; i < N; i++) {
sum += a[i];
if (POSITIVE == posi_nega) {
if (0 >= sum) {
ans += 1 - sum;
sum = 1;
}
posi_nega = NEGATIVE;
} else {
if (0 <= sum) {
ans += 1 + sum;
sum = -1;
}
posi_nega = POSITIVE;
}
}
return ans;
}
void _main() {
int N;
cin >> N;
long long a[N];
for (int i = 0; i < N; i++) cin >> a[i];
long long ans = min(solve(N, a, POSITIVE), solve(N, a, NEGATIVE));
cout << ans << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = (0); i < (N); ++i) {
cin >> a.at(i);
}
int ans = 0;
int S = a.at(0);
int start = 0;
while (start < N && a.at(start) == 0) {
start++;
}
if (start != 0) {
ans = start * 2 - 1;
if (start < N) {
if (a.at(start) > 0)
S = -1;
else
S = 1;
}
}
for (int i = (start + 1); i < (N); ++i) {
if (S > 0) {
S += a.at(i);
if (S >= 0) {
ans += (S + 1);
S = -1;
}
} else {
S += a.at(i);
if (S <= 0) {
ans += (-S + 1);
S = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i8 = int8_t;
using u8 = uint8_t;
using i16 = int16_t;
using u16 = uint16_t;
using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;
using f32 = float;
using f64 = double;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <typename C>
i64 SIZE(const C &c) {
return static_cast<i64>(c.size());
}
template <typename T, size_t N>
i64 SIZE(const T (&)[N]) {
return static_cast<i64>(N);
}
struct ProconInit {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
ProconInit() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(IOS_PREC);
if (AUTOFLUSH) cout << unitbuf;
}
} PROCON_INIT;
int main() {
i64 N;
cin >> N;
vector<i64> A(N);
for (i64 i = (0), ixxxx_end = (N); i < ixxxx_end; ++i) cin >> A[i];
auto solve = [&](bool pos) {
i64 cnt = 0;
i64 a = A[0];
if (pos && A[0] <= 0) a = 1 - A[0];
if (!pos && A[0] >= 0) a = A[0] + 1;
cnt += abs(A[0] - a);
i64 cum = a;
for (i64 i = 1; i <= N - 1; ++i) {
i64 nc = cum + A[i];
i64 d = 0;
if (cum > 0 && nc >= 0) d = nc + 1;
if (cum < 0 && nc <= 0) d = 1 - nc;
nc -= d;
cnt += d;
cum = nc;
}
return cnt;
};
cout << min(solve(true), solve(false)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
long long sum = a[0];
long long ans1 = 0;
for (int i = 0; i < n - 1; ++i) {
if (sum < 0) {
if (a[i + 1] + sum > 0)
sum += a[i + 1];
else {
ans1 += abs(1 - (a[i + 1] + sum));
sum = 1;
}
} else {
if (sum == 0) {
ans1++;
sum += 1;
}
if (a[i + 1] + sum < 0)
sum += a[i + 1];
else {
ans1 += abs(-1 - (a[i + 1] + sum));
sum = -1;
}
}
}
sum = a[0];
long long ans2 = 0;
for (int i = 0; i < n - 1; ++i) {
if (sum == 0) {
ans2++;
sum = -1;
continue;
}
if (sum < 0) {
if (a[i + 1] + sum > 0)
sum += a[i + 1];
else {
ans2 += abs(1 - (a[i + 1] + sum));
sum = 1;
}
} else {
if (a[i + 1] + sum < 0)
sum += a[i + 1];
else {
ans2 += abs(-1 - (a[i + 1] + sum));
sum = -1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.File;
import java.io.IOException;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Deque;
import java.util.List;
import java.util.Scanner;
public class Main {
//ABC059
public static void main(String[] args) throws IOException {
//File file = new File("input.txt");
//Scanner in = new Scanner(file);
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
int[] sum = new int[n];
int ans = 0;
for(int i = 0; i < n; i++){
a[i] = in.nextInt();
if(i == 0) sum[0] = a[0];
else sum[i] = sum[i-1] + a[i];
}
/*
for(int j = 0; j < n; j++) System.out.print(sum[j] + " ");
System.out.println();
*/
if(sum[0] == 0){
if(sum[1] > 0){
for(int i = 0; i < n; i++) sum[i]--;
ans++;
}else{
for(int i = 0; i < n; i++) sum[i]++;
ans++;
}
}
int diff_0 = 0;
for(int i = 1; i < n; i++){
sum[i] += diff_0;
if(sum[i] == 0){
if(sum[i-1] < 0){
sum[i]++;
diff_0++;
ans++;
}else{
sum[i]--;
diff_0--;
ans++;
}
}
}
/*
for(int j = 0; j < n; j++) System.out.print(sum[j] + " ");
System.out.println();
*/
int diff = 0;
for(int i = 1; i < n; i++){
sum[i] += diff;
/*
System.out.print(i + ":");
for(int j = 0; j < n; j++) System.out.print(sum[j] + " ");
System.out.println();
*/
if(sum[i-1] < 0 && sum[i] <= 0){
int d = - sum[i] + 1;
sum[i] += d;
diff += d;
ans += Math.abs(d);
}else if(sum[i-1] > 0 && sum[i] >= 0){
int d = - sum[i] - 1;
sum[i] += d;
diff += d;
ans += Math.abs(d);
}
}
/*
System.out.println();
for(int i = 0; i < n; i++) System.out.print(sum[i] + " ");
System.out.println();
*/
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> v(n);
cin >> v[0];
for (int i = (1); (i) < (n); (i)++) {
cin >> v[i];
}
int result = 0;
for (int i = (1); (i) < (n); (i)++) {
v[i] += v[i - 1];
if (v[i] * v[i - 1] >= 0) {
result += abs(v[i]) + 1;
v[i] = ((v[i - 1] > 0) ? -1 : 1);
}
}
cout << result << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x7fffffff;
const int maxn = 1e5 + 10;
int a[maxn];
int n;
long long cal() {
long long t = a[0], ans = 0;
for (int i = 1; i < n; ++i) {
if (t < 0) {
t += a[i];
if (t <= 0) {
ans += 1 - t;
t = 1;
}
continue;
}
t += a[i];
if (t >= 0) {
ans += t + 1;
t = -1;
}
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 0; i < (n); ++i) {
scanf("%d", &a[i]);
}
long long ans1 = 0, ans2 = 0, ans3 = 0, ans = 0;
int t = a[0];
if (t == 0) {
a[0] = 1;
ans1 = cal();
a[0] = -1;
ans2 = cal();
ans = min(ans1, ans2) + 1;
} else {
ans = cal();
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main()
{ int n;
cin>>n;
long int arr[n];
for(int i=0;i<n;i++)
cin>>arr[i];
long int sum=arr[0];
long int ans=0;
for(int i=1;i<n;i++)
{ if(sum<0)
{
sum=sum+arr[i];
if(sum>0)
continue;
else
{ ans+=abs(sum)+1;
sum=1;
}
}
else if
{
sum+=arr[i];
if(sum<0)
continue;
else
{ ans+=sum+1;
sum=-1;
}
}
}
cout<<ans;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import core.bitop, std.algorithm, std.ascii, std.bigint, std.conv, std.math,
std.functional, std.numeric, std.range, std.stdio, std.string, std.random,
std.typecons, std.container, std.format;
// dfmt off
T lread(T = long)(){return readln.chomp.to!T();}
T[] lreads(T = long)(long n){return generate(()=>readln.chomp.to!T()).take(n).array();}
T[] aryread(T = long)(){return readln.split.to!(T[])();}
void scan(TList...)(ref TList Args){auto line = readln.split();
foreach (i, T; TList){T val = line[i].to!(T);Args[i] = val;}}
alias sread = () => readln.chomp();enum MOD = 10 ^^ 9 + 7;
alias PQueue(T, alias less = "a<b") = BinaryHeap!(Array!T, less);
// dfmt on
void main()
{
long N = lread();
auto A = aryread();
long ans = long.max;
{
auto B = A.dup;
long sum = B[0];
long cost;
if (sum == 0)
{
sum = -1;
cost++;
}
foreach (i; 1 .. N)
{
if (0 < sum)
{
if (sum + B[i] < 0)
{
sum += B[i];
continue;
}
long x = -1 - B[i] - sum;
cost += abs(x);
B[i] += x;
sum += B[i];
}
else
{
if (0 < sum + B[i])
{
sum += B[i];
continue;
}
long x = 1 - B[i] - sum;
cost += abs(x);
B[i] += x;
sum += B[i];
}
}
// writeln(cost);
// writeln(B);
ans = ans.min(cost);
}
{
auto B = A.dup;
long cost;
if (0 < B[0])
{
cost += 1 + B[0];
B[0] -= 1 + B[0];
}
else
{
cost += abs(1 - B[0]);
B[0] += 1 - B[0];
}
long sum = B[0];
foreach (i; 1 .. N)
{
if (0 < sum)
{
if (sum + B[i] < 0)
{
sum += B[i];
continue;
}
long x = -1 - B[i] - sum;
cost += abs(x);
B[i] += x;
sum += B[i];
}
else
{
if (0 < sum + B[i])
{
sum += B[i];
continue;
}
long x = 1 - B[i] - sum;
cost += abs(x);
B[i] += x;
sum += B[i];
}
}
// writeln(cost);
// writeln(B);
ans = ans.min(cost);
}
writeln(ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long ans1 = 0;
for (long long i = 0; i < n; i++) {
if (i % 2 == 0) {
if (sum > 0) {
ans1 += sum + 1;
sum = -1;
}
} else {
if (sum < 0) {
ans1 += -sum + 1;
sum = 1;
}
}
if (i != n - 2) {
sum += a[i + 1];
}
}
sum = a[0];
long long ans2 = 0;
for (long long i = 0; i < n; i++) {
if (i % 2 == 0) {
if (sum < 0) {
ans2 += -sum + 1;
sum = 1;
}
} else {
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
}
}
if (i != n - 2) {
sum += a[i + 1];
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main(int argc, char const *argv[]) {
int n;
ll a[100010], cnt = 0;
std::cin >> n;
for (int i = 0; i < n; i++) std::cin >> a[i];
if (a[0] > 0) {
ll sum = a[0];
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum >= 0) {
while (sum >= 0) {
sum--;
cnt++;
}
} else if (i % 2 == 0 && sum <= 0) {
while (sum <= 0) {
sum++;
cnt++;
}
}
}
} else if (a[0] <= 0) {
ll sum = a[0];
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum <= 0) {
while (sum <= 0) {
sum++;
cnt++;
}
} else if (i % 2 == 0 && sum >= 0) {
while (sum >= 0) {
sum--;
cnt++;
}
}
}
}
std::cout << cnt << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> v(n);
for (auto &i : v) cin >> i;
long long ansq = 1e17;
for (int x = 0; x < 2; x++) {
int h = x;
long long int sum = 0, ans = 0;
for (int i = 0; i < n; i++) {
sum += v[i];
if (h) {
if (sum <= 0) ans += abs(1 - sum);
} else {
if (sum >= 0) {
ans += abs(sum + 1);
}
}
h = h ^ 1;
}
ansq = min(ansq, ans);
}
cout << ansq << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
const double EPS = 1e-10;
const double PI = acos(-1.0);
const long long mod = 1000000007;
int main() {
int N;
cin >> N;
vector<long long> A(N), B;
for (int i = (0); i < (N); ++i) {
cin >> A[i];
}
B = A;
long long sum = A[0];
long long num = 0;
for (int i = 1; i < N; i++) {
if (sum > 0) {
if (sum + A[i] >= 0) {
num += abs(A[i] + sum) + 1;
sum = -1;
} else {
sum += A[i];
}
} else if (sum < 0) {
if (sum + A[i] <= 0) {
num += abs(A[i] + sum) + 1;
sum = 1;
} else {
sum += A[i];
}
}
}
cout << num << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
sys.setrecursionlimit(10 ** 6)
int1 = lambda x: int(x) - 1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def MI(): return map(int, sys.stdin.readline().split())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def SI(): return sys.stdin.readline()[:-1]
def main():
n=II()
aa=LI()
cs=aa[0]
ans=0
for a in aa[1:]:
if cs>0:
if a>=-cs:
ans+=abs(-cs-1-a)
cs=-1
else:cs+=a
else:
if a <= -cs:
ans += abs(-cs + 1 - a)
cs = 1
else:
cs += a
print(ans)
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1e18 + 18;
const long long MAX = 100005;
const long long MOD = 1000000007;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return true;
}
return false;
}
template <typename T1, typename T2>
ostream &operator<<(ostream &s, const pair<T1, T2> &p) {
return s << "(" << p.first << ", " << p.second << ")";
}
template <typename T>
istream &operator>>(istream &i, vector<T> &v) {
for (long long j = (0); j < (v.size()); j++) i >> v[j];
return i;
}
template <typename T>
ostream &operator<<(ostream &s, const vector<T> &v) {
int len = v.size();
for (int i = 0; i < len; ++i) {
s << v[i];
if (i < len - 1) s << " ";
}
return s;
}
template <typename T>
ostream &operator<<(ostream &s, const vector<vector<T>> &vv) {
int len = vv.size();
for (int i = 0; i < len; ++i) {
s << vv[i] << endl;
}
return s;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << std::setprecision(10);
long long n;
cin >> n;
vector<long long> a(n);
cin >> a;
vector<long long> s(n + 1);
for (long long i = (1); i < (n + 1); i++) {
s[i] = s[i - 1] + a[i - 1];
}
long long x = 0;
long long cnt = 0;
long long ans = INF;
for (long long i = (1); i < (n + 1); i++) {
if (i % 2 == 0) {
if (s[i] + x <= 0) {
cnt += 1 - (s[i] + x);
x += 1 - (s[i] + x);
}
} else {
if (s[i + x] >= 0) {
cnt += s[i] + x + 1;
x -= s[i] + x + 1;
}
}
}
chmin(ans, cnt);
x = 0;
cnt = 0;
for (long long i = (1); i < (n + 1); i++) {
if (i % 2 == 1) {
if (s[i] + x <= 0) {
cnt += 1 - (s[i] + x);
x += 1 - (s[i] + x);
}
} else {
if (s[i] + x >= 0) {
cnt += s[i] + x + 1;
x -= s[i] + x + 1;
}
}
}
chmin(ans, cnt);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.io.*;
import java.util.*;
public class Main {
static StringBuilder sb = new StringBuilder();
static FastScanner sc = new FastScanner(System.in);
static int INF = 12345678;
static long MOD = 1000000007;
static int[] y4 = {0, 1, 0, -1};
static int[] x4 = {1, 0, -1, 0};
static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1};
static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1};
static long[] F;//factorial
static boolean[] isPrime;
static int[] primes;
static char[][] map;
static int N, M;
static long T;
static int[] A;
public static void main(String[] args) {
int n = sc.nextInt();
long[] a = sc.nextLongArray(n);
long ans_1 = 0;//初期値正
long ans_2 = 0;
long sum_1 = a[0];
long sum_2 = a[0];
for (int i = 1; i < n; i++) {
if(i%2==1){
if(sum_1 + a[i] >= 0){
ans_1 += abs(sum_1 + a[i]) + 1;
sum_1 = -1;
}else{
sum_1 += a[i];
}
if(sum_2 + a[i] <= 0){
ans_2 += abs(sum_2 + a[i]) + 1;
sum_2 = 1;
}else{
sum_2 += a[i];
}
}else{
if(sum_2 + a[i] >= 0){
ans_2 += abs(sum_2 + a[i]) + 1;
sum_2 = -1;
}else{
sum_2 += a[i];
}
if(sum_1 + a[i] <= 0){
ans_1 += abs(sum_1 + a[i]) + 1;
sum_1 = 1;
}else{
sum_1 += a[i];
}
}
}
System.out.println(min(ans_1,ans_2));
}
static class Dijkstra {
long initValue = -1;
Node[] nodes;
int n;
long[] d;
Dijkstra(int n) {
this.n = n;
nodes = new Node[n];
for (int i = 0; i < n; i++)
nodes[i] = new Node(i);
d = new long[n];
Arrays.fill(d, initValue);
}
Dijkstra(int n, int edge, boolean isDirectedGraph) {
this.n = n;
nodes = new Node[n];
for (int i = 0; i < n; i++)
nodes[i] = new Node(i);
d = new long[n];
Arrays.fill(d, initValue);
if (isDirectedGraph) {
for (int ei = 0; ei < edge; ei++) {
int f = sc.nextInt() - 1;
int t = sc.nextInt() - 1;
long c = sc.nextLong();
addEdge(f, t, c);
}
} else {
for (int ei = 0; ei < edge; ei++) {
int f = sc.nextInt() - 1;
int t = sc.nextInt() - 1;
long c = sc.nextLong();
addEdge(f, t, c);
addEdge(t, f, c);
}
}
}
void addEdge(int f, int t, long c) {
nodes[f].edges.add(new Edge(t, c));
}
long[] solve(int s) {
d[s] = 0;
//最短距離と頂点を持つ
PriorityQueue<Dis> q = new PriorityQueue<>();
q.add(new Dis(s, 0));
while (!q.isEmpty()) {
Dis now = q.poll();
int nowId = now.p;
long nowC = now.cos;
for (Edge edge : nodes[nowId].edges) {
int to = edge.toId;
long needsCost = edge.toCost + nowC;
if (d[to] == initValue || needsCost < d[to]) {
d[to] = needsCost;
q.add(new Dis(to, needsCost));
}
}
}
return d;
}
//O( E ^ 2) 辺が密の時用
long[] solve2(int s) {
boolean[] used = new boolean[n];
long[][] cost = new long[n][n];
Main.fill(cost, initValue);
Arrays.fill(d, initValue);
d[s] = 0;
for (Node node : nodes) {
for (Edge edge : node.edges) {
int fromId = node.id;
int toId = edge.toId;
long toCost = edge.toCost;
cost[fromId][toId] = toCost;
}
}
while (true) {
int v = -1;
//まだ使われていない頂点のうち、距離が最小のものを探す。
for (int u = 0; u < n; u++)
if (!used[u] && (v == -1 || d[u] < d[v])) v = u;
if (v == -1) break;
used[v] = true;
for (int u = 0; u < n; u++)
d[u] = Math.min(d[u], d[v] + cost[v][u]);
}
return d;
}
static class Dis implements Comparable<Dis> {
//現在地点 最短距離
int p;
long cos;
Dis(int p, long cost) {
this.p = p;
cos = cost;
}
public int compareTo(Dis d) {
if (cos != d.cos) {
if (cos > d.cos) return 1;
else if (cos == d.cos) return 0;
else return -1;
} else {
return p - d.p;
}
}
}
static class Node {
int id;
List<Edge> edges;
Node(int id) {
edges = new ArrayList<>();
this.id = id;
}
}
static class Edge {
int toId;
long toCost;
Edge(int id, long cost) {
toId = id;
toCost = cost;
}
}
}
public static long toLong(int[] ar) {
long res = 0;
for (int i : ar) {
res *= 10;
res += i;
}
return res;
}
public static int toInt(int[] ar) {
int res = 0;
for (int i : ar) {
res *= 10;
res += i;
}
return res;
}
//k個の次の組み合わせをビットで返す 大きさに上限はない 110110 -> 111001
public static int nextCombSizeK(int comb, int k) {
int x = comb & -comb; //最下位の1
int y = comb + x; //連続した下の1を繰り上がらせる
return ((comb & ~y) / x >> 1) | y;
}
public static int keta(long num) {
int res = 0;
while (num > 0) {
num /= 10;
res++;
}
return res;
}
public static long getHashKey(int a, int b) {
return (long) a << 32 | b;
}
public static boolean isOutofIndex(int x, int y) {
if (x < 0 || y < 0) return true;
if (map[0].length <= x || map.length <= y) return true;
return false;
}
public static void setPrimes() {
int n = 100001;
isPrime = new boolean[n];
List<Integer> prs = new ArrayList<>();
Arrays.fill(isPrime, true);
isPrime[0] = isPrime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (!isPrime[i]) continue;
prs.add(i);
for (int j = i * 2; j < n; j += i) {
isPrime[j] = false;
}
}
primes = new int[prs.size()];
for (int i = 0; i < prs.size(); i++)
primes[i] = prs.get(i);
}
public static void revSort(int[] a) {
Arrays.sort(a);
reverse(a);
}
public static void revSort(long[] a) {
Arrays.sort(a);
reverse(a);
}
public static int[][] copy(int[][] ar) {
int[][] nr = new int[ar.length][ar[0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
nr[i][j] = ar[i][j];
return nr;
}
/**
* <h1>指定した値以上の先頭のインデクスを返す</h1>
* <p>配列要素が0のときは、0が返る。</p>
*
* @return<b>int</b> : 探索した値以上で、先頭になるインデクス
* 値が無ければ、挿入できる最小のインデックス
*/
public static int lowerBound(final int[] arr, final int value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] < value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1>指定した値より大きい先頭のインデクスを返す</h1>
* <p>配列要素が0のときは、0が返る。</p>
*
* @return<b>int</b> : 探索した値より上で、先頭になるインデクス
* 値が無ければ、挿入できる最小のインデックス
*/
public static int upperBound(final int[] arr, final int value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] <= value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1>指定した値以上の先頭のインデクスを返す</h1>
* <p>配列要素が0のときは、0が返る。</p>
*
* @return<b>int</b> : 探索した値以上で、先頭になるインデクス
* 値がなければ挿入できる最小のインデックス
*/
public static long lowerBound(final long[] arr, final long value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] < value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1>指定した値より大きい先頭のインデクスを返す</h1>
* <p>配列要素が0のときは、0が返る。</p>
*
* @return<b>int</b> : 探索した値より上で、先頭になるインデクス
* 値がなければ挿入できる最小のインデックス
*/
public static long upperBound(final long[] arr, final long value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 (オーバーフロー対策)
if (arr[mid] <= value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
//次の順列に書き換える、最大値ならfalseを返す
public static boolean nextPermutation(int A[]) {
int len = A.length;
int pos = len - 2;
for (; pos >= 0; pos--) {
if (A[pos] < A[pos + 1]) break;
}
if (pos == -1) return false;
//posより大きい最小の数を二分探索
int ok = pos + 1;
int ng = len;
while (Math.abs(ng - ok) > 1) {
int mid = (ok + ng) / 2;
if (A[mid] > A[pos]) ok = mid;
else ng = mid;
}
swap(A, pos, ok);
reverse(A, pos + 1, len - 1);
return true;
}
//次の順列に書き換える、最小値ならfalseを返す
public static boolean prevPermutation(int A[]) {
int len = A.length;
int pos = len - 2;
for (; pos >= 0; pos--) {
if (A[pos] > A[pos + 1]) break;
}
if (pos == -1) return false;
//posより小さい最大の数を二分探索
int ok = pos + 1;
int ng = len;
while (Math.abs(ng - ok) > 1) {
int mid = (ok + ng) / 2;
if (A[mid] < A[pos]) ok = mid;
else ng = mid;
}
swap(A, pos, ok);
reverse(A, pos + 1, len - 1);
return true;
}
//↓nCrをmod計算するために必要。 ***factorial(N)を呼ぶ必要がある***
static long ncr(int n, int r) {
if (n < r) return 0;
else if (r == 0) return 1;
factorial(n);
return F[n] / (F[n - r] * F[r]);
}
static long ncr2(int a, int b) {
if (b == 0) return 1;
else if (a < b) return 0;
long res = 1;
for (int i = 0; i < b; i++) {
res *= a - i;
res /= i + 1;
}
return res;
}
static long ncrdp(int n, int r) {
if (n < r) return 0;
long[][] dp = new long[n + 1][r + 1];
for (int ni = 0; ni < n + 1; ni++) {
dp[ni][0] = dp[ni][ni] = 1;
for (int ri = 1; ri < ni; ri++) {
dp[ni][ri] = dp[ni - 1][ri - 1] + dp[ni - 1][ri];
}
}
return dp[n][r];
}
static long modNcr(int n, int r) {
if (n < r) return 0;
long result = F[n];
result = result * modInv(F[n - r]) % MOD;
result = result * modInv(F[r]) % MOD;
return result;
}
public static long modSum(long... lar) {
long res = 0;
for (long l : lar)
res = (res + l % MOD) % MOD;
return res;
}
public static long modDiff(long a, long b) {
long res = a - b;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modMul(long... lar) {
long res = 1;
for (long l : lar)
res = (res * l) % MOD;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modDiv(long a, long b) {
long x = a % MOD;
long y = b % MOD;
long res = (x * modInv(y)) % MOD;
return res;
}
static long modInv(long n) {
return modPow(n, MOD - 2);
}
static void factorial(int n) {
F = new long[n + 1];
F[0] = F[1] = 1;
// for (int i = 2; i <= n; i++)
// {
// F[i] = (F[i - 1] * i) % MOD;
// }
//
for (int i = 2; i <= 100000; i++) {
F[i] = (F[i - 1] * i) % MOD;
}
for (int i = 100001; i <= n; i++) {
F[i] = (F[i - 1] * i) % MOD;
}
}
static long modPow(long x, long n) {
long res = 1L;
while (n > 0) {
if ((n & 1) == 1) {
res = res * x % MOD;
}
x = x * x % MOD;
n >>= 1;
}
return res;
}
//↑nCrをmod計算するために必要
static int gcd(int n, int r) {
return r == 0 ? n : gcd(r, n % r);
}
static long gcd(long n, long r) {
return r == 0 ? n : gcd(r, n % r);
}
static <T> void swap(T[] x, int i, int j) {
T t = x[i];
x[i] = x[j];
x[j] = t;
}
static void swap(int[] x, int i, int j) {
int t = x[i];
x[i] = x[j];
x[j] = t;
}
public static void reverse(int[] x) {
int l = 0;
int r = x.length - 1;
while (l < r) {
int temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(long[] x) {
int l = 0;
int r = x.length - 1;
while (l < r) {
long temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(int[] x, int s, int e) {
int l = s;
int r = e;
while (l < r) {
int temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
static int length(int a) {
int cou = 0;
while (a != 0) {
a /= 10;
cou++;
}
return cou;
}
static int length(long a) {
int cou = 0;
while (a != 0) {
a /= 10;
cou++;
}
return cou;
}
static int cou(boolean[] a) {
int res = 0;
for (boolean b : a) {
if (b) res++;
}
return res;
}
static int cou(String s, char c) {
int res = 0;
for (char ci : s.toCharArray()) {
if (ci == c) res++;
}
return res;
}
static int countC2(char[][] a, char c) {
int co = 0;
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
if (a[i][j] == c) co++;
return co;
}
static int countI(int[] a, int key) {
int co = 0;
for (int i = 0; i < a.length; i++)
if (a[i] == key) co++;
return co;
}
static int countI(int[][] a, int key) {
int co = 0;
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
if (a[i][j] == key) co++;
return co;
}
static void fill(int[][] a, int v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = v;
}
static void fill(long[][] a, long v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = v;
}
static void fill(int[][][] a, int v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
for (int k = 0; k < a[0][0].length; k++)
a[i][j][k] = v;
}
static int max(int... a) {
int res = Integer.MIN_VALUE;
for (int i : a) {
res = Math.max(res, i);
}
return res;
}
static long max(long... a) {
long res = Long.MIN_VALUE;
for (long i : a) {
res = Math.max(res, i);
}
return res;
}
static int max(int[][] ar) {
int res = Integer.MIN_VALUE;
for (int i[] : ar)
res = Math.max(res, max(i));
return res;
}
static int min(int... a) {
int res = Integer.MAX_VALUE;
for (int i : a) {
res = Math.min(res, i);
}
return res;
}
static long min(long... a) {
long res = Long.MAX_VALUE;
for (long i : a) {
res = Math.min(res, i);
}
return res;
}
static int min(int[][] ar) {
int res = Integer.MAX_VALUE;
for (int i[] : ar)
res = Math.min(res, min(i));
return res;
}
static int sum(int[] a) {
int cou = 0;
for (int i : a)
cou += i;
return cou;
}
static int abs(int a) {
return Math.abs(a);
}
static long abs(long a) {
return Math.abs(a);
}
static class FastScanner {
private BufferedReader reader = null;
private StringTokenizer tokenizer = null;
public FastScanner(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
tokenizer = null;
}
public String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
/*public String nextChar(){
return (char)next()[0];
}*/
public String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public int[] nextIntArrayDec(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt() - 1;
}
return a;
}
public int[][] nextIntArray2(int h, int w) {
int[][] a = new int[h][w];
for (int hi = 0; hi < h; hi++) {
for (int wi = 0; wi < w; wi++) {
a[hi][wi] = nextInt();
}
}
return a;
}
public int[][] nextIntArray2Dec(int h, int w) {
int[][] a = new int[h][w];
for (int hi = 0; hi < h; hi++) {
for (int wi = 0; wi < w; wi++) {
a[hi][wi] = nextInt() - 1;
}
}
return a;
}
//複数の配列を受け取る
public void nextIntArrays2ar(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {
a[i] = sc.nextInt();
b[i] = sc.nextInt();
}
}
public void nextIntArrays2arDec(int[] a, int[] b) {
for (int i = 0; i < a.length; i++) {
a[i] = sc.nextInt() - 1;
b[i] = sc.nextInt() - 1;
}
}
//複数の配列を受け取る
public void nextIntArrays3ar(int[] a, int[] b, int[] c) {
for (int i = 0; i < a.length; i++) {
a[i] = sc.nextInt();
b[i] = sc.nextInt();
c[i] = sc.nextInt();
}
}
//複数の配列を受け取る
public void nextIntArrays3arDecLeft2(int[] a, int[] b, int[] c) {
for (int i = 0; i < a.length; i++) {
a[i] = sc.nextInt() - 1;
b[i] = sc.nextInt() - 1;
c[i] = sc.nextInt();
}
}
public Integer[] nextIntegerArray(int n) {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public char[] nextCharArray(int n) {
char[] a = next().toCharArray();
return a;
}
public char[][] nextCharArray2(int h, int w) {
char[][] a = new char[h][w];
for (int i = 0; i < h; i++) {
a[i] = next().toCharArray();
}
return a;
}
//スペースが入っている場合
public char[][] nextCharArray2s(int h, int w) {
char[][] a = new char[h][w];
for (int i = 0; i < h; i++) {
a[i] = nextLine().replace(" ", "").toCharArray();
}
return a;
}
public char[][] nextWrapCharArray2(int h, int w, char c) {
char[][] a = new char[h + 2][w + 2];
//char c = '*';
int i;
for (i = 0; i < w + 2; i++)
a[0][i] = c;
for (i = 1; i < h + 1; i++) {
a[i] = (c + next() + c).toCharArray();
}
for (i = 0; i < w + 2; i++)
a[h + 1][i] = c;
return a;
}
//スペースが入ってる時用
public char[][] nextWrapCharArray2s(int h, int w, char c) {
char[][] a = new char[h + 2][w + 2];
//char c = '*';
int i;
for (i = 0; i < w + 2; i++)
a[0][i] = c;
for (i = 1; i < h + 1; i++) {
a[i] = (c + nextLine().replace(" ", "") + c).toCharArray();
}
for (i = 0; i < w + 2; i++)
a[h + 1][i] = c;
return a;
}
public long[] nextLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
public long[][] nextLongArray2(int h, int w) {
long[][] a = new long[h][w];
for (int hi = 0; hi < h; hi++) {
for (int wi = 0; wi < w; wi++) {
a[hi][wi] = nextLong();
}
}
return a;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[10000];
int getsign(long long int n) {
if (n > 0) {
return 1;
}
if (n < 0) {
return -1;
}
return -1;
}
long long int count(int sign0, long long a[], int n) {
long long int sum = 0;
long long int sign = sign0;
long long int count = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (getsign(sum) != sign) {
count += abs(sign - sum);
sum = sign;
}
sign = (sign * -1);
}
return count;
}
int main() {
int n;
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
cout << min(count(1, a, n), count(-1, a, n)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | parseInt(x) = parse(Int, x)
parseMap(x::Array{SubString{String},1}) = map(parseInt, x)
function main()
n = readline() |> parseInt
a = readline() |> split |> parseMap
b = zeros(Int,n)
sb = 0
b[1] = a[1]
for i in 2:n
b[i]=b[i-1]+a[i]
if b[i]<=0&&b[i-1]<=0
sb += 1-b[i]
b[i] = 1
elseif b[i]>=0&&b[i-1]>=0
sb += b[i]+1
b[i] = -1
end
end
c = zeros(Int,n)
sc = a[1]>0?a[1]+1:1-a[1]
c[1] = a[1]>0?-1:1
for i in 2:n
c[i]=c[i-1]+a[i]
if c[i]<=0&&c[i-1]<=0
sc += 1-c[i]
c[i] = 1
elseif c[i]>=0&&c[i-1]>=0
sc += c[i]+1
c[i] = -1
end
end
println(min(sb,sc))
end
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
bool is_odd(int n) { return (n % 2 == 1); }
bool is_even(int n) { return (n % 2 == 0); }
int main() {
int n;
cin >> n;
vector<ll> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
ll ans = 0;
bool is_positive = (a.at(0) > 0);
bool is_negative = (a.at(0) < 0);
ll sum = a.at(0);
for (int i = 1; i < n; i++) {
sum = sum + a.at(i);
if (is_positive && is_odd(i) && sum >= 0) {
ll num_of_operations = sum - (-1);
ans += num_of_operations;
sum -= num_of_operations;
}
if (is_positive && is_even(i) && sum <= 0) {
ll num_of_operations = (1) - sum;
ans += num_of_operations;
sum += num_of_operations;
}
if (is_negative && is_odd(i) && sum <= 0) {
ll num_of_operations = (1) - sum;
ans += num_of_operations;
sum += num_of_operations;
}
if (is_negative && is_even(i) && sum >= 0) {
ll num_of_operations = sum - (-1);
ans += num_of_operations;
sum -= num_of_operations;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long N;
long long buf;
cin >> N;
vector<long long> aaa = vector<long long>(N + 1, 0);
for (int i = 1; i < N + 1; i++) {
cin >> buf;
aaa.at(i) = buf + aaa.at(i - 1);
}
bool be = true;
bool af;
vector<long long> ans = vector<long long>(2, 0);
long long change = 0;
for (int l = 0; l < 2; l++) {
vector<long long> aa = aaa;
if (l == 0) {
be = true;
} else {
be = false;
}
change = 0;
for (int i = 1; i < N + 1; i++) {
if (ans.at(1) > ans.at(0)) {
break;
}
aa.at(i) += change;
if (aa.at(i) == 0) {
if (af) {
change += 1 - aa.at(i);
ans.at(l) += 1 - aa.at(i);
be = false;
} else {
change += -(aa.at(i) + 1);
ans.at(l) += 1 + aa.at(i);
be = true;
}
} else {
if (aa.at(i) < 0) {
af = true;
} else {
af = false;
}
if (af == be) {
if (af) {
change += 1 - aa.at(i);
ans.at(l) += 1 - aa.at(i);
be = false;
} else {
change += -(aa.at(i) + 1);
ans.at(l) += 1 + aa.at(i);
be = true;
}
} else {
be = af;
}
}
}
}
long long tt = min(ans.at(0), ans.at(1));
std::cout << tt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
import sys
sum=a[0]
cnt=0
if a[0]==0:
sum+=1
cnt+=1
for i in range(1,n):
if sum<0:
z=sum+a[i]
if z>0:
sum=z
elif z<=0:
cnt+=(1-z)
sum=1
elif sum>0:
z=sum+a[i]
if z>=0:
cnt+=(z+1)
sum=-1
elif z<0:
sum=z
cnt_plus=cnt
sum=-1
cnt=1
for i in range(1,n):
if sum<0:
z=sum+a[i]
if z>0:
sum=z
elif z<=0:
cnt+=(1-z)
sum=1
elif sum>0:
z=sum+a[i]
if z>=0:
cnt+=(z+1)
sum=-1
elif z<0:
sum=z
cnt_sbst=cnt
print(min(cnt_plus,cnt_sbst))
sys.exit()
for i in range(1,n):
if sum<0:
z=sum+a[i]
if z>0:
sum=z
elif z<=0:
cnt+=(1-z)
sum=1
elif sum>0:
z=sum+a[i]
if z>=0:
cnt+=(z+1)
sum=-1
elif z<0:
sum=z
print(cnt)
# 6
# 0 0 -1 3 5 0
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
s0 = a[0]
count=0
flag = False
if a.count(0)==n:
print(2*n+1)
exit()
i=0
while a[i]==0 and i<n:
i+=1
flag=True
if flag:
if a[i]>0:
if i%2==0:s0+=1
else:s0-=1
count+=1
else:
if i%2==0:s0-=1
else:s0+=1
count+=1
for i in range(1,n):
s1 = s0+a[i]
if s0*s1>=0:
if s1>0:
a[i]-=(abs(s1)+1)
count+=(abs(s1)+1)
elif s1<0:
a[i]+=(abs(s1)+1)
count+=(abs(s1)+1)
elif s1==0:
if s0>0:
a[i]-=1
count+=1
elif s0<0:
a[i]+=1
count+=1
s0 += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
unsigned long long N;
unsigned long long M;
std::vector<long long> Ai;
std::vector<std::string> Bi;
unsigned long long answer;
void getInput();
unsigned long long calcAnswer();
int main() {
getInput();
unsigned long long answer = calcAnswer();
std::cout << answer << std::endl;
return EXIT_SUCCESS;
}
void getInput() {
std::cin >> N;
for (unsigned long long i = 0; i < N; ++i) {
long long A;
std::cin >> A;
Ai.push_back(A);
}
}
unsigned long long calcAnswer() {
unsigned long long answer = 0;
bool plus = false;
bool minus = false;
long long temp = Ai.at(0);
if (temp < 0) {
minus = true;
} else {
plus = true;
}
for (unsigned long long i = 1; i < N; ++i) {
temp += Ai.at(i);
if (plus) {
plus = false;
minus = true;
while (temp >= 0) {
--temp;
++answer;
}
continue;
}
if (minus) {
plus = true;
minus = false;
while (temp <= 0) {
++temp;
++answer;
}
continue;
}
}
return answer;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int ans=0;
int sum1 = sc.nextInt();
int sum2 = sum1;
for(int i=0;i<n-1;i++) {
sum2 += sc.nextInt();
if(sum1*sum2 > 0) {
ans += Math.abs(sum2)+1;
if(sum2 >0) sum2 = -1;
else sum2 = 1;
}else if(sum2 == 0) {
ans += 1;
if(sum1 > 0) sum2 = -1;
else sum2 = 1;
}
sum1 = sum2;
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[200010] = {};
for (long long i = (0); i < (n); i++) cin >> a[i];
bool flag = true;
for (long long i = (0); i < (n - 1); i++) {
a[i + 1] += a[i];
if (a[i + 1] * a[i] >= 0) flag = false;
}
if (flag) {
cout << 0 << endl;
return 0;
}
long long tasu = 0, aa = 0, cnt = 0, minari = 1000000007;
for (long long i = (0); i < (n); i++) {
aa = 0;
if (i % 2 == 0) {
if (a[i] + tasu < 0) {
minari = min(minari, abs(a[i] + tasu));
continue;
} else if (a[i] + tasu > 0) {
aa = abs(a[i]) + 1;
} else {
aa = 1;
}
cnt += aa;
tasu -= aa;
} else {
if (a[i] + tasu > 0) {
minari = min(minari, abs(a[i] + tasu));
continue;
} else if (a[i] + tasu < 0) {
aa = abs(a[i]) + 1;
} else {
aa = 1;
}
cnt += aa;
tasu += aa;
}
minari = min(minari, abs(a[i] + tasu));
}
cnt += minari - 1;
long long cnt2 = 0;
tasu = 0;
minari = 1000000007;
for (long long i = (0); i < (n); i++) {
aa = 0;
if (i % 2 != 0) {
if (a[i] + tasu < 0) {
minari = min(minari, abs(a[i] + tasu));
continue;
} else if (a[i] + tasu > 0) {
aa = abs(a[i]) + 1;
} else {
aa = 1;
}
cnt2 += aa;
tasu -= aa;
} else {
if (a[i] + tasu > 0) {
minari = min(minari, abs(a[i] + tasu));
continue;
} else if (a[i] + tasu < 0) {
aa = abs(a[i]) + 1;
} else {
aa = 1;
}
cnt2 += aa;
tasu += aa;
}
minari = min(minari, abs(a[i] + tasu));
}
cnt2 += minari - 1;
cout << min(cnt, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws IOException{
Sequence solver = new Sequence();
solver.readInput();
solver.solve();
solver.writeOutput();
}
static class Sequence {
private int n;
private int a[];
private int output;
private Scanner scanner;
public Sequence() {
this.scanner = new Scanner(System.in);
}
public void readInput() {
n = Integer.parseInt(scanner.next());
a = new int[n];
for(int i=0; i<n; i++) {
a[i] = Integer.parseInt(scanner.next());
}
}
private int count(boolean sign) {
int count=0;
long sum=0;
for(int i=0; i<n; i++) {
sum += a[i];
if((i%2==0) == sign) {
// a[i]までの合計を正にするとき
if(sum<=0) {
count += Math.abs(sum)+1;
sum = 1;
}
} else if((i%2==0) != sign){
// a[i]までの合計を負にするとき
if(0<=sum) {
count += Math.abs(sum)+1;
sum = -1;
}
}
}
return count;
}
public void solve() {
output = Math.min(this.count(true), this.count(false));
}
public void writeOutput() {
System.out.println(output);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int total = 0;
int count = 0;
for (int i = 0; i < N; i++) {
int current;
cin >> current;
if (total == 0) {
total += current;
} else if ((total > 0 && total + current < 0) ||
(total < 0 && total + current > 0)) {
total += current;
} else {
if (total > 0) {
count += total + 1 + current;
total = -1;
} else {
count += abs(total) + 1 - current;
total = 1;
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
int n;
scanf("%d", &n);
long long a[n];
for (int i = 0; i < n; i++) scanf("%lld", a + i);
long long initial_plus = ((-1 - a[0]) > (0) ? (-1 - a[0]) : (0));
long long initial_minus = ((1 + a[0]) > (0) ? (1 + a[0]) : (0));
long long sum = 0;
sum = initial_plus + a[0];
for (int i = 1; i < n; i++) {
if ((sum + a[i]) * sum >= 0ll) {
if (sum < 0) {
initial_plus += 1 - sum - a[i];
sum = 1;
} else {
initial_plus += sum + a[i] + 1;
sum = -1;
}
} else {
sum += a[i];
}
}
sum = a[0] - initial_minus;
for (int i = 1; i < n; i++) {
if ((sum + a[i]) * sum >= 0ll) {
if (sum < 0) {
initial_minus += 1 - sum - a[i];
sum = 1;
} else {
initial_minus += sum + a[i] + 1;
sum = -1;
}
} else {
sum += a[i];
}
}
printf("%lld\n",
((initial_plus) > (initial_minus) ? (initial_minus) : (initial_plus)));
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.