Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
//----***やべーやつら***----
using namespace std;
#define int long long
//----***型定義***----
using ll = long long;
using pll = pair<ll, ll>;
using pdd = pair<double, double>;
typedef long double lb;
typedef long double ld;
typedef pair<int,int> P;
//----***Like a Pythonista***----
#define REP(ii,jj,nn) for (ll ii=jj;ii<(nn);ii++)
#define RREP(ii,nn,jj) for (ll ii = nn; jj<ii;ii--)
#define each(i,...) for (auto&& i:__VA_ARGS__)
#define ALL(vec) (vec).begin(),(vec).end()
#define sum(...) accumulate(ALL(__VA_ARGS__),0LL)
#define dsum(...) accumulate(ALL(__VA_ARGS__),0.0L)
#define vec(type,name,...) vector<type> name(__VA_ARGS__)
template<class T> inline auto max(const T& a){ return *max_element(ALL(a)); }
template<class T> inline auto min(const T& a){ return *min_element(ALL(a)); }
inline ll gcd(ll a,ll b){if(b == 0) return a;return gcd(b,a%b);}
inline ll lcm(ll a,ll b){ll g = gcd(a,b);return a / g * b;}
//----***定数***----
#define MOD 1e9+7;
#define INF 1e9;
#define EPS 1e-9;
//----***入出力***---
#define print(out) cout<< out << "\n";
#define debug(var) do{std::cerr << #var << " ↓ "<<"\n";view(var);}while(0);
#define dbg cerr<<"🥺🥺🥺🥺🥺🥺"<<endl;
template<typename T> void view(T e){std::cout << e << std::endl;}
template<typename T> void view(const std::vector<T>& v){for(const auto& e : v){ std::cout << e << " "; } std::cout << std::endl;}
template<typename T> void view(const std::vector<std::vector<T> >& vv){ for(const auto& v : vv){ view(v); } }
//----***初期時読み込み***----
struct initial{initial(){cin.tie(0); ios::sync_with_stdio(0); cout<<fixed<<setprecision(20);};}initial_;
signed main(){
int N;cin>>N;
vector<int> A(N);
REP(i,0,N)cin>>A[i];
int ans,cnt=0;
vector<int> tmp_A=A;
// case 偶数が正
for(int i=0;i<N;i++){
if(i%2==0&&A[i]<=0){
cnt+=-(tmp_A[i]-1);
tmp_A[i]=1;
}
if(i%2==1&&A[i]>=0){
cnt+=tmp_A[i]+1;
tmp_A[i]=-1;
}
}
int S=tmp_A[0];
REP(i,1,N){
if((S+tmp_A[i])*S>=0){
cnt+=abs(S+tmp_A[i])+1;
S=abs(S+tmp_A[i]);
}
else{
S+=tmp_A[i];
}
}
ans=cnt;
// case 偶数が負
cnt=0;tmp_A=A;
for(int i=0;i<N;i++){
if(i%2==1&&A[i]<=0){
cnt+=-(tmp_A[i]-1);
tmp_A[i]=1;
}
if(i%2==0&&A[i]>=0){
cnt+=tmp_A[i]+1;
tmp_A[i]=-1;
}
}
// debug(tmp_A)
// debug(cnt)
S=tmp_A[0];
REP(i,1,N){
if((S+tmp_A[i])*S>=0){
// debug(i)debug(S)
cnt+=abs(S+tmp_A[i])+1;
S=(tmp_A[i]<0?-1:1);
// debug(cnt)
}
else{
S+=tmp_A[i];
}
}
ans=min(ans,cnt);
print(ans)
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
import math
INF = 10**9+7
def k(i):
if(i == 1):
return 1
else:
return(i * k(i-1))
def comb(n, r):
if(n == r or r == 1):
return 1
else:
return k(n) / (k(n-r) * k(r))
stdin = sys.stdin
def na(): return map(int, stdin.readline().split())
def ns(): return stdin.readline().strip()
def nsl(): return list(stdin.readline().strip())
def ni(): return int(stdin.readline())
def nil(): return list(map(int, stdin.readline().split()))
n = ni()
a = nil()
b = []
for i in range(n):
b.append(a[i])
sum = 0
c1 = 0
c2 = 0
if a[0] == 0:
a[0] = 1
c1 += 1;
for i in range(0, n-1):
sum += a[i]
sum2 = sum + a[i+1]
if(sum * sum2 >= 0):
k = abs(sum2) + 1
h = k - (abs(sum) - 1)
l = k - h
if sum > 0 :
a[i] -= l
sum -= l
a[i + 1] -= h
else:
a[i] += l
sum += l
a[i + 1] += h
c1 += h+l
sum = 0
a = b
if a[0] == 0:
a[0] = 1
c2 += 1;
else:
c2 = abs(a[0]) + 1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
for i in range(0, n-1):
sum += a[i]
sum2 = sum + a[i+1]
if(sum * sum2 >= 0):
k = abs(sum2) + 1
h = k - (abs(sum) - 1)
l = k - h
if sum > 0 :
a[i] -= l
sum -= l
a[i + 1] -= h
else:
a[i] += l
sum += l
a[i + 1] += h
c2 += k
print(min(c1, c2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int comp(const void *a, const void *b) { return *(int *)a - *(int *)b; }
int main(void) {
int n, i;
int a[100001];
scanf("%d", &n);
for (i = 0; i < n; i++) {
scanf("%d", a + i);
}
int n1 = 0, n2 = 0;
{
int sum = 0;
int f = 0;
for (i = 0; i < n; i++) {
sum += a[i];
if (f) {
if (sum <= 0) {
n1 = n1 + 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
n1 = n1 + 1 + sum;
sum = -1;
}
}
f = !f;
}
}
{
int sum = 0;
int f = 1;
for (i = 0; i < n; i++) {
sum += a[i];
if (f) {
if (sum <= 0) {
n2 = n2 + 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
n2 = n2 + 1 + sum;
sum = -1;
}
}
f = !f;
}
}
printf("%ld\n", n1 < n2 ? n1 : n2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const int MAX_N = int(1e5);
long long n, a[MAX_N], dp[MAX_N];
void solve() {
long long sum_diff = 0, ans = 0;
if (dp[0] == 0) {
dp[0] = 1;
sum_diff++;
ans++;
}
for (long long i = 0; i < (long long)(n - 1); i++) {
long long diff = 0;
dp[i + 1] += sum_diff;
if (dp[i] * dp[i + 1] > 0) {
if (dp[i + 1] > 0) {
diff = -1 - dp[i + 1];
sum_diff += diff;
dp[i + 1] = -1;
} else {
diff = 1 - dp[i + 1];
sum_diff += diff;
dp[i + 1] = 1;
}
}
if (dp[i + 1] == 0) {
if (dp[i] > 0) {
sum_diff++, diff = 1;
dp[i + 1] = 1;
} else {
sum_diff--, diff = -1;
dp[i + 1] = -1;
}
}
ans += abs(diff);
}
cout << ans << endl;
}
int main() {
cin >> n;
for (long long i = 0; i < (long long)(n); i++) {
cin >> a[i];
if (i == 0)
dp[0] = a[0];
else
dp[i] = dp[i - 1] + a[i];
}
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int ch_sign(int n) {
if (n == 0) return 0;
return (n > 0) - (n < 0);
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
int sign1 = 1, sign2 = -1;
long long s1 = 0, s2 = 0;
int ans1 = 0, ans2 = 0;
for (int i = 0; i < n; ++i) {
s1 += a[i];
s2 += a[i];
sign1 *= -1;
sign2 *= -1;
if (ch_sign(s1) != sign1) {
ans1 += abs(s1) + 1;
s1 = sign1;
}
if (ch_sign(s2) != sign2) {
ans2 += abs(s2) + 1;
s2 = sign2;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
al = list(map(int, input().split()))
def is_diff_sign(s, t):
return (s > 0 > t) or (s < 0 < t)
count = 0
prev_sum = al[0]
prev_positive = al[0] > 0
for a in al[1:]:
_sum = prev_sum + a
if is_diff_sign(prev_sum, _sum):
prev_sum = _sum
prev_positive = prev_sum > 0
continue
if prev_positive:
prev_sum = -1
else:
prev_sum = 1
prev_positive = not prev_positive
count += abs(_sum) + 1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
long man = 0;
if (a[0] == 0) {
a[0] = 1;
long min = f(a, n);
a[0] = -1;
min = Math.min(min, f(a, n));
man = min + 1;
} else {
man = f(a, n);
}
System.out.println(man);
}
static long f(long a[], int n) {
long total = a[0];
long man = 0;
for (int i = 1; i < n; i++) {
if (total * (total + a[i]) >= 0) {
long x = Math.abs(total + a[i]) + 1;
total += a[i] + (total > 0 ? -x : x);
man += x;
} else {
total += a[i];
}
}
return man;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n), b(n);
for (long long(i) = (0); (i) < (long long)(n); ++(i))
cin >> a[i], b[i] = a[i];
long long sum = a[0];
long long ans = 0;
for (int i = 1; i < n; ++i) {
if ((sum > 0 and sum + a[i] < 0) or (sum < 0 and sum + a[i] > 0)) {
sum += a[i];
} else {
if (sum > 0) {
sum += a[i];
for (; sum >= 0; --sum) {
++ans;
}
} else {
sum += a[i];
for (; sum <= 0; ++sum) {
++ans;
}
}
}
}
long long ans2 = 0;
sum = a[0];
if (sum > 0) {
for (; sum >= 0; --sum) {
++ans2;
}
} else {
for (; sum <= 0; ++sum) {
++ans2;
}
}
for (int i = 1; i < n; ++i) {
if ((sum > 0 and sum + a[i] < 0) or (sum < 0 and sum + a[i] > 0)) {
sum += a[i];
} else {
if (sum > 0) {
sum += a[i];
for (; sum >= 0; --sum) {
++ans2;
}
} else {
sum += a[i];
for (; sum <= 0; ++sum) {
++ans2;
}
}
}
}
cout << min(ans, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Text;
using System.Collections.Generic;
using System.Linq;
class Program {
static List<long> rep;
static void Main(string[] args){
//入力を受け取る
var N = long.Parse(Console.ReadLine());
var A = Console.ReadLine().Split().Select(a => long.Parse(a)).ToArray();
long ans = 0;
long sum = A[0];
for(int i =1 ;i <N; i++){
if(sum > 0){
if(sum+A[i] >= 0){
var aim = sum*(-1)-1;
ans += (long) Math.Abs(A[i]-aim);
A[i] = aim;
}
}else{
if(sum+A[i] <= 0){
var aim = sum*(-1)+1;
ans += (long) Math.Abs(A[i]-aim);
A[i] = aim;
}
}
sum += A[i];
}
Console.WriteLine(ans);
}
static int LowerBound(long num){
var l = 0;
var r = rep.Count()-1;
while(l <= r){
var mid = l+(r-l)/2;
if(rep[mid] < num){
l = mid+1;
}else{
r = mid-1;
}
}
return l;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, c = 0;
cin >> n;
int a[n], s[2];
for (i = 0; i < n; i++) {
cin >> a[i];
}
s[0] = a[0], s[1] = 0;
for (i = 1; i < n; i++) {
s[1] = s[0] + a[i];
if (s[0] * s[1] >= 0) {
for (; s[0] * s[1] >= 0;) {
if (s[0] > 0)
s[1] -= 1;
else
s[1] += 1;
c += 1;
}
}
s[0] = s[1];
cout << "Sum=" << s[0] << endl;
}
cout << "result" << c << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin >> n;
vector<int> a(n);
for(auto& x:a){
cin >> x;
}
int sum = 0;
int count1 = 0;
int count2 = 0;
for(int i = 0; i<n; i++){
sum += a.at(i);
if(i_sum>=0 && i%2==1){
sum -= abs(sum)+1;
count1 += abs(sum) +1;
}else if(i_sum<=0 && i%2==0){
sum += abs(sum)+1;
count1 += abs(sum)+1;
}
}
sum =0;
for(int i = 0; i<n; i++){
sum += a.at(i);
if(i_sum>=0 && i%2==0){
sum -= abs(sum)+1;
count2 += abs(sum) +1;
}else if(i_sum<=0 && i%2==1){
sum += abs(sum)+1;
count2 += abs(sum)+1);
}
}
int count;
count = min(count1, count2);
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
wa=a[0]
ans1,ans2=0,0
for i in range(1,n):
# print(wa)
if wa>0:
if wa+a[i]<0:
wa+=a[i]
else:
ans1+=abs(wa+a[i])+1
wa=-1
else:
if wa+a[i]>0:
wa+=a[i]
else:
ans1+=abs(wa+a[i])+1
wa=1
if a[0]>0:
ans2+=a[0]+1
wa=-1
else:
ans2+=-a[0]+1
wa=1
for i in range(1,n):
if wa>0:
if wa+a[i]<0:
wa+=a[i]
else:
ans2+=abs(wa+a[i])+1
wa=-1
else:
if wa+a[i]>0:
wa+=a[i]
else:
ans2+=abs(wa+a[i])+1
wa=1
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
const int mod = 1000000007;
const int INF = 1000000000;
const long long LINF = 1e18;
const int MAX = 510000;
bool code(long long int n) {
if (n < 0)
return 1;
else if (n > 0)
return 0;
}
int main() {
int n;
long long int sum = 0;
long long int ans = 0;
long long int ans2 = 0;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
if (a.at(0) != 0) {
sum = a.at(0);
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << ans << endl;
return 0;
} else if (a.at(0) == 0) {
sum = -1;
ans = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
sum = 1;
ans2 = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans2++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans2 += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
if (ans > ans2)
cout << ans2 << endl;
else {
cout << ans << endl;
}
cout << " \a" << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!/usr/bin/env python3
from itertools import accumulate
def main():
n = int(input())
a = list(map(int, input().split()))
a = list(accumulate(a))
ans = 10**18
diff = [0, 0]# a[0]<0, a[0]>0それぞれの初期コスト
for i in range(2):
if a[0] * [-1,1][i] >= 0:
diff[i] = [-1,1][i] * (abs(a[0])+1)
for j in range(2):
ans2 = abs(diff[j])
for i in range(1,n):
p = a[i] + diff[j]
q = a[i-1] + diff[j]
if p * q >= 0:
ans2 += abs(p)+1
diff[j] -= p+1
ans = min(ans, ans2)
print(ans)
if __name__ == "__main__":
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INFF = 0x3f3f3f3f3f3f3f3f;
long long a[1000010];
int n;
long long solve() {
long long sum = 0;
long long oo = a[0];
for (int i = 1; i < n; i++) {
if (oo < 0) {
oo += a[i];
if (oo <= 0) {
sum += 1 - oo;
oo = 1;
}
continue;
} else {
oo += a[i];
if (oo >= 0) {
sum += oo + 1;
oo = -1;
}
}
}
return sum;
}
int main() {
scanf("%d", &n);
long long sum = 0;
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
if (a[0] == 0) {
a[0] = 1;
long long sum1 = solve();
a[0] = -1;
long long sum2 = solve();
sum = min(sum1, sum2) + 1;
} else {
long long sum0 = solve();
a[0] = 1;
long long sum1 = solve() + abs(1 - a[0]);
a[0] = -1;
long long sum2 = solve() + abs(-1 - a[0]);
sum = min(sum0, min(sum1, sum2));
}
printf("%lld\n", sum);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define set0(a) memset ((a), 0 , sizeof(a))
#define set1(a) memset((a),-1,sizeof (a))
#define pi pair<int, int>
#define ps pair<string, string>
#define pl pair<long, long>
#define pll pair<long long, long long>
#define vll vector<long long>
#define vl vector<long>
#define vi vector<int>
#define vs vector<string>
#define vps vector< ps >
#define vpi vector< pi >
#define vpl vector< pl >
#define vpll vector< pll >
#define flash ios_base::sync_with_stdio(false); cin.tie(NULL);
#define tc(t) for(long long l=0;l<t;l++)
#define rep(i,s,n,d) for(long long i=s;i<n;i=i+d)
bool sortbysec(const pll &a,
const pll &b)
{
return (a.second < b.second);
}
void func(void)
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
}
int main(){
ll n;
cin>>n;
ll a[n];
rep(i,0,n,1){
cin>>a[i];
}
ll count1=0;
if(a[0]==0){
if(a[1]>0){
a[0]=-1;
}
else a[0]=1;
count1++;
}
ll sum[n]={};
sum[0]=a[0];
rep(i,1,n,1){
sum[i]=sum[i-1]+a[i];
}
ll sum1=a[0];
rep(i,1,n,1){
if(sum1*(sum1+a[i])>=0){
ll d=1;
if(sum1<0){
d=1;
}else{
d=-1;
}
int dif=abs(sum1+a[i]-d);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
cout<<count1<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int MOD = 1000000007;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int t = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
t += 1 - sum;
sum += t;
}
} else {
if (sum >= 0) {
t += sum + 1;
sum -= t;
}
}
}
int u = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum <= 0) {
u += 1 - sum;
sum += u;
}
} else {
if (sum >= 0) {
u += sum + 1;
sum -= u;
}
}
}
cout << min(t, u) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 1e9 + 7;
const long long longinf = 1LL << 60;
const int mx = 100010;
const long long mod = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = (int)(0); i < (int)(n); ++i) {
cin >> a[i];
}
int ansa = 0, sum = a[0];
bool pm = (a[0] > 0 ? true : false);
for (int i = 1; i < n; i++) {
sum += a[i];
if (pm) {
if (sum >= 0) {
ansa += sum + 1;
sum = -1;
}
pm = false;
} else {
if (sum <= 0) {
ansa += abs(sum) + 1;
sum = 1;
}
pm = true;
}
}
int ansb = abs(a[0]) + 1;
sum = (a[0] > 0 ? -1 : 1);
pm = (a[0] > 0 ? false : true);
for (int i = 1; i < n; i++) {
sum += a[i];
if (pm) {
if (sum >= 0) {
ansb += sum + 1;
sum = -1;
}
pm = false;
} else {
if (sum <= 0) {
ansb += abs(sum) + 1;
sum = 1;
}
pm = true;
}
}
cout << min(ansa, ansb) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
constexpr int kMod = 1000000007;
constexpr int kNmax = 1e5 + 1;
int sum[kNmax];
int main() {
int n;
std::cin >> n;
std::cin >> sum[0];
for (int i = 1; i < n; ++i) {
int a;
std::cin >> a;
sum[i] = sum[i - 1] + a;
}
int cnt1 = 0, cnt2 = 0;
int offset = 0;
for (int i = 0; i < n; ++i) {
int v = sum[i] + offset;
if (i % 2 == 0) {
if (v <= 0) {
offset += std::abs(v) + 1;
cnt1 += std::abs(v) + 1;
}
} else {
if (v >= 0) {
offset -= v + 1;
cnt1 += v + 1;
}
}
}
offset = 0;
for (int i = 0; i < n; ++i) {
int v = sum[i] + offset;
if (i % 2 == 0) {
if (v >= 0) {
offset -= v + 1;
cnt2 += v + 1;
}
} else {
if (v <= 0) {
offset += std::abs(v) + 1;
cnt2 += std::abs(v) + 1;
}
}
}
std::cout << std::min(cnt1, cnt2) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long num_operate(long n, long sum, long* a) {
long j;
for (long i = 1; i < n; i++) {
if (sum * (sum + a[i]) < 0)
sum += a[i];
else {
j += abs(sum + a[i]) + 1;
if (sum < 0)
sum = 1;
else if (sum > 0)
sum = -1;
}
}
return j;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long n;
cin >> n;
vector<long> a(n);
for (long i = 0; i < n; i++) cin >> a[i];
long sum = a[0];
if (sum == 0) {
long cnt1 = num_operate(n, 1, &a.front());
long cnt2 = num_operate(n, 1, &a.front());
cout << min(cnt1, cnt2) << endl;
} else {
long cnt = num_operate(n, sum, &a.front());
cout << cnt << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
long long buf;
cin >> N;
vector<long long> aaa = vector<long long>(N + 1, 0);
for (int i = 1; i < N + 1; i++) {
cin >> buf;
aaa.at(i) = buf + aaa.at(i - 1);
}
bool be = true;
bool af;
vector<long long> ans = vector<long long>(2);
long long change = 0;
for (int l = 0; l < 2; l++) {
vector<long long> aa = aaa;
if (l == 0) {
be = true;
} else {
be = false;
}
for (int i = 1; i < N + 1; i++) {
if (aa.at(i) == 0) {
if (af) {
change = 1 - aa.at(i);
ans.at(l) += 1 - aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = false;
} else {
change = -(aa.at(i) + 1);
ans.at(l) += 1 + aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = true;
}
} else {
if (aa.at(i) < 0) {
af = true;
} else {
af = false;
}
if (af == be) {
if (af) {
change = 1 - aa.at(i);
ans.at(l) += 1 - aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = false;
} else {
change = -(aa.at(i) + 1);
ans.at(l) += 1 + aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = true;
}
} else {
be = af;
}
}
}
}
long long tt = min(ans.at(0), ans.at(1));
cout << tt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
const long long INF = 1e18;
const double pi = acos(-1.0);
int main(void) {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long ans, sum = 0, res1 = 0, res2 = 0;
for (int sign = 0; sign < (2); ++sign) {
for (int i = 0; i < (n); ++i) {
sum += a[i];
if ((i % 2 ^ sign) && sum >= 0) {
res1 += sum + 1;
sum = -1;
} else if ((i % 2 ^ sign) && sum <= 0) {
res2 += abs(sum - 1);
sum = 1;
}
}
}
ans = min(res1, res2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
n = int(input())
A = list(map(int, input().split()))
res = 0
sums = []
for i in range(n):
sums.append(sum(A[:i]) + A[i])
if i == 0:
if A[i] == 0:
index = -1
for num in A:
if num != 0:
index = A.index(num)
break
if index == -1:
res += 3
A[i] = 1
A[i+1] = -2
sums[i] = 1
elif (index % 2 and A[index] > 0) or (index % 2 == 0 and A[index] < 0):
A[i] = -1
sums[i] = -1
res += 1
else:
A[i] = 1
sums[i] = 1
res += 1
else:
if sums[i] == 0:
if sums[i-1] > 0:
A[i] -= 1
sums[i] = sums[i-1] + A[i]
res += 1
else:
A[i] += 1
sums[i] = sums[i-1] + A[i]
res += 1
elif (sums[i-1] > 0) and (sums[i] > 0):
res += A[i] - (-sums[i-1] - 1)
A[i] = -sums[i-1] - 1
sums[i] = sums[i-1] + A[i]
elif (sums[i-1] < 0) and (sums[i] < 0):
res += 1 - (sums[i-1] + A[i])
A[i] = abs(sums[i-1]) + 1
sums[i] = sums[i-1] + A[i]
print(res)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct Fast {
Fast() {
cin.tie(0);
ios::sync_with_stdio(false);
}
} fast;
template <typename T>
inline size_t maxElement(T beginIt, T endIt) {
return max_element(beginIt, endIt);
}
template <typename T>
inline size_t minElement(T beginIt, T endIt) {
return min_element(beginIt, endIt);
}
template <typename T>
inline size_t maxIndex(T beginIt, T endIt) {
return distance(beginIt, *max_element(beginIt, endIt));
}
template <typename T>
inline size_t minIndex(T beginIt, T endIt) {
return distance(beginIt, *min_element(beginIt, endIt));
}
template <typename T>
inline int sum(T beginIt, T endIt) {
return accumulate(beginIt, endIt, 0);
}
template <typename T>
inline int mean(T beginIt, T endIt) {
return sum(beginIt, endIt) / distance(beginIt, endIt);
}
template <typename T>
inline void debug(T x) {
cerr << x << " "
<< "(L:" << 17 << ")" << endl;
}
signed main(void) {
int num = 0;
int N;
array<int, 100000> A;
string S;
cin >> N;
for (int i = 0; i < N; ++i) {
cin >> A[i];
}
int tmp = A[0];
for (int i = 1; i < N; ++i) {
if (tmp > 0) {
if (A[i] >= -tmp) {
num += abs(-tmp - 1 - A[i]);
A[i] = -tmp - 1;
}
} else {
if (A[i] <= -tmp) {
num += abs(-tmp + 1 - A[i]);
A[i] = -tmp + 1;
}
}
tmp += A[i];
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
int main() {
int n;
cin >> n;
long long a[120000];
for (int i = 0; i < (n); i++) cin >> a[i];
long long total = 0;
long long total2 = 0;
long long count1 = 0;
long long count2 = 0;
for (int i = 0; i <= (n - 2) / 2; i++) {
total += a[2 * i];
total2 += a[2 * i];
if (total >= 0) {
count1 += (abs(total) + 1);
total = -1;
}
if (total2 <= 0) {
count2 += (abs(total2) + 1);
total2 = 1;
}
total += a[2 * i + 1];
total2 += a[2 * i + 1];
if (total <= 0) {
count1 += (abs(total) + 1);
total = 1;
}
if (total2 >= 0) {
count2 += (abs(total2) + 1);
total2 = -1;
}
}
cout << min(count1, count2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long cnt = 0;
if (sum == 0) {
int ind = 1;
for (int i = 0; i < n; i++) {
if (a[i] != 0) ind = i;
break;
}
if (a[ind] > 0)
sum = ((ind + 1) % 2 == 0 ? 1 : -1);
else
sum = ((ind + 1) % 2 == 0 ? -1 : 1);
cnt++;
}
for (int i = 1; i < n; i++) {
long long nsum = sum + a[i];
if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) {
sum = nsum;
continue;
}
sum = (sum > 0 ? -1 : 1);
cnt += (nsum == 0 ? 1 : abs(nsum) + 1);
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long ns[] = new long[n];
for (int i = 0; i < n; i++) {
ns[i] = sc.nextLong();
}
long sum = ns[0];
long ans = 0;
boolean isNegative = ns[0] < 0;
for (int i = 1; i < n; i++) {
sum += ns[i];
if (isNegative && sum < 0) {
ans -= sum - 1;
sum = 1;
}
else if (!isNegative && sum > 0) {
ans += sum + 1;
sum = -1;
}
else if (sum == 0) {
ans++;
if (isNegative)
sum = 1;
else
sum = -1;
}
isNegative = !isNegative;
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n, a[200000], sum[200000];
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
int cnt1 = 0;
for (int i = 0; i < n; i++) {
if (i == 0)
sum[i] = a[i];
else
sum[i] = sum[i - 1] + a[i];
if (i % 2 == 0 & sum[i] <= 0) {
cnt1 += abs(sum[i]) + 1;
sum[i] = 1;
} else if (i % 2 == 1 & sum[i] >= 0) {
cnt1 += abs(sum[i]) + 1;
sum[i] = -1;
}
}
int cnt2 = 0;
for (int i = 0; i < n; i++) {
if (i == 0)
sum[i] = a[i];
else
sum[i] = sum[i - 1] + a[i];
if (i % 2 == 0 & sum[i] >= 0) {
cnt2 += abs(sum[i]) + 1;
sum[i] = -1;
} else if (i % 2 == 1 & sum[i] <= 0) {
cnt2 += abs(sum[i]) + 1;
sum[i] = 1;
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
"""
Created on Sat Sep 8 15:51:53 2018
@author: maezawa
"""
def f(n, a0, cnt, sa, sign):
a = a0[:]
if a[0] == 0:
a[0] = 1
cnt += 1
if sign == -1:
a[0] = -a[0]
cnt += 2*abs(a[0])
for i in range(n-1):
sa += a[i]
na = -sa//abs(sa)*(abs(sa)+1)
if abs(a[i+1]) > abs(na) and a[i+1]*na > 0:
continue
else:
cnt += abs(na-a[i+1])
a[i+1] = na
return cnt
n = int(input())
a = list(map(int, input().split()))
sa = 0
cnt = 0
cnt0 = f(n, a, cnt, sa, -1)
cnt1 = f(n, a, cnt, sa, 1)
cnt = min([cnt0,cnt1])
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
from copy import deepcopy
n = int(input())
a = list(map(int, input().split()))
c = [0] * n
for i in range(n):
c[i] = c[i - 1] + a[i]
c = np.array(c)
ans1, ans2 = 0, 0
tmp = deepcopy(c)
for i in range(n):
t = tmp[i]
if i % 2 == 0 and tmp[i] >= 0:
tmp[i:] -= t + 1
ans1 += t + 1
elif i % 2 == 1 and tmp[i] <= 0:
tmp[i:] += -t + 1
ans1 += -t + 1
tmp = deepcopy(c)
for i in range(n):
t = tmp[i]
if i % 2 == 1 and tmp[i] >= 0:
tmp[i:] -= t + 1
ans2 += t + 1
elif i % 2 == 0 and tmp[i] <= 0:
tmp[i:] += -t + 1
ans2 += -t + 1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
def wh(cst,ttl,flg):
for i in range(1,n):
ttl += a[i]
if ttl*flg < 0:
flg *= -1
else:
if flg > 0:
memo = abs(ttl)+1
ttl -= memo
cst += memo
elif flg < 0:
memo = abs(ttl)+1
ttl += memo
cst += memo
flg *= -1
return cst
ttl = a[0]
cst = 0
if a[0]>=0:
flg = 1
elif a[0]<0:
flg = -1
cst = wh(cst,ttl,flg)
ttl = a[0]
cst2 = 0
if a[0]>0:
flg = -1
cst2 += abs(ttl)+1
ttl += 0-ttl-1
elif a[0]<0:
flg = 1
cst2 += abs(ttl)+1
ttl += 0-ttl+1
cst2 = wh(cst2,ttl,flg)
print(min(cst,cst2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T1, class T2>
using dict = std::unordered_map<T1, T2>;
int main() {
int n;
cin >> n;
int64_t a[n];
for (int i = 0; i < (int)(n); i++) cin >> a[i];
int64_t s = 0;
int64_t count1 = 0;
int64_t count2 = 0;
for (int i = 0; i < (int)(n); i++) {
s += a[i];
if (i % 2 == 1 && s <= 0) {
count1 += -s + 1;
s = 1;
} else if (i % 2 == 0 && s >= 0) {
count1 += s + 1;
s = -1;
}
}
for (int i = 0; i < (int)(n); i++) {
s += a[i];
if (i % 2 == 1 && s >= 0) {
count2 += s + 1;
s = 1;
} else if (i % 2 == 0 && s <= 0) {
count2 += -s + 1;
s = -1;
}
}
cout << min(count1, count2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ull = uint64_t;
using ll = int64_t;
using PII = pair<int, int>;
using VI = vector<int>;
string to_string(string s) { return '"' + s + '"'; }
string to_string(const char* s) { return to_string((string)s); }
string to_string(bool b) { return (b ? "true" : "false"); }
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto& x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
int main() {
ios::sync_with_stdio(false), cin.tie(0);
int N;
cin >> N;
vector<ll> V(N);
for (int _n = N, i = 0; i < _n; ++i) cin >> V[i];
if (V[0]) {
ll sum = V[0];
ll ans = 0;
for (int i = (1), _b = (N - 1); i <= _b; ++i) {
ll nsum = sum + V[i];
ll target = (ll)-1 * (sum / abs(sum));
if (nsum == 0) {
ans += abs(target - nsum);
sum = target;
} else {
ll nsign = nsum / abs(nsum);
cerr << "["
<< "nsign"
<< "]:",
debug_out(nsign);
if (nsign == target) {
sum = nsum;
continue;
} else {
ans += abs(target - nsum);
sum = target;
}
}
}
cout << ans << endl;
} else {
ll ans1 = 1;
ll sum = 1;
for (int i = (1), _b = (N - 1); i <= _b; ++i) {
ll nsum = sum + V[i];
ll target = (ll)-1 * (sum / abs(sum));
if (nsum == 0) {
ans1 += abs(target - nsum);
sum = target;
} else {
ll nsign = nsum / abs(nsum);
if (nsign == target) {
sum = nsum;
continue;
} else {
ans1 += abs(target - nsum);
sum = target;
}
}
}
ll ans2 = 1;
sum = -1;
for (int i = (1), _b = (N - 1); i <= _b; ++i) {
ll nsum = sum + V[i];
ll target = (ll)-1 * (sum / abs(sum));
if (nsum == 0) {
ans2 += abs(target - nsum);
sum = target;
} else {
ll nsign = nsum / abs(nsum);
if (nsign == target) {
sum = nsum;
continue;
} else {
ans2 += abs(target - nsum);
sum = target;
}
}
}
cout << min(ans1, ans2) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
import itertools
from collections import Counter
from collections import defaultdict
import bisect
from heapq import heappush, heappop
def main():
n = int(input())
a = list(map(int, input().split()))
ans = 0
cumulative = 0
count = 0
for i in range(len(a)):
cumulative += a[i]
if i % 2 == 0: # positive
if cumulative <= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
else: # negative
if cumulative >= 0:
count += abs(cumulative) + 1
cumulative += (abs(cumulative) + 1)
ans = max(ans, count)
cumulative = 0
count = 0
for i in range(len(a)):
cumulative += a[i]
if i % 2 == 0: # negative
if cumulative >= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
else: # positive
if cumulative <= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
ans = max(ans, count)
print(ans)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long res1 = 0, sum1 = a[0], res2 = 0, sum2 = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 0) {
if (sum1 > 0) {
sum1 += a[i];
continue;
}
res1 += 1 - sum1;
sum1 = 1;
} else {
if (sum1 < 0) {
sum1 += a[i];
continue;
}
res1 += sum1 + 1;
sum1 = -1;
}
}
for (int i = 1; i < n; i++) {
if (i % 2 == 0) {
if (sum2 < 0) {
sum2 += a[i];
continue;
}
res2 += 1 - sum2;
sum2 = 1;
} else {
if (sum2 > 0) {
sum2 += a[i];
continue;
}
res2 += sum2 + 1;
sum2 = -1;
}
}
cout << min(res1, res2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<signed long long> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
signed long long ans = 0;
if (a[0] >= 0) {
signed long long sum = a[0];
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum + a[i] < 0) {
sum += a[i];
} else {
ans += sum + a[i] + 1;
sum = -1;
}
} else {
if (sum + a[i] > 0) {
sum += a[i];
} else {
ans += abs(sum + a[i] - 1);
sum = 1;
}
}
}
} else {
signed long long sum = a[0];
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum + a[i] > 0) {
sum += a[i];
} else {
ans += abs(sum + a[i] - 1);
sum = 1;
}
} else {
if (sum + a[i] < 0) {
sum += a[i];
} else {
ans += sum + a[i] + 1;
sum = -1;
}
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
enum { POS, NEG };
int minNum(vector<int> &arr, int n) {
if (n == 1 && arr[0] == 0) return 1;
if (n == 1) return 0;
int sol = 0;
int acum = arr[0], aux, y, aux2;
int sign = acum > 0 ? POS : NEG;
for (int i = 1; i < n; i++) {
aux = acum + arr[i];
if (sign == POS) {
if (aux >= 0) {
sol += abs(arr[i] + (acum + 1));
arr[i] = -(acum + 1);
}
sign = NEG;
} else {
if (aux <= 0) {
sol += abs(arr[i] + (acum - 1));
arr[i] = -(acum - 1);
}
sign = POS;
}
acum += arr[i];
}
return sol;
}
int main() {
int n;
cin >> n;
vector<int> arr(n);
for (int i = 0; i < n; i++) cin >> arr[i];
cout << minNum(arr, n) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a, sumA = 0, sumB = 0, mA = 0, mB = 0;
for (int i = 0; i < n; i++) {
cin >> a;
sumA += a;
sumB += a;
if (i % 2) {
if (sumA <= 0) {
mA += 1 - sumA;
sumA = 1;
}
if (sumB >= 0) {
mB += 1 + sumB;
sumB = -1;
}
} else {
if (sumA >= 0) {
mA += 1 + sumA;
sumA = -1;
}
if (sumB <= 0) {
mB += 1 - sumB;
sumB = 1;
}
}
}
cout << min(mA, mB) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
int n, a[100010];
long sgn = 1, cont = 0, ans = 0;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &a[i]);
}
for (int i = 0; i < n; i++) {
cont += a[i];
if (cont * sgn < 0) {
sgn = -1 * sgn;
} else if (cont * sgn >= 0) {
ans = ans + 1 + cont * sgn;
sgn = -1 * sgn;
cont = sgn;
}
}
printf("%ld", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | /* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
class Main
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] input = new int[n];
int[] result = new int[n];
int even = 0;
int odd = 0;
boolean sign = true; //正=true, 負=false
for(int i = 0; i < n; i++) {
input[i] = sc.nextInt();
if(i % 2 == 0) {
even += input[i];
} else {
odd += input[i];
}
}
if(even > 0 && odd < 0) { //正負
sign = true;
} else if(even < 0 && odd > 0) { //負正
sign = false;
} else if(even > 0 && odd > 0) { //正正
if(even > odd) {
sign = true;
} else {
sign = false;
}
} else if(even < 0 && odd < 0) { //負負
if(even > odd) {
sign = false;
} else {
sign = true;
}
} else if(even == 0) {
if(odd < 0) {
sign = true;
} else {
sign = false;
}
} else if(odd == 0){
if(even > 0) {
sign = true;
} else {
sign = false;
}
}
//System.out.println(Arrays.toString(input));
//System.out.println(sign + "");
//System.out.println(counting(input, result, 0, 0, sign));
counting(input, result, 0, 0, sign);
}
public static void counting(int[] input, int[] result, int count, int index, boolean sign) {
if(index > 0) {
result[index] = result[index - 1] + input[index];
} else {
result[index] = input[index];
}
if(sign) {
while(result[index] <= 0) {
result[index]++;
count++;
}
sign = false;
} else {
while(result[index] >= 0) {
result[index]--;
count++;
}
sign = true;
}
if(index < result.length - 1) {
counting(input, result, count, index+1, sign);
} else {
System.out.println(count);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
pre_total = a[0]
cnt = 0
for i in range(1, len(a)):
new_total = pre_total + a[i]
if pre_total <0 and new_total <= 0:
a[i] += abs(new_total) + 1
cnt += abs(new_total) + 1
new_total = pre_total + a[i]
pre_total = new_total
elif pre_total >0 and new_total >= 0:
a[i] -= abs(new_total) + 1
cnt += abs(new_total) + 1
new_total = pre_total + a[i]
pre_total = new_total
else:
pre_total = new_total
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int N = 1e5 + 10;
using namespace std;
int mod = 1e9 + 7;
int num[N], num2[N];
long long sum[N], sum2[N];
int main() {
int n;
while (~scanf("%d", &n)) {
long long ans = 0, ans2 = 0;
for (int i = 1; i <= n; i++) {
scanf("%d", num + i);
num2[i] = num[i];
sum[i] = sum[i - 1] + num[i];
sum2[i] = sum2[i - 1] + num[2];
}
if (num[1] == 0) {
ans += 1;
num[1] = 1;
sum[1]++;
}
if (num2[1] == 0) {
ans2 += 1;
num2[1] = -1;
sum2[1]--;
}
for (int i = 2; i <= n; i++) {
sum[i] = sum[i - 1] + num[i];
int a = sum[i - 1] < 0;
int b = sum[i] < 0;
if (sum[i] == 0) {
if (sum[i - 1] < 0)
num[i]++;
else
num[i]--;
sum[i] = sum[i - 1] + num[i];
ans++;
} else if (!(a ^ b)) {
if (sum[i] < 0) {
num[i] -= sum[i];
num[i]++;
ans -= sum[i];
sum[i] = sum[i - 1] + num[i];
ans++;
} else if (sum[i] > 0) {
num[i] -= sum[i];
num[i]--;
ans += sum[i];
ans++;
sum[i] = num[i] + sum[i - 1];
}
}
}
for (int i = 2; i <= n; i++) {
sum2[i] = sum2[i - 1] + num2[i];
int a = sum2[i - 1] < 0;
int b = sum2[i] < 0;
if (sum2[i] == 0) {
if (sum2[i - 1] < 0)
num2[i]++;
else
num2[i]--;
sum2[i] = sum2[i - 1] + num2[i];
ans2++;
} else if (!(a ^ b)) {
if (sum2[i] < 0) {
num2[i] -= sum2[i];
num2[i]++;
ans2 -= sum2[i];
sum2[i] = sum2[i - 1] + num2[i];
ans2++;
} else if (sum2[i] > 0) {
num2[i] -= sum2[i];
num2[i]--;
ans2 += sum2[i];
ans2++;
sum2[i] = num2[i] + sum2[i - 1];
}
}
}
printf("%lld\n", min(ans, ans2));
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
// warm-up
public class Main {
static void solve() {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt(), t=n, i=0;
long[] a = new long[n];
long o = 0, s = 0;
while (t-->0) a[i++] = sc.nextLong();
for (i=0; i<n; i++) {
long k=a[i];
if (s+a[i]==0) a[i]=(-s<0) ? s+1 : 1-s;
else if ((s<0 && s+a[i]<0)||(s>0 && s+a[i]>0)) a[i]=(s+a[i]<0) ? -s+1 : -s-1;
o+=Math.abs(k-a[i]);
s+=a[i];
}
System.out.println(o);
sc.close();
}
public static void main(String args[]) {
solve();
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
i = input()
i = i.split()
for item in range(len(i)):
i[item] = int(i[item])
totn = 0
totp = 0
countp = 0
countn = 0
for x in range(len(i)):
totp += i[x]
totn += i[x]
if x %2 == 1:
if totn == 0:
countn += 1
totn = 1
elif totn < 0:
countn += abs(totn) + 1
totn = 1
if totp == 0:
countp += 1
totp = -1
elif totp > 0:
countp += abs(totp) + 1
totp = -1
if x %2 == 0:
if totn == 0:
countn += 1
totn = -1
elif totn > 0:
countn += abs(totn) + 1
totn = -1
if totp == 0:
countp += 1
totp = 1
elif totp < 0:
countp += abs(totp) + 1
count = min(countn, countp)
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int counter = 0;
if (a[0] >= 0) {
for (int i = 1; i < n; i++) {
int total = 0;
for (int j = 0; j <= i; j++) {
total += a[j];
}
if (i % 2 == 0 && total < 0) {
counter += abs(total - 0);
a[i] += abs(total - 0);
} else if (i % 2 != 0 && total >= 0) {
counter += abs(total - (-1));
a[i] -= abs(total - (-1));
}
}
} else {
for (int i = 1; i < n; i++) {
int total = 0;
for (int j = 0; j <= i; j++) {
total += a[j];
}
if (i % 2 == 0 && total >= 0) {
counter += abs(total - (-1));
a[i] -= abs(total - (-1));
} else if (i % 2 != 0 && total < 0) {
counter += abs(total - 0);
a[i] += abs(total - 0);
}
}
}
cout << counter << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
void print(const T& x) {
cout << x << endl;
}
template <class T, class... A>
void print(const T& first, const A&... rest) {
cout << first << " ";
print(rest...);
}
struct PreMain {
PreMain() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
}
} premain;
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int(i) = 0; (i) < (int)(N); ++(i)) cin >> A[i];
int tmp = 0;
int cand1 = 0;
for (int(i) = 0; (i) < (int)(N); ++(i)) {
tmp += A[i];
if (tmp == 0 || (i % 2 == 0) != (tmp > 0)) {
int next_tmp = (i % 2 == 0) ? 1 : -1;
cand1 += abs(tmp - next_tmp);
tmp = next_tmp;
}
}
int cand2 = 0;
tmp = 0;
for (int(i) = 0; (i) < (int)(N); ++(i)) {
tmp += A[i];
if (tmp == 0 || (i % 2 == 0) != (tmp < 0)) {
int next_tmp = (i % 2 == 0) ? -1 : 1;
cand2 += abs(tmp - next_tmp);
tmp = next_tmp;
}
}
int ans = min(cand1, cand2);
print(ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int sum = 0;
int ans = 0;
for (int i = 0; i < n;) {
if (sum < 0 && sum + a[i] <= 0) {
int change = 0;
change += 1 - sum - a[i];
a[i] += change;
ans += change;
}
if (sum > 0 && sum + a[i] >= 0) {
int change = 0;
change += -1 - sum - a[i];
a[i] += change;
ans -= change;
}
while ((i < n && sum <= 0 && sum + a[i] > 0) ||
(i < n && sum >= 0 && sum + a[i] < 0)) {
sum += a[i];
i++;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> vector;
long long temp;
for (int i = 0; i < n; i++) {
cin >> temp;
vector.push_back(temp);
}
long long answer1 = 0;
long long answer2 = 0;
long long sum1 = 0;
long long sum2 = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
if (vector[0] > 0)
sum1 = vector[0];
else {
sum1 = 1;
answer1 += abs(1 - vector[0]);
}
} else if (sum1 < 0) {
if (sum1 + vector[i] > 0) {
sum1 += vector[i];
} else {
answer1 += abs((-1) * sum1 + 1 - vector[i]);
sum1 = 1;
}
} else {
if (sum1 + vector[i] < 0) {
sum1 += vector[i];
} else {
answer1 += abs((-1) * sum1 - 1 - vector[i]);
sum1 = -1;
}
}
}
for (int i = 0; i < n; i++) {
if (i == 0) {
if (vector[0] > 0) {
sum2 = -1;
answer2 += abs(-1 - vector[0]);
} else {
sum2 = vector[0];
}
} else if (sum2 < 0) {
if (sum2 + vector[i] > 0) {
sum2 += vector[i];
} else {
answer2 += abs((-1) * sum2 + 1 - vector[i]);
sum2 = 1;
}
} else {
if (sum2 + vector[i] < 0) {
sum2 += vector[i];
} else {
answer2 += abs((-1) * sum2 - 1 - vector[i]);
sum2 = -1;
}
}
}
cout << min(answer1, answer2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Linq;
namespace ABC059_C{
class Program{
static void Main(string[] args){
var n = int.Parse(Console.ReadLine());
var a = Console.ReadLine().Split(' ').Select(int.Parse).ToArray();
var ans1 = 0;
var ans2 = 0;
var flag = true;
var sum = 0;
for(var i = 0;i < n;i++){
sum += a[i];
if(flag){
if(sum <= 0){
ans1 += Math.Abs(sum) + 1;
sum += Math.Abs(sum) + 1;
}
}else{
if(sum >= 0){
ans1 += Math.Abs(sum) + 1;
sum -= Math.Abs(sum) + 1;
}
}
flag = (flag) ? false : true;
}
sum = 0;
flag = false;
for(var i = 0;i < n;i++){
sum += a[i];
if(flag){
if(sum <= 0){
ans2 += Math.Abs(sum) + 1;
sum += Math.Abs(sum) + 1;
}
}else{
if(sum >= 0){
ans2 += Math.Abs(sum) + 1;
sum -= Math.Abs(sum) + 1;
}
}
flag = (flag) ? false : true;
}
Console.WriteLine(Math.Min(ans1,ans2));
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt = 0
flag = 0
for i in range(1,n):
if a[0] != 0:
flag = 1
break
elif a[0] == 0 and a[i] != 0:
sign = int(a[i]/a[i])
a[0] = ((-1)**i)*sign
flag = 2
break
else:
continue
if flag == 0:
a[0] = 1
if flag != 1:
cnt = 1
sum = a[0]
s = [a[0]]
for k in range(1,n):
sum = sum + a[k]
if s[k-1]*sum < 0:
s.append(sum)
flag = 3
else:
if s[k-1] > 0:
cnt = cnt + (sum + 1)
sum = -1
s.append(sum)
flag = 4
elif s[k-1] < 0:
cnt = cnt + (-1)*(sum - 1)
sum = 1
s.append(sum)
flag = 5
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, sum = 0, tmp = 0, c = 0;
bool chg = false;
cin >> n;
vector<long long> a(n);
vector<long long> b(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
b[i] = sum;
}
if (b[0] > 0) {
for (int i = 0; i < n; i++) {
b[i] += tmp;
if (i % 2 == 0 && b[i] <= 0) {
tmp = abs(b[i]) + 1;
chg = true;
}
if (i % 2 == 1 && b[i] >= 0) {
tmp = -(abs(b[i]) + 1);
chg = true;
}
if (chg) c += abs(tmp);
chg = false;
}
} else if (b[0] < 0) {
for (int i = 0; i < n; i++) {
b[i] += tmp;
if (i % 2 == 0 && b[i] >= 0) {
tmp = -(abs(b[i]) + 1);
chg = true;
}
if (i % 2 == 1 && b[i] <= 0) {
tmp = abs(b[i]) + 1;
chg = true;
}
if (chg) c += abs(tmp);
chg = false;
}
}
cout << c;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool DifSign(int a, int b) {
if (a == 0 || b == 0) return false;
return ((a > 0 && b < 0) || (a < 0 && b > 0));
}
int main() {
int N;
int ans = 0;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
int sum = A[0];
for (int i = 1; i < N; i++) {
if (!DifSign(sum, sum + A[i])) {
int tmp = abs(sum + A[i]) + 1;
ans += tmp;
if (sum + A[i] > 0)
A[i] -= tmp;
else
A[i] += tmp;
}
sum += A[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 100010;
int n;
long long a[MAXN];
long long s[MAXN];
void solve() {
s[0] = a[0];
for (int i = 1; i < n; i++) {
s[i] = s[i - 1] + a[i];
}
long long cnt = 0;
long long carry = 0;
for (int i = 1; i < n; i++) {
if ((s[i] + carry) * s[i - 1] >= 0) {
cnt += abs(s[i] + carry) + 1;
if (s[i - 1] < 0) {
carry += abs(s[i] + carry) + 1;
s[i] = 1;
} else {
carry -= abs(s[i] + carry) + 1;
s[i] = -1;
}
} else {
s[i] += carry;
}
}
cout << cnt << endl;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
solve();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
int cnt1 = 0;
int sum1 = 0;
for (int i = 0; i < n; ++i) {
sum1 += a[i];
if (i % 2 == 0 && sum1 <= 0) {
cnt1 += (1 - sum1);
sum1 = 1;
} else if (i % 2 == 1 && sum1 >= 0) {
cnt1 += (1 + sum1);
sum1 = -1;
}
}
int cnt2 = 0;
int sum2 = 0;
for (int i = 0; i < n; ++i) {
sum2 += a[i];
if (i % 2 == 1 && sum2 <= 0) {
cnt2 += (1 - sum2);
sum2 = 1;
} else if (i % 2 == 0 && sum2 >= 0) {
cnt2 += (1 + sum2);
sum2 = -1;
}
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
long long sum = a.at(0);
long long op_1 = 0;
bool flag = sum > 0 ? 1 : 0;
for (int j = 1; j < n; j++) {
if (flag) {
sum += a.at(j);
if (sum >= 0) {
op_1 += sum + 1;
sum = -1;
}
flag = 0;
} else {
sum += a.at(j);
if (sum <= 0) {
op_1 += -1 * sum + 1;
sum = 1;
}
flag = 1;
}
}
sum = a.at(0);
long long op_2 = 0;
if (sum > 0) {
sum = -1;
op_2 += sum + 1;
} else {
sum = 1;
op_2 += sum * -1 + 1;
}
for (int j = 1; j < n; j++) {
if (flag) {
sum += a.at(j);
if (sum >= 0) {
op_2 += sum + 1;
sum = -1;
}
flag = 0;
} else {
sum += a.at(j);
if (sum <= 0) {
op_2 += -1 * sum + 1;
sum = 1;
}
flag = 1;
}
}
cout << (op_1 > op_2 ? op_2 : op_1) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int ctoi(const char c) {
if ('0' <= c && c <= '9') return (c - '0');
return -1;
}
using namespace std;
using pii = pair<int, int>;
long long gcd(long long a, long long b) { return (b == 0 ? a : gcd(b, a % b)); }
long long lcm(long long a, long long b) { return a * b / gcd(a, b); }
int main() {
long long N, A[100007], msum = 0, psum = 0, mct, pct;
cin >> N;
for (int i = 0; i < (N); i++) {
cin >> A[i];
}
for (int i = 0; i < (N); i++) {
if (i % 2 == 0) {
if (A[i] + psum > 0) {
psum += A[i];
} else {
pct += -(A[i] + psum) + 1;
psum = 1;
}
if (A[i] + msum >= 0) {
mct += A[i] + msum + 1;
msum = -1;
} else {
msum += A[i];
}
} else {
if (A[i] + msum > 0) {
msum += A[i];
} else {
mct += -(A[i] + msum) + 1;
msum = 1;
}
if (A[i] + psum >= 0) {
pct += A[i] + psum + 1;
psum = -1;
} else {
psum += A[i];
}
}
}
cout << min(pct, mct) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T>
void showvector(vector<T> v) {
for (T x : v) cout << x << " ";
cout << "\n";
}
template <typename T>
void showvector1(vector<T> v) {
long long int n = v.size();
for (long long int i = 1; i <= n - 1; i++) cout << v[i] << "\n";
}
template <typename T>
void showset(set<T> s) {
for (T x : s) cout << x << " ";
cout << "\n";
}
template <class T>
void showvectorpair(vector<T> v) {
for (auto it = v.begin(); it != v.end(); it++)
cout << it->first << " " << it->second << "\n";
cout << "\n";
}
template <typename T, typename P>
void showmap(map<T, P> m) {
for (auto it = m.begin(); it != m.end(); it++)
cout << it->first << " " << it->second << "\n";
cout << "\n";
}
template <typename T>
bool comp(T a, T b) {
return (a > b);
}
template <class T>
bool comppair(T a, T b) {
if (a.first == b.first) return (a.second > b.second);
return (a.first > b.first);
}
bool sameparity(long long int a, long long int b) { return (a % 2 == b % 2); }
bool difparity(long long int a, long long int b) { return !(a % 2 == b % 2); }
bool isprime(long long int x) {
if (x <= 1) return false;
for (long long int i = 2; i <= sqrt(x); i++) {
if (x % i == 0) return false;
}
return true;
}
bool iseven(long long int x) { return !(x % 2); }
bool isodd(long long int x) { return (x % 2); }
void vfun() {
long long int n, k;
cin >> n;
vector<long long int> v(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
long long int test = 1;
while (test--) {
long long int n;
cin >> n;
vector<long long int> v(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
long long int sum = v[0], psum = v[0], cnt = 0;
if (v[0] == 0) {
cnt = 1;
if (v[1] > 0)
sum = psum = -1;
else
sum = psum = 1;
}
for (long long int i = 1; i <= n - 1; i++) {
sum += v[i];
if (psum > 0) {
if (sum >= 0) {
cnt += (sum + 1);
sum = -1;
}
} else {
if (sum <= 0) {
cnt += (abs(sum) + 1);
sum = 1;
}
}
psum = sum;
}
long long int dcnt = abs(v[0]) + 1;
if (v[0] > 0)
sum = psum = -1;
else if (v[0] < 0)
sum = psum = 1;
else {
if (v[1] > 0)
sum = psum = -1;
else
sum = psum = 1;
}
for (long long int i = 1; i <= n - 1; i++) {
sum += v[i];
if (psum > 0) {
if (sum >= 0) {
dcnt += (sum + 1);
sum = -1;
}
} else {
if (sum <= 0) {
dcnt += (abs(sum) + 1);
sum = 1;
}
}
psum = sum;
}
cout << min(dcnt, cnt) << "\n";
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
n = int(input())
a = [int(n) for n in input().split()]
b = [n for n in a]
sum = [0]*n
sum[0] = a[0]
ans = 0
for i in range(1,n):
sum[i] = sum[i-1]
if((sum[i]+a[i])*sum[i-1] >= 0):
if(sum[i-1] > 0):
ans+=sum[i-1] + a[i]+1
a[i]-=sum[i-1] + a[i]+1
else:
ans+=1 - sum[i-1] - a[i]
a[i]+=1 - sum[i-1] - a[i]
sum[i] += a[i]
sum[0] = 1 if b[0] < 0 else -1
ansa = abs(b[0]) + 1
for i in range(1,n):
sum[i] = sum[i-1]
if((sum[i]+b[i])*sum[i-1] >= 0):
if(sum[i-1] > 0):
ansa+=sum[i-1] + b[i]+1
b[i]-=sum[i-1] + b[i]+1
else:
ansa+=1 - sum[i-1] - b[i]
b[i]+=1 - sum[i-1] - b[i]
sum[i] += b[i]
print(min(ans,ansa))
# print(a)
# print(sum)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
long long i, j, k, ans = 0, be, n, a;
scanf("%lld%lld", &n, &be);
for (i = 1; i < n; ++i) {
scanf("%lld", &a);
if (be > 0 && -1 < be + a)
ans += be + a + 1, be = -1;
else if (be < 0 && 1 > be + a)
ans += 1 + -be - a, be = -1;
else
be += a;
}
printf("%lld", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
int dy[] = {0, 0, 1, -1};
int dx[] = {1, -1, 0, 0};
int main() {
ll n;
cin >> n;
vector<ll> a(n);
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n) cin >> a[i];
vector<ll> sum(n);
sum[0] = a[0];
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n - 1) sum[i + 1] =
sum[i] + a[i + 1];
ll c = 0;
ll d = 0;
if (sum[0] == 0) {
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 1, n) {
if (sum[i] == 0 and i != n - 1) continue;
c = 1;
d = (sum[i] < 0 ? 1 : -1);
break;
}
}
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n - 1) {
if ((d + sum[i]) * (d + sum[i + 1]) < 0) continue;
c += abs(d + sum[i + 1]) + 1;
if (d + sum[i] >= 0)
d -= d + sum[i + 1] + 1;
else
d += abs(d + sum[i + 1]) + 1;
}
cout << c << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import std.stdio, std.algorithm, std.conv, std.array, std.string, std.math;
long check(long op, long sum, long[] as)
{
foreach (a; as) {
if (sum < 0) {
if ((sum + a) <= 0) {
op += (1 - (sum + a));
sum = 1;
} else {
sum += a;
}
} else {
if ((sum + a) >= 0) {
op += sum + a + 1;
sum = -1;
} else {
sum += a;
}
}
}
return op;
}
void main()
{
readln;
auto as = readln.chomp.split(" ").map!(to!long).array;
auto op1 = check(0, as[0], as[1..$]);
auto op2 = check((as[0] - 1).abs, 1, as[1..$]);
auto op3 = check((as[0] + 1).abs, -1, as[1..$]);
writeln(min(op1, op2, op3));
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct point {
int x;
int y;
};
int gcd(int m, int n) {
if ((0 == m) || (0 == n)) return 0;
while (m != n) {
if (m > n)
m = m - n;
else
n = n - m;
}
return m;
}
int lcm(int m, int n) {
if ((0 == m) || (0 == n)) return 0;
return ((m / gcd(m, n)) * n);
}
int input() {
int x;
cin >> x;
return x;
}
int moji(char in) {
int ans = (int)in - (int)'a';
if ((ans < 0) || (ans > 25)) {
ans = 26;
}
return ans;
}
const int VV = 10;
int cost[VV][VV];
int d[VV];
bool used[VV];
void dijkstra(int s) {
fill(d, d + VV, 100000);
fill(used, used + VV, false);
d[s] = 0;
while (true) {
int v = -1;
for (int u = 0; u < VV; u++) {
if (!used[u] && (v == -1 || d[u] < d[v])) v = u;
}
if (v == -1) break;
used[v] = true;
for (int u = 0; u < VV; u++) {
d[u] = min(d[u], d[v] + cost[v][u]);
}
}
}
int compare_int(const void* a, const void* b) { return *(int*)a - *(int*)b; }
int binary_searchh(long long x, long long k[], int n) {
int l = 0;
int r = n;
while (r - l >= 1) {
int i = (l + r) / 2;
if (k[i] == x)
return i;
else if (k[i] < x)
l = i + 1;
else
r = i;
}
return -1;
}
struct File {
int aa;
int bb;
File(const int& aa, const int& bb) : aa(aa), bb(bb) {}
};
bool operator<(const File& a, const File& b) {
return std::tie(a.aa, a.bb) < std::tie(b.aa, b.bb);
}
long long gcd(long long a, long long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
long long lcm(long long a, long long b) {
long long g = gcd(a, b);
return a / g * b;
}
long long kaijo(long long x) {
long long l = 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 + 7;
long long sum = 1;
for (int i = x; i > 0; i--) {
sum *= i;
if (sum > l) {
sum %= l;
}
}
return sum;
}
int main() {
long long n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long sum = 0;
long long tmp = a[0];
for (int i = 1; i < n; i++) {
if (tmp >= 0) {
tmp += a[i];
if (tmp > 0) {
sum += tmp + 1;
tmp = -1;
}
} else {
tmp += a[i];
if (tmp <= 0) {
sum += abs(tmp) + 1;
tmp = 1;
}
}
}
long long summ = 0;
long long tmpp = 0;
if (a[0] > 0) {
tmpp = -1;
summ = a[0] + 1;
} else {
tmpp = 1;
summ = a[0] + 1;
}
for (int i = 1; i < n; i++) {
if (tmpp >= 0) {
tmpp += a[i];
if (tmpp > 0) {
summ += tmpp + 1;
tmpp = -1;
}
} else {
tmpp += a[i];
if (tmpp <= 0) {
summ += abs(tmpp) + 1;
tmpp = 1;
}
}
}
cout << min(sum, summ) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
b=list(map(int,input().split()))
a=b
condition=''
cnt=0
wa=0
for i in range(n):
wa+=a[i]
if i == 0:
if a[i]>0:
condition='minus'
else:
condition='plus'
elif condition == 'plus':
condition='minus'
if wa<=0:
cnt+=abs(wa)+1
a[i]+=abs(wa)+1
wa+=abs(wa)+1
elif condition == 'minus':
condition='plus'
if wa>=0:
cnt+=abs(wa)+1
a[i]-=abs(wa)+1
wa-=abs(wa)+1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <typename T1, typename T2>
inline void chmin(T1& a, T2 b) {
if (a > b) a = b;
}
template <typename T1, typename T2>
inline void chmax(T1& a, T2 b) {
if (a < b) a = b;
}
using namespace std;
std::mt19937 mt((long long)time(0));
long long dx[4] = {0, 1, 0, -1};
long long dy[4] = {1, 0, -1, 0};
using Weight = long long;
using Flow = long long;
struct Edge {
long long src, dst;
Weight weight;
Flow cap;
Edge() : src(0), dst(0), weight(0) {}
Edge(long long s, long long d, Weight w) : src(s), dst(d), weight(w) {}
};
using Edges = std::vector<Edge>;
using Graph = std::vector<Edges>;
using Array = std::vector<Weight>;
using Matrix = std::vector<Array>;
void add_edge(Graph& g, long long a, long long b, Weight w = 1) {
g[a].emplace_back(a, b, w);
g[b].emplace_back(b, a, w);
}
void add_arc(Graph& g, long long a, long long b, Weight w = 1) {
g[a].emplace_back(a, b, w);
}
struct uf_tree {
std::vector<long long> parent;
long long __size;
uf_tree(long long size_) : parent(size_, -1), __size(size_) {}
void unite(long long x, long long y) {
if ((x = find(x)) != (y = find(y))) {
if (parent[y] < parent[x]) std::swap(x, y);
parent[x] += parent[y];
parent[y] = x;
__size--;
}
}
bool is_same(long long x, long long y) { return find(x) == find(y); }
long long find(long long x) {
return parent[x] < 0 ? x : parent[x] = find(parent[x]);
}
long long size(long long x) { return -parent[find(x)]; }
long long size() { return __size; }
};
template <signed M, unsigned T>
struct mod_int {
constexpr static signed MODULO = M;
constexpr static unsigned TABLE_SIZE = T;
signed x;
mod_int() : x(0) {}
mod_int(long long y)
: x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {}
mod_int(signed y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {}
mod_int& operator+=(const mod_int& rhs) {
if ((x += rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int& operator-=(const mod_int& rhs) {
if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int& operator*=(const mod_int& rhs) {
x = static_cast<signed>(1LL * x * rhs.x % MODULO);
return *this;
}
mod_int& operator/=(const mod_int& rhs) {
x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO);
return *this;
}
mod_int operator-() const { return mod_int(-x); }
mod_int operator+(const mod_int& rhs) const { return mod_int(*this) += rhs; }
mod_int operator-(const mod_int& rhs) const { return mod_int(*this) -= rhs; }
mod_int operator*(const mod_int& rhs) const { return mod_int(*this) *= rhs; }
mod_int operator/(const mod_int& rhs) const { return mod_int(*this) /= rhs; }
bool operator<(const mod_int& rhs) const { return x < rhs.x; }
mod_int inv() const {
assert(x != 0);
if (x <= static_cast<signed>(TABLE_SIZE)) {
if (_inv[1].x == 0) prepare();
return _inv[x];
} else {
signed a = x, b = MODULO, u = 1, v = 0, t;
while (b) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return mod_int(u);
}
}
mod_int pow(long long t) const {
assert(!(x == 0 && t == 0));
mod_int e = *this, res = mod_int(1);
for (; t; e *= e, t >>= 1)
if (t & 1) res *= e;
return res;
}
mod_int fact() {
if (_fact[0].x == 0) prepare();
return _fact[x];
}
mod_int inv_fact() {
if (_fact[0].x == 0) prepare();
return _inv_fact[x];
}
mod_int choose(mod_int y) {
assert(y.x <= x);
return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact();
}
static mod_int _inv[TABLE_SIZE + 1];
static mod_int _fact[TABLE_SIZE + 1];
static mod_int _inv_fact[TABLE_SIZE + 1];
static void prepare() {
_inv[1] = 1;
for (long long i = 2; i <= (long long)TABLE_SIZE; ++i) {
_inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO;
}
_fact[0] = 1;
for (unsigned i = 1; i <= TABLE_SIZE; ++i) {
_fact[i] = _fact[i - 1] * signed(i);
}
_inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv();
for (long long i = (long long)TABLE_SIZE - 1; i >= 0; --i) {
_inv_fact[i] = _inv_fact[i + 1] * (i + 1);
}
}
};
template <signed M, unsigned F>
std::ostream& operator<<(std::ostream& os, const mod_int<M, F>& rhs) {
return os << rhs.x;
}
template <signed M, unsigned F>
std::istream& operator>>(std::istream& is, mod_int<M, F>& rhs) {
long long s;
is >> s;
rhs = mod_int<M, F>(s);
return is;
}
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1];
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1];
template <signed M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1];
template <signed M, unsigned F>
bool operator==(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
return lhs.x == rhs.x;
}
template <long long M, unsigned F>
bool operator!=(const mod_int<M, F>& lhs, const mod_int<M, F>& rhs) {
return !(lhs == rhs);
}
const signed MF = 1000010;
const signed MOD = 1000000007;
using mint = mod_int<MOD, MF>;
mint binom(long long n, long long r) {
return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r);
}
mint fact(long long n) { return mint(n).fact(); }
mint inv_fact(long long n) { return mint(n).inv_fact(); }
template <typename T, typename E>
struct SegmentTree {
typedef function<T(T, T)> F;
typedef function<T(T, E)> G;
typedef function<E(E, E)> H;
typedef function<E(E, long long)> P;
long long n;
F f;
G g;
H h;
P p;
T d1;
E d0;
vector<T> dat;
vector<E> laz;
SegmentTree(
long long n_, F f, G g, H h, T d1, E d0, vector<T> v = vector<T>(),
P p = [](E a, long long b) { return a; })
: f(f), g(g), h(h), d1(d1), d0(d0), p(p) {
init(n_);
if (n_ == (long long)v.size()) build(n_, v);
}
void init(long long n_) {
n = 1;
while (n < n_) n *= 2;
dat.clear();
dat.resize(2 * n - 1, d1);
laz.clear();
laz.resize(2 * n - 1, d0);
}
void build(long long n_, vector<T> v) {
for (long long i = 0; i < n_; i++) dat[i + n - 1] = v[i];
for (long long i = n - 2; i >= 0; i--)
dat[i] = f(dat[i * 2 + 1], dat[i * 2 + 2]);
}
inline void eval(long long len, long long k) {
if (laz[k] == d0) return;
if (k * 2 + 1 < n * 2 - 1) {
laz[k * 2 + 1] = h(laz[k * 2 + 1], laz[k]);
laz[k * 2 + 2] = h(laz[k * 2 + 2], laz[k]);
}
dat[k] = g(dat[k], p(laz[k], len));
laz[k] = d0;
}
T update(long long a, long long b, E x, long long k, long long l,
long long r) {
eval(r - l, k);
if (r <= a || b <= l) return dat[k];
if (a <= l && r <= b) {
laz[k] = h(laz[k], x);
return g(dat[k], p(laz[k], r - l));
}
return dat[k] = f(update(a, b, x, k * 2 + 1, l, (l + r) / 2),
update(a, b, x, k * 2 + 2, (l + r) / 2, r));
}
T update(long long a, long long b, E x) { return update(a, b, x, 0, 0, n); }
T query(long long a, long long b, long long k, long long l, long long r) {
eval(r - l, k);
if (r <= a || b <= l) return d1;
if (a <= l && r <= b) return dat[k];
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return f(vl, vr);
}
T query(long long a, long long b) { return query(a, b, 0, 0, n); }
};
class compress {
public:
static const long long MAP = 10000000;
map<long long, long long> zip;
long long unzip[MAP];
compress(vector<long long>& x) {
sort(x.begin(), x.end());
x.erase(unique(x.begin(), x.end()), x.end());
for (long long i = 0; i < x.size(); i++) {
zip[x[i]] = i;
unzip[i] = x[i];
}
}
};
unsigned euclidean_gcd(unsigned a, unsigned b) {
while (1) {
if (a < b) swap(a, b);
if (!b) break;
a %= b;
}
return a;
}
template <class T>
struct CumulativeSum2D {
vector<vector<T>> data;
CumulativeSum2D(long long W, long long H)
: data(W + 1, vector<long long>(H + 1, 0)) {}
void add(long long x, long long y, T z) {
++x, ++y;
if (x >= data.size() || y >= data[0].size()) return;
data[x][y] += z;
}
void build() {
for (long long i = 1; i < data.size(); i++) {
for (long long j = 1; j < data[i].size(); j++) {
data[i][j] += data[i][j - 1] + data[i - 1][j] - data[i - 1][j - 1];
}
}
}
T query(long long sx, long long sy, long long gx, long long gy) {
return (data[gx][gy] - data[sx][gy] - data[gx][sy] + data[sx][sy]);
}
};
long long nC2(long long n) { return n * (n - 1) / 2; }
class node {
public:
long long depth;
long long num;
node(long long d, long long n) {
depth = d;
num = n;
}
};
CumulativeSum2D<long long> sumB(4001, 4001);
template <class T>
struct CumulativeSum {
vector<T> data;
CumulativeSum(long long sz) : data(sz, 0){};
void add(long long k, T x) { data[k] += x; }
void build() {
for (long long i = 1; i < data.size(); i++) {
data[i] += data[i - 1];
}
}
T query(long long k) {
if (k < 0) return (0);
return (data[min(k, (long long)data.size() - 1)]);
}
T query(long long left, long long right) {
return query(right) - query(left - 1);
}
};
std::vector<bool> IsPrime;
void sieve(size_t max) {
if (max + 1 > IsPrime.size()) {
IsPrime.resize(max + 1, true);
}
IsPrime[0] = false;
IsPrime[1] = false;
for (size_t i = 2; i * i <= max; ++i)
if (IsPrime[i])
for (size_t j = 2; i * j <= max; ++j) IsPrime[i * j] = false;
}
vector<int64_t> divisor(int64_t n) {
vector<int64_t> ret;
for (int64_t i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(begin(ret), end(ret));
return (ret);
}
long long binary_search(function<bool(long long)> isOk, long long ng,
long long ok) {
while (abs(ok - ng) > 1) {
long long mid = (ok + ng) / 2;
if (isOk(mid))
ok = mid;
else
ng = mid;
}
return ok;
}
std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s) {
long long n = g.size();
const Weight inf = std::numeric_limits<Weight>::max() / 8;
Edges es;
for (long long i = 0; i < n; i++)
for (auto& e : g[i]) es.emplace_back(e);
std::vector<Weight> dist(n, inf);
dist[s] = 0;
bool negCycle = false;
for (long long i = 0;; i++) {
bool update = false;
for (auto& e : es) {
if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
dist[e.dst] = dist[e.src] + e.weight;
update = true;
}
}
if (!update) break;
if (i > n) {
negCycle = true;
break;
}
}
return std::make_pair(dist, !negCycle);
}
std::pair<std::vector<Weight>, bool> bellmanFord(const Graph& g, long long s,
long long d) {
long long n = g.size();
const Weight inf = std::numeric_limits<Weight>::max() / 8;
Edges es;
for (long long i = 0; i < n; i++)
for (auto& e : g[i]) es.emplace_back(e);
std::vector<Weight> dist(n, inf);
dist[s] = 0;
bool negCycle = false;
for (long long i = 0; i < n * 2; i++) {
bool update = false;
for (auto& e : es) {
if (dist[e.src] != inf && dist[e.dst] > dist[e.src] + e.weight) {
dist[e.dst] = dist[e.src] + e.weight;
update = true;
if (e.dst == d && i == n * 2 - 1) negCycle = true;
}
}
if (!update) break;
}
return std::make_pair(dist, !negCycle);
}
vector<long long> Manachar(string S) {
long long len = S.length();
vector<long long> R(len);
long long i = 0, j = 0;
while (i < S.size()) {
while (i - j >= 0 && i + j < S.size() && S[i - j] == S[i + j]) ++j;
R[i] = j;
long long k = 1;
while (i - k >= 0 && i + k < S.size() && k + R[i - k] < j)
R[i + k] = R[i - k], ++k;
i += k;
j -= k;
}
return R;
}
std::vector<long long> tsort(const Graph& g) {
long long n = g.size(), k = 0;
std::vector<long long> ord(n), in(n);
for (auto& es : g)
for (auto& e : es) in[e.dst]++;
std::queue<long long> q;
for (long long i = 0; i < n; ++i)
if (in[i] == 0) q.push(i);
while (q.size()) {
long long v = q.front();
q.pop();
ord[k++] = v;
for (auto& e : g[v]) {
if (--in[e.dst] == 0) {
q.push(e.dst);
}
}
}
return *std::max_element(in.begin(), in.end()) == 0
? ord
: std::vector<long long>();
}
std::vector<Weight> dijkstra(const Graph& g, long long s) {
const Weight INF = std::numeric_limits<Weight>::max() / 8;
using state = std::tuple<Weight, long long>;
std::priority_queue<state> q;
std::vector<Weight> dist(g.size(), INF);
dist[s] = 0;
q.emplace(0, s);
while (q.size()) {
Weight d;
long long v;
std::tie(d, v) = q.top();
q.pop();
d *= -1;
if (dist[v] < d) continue;
for (auto& e : g[v]) {
if (dist[e.dst] > dist[v] + e.weight) {
dist[e.dst] = dist[v] + e.weight;
q.emplace(-dist[e.dst], e.dst);
}
}
}
return dist;
}
Matrix WarshallFloyd(const Graph& g) {
auto const INF = std::numeric_limits<Weight>::max() / 8;
long long n = g.size();
Matrix d(n, Array(n, INF));
for (long long i = (0); i < (long long)(n); i++) d[i][i] = 0;
for (long long i = (0); i < (long long)(n); i++)
for (auto& e : g[i]) d[e.src][e.dst] = std::min(d[e.src][e.dst], e.weight);
for (long long k = (0); k < (long long)(n); k++)
for (long long i = (0); i < (long long)(n); i++)
for (long long j = (0); j < (long long)(n); j++) {
if (d[i][k] != INF && d[k][j] != INF) {
d[i][j] = std::min(d[i][j], d[i][k] + d[k][j]);
}
}
return d;
}
const long long BLACK = 1, WHITE = 0;
bool isValid(vector<vector<long long>>& mapData, long long gyo,
long long retu) {
bool f = true;
for (long long i = (0); i < (long long)(gyo); i++) {
for (long long j = (0); j < (long long)(retu); j++) {
long long colorCnt = 0;
if (j > 0 && mapData[i][j] == mapData[i][j - 1]) {
colorCnt++;
}
if (i > 0 && mapData[i][j] == mapData[i - 1][j]) {
colorCnt++;
}
if (i < gyo - 1 && mapData[i][j] == mapData[i + 1][j]) {
colorCnt++;
}
if (j < retu - 1 && mapData[i][j] == mapData[i][j + 1]) {
colorCnt++;
}
if (colorCnt > 1) {
f = false;
}
}
}
return f;
}
void getNext(long long nowX, long long nowY, long long* pOutX, long long* pOutY,
long long gyo, long long retu) {
if (nowX == retu - 1) {
*pOutY = nowY + 1;
*pOutX = 0;
return;
}
*pOutX = nowX + 1;
*pOutY = nowY;
}
void dfs(vector<vector<long long>> mapData, long long nowX, long long nowY,
long long gyo, long long retu, long long* outCnt) {
if (nowX == retu - 1 && nowY == gyo - 1) {
mapData[nowY][nowX] = BLACK;
if (isValid(mapData, gyo, retu)) {
*outCnt = *outCnt + 1;
}
mapData[nowY][nowX] = WHITE;
if (isValid(mapData, gyo, retu)) {
*outCnt = *outCnt + 1;
}
return;
}
mapData[nowY][nowX] = BLACK;
long long nextX, nextY;
getNext(nowX, nowY, &nextX, &nextY, gyo, retu);
dfs(mapData, nextX, nextY, gyo, retu, outCnt);
mapData[nowY][nowX] = WHITE;
getNext(nowX, nowY, &nextX, &nextY, gyo, retu);
dfs(mapData, nextX, nextY, gyo, retu, outCnt);
}
void dec(map<long long, long long>& ma, long long a) {
ma[a]--;
if (ma[a] == 0) {
ma.erase(a);
}
}
long long N;
long long solve(long long ans, vector<long long> A, vector<long long> cu) {
for (long long i = (0); i < (long long)(N); i++) {
if (cu[i] == 0) {
ans++;
if (i == 0) {
if (cu[i + 1] < 0) {
cu[i] = 1;
} else {
cu[i] = -1;
}
} else {
if (cu[i - 1] < 0) {
cu[i] = 1;
} else {
cu[i] = -1;
}
}
}
if (i == N - 1) {
break;
}
if (cu[i] < 0 == cu[i + 1] < 0) {
if (cu[i + 1] > 0) {
ans += cu[i + 1] + 1;
cu[i + 1] -= cu[i + 1] + 1;
} else {
ans += -cu[i + 1] + 1;
cu[i + 1] += -cu[i + 1] + 1;
}
}
cu[i + 2] = cu[i + 1] + A[i + 2];
}
return ans;
}
signed main() {
cin >> N;
vector<long long> A(N + 2), A2;
vector<long long> cu(N + 2);
long long su = 0;
for (long long i = (0); i < (long long)(N); i++) {
cin >> A[i];
su += A[i];
cu[i] = su;
}
long long ans1 = 0, ans2 = 0;
ans1 = solve(ans1, A, cu);
if (A[0] < 0) {
ans2 = -A[0] + 1;
A[0] = 1;
} else {
ans2 = A[0] + 1;
A[0] = -1;
}
su = 0;
for (long long i = (0); i < (long long)(N); i++) {
su += A2[i];
cu[i] = su;
}
ans2 = solve(ans2, A2, cu);
cout << min(ans1, ans2) << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<int> arr;
stack<int> st;
queue<int> qu;
queue<pair<int, int> > qu2;
priority_queue<int> pq;
static const int NIL = -1;
static const int INF = 1000000007;
int a[100005];
int b[100005];
int main() {
int n;
cin >> n;
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
b[i] = a[i];
}
int temp1 = 0;
for (int i = 0; i < (int)(n); i++) {
b[i] = b[i - 1] + b[i];
if (i % 2) {
if (b[i] <= 0) {
temp1 += 1 - b[i];
b[i] = 1;
}
} else {
if (b[i] >= 0) {
temp1 += b[i] + 1;
b[i] = -1;
}
}
}
for (int i = 0; i < (int)(n); i++) {
cerr << b[i];
}
cerr << endl;
int temp2 = 0;
for (int i = 0; i < (int)(n); i++) {
a[i] = a[i - 1] + a[i];
if (i % 2 == 0) {
if (a[i] <= 0) {
temp2 += 1 - a[i];
a[i] = 1;
}
} else {
if (a[i] >= 0) {
temp2 += a[i] + 1;
a[i] = -1;
}
}
}
for (int i = 0; i < (int)(n); i++) {
cerr << a[i];
}
cerr << endl;
int ans = min(temp1, temp2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int, input().split()))
#値のコピーを作るときはスライスする
B=A[:]
#a1の符号を正にする場合
count_1=0
sum_1=0
if A[0]==0:
A[0]+=1
count_1+=1
sum_1+=A[0]
elif A[0]>0:
sum_1+=A[0]
elif A[0]<0:
A[0]=1
count_1+=(abs(A[0])+1)
sum_1+=A[0]
for i in range(1,n):
#奇数番目の項までの和は正に
if i%2==0:#奇数番目の項
if sum_1+A[i]>0:
sum_1+=A[i]
elif sum_1+A[i]<0:
count_1 += (abs(sum_1+A[i])+1)
sum_1=1
elif sum_1+A[0]==0:
count_1+=1
sum_1=1
else:
pass
#偶数番目の項までの和は負に
elif i%2==1:#偶数番目の項
if sum_1+A[i]>0:
count_1 += (abs(sum_1+A[i])+1)
sum_1=-1
elif sum_1+A[i]<0:
sum_1+=A[i]
elif sum_1+A[i]==0:
sum_1 = -1
count_1+=1
else:
pass
#a1の符号を負にする場合
count_2=0
sum_2=0
if B[0]==0:
B[0]-=1
count_2+=1
sum_2+=B[0]
elif B[0]>0:
B[0]= -1
count_2+=(abs(B[0])+1)
sum_2+=B[0]
elif B[0]<0:
sum_2+=B[0]
for i in range(1,n):
if i%2==0:#奇数番目の項
#奇数番目の項までの和は負に
if sum_2+B[i]>0:
count_2 += (abs(sum_2+B[i])+1)
sum_2= -1
elif sum_2+B[i]<0:
sum_2+=B[i]
elif sum_2+B[i]==0:
sum_2 = -1
count_2+=1
else:
pass
#偶数番目の項までの和は負に
elif i%2==1:#偶数番目の項
if sum_2+B[i]>0:
sum_2+=B[i]
elif sum_2+B[i]<0:
count_2 += (abs(sum_2+B[i])+1)
sum_2=1
elif sum_2+B[i]==0:
count_2+=1
sum_2=1
else:
pass
print(min(count_1,count_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | // -*- coding:utf-8-unix -*-
use proconio::{input, fastout};
// ABC086C - Traveling
// https://atcoder.jp/contests/abs/fasks/arc089_a
#[fastout]
fn main() {
input! {
n: usize,
a_vec: [isize; n],
}
let mut count = 0;
let mut prevsum = a_vec[0];
let mut nowsum;
for i in 1..n {
nowsum = prevsum + a_vec[i];
if nowsum*prevsum < 0 {
prevsum = nowsum;
continue;
}
if prevsum > 0 {
// Make nowsum negative
count += nowsum.abs() + 1;
prevsum = -1;
} else {// prevsum < 0
// Make nowsum positive
count += nowsum.abs() + 1;
prevsum = 1;
}
}
println!("{}", count);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long change_num(long long p[], int N) {
long long res = 0;
long long sum = p[0];
for (int i = 1; i < N; i++) {
if ((sum < 0 && (sum + p[i]) > 0) || (sum > 0 && (sum + p[i]) < 0)) {
sum += p[i];
continue;
}
if (sum > 0 && sum + p[i] >= 0) {
sum += p[i];
while (sum >= 0) {
res++;
sum--;
}
continue;
}
if (sum < 0 && sum + p[i] <= 0) {
sum += p[i];
while (sum <= 0) {
res++;
sum++;
}
continue;
}
}
return res;
}
int main() {
int N;
cin >> N;
long long a[N];
for (int i = 0; i < N; i++) cin >> a[i];
long long ans = 0;
long long sum = a[0];
if (a[0] == 0) {
long long plus_ans = 0;
a[0] = 1;
plus_ans = change_num(a, N) + 1;
long long minus_ans = 0;
a[0] = -1;
minus_ans = change_num(a, N) + 1;
if (plus_ans < minus_ans) {
ans = plus_ans;
} else {
ans = minus_ans;
}
} else {
ans = change_num(a, N);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(x) for x in input().split()]
flag = True if A[0] > 0 else False
count = 0
for i in range(n):
if i == 0:
continue
sum_for_i = sum(A[:i])
sum_for_next = sum(A[:i+1])
if (sum_for_i != 0 and ((sum_for_i > 0 and sum_for_next <0) or (sum_for_i < 0 and sum_for_next >0))):
continue
else:
#print("needs to be changed: A[{}] ({})".format(i, A[i]))
while not (sum_for_i != 0 and ((sum_for_i > 0 and sum_for_next <0) or (sum_for_i < 0 and sum_for_next >0))):
if (flag and not i%2) or (not flag and i%2):
A[i] += 1
count += 1
else:
A[i] -= 1
count += 1
sum_for_i = sum(A[:i])
sum_for_next = sum(A[:i+1])
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
sum=A[0]
ans=0
for i in range(n-1):#1_n-1
if sum*(sum+A[i+1])<0:
sum+=A[i+1]
else:
ans+=abs(sum+A[i+1])+1
if sum>0:
sum=-1
else:
sum=1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{BufWriter, Write};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [graph1; $len:expr]) => {{
let mut g = vec![vec![]; $len];
let ab = read_value!($next, [(usize1, usize1)]);
for (a, b) in ab {
g[a].push(b);
g[b].push(a);
}
g
}};
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
#[allow(unused)]
macro_rules! debug {
($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}
/*
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type ModInt = mod_int::ModInt<P>;
//n^p mod m
fn repeat_square(n: i64, p: i64, m: i64) -> i64 {
if p == 0 {
1
} else if p == 1 {
n % m
} else if p % 2 == 0 {
repeat_square(n, p / 2, m).pow(2) % m
} else {
(n * repeat_square(n, p - 1, m)) % m
}
}
fn ncr_mod(n: i64, r: i64, m: i64) -> i64 {
let mut denominator = n;
let mut numerator = 1;
for i in 1..r {
denominator = (denominator * (n - i)) % m;
numerator = (numerator * (i + 1)) % m;
}
(denominator * repeat_square(numerator, m - 2, m)) % m
}
*/
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (let _ = write!(out,$($format)*););
}
input! {
n: usize,
a: [i32; n],
}
let mut cnt_odd = 0;
let mut cnt_even = 0;
let mut cum_1 = vec![0; n];
let mut cum_2 = vec![0; n];
//cum_1[even] < 0,cum_2[odd] < 0
if a[0] >= 0 {
cnt_even += a[0].abs() + 1;
cum_1[0] = a[0];
cum_2[0] = -a[0];
} else {
cnt_odd += a[0].abs() + 1;
cum_1[0] = -a[0];
cum_2[0] = a[0];
}
//+ - + -
for i in 1..n {
cum_1[i] = cum_1[i-1] + a[i];
if i % 2 == 1 {
if cum_1[i] >= 0 {
cnt_odd += cum_1[i].abs() + 1;
cum_1[i] = -1;
}
} else {
if cum_1[i] <= 0 {
cnt_odd += cum_1[i].abs() + 1;
cum_1[i] = 1;
}
}
}
//- + - +
for i in 1..n {
cum_2[i] = cum_2[i-1] + a[i];
if i % 2 != 1 {
if cum_2[i] >= 0 {
cnt_even += cum_2[i].abs() + 1;
cum_2[i] = -1;
}
} else {
if cum_2[i] <= 0 {
cnt_even += cum_2[i].abs() + 1;
cum_2[i] = 1;
}
}
}
puts!("{}\n",min(cnt_odd, cnt_even));
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long n, b, c = 0;
cin >> n >> b;
for (int i = 0; i < n - 1; i++) {
long long a;
cin >> a;
a += b;
if (a * b >= 0) {
if (b > 0) {
c += a + 1;
a = -1;
} else {
c += 1 - a;
a = 1;
}
}
b = a;
}
cout << c << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int INF = 0x3f3f3f3f;
static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
template <typename T, typename U>
inline void amin(T &x, U y) {
if (y < x) x = y;
}
template <typename T, typename U>
inline void amax(T &x, U y) {
if (x < y) x = y;
}
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i];
long long sum = 0;
long long prev = 0;
sum += a[0];
long long ans = 0;
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum < 0) {
ans += abs(sum) + 1;
sum = 1;
} else {
ans++;
sum = (prev < 0 ? 1 : -1);
}
}
}
sum = 0;
prev = 0;
long long ans2 = 0;
sum += a[0];
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans2 += abs(sum) + 1;
sum = 1;
} else {
ans2++;
sum = 1;
}
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans2 += abs(sum) + 1;
sum = 1;
} else {
ans2++;
sum = (prev < 0 ? 1 : -1);
}
}
}
sum = 0;
prev = 0;
long long ans3 = 0;
sum += a[0];
if (sum > 0) {
ans3 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans3 += abs(sum) + 1;
sum = 1;
} else {
ans3++;
sum = -1;
}
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans3 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans3 += abs(sum) + 1;
sum = 1;
} else {
ans3++;
sum = (prev < 0 ? 1 : -1);
}
}
}
cout << min(ans, min(ans, ans2)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long n, a[100001], b[100001]{}, ans = 0;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] != 0) {
b[0] += a[0];
} else {
ans++;
int j = 1;
while (j < n && a[j] == 0) j++;
if (j != n) {
b[0] = (a[j] / abs(a[j]));
if (j % 2 == 1) b[0] *= -1;
} else
b[0] = 1;
}
for (int i = 1; i < n; i++) {
b[i] += a[i] + b[i - 1];
if (b[i] * (b[i - 1] / abs(b[i - 1])) >= 0) {
if (b[i - 1] > 0) {
ans += abs(b[i]) + 1;
b[i] = -1;
} else {
ans += abs(b[i]) + 1;
b[i] = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define set0(a) memset ((a), 0 , sizeof(a))
#define set1(a) memset((a),-1,sizeof (a))
#define pi pair<int, int>
#define ps pair<string, string>
#define pl pair<long, long>
#define pll pair<long long, long long>
#define vll vector<long long>
#define vl vector<long>
#define vi vector<int>
#define vs vector<string>
#define vps vector< ps >
#define vpi vector< pi >
#define vpl vector< pl >
#define vpll vector< pll >
#define flash ios_base::sync_with_stdio(false); cin.tie(NULL);
#define tc(t) for(long long l=0;l<t;l++)
#define rep(i,s,n,d) for(long long i=s;i<n;i=i+d)
bool sortbysec(const pll &a,
const pll &b)
{
return (a.second < b.second);
}
void func(void)
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
}
int main(){
ll n;
cin>>n;
ll a[n];
rep(i,0,n,1){
cin>>a[i];
}
ll count1=0;
if(a[0]==0){
if(a[1]>0){
a[0]=1;
}
else a[0]=-1;
count1++;
}
ll sum[n]={};
sum[0]=a[0];
rep(i,1,n,1){
sum[i]=sum[i-1]+a[i];
}
ll sum1=a[0];
rep(i,1,n,1){
ll d=0;
ll dif=0;
if(sum1>0){
if(a[i]+sum1>=0){
d=-1;
dif=abs(a[i]+sum1-d);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
else{
if(a[i]+sum1<=0){
d=1;
dif=abs(a[i]+sum1-d);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
}
cout<<count1<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
std::vector<int> seq, sum;
int main() {
int n;
std::cin >> n;
seq.resize(n);
sum.resize(n);
std::cin >> seq[0];
sum[0] = seq[0];
for (int i = 1; i < n; i++) {
std::cin >> seq[i];
sum[i] = sum[i - 1] + seq[i];
}
bool is_plus = true;
long ans = 0;
int dif = 0;
if (sum[0] <= 0) {
dif = 1 - sum[0];
ans = dif;
}
for (int i = 1; i < sum.size(); i++) {
if (is_plus && sum[i] + dif >= 0) {
int tmp = -(sum[i] + dif) - 1;
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
} else if (!is_plus && sum[i] + dif <= 0) {
int tmp = 1 - (sum[i] + dif);
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
}
is_plus = !is_plus;
}
long ya = ans;
ans = 0;
is_plus = false;
if (sum[0] > 0) {
dif = -1 - sum[0];
ans = -dif;
} else {
dif = 0;
}
for (int i = 1; i < sum.size(); i++) {
if (is_plus && sum[i] + dif >= 0) {
int tmp = -(sum[i] + dif) - 1;
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
} else if (!is_plus && sum[i] + dif <= 0) {
int tmp = 1 - (sum[i] + dif);
dif += tmp;
ans += (tmp < 0 ? -tmp : tmp);
}
is_plus = !is_plus;
}
std::cout << (ya < ans ? ya : ans) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
const double EPS = 1e-10;
const double PI = acos(-1.0);
int main() {
int N;
scanf("%d", &N);
vector<int> arr(N);
for (int i = (0); i < (N); ++i) {
scanf("%d", &arr[i]);
}
int count = 0;
int sum = 0;
bool positive = true;
if (arr[0] < 0) {
positive = false;
}
sum += arr[0];
for (int i = 1; i < N; i++) {
if (positive) {
if (sum + arr[i] < 0) {
sum = sum + arr[i];
positive = false;
} else {
int must = -sum - 1;
int diff = abs(arr[i] - must);
count += diff;
sum += must;
positive = false;
}
} else {
if (sum + arr[i] > 0) {
sum = sum + arr[i];
positive = true;
} else {
int must = -sum + 1;
int diff = abs(must - arr[i]);
count += diff;
sum += must;
positive = true;
}
}
}
printf("%d", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
scanf("%d", &n);
vector<long> a(n);
for (long i = 0; i < n; i++) scanf(" %d", &a[i]);
long sum = a[0];
long j = 0;
for (long i = 1; i < n; i++) {
if (sum * (sum + a[i]) < 0)
sum += a[i];
else {
j += abs(sum + a[i]) + 1;
if (sum < 0)
sum = 1;
else if (sum > 0)
sum = -1;
}
}
printf("%ld\n", j);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long sum = 0;
long long res = 0;
bool f = true;
for (int i = 0; i < n; i++) {
long long ai;
cin >> ai;
if (sum == 0) {
sum += ai;
if (sum > 0) {
f = false;
} else {
f = true;
}
} else {
sum += ai;
if (f) {
if (sum > 0) {
f = false;
} else {
res += abs(sum - 1);
sum = 1;
f = false;
}
} else {
if (sum < 0) {
f = true;
} else {
res += sum + 1;
sum = -1;
f = true;
}
}
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy
n=int(input())
a=[int(i) for i in input().split()]
ans=0
sum=0
if a[0]==0:
a[0]=1
ans+=1
for j in a:
if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0:
ans+=abs(sum+j)+1
sum=-numpy.sign(sum)
else:
sum+=j
pans=ans
a[0]=-1
ans+=1
for j in a:
if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0:
ans+=abs(sum+j)+1
sum=-numpy.sign(sum)
else:
sum+=j
mans=ans
ans=min(pans,mans)
else:
for j in a:
if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0:
ans+=abs(sum+j)+1
sum=-numpy.sign(sum)
else:
sum+=j
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int *a;
int ans = 0;
cin >> n;
a = new int[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum = 0;
int opr1 = 0, opr2 = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum > 0) continue;
opr1 += abs(sum) + 1;
sum = 1;
} else {
if (sum < 0) continue;
opr1 += abs(sum) + 1;
sum = -1;
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum < 0) continue;
opr2 += abs(sum) + 1;
sum = -1;
} else {
if (sum > 0) continue;
opr2 += abs(sum) + 1;
sum = 1;
}
}
ans = min(opr1, opr2);
cout << ans << endl;
delete (a);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n), es(n), os(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
es[0] = os[0] = a[0];
int ecnt = 0, ocnt = 0;
for (int i = 0; i < n; i++) {
if (i != 0) es[i] = es[i - 1] + a[i];
if (i % 2 == 0 && es[i] <= 0) {
ecnt += abs(1 - es[i]);
es[i] = 1;
} else if (i % 2 != 0 && es[i] >= 0) {
ecnt += abs(-1 - es[i]);
es[i] = -1;
}
}
for (int i = 0; i < n; i++) {
if (i != 0) os[i] = os[i - 1] + a[i];
if (i % 2 == 0 && os[i] >= 0) {
ocnt += abs(-1 - os[i]);
os[i] = -1;
} else if (i % 2 != 0 && os[i] <= 0) {
ocnt += abs(1 - os[i]);
os[i] = 1;
}
}
cout << (ecnt < ocnt ? ecnt : ocnt) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long dptemp[100010];
long long s1[100010], dp[100010];
long long mi = 9223372036854775807, n, a, sum, pri1, pri2, all;
void cir() {
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
}
void copyy() {
for (int a = 1; a <= n; a++) dptemp[a] = dp[a];
}
int main() {
scanf("%lld", &n);
dp[0] = 0;
for (a = 1; a <= n; a++) {
scanf("%lld", &s1[a]);
dp[a] = s1[a] + dp[a - 1];
dptemp[a] = dp[a];
}
if (dp[1] > 0) {
copyy();
all = 0;
cir();
copyy();
all = dp[1] + 1;
dp[1] = -1;
cir();
} else if (dp[1] < 0) {
copyy();
all = 0;
cir();
copyy();
all = -dp[1] + 1;
dp[1] = 1;
cir();
} else {
copyy();
all = 1;
dp[1] = 1;
cir();
copyy();
all = -1;
dp[1] = -1;
cir();
}
printf("%d\n", mi);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline bool feq(const double& a, const double& b) {
return fabs(a - b) < 1e-10;
}
inline int gcd(int a, int b) {
if (b == 0) return a;
return a < b ? gcd(b, a) : gcd(b, a % b);
}
long long mo = 1000000007;
const long long INF = 1e18;
bool f(pair<long long, long long> p1, pair<long long, long long> p2) {
return p1.first < p2.first;
}
int main() {
int n;
cin >> n;
long long cnt = 0;
long long sum = 0;
cin >> sum;
{
long long a;
cin >> a;
a += sum;
if ((sum < 0 && a > 0) || (sum > 0 && a < 0)) {
sum = a;
} else {
if (abs(sum) < abs(a)) {
cnt += (abs(sum) + 1);
sum = a;
} else {
cnt += (abs(a) + 1);
sum = (-1) * (sum > 0 ? 1 : -1);
}
}
}
for (int i = 0; i < n - 2; ++i) {
long long a;
cin >> a;
a += sum;
if ((sum < 0 && a > 0) || (sum > 0 && a < 0)) {
sum = a;
} else {
cnt += (abs(a) + 1);
sum = (-1) * (sum > 0 ? 1 : -1);
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import qualified Data.ByteString.Char8 as BC
import Data.Maybe (fromJust)
main = do
n <- readLn :: IO Int
(a:as) <- getIntListBC
let ans1 = solve a as
x = (+1) $ abs a
ans2 = if a >= 0 then x + solve (a-x) as
else x + solve (a+x) as
print $ min ans1 ans2
bsToInt :: BC.ByteString -> Int
bsToInt = fst . fromJust . BC.readInt
getIntListBC :: IO [Int]
getIntListBC = map bsToInt . BC.words <$> BC.getLine
solve :: Int -> [Int] -> Int
solve _ [] = 0
solve s (a:as)
| s > 0 = let n = negate $ s + 1
in if n > a then solve (s + a) as
else (abs $ a - n) + solve (s + n) as
| s < 0 = let n = negate $ s - 1
in if n < a then solve (s + a) as
else (abs $ n - a) + solve (s + n) as
| otherwise = 1 + solve 1 as
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
long body(std::vector<long>& a, long base) {
long ans = 0;
std::vector<long> s(a.size());
s.at(0) = a.at(0);
for (unsigned long i = 1; i < a.size(); i++) {
s.at(i) = s.at(i - 1) + a.at(i);
}
long diff = 0;
long prev = base;
for (unsigned long i = 0; i < s.size(); i++) {
s.at(i) += diff;
long n = 0;
if (prev > 0 && s.at(i) >= 0) {
n = s.at(i) + 1;
ans += n;
diff -= n;
s.at(i) += diff;
} else if (prev < 0 && s.at(i) <= 0) {
n = -s.at(i) + 1;
ans += n;
diff += n;
s.at(i) += diff;
}
prev = s.at(i);
}
return ans;
}
int main(int argc, char** argv) {
long n;
std::cin >> n;
std::vector<long> a(n);
for (long i = 0; i < n; i++) {
std::cin >> a.at(i);
}
long ans_a, ans_b;
ans_a = body(a, -1);
ans_b = body(a, 1);
long ans = std::min(ans_a, ans_b);
std::cout << ans << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
long long sum = a[0];
long long ans1 = 0;
if (sum == 0) {
ans1++;
sum += 1;
}
for (int i = 0; i < n - 1; ++i) {
if (sum < 0) {
if (a[i + 1] + sum > 0)
sum += a[i + 1];
else {
ans1 += abs(1 - (a[i + 1] + sum));
sum = 1;
}
} else {
if (a[i + 1] + sum < 0)
sum += a[i + 1];
else {
ans1 += abs(-1 - (a[i + 1] + sum));
sum = -1;
}
}
}
sum = a[0];
long long ans2 = 0;
if (sum == 0) {
ans2++;
sum = -1;
}
for (int i = 0; i < n - 1; ++i) {
if (sum < 0) {
if (a[i + 1] + sum > 0)
sum += a[i + 1];
else {
ans2 += abs(1 - (a[i + 1] + sum));
sum = 1;
}
} else {
if (a[i + 1] + sum < 0)
sum += a[i + 1];
else {
ans2 += 1 + (a[i + 1] + sum);
sum = -1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
as = gets.split.map(&:to_i)
ans = 0
sums = Array.new(n)
sums[0] = as[0]
(1..n-1).each do |i|
if sums[i-1] < 0
if as[i] + sums[i-1] <= 0
t = sums[i-1].abs - as[i] + 1
as[i] += t
ans += t
end
else
if as[i] + sums[i-1] >= 0
t = sums[i-1].abs + as[i] + 1
as[i] -= t
ans += t
end
end
sums[i] = sums[i-1] + as[i]
end
puts ans |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
int tmp1 = 0, tmp2 = 0;
int ans1 = 0, ans2 = 0;
for (int i = 0; i < n; ++i) {
tmp1 += a[i];
if (i % 2 == 0) {
if (tmp1 >= 0) {
ans1 += 1 + tmp1;
tmp1 = -1;
} else {
}
} else {
if (tmp1 <= 0) {
ans1 += 1 - tmp1;
tmp1 = -1;
} else {
}
}
}
for (int i = 0; i < n; ++i) {
tmp2 += a[i];
if (i % 2 == 0) {
if (tmp2 <= 0) {
ans2 += 1 - tmp2;
tmp2 = 1;
} else {
}
} else {
if (tmp2 >= 0) {
ans2 += 1 + tmp2;
tmp2 = 1;
} else {
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int s = a[0];
int cnt = 0;
for (int i = 1; i < n; i++) {
if (s > 0) {
if (s + a[i] < 0) {
s += a[i];
continue;
} else if (s + a[i] == 0) {
a[i]--;
cnt++;
s += a[i];
continue;
} else if (s + a[i] > 0) {
cnt += s + a[i] + 1;
s = -1;
continue;
}
} else if (s < 0) {
if (s + a[i] > 0) {
s += a[i];
continue;
} else if (s + a[i] == 0) {
a[i]++;
cnt++;
s += a[i];
continue;
} else if (s + a[i] < 0) {
cnt += abs(s + a[i]) + 1;
s = 1;
continue;
}
} else {
cnt++;
}
}
cout << cnt;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <typename T1, typename T2>
pair<T1, T2> operator+(const pair<T1, T2>& l, const pair<T1, T2>& r) {
return make_pair(l.first + r.first, l.second + r.second);
}
template <typename T1, typename T2>
pair<T1, T2> operator-(const pair<T1, T2>& l, const pair<T1, T2>& r) {
return make_pair(l.first - r.first, l.second - r.second);
}
const long long int MOD = 1e9 + 7, INF = 1e18;
long long int N, arr[100000], sums[100000];
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
cin >> N;
for (long long int i = (0), i_end_ = (N); i < i_end_; i++) {
cin >> arr[i];
}
bool flag;
long long int sum = 0;
long long int ans = 0;
sums[0] = arr[0];
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
sums[i + 1] = arr[i + 1] + sums[i];
}
flag = false;
for (long long int i = (0), i_end_ = (N); i < i_end_; i++) {
sums[i] += sum;
if (flag ^ ((i % 2) == 1)) {
if (sums[i] >= 0) {
sum -= (sums[i] + 1);
ans += abs(sums[i] + 1);
sums[i] -= (sums[i] + 1);
}
} else {
if (sums[i] <= 0) {
sum -= (sums[i] - 1);
ans += abs(sums[i] - 1);
sums[i] -= (sums[i] - 1);
}
}
}
long long int tmp = ans;
sum = 0;
ans = 0;
sums[0] = arr[0];
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
sums[i + 1] = arr[i + 1] + sums[i];
}
flag = true;
for (long long int i = (0), i_end_ = (N); i < i_end_; i++) {
sums[i] += sum;
if (flag ^ ((i % 2) == 1)) {
if (sums[i] >= 0) {
sum -= (sums[i] + 1);
ans += abs(sums[i] + 1);
sums[i] -= (sums[i] + 1);
}
} else {
if (sums[i + 1] <= 0) {
sum -= (sums[i] - 1);
ans += abs(sums[i] - 1);
sums[i] -= (sums[i] - 1);
}
}
}
cout << min(tmp, ans) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long inf = 1e9 + 7;
const long long mod = 998244353;
int main() {
long long n;
cin >> n;
vector<long long> a(n + 1);
for (int i = (0); i < (n); i++) {
long long aa;
cin >> aa;
a[i + 1] = a[i] + aa;
}
long long cnt1 = 0;
long long cnt2 = 0;
long long cnt = 0;
for (int i = (1); i < (n + 1); i++) {
if (i % 2) {
if (a[i] + cnt <= 0) {
cnt1 += 1 - a[i];
cnt += 1 - a[i];
}
} else {
if (a[i] + cnt >= 0) {
cnt1 += 1 + a[i];
cnt += -a[i] - 1;
}
}
}
cnt = 0;
for (int i = (1); i < (n + 1); i++) {
if (i % 2) {
if (a[i] + cnt >= 0) {
cnt2 += 1 + a[i];
cnt += -a[i] - 1;
}
} else {
if (a[i] + cnt <= 0) {
cnt2 += 1 - a[i];
cnt += 1 - a[i];
}
}
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, b, a[100005];
int abs(int p) { return p > 0 ? p : -p; }
int f(int p) {
int i, s = 0;
for (i = 1; i < n; i++) {
if (p > 0) {
p += a[i];
if (p >= 0) s += p + 1, p = -1;
} else {
p += a[i];
if (p <= 0) s += -p + 1, p = 1;
}
}
return s;
}
int main() {
int i;
cin >> n;
for (i = 0; i < n; i++) scanf("%d", &a[i]);
cout << min(f(a[0]), f(-a[0])) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int A[100001];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> A[i];
}
int sum = 0;
int counter = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 0) {
while (sum <= 0) {
sum++;
counter++;
}
} else {
while (sum >= 0) {
sum--;
counter++;
}
}
}
int counterNeg = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 0) {
while (sum >= 0) {
sum--;
counterNeg++;
}
} else {
while (sum <= 0) {
sum++;
counterNeg++;
}
}
}
int ans = counter > counterNeg ? counterNeg : counter;
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
import sys
write = sys.stdout.write
n = int(input())
A = list(map(int,input().split())) # +, -, +, ...
B = copy.deepcopy(A) #-, +, -, ...
sumA = []
sumB = []
cntA = 0
cntB = 0
if A[0] == 0:
A[0] += 1
B[0] -= 1
elif A[0] > 0:
cntB += B[0]+1
B[0] = -1
else:
cntA += abs(A[0])+1
A[0] = 1
sumA.append(A[0])
sumB.append(B[0])
for i in range(1, n):
tempA = sumA[i-1] + A[i]
tempB = sumB[i-1] + B[i]
if i%2 == 1: #Aは-, Bは+
if tempA == 0:
#A[i] -= 1
cntA += 1
sumA.append(-1)
elif tempA > 0:
#A[i] -= abs(tempA) + 1
cntA += abs(tempA) + 1
sumA.append(-1)
else:
sumA.append(tempA)
if tempB == 0:
#B[i] += 1
cntB += 1
sumB.append(1)
elif tempB < 0:
#B[i] += abs(tempA) + 1
cntB += abs(tempA) + 1
sumB.append(1)
else:
sumB.append(tempB)
else: #Aは+, Bは-
if tempA == 0:
cntA += 1
sumA.append(1)
elif tempA < 0:
cntA += abs(tempA) + 1
sumA.append(1)
else:
sumA.append(tempA)
if tempB == 0:
#B[i] -= 1
cntB += 1
sumB.append(-1)
elif tempB > 0:
#B[i] -= abs(tempB) + 1
cntB += abs(tempB) + 1
sumB.append(-1)
else:
sumB.append(tempB)
print(str(min(cntA, cntB))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
int tmp1 = 0, tmp2 = 0;
int ans1 = 0, ans2 = 0;
for (int i = 0; i < n; ++i) {
tmp1 += a[i];
if ((i + 1) % 2 == 0) {
if (tmp1 <= 0) {
ans1 += 1 - tmp1;
tmp1 = 1;
} else {
}
} else {
if (tmp1 >= 0) {
ans1 += 1 + tmp1;
tmp1 = -1;
} else {
}
}
}
for (int i = 0; i < n; ++i) {
tmp2 += a[i];
if ((i + 1) % 2 == 0) {
if (tmp2 >= 0) {
ans2 += 1 + tmp2;
tmp2 = -1;
} else {
}
} else {
if (tmp2 <= 0) {
ans2 += 1 - tmp2;
tmp2 = 1;
} else {
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, c = 0, b = 0;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
if (b > 0) {
if (a[i] + b >= 0) {
c += a[i] + b + 1;
b = -1;
} else {
b += a[i];
}
} else if (b < 0) {
if (a[i] + b <= 0) {
c += 1 - (a[i] + b);
b = 1;
} else {
b += a[i];
}
} else {
if (a[i] == 0) {
if (i == 0) {
c++;
} else {
c += 2;
}
} else if (a[i] == 1 || a[i] == -1) {
if (i == 0) {
b = a[i];
} else {
b = a[i];
c++;
}
} else if (a[i] > 1) {
if (i == 0) {
b = a[i];
} else {
b = a[i] - 1;
}
} else {
if (i == 0) {
b = a[i];
} else {
b = a[i] + 1;
}
}
}
}
cout << c;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int cntEven = 0, cntOdd = 0, n;
cin >> n;
long long a[n], b[n], sumEven[n], sum[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
if (i == 0)
sumEven[i] = b[i];
else if (i > 0)
sumEven[i] = b[i] + sumEven[i - 1];
if (i == 0)
sum[i] = b[i];
else if (i > 0)
sum[i] = b[i] + sum[i - 1];
if ((i % 2 == 0) && (sumEven[i] <= 0)) {
while (sumEven[i] < 1) {
b[i]++;
cntEven++;
if (i == 0)
sumEven[i] = b[i];
else if (i > 0)
sumEven[i] = b[i] + sumEven[i - 1];
}
}
if ((i % 2 == 1) && (sumEven[i] >= 0)) {
while (sumEven[i] > -1) {
b[i]--;
cntEven++;
sumEven[i] = b[i] + sumEven[i - 1];
}
}
if ((i % 2 == 1) && (sum[i] <= 0)) {
while (sum[i] < 1) {
a[i]++;
cntOdd++;
sum[i] = a[i] + sum[i - 1];
}
}
if ((i % 2 == 0) && (sum[i] >= 0)) {
while (sum[i] > -1) {
a[i]--;
cntOdd++;
if (i == 0)
sum[i] = a[i];
else if (i > 0)
sum[i] = a[i] + sum[i - 1];
}
}
}
cout << min(cntEven, cntOdd) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace AtCoder
{
class Program
{
static void Main(string[] args)
{
var n = long.Parse(Console.ReadLine());
var aList = Console.ReadLine().Split(' ').Select(value => long.Parse(value)).ToList();
if(aList[0] == 0)
{
var min = long.MaxValue;
aList[0] = 1;
min = Math.Min(Sequence(aList), min);
aList[0] = -1;
min = Math.Min(Sequence(aList), min);
Console.WriteLine(min + 1);
}
else
{
Console.WriteLine(Sequence(aList));
}
}
private static long Sequence(List<long> list)
{
long sum = list[0];
var isPreviousSumPositive = list[0] > 0;
long count = 0;
for(var i = 1; i < list.Count; i++)
{
sum += list[i];
if(isPreviousSumPositive && sum >= 0)
{
count += sum + 1;
sum = -1;
}
else if(!isPreviousSumPositive && sum <= 0)
{
count += -sum + 1;
sum = 1;
}
if(sum > 0)
{
isPreviousSumPositive = true;
}
else
{
isPreviousSumPositive = false;
}
}
return count;
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n, i, check = 0;
long long int a, count = 0, sum = 0;
scanf("%d", &n);
scanf("%lld", &a);
for (i = 0; i < n; i++) {
scanf("%lld", &a);
if (i == 0 && a == 0) check = -1;
sum += a;
if (check == 1 && sum >= 0) {
count += (1 + sum);
sum = -1;
} else if (check == -1 && sum <= 0) {
count += (1 - sum);
sum = 1;
}
if (sum >= 0) {
check = 1;
} else {
check = -1;
}
}
printf("%lld", count);
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.