Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long int> a(n), a2(n);
vector<long long int> sum(n), sum2(n);
int num[2] = {0};
for (int i = 0; i < n; i++) {
cin >> a[i];
}
copy(a.begin(), a.end(), a2.begin());
sum[0] = a[0];
if (sum[0] < 0) {
sum[0] = 1;
num[0] += abs(1 - a[0]);
a[0] = 1;
}
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (i % 2 == 1) {
if (sum[i] > 0) {
int tmp = -sum[i - 1] - 1;
num[0] += abs(tmp - a[i]);
a[i] = tmp;
sum[i] = -1;
}
} else {
if (sum[i] < 0) {
int tmp = 1 - sum[i - 1];
num[0] += abs(tmp - a[i]);
a[i] = tmp;
sum[i] = 1;
}
}
}
sum2[0] = a2[0];
if (sum2[0] > 0) {
sum2[0] = -1;
num[1] += a2[0] + 1;
a2[0] = -1;
}
for (int i = 1; i < n; i++) {
sum2[i] = sum2[i - 1] + a2[i];
if (i % 2 == 1) {
if (sum2[i] < 0) {
int tmp = 1 - sum2[i - 1];
num[1] += abs(tmp - a2[i]);
a2[i] = tmp;
sum2[1] = sum2[i - 1] + a2[i];
}
} else {
if (sum2[i] > 0) {
int tmp = -1 - sum2[i - 1];
num[1] += abs(tmp - a2[i]);
a2[i] = tmp;
sum2[i] = sum2[i - 1] + a2[i];
}
}
}
int lsum = 0;
for (int i = 0; i < n; i++) {
lsum += a2[i];
}
if (lsum == 0)
cout << min(num[0], num[1]) + 1 << endl;
else {
cout << min(num[0], num[1]) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | def solve(digits)
if digits[0].zero?
digits1 = digits.dup
digits1[0] = 1
digits2[0] = digits.dup
digits2[0] = -1
return [digits1, digits2].map{|dgt| solve(dgt)}.min
end
sum = digits[0]
cnt = 0
(1...digits.size).each do |i|
sum1 = sum
sum2 = sum1 + digits[i]
if sum1 * sum2 >= 0
target = sum1 > 0 ? -1 : 1
diff = target - sum2
cnt += diff.abs
sum += diff
end
sum += digits[i]
end
cnt
end
n = gets.to_i
digits = gets.split.map(&:to_i)
puts solve(digits)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, temp;
long long count = 0, sum = 0;
long a[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n - 1; i++) {
sum += a[i];
temp = a[i + 1];
if (sum >= 0 && sum + a[i + 1] >= 0) {
a[i + 1] = sum * (-1) - 1;
count += abs(a[i + 1] - temp);
if (sum + a[i + 1] == 0) {
a[i + 1] -= 1;
count += 1;
}
} else if (sum <= 0 && sum + a[i + 1] <= 0) {
a[i + 1] = 1 + sum * (-1);
count += abs(a[i + 1] - temp);
if (sum + a[i + 1] == 0) {
a[i + 1] += 1;
count += 1;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"os"
"strconv"
)
func main() {
s := bufio.NewScanner(bufio.NewReader(os.Stdin))
s.Split(bufio.ScanWords)
n := nextInt(s)
a := make([]int, n)
for i := 0; i < n; i++ {
a[i] = nextInt(s)
}
fmt.Println(solve(a))
}
func solve(a []int) int {
if a[0] > 0 {
return min(rec(a[0], a[1:], 0), rec(-1, a[1:], a[0]+1))
}
return min(rec(a[0], a[1:], 0), rec(1, a[1:], 1-a[0]))
}
func rec(s int, a []int, r int) int {
if len(a) == 0 {
return r
}
if s < 0 {
n := max(s+a[0], 1)
return rec(n, a[1:], r+n-(s+a[0]))
}
n := min(s+a[0], -1)
return rec(n, a[1:], r+(s+a[0])-n)
}
func max(a int, b int) int {
if a > b {
return a
}
return b
}
func min(a int, b int) int {
if a < b {
return a
}
return b
}
func nextInt(s *bufio.Scanner) int {
s.Scan()
n, _ := strconv.Atoi(s.Text())
return n
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
/**
* https://abc059.contest.atcoder.jp/tasks/arc072_a
*/
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = Integer.parseInt(sc.next());
long[] a = new long[N];
for(int i=0; i<N; i++) a[i] = sc.nextLong();
sc.close();
long sum = a[0];
long ans = 0;
for(int i=1; i<N; i++){
if(sum>0 && sum+a[i]>=0){
ans += Math.abs(a[i]+sum+1);
sum = -1;
}else if(sum<0 && sum+a[i]<=0){
ans += Math.abs(a[i]+sum-1);
sum = 1;
}else{
sum = sum + a[i];
}
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
import math
if __name__ == "__main__":
n = int(input())
nums = list(map(int, input().split()))
temp = 0
counts = 0
for num in nums:
if temp * (temp+num)>0:
counts += abs(temp+num)+1
temp = -temp//abs(temp)
elif temp * (temp+num)<0:
temp = temp+num
else:
if temp == 0:
temp = temp+num
else:
counts += 1
temp = -temp//abs(temp)
print(counts) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int day[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int main() {
int n;
cin >> n;
int suma = 0, sumb = 0;
int ansa = 0, ansb = 0;
for (int i = (int)0; i < (int)n; i++) {
int x;
cin >> x;
suma += x;
sumb += x;
if (i % 2 == 0) {
if (suma >= 0) {
ansa += suma + 1;
suma -= (suma + 1);
}
if (sumb <= 0) {
ansb += abs(sumb) + 1;
sumb += abs(sumb) + 1;
}
} else {
if (suma <= 0) {
ansa += abs(suma) + 1;
suma += abs(suma) + 1;
}
if (sumb >= 0) {
ansb += sumb + 1;
sumb -= (sumb + 1);
}
}
}
cout << min(ansa, ansb) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int getCount(vector<int> a) {
long long int sum = a[0];
long long int count = 0;
bool pos = true;
if (sum < 0) pos = false;
for (int i = 1; i < a.size(); i++) {
if (!pos) {
sum += a[i];
if (sum <= 0) {
count += abs(sum) + 1;
sum = 1;
}
pos = true;
} else {
sum += a[i];
if (sum >= 0) {
count += sum + 1;
sum = -1;
}
pos = false;
}
}
return count;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
a[0] = -1;
long long int count1 = getCount(a);
a[0] = 1;
long long int count2 = getCount(a);
cout << min(count1, count2);
} else {
cout << getCount(a) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
A = gets.split.map(&:to_i)
x = A[0]
answer = 0
for i in 0..n-2
s = x + A[i+1]
if x * s >= 0
if x > 0
answer = answer - s + 1
A[i+1] = A[i+1] - s - 1
else
answer = answer + s + 1
A[i+1] = A[i+1] - s - 1
end
end
x = x + A[i+1]
end
puts answer |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> A(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
}
vector<long long> S1(N);
vector<long long> S2(N);
S1[0] = A[0];
S2[0] = A[0];
int cnt1 = 0;
int cnt2 = 0;
for (int i = 0; i < N; i++) {
if (i) {
S1[i] = S1[i - 1] + A[i];
S2[i] = S2[i - 1] + A[i];
}
if (!(i % 2)) {
if (S1[i] <= 0) {
cnt1 += 1 - S1[i];
S1[i] = 1;
}
if (S2[i] >= 0) {
cnt2 += S2[i] + 1;
S2[i] = -1;
}
} else {
if (S1[i] >= 0) {
cnt1 += S1[i] + 1;
S1[i] = -1;
}
if (S2[i] <= 0) {
cnt2 += 1 - S2[i];
S2[i] = 1;
}
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a_array = np.array([int(elem) for elem in input().split(' ')])
def calculate_cumulative_sum(a_array, n):
cumul_sum_array = np.zeros(n, dtype=np.int32)
cumul_sum_array[0] = a_array[0]
for i in range(1, n):
cumul_sum_array[i] = cumul_sum_array[i - 1] + a_array[i]
return cumul_sum_array
def check_1(cumul_sum_array):
result = (cumul_sum_array != 0).all()
return result
def check_2(cumul_sum_array):
odd = np.sign(cumul_sum[::2])
even = np.sign(cumul_sum[1::2])
odd_sign = np.unique(odd)
even_sign = np.unique(even)
return (len(odd_sign) == 1) * (len(even_sign) == 1) * (odd_sign[0] != even_sign[0])
cumul_sum = calculate_cumulative_sum(a_array, n)
count = {'plus': 0, 'minus': 0}
def calc_num_manipulation(cumul_sum, start, n):
cumul_sum = cumul_sum.copy()
count = 0
if check_1(cumul_sum) and check_2(cumul_sum):
return count
for i in range(n):
if i == 0:
diff = cumul_sum[i] - start
count += abs(diff)
cumul_sum[i:] -= diff
else:
c_back, c_just = cumul_sum[i - 1], cumul_sum[i]
if c_back < 0 and c_just <= 0:
diff = c_just - 1
count += abs(diff)
cumul_sum[i:] -= diff
elif c_back > 0 and c_just >= 0:
diff = c_just - (-1)
count += abs(diff)
cumul_sum[i:] -= diff
else:
continue
return count
count['plus'] = calc_num_manipulation(cumul_sum, 1, n)
count['minus'] = calc_num_manipulation(cumul_sum, -1, n)
print(min(count.values())) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
auto& in = cin;
size_t n;
in >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) in >> a[i];
int ans = 0;
if (a[0] == 0) {
if (0 < a[1])
a[0]--;
else
a[0]++;
ans++;
}
int sum_prev = a[0];
for (int i = 1; i < n; ++i) {
int sum_curr = sum_prev + a[i];
if (sum_curr == 0) {
ans++;
} else {
if (0 < sum_curr * sum_prev) {
ans += abs(sum_curr) + 1;
if (0 < sum_curr)
a[i] -= abs(sum_curr) + 1;
else
a[i] += abs(sum_curr) + 1;
}
}
sum_prev = sum_prev + a[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
if a[0] == 0:
a[0] += 1
ans += 1
elif a[0] < 0:
a = list(map(lambda x: x * (-1), a))
product = a[0]
for i in range(1, n):
product += a[i]
if i % 2 == 0:
if product <= 0:
ans += abs(product) + 1
product = 1
elif i % 2 == 1:
if product >= 0:
ans += abs(product) + 1
product = -1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws IOException{
Sequence solver = new Sequence();
solver.readInput();
solver.solve();
solver.writeOutput();
}
static class Sequence {
private int n;
private long a[];
private int output;
private Scanner scanner;
public Sequence() {
this.scanner = new Scanner(System.in);
}
public void readInput() {
n = Integer.parseInt(scanner.next());
a = new long[n];
for(int i=0; i<n; i++) {
a[i] = Integer.parseInt(scanner.next());
}
}
private int count(boolean sign) {
int count=0;
long sum=0;
for(int i=0; i<n; i++) {
sum += a[i];
if((i%2==0) == sign) {
// a[i]までの合計を正にするとき
if(sum<=0) {
count += Math.abs(sum)+1;
sum = 1;
}
} else {
// a[i]までの合計を負にするとき
if(0<=sum) {
count += Math.abs(sum)+1;
sum = -1;
}
}
}
return count;
}
public void solve() {
output = Math.min(count(true), count(false));
}
public void writeOutput() {
System.out.println(output);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, a[100010];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int total = 0, count_f = 0, count_l = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
total += a[i];
if (total <= 0) {
while (total <= 0) {
total++;
count_f++;
}
}
} else {
total += a[i];
if (total >= 0) {
while (total >= 0) {
total--;
count_f++;
}
}
}
}
total = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
total += a[i];
if (total >= 0) {
while (total >= 0) {
total--;
count_l++;
}
}
} else {
total += a[i];
if (total <= 0) {
while (total <= 0) {
total++;
count_l++;
}
}
}
}
cout << min(count_f, count_l) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
vector<int> T;
cin >> N;
for (int i = 0; i < N; i++) {
int tmp;
cin >> tmp;
T.push_back(tmp);
}
int ans = 0;
int sum = 0;
bool pre_pm;
sum = T.at(0);
if (sum > 0) {
pre_pm = true;
} else {
pre_pm = false;
}
for (int i = 1; i < N; i++) {
if (pre_pm) {
sum += T.at(i);
while (0 <= sum) {
sum--;
ans++;
}
pre_pm = false;
} else {
sum += T.at(i);
while (sum <= 0) {
sum++;
ans++;
}
pre_pm = true;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = LLONG_MAX;
int a[100010];
int rui[100010];
int n;
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
rui[0] = a[0];
for (int i = 1; i < n; i++) {
rui[i] += a[i] + rui[i - 1];
}
int temp = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && rui[i] + temp == 0) {
temp--;
ans++;
continue;
}
if (i % 2 == 1 && rui[i] + temp == 0) {
temp++;
ans++;
continue;
}
if (i % 2 == 0 && rui[i] + temp < 0) {
temp = 1 - (rui[i] + temp);
ans += abs(temp);
}
if (i % 2 == 1 && rui[i] + temp > 0) {
temp = 1 + (rui[i] + temp);
ans += abs(temp);
}
}
if (ans < 0) ans = 1e9;
temp = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && rui[i] + temp == 0) {
temp++;
ans2++;
continue;
}
if (i % 2 == 1 && rui[i] + temp == 0) {
temp--;
ans2++;
continue;
}
if (i % 2 == 0 && rui[i] + temp > 0) {
temp = (-1 - rui[i] + temp);
ans2 += abs(temp);
}
if (i % 2 == 1 && rui[i] + temp < 0) {
temp = -(-1 + rui[i] + temp);
ans2 += abs(temp);
}
}
if (ans2 < 0) ans2 = 1e9;
cout << min(ans, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int ch_sign(int n) {
if (n == 0) return 0;
return (n > 0) - (n < 0);
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
int sign1 = (a[0] > 0) - (a[0] < 0), sign2 = -1 * sign1;
int s1 = 0, s2 = 0;
int ans1 = 0, ans2 = 0;
for (int i = 0; i < n; ++i) {
s1 += a[i];
s2 += a[i];
sign1 *= -1;
sign2 *= -1;
if (ch_sign(s1) != sign1) {
ans1 += abs(s1 - sign1);
s1 = sign1;
}
if (ch_sign(s2) != sign2) {
ans2 += abs(s2 - sign2);
s2 = sign2;
}
}
cout << ((ans1 < ans2) ? ans1 : ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[100010] = {};
long long calc(long long *, long long);
int get_sign(long long);
int main() {
long long n, ans;
cin >> n;
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
ans = calc(a, n);
cout << ans << endl;
return 0;
}
long long calc(long long *a, long long n) {
long long cnt = 0;
int sign = 0;
long long tmp;
if (a[0] > 0) {
sign = 1;
}
tmp = a[0];
for (long long i = 0; i < n - 1; i++) {
tmp = tmp + a[i + 1];
if (sign == 1) {
if (tmp >= 0) {
cnt += tmp + 1;
tmp = -1;
}
} else {
if (tmp <= 0) {
cnt += (-1 * tmp) + 1;
tmp = 1;
}
}
sign = get_sign(tmp);
}
return cnt;
}
int get_sign(long long tmp) {
if (tmp < 0)
return 0;
else
return 1;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll N;
vector<ll> a;
const ll inf = 1 << 30;
int main() {
cin >> N;
a.resize(N);
for (int i = 0; i < N; i++) scanf("%Ld", &a[i]);
ll ans = inf;
ll sum = 0;
ll tempans = 0;
for (int i = 0; i < N; i++) {
if (i % 2) {
if (a[i] + sum >= 0) {
tempans += a[i] + sum + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum <= 0) {
tempans += abs(a[i] + sum) + 1;
sum = 1;
} else {
sum += a[i];
}
}
}
ans = min(ans, tempans);
sum = 0;
tempans = 0;
for (int i = 0; i < N; i++) {
if (!(i % 2)) {
if (a[i] + sum >= 0) {
tempans += a[i] + sum + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum <= 0) {
tempans += abs(a[i] + sum) + 1;
sum = 1;
} else {
sum += a[i];
}
}
}
ans = min(ans, tempans);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int64_t> a(n);
for (int i = 0; i < n; i++) cin >> a.at(i);
int64_t ans = 0, s = 0;
for (int i = 0; i < n; i++) {
if (s > 0) {
if (s + a.at(i) >= 0) {
ans += (s + a.at(i) - (-1));
s = -1;
continue;
}
} else if (s < 0) {
if (s + a.at(i) <= 0) {
ans += (1 - (s + a.at(i)));
s = 1;
continue;
}
}
s += a.at(i);
if (s == 0) {
ans++;
if (i < n - 1) {
for (int j = i + 1; j < n; j++) {
if (a.at(j) > 0) {
s = -1;
break;
} else if (a.at(j) < 0) {
s = 1;
break;
}
}
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a[100000];
int func(int b, int c) {
for (int i = 1; i < n; i++) {
if (((a[i] + b > 0) == (b > 0) || !a)) {
if (b > 0) {
c += a[i] + b + 1;
a[i] = -b - 1;
} else if (b < 0) {
c -= a[i] + b - 1;
a[i] = -b + 1;
}
}
b += a[i];
}
return c;
}
int main() {
int a1, a2, b1 = 0, b2 = 0, c1 = 0, c2 = 0;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
a1 = a[0];
if (!a1) {
a1++;
a2--;
c1++;
c2++;
} else if (a1 > 0) {
c2 += a1 + 1;
a2 = -1;
} else {
c2 -= a1 - 1;
a2 = 1;
}
int ans1 = func(a1, c1), ans2 = func(a2, c2);
if (ans1 < ans2)
cout << ans1 << endl;
else
cout << ans2 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[10002];
long long N;
int main() {
long long A = 0;
long long B = 0;
int R = 0;
cin >> N;
for (long long i = 1; i < N + 1; i++) {
cin >> a[i];
}
B = a[1];
for (int i = 1; i < N; i++) {
A += a[i];
B += a[i + 1];
if (A < 0 && B < 0) {
B += (1 - B);
R += (1 - B);
}
if (A > 0 && B > 0) {
B += (0 - 1 - B);
R += (0 - 1 - B);
}
}
cout << R << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define rep(i, c) for (int i = 0; i < (int)c; i++)
int main()
{
int n;
scanf("%d", &n);
vector<int> a(n);
rep(i, n) scanf("%d", &a[i]);
ll temp = 0;
//+-
ll pm = 0;
rep(i, n) {
temp = temp + a[i];
if(i % 2 == 0) {
if(temp <= 0) {
pm = pm + 1 - temp;
temp = 1;
}
}
else {
if(temp >= 0) {
pm = pm + 1 + temp;
temp = -1;
}
}
}
//-+
ll mp = 0;
temp = 0;
rep(i, n) {
temp = temp + a[i];
if(i % 2 == 1) {
if(temp <= 0) {
mp = mp + 1 - temp;
temp = 1;
}
}
else {
if(temp >= 0) {
mp = mp + 1 + temp;
temp = -1;
}
}
}
printf("%lld\n", min(pm, mp));
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool debug = false;
int main() {
int n;
long long a[100005];
long long cnt = 0;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
cnt = 0;
long long sum = a[0] + a[1];
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
bool plus = true;
for (int i = 2; i < n; i++) {
sum += a[i];
if (debug) cout << "sum:" << sum << endl;
if (plus) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
plus = true;
}
}
if (sum == 0) cnt += 1;
int tmp = cnt;
cnt = 0;
sum = a[0] + a[1];
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
for (int i = 2; i < n; i++) {
sum += a[i];
if (debug) cout << "sum:" << sum << endl;
if (plus) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
plus = true;
}
}
if (sum == 0) cnt += 1;
if (tmp < cnt)
cout << tmp << endl;
else
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long now = (a[0] == 0) ? 1LL : a[0];
long long tmp_ans1 = (a[0] == 0) ? abs(a[0]) + 1LL : 0;
for (int i = 1; i < n; ++i) {
if (now >= 0 && now + a[i] >= 0) {
tmp_ans1 += abs(now + a[i]) + 1LL;
now = -1LL;
} else if (now < 0 && now + a[i] <= 0) {
tmp_ans1 += abs(now + a[i]) + 1LL;
now = 1LL;
} else {
now += a[i];
}
}
now = (a[0] < 0) ? 1LL : -1LL;
long long tmp_ans2 = abs(a[0]) + 1LL;
for (int i = 1; i <= n; ++i) {
if (now >= 0 && now + a[i] >= 0) {
tmp_ans2 += abs(now + a[i]) + 1LL;
now = -1LL;
} else if (now < 0 && now + a[i] <= 0) {
tmp_ans2 += abs(now + a[i]) + 1LL;
now = 1LL;
} else {
now += a[i];
}
}
cout << min(tmp_ans1, tmp_ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
long long n;
cin >> n;
long long a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long cnt = a[0];
long long ans = 0ll;
long long p = -1ll;
if (a[0] <= 0ll) p = 1ll;
cout << ("ok") << " " << (cnt) << "\n";
for (int i = 1; i < n; ++i) {
cnt += a[i];
long long g = 0;
if (cnt * p <= 0ll) {
g = cnt * -1ll + p;
ans += (g * p);
cnt = cnt + g;
}
cout << (ans) << " " << (g) << " " << (cnt) << "\n";
g = 0;
p *= -1ll;
}
cout << (ans) << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using vvvll = vector<vvll>;
using vb = vector<bool>;
using vvb = vector<vb>;
using mii = map<int, int>;
using pqls = priority_queue<long long>;
using pqlg = priority_queue<long long, vector<long long>, greater<long long>>;
using mll = map<long long, long long>;
using pll = pair<long long, long long>;
using sll = set<long long>;
long long divup(long long a, long long b);
long long kaijou(long long i);
long long P(long long n, long long k);
long long C(long long n, long long k);
long long GCD(long long a, long long b);
long long LCM(long long a, long long b);
bool prime(long long N);
double distance(vector<long long> p, vector<long long> q, long long n);
void press(vector<long long> &v);
void ranking(vector<long long> &v);
void erase(vector<long long> &v, long long i);
void unique(vector<long long> &v);
void printv(vector<long long> v);
vector<ll> keta(ll x);
long long modpow(long long a, long long n, long long mod);
long long modinv(long long a, long long mod);
vector<long long> inputv(long long n);
vector<long long> yakusuu(int n);
map<long long, long long> soinsuu(long long n);
vector<vector<long long>> maze(long long i, long long j, vector<string> &s);
vector<long long> eratos(long long n);
set<long long> eraset(long long n);
long long divup(long long a, long long b) {
long long x = abs(a);
long long y = abs(b);
long long z = (x + y - 1) / y;
if ((a < 0 && b > 0) || (a > 0 && b < 0))
return -z;
else if (a == 0)
return 0;
else
return z;
}
long long kaijou(long long i) {
if (i == 0) return 1;
long long j = 1;
for (long long k = 1; k <= i; k++) {
j *= k;
}
return j;
}
long long P(long long n, long long k) {
if (n < k) return 0;
long long y = 1;
for (long long i = 0; i < k; i++) {
y *= (n - i);
}
return y;
}
long long C(long long n, long long k) {
if (n < k) return 0;
return P(n, k) / kaijou(k);
}
long long GCD(long long a, long long b) {
if (a < b) swap(a, b);
long long d = a % b;
if (d == 0) {
return b;
}
return GCD(b, d);
}
long long LCM(long long a, long long b) { return (a / GCD(a, b)) * b; }
bool prime(long long N) {
if (N == 1) {
return false;
}
if (N < 0) return false;
long long p = sqrt(N);
for (long long i = 2; i <= p; i++) {
if (N % i == 0) {
return false;
}
}
return true;
}
double distance(vector<long long> p, vector<long long> q, long long n) {
double x = 0;
for (long long i = 0; i < n; i++) {
x += pow((p.at(i) - q.at(i)), 2);
}
return sqrt(x);
}
void press(vector<long long> &v) {
long long n = v.size();
vector<long long> w(n);
map<long long, long long> m;
for (auto &p : v) {
m[p] = 0;
}
long long i = 0;
for (auto &p : m) {
p.second = i;
i++;
}
for (long long i = 0; i < n; i++) {
w.at(i) = m[v.at(i)];
}
v = w;
return;
}
void ranking(vector<long long> &v) {
long long n = v.size();
map<long long, long long> m;
long long i;
for (i = 0; i < n; i++) {
m[v.at(i)] = i;
}
vector<long long> w(n);
i = 0;
for (auto &p : m) {
v.at(i) = p.second;
i++;
}
return;
}
void erase(vector<long long> &v, long long i) {
long long n = v.size();
if (i > n - 1) return;
for (long long j = i; j < n - 1; j++) {
v.at(j) = v.at(j + 1);
}
v.pop_back();
return;
}
void unique(vector<long long> &v) {
long long n = v.size();
set<long long> s;
long long i = 0;
while (i < n) {
if (s.count(v.at(i))) {
erase(v, i);
n--;
} else {
s.insert(v.at(i));
i++;
}
}
return;
}
void printv(vector<long long> v) {
cout << "{ ";
for (auto &p : v) {
cout << p << ",";
}
cout << "}" << endl;
}
vector<ll> keta(ll x) {
if (x == 0) return {0};
ll n = log10(x) + 1;
vll w(n, 0);
for (ll i = 0; i < n; i++) {
ll p;
p = x % 10;
x = x / 10;
w[n - 1 - i] = p;
}
return w;
}
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
long long modinv(long long a, long long mod) { return modpow(a, mod - 2, mod); }
vector<long long> inputv(long long n) {
vector<long long> v(n);
for (long long i = 0; i < n; i++) {
cin >> v[i];
}
return v;
}
vector<long long> yakusuu(long long n) {
vector<long long> ret;
for (long long i = 1; i <= sqrt(n); ++i) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) {
ret.push_back(n / i);
}
}
}
sort(ret.begin(), ret.end());
return ret;
}
map<long long, long long> soinsuu(long long n) {
map<long long, long long> m;
long long p = sqrt(n);
while (n % 2 == 0) {
n /= 2;
if (m.count(2)) {
m[2]++;
} else {
m[2] = 1;
}
}
for (long long i = 3; i * i <= n; i += 2) {
while (n % i == 0) {
n /= i;
if (m.count(i)) {
m[i]++;
} else {
m[i] = 1;
}
}
}
if (n != 1) m[n] = 1;
return m;
}
vector<vector<long long>> maze(ll i, ll j, vector<string> &s) {
ll h = s.size();
ll w = s[0].size();
queue<vector<long long>> q;
vector<vector<long long>> dis(h, vll(w, -1));
q.push({i, j});
dis[i][j] = 0;
while (!q.empty()) {
auto v = q.front();
q.pop();
if (v[0] > 0 && s[v[0] - 1][v[1]] == '.' && dis[v[0] - 1][v[1]] == -1) {
dis[v[0] - 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] - 1, v[1]});
}
if (v[1] > 0 && s[v[0]][v[1] - 1] == '.' && dis[v[0]][v[1] - 1] == -1) {
dis[v[0]][v[1] - 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] - 1});
}
if (v[0] < h - 1 && s[v[0] + 1][v[1]] == '.' && dis[v[0] + 1][v[1]] == -1) {
dis[v[0] + 1][v[1]] = dis[v[0]][v[1]] + 1;
q.push({v[0] + 1, v[1]});
}
if (v[1] < w - 1 && s[v[0]][v[1] + 1] == '.' && dis[v[0]][v[1] + 1] == -1) {
dis[v[0]][v[1] + 1] = dis[v[0]][v[1]] + 1;
q.push({v[0], v[1] + 1});
}
}
return dis;
}
long long modC(long long n, long long k, long long mod) {
if (n < k) return 0;
long long p = 1, q = 1;
for (long long i = 0; i < k; i++) {
p = p * (n - i) % mod;
q = q * (i + 1) % mod;
}
return p * modinv(q, mod) % mod;
}
long long POW(long long a, long long n) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a;
a = a * a;
n >>= 1;
}
return res;
}
vector<long long> eratos(long long n) {
if (n < 2) return {};
vll v(n - 1);
for (long long i = 0; i < n - 1; i++) {
v[i] = i + 2;
}
ll i = 0;
while (i < n - 1) {
ll p = v[i];
for (ll j = i + 1; j < n - 1; j++) {
if (v[j] % p == 0) {
v.erase(v.begin() + j);
n--;
}
}
i++;
}
v.resize(n - 1);
return v;
}
set<long long> eraset(long long n) {
set<long long> s;
vll v = eratos(n);
for (auto &t : v) {
s.insert(t);
}
return s;
}
vll line(ll x1, ll y1, ll x2, ll y2) {
vector<ll> v(3);
v[0] = y1 - y2;
v[1] = x2 - x1;
v[2] = -x1 * (y1 - y2) + y1 * (x1 - x2);
return v;
}
double dis(vll v, ll x, ll y) {
double s = sqrt(v[0] * v[0] + v[1] * v[1]);
return (double)abs(v[0] * x + v[1] * y + v[2]) / s;
}
ll const mod = 1e9 + 7;
int main() {
ll n;
cin >> n;
auto a = inputv(n);
ll l = 0;
ll res = 0;
for (long long i = 0; i < n; i++) {
if (i == 0 && a[0] == 0) {
for (long long j = 0; j < n - 1; j++) {
if (a[j + 1]) {
a[0] = -a[j + 1] / abs(a[j + 1]);
break;
}
}
if (!a[0]) a[0] = 1;
res++;
} else if (l < 0) {
if (a[i] < -l + 1) {
res += -l + 1 - a[i];
a[i] = -l + 1;
l = 1;
} else {
l += a[i];
}
} else if (l > 0) {
if (a[i] > -l - 1) {
res += abs(a[i] - (-l - 1));
a[i] = -l - 1;
l = -1;
} else {
l += a[i];
}
} else if (i == 0) {
l = a[0];
}
}
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> List(n);
for (int i = 0; i < n; i++) {
cin >> List.at(i);
}
int cnt, Sign;
cnt = Sign = 0;
for (int i = 0; i < n; i++) {
if (Sign == 0) {
if (List.at(i) > 0) {
Sign = List.at(i);
} else if (List.at(i) < 0) {
Sign = List.at(i);
}
continue;
}
if (Sign > 0) {
if (Sign + List.at(i) >= 0) {
cnt += abs(Sign + List.at(i)) + 1;
Sign = -1;
} else {
Sign += List.at(i);
}
continue;
}
if (Sign < 0) {
if (List.at(i) + Sign <= 0) {
cnt += abs(Sign + List.at(i)) + 1;
Sign = 1;
} else {
Sign += List.at(i);
}
continue;
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[100002] = {};
int b[100002] = {};
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
b[i] = a[i];
}
int eve = 0, sum = 0;
for (int j = 0; j < n; j++) {
if (j % 2 == 0 && sum + a[j] <= 0) {
eve += abs(a[j] + sum) + 1;
a[j] = abs(sum) + 1;
}
if (j % 2 == 1 && sum + a[j] >= 0) {
eve += a[j] + sum + 1;
a[j] = -abs(sum) - 1;
}
sum += a[j];
}
sum = 0;
int odd = 0;
for (int k = 0; k < n; k++) {
if (k % 2 == 0 && sum + b[k] >= 0) {
odd += abs(b[k] + sum) + 1;
b[k] = -abs(sum) - 1;
}
if (k % 2 == 1 && sum + b[k] <= 0) {
odd += abs(sum + b[k]) + 1;
b[k] = abs(sum) + 1;
}
sum += b[k];
}
cout << min(odd, eve) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long f(vector<long long>& sum, vector<long long>& pm) {
int tmp;
tmp = 0;
for (int i = 0; i < (n - 1); i++) {
sum[i + 1] += pm[i];
if (sum[i] * sum[i + 1] >= 0) {
if (sum[i + 1] == 0) {
if (sum[i] < 0)
sum[i + 1] = pm[i + 1] = 1;
else
sum[i + 1] = pm[i + 1] = -1;
} else if (sum[i + 1] < 0) {
pm[i + 1] = 1 - sum[i + 1];
sum[i + 1] = 1;
} else if (sum[i + 1] > 0) {
pm[i + 1] = -1 - sum[i + 1];
sum[i + 1] = -1;
}
tmp += abs(pm[i + 1]);
}
}
return tmp;
}
signed main(void) {
cin >> n;
vector<long long> s(n), t, pm(n, 0);
long long ans, tmp;
for (int i = 0; i < (n); i++) {
int a;
cin >> a;
s[i] = a;
}
for (int i = 0; i < (n - 1); i++) s[i + 1] += s[i];
ans = 1e18;
copy(s.begin(), s.end(), back_inserter(t));
tmp = 0;
if (t[0] <= 0) {
pm[0] = 1 - t[0];
t[0] = 1;
tmp += abs(pm[0]);
}
tmp += f(t, pm);
ans = min(ans, tmp);
for (int i = 0; i < (n); i++) pm[i] = 0;
tmp = 0;
if (s[0] >= 0) {
pm[0] = -1 - s[0];
s[0] = -1;
tmp += abs(pm[0]);
}
tmp += f(s, pm);
ans = min(ans, tmp);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 300000000;
const long long MOD = 1000000007;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
int n;
cin >> n;
long long a[100100];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long ans = INF;
for (int i = 0; i < 2; ++i) {
long long count = 0;
long long su = 0;
for (int j = 0; j < n; ++j) {
su += a[j];
if (i == 0) {
if (j % 2 == 0 && su <= 0) {
count += -su + 1;
su = 1;
} else if (j % 2 == 1 && su >= 0) {
count += su + 1;
su = -1;
}
}
if (i == 1) {
if (j % 2 == 0 && su >= 0) {
count += su + 1;
su = -1;
} else if (j % 2 == 1 && su <= 0) {
count += -su + 1;
su = 1;
}
}
}
ans = min(ans, count);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ABC59C
{
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
string[] str = Console.ReadLine().Split(' ');
int[] a = new int[n];
for(int i = 0; i < n; i++)
{
a[i] = int.Parse(str[i]);
}
int x = 0;
int y = 0;
int f = 0;
int sum = 0;
for(int i = 0; i < n; i++)
{
sum += a[i];
if (f == 1 && sum >= 0)
{
x += (sum + 1);
f = 0;
sum = -1;
}else if (f == 0 && sum <= 0)
{
x += (1 - sum);
f = 1;
sum = 1;
}else
{
f = 1 - f;
}
}
sum = 0;
f = 1;
for (int i = 0; i < n; i++)
{
sum += a[i];
if (f == 1 && sum >= 0)
{
y += (sum + 1);
f = 0;
sum = -1;
}
else if (f == 0 && sum <= 0)
{
y += (1 - sum);
f = 1;
sum = 1;
}
else
{
f = 1 - f;
}
}
Console.WriteLine(Math.Min(x,y));
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
using namespace std;
typedef long long int lli
int main() {
int n;
cin >> n;
int a[100000];
for (int i = 0;i<n;i++) { cin >> a[i]; }
//最初が正のケース
lli Mp = 0;
int Sp = 0;
int dif = 0;
for (int i = 0;i<n;i++) {
Sp += a[i];
if (i % 2 == 0) {
if (Sp<=0) {
dif = 1 - Sp;
Mp += dif;
Sp += dif;
}
}
else {
if (Sp>=0) {
dif = Sp + 1;
Mp += dif;
Sp += -dif;
}
}
}
//最初が負のケース
lli Mn = 0;
int Sn = 0;
int di = 0;
for (int i = 0;i<n;i++) {
Sn += a[i];
if (i % 2 == 1) {
if (Sn<=0) {
di = 1 - Sp;
Mn += di;
Sn += di;
}
}
else {
if (Sn>=0) {
di = Sn + 1;
Mn += di;
Sn += -di;
}
}
}
if (Mp<Mn) { cout << Mp; }
else { cout << Mn; }
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
int n;
cin >> n;
int a[n];
for (size_t i = 0; i < n; i++) {
cin >> a[i];
}
int s = a[0];
int res = 0;
for (size_t i = 1; i < n; i++) {
if (s > 0) {
int s2 = s + a[i];
if (s2 <= -1) {
s = s2;
} else {
s = -1;
res += (s2 + 1);
}
} else {
int s2 = s + a[i];
if (s2 >= 1) {
s = s2;
} else {
s = 1;
res += (-s2 + 1);
}
}
}
s = a[0] > 0 ? -1 : 1;
int res2 = abs(a[0]) + 1;
for (size_t i = 1; i < n; i++) {
if (s > 0) {
int s2 = s + a[i];
if (s2 <= -1) {
s = s2;
} else {
s = -1;
res2 += (s2 + 1);
}
} else {
int s2 = s + a[i];
if (s2 >= 1) {
s = s2;
} else {
s = 1;
res2 += (-s2 + 1);
}
}
}
cout << min(res, res2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1e9;
const int mod = 1e9 + 7;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long ans = 0;
bool posi;
long long sum[n];
sum[0] = a[0];
if (sum[0] > 0)
posi = true;
else
posi = false;
for (int i = 1; i < n; i++) {
long long sum_t = (long long)a[i] + sum[i - 1];
if (posi) {
posi = false;
if (sum_t >= 0) {
long long t = a[i] - sum_t - 1;
ans += abs(a[i] - t);
a[i] = t;
sum_t = a[i] + sum[i - 1];
}
} else {
posi = true;
if (sum_t <= 0) {
long long t = a[i] - sum_t + 1;
ans += abs(a[i] - t);
a[i] = t;
sum_t = a[i] + sum[i - 1];
}
}
sum[i] = sum_t;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long n, a[200005], sum, ans;
int main() {
cin >> n;
for (long long i = (long long)0; i < (long long)n; i++) {
cin >> a[i];
if (i == 0) {
sum = a[i];
continue;
}
if (sum > 0 && sum + a[i] < 0 || sum < 0 && sum + a[i] > 0) {
sum += a[i];
} else {
ans += abs(sum + a[i]) + 1;
if (sum > 0)
sum = -1;
else
sum = 1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | function Main(s) {
var s = s.split("\n");
var n = parseInt(s[0], 10);
var a = s[1].split(" ").map(e => parseInt(e, 10));
var acc = 0, cnt = 0, arr = [];
for (var i = 0; i < n; i++) {
acc += a[i];
if (i === 0) {
if (acc === 0) {
acc++;
cnt++;
}
} else {
if (arr[i - 1] > 0) {
if (acc >= 0) {
cnt += (acc + 1);
acc -= (acc + 1);
}
} else {
if (acc <= 0) {
cnt += (Math.abs(acc) + 1);
acc += (Math.abs(acc) + 1);
}
}
}
arr.push(acc);
}
console.log(cnt);
}
Main(require("fs").readFileSync("/dev/stdin", "utf8")); |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!/usr/bin/env python3
import sys
INF = float("inf")
def solve(n: int, a: "List[int]"):
# 正スタート
tot = 0
countA = 0
for i, x in enumerate(a):
tot += x
if i % 2 == 0:
if tot <= 0:
countA += -tot+1
tot = 1
elif i % 2 == 1:
if tot >= 0:
countA += tot+1
tot = -1
tot = 0
countB = 0
for i, x in enumerate(a):
tot += x
if i % 2 == 1:
if tot <= 0:
countB += -tot+1
tot = 1
elif i % 2 == 0:
if tot >= 1:
countB += tot+1
tot = -1
print(min(countA, countB))
return
def main():
def iterate_tokens():
for line in sys.stdin:
for word in line.split():
yield word
tokens = iterate_tokens()
n = int(next(tokens)) # type: int
a = [int(next(tokens)) for _ in range(n)] # type: "List[int]"
solve(n, a)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int f(int s, vector<int> v) {
int ans = 0, x, t = 0, y;
if (v[0] == 0) {
x = s * 1 - t;
y = abs(x - v[0]);
v[0] = x;
ans += y;
}
t = t + v[0];
for (int i = 1; i < n; i++) {
s *= (-1);
if ((s == -1 && (t + v[i]) >= 0) || (s == 1 && (t + v[i]) <= 0)) {
x = s * 1 - t;
y = abs(x - v[i]);
v[i] = x;
ans += y;
}
t = t + v[i];
}
return ans;
}
int main() {
while (scanf("%d", &n) == 1) {
vector<int> arr(100010);
for (int i = 0; i < n; i++) {
scanf("%d", &arr[i]);
}
int x = f(-1, arr);
int y = f(1, arr);
int ans = min(x, y);
printf("%d\n", ans);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
n = int(input())
al = list(map(int, input().split()))
ans1 = 0
curr_sum = al[0]
next_sign = 1
for a in al[1:]:
next_sum = curr_sum + a
if next_sum >= 0 and next_sign == -1:
ans1 += next_sum+1
next_sum = -1
elif next_sum <= 0 and next_sign == 1:
ans1 += (1-next_sum)
next_sum = 1
curr_sum = next_sum
next_sign *= -1
ans2 = 0
curr_sum = al[0]
next_sign = -1
for a in al[1:]:
next_sum = curr_sum + a
if next_sum >= 0 and next_sign == -1:
ans2 += next_sum+1
next_sum = -1
elif next_sum <= 0 and next_sign == 1:
ans2 += (1-next_sum)
next_sum = 1
curr_sum = next_sum
next_sign *= -1
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | "use strict";
const main = arg => {
arg = arg.trim().split("\n");
const N = parseInt(arg[0]);
const A = arg[1].split(" ").map(n=>parseInt(n));
let totalSum = A[0];
let answer = 0;
for(let i=1; i<N; i++) {
// 累積和が+かつ、A[i]を足しても+
while(totalSum >= 0 && totalSum + A[i] >= 0) {
A[i]--;
answer++;
}
// 累積和が-かつ、A[i]を足しても-
while(totalSum <= 0 && totalSum + A[i] <= 0) {
A[i]++;
answer++;
}
totalSum += A[i];
}
console.log(answer);
}
main(require('fs').readFileSync('/dev/stdin', 'utf8')); |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<long long int> vec;
vector<vector<long long int> > vec2;
long long int MOD = 1000000007;
int main() {
long long int N;
cin >> N;
vector<long long int> vec(N, 0);
for (long long int i = 0; i < N; i++) {
cin >> vec[i];
}
long long int ans = 0;
long long int g_ans = 0;
long long int k_ans = 0;
long long int sum = 0;
bool flg = true;
for (long long int i = 0; i < N; i++) {
sum += vec[i];
if (flg == true) {
if (sum <= 0) {
cout << i << " " << sum << " " << abs(1 - sum) << endl;
k_ans += abs(1 - sum);
sum += k_ans;
}
flg = false;
} else {
if (sum >= 0) {
cout << i << " " << sum << " " << abs(-1 - sum) << endl;
k_ans += abs(-1 - sum);
sum += -k_ans;
}
flg = true;
}
}
flg = true;
sum = 0;
for (long long int i = 0; i < N; i++) {
sum += vec[i];
if (flg == false) {
if (sum <= 0) {
g_ans += abs(1 - sum);
sum += g_ans;
}
flg = true;
} else {
if (sum >= 0) {
g_ans += abs(-1 - sum);
sum += -g_ans;
}
flg = false;
}
}
ans = min(k_ans, g_ans);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
long long prevArraySum, currentArraySum;
long long res, res1 = 1e15;
for (int first = 0; first < (int)(2); first++) {
if (first % 2 && a[0] == 0) {
res = 1;
prevArraySum = -1;
currentArraySum = -1;
} else if (first % 2 == 1 && a[0] == 0) {
res = 1;
prevArraySum = 1;
currentArraySum = 1;
} else if (first % 2 == 1) {
res = 0;
prevArraySum = a[0];
currentArraySum = a[0];
} else if (a[0] > 0) {
res = a[0] + 1;
prevArraySum = -1;
currentArraySum = -1;
} else {
res = -a[0] + 1;
prevArraySum = -1;
currentArraySum = -1;
}
for (int i = (1); i < (n); ++i) {
if (prevArraySum > 0) {
currentArraySum = prevArraySum + a[i];
if (currentArraySum >= 0) {
res += abs(-1 - currentArraySum);
prevArraySum = -1;
} else {
prevArraySum = currentArraySum;
}
} else {
currentArraySum = prevArraySum + a[i];
if (currentArraySum <= 0) {
res += abs(1 - currentArraySum);
prevArraySum = 1;
} else {
prevArraySum = currentArraySum;
}
}
}
res1 = min(res, res1);
}
cout << res1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
b = [int(x) for x in input().split()]
temp = 0
count1 = 0
count2 = 0
a = b
if a[0] == 0:
a[0] = 1
count1 = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
if sum > 0:
temp = -1 * abs(sum) - 1
count1 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count1 += abs(temp - a[i])
a[i] = temp
sum += a[i]
count2 = abs(a[0]) + 1
a = b
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
count2 += abs(sum - a[i]) + 1
if sum > 0:
temp = -1 * abs(sum) - 1
count2 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count2 += abs(temp - a[i])
a[i] = temp
sum += a[i]
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from functools import lru_cache
n = int(input())
s = list(map(int, input().split()))
@lru_cache(maxsize=None)
def cost_e():
res = 0
sum = 0
for j, y in enumerate(s, 1):
tmp = sum + y
if j & 1 and tmp >= 0:
sum = -1
res += abs(tmp) + 1
elif not j & 1 and tmp <= 0:
sum = 1
res += abs(tmp) + 1
else:
sum = tmp
return res
@lru_cache(maxsize=None)
def cost_o():
res = 0
sum = 0
for j, y in enumerate(s, 1):
tmp = sum + y
if j & 1 and tmp <= 0:
sum = -1
res += abs(tmp) + 1
elif not j & 1 and tmp >= 0:
sum = 1
res += abs(tmp) + 1
else:
sum = tmp
return res
print(min(cost_e(), cost_o()))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, a[100000];
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
int ans = 0, sum = 0;
for (int i = 0; i < n; i++) {
int presum = sum, cnt = 0;
sum += a[i];
if (presum < 0) {
if (sum <= 0) {
while (sum <= 0) {
sum++;
cnt++;
}
}
} else if (presum > 0) {
if (sum >= 0) {
while (sum >= 0) {
sum--;
cnt++;
}
}
} else
continue;
ans += cnt;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
using System.Text.RegularExpressions;
using System.Diagnostics;
//var input = Console.ReadLine().Split().Select(int.Parse).ToArray();
namespace AtCoderSolve
{
class Solve
{
const int mod = 1000000007;
static void Main(string[] args)
{
//var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
//Console.SetOut(sw);
int N = int.Parse(Console.ReadLine());
var a = Console.ReadLine().Split().Select(long.Parse).ToArray();
long[] sum = new long[N];
long[] ans = new long[2];
long c = 1;
for (var j = 0; j < 2; j++)
{
for (var i = 0; i < N; i++)
{
if (i == 0)
{
sum[i] = a[i];
}
else
{
sum[i] = sum[i - 1] + a[i];
}
if (sum[i] * c <= 0)
{
ans[j] += 1 + Math.Abs(sum[i]);
sum[i] = c;
}
c *= -1;
}
c *= -1;
}
Console.WriteLine($"{ans[0]} {ans[1]}");
//Console.Out.Flush();
}
}
public class Calculation
{
}
public class Graph
{
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #region using
using System;
using System.Collections.Generic;
using System.Linq;
using IEnumerable = System.Collections.IEnumerable;
using IEnumerator = System.Collections.IEnumerator;
using BitArray = System.Collections.BitArray;
using BigInteger = System.Numerics.BigInteger;
using TextReader = System.IO.TextReader;
using System.Text;
#endregion
namespace AtCoderProject
{
public class Program
{
public object Calc()
{
var N = consoleReader.Int;
var a = consoleReader.Split.Int;
long count = 0;
long sum = 0;
bool isPositive = a[0] >= 0;
for (int i = 0; i < a.Length; i++)
{
sum += a[i];
if (isPositive && sum <= 0)
sum += count += 1 - sum;
else if (!isPositive && sum >= 0)
sum -= count += sum + 1;
isPositive = !isPositive;
}
return count;
}
struct Mod : IEquatable<Mod>
{
public const long mod = 1000000007;
public readonly long val;
public Mod(long val) { this.val = val; }
public override bool Equals(object obj) => (obj is Mod) ? this == ((Mod)obj) : false;
public bool Equals(Mod obj) => this == obj;
public override int GetHashCode() => val.GetHashCode();
public override string ToString() => val.ToString();
public static implicit operator Mod(long x) => new Mod(x);
public static Mod operator +(Mod x, Mod y) => (x.val + y.val) % mod;
public static Mod operator -(Mod x, Mod y) => x.val >= y.val ? (x.val - y.val) % mod : (x.val - y.val) % mod + mod;
public static Mod operator *(Mod x, Mod y) => (x.val * y.val) % mod;
public static Mod operator /(Mod x, Mod y) => x * y.Inverse();
public static bool operator ==(Mod x, Mod y) => x.val == y.val;
public static bool operator !=(Mod x, Mod y) => x.val != y.val;
public Mod Inverse()
{
long a = val, b = mod, u = 1, v = 0;
while (b > 0)
{
long t = a / b;
var b2 = a - t * b;
a = b; b = b2;
var v2 = u - t * v;
u = v; v = v2;
}
u %= mod;
if (u < 0) u += mod;
return u;
}
public static Mod Pow(Mod x, int y)
{
Mod res = 1;
for (; y > 0; y >>= 1)
{
if ((y & 1) == 1) res *= x;
x *= x;
}
return res;
}
public static Factor CreateFactor(int max) => new Factor(max);
public class Factor
{
private readonly Mod[] fac, finv;
public Factor(int max)
{
++max;
var inv = new Mod[max];
fac = new Mod[max]; finv = new Mod[max];
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < max; i++)
{
fac[i] = fac[i - 1] * i;
inv[i] = mod - inv[mod % i].val * (mod / i) % mod;
finv[i] = finv[i - 1] * inv[i];
}
}
// 二項係数計算
public Mod Combine(int n, int k)
{
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * finv[k] * finv[n - k];
}
public Mod Factorial(int n) => fac[n];
public Mod FactorialInvers(int n) => finv[n];
}
}
#region いつもの
#pragma warning disable
private ConsoleReader consoleReader;
public Program(ConsoleReader consoleReader) { this.consoleReader = consoleReader; }
static void Main() => Console.WriteLine(new Program(new ConsoleReader(Console.In)).Calc()); static string AllLines<T>(IEnumerable<T> source) => string.Join("\n", source);
}
static class Ext
{
public static Dictionary<TKey, int> GroupCount<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector) => source.GroupBy(keySelector).ToDictionary(g => g.Key, g => g.Count());
public static Dictionary<TKey, int> GroupCount<TKey>(this IEnumerable<TKey> source) => source.GroupCount(i => i);
}
public class ConsoleReader { private string[] ReadLineSplit() => textReader.ReadLine().Split(Array.Empty<char>(), StringSplitOptions.RemoveEmptyEntries); private string[] line = Array.Empty<string>(); private int linePosition; private TextReader textReader; public ConsoleReader(TextReader tr) { textReader = tr; } public int Int => int.Parse(String); public long Long => long.Parse(String); public double Double => double.Parse(String); public string String { get { if (linePosition >= line.Length) { linePosition = 0; line = ReadLineSplit(); } return line[linePosition++]; } } public class SplitLine { private string[] splited; public SplitLine(ConsoleReader cr) { splited = cr.ReadLineSplit(); cr.line = Array.Empty<string>(); } public int[] Int => String.Select(x => int.Parse(x)).ToArray(); public int[] Int0 => String.Select(x => int.Parse(x) - 1).ToArray(); public long[] Long => String.Select(x => long.Parse(x)).ToArray(); public double[] Double => String.Select(x => double.Parse(x)).ToArray(); public string[] String => splited; } public SplitLine Split => new SplitLine(this); public class RepeatReader : IEnumerable<ConsoleReader> { ConsoleReader cr; int count; public RepeatReader(ConsoleReader cr, int count) { this.cr = cr; this.count = count; } public IEnumerator<ConsoleReader> GetEnumerator() => Enumerable.Repeat(cr, count).GetEnumerator(); System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() => GetEnumerator(); public IEnumerable<string> String => this.Select(cr => cr.String); public IEnumerable<int> Int => this.Select(cr => cr.Int); public IEnumerable<int> Int0 => this.Select(cr => cr.Int - 1); public IEnumerable<long> Long => this.Select(cr => cr.Long); public IEnumerable<double> Double => this.Select(cr => cr.Double); } public RepeatReader Repeat(int count) => new RepeatReader(this, count); }
#endregion
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int sum;
int input;
cin >> sum;
int ans1, ans2, sum1, sum2;
if (sum > 0) {
sum1 = sum;
sum2 = -1;
ans1 = 0;
ans2 = abs(sum) + 1;
} else if (sum < 0) {
sum1 = 1;
sum2 = sum;
ans1 = abs(sum) + 1;
ans2 = 0;
} else {
sum1 = 1;
sum2 = -1;
ans1 = 1;
ans2 = 1;
}
for (int i = 1; i < n; ++i) {
cin >> input;
if (sum1 * (sum1 + input) >= 0) {
ans1 += abs(sum1 + input) + 1;
if (sum1 < 0)
sum1 = 1;
else
sum1 = -1;
} else
sum1 += input;
if (sum2 * (sum2 + input) >= 0) {
ans2 += abs(sum2 + input) + 1;
if (sum2 < 0)
sum2 = 1;
else
sum2 = -1;
} else
sum2 += input;
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
check = ''
if a[0] > 0:
check = '+'
else:
check = '-'
ans = 0
for i in range(1, n):
a[i] += a[i-1]
if check == '+':
if a[i] >= 0:
ans += abs(a[i]) + 1
a[i] -= abs(a[i]) + 1
check = '-'
else:
if a[i] <= 0:
ans += abs(a[i]) + 1
a[i] += abs(a[i]) + 1
check = '+'
print(a)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 200010;
int n, m, md, ans;
int a[maxn], pre[maxn];
;
long long read() {
long long s = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar();
}
return s * f;
}
int main() {
md = 0, ans = 0;
memset(pre, 0, sizeof(pre));
n = read();
for (int i = 1; i <= n; i++) {
a[i] = read();
pre[i] = a[i];
pre[i] += pre[i - 1];
}
if (pre[1] != 0) {
for (int i = 1; i < n; i++) {
int tmp = md;
if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) {
if ((pre[i] + tmp) < 0) {
md += (1 - (pre[i + 1] + tmp));
ans += (1 - (pre[i + 1] + tmp));
} else {
md -= ((pre[i + 1] + tmp) + 1);
ans += (1 + (pre[i + 1] + tmp));
}
}
}
} else {
int ans1 = 0, ans2 = 0;
md = 0, ans = 0;
pre[0] = -1;
for (int i = 0; i < n; i++) {
int tmp = md;
if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) {
if ((pre[i] + tmp) < 0) {
md += (1 - (pre[i + 1] + tmp));
ans1 += (1 - (pre[i + 1] + tmp));
} else {
md -= ((pre[i + 1] + tmp) + 1);
ans1 += (1 + (pre[i + 1] + tmp));
}
}
}
md = 0, ans = 0;
pre[0] = 1;
for (int i = 0; i < n; i++) {
int tmp = md;
if (((pre[i] + tmp) * (pre[i + 1] + tmp) >= 0)) {
if ((pre[i] + tmp) < 0) {
md += (1 - (pre[i + 1] + tmp));
ans2 += (1 - (pre[i + 1] + tmp));
} else {
md -= ((pre[i + 1] + tmp) + 1);
ans2 += (1 + (pre[i + 1] + tmp));
}
}
}
ans = min(ans1, ans2);
}
printf("%d\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def resolve():
N = int(input())
A = list(map(int, input().split()))
def solve(positive, A):
total = A[0]
ope = 0
for i in range(1, len(A)):
# print("####")
# print(total)
# print(ope)
if positive:
# 次は負の数=正の数になるなら補正
if total + A[i] >= 0:
ope += total + A[i] + 1
total = total + A[i] - (total + A[i]) - 1
else:
total += A[i]
else:
# 次は正の数=負の数になるなら補正
if total + A[i] <= 0:
ope += abs(total + A[i]) + 1
total = total + A[i] + abs(total + A[i]) + 1
else:
total += A[i]
positive = (not positive)
return ope
print(min(solve(True, A), solve(False, A)))
if '__main__' == __name__:
resolve() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #![allow(unused_mut)]
#![allow(non_snake_case)]
#![allow(unused_imports)]
use std::collections::HashSet;
use std::collections::HashMap;
use std::collections::BTreeSet;
use std::collections::VecDeque;
use std::cmp::{max, min};
use std::io::prelude::*;
fn input<T>() -> T
where T: std::str::FromStr {
let stdin = std::io::stdin();
let token: String = stdin
.lock()
.bytes()
.map(|c| c.unwrap() as char)
.skip_while(|c| c.is_whitespace())
.take_while(|c| !c.is_whitespace())
.collect();
token.parse().ok().unwrap()
}
fn main() {
let n: usize = input();
let mut a_s: Vec<i32> =
(0..n).map(|_| input()).collect();
let mut p0 = 0;
let mut p1 = 0;
for i in 0..n {
if i % 2 == 0 {
p0 += a_s[i];
} else {
p1 += a_s[i];
}
}
let mut cnt = 0;
if p0 < p1 {
for i in 0..n {
if a_s[i] == 0 {
cnt += 1;
}
if i % 2 == 0 {
if a_s[i] > 0 {
cnt += a_s[i] + 1
}
} else {
if a_s[i] < 0 {
cnt += a_s[i] + 1
}
}
}
} else {
for i in 0..n {
if a_s[i] == 0 {
cnt += 1;
}
if i % 2 == 1 {
if a_s[i] > 0 {
cnt += a_s[i] + 1
}
} else {
if a_s[i] < 0 {
cnt += a_s[i] + 1
}
}
}
}
println!("{}", cnt);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long[] a = new long[N];
long[] aNegative = new long[N];
for (int i = 0; i < N; i++) {
a[i] = sc.nextLong();
aNegative[i] -= a[i];
}
long cnt = Math.min(cntCal(a), cntCal(aNegative));
System.out.println(cnt);
}
public static long cntCal(long[] a) {
long sum = 0;
int cnt = 0;
for (int i = 0; i < a.length; i++) {
long tmpSum = sum + a[i];
if (sum > 0 && tmpSum >= 0) {
// sum > a[i]にしたい
long n = -sum - 1;
cnt += a[i] - n;
a[i] = n;
} else if (sum <= 0 && tmpSum <= 0) {
long n = -sum + 1;
cnt += n - a[i];
a[i] = n;
}
sum = sum + a[i];
}
return cnt;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
import copy
N=int(input())
l=list(map(int, input().split())) #リスト入力
cp = copy.copy(l)
if l[0]!=0:
for k in range(1,N):
if sum(l[:k])*sum(l[:k+1])>0:
l[k]=-np.sign(sum(l[:k]))-sum(l[:k])
if sum(l)==0:
print(1+sum([abs(l[n]-cp[n]) for n in range(N)]))
else:
print(sum([abs(l[n]-cp[n]) for n in range(N)]))
exit()
else:
#1
sei_l=copy.copy(l)
sei_l[0]=1
for k in range(1,N):
if sum(sei_l[:k])*sum(sei_l[:k+1])>0:
sei_l[k]=-np.sign(sum(sei_l[:k]))-sum(sei_l[:k])
if sum(sei_l)==0:
c1=1+sum([abs(sei_l[n]-cp[n]) for n in range(N)])
else:
c1=sum([abs(sei_l[n]-cp[n]) for n in range(N)])
#-1
fu_l=copy.copy(l)
sei_l[0]=-1
for k in range(1,N):
if sum(fu_l[:k])*sum(fu_l[:k+1])>0:
fu_l[k]=-np.sign(sum(fu_l[:k]))-sum(fu_l[:k])
if sum(fu_l)==0:
c2=1+sum([abs(fu_l[n]-cp[n]) for n in range(N)])
else:
c2=sum([abs(fu_l[n]-cp[n]) for n in range(N)])
print(max(c1,c2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int64_t> data(n + 1);
for (int i = 1; i <= n; i++) {
cin >> data.at(i);
}
int answer = 10000000;
int count = 0;
int64_t sum_a = 0;
for (int i = 1; i <= n; i++) {
sum_a += data.at(i);
if (i % 2 != 0 && sum_a <= 0) {
while (sum_a != 1) {
sum_a++;
count++;
}
}
if (i % 2 == 0 && sum_a >= 0) {
while (sum_a != -1) {
sum_a--;
count++;
}
}
}
answer = min(answer, count);
count = 0;
sum_a = 0;
for (int i = 1; i <= n; i++) {
sum_a += data.at(i);
if (i % 2 != 0 && sum_a >= 0) {
while (sum_a != -1) {
sum_a--;
count++;
}
}
if (i % 2 == 0 && sum_a <= 0) {
while (sum_a != 1) {
sum_a++;
count++;
}
}
}
answer = min(answer, count);
cout << answer << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
ll sum[n];
for (int i1 = 0; i1 < n; ++i1) {
ll a;
cin >> a;
sum[i1] = a + (i1 == 0 ? 0 : sum[i1 - 1]);
}
ll f = sum[0];
ll s = sum[1];
ll ope = 0;
if (f == 0) {
ope++;
int d = s < 0 ? 1 : -1;
for (int i = 0; i < n; ++i) {
sum[i] += d;
}
}
for (int i = 1; i < n - 1; ++i) {
ll f = sum[i];
ll s = sum[i + 1];
if (f * s < 0) {
continue;
}
ll d = abs(s) + 1;
ope += d;
if (0 < f && 0 < s) {
d *= -1;
}
for (int j = i + 1; j < n; ++j) {
sum[j] += d;
}
}
ll p = sum[n - 2];
ll t = sum[n - 1];
if (p * t > 0) {
ll d = abs(t) + 1;
ope += d;
if (0 < p && 0 < t) {
d *= -1;
}
sum[n - 1] += d;
}
cout << ope << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const long long INF = 1e18;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
int ary[n];
for (int i = (int)(0); i < (int)(n); ++i) cin >> ary[i];
long long ans = 0;
long long tmp = 0;
int plus = ary[0] / abs(ary[0]);
for (int i = (int)(0); i < (int)(n); ++i) {
tmp += ary[i];
if (tmp == 0 || plus != tmp / abs(tmp)) {
ans += abs(tmp - plus);
tmp = plus;
}
plus = -plus;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const long long LINF = 1e18;
const long long MOD = 1e9 + 7;
double EPS = 1e-8;
const double PI = acos(-1);
int dx[] = {-1, 1, 0, 0};
int dy[] = {0, 0, -1, 1};
int n;
long long rp(long long *a, long long sum, long long cnt) {
for (int j = 1; j < n; j++) {
if (sum > 0 && sum + a[j] < 0) {
sum += a[j];
continue;
}
if (sum < 0 && sum + a[j] > 0) {
sum += a[j];
continue;
}
if (sum < 0 && sum + a[j] <= 0) {
long long dt = 1 - (sum + a[j]);
cnt += dt;
a[j] += dt;
sum += a[j];
continue;
}
if (sum > 0 && sum + a[j] >= 0) {
long long dt = (sum + a[j]) - (-1);
cnt += dt;
a[j] -= dt;
sum += a[j];
continue;
}
}
return cnt;
}
int main() {
cin >> n;
long long a[int(1e5) + 5];
long long b[int(1e5) + 5];
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
}
long long cnt = 0;
long long sum = 0;
long long result;
if (a[0] > 0) {
cnt += a[0] + 1;
sum = -1;
long long ans1 = rp(a, sum, cnt);
sum = b[0];
cnt = 0;
long long ans2 = rp(b, sum, cnt);
result = min(ans1, ans2);
} else {
sum = a[0];
cnt = 0;
result = rp(a, sum, cnt);
}
cout << result << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count3 = 0
count4 = 0
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count3 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count3 += abs(currentSum) + 1
currentSum = -1
elif A[i] <= 0 and restSum == 0:
count3 += abs(currentSum) + 1
currentSum = 1
print(count3)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = tuple(map(int, input().split(' ')))
cs = A[0]
ans1 = 0
for na in A[1:]:
if cs >= 0:
cs += na
if cs < 0:
continue
ans1 += cs + 1
cs = -1
else:
cs += na
if cs > 0:
continue
ans1 += -cs + 1
cs = 1
if A[0] > 0:
cs = -1
else:
cs = 1
ans2 = A[0] + 1
for na in A[1:]:
if cs >= 0:
cs += na
if cs < 0:
continue
ans2 += cs + 1
cs = -1
else:
cs += na
if cs > 0:
continue
ans2 += -cs + 1
cs = 1
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int change_num(int p[], int N) {
int res = 0;
int sum = p[0];
for (int i = 1; i < N; i++) {
if (sum * (sum + p[i]) < 0) {
sum += p[i];
continue;
}
if (sum > 0 && sum + p[i] >= 0) {
sum += p[i];
while (sum >= 0) {
res++;
sum--;
}
continue;
}
if (sum < 0 && sum + p[i] <= 0) {
sum += p[i];
while (sum <= 0) {
res++;
sum++;
}
continue;
}
}
return res;
}
int main() {
int N;
cin >> N;
int a[N];
for (int i = 0; i < N; i++) cin >> a[i];
int ans = 0;
int sum = a[0];
if (a[0] == 0) {
int plus_ans;
a[0] = 1;
plus_ans = change_num(a, N) + 1;
int minus_ans = 1;
a[0] = -1;
minus_ans = change_num(a, N) + 1;
if (plus_ans < minus_ans) {
ans = plus_ans;
} else {
ans = minus_ans;
}
} else {
ans = change_num(a, N);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const long long INF = 1000000000000000000;
int main() {
int n;
cin >> n;
long long A[n];
long long sum[n];
long long ans = 0;
for (int i = 0; i < n; i++) {
cin >> A[i];
sum[i] = 0;
}
long long minans = INF;
long long temp = 0;
int p[2] = {1, -1};
if (A[0] == 0) {
for (int k = 0; k < 2; k++) {
ans = 0;
ans++;
A[0] = p[k];
sum[0] = A[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + A[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
}
}
ans = 0;
sum[0] = A[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + A[i];
if (sum[i - 1] * sum[i] < 0) continue;
if (sum[i - 1] * sum[i] == 0) {
if (sum[i - 1] < 0) {
ans++;
sum[i] = 1;
continue;
} else if (sum[i - 1] > 0) {
sum[i] = -1;
ans++;
continue;
}
}
if (sum[i - 1] < 0) {
temp = sum[i];
sum[i] = 1;
ans = ans + 1 + (-temp);
continue;
} else if (sum[i - 1] > 0) {
temp = sum[i];
sum[i] = -1;
ans = ans + 1 + temp;
continue;
}
}
minans = min(minans, ans);
cout << minans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int n, a[100000];
int main() {
scanf("%d", &n);
for (long long i = 0; i < n; i++) scanf("%d", &a[i]);
int ans = 0, sum = a[0];
for (long long i = 1; i <= n - 1; i++) {
int tmpsum = sum + a[i];
if (tmpsum == 0 || (tmpsum == 0 ? 0 : (tmpsum < 0 ? -1 : 1)) ==
(sum == 0 ? 0 : (sum < 0 ? -1 : 1))) {
int tmp = -(sum == 0 ? 0 : (sum < 0 ? -1 : 1)) - tmpsum;
a[i] += tmp;
ans += abs(tmp);
}
sum += a[i];
}
printf("%d\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll INF = 1LL << 60;
int main() {
ll n;
cin >> n;
ll a[n];
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
}
ll sum = a[0];
ll ans = 0;
for (int i = 1; i < n; i++) {
ll tmp_sum = sum + a[i];
if (sum > 0) {
while (tmp_sum >= 0) {
--tmp_sum;
++ans;
}
} else if (sum < 0) {
while (tmp_sum <= 0) {
++tmp_sum;
++ans;
}
}
sum = tmp_sum;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AtCoder
{
partial class Program
{
static long mod = 1000000007;
static void Main()
{
Console.SetOut(new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false });
Solve();
Console.Out.Flush();
Console.ReadKey();
}
//ここから
static void Solve()
{
int N = GetInt();
var A = GetLongArray();
var sum = Enumerable.Repeat(0, N).Select(s=>Enumerable.Repeat(0L,2).ToArray()).ToArray();
var cnt = Enumerable.Repeat(0L, 2).ToArray();
sum[0][0] = A[0] > 0 ? A[0] : 1;
cnt[0] = A[0] > 0 ? 0 : 1 - A[0];
sum[0][1] = A[0] < 0 ? A[0] : -1;
cnt[1] = A[1] < 0 ? 0 : 1 + A[0];
for(int i = 1; i < N; i++)
{
for (int j = 0; j < 2; j++)
{
sum[i][j] = sum[i - 1][j] + A[i];
if (sum[i - 1][j] * sum[i][j] >= 0)
{
if (sum[i - 1][j] > 0)
{
cnt[j] += sum[i][j] + 1;
sum[i][j] = -1;
}
else
{
cnt[j] += 1 - sum[i][j];
sum[i][j] = 1;
}
}
}
}
var ans = cnt.Min();
Console.WriteLine(ans);
}
}
//拡張メソッド
public static class Ex
{
public static List<string> FastSort(this List<string> s) { s.Sort(StringComparer.Ordinal); return s.ToList(); }
public static string yesno(this bool b) { return b ? "yes" : "no"; }
public static string YesNo(this bool b) { return b ? "Yes" : "No"; }
public static string YESNO(this bool b) { return b ? "YES" : "NO"; }
}
partial class Program
{
static public string GetStr() { return Console.ReadLine().Trim(); }
static public char GetChar() { return Console.ReadLine().Trim()[0]; }
static public int GetInt() { return int.Parse(Console.ReadLine().Trim()); }
static public long GetLong() { return long.Parse(Console.ReadLine().Trim()); }
static public double GetDouble() { return double.Parse(Console.ReadLine().Trim()); }
static public string[] GetStrArray() { return Console.ReadLine().Trim().Split(' '); }
static public int[] GetIntArray() { return Console.ReadLine().Trim().Split(' ').Select(int.Parse).ToArray(); }
static public long[] GetLongArray() { return Console.ReadLine().Trim().Split(' ').Select(long.Parse).ToArray(); }
static public char[] GetCharArray() { return Console.ReadLine().Trim().Split(' ').Select(char.Parse).ToArray(); }
static public double[] GetDoubleArray() { return Console.ReadLine().Trim().Split(' ').Select(double.Parse).ToArray(); }
static public T[][] CreateJaggedArray<T>(int H, int W, T value) { return Enumerable.Repeat(0, H).Select(s => Enumerable.Repeat(value, W).ToArray()).ToArray(); }
static public int[][] GetIntJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetIntArray().ToArray()).ToArray(); }
static public long[][] GetLongJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetLongArray().ToArray()).ToArray(); }
static public char[][] GetCharJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetStr().ToCharArray()).ToArray(); }
static public double[][] GetDoubleJaggedArray(int N) { return Enumerable.Repeat(0, N).Select(s => GetDoubleArray()).ToArray(); }
static public void WriteObjects<T>(IReadOnlyCollection<T> values) { var array = values.ToArray(); var num = array.Length; if (num == 0) return; Console.Write(array[0]); for (int i = 1; i < num; i++) { Console.Write(" "+array[i]);} Console.WriteLine(); }
static bool eq<T, U>() => typeof(T).Equals(typeof(U));
static T ct<T, U>(U a) => (T)Convert.ChangeType(a, typeof(T));
static T cv<T>(string s) => eq<T, int>() ? ct<T, int>(int.Parse(s))
: eq<T, long>() ? ct<T, long>(long.Parse(s))
: eq<T, double>() ? ct<T, double>(double.Parse(s))
: eq<T, char>() ? ct<T, char>(s[0])
: ct<T, string>(s);
static void Multi<T>(out T a) => a = cv<T>(GetStr());
static void Multi<T, U>(out T a, out U b)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]);
}
static void Multi<T, U, V>(out T a, out U b, out V c)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]);
}
static void Multi<T, U, V, W>(out T a, out U b, out V c, out W d)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]);
}
static void Multi<T, U, V, W, X>(out T a, out U b, out V c, out W d, out X e)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]);
}
static void Multi<T, U, V, W, X,Y>(out T a, out U b, out V c, out W d, out X e,out Y f)
{
var ar = GetStrArray(); a = cv<T>(ar[0]); b = cv<U>(ar[1]); c = cv<V>(ar[2]); d = cv<W>(ar[3]); e = cv<X>(ar[4]);f = cv<Y>(ar[5]);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
const int mod = 1000000007;
const int INF = 1000000000;
const long long LINF = 1e18;
const int MAX = 510000;
bool code(long long int n) {
if (n < 0)
return 1;
else if (n > 0)
return 0;
}
int main() {
int n;
long long int sum = 0;
long long int ans = 0;
long long int ans2 = 0;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
if (a.at(0) != 0) {
sum = a.at(0);
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += llabs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << ans << endl;
return 0;
} else if (a.at(0) == 0) {
sum = -1;
ans = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += llabs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
long long int sum2 = 1;
ans2 = 1;
for (int i = 1; i < n; i++) {
if (sum2 + a.at(i) == 0) {
ans2++;
if (sum2 > 0)
sum2 = -1;
else if (sum2 < 0)
sum2 = 1;
} else if (code(sum2 + a.at(i)) == code(sum2)) {
ans2 += llabs(sum2 + a.at(i)) + 1;
if (sum2 > 0)
sum2 = -1;
else if (sum2 < 0)
sum2 = 1;
} else {
sum2 = a.at(i) + sum2;
}
}
if (ans > ans2)
cout << ans2 << endl;
else {
cout << ans << endl;
}
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int flag[100005], k[100005];
long long a[100005], sum[100005], ans, b[100005], tot[100005], ant;
int main() {
int m = 0;
scanf("%d", &n);
scanf("%lld", &a[1]);
b[1] = a[1];
sum[1] = a[1];
tot[1] = sum[1];
if (sum[1] > 0) flag[1] = 1;
if (sum[1] < 0) flag[1] = 0;
if (sum[1] == 0) m = 1;
if (m == 0) {
for (int i = 2; i <= n; i++) {
scanf("%lld", &a[i]);
sum[i] = a[i] + sum[i - 1];
if (sum[i] > 0) flag[i] = 1;
if (sum[i] < 0) flag[i] = 0;
if (flag[i - 1] == 1) {
if (sum[i] >= 0) {
ans += sum[i] + 1;
sum[i] = -1;
flag[i] = 0;
}
} else {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
flag[i] = 1;
}
}
}
printf("%lld\n", ans);
} else {
for (int i = 2; i <= n; i++) {
scanf("%lld", &a[i]);
flag[1] = 0;
b[i] = a[i];
sum[i] = a[i] + sum[i - 1];
if (sum[i] > 0) flag[i] = 1;
if (sum[i] < 0) flag[i] = 0;
if (flag[i - 1]) {
if (sum[i] >= 0) ans += sum[i] + 1;
sum[i] = -1;
flag[i] = 0;
} else {
if (sum[i] <= 0) {
ans += 1 - sum[i];
sum[i] = 1;
flag[i] = 1;
}
}
}
k[1] = 1;
for (int i = 2; i <= n; i++) {
tot[i] = b[i] + tot[i - 1];
if (tot[i] > 0) k[i] = 1;
if (tot[i] < 0) k[i] = 0;
if (k[i - 1]) {
if (tot[i] >= 0) ant += tot[i] + 1;
tot[i] = -1;
k[i] = 0;
} else {
if (tot[i] <= 0) {
ant += 1 - tot[i];
tot[i] = 1;
k[i] = 1;
}
}
}
printf("%lld\n", min(ant, ans));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int sum = 0;
int total = 0;
cin >> n;
vector<int> vect;
bool positive = false;
while (n--) {
int a;
cin >> a;
vect.push_back(a);
}
if (vect[0] + vect[1] == 0) {
if (vect.size() > 2) {
int found = 0;
for (int i = 2; i < vect.size(); i++) {
if (vect[i] > 0 || vect[i] < 0) {
if (vect[i] > 0) {
if (i % 2 == 1) {
vect[1]++;
total++;
positive = true;
} else {
vect[1]--;
total++;
positive = false;
}
} else {
if (i % 2 == 1) {
vect[1]--;
total++;
positive = false;
} else {
vect[1]++;
total++;
positive = true;
}
}
found = 1;
break;
}
}
if (found == 0) {
vect[1]++;
total++;
positive = true;
}
} else {
cout << "1" << endl;
}
}
sum = vect[0] + vect[1];
if (sum < 0)
positive = false;
else
positive = true;
for (int i = 2; i < vect.size(); i++) {
sum += vect[i];
if (positive) {
if (sum >= 0) {
total += abs(sum) + 1;
sum = -1;
}
positive = false;
} else if (!positive) {
if (sum <= 0) {
total += abs(sum) + 1;
sum = 1;
}
positive = true;
}
}
cout << total << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pint = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T>
auto compare = [](T x, T y) -> bool { return (x < y); };
const int MOD = 1000000007;
ll N, a[100010];
signed main() {
cin >> N;
for (int(i) = 0; (i) < (N); ++(i)) cin >> a[i];
if (a[0] < 0) {
for (int(i) = 0; (i) < (N); ++(i)) a[i] *= -1;
}
ll sum = 0, ans = 0;
for (int(i) = 0; (i) < (N); ++(i)) {
if (i % 2 == 0) {
if (sum + a[i] > 0) {
sum += a[i];
} else {
ans += 1 - (sum + a[i]);
sum = 1;
}
} else {
if (sum + a[i] < 0) {
sum += a[i];
} else {
ans += 1 + (sum + a[i]);
sum = -1;
}
}
}
cout << (ans) << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ABC059Sequence
{
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
long[] a = new long[n];
string[] vals = Console.ReadLine().Split(' ');
for (int i = 0; i < n; i++)
a[i] = long.Parse(vals[i]);
if(a[0] != 0)
{
long num = calc(a);
Console.WriteLine(num);
}
else
{
a[0] = 1;
long num1 = calc(a) + 1;
a[0] = -1;
long num2 = calc(a) + 1;
Console.WriteLine(Math.Min(num1, num2));
}
}
static long calc(long[] a)
{
long num = 0;
int n = a.Length;
long[] cum = new long[n + 1];
for (int i = 1; i < n; i++)
{
cum[i] = cum[i - 1] + a[i - 1];
long t;
if (cum[i] > 0)
{
t = cum[i] * -1 - 1;
}
else
{
t = cum[i] * -1 + 1;
}
//Console.WriteLine("target: {0}", t);
long u;
if (t > 0)
{
if (a[i] < t)
{
u = t - a[i];
//Console.WriteLine("u={0}", u);
a[i] += u;
num += u;
}
}
else
{
if (a[i] > t)
{
u = a[i] - t;
//Console.WriteLine("u=-{0}", u);
a[i] -= u;
num += u;
}
}
}
return num;
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a;
cin >> a;
int sum = 0;
int x = 0;
if (a > 0) {
sum += a;
for (int t = 1; t < n; t++) {
int temp;
cin >> temp;
sum += temp;
if (t % 2 == 1 && sum >= 0) {
int s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 0 && sum <= 0) {
int s = 1 - sum;
sum = 1;
x += s;
}
}
} else {
sum += a;
for (int t = 1; t < n; t++) {
int temp;
cin >> temp;
sum += temp;
if (t % 2 == 0 && sum >= 0) {
int s = sum + 1;
sum = 1;
x += s;
} else if (t % 2 == 1 && sum <= 0) {
int s = 1 - sum;
sum = 1;
x += s;
}
}
}
cout << x << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int N;
cin >> N;
long long sum = 0;
long long ans = 0;
for (int i = 0; i < N; ++i) {
long long t;
cin >> t;
if (i == 0)
sum = t;
else {
if (sum < 0 && sum + t <= 0) {
ans += 1 - sum - t;
sum = 1;
} else if (sum > 0 && sum + t >= 0) {
ans += abs(-1 - sum - t);
sum = -1;
} else {
sum += t;
}
}
}
cout << ans << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long res1 = 0, res2 = 0;
long long sum1[n], sum2[n];
sum1[0] = (a[0] <= 0) ? (-a[0] + 1) : a[0];
sum2[0] = (a[0] >= 0) ? (-a[0] - 1) : a[0];
for (int i = 1; i < n; i++) {
sum1[i] = sum1[i - 1] + a[i];
long long sum = sum1[i];
if (sum1[i] <= 0 && sum1[i - 1] < 0) {
sum1[i] += -sum + 1;
res1 += abs(-sum + 1);
} else if (sum1[i] >= 0 && sum1[i - 1] > 0) {
sum1[i] += -sum - 1;
res1 += abs(-sum - 1);
}
sum2[i] = sum2[i - 1] + a[i];
sum = sum2[i];
if (sum2[i] <= 0 && sum2[i - 1] < 0) {
sum2[i] += -sum + 1;
res2 += abs(-sum + 1);
} else if (sum2[i] >= 0 && sum2[i - 1] > 0) {
sum2[i] += -sum - 1;
res2 += abs(-sum - 1);
}
}
cout << min(res1, res2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, temp;
long long count = 0;
long a[100000];
cin >> n;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum > 0 && sum + a[i + 1] > 0) {
temp = a[i + 1];
a[i + 1] = sum * (-1) - 1;
count += abs(a[i + 1] - temp);
} else if (sum < 0 && sum + a[i + 1] < 0) {
temp = a[i + 1];
a[i + 1] = 1 + sum * (-1);
count += abs(a[i + 1] - temp);
}
if (sum + a[i + 1] == 0) {
if (sum > 0) {
a[i + 1] -= 1;
} else {
a[i + 1] += 1;
}
count += 1;
}
}
for (int i = 0; i < n; i++) {
cout << a[i] << endl;
}
cout << count << endl;
}
string toUpper(string str) {
transform(str.begin(), str.end(), str.begin(), ::toupper);
return str;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
import java.math.*;
public class Main {
public static void main(String[] args) throws Exception {
// Your code here!
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.next());
long ans = 0l;
long sum = 0l;
boolean fg= false;
for(int i=0;i<n;i++){
long tw = Long.parseLong(sc.next());
sum += tw;
if(i>0){
if(fg && sum>=0l){
ans += sum+1;
sum = -1;
}else if(!fg && sum<0){
ans += Math.abs(sum)+1;
sum = 1;
}
fg = !fg;
}else{
fg = sum>=0l;
}
}
System.out.println(ans+(sum==0?1:0));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
n = int(input())
al = list(map(int, input().split()))
if al[0] == 0:
ans1 = 0
ans1 += 1
curr_sum = 1
for a in al[1:]:
next_sum = curr_sum + a
if next_sum >= 0 and curr_sum > 0:
ans1 += next_sum+1
next_sum = -1
elif next_sum <= 0 and curr_sum < 0:
ans1 += (1-next_sum)
next_sum = 1
ans2 = 0
ans2 += 1
curr_sum = 1
for a in al[1:]:
next_sum = curr_sum + a
if next_sum >= 0 and curr_sum > 0:
ans2 += next_sum+1
next_sum = -1
elif next_sum <= 0 and curr_sum < 0:
ans2 += (1-next_sum)
next_sum = 1
print(min(ans1,ans2))
else:
ans3 = 0
curr_sum = al[0]
for a in al[1:]:
next_sum = curr_sum + a
if next_sum >= 0 and curr_sum > 0:
ans3 += next_sum+1
next_sum = -1
elif next_sum <= 0 and curr_sum < 0:
ans3 += (1-next_sum)
next_sum = 1
curr_sum = next_sum
print(ans3) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<long long int> a;
long long int s;
for (int i = 0; i < (n); i++) {
cin >> s;
a.push_back(s);
}
long long int oddcount = 0, evencount = 0;
long long int oddsum = 0, evensum = 0;
bool odd = true, even = false;
for (int i = 0; i < (n); i++) {
oddsum += a[i];
evensum += a[i];
if (odd && oddsum <= 0) {
oddcount += 1 - oddsum;
oddsum = 1;
}
if (even && oddsum >= 0) {
oddcount += 1 + oddsum;
oddsum = -1;
}
if (even && evensum <= 0) {
evencount += 1 - evensum;
evensum = 1;
}
if (odd && evensum >= 0) {
evencount += 1 + evensum;
evensum = -1;
}
odd = !odd;
even = !even;
}
cout << fmin(oddcount, evencount) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
vector<ll> a;
vector<ll> ca;
int main() {
int n;
cin >> n;
a.resize(n);
ca.resize(n);
cin >> a[0];
for (int i = 1; i < n; i++) {
cin >> a[i];
ca[i] = a[i] + ca[0];
}
ll sum1 = 0, n1 = 0;
ll sum2 = 0, n2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
sum2 += a[i];
if (i % 2 == 0 && sum1 <= 0) {
n1 += 1 + abs(sum1);
sum1 += 1 + abs(sum1);
}
if (i % 2 == 1 && sum1 >= 0) {
n1 += 1 + abs(sum1);
sum1 -= 1 + abs(sum1);
}
if (i % 2 == 0 && sum2 >= 0) {
n2 += 1 + abs(sum2);
sum2 -= 1 + abs(sum1);
}
if (i % 2 == 1 && sum2 <= 0) {
n2 += 1 + abs(sum2);
sum2 += 1 + abs(sum2);
}
}
cout << min(n1, n2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int count = 0;
vector<int> a(100000);
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
vector<int> sum(100000);
sum[0] = a[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (sum[i] * sum[i - 1] >= 0) {
if (sum[i - 1] < 0) {
while (sum[i] * sum[i - 1] >= 0) {
sum[i]++;
count++;
}
} else {
while (sum[i] * sum[i - 1] >= 0) {
sum[i]--;
count++;
}
}
}
}
cout << count;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <cmath>
#include <map>
#include <queue>
#include <string>
#include <string>
#include <algorithm>
using namespace std;
int ch_sign(int n){
if(n == 0)return 0;
return (n>0)-(n<0);
}
int main(){
int n; cin >> n;
int a[n]; for(int i = 0; i<n; ++i) cin >> a[i];
int sign1 = (a[0] > 0) - (a[0] < 0), sign2 = -1*sign1;
int s = a[0];
int ans1 = 0, ans2 = 0;
for(int i = 1; i<n; ++i){
//cout << a[i] << ',' << s << ',' << sign << endl;
//while(abs(a[i]) <= abs(s)){ ++ans; a[i] -= sign;}
//int dis = abs(s) - abs(a[i]) + 1;
//cout << dis << endl << endl;
//if(dis > 0){ans += dis; a[i] -= sign*dis;}
//s += a[i]; sign *= -1;
s += a[i]; sign1 *= -1; sign2 *= -1;
if(ch_sign(s) != sign1){ ans1 += abs(s-sign1); s = sign1;}
if(ch_sign(s) != sign2){ ans2 += abs(s-sign2); s = sign2;}
}
cout << ans1>ans2 ? ans1 : ans2 << endl; return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <vector>
#include <string>
#include <cstring>
#include <math.h>
#include <limits.h>
#include <map>
#include <algorithm>
#include <functional>
using namespace std;
int main() {
int n;
vector<long long> A;
long long ans1 = 0;
long long ans2 = 0;
long long sum = 0;
cin >> n;
for ( int i = 0; i < n; i++ ) {
long long a;
cin >> a;
A.push_back(a);
}
is_plus = true;
for ( int i = 0; i < n; i++ ) {
if ( i ) { is_plus = sum > 0; }
sum += A[i];
if ( sum == 0 ) {
ans1++;
sum = is_plus ? -1 : 1;
}
else if ( is_plus == (sum > 0) ) {
ans1 += abs(sum)+1;
sum = is_plus ? -1 : 1;
}
}
is_plus = false;
for ( int i = 0; i < n; i++ ) {
if ( i ) { is_plus = sum > 0; }
sum += A[i];
if ( sum == 0 ) {
ans2++;
sum = is_plus ? -1 : 1;
}
else if ( is_plus == (sum > 0) ) {
ans2 += abs(sum)+1;
sum = is_plus ? -1 : 1;
}
}
cout << min( ans1, ans2 ) << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int ddx[8] = {0, 1, 1, 1, 0, -1, -1, -1};
const int ddy[8] = {1, 1, 0, -1, -1, -1, 0, 1};
const int dx[4] = {0, 1, 0, -1};
const int dy[4] = {1, 0, -1, 0};
int n;
int main(int argc, char const *argv[]) {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> n;
int a[n];
for (int i = (0); i < (n); ++i) cin >> a[i];
bool sign;
if (a[0] >= 0)
sign = true;
else
sign = false;
int sum;
int count = 0;
int reminder;
sum = a[0];
for (int i = (1); i < (n); ++i) {
if (sign) {
sum += a[i];
if (sum >= 0)
sign = true;
else
sign = false;
if (sign) {
reminder = abs(-1 - sum);
count += reminder;
sum = -1;
sign = false;
}
} else {
sum += a[i];
if (sum >= 0)
sign = true;
else
sign = false;
if (!sign) {
reminder = abs(1 - sum);
count += reminder;
sum = 1;
sign = true;
}
}
}
if (sum == 0) count++;
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = (int)1e9 + 7;
const int INF = 100100100;
const double PI = 3.14159265358979323846;
int main() {
int n, a[100001] = {0};
int res = 0;
cin >> n;
for (long long i = 0; i < (n); ++i) cin >> a[i];
int minPlus = 0, minMinus = 0;
long long sumPlus = 0, sumMinus = 0;
for (long long i = 0; i < (n); ++i) {
sumPlus += a[i];
if (i % 2 == 0 && sumPlus <= 0) {
minPlus += 1 - sumPlus;
sumPlus = 1;
} else if (i % 2 == 1 && sumPlus >= 0) {
minPlus += sumPlus + 1;
sumPlus = -1;
}
}
for (long long i = 0; i < (n); ++i) {
sumMinus += a[i];
if (i % 2 == 0 && sumMinus >= 0) {
minMinus += sumMinus + 1;
sumMinus = -1;
} else if (i % 2 == 1 && sumMinus <= 0) {
minMinus += 1 - sumMinus;
sumMinus = 1;
}
}
res = min(minPlus, minMinus);
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long max(long long a, long long b) { return (a > b) ? a : b; }
long long min(long long a, long long b) { return (a < b) ? a : b; }
long long abss(long long a) { return (a < 0) ? -a : a; }
long long gcd(long long a, long long b) {
if (b > a) {
long long tmp = b;
b = a;
a = tmp;
}
if (b == 0)
return a;
else
return gcd(b, a % b);
}
long long lcm(long long a, long long b) {
long long gcdi = gcd(a, b);
return a / gcdi * (b);
}
int a[100001];
int sum[100001];
int main() {
long long N;
scanf("%lld", &N);
for (int i = 0; i < N; i++) {
scanf("%d", a + i);
}
long long cnt = 0;
char sign;
if (a[0] == 0) {
a[0] = 1;
cnt++;
}
if (a[0] > 0)
sign = 1;
else
sign = -1;
sign = -sign;
long long sum = a[0];
for (int i = 1; i < N; i++) {
sum += a[i];
if (sign * sum > 0) {
} else {
cnt += abss(sum - sign);
sum = sign;
}
sign = -sign;
}
printf("%lld\n", cnt);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const long long MOD2 = 998244353;
const long long MOD3 = 1812447359;
const long long INF = 1ll << 62;
const double PI = 2 * asin(1);
void yes() { printf("yes\n"); }
void no() { printf("no\n"); }
void Yes() { printf("Yes\n"); }
void No() { printf("No\n"); }
void YES() { printf("YES\n"); }
void NO() { printf("NO\n"); }
int N;
long long A[int(1e5 + 5)], sum;
int main() {
cin >> N;
for (int i = 0; i < N; i++) cin >> A[i];
long long ans = 0, sum = A[0];
for (int i = 1; i < N; i++) {
if (sum > 0) {
if (sum + A[i] < 0) {
sum += A[i];
continue;
}
ans += sum + A[i] + 1;
sum = -1;
} else {
if (sum + A[i] > 0) {
sum += A[i];
continue;
}
ans += 1 - sum - A[i];
sum = 1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(9);
int N;
long long a[100000];
cin >> N;
for (int i = 0; i < N; i++) cin >> a[i];
long long ans = 0;
long long sum = a[0];
for (int i = 1; i < N; i++) {
if (sum > 0) {
sum += a[i];
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
ans += -sum + 1;
sum = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws IOException{
Sequence solver = new Sequence();
solver.readInput();
solver.solve();
solver.writeOutput();
}
static class Sequence {
private int n;
private long a[];
private long output;
private Scanner scanner;
public Sequence() {
this.scanner = new Scanner(System.in);
}
public void readInput() {
n = Integer.parseInt(scanner.next());
a = new long[n];
for(int i=0; i<n; i++) {
a[i] = Integer.parseInt(scanner.next());
}
}
private int count(int sign) {
int count=0;
long sum=0;
for(int i=0; i<n; i++) {
sum += a[i];
if(i%2==sign) {
// a[i]までの合計を正にするとき
if(sum<=0) {
count += 1-sum;
sum = 1;
}
} else {
// a[i]までの合計を負にするとき
if(0<=sum) {
count += 1+sum;
sum = -1;
}
}
}
return count;
}
public void solve() {
int plus = count(1);
int minus = count(0);
output = Math.min(plus,minus);
}
public void writeOutput() {
System.out.println(output);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
S = A[0]
cnt = 0
if S!=0:
for i in range(1,N):
K = S+A[i]
if S>0 and K>=0:
cnt += 1+K
S = -1
elif S<0 and K<=0:
cnt += 1-K
S = 1
else: S=K
else:
S,cnt = 1,1
for i in range(1,N):
K = S+A[i]
if S>0 and K>=0:
cnt += 1+K
S = -1
elif S<0 and K<=0:
cnt += 1-K
S = 1
else: S=K
S,cnt1 = -1,1
for i in range(1,N):
K = S+A[i]
if S>0 and K>=0:
cnt1 += 1+K
S = -1
elif S<0 and K<=0:
cnt1 += 1-K
S = 1
else: S=K
cnt = min(cnt,cnt1)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, temp;
long long count = 0;
long a[100000];
cin >> n;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum > 0 && sum + a[i + 1] > 0) {
temp = a[i + 1];
a[i + 1] = sum * (-1) - 1;
count += abs(a[i + 1] - temp);
} else if (sum < 0 && sum + a[i + 1] < 0) {
temp = a[i + 1];
a[i + 1] = 1 + sum * (-1);
count += abs(a[i + 1] - temp);
}
if (sum + a[i + 1] == 0) {
if (sum > 0) {
a[i + 1] -= 1;
} else {
a[i + 1] += 1;
}
count += 1;
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int32_t main() {
uint64_t N;
cin >> N;
long long total;
cin >> total;
long long sign = total / abs(total);
unsigned long long count = 0;
for (uint64_t i = 1; i < N; i++) {
sign *= -1;
long long val;
cin >> val;
total += val;
if ((total == 0) || (sign * total < 0)) {
count += abs(sign - total);
total = sign;
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int MOD = 1000000007;
using namespace std;
int main() {
int n, a[100000], sum, ans = 0, m = 1;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
a[0]++;
ans++;
}
if (a[0] < 0) m = -1;
sum = a[0];
for (int i = 1; i < n; i++) {
m *= -1;
sum += a[i];
if (m > 0 && sum <= 0) {
ans += 1 - sum;
sum = 1;
}
if (m < 0 && sum >= 0) {
ans += 1 + sum;
sum = -1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> A(n), B(n);
for (int i = 0; i < n; ++i) {
int a;
cin >> a;
A[i] = a;
B[i] = a;
}
int ans1 = 0;
long long sum = 0;
for (int i = 0; i < n; ++i) {
sum += A[i];
if (i % 2 == 0) {
if (sum <= 0) {
ans1 += abs(1 - sum);
sum = 1;
}
} else {
if (sum >= 0) {
ans1 += abs(-1 - sum);
sum = -1;
}
}
}
int ans2 = 0;
sum = 0;
for (int i = 0; i < n; ++i) {
sum += A[i];
if (i % 2 == 1) {
if (sum <= 0) {
ans2 += abs(1 - sum);
sum = 1;
}
} else {
if (sum >= 0) {
ans2 += abs(-1 - sum);
sum = -1;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!usr/bin/env python3
from collections import defaultdict,deque
from heapq import heappush, heappop
import sys
import math
import bisect
import random
def LI(): return [int(x) for x in sys.stdin.readline().split()]
def I(): return int(sys.stdin.readline())
def LS():return [list(x) for x in sys.stdin.readline().split()]
def S():
res = list(sys.stdin.readline())
if res[-1] == "\n":
return res[:-1]
return res
def IR(n):
return [I() for i in range(n)]
def LIR(n):
return [LI() for i in range(n)]
def SR(n):
return [S() for i in range(n)]
def LSR(n):
return [LS() for i in range(n)]
sys.setrecursionlimit(1000000)
mod = 1000000007
def solve():
n = I()
a = LI()
ans = 0
s = a[0]
if s <= 0:
ans += 1-a[0]
s = 1
f = 1
for i in a[1:]:
s += i
if f and (s >= 0):
ans += s+1
s = -1
if not f and (s <= 0):
ans += 1-s
s = 1
f ^= 1
m = ans
ans = 0
s = a[0]
if s >= 0:
ans += a[0]+1
s = 1
f = 0
for i in a[1:]:
s += i
if f and (s >= 0):
ans += s+1
s = -1
if not f and (s <= 0):
ans += 1-s
s = 1
f ^= 1
print(min(m,ans))
return
#Solve
if __name__ == "__main__":
solve()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import java.util.*;
object MainKt {
@JvmStatic fun main(args:Array<String>) {
val N=readLine()!!.toInt()
var A=readLine()!!.split(" ").map{it.toInt()}
var sum=A[0]
var plmi:Boolean
var count=0
for(i in (1..(N-1)))
{
assert(sum!=0)
plmi =sum>0
sum= if(sum+A[i]>0 == plmi) {
val min=if(plmi) {-1} else{1}
count+=Math.abs(min-(sum+A[i]) )
min
} else {sum+A[i] }
// println("${count} ${sum}")
}
// println("")
// if(valid)
// {
// println("0")
// return
// }
// sum=0
// for(i in (1..(N-1)))
// {
// }
println(count)
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
void print_array(T* arr, int num) {
for (int(i) = (0); (i) < (num); (i)++) cout << arr[i] << ' ';
cout << endl;
}
template <typename T>
void print_vector(vector<T> vec) {
for (int(i) = (0); (i) < (vec.size()); (i)++) cout << vec[i] << ' ';
cout << endl;
}
int n, arr[100010];
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (int(i) = (0); (i) < (n); (i)++) cin >> arr[i];
int sum = 0, ans = 0;
for (int(i) = (0); (i) < (n); (i)++) {
sum += arr[i];
if (i % 2 == 0) {
if (sum < 0) {
ans += -(sum) + 1;
sum = 1;
} else if (sum == 0) {
ans++;
sum = 1;
}
} else {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum == 0) {
ans++;
sum = -1;
}
}
}
sum = 0;
int ans2 = 0;
for (int(i) = (0); (i) < (n); (i)++) {
sum += arr[i];
if (i % 2) {
if (sum < 0) {
ans2 += -(sum) + 1;
sum = 1;
} else if (sum == 0) {
ans2++;
sum = 1;
}
} else {
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
} else if (sum == 0) {
ans2++;
sum = -1;
}
}
}
cout << min(ans, ans2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int min(int x, int y) { return x < y ? x : y; }
int main(void) {
int n, i, o = 0, e = 0;
scanf("%d", &n);
long long a, sum = 0, osum = 0, esum = 0;
for (i = 0; i < n; i++) {
scanf("%lld", &a);
osum += a;
esum += a;
if (i % 2 == 0) {
if (osum <= 0) {
o += 1 - osum;
osum = 1;
}
if (esum >= 0) {
e += 1 + esum;
esum = -1;
}
} else {
if (osum >= 0) {
o += 1 + osum;
osum = -1;
}
if (esum <= 0) {
e += 1 - esum;
esum = 1;
}
}
}
o = min(o, e);
printf("%d", o);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> sum(N, 0);
int now;
cin >> now;
sum[0] = now;
for (int i = 1; i < N; i++) {
cin >> now;
sum[i] = sum[i - 1] + now;
}
int change = 0;
int ansp = 0;
int i = 0;
while (i < N) {
ansp += max(1 - (sum[i] + change), 0);
change += max(1 - (sum[i] + change), 0);
i++;
if (i == N) {
break;
}
ansp += max((sum[i] + change) + 1, 0);
change -= max((sum[i] + change) + 1, 0);
i++;
}
change = 0;
int ansm = 0;
i = 0;
while (i < N) {
ansm += max((sum[i] + change) + 1, 0);
change -= max((sum[i] + change) + 1, 0);
i++;
if (i == N) {
break;
}
ansm += max(1 - (sum[i] + change), 0);
change += max(1 - (sum[i] + change), 0);
i++;
}
cout << min(ansp, ansm) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
cin >> n;
int i;
long a[n], su, cnt, cnt2;
su = 0;
cnt = 0;
for (i = 0; i < n; i++) {
cin >> a[i];
}
for (i = 0; i < n; i++) {
su += a[i];
if (a[0] >= 0) {
if (i % 2 == 0) {
if (su <= 0) {
cnt += 1 - su;
su = 1;
}
} else {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
}
} else {
if (i % 2 == 0) {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
} else {
if (su <= 0) {
cnt += 1 - su;
su = -1;
}
}
}
}
su = 0;
for (i = 0; i < n; i++) {
su += a[i];
if (a[0] > 0) {
if (i % 2 == 0) {
if (su <= 0) {
cnt += 1 - su;
su = 1;
}
} else {
if (su >= 0) {
cnt2 += su + 1;
su = -1;
}
}
} else {
if (i % 2 == 0) {
if (su >= 0) {
cnt2 += su + 1;
su = -1;
}
} else {
if (su <= 0) {
cnt2 += 1 - su;
su = -1;
}
}
}
}
cout << min(cnt, cnt2) << endl;
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.