Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | open Batteries
let () =
let n = Scanf.scanf "%d " (fun a -> a) in
let a_lst = Array.to_list @@ Array.init n (fun _ -> Scanf.scanf "%d " (fun a -> a)) in
let rev_cumsum l =
let rec aux last res = function
| [] -> res
| hd :: tl ->
let last = last + hd in
aux last (last::res) tl
in
aux 0 [] l
in
let l = List.rev (rev_cumsum a_lst) in
let sign = if List.hd a_lst > 0 then `Plus else `Minus in
let _,ans,_ =
List.fold_left (fun (cum, cnt, sign) x ->
match sign with
| `Plus -> if x + cum <= 0 then let x = x+cum in ((cum+1-x), (cnt+1-x), `Minus) else (cum,cnt,`Minus)
| `Minus -> if x + cum >= 0 then let x = x+cum in ((cum+(-1-x)), (cnt-(-1-x)), `Plus) else (cum,cnt,`Plus)
) (0,0,sign) l
in
Printf.printf "%d\n" ans
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long chk, ans = 0, ans2 = 0;
scanf("%d", &n);
vector<int> a(n);
for (auto& e : a) scanf("%d", &e);
chk = a[0];
for (int i = 1; i < n; i++) {
if (i % 2) {
chk += a[i];
if (chk >= 0) {
ans += chk + 1;
chk = -1;
}
} else {
chk += a[i];
if (chk <= 0) {
ans += -1 * chk + 1;
chk = 1;
}
}
}
chk = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 0) {
chk += a[i];
if (chk >= 0) {
ans2 += chk + 1;
chk = -1;
}
} else {
chk += a[i];
if (chk <= 0) {
ans2 += -1 * chk + 1;
chk = 1;
}
}
}
if (a[0] > 0)
printf("%lld\n", ans);
else
printf("%lld\n", ans2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <typename T1, typename T2>
pair<T1, T2> operator+(const pair<T1, T2>& l, const pair<T1, T2>& r) {
return make_pair(l.first + r.first, l.second + r.second);
}
template <typename T1, typename T2>
pair<T1, T2> operator-(const pair<T1, T2>& l, const pair<T1, T2>& r) {
return make_pair(l.first - r.first, l.second - r.second);
}
const long long int MOD = 1e9 + 7, INF = 1e18;
long long int N, arr[100000];
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
cin >> N;
for (long long int i = (0), i_end_ = (N); i < i_end_; i++) {
cin >> arr[i];
}
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
arr[i + 1] += arr[i];
}
bool flag;
if (arr[0] >= 0)
flag = true;
else
flag = false;
long long int sum = 0;
long long int ans = 0;
for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) {
arr[i + 1] += sum;
if (flag ^ ((i % 2) == 1)) {
if (arr[i + 1] >= 0) {
sum -= (arr[i + 1] + 1);
ans += abs(arr[i + 1] + 1);
arr[i + 1] -= (arr[i + 1] + 1);
}
} else {
if (arr[i + 1] <= 0) {
sum -= (arr[i + 1] - 1);
ans += abs(arr[i + 1] - 1);
arr[i + 1] -= (arr[i + 1] - 1);
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int count = 0;
vector<int> a(100000);
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
if (a[1] > 0) {
a[0]--;
count++;
} else {
a[0]++;
count++;
}
}
vector<long long int> sum(100000);
sum[0] = a[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
if (sum[i] * sum[i - 1] >= 0) {
if (sum[i - 1] < 0) {
while (sum[i] * sum[i - 1] >= 0) {
sum[i]++;
count++;
}
} else {
while (sum[i] * sum[i - 1] >= 0) {
sum[i]--;
count++;
}
}
}
}
cout << count;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline void chmax(T& a, T b) {
if (a < b) {
a = b;
}
}
template <class T>
inline void chmin(T& a, T b) {
if (a > b) {
a = b;
}
}
template <class T>
inline T gcd(T x, T y) {
if (y == 0) {
return x;
} else if (x == 0) {
return y;
}
return gcd(y, x % y);
}
template <class T>
inline T lcm(T x, T y) {
return (x * y) / gcd(x, y);
}
template <class T>
inline void print_vector(vector<T> vec) {
for (int i = 0; i < vec.size(); i++) {
cout << vec[i] << " ";
}
cout << endl;
}
const long long MOD = 1e9 + 7;
const long long LLINF = 1LL << 60;
const int INF = 1 << 30;
int main(void) {
long long N;
cin >> N;
vector<long long> A(N);
vector<long long> B(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
B[i] = A[i];
}
long long sum = A[0] > 0 ? A[0] : 1;
long long count = abs(sum - A[0]);
for (int i = 1; i < N; i++) {
long long tmp = A[i] + sum;
if (i % 2 == 1 and tmp >= 0) {
A[i] += (-1 - tmp);
count += abs(-1 - tmp);
} else if (i % 2 == 0 and tmp <= 0) {
A[i] += (1 - tmp);
count += (1 - tmp);
}
sum += A[i];
}
long long ans = count;
sum = B[0] < 0 ? B[0] : -1;
count = sum - B[0];
for (int i = 1; i < N; i++) {
long long tmp = B[i] + sum;
if (i % 2 == 0 and tmp >= 0) {
B[i] += (-1 - tmp);
count += abs(-1 - tmp);
} else if (i % 2 == 1 and tmp <= 0) {
B[i] += (1 - tmp);
count += (1 - tmp);
}
sum += B[i];
}
chmin(ans, count);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
#define int long long
#define r(i,n) for(int i=0;i<n;i++)
using namespace std;
int a[100009],n;
int d1(){
int sum=0,ans=0;
for(int i=0;i<n;i++){
if(i%2==0){
if(sum+a[i]>=0)ans+=sum-a[i]+1,sum=-1;
else sum+=a[i];
}
else{
if(sum+a[i]<=0)ans+=1-sum+a[i],sum=1;
else sum+=a[i];
}
}
return ans;
}
int d2(){
int sum=0,ans=0;
for(int i=0;i<n;i++){
if(i%2==1){
if(sum+a[i]>=0)ans+=sum-a[i]+1,sum=-1;
else sum+=a[i];
}
else{
if(sum+a[i]<=0)ans+=1-sum+a[i],sum=1;
else sum+=a[i];
}
}
return ans;
}
main(){
cin>>n;
r(i,n)cin>>a[i];
cout<<min(d1(),d2())<<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
const double EPS = 1e-10;
const double PI = acos(-1.0);
int main() {
int N;
scanf("%d", &N);
vector<int> arr(N);
for (int i = (0); i < (N); ++i) {
scanf("%d", &arr[i]);
}
int count = 0;
int sum = 0;
bool positive = true;
if (arr[0] < 0) {
positive = false;
}
sum += arr[0];
for (int i = 1; i < N; i++) {
if (positive) {
if (sum + arr[i] < 0) {
sum = sum + arr[i];
positive = false;
} else {
int must = -sum - 1;
int diff = arr[i] - must;
count += diff;
sum += must;
positive = false;
}
} else {
if (sum + arr[i] > 0) {
sum = sum + arr[i];
positive = true;
} else {
int must = -sum + 1;
int diff = must - arr[i];
count += diff;
sum += must;
positive = true;
}
}
}
printf("%d", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int MOD = 1000000007;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
ll t = 0;
ll sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
t += 1 - sum;
sum += t;
}
} else {
if (sum >= 0) {
t += sum + 1;
sum -= t;
}
}
}
ll u = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum <= 0) {
u += 1 - sum;
sum += u;
}
} else {
if (sum >= 0) {
u += sum + 1;
sum -= u;
}
}
}
cout << min(t, u) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"math"
"os"
"strconv"
)
const pi = math.Pi
var mod int = pow(10, 9) + 7
var Umod uint64 = 1000000007
var ans int64
func main() {
reader.Split(bufio.ScanWords)
n, _ := strconv.Atoi(read())
a := make([]int, n)
for i := 0; i < n; i++ {
a[i], _ = strconv.Atoi(read())
}
sum := make([]int64, n)
sum[0] = int64(a[0])
for i := 1; i < n; i++ {
sum[i] += int64(a[i]) + sum[i-1]
fmt.Println(sum[i-1], sum[i], ans)
if (0 <= sum[i-1] && 0 <= sum[i]) || (sum[i-1] <= 0 && sum[i] <= 0) {
// NGパターン
if sum[i] < 0 {
ans += 1 - sum[i]
sum[i] = 1
} else {
ans += sum[i] + 1
sum[i] = -1
}
}
}
fmt.Println(ans)
}
/* ---------------------------------------- */
var reader = bufio.NewScanner(os.Stdin)
func read() string {
reader.Scan()
return reader.Text()
}
func lcm(x, y int) int {
return (x / gcd(x, y)) * y
}
func gcd(x, y int) int {
if x%y == 0 {
return y
} else {
r := x % y
return gcd(y, r)
}
}
var fac [1000000]int
var finv [1000000]int
var inv [1000000]int
func combination_init() {
fac[0], fac[1] = 1, 1
finv[0], finv[1] = 1, 1
inv[1] = 1
// invは a^(-1) mod p
// pをaで割ることを考える
// p/a*(a) + p%a = p
// p/a*(a) + p%a = 0 (mod p)
// -p%a = p/a*(a) (mod p)
// -p%a *a^(-1)= p/a (mod p)
// a^(-1)= p/a * (-p%a)^(-1) (mod p)
// a^(-1) =
for i := 2; i < 1000000; i++ {
fac[i] = fac[i-1] * i % mod
inv[i] = mod - inv[mod%i]*(mod/i)%mod
finv[i] = finv[i-1] * inv[i] % mod
}
}
func combination(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[y] * finv[x-y] % mod) % mod
//return fac[x] / (fac[y] * fac[x-y])
}
func permutation(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[x-y] % mod) % mod
//return fac[x] / fac[x-y]
}
func max(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Max(float64(x[i]), float64(res)))
}
return res
}
func min(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Min(float64(x[i]), float64(res)))
}
return res
}
func pow(x, y int) int { return int(math.Pow(float64(x), float64(y))) }
func abs(x int) int { return int(math.Abs(float64(x))) }
func floor(x int) int { return int(math.Floor(float64(x))) }
func ceil(x int) int { return int(math.Ceil(float64(x))) }
type SortBy [][]int
func (a SortBy) Len() int { return len(a) }
func (a SortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a SortBy) Less(i, j int) bool { return a[i][0] < a[j][0] }
type PriorityQueue []int
func (h PriorityQueue) Len() int { return len(h) }
func (h PriorityQueue) Less(i, j int) bool { return h[i] < h[j] }
func (h PriorityQueue) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *PriorityQueue) Push(x interface{}) { *h = append(*h, x.(int)) }
func (h *PriorityQueue) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int64_t> a(n + 10, 0);
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
int pn = 0;
int mn = 0;
const int64_t first = a[1];
{
int num = 0;
int64_t total = 0;
if (first <= 0) {
num = 1 - first;
total = 1;
} else {
total = first;
}
for (int i = 2; i <= n; ++i) {
int64_t ai = a[i];
if (i % 2 == 0) {
if (ai >= 0) {
num += -(-1 - ai);
ai = -1;
}
if (total + ai >= 0) {
const int64_t back = ai;
ai = -1 - total;
num += abs(ai - back);
}
total += ai;
} else {
if (ai <= 0) {
num += 1 - ai;
ai = 1;
}
if (total + ai <= 0) {
const int64_t back = ai;
ai = 1 - total;
num += abs(ai - back);
}
total += ai;
}
}
pn = num;
}
{
int num = 0;
int64_t total = 0;
if (first >= 0) {
num = -(-1 - first);
total = -1;
} else {
total = first;
}
for (int i = 2; i <= n; ++i) {
int64_t ai = a[i];
if (i % 2 == 0) {
if (ai <= 0) {
num += 1 - ai;
ai = 1;
}
if (total + ai <= 0) {
const int64_t back = ai;
ai = 1 - total;
num += abs(ai - back);
}
total += ai;
} else {
if (ai >= 0) {
num += -(-1 - ai);
ai = -1;
}
if (total + ai >= 0) {
const int64_t back = ai;
ai = -1 - total;
num += abs(ai - back);
}
total += ai;
}
}
mn = num;
}
cout << min(pn, mn) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using long long = long long;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
const long long INF = 1e9;
long long n;
vector<long long> a;
int main() {
cin >> n;
a.resize(n);
for (long long i = 0; i < (n); ++i) cin >> a[i];
long long sum;
long long ans = 0;
sum = a[0];
if (sum == 0) {
if (a[1] < 0)
sum = 1;
else
sum = -1;
ans++;
}
for (long long i = 0; i < (n - 1); ++i) {
if (sum < 0) {
if (sum + a[i + 1] > 0) {
sum += a[i + 1];
continue;
} else {
ans += 1 - sum - a[i + 1];
sum = 1;
}
} else {
if (sum + a[i + 1] < 0) {
sum += a[i + 1];
continue;
} else {
ans += a[i + 1] + sum + 1;
sum = -1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long dptemp[100010];
long long s1[100010], dp[100010];
long long mi = 9223372036854775807, n, a, sum, pri1, pri2, all;
void cir() {
for (a = 2; a <= n; a++) {
dp[a] = (dp[a - 1] + s1[a]);
if (dp[a - 1] > 0) {
if (dp[a] >= 0) {
all += (dp[a] + 1);
dp[a] = -1;
}
} else {
if (dp[a] <= 0) {
all += (-dp[a] + 1);
dp[a] = 1;
}
}
}
if (all < mi) mi = all;
}
void copyy() {
for (long long a = 1; a <= n; a++) dptemp[a] = dp[a];
}
int main() {
scanf("%lld", &n);
dp[0] = 0;
for (a = 1; a <= n; a++) {
scanf("%lld", &s1[a]);
dp[a] = s1[a] + dp[a - 1];
dptemp[a] = dp[a];
}
if (dp[1] > 0) {
copyy();
all = 0;
cir();
copyy();
all = dp[1] + 1;
dp[1] = -1;
cir();
} else if (dp[1] < 0) {
copyy();
all = 0;
cir();
copyy();
all = -dp[1] + 1;
dp[1] = 1;
cir();
} else {
copyy();
all = 1;
dp[1] = 1;
cir();
copyy();
all = -1;
dp[1] = -1;
cir();
}
printf("%lld\n", mi);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
const double EPS = 1e-10;
const double PI = acos(-1.0);
int main(void) {
int n;
cin >> n;
int array[100000];
for (int i = (0); i < (100000); ++i) {
int a;
cin >> array[i];
}
int ans = 0;
bool flag = false;
int sum = array[0];
if (array[0] == 0) {
if (array[1] > 0) {
ans++;
sum = -1;
flag = false;
} else if (array[1] < 0) {
ans++;
sum = 1;
flag = true;
} else {
sum = 1;
ans++;
}
} else if (array[0] > 0)
flag = true;
else
flag = false;
for (int i = (1); i < (n); ++i) {
sum += array[i];
if (flag) {
if (sum >= 0) {
ans += (sum + 1);
sum -= (sum + 1);
}
flag = false;
} else {
if (sum <= 0) {
ans += -1 * (sum - 1);
sum += -1 * (sum - 1);
}
flag = true;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | x = input().split(" ")
a = int(x[0])
b = int(x[1])
if (a>b):
print("GREATER")
elif(a==b):
print("EQUAL")
else:
print("LESS")
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long solve(int *a, int n) {
long long count = 0;
long long calc = 0;
int state, pstate;
if (a[0] < 0) state = -1;
if (a[0] > 0) state = 1;
for (int i = 1; i < n; i++) {
pstate = state;
int tmp = a[i] + calc;
if (tmp < 0) state = -1;
if (tmp == 0) state = 0;
if (tmp > 0) state = 1;
if (pstate == state) {
if (state == -1) {
count += 1 - tmp;
calc += 1 - tmp;
state = 1;
} else if (state == 1) {
count += tmp + 1;
calc += -1 - tmp;
state = -1;
}
}
if (state == 0) {
if (pstate == -1) {
count += 1;
calc += 1;
state = 1;
} else if (pstate == 1) {
count += 1;
calc += -1;
state = -1;
}
}
}
return count;
}
int main() {
int n;
long long ans;
int *a;
cin >> n;
a = new int[n];
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 1; i < n; i++) a[i] = a[i - 1] + a[i];
if (a[0] == 0) {
long long bs, cs;
int *b = new int[n];
int *c = new int[n];
for (int i = 0; i < n; i++) b[i] = a[i] + 1;
for (int i = 0; i < n; i++) c[i] = a[i] - 1;
bs = solve(b, n);
cs = solve(c, n);
ans = bs < cs ? bs : cs;
} else
ans = solve(a, n);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long fcount(long long arr[], long long n, int b, long long val[]) {
long long c = 0;
long long diff = 0;
for (long long i = 0; i < n; i++) {
if (arr[i] + diff == 0) {
if (b == 1) {
diff += 1;
c += 1;
} else {
diff -= 1;
c += 1;
}
} else if (arr[i] + diff > 0 && b == 0) {
long long temp = diff;
diff -= (arr[i] + diff + 1);
c += arr[i] + temp + 1;
} else if (arr[i] + diff < 0 && b == 1) {
long long temp = diff;
diff += -(arr[i] + diff) + 1;
c += -(arr[i] + temp) + 1;
}
b = (b + 1) % 2;
}
return c;
}
int main() {
long long n;
cin >> n;
long long arr[n];
for (int i = 0; i < n; i++) cin >> arr[i];
long long c = 0;
long long diff = 0, b = -1;
long long prefix[n];
prefix[0] = arr[0];
for (int i = 1; i < n; i++) {
prefix[i] = prefix[i - 1] + arr[i];
}
for (int i = 0; i < n; i++) cout << prefix[i] << " ";
cout << "\n";
cout << min(fcount(prefix, n, 1, arr), fcount(prefix, n, 0, arr)) << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
N=int(input())
l=list(map(int, input().split())) #リスト入力
cp = copy.copy(l)
#c=0
for k in range(N-1):
if sum(l[:k+1])==0:
#c=c+1
if l[k+1]>0:
l[k+1]=l[k+1]+1
else:
l[k+1]=l[k+1]-1
if sum(l[:k])*sum(l[:k+1])>0:
print(k,sum(l[:k]),sum(l[:k+1]),l[k+1])
if sum(l[:k+1])>0:
l[k]=l[k]-(sum(l[:k+1])-(-1))
#c=c+abs(sum(l[:k+1])-(-1))
else:
l[k]=l[k]+(1-sum(l[:k+1]))
#c=c+abs(1-sum(l[:k+1]))
print(l[k])
if sum(l)==0:
c=c+1
l[-1]=l[-1]+1
#print(l)
#print(c)
print(sum([abs(l[n]-cp[n]) for n in range(N)])) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long ns[] = new long[n];
for (int i = 0; i < n; i++) {
ns[i] = sc.nextLong();
}
long sum = ns[0];
long ans = 0;
boolean isNegative = ns[0] < 0;
for (int i = 1; i < n; i++) {
sum += ns[i];
if (isNegative && sum < 0) {
ans -= sum - 1;
sum = 1;
}
else if (!isNegative && sum > 0) {
ans += sum + 1;
sum = -1;
}
else if (sum == 0) {
ans++;
}
isNegative = !isNegative;
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
signed main() {
long long n;
std::cin >> n;
std::vector<long long> a(n);
for (long long i = 0; i < (n); i++) std::cin >> a[i];
const long long INF = 1e18;
long long mincount = INF;
for (long long x = 0; x < (2); x++) {
long long sum = a[0];
long long count = 0;
if (x == 1) {
if (sum > 0) {
count += sum + 1;
sum = -1;
} else if (sum < 0) {
count += 1 - sum;
sum = 1;
}
}
if (sum == 0) continue;
for (long long i = 1; i < n; i++) {
if ((sum + a[i]) * sum >= 0) {
if (sum > 0) {
count += a[i] + sum + 1;
sum = -1;
} else if (sum < 0) {
count += 1 - a[i] - sum;
sum = 1;
}
} else
sum += a[i];
}
mincount = std::min(count, mincount);
}
std::cout << (mincount) << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def c(ints):
for i in range(len(ints)):
if ints[i] != 0:
sig = 1 if ints[i] > 0 else -1
total = ints[i]
mov = i + 1
j = i
break
if i == len(ints) - 1:
return i + 1
for i_ in ints[j+1:]:
tmp = total + i_
if tmp == 0:
mov +=1
tmp = -sig
elif sig * tmp > 0:
mov += abs(tmp) + 1
tmp = -sig
sig *= -1
total = tmp
return mov
_ = input()
inp = input()
inp = inp.split(' ')
inp = [int(i_) for i_ in inp]
print(c(inp)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long N;
long long buf;
cin >> N;
vector<long long> aaa = vector<long long>(N + 1, 0);
for (int i = 1; i < N + 1; i++) {
cin >> buf;
aaa.at(i) = buf + aaa.at(i - 1);
}
bool be = true;
bool af;
vector<long long> ans = vector<long long>(2, 0);
long long change = 0;
for (int l = 0; l < 2; l++) {
vector<long long> aa = aaa;
if (l == 0) {
be = true;
} else {
be = false;
}
for (int i = 1; i < N + 1; i++) {
if (ans.at(1) > ans.at(0)) {
break;
}
if (aa.at(i) == 0) {
if (af) {
change = 1 - aa.at(i);
ans.at(l) += 1 - aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = false;
} else {
change = -(aa.at(i) + 1);
ans.at(l) += 1 + aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = true;
}
} else {
if (aa.at(i) < 0) {
af = true;
} else {
af = false;
}
if (af == be) {
if (af) {
change = 1 - aa.at(i);
ans.at(l) += 1 - aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = false;
} else {
change = -(aa.at(i) + 1);
ans.at(l) += 1 + aa.at(i);
for (int j = i; j < N + 1; j++) {
aa.at(j) += change;
}
be = true;
}
} else {
be = af;
}
}
}
}
long long tt = min(ans.at(0), ans.at(1));
std::cout << tt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
l = list(map(int,input().split()))
count = l[0]
ans=0
for i in range(1,n):
if count < 0:
if count + l[i] <= 0:
ans += 1-(count+l[i])
count = 1
else:
count = count + l[i]
else:
if count + l[i] >= 0:
ans += count + l[i] + 1
count = -1
else:
count = count + l[i]
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxx = 1e5 + 7;
long long n, ans = 1ll << 60;
long long a[maxx];
int main() {
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
int flag = 0;
long long sum = 0;
long long res = 0;
for (int i = 1; i <= n; i++) {
sum += a[i];
if (flag == 0) {
if (sum <= 0) {
res = res + 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
res = res + sum + 1;
sum = -1;
}
}
flag ^= 1;
}
ans = min(ans, res);
res = 0;
sum = 0;
flag = 1;
for (int i = 1; i <= n; i++) {
sum += a[i];
if (flag == 1) {
if (sum <= 0) {
res = res + 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
res = res + sum + 1;
sum = -1;
}
}
flag ^= 1;
}
ans = min(ans, res);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
int C[200000];
cin >> N;
for (int i = 0; i < N; i++) {
cin >> C[i];
}
int cnt_a = 0;
int cnt_b = 0;
int sum_a = 0;
int sum_b = 0;
for (int i = 0; i < N; i++) {
sum_a += C[i];
if ((i % 2 == 0) && (sum_a <= 0)) {
cnt_a += 1 - sum_a;
sum_a = 1;
}
if ((i % 2 == 1) && (sum_a >= 0)) {
cnt_a += sum_a + 1;
sum_a = -1;
}
}
for (int i = 0; i < N; i++) {
sum_b += C[i];
if ((i % 2 == 0) && (sum_b >= 0)) {
cnt_b += 1 + sum_b;
sum_b = -1;
}
if ((i % 2 == 1) && (sum_b <= 0)) {
cnt_b += 1 - sum_b;
sum_b = 1;
}
}
cout << min(cnt_a, cnt_b) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
long long int n, a, i, S[2] = {}, C[2] = {};
scanf("%lld", &n);
for (i = 0; i < n; i++) {
scanf("%lld", &a);
S[0] += a;
S[1] += a;
if (i == 0)
;
else {
if (i % 2 == 1) {
if (S[0] <= 0) {
C[0] += -1 * S[0] + 1;
S[0] = 1;
}
if (S[1] >= 0) {
C[1] += S[1] + 1;
S[1] = -1;
}
} else {
if (S[0] >= 0) {
C[0] += S[0] + 1;
S[0] = -1;
}
if (S[1] <= 0) {
C[1] += -1 * S[1] + 1;
S[1] = 1;
}
}
}
}
printf("%lld\n", C[0] < C[1] ? C[0] : C[1]);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | require 'prime'
include Math
def max(a,b); a > b ? a : b end
def min(a,b); a < b ? a : b end
def swap(a,b); a, b = b, a end
def gif; gets.to_i end
def gff; gets.to_f end
def gsf; gets.chomp end
def gi; gets.split.map(&:to_i) end
def gf; gets.split.map(&:to_f) end
def gs; gets.chomp.split.map(&:to_s) end
def gc; gets.chomp.split('') end
def pr(num); num.prime_division end
def digit(num); num.to_s.length end
def array(s,ini=nil); Array.new(s){ini} end
def darray(s1,s2,ini=nil); Array.new(s1){Array.new(s2){ini}} end
def rep(num); num.times{|i|yield(i)} end
def repl(st,en,n=1); st.step(en,n){|i|yield(i)} end
n = gif
a = gi
sum = []
count = 0
sum << a[0]
repl 1,a.size-1 do |i|
sum << a[i]+sum[i-1]
if sum[i-1] > 0
if sum[i] >= 0
count += sum[i]+1
sum[i] = -1
end
else
if sum[i] <= 0
count += 1-sum[i]
sum[i] = 1
end
end
end
puts count |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int count = 0, sum = a[0];
for (int i = 1; i < n; i++) {
if (a[i - 1] * a[i] > 0) {
count += abs(a[i]) + abs(sum) + 1;
a[i] = abs(sum) + 1;
if (a[i - 1] > 0) a[i] *= -1;
sum += a[i];
} else {
if (sum + a[i] == 0) {
if (a[i] > 0)
a[i]++;
else
a[i]--;
count++;
}
sum += a[i];
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100000];
long long c;
long long csum;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
c = 0;
csum = 0;
for (int i = 0; i < n; i++) {
long long bsum = csum;
bsum += a[i];
if (i == 0 && bsum == 0) {
c += 1;
int nonzero;
for (int j = 0; j < n; j++) {
if (a[j] != 0) {
nonzero = j;
break;
}
}
if (nonzero % 2 == 0) {
if (a[nonzero] > 0) {
bsum = 1;
} else {
bsum = -1;
}
} else {
if (a[nonzero] < 0) {
bsum = 1;
} else {
bsum = -1;
}
}
}
if (i != 0 && csum * bsum >= 0) {
if (csum > 0) {
c += (bsum + 1);
bsum -= (bsum + 1);
} else {
c += (-bsum + 1);
bsum += (-bsum + 1);
}
}
csum = bsum;
}
cout << c << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String args[]){
Scanner scanner = new Scanner(System.in);
int count = 0;
int l[] = new int[scanner.nextInt()];
int x[] = new int[l.length];
int y[] = new int[l.length];
for (int i = 0;i < l.length;++i){
l[i] = Integer.valueOf(scanner.next());
y[i] = Integer.valueOf(l[i]);
if(i > 0){
x[i] = l[i] + x[i - 1];
}
else{
x[i] = l[i];
}
}
boolean flag = true;
while (true){
for (int i = 1;i < l.length;++i){
int p = x[i - 1];
int q = x[i];
if(q == 0||(q < 0&&p < 0)||(q > 0&&p > 0)){
flag = false;
int d = (p < 0&&q <= 0) ? 1 : -1;
l[i] += d;
for (int j = i;j < l.length;++j){
x[j] += d;
}
}
}
if(flag){
break;
}
flag = true;
}
for (int i = 1;i < l.length;++i){
count += Math.abs(l[i] - y[i]);
}
System.out.println(count);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MaxN = 1e5;
bool flag;
long long sum, ans;
int n;
int a[MaxN + 5], b[MaxN + 5];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
}
sum = a[1];
if (a[1] < 0)
flag = 1;
else
flag = 0;
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + a[i] <= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = 1 - sum;
ans += (a[i] - t);
sum += a[i];
} else
sum += a[i];
flag = 0;
} else {
if (sum + a[i] >= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = -1 - sum;
ans += (t - a[i]);
sum += a[i];
} else
sum += a[i];
flag = 1;
}
}
sum = a[n];
printf("%lld\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a1 = [a[0]] * n
a2 = [-a[0]] * n
b = a[0]
ans = 0
ans1 = 0
def f(x):
if x == 0:
return 0
else:
return x // abs(x)
for i in range(1, n):
if a1[i - 1] * a[i] >= 0:
a1[i] = -a[i]
else:
a1[i] = a[i]
if b * (b + a[i]) >= 0:
a1[i] = -f(a1[i - 1]) - b
if b + a1[i] == 0:
a1[i] += f(a1[i])
ans += abs(a1[i] - a[i])
b += a1[i]
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
"""
Created on Sat Sep 8 15:51:53 2018
@author: maezawa
"""
def f(n, a0, cnt, sa, sign):
a = a0[:]
if sign == -1:
a[0] = -a[0]
cnt += 2*a[0]
for i in range(n-1):
sa += a[i]
na = -sa//abs(sa)*(abs(sa)+1)
if abs(a[i+1]) > abs(na) and a[i+1]*na > 0:
continue
else:
cnt += abs(na-a[i+1])
a[i+1] = na
return cnt
n = int(input())
a = list(map(int, input().split()))
sa = 0
cnt = 0
cnt0 = f(n, a, cnt, sa, -1)
cnt1 = f(n, a, cnt, sa, 1)
cnt = min([cnt0,cnt1])
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INFF = 0x3f3f3f3f3f3f3f3f;
long long a[1000010];
int n;
long long solve() {
long long sum = 0;
long long oo = a[0];
for (int i = 1; i < n; i++) {
if (oo < 0) {
oo += a[i];
if (oo <= 0) {
sum += 1 - oo;
oo = 1;
}
} else {
oo += a[i];
if (oo >= 0) {
sum += oo + 1;
oo = -1;
}
}
}
return sum;
}
int main() {
while (scanf("%d", &n) != EOF) {
long long sum = 0;
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
if (a[0] == 0) {
a[0] = 1;
long long sum1 = solve();
a[0] = -1;
long long sum2 = solve();
sum = min(sum1, sum2) + 1;
} else {
long long sum0 = solve();
a[0] = 1;
long long sum1 = solve() + abs(a[0] - 1);
a[0] = -1;
long long sum2 = solve() + abs(a[0] + 1);
sum = min(sum0, min(sum1, sum2));
}
printf("%lld\n", sum);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int x = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum < 1) {
x += 1 - sum;
sum = 1;
}
} else {
if (sum > -1) {
x += 1 + sum;
sum = -1;
}
}
}
int y = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum > -1) {
y += (1 + sum);
sum = -1;
}
} else {
if (sum < 1) {
y += (1 - sum);
sum = 1;
}
}
}
cout << min(x, y) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input = sys.stdin.readline
n = int(input())
a = [int(x) for x in input().split()]
A = a[0]
if A != 0:
ans = 0
for i in range(1, n):
nextA = A + a[i]
if (A > 0 and nextA < 0) or (A < 0 and nextA > 0):
A = nextA
elif nextA == 0 and A > 0:
ans += 1
A = -1
elif nextA == 0 and A < 0:
ans += 1
A = 1
elif A > 0:
ans += abs(nextA) + 1
A = -1
else:
ans += abs(nextA) + 1
A = 1
print(ans)
sys.exit()
ans1 = 1
A1 = 1
for i in range(1, n):
nextA = A1 + a[i]
if (A1 > 0 and nextA < 0) or (A1 < 0 and nextA > 0):
A1 = nextA
elif nextA == 0 and A1 > 0:
ans1 += 1
A1 = -1
elif nextA == 0 and A1 < 0:
ans1 += 1
A1 = 1
elif A1 > 0:
ans1 += abs(nextA) + 1
A1 = -1
else:
ans1 += abs(nextA) + 1
A1 = 1
ans2 = 1
A2 = -1
for i in range(1, n):
nextA = A2 + a[i]
if (A2 > 0 and nextA < 0) or (A2 < 0 and nextA > 0):
A2 = nextA
elif nextA == 0 and A2 > 0:
ans2 += 1
A2 = -1
elif nextA == 0 and A2 < 0:
ans2 += 1
A2 = 1
elif A2 > 0:
ans2 += abs(nextA) + 1
A2 = -1
else:
ans2 += abs(nextA) + 1
A2 = 1
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
if a[0] == 0:
flag = 1
a[0] = 1
elif a[0] > 0:
flag = 1
else:
flag = -1
ans = 0
dp = [0 for i in range(n)]
dp[0] = a[0]
for i in range(1, n):
dp[i] = dp[i - 1] + a[i]
if dp[i] == 0:
dp[i] = flag * -1
ans += 1
elif flag == 1 and dp[i] > 0:
ans += abs(-1 - dp[i])
dp[i] = -1
elif flag == -1 and dp[i] < 0:
ans += abs(1 - dp[i])
dp[i] = 1
flag *= -1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long cnt1 = 0, sum;
if (a[0] > 0)
sum = a[0];
else
sum = 1, cnt1 += abs(a[0]) + 1;
for (int i = 1; i < n; i++) {
long long t = sum + a[i];
if (sum > 0 && t > 0) {
if (a[i] >= 0)
cnt1 += a[i] + sum + 1;
else
cnt1 += abs(sum - a[i]) + 1;
sum = -1;
} else if (sum < 0 && t < 0) {
if (a[i] < 0)
cnt1 += a[i] + sum + 1;
else
cnt1 += abs(sum - a[i]) + 1;
sum = 1;
} else if (t == 0) {
cnt1++;
if (sum > 0)
sum = -1;
else
sum = 1;
} else
sum += a[i];
}
long long cnt2 = 0;
if (a[0] < 0)
sum = a[0];
else
sum = -1, cnt2 += abs(a[0]) + 1;
for (int i = 1; i < n; i++) {
long long t = sum + a[i];
if (sum > 0 && t > 0) {
if (a[i] >= 0)
cnt2 += a[i] + sum + 1;
else
cnt2 += abs(sum - a[i]) + 1;
sum = -1;
} else if (sum < 0 && t < 0) {
if (a[i] < 0)
cnt2 += a[i] + sum + 1;
else
cnt2 += abs(sum - a[i]) + 1;
sum = 1;
} else if (t == 0) {
cnt2++;
if (sum > 0)
sum = -1;
else
sum = 1;
} else
sum += a[i];
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int a(int arr[], int n) {
long long int sum = arr[0];
long long int c = 0;
for (int i = 1; i < n; i++) {
if (sum > 0) {
if (sum + arr[i] < 0)
sum = sum + arr[i];
else {
c += (sum + arr[i]) + 1;
sum = -1;
}
} else {
if (sum + arr[i] > 0)
sum = sum + arr[i];
else {
c += abs(sum + arr[i]) + 1;
sum = 1;
}
}
}
return c;
}
int main() {
ios_base ::sync_with_stdio(false);
cin.tie(NULL);
;
int n;
cin >> n;
int arr[n];
for (int i = 0; i < n; i++) cin >> arr[i];
long long int ans1 = a(arr, n);
long long int ans2 = 1 + abs(arr[0]);
arr[0] = -arr[0];
ans2 += a(arr, n);
cout << min(ans1, ans2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int64_t min(int64_t a, int64_t b) {
if (a > b) {
return b;
} else {
return a;
}
}
int64_t solve(vector<int> a, bool next) {
bool nextposi = next;
int ans = 0;
int sum = 0;
for (int i = 0; i < a.size(); i++) {
sum += a.at(i);
if (nextposi != (sum > 0)) {
if (nextposi == 1) {
ans += abs(sum - 1);
sum = 1;
} else {
ans += abs(sum + 1);
sum = -1;
}
}
nextposi = !nextposi;
}
return ans;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
int64_t ans = 0;
{ ans = min(solve(a, 0), solve(a, 1)); }
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ans = 0
sumL = a[0]
for i in range(1,n):
sumL += a[i]
if (sumL-a[i])*(sumL) > 0:
if sumL > 0:
ans += abs(sumL)+1
sumL = -1
else:
ans += abs(sumL)+1
sumL = 1
elif (sumL-a[i])*(sumL) == 0:
ans += 1
if sumL-a[i] < 0:
sumL = 1
else:
sumL = -1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long n;
cin >> n;
long long a[n];
long long sum[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long count = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum[i] = a[i];
} else {
sum[i] = sum[i - 1] + a[i];
if (sum[i] != 0 && sum[i - 1] == abs(sum[i - 1]) &&
sum[i] == abs(sum[i])) {
count += sum[i] + 1;
sum[i] = -1;
} else if (sum[i] != 0 && sum[i - 1] != abs(sum[i - 1]) &&
sum[i] != abs(sum[i])) {
count += 1 - sum[i];
sum[i] = 1;
}
}
if (sum[i] == 0) {
count++;
if (i == 0) {
if (a[i + 1] == abs(a[i + 1]))
sum[i] = -1;
else
sum[i] = 1;
} else {
if (sum[i - 1] == abs(sum[i - 1]))
sum[i] = 1;
else
sum[i] = -1;
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | after [] = 1
after as
| head as == 0 = after (tail as)
| head as < 0 = -1
| head as > 0 = 1
solve [] v acc = acc
solve as v acc
| v == 0 =
if after as < 0
then solve as 1 (1 + acc)
else solve as (-1) (1 + acc)
| v < 0 =
let w = v + (head as) in
if w <= 0
then solve (tail as) 1 (1 - w + acc)
else solve (tail as) w acc
| v > 0 =
let w = v + (head as) in
if w >= 0
then solve (tail as) (-1) (1 + w + acc)
else solve (tail as) w acc
main = do
n <- read <$> getLine :: IO Int
l <- getLine
let as = fmap read (words l) :: [Int] in
putStrLn (show (solve (tail as) (head as) 0))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
int main(void) {
int n;
cin >> n;
long long a[n + 1];
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
long long S1, S2;
long long ans[2];
if (a[1] == 0) {
S1 = 1;
ans[0] = 1;
for (int i = (2); i < (n + 1); ++i) {
S2 = S1 + a[i];
if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) {
S1 = S2;
} else {
ans[0] += llabs(S2) + 1;
if (S1 < 0)
S2 = 1;
else
S2 = -1;
S1 = S2;
}
}
S1 = -1;
ans[1] = 1;
for (int i = (2); i < (n + 1); ++i) {
S2 = S1 + a[i];
if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) {
S1 = S2;
} else {
ans[1] += llabs(S2) + 1;
if (S1 < 0)
S2 = 1;
else
S2 = -1;
S1 = S2;
}
}
ans[0] = min(ans[0], ans[1]);
printf("%lld\n", ans[0]);
} else {
S1 = a[1];
ans[0] = 0;
for (int i = (2); i < (n + 1); ++i) {
S2 = S1 + a[i];
if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) {
S1 = S2;
} else {
ans[0] += llabs(S2) + 1;
if (S1 < 0)
S2 = 1;
else
S2 = -1;
S1 = S2;
}
}
printf("%lld\n", ans[0]);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1000000007;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
bool flag = true;
int sum = 0;
int plus = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
plus += abs(sum) + 1;
sum = 1;
}
if (!flag && sum >= 0) {
plus += abs(sum) + 1;
sum = -1;
}
flag = !flag;
}
flag = false;
sum = 0;
int minus = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
minus += abs(sum) + 1;
sum = 1;
}
if (!flag && sum >= 0) {
minus += abs(sum) + 1;
sum = -1;
}
flag = !flag;
}
cout << min(minus, plus) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(long long n) { return ((n > 0) - (n < 0)); }
int main() {
int n;
scanf("%d", &n);
long long sum = 0;
long long ans = 0;
long long prev_sum = 0;
for (int i = 0; i < n; i++) {
int ra;
scanf("%d", &ra);
long long a = ra;
if (sum == 0) {
if (a == 0) {
a -= sign(prev_sum);
ans++;
}
} else if (sum + a == 0) {
a - sign(sum);
ans++;
} else if (sign(sum + a) + sign(sum) != 0) {
long long tmp = a;
if (sum + a > 0) {
a = a - (sum + a) - 1;
} else if (sum + a < 0) {
a = a - (sum + a) + 1;
} else {
a -= sign(sum);
}
ans += abs(tmp - a);
}
prev_sum = sum;
sum += a;
}
printf("%llu\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws IOException{
Sequence solver = new Sequence();
solver.readInput();
solver.solve();
solver.writeOutput();
}
static class Sequence {
private int n;
private long a[];
private int output;
private Scanner scanner;
public Sequence() {
this.scanner = new Scanner(System.in);
}
public void readInput() {
n = Integer.parseInt(scanner.next());
a = new long[n];
for(int i=0; i<n; i++) {
a[i] = Integer.parseInt(scanner.next());
}
}
private int count(boolean sign) {
int count=0;
long sum=0;
for(int i=0; i<n; i++) {
sum += a[i];
if((i%2==0) == sign) {
// a[i]までの合計を正にするとき
if(sum<=0) {
count += 1-sum;
sum = 1;
}
} else {
// a[i]までの合計を負にするとき
if(0<=sum) {
count += 1+sum;
sum = -1;
}
}
}
return count;
}
public void solve() {
int plus = count(true);
int minus = count(false);
output = Math.min(plus,minus);
}
public void writeOutput() {
System.out.println(output);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
if a[0] != 0:
print(0)
else:
print(a[n+4]) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int calc(vector<int>& a) {
int sum = a[0];
int count = 0;
for (int i = (1); i < (a.size()); ++i) {
if (sum < 0) {
sum += a[i];
if (sum <= 0) {
count += 1 - sum;
sum = 1;
}
continue;
}
sum += a[i];
if (sum >= 0) {
count += sum + 1;
sum = -1;
}
}
return count;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int N;
cin >> N;
vector<int> a(N);
for (auto& ai : a) cin >> ai;
int count = 0;
int sum = a[0];
if (sum == 0) {
a[0] = 1;
auto count1 = calc(a);
a[0] = -1;
auto count2 = calc(a);
count = min(count1, count2);
} else {
auto count1 = calc(a);
a[0] = 1;
auto count2 = calc(a) + abs(1 - sum);
a[0] = -1;
auto count3 = calc(a) + abs(-1 - sum);
count = min(count1, min(count2, count3));
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<tuple>
#include<vector>
#include<cstdlib>
#include<cstdint>
#include<stdio.h>
#include<cmath>
#include<limits>
#include<iomanip>
#include<ctime>
#include<climits>
#include<random>
#include<queue>
#include<map>
using namespace std;
template <class T> using V = vector<T>;
template<class T> inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template<class T> inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
const long long INF = 1LL << 60;
const double pi=acos(-1);
using ll = long long;
using db = long double;
using st = string;
using ch = char;
using vll = V<ll>;
using vpll =V<pair<ll,ll>>;
using vst = V<st>;
using vdb = V<db>;
using vch = V<ch>;
using graph = V<V<int>>;
using pq = priority_queue<ll>;
#define FOR(i,a,b) for(ll i=(a);i<(b);i++)
#define bgn begin()
#define en end()
#define SORT(a) sort((a).bgn,(a).en)
#define REV(a) reverse((a).bgn,(a).en)
#define fi first
#define se second
#define sz size()
#define gcd(a,b) __gcd(a,b)
#define pb(a) push_back(a);
#define ALL(a) (a).begin(),(a).end()
ll Sum(ll n) {
ll m=0;
while(n){
m+=n%10;
n/=10;
}
return m;
}
const int MAX = 510000;
// change
const int MOD = 1000000007;
long long fac[MAX], finv[MAX], inv[MAX];
void Comuse() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
#define comuse Comuse()
ll combi(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
ll perm(int n,int k){
if(n < k) return 0;
if(n < 0 || k < 0) return 0;
return fac[n] * (finv[k] % MOD) % MOD;
}
ll modpow(ll a,ll n,ll mod){
ll ans=1;
while(n>0){
if(n&1){
ans=ans*a%mod;
}
a=a*a%mod;
n>>=1;
}
return ans;
}
ll modinv(ll a, ll mod) {
return modpow(a, mod - 2, mod);
}
ll modcombi(int n,int k,int mod){
ll ans=1;
for(ll i=n;i>n-k;i--){
ans*=i;
ans%=mod;
}
for(ll i=1;i<=k;i++){
ans*=modinv(i,mod);
ans%=mod;
}
return ans;
}
ll lcm(ll a,ll b){
ll n;
n=a/gcd(a,b)*b;
return n;
}
vll div(ll n){
vll ret;
for(ll i=1;i*i<=n;i++){
if(n%i==0){
ret.push_back(i);
if(i*i!=n){
ret.push_back(n/i);
}
}
}
SORT(ret);
return (ret);
}
vector<bool> isprime(MAX+100,true);
void primeuse(){
isprime[0]=false;
isprime[1]=false;
for(int i=2;i<MAX+50;i++){
int up=sqrt(i)+1;
for(int j=2;j<up;j++){
if(i%j==0){
isprime[i]=false;
}
}
}
}
void bf(ll n,string s){
for(ll i=0;i<n;i++){
cout<<s;
}
cout<<"\n";
}
void Solve();
const int MAX_N = 131072;
//segment tree
int NN;
int seg[MAX_N*2-1];
void seguse(){
for(int i=0;i<2*NN-1;i++){
seg[i]=INT_MAX;
}
}
signed main(){
cin.tie(0);
ios::sync_with_stdio(false);
cout<<setprecision(20)<<fixed;
Solve();
}
/****************************************\
| Thank you for viewing my code:) |
| Written by RedSpica a.k.a. RanseMirage |
| Twitter:@asakaakasaka |
\****************************************/
//segtreeの葉の先頭の添え字はN-1
void Solve(){
ll n;
cin>>n;
vll A(n);
vll B(n);
FOR(i,0,n){
cin>>A[i];
}
ll ans=0;
ll all=A[0];
bool can=true;
FOR(i,1,n){
if((all+A[i])*all>=0){
can=false;
break;
}
all+=A[i];
}
if(can){
cout<<"0\n";
return;
}
B[0]=A[0];
if(A[0]==0){
ans++;
if(A[1]>0){
B[0]=-1;
}
else if(A[1]<0){
B[0]=1;
}
}
FOR(i,1,n){
B[i]=B[i-1]+A[i];
if(B[i]*B[i-1]<0){
continue;
}
ans+=abs(B[i])+1;
if(B[i-1]<0){
B[i]=1;
}
else{
B[i]=-1;
}
}
cout<<ans<<"\n";
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long int a[100000];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long int Mp = 0;
long long int Sp = 0;
long long int dif = 0;
for (int i = 0; i < n; i++) {
Sp += a[i];
if (i % 2 == 0) {
if (Sp <= 0) {
dif = 1 - Sp;
Mp += dif;
Sp += dif;
}
} else {
if (Sp >= 0) {
dif = Sp + 1;
Mp += dif;
Sp += -dif;
}
}
}
long long int Mn = 0;
long long int Sn = 0;
long long int di = 0;
for (int i = 0; i < n; i++) {
Sn += a[i];
if (i % 2 == 1) {
if (Sn <= 0) {
di = 1 - Sp;
Mn += di;
Sn += di;
}
} else {
if (Sn >= 0) {
di = Sn + 1;
Mn += di;
Sn += -di;
}
}
}
if (Mp < Mn) {
cout << Mp;
} else {
cout << Mn;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!/usr/bin/env python3
from itertools import accumulate
def main():
n = int(input())
a = list(map(int, input().split()))
a = list(accumulate(a))
ans = 10**18
diff = [None, None]# a[0]<0, a[0]>0それぞれの初期コスト
for i in range(2):
if a[0] * [-1,1][i] < 0:
diff[i] = 0
else:
diff[i] = [-1,1][i] * (abs(a[0])+1)
for d in diff:
ans2 = abs(d)
for i in range(1,n):
p = a[i] + d
q = a[i-1] + d
if p * q >= 0:
tmp = -q//abs(q) - p
ans2 += abs(tmp)
d += tmp
ans = min(ans, ans2)
print(ans)
if __name__ == "__main__":
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long ans, ans2;
long long a[100001];
long long solve(long long sum) {
for (int i = 1; i < n; i++) {
if (sum > 0 && sum + a[i] >= 0) {
ans += sum + a[i] + 1;
sum = -1;
} else if (sum < 0 && sum + a[i] <= 0) {
ans += 1 - sum - a[i];
sum = 1;
} else
sum += a[i];
}
return ans;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] == 0)
ans = min(solve(1), solve(-1)) + 1;
else
ans = solve(a[0]);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long ns[] = new long[n];
for (int i = 0; i < n; i++) {
ns[i] = sc.nextLong();
}
long sum = ns[0];
long ans = 0;
boolean isNegative = ns[0] < 0;
int j;
for (j = 0; j < n -1; j++) {
if (ns[j] != ns[j+1]) {
isNegative = ns[j] < ns[j+1];
break;
}
}
if (ns[0] == 0) {
if (j % 2 != 0)
isNegative = !isNegative;
if (isNegative) {
sum = -1;
}
else
sum = 1;
ans++;
}
for (int i = 1; i < n; i++) {
sum += ns[i];
if (isNegative && sum < 0) {
ans -= sum - 1;
sum = 1;
}
else if (!isNegative && sum > 0) {
ans += sum + 1;
sum = -1;
}
else if (sum == 0) {
ans++;
if (isNegative)
sum = 1;
else
sum = -1;
}
isNegative = !isNegative;
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> v;
long long sum = 0;
long long ans1 = 0;
long long op;
for (int i = 0; i < n; i++) {
long long k;
cin >> k;
sum += k;
if (i == 0)
op = k / max(k, -k);
else {
op *= -1;
if (sum / op <= 0) {
ans1 += max(sum, -sum) + 1;
sum = op;
}
}
v.push_back(k);
}
sum = 0;
long long ans2 = 0;
for (int i = 0; i < n; i++) {
sum += v[i];
if (i == 0) op = v[i] / max(v[i], -v[i]);
op *= -1;
if (sum / op <= 0) {
ans2 += max(sum, -sum) + 1;
sum = op;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
sum=a[0]
op=0
for i in a[1:]:
if(sum*(sum+i)>=0):
op+=abs(sum+i)+1
if(sum<0):sum=1
else:sum=-1
else:sum+=i
print(op) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, count = 0;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
int su = A[0];
for (int i = 1; i < N; i++) {
while (((su > 0) == (su + A[i] > 0)) || su + A[i] == 0) {
if (su + A[i] == 0) {
if (su > 0)
A[i]--;
else
A[i]++;
} else if (su + A[i] > 0) {
A[i]--;
} else {
A[i]++;
}
count++;
}
su += A[i];
cout << su << ' ';
}
cout << endl << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long mod = 1000000007;
int main() {
int n;
cin >> n;
vector<long long> v(n);
for (int i = 0; i < n; ++i) {
cin >> v[i];
}
long long cnt_a = 0;
long long sum_a = 0;
for (int i = 0; i < n; ++i) {
sum_a += v[i];
if (i % 2 == 0) {
if (sum_a >= 0) {
sum_a = -1;
cnt_a += sum_a + 1;
}
} else {
if (sum_a <= 0) {
sum_a = 1;
cnt_a += abs(sum_a) + 1;
}
}
}
long long cnt_b = 0;
long long sum_b = 0;
for (int i = 0; i < n; ++i) {
sum_b += v[i];
if (i % 2 == 0) {
if (sum_b <= 0) {
sum_b = 1;
cnt_b += abs(sum_b) + 1;
}
} else {
if (sum_b >= 0) {
sum_b = 1;
cnt_b += abs(sum_b) + 1;
}
}
}
cout << min(cnt_a, cnt_b) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n), b(n + 1, 0);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int sum = 0;
int ans1 = 0;
for (int i = 0, s = 1; i < n; i++, s *= -1) {
sum += a[i];
if (sum * s <= 0) {
ans1 += abs(sum - s);
sum = s;
}
}
sum = 0;
int ans2 = 0;
for (int i = 0, s = -1; i < n; i++, s *= -1) {
sum += a[i];
if (sum * s <= 0) {
ans2 += abs(sum - s);
sum = s;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 10000000000;
const long long MOD = 1000000007;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
int n;
cin >> n;
long long a[100100];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long ans = INF;
for (int i = 0; i < 2; ++i) {
long long count = 0;
long long su = 0;
for (int j = 0; j < n; ++j) {
su += a[j];
if (i == 0) {
if (j % 2 == 1 && su <= 0) {
count += -su + 1;
su = 1;
} else if (j % 2 == 0 && su >= 0) {
count += su + 1;
su = -1;
}
} else {
if (j % 2 == 1 && su >= 0) {
count += su + 1;
su = -1;
} else if (j % 2 == 0 && su <= 0) {
count += -su + 1;
su = 1;
}
}
}
ans = min(ans, count);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
long long sum = 0;
long long ans = 0;
for (int i = 0; i < n; i++) {
int x;
cin >> x;
if (i == 0) {
sum += x;
continue;
}
long long tmp = sum;
sum += x;
if (tmp * sum < 0) continue;
if (tmp < 0) {
ans += 1 - sum;
sum = 1;
} else {
ans += sum + 1;
sum = -1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const double pie = acos(-1.0);
template <typename T>
T Max(T x, T y) {
return (x > y) ? x : y;
}
template <typename T>
T Min(T x, T y) {
return (x > y) ? y : x;
}
int gcd(int n1, int n2) {
if (n2 != 0)
return gcd(n2, n1 % n2);
else
return n1;
}
template <typename Arg1>
void __f(const char* name, Arg1&& arg1) {
cerr << name << " : " << arg1 << std::endl;
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args) {
const char* comma = strchr(names + 1, ',');
cerr.write(names, comma - names) << " : " << arg1 << " | ";
__f(comma + 1, args...);
}
clock_t time_p = clock();
void rtime() {
time_p = clock() - time_p;
cerr << "Time Taken : " << (float)1000 * (time_p) / CLOCKS_PER_SEC << "\n";
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(NULL);
cout.tie(NULL);
int n;
cin >> n;
int arr[n];
for (int i = 0; i < int(n); i++) cin >> arr[i];
long long int ans = 0;
long long int sum = arr[0];
for (int i = 1; i < n; i++) {
if (sum < 0) {
sum = sum + arr[i];
if (sum > 0)
continue;
else {
ans = ans + abs(sum) + 1;
sum = 1;
}
} else {
sum = sum + arr[i];
if (sum < 0)
continue;
else {
ans = ans + sum + 1;
sum = -1;
}
}
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
scanf("%ld", &n);
vector<long> a(n);
for (long i = 0; i < n; i++) scanf(" %ld", &a[i]);
long sum = a[0];
long j = 0;
for (long i = 1; i < n; i++) {
if (sum * (sum + a[i]) < 0)
sum += a[i];
else {
j += abs(sum + a[i]) + 1;
if (sum < 0)
sum = 1;
else if (sum > 0)
sum = -1;
}
}
printf("%ld\n", sum);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
def judge_pm(a,b):
if a*b<0:
return True
else:
return False
tmp_sum = a[0]
operate_num = 0
for i in range(1, n):
if judge_pm(tmp_sum, tmp_sum+a[i]):
pass
elif tmp_sum<0:
tmp_operate_num = - tmp_sum + 1 - a[i]
operate_num += tmp_operate_num
a[i] += tmp_operate_num
else:
tmp_operate_num = tmp_sum + 1 + a[i]
operate_num += tmp_operate_num
a[i] -= tmp_operate_num
tmp_sum += a[i]
print(operate_num)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long long N;
cin >> N;
long long a[N];
long long sum = 0, cnt = 0;
for (long long i = 0; i < N; i++) {
cin >> a[i];
if (i == 0) {
sum += a[i];
continue;
}
if (sum > 0 && sum + a[i] > 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum < 0 && sum + a[i] < 0) {
cnt += abs(sum + a[i]) + 1;
sum = 1;
} else if (sum + a[i] == 0) {
if (a[i] >= 0) {
sum++;
cnt++;
} else {
sum--;
cnt++;
}
} else
sum += a[i];
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | use std::io::prelude::*;
fn input<T>() -> T
where
T: std::str::FromStr,
{
let stdin = std::io::stdin();
let token: String = stdin
.lock()
.bytes()
.map(|c| c.unwrap() as char)
.skip_while(|c| c.is_whitespace())
.take_while(|c| !c.is_whitespace())
.collect();
token.parse().ok().unwrap()
}
fn main() {
let n: usize = input();
let a: Vec<i64> = (0..n).map(|_| input()).collect();
let sum: Vec<i64> = a
.iter()
.scan(0, |acc, a| {
*acc += a;
Some(*acc)
})
.collect();
let mut x = 0;
let mut ans = 0;
for i in 1..n {
if (sum[i - 1] + x > 0 && sum[i] + x < 0) || (sum[i - 1] + x < 0 && sum[i] + x > 0) {
continue;
}
if sum[i - 1] + x > 0 {
ans += sum[i] + x + 1;
x -= sum[i] + x + 1;
} else {
ans += -sum[i] - x + 1;
x -= sum[i] + x - 1;
}
}
println!("{}", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
fn solve(as_: Vec<i64>) -> i64 {
let mut sum = 0;
let mut count = 0;
if as_[0] == 0 {
for i in 1..as_.len() as i64{
if as_[i as usize].is_negative() {
if i % 2 == 0 {
sum = -1;
count += 1;
break;
} else {
sum = 1;
count += 1;
break;
}
}
if as_[i as usize].is_positive() {
if i % 2 == 0 {
sum = 1;
count += 1;
break;
} else {
sum = -1;
count += 1;
break;
}
}
}
} else {
sum = as_[0];
}
if sum == 0 {
sum += 1;
count += 1;
}
for i in 1..as_.len() {
let cur = as_[i];
if sum > 0 {
if cur + sum < 0 {
sum += cur;
} else {
let exp = -1 - sum;
count += cur - exp;
sum = -1;
}
} else if sum < 0 {
if cur + sum > 0 {
sum += cur;
} else {
let exp = 1 - sum;
count += exp - cur;
sum = 1;
}
}
}
count
}
fn main() {
input!{
n: usize,
as_: [i64; n],
}
println!("{}", solve(as_));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void afify() {
ios::sync_with_stdio(0);
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
}
const long long oo = (long long)1e13;
const double EPS = 1e-4;
vector<long long> v;
int arr[100005];
int main() {
afify();
int n;
cin >> n;
v.resize(n);
for (int i = int(0); i < n; i++) cin >> v[i];
long long sum = v[0], res = 0, cnt = 0;
arr[0] = sum;
for (int i = int(1); i < n; i++) {
if (sum + v[i] == 0) {
v[i]++;
res++;
}
if (i + 1 < n && sum + v[i] == sum + v[i] + v[i + 1]) {
v[i + 1]++;
res++;
}
sum += v[i];
arr[i] = sum;
cnt++;
if (i == n - 1) {
i = 0;
sum = v[0];
}
if (cnt == 100000) {
break;
}
}
for (int i = int(0); i < n - 1; i++) {
if (arr[i] == arr[i + 1]) {
res++;
arr[i + 1]++;
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> an(n);
for (int i = 0; i < n; ++i) {
cin >> an[i];
}
int cnt_min = INT_MAX;
for (int j = 0; j < 2; ++j) {
int sign = j == 0 ? -1 : 1;
int accum = an[0];
int cnt = 0;
if (accum * sign <= 0) {
auto x = sign - accum;
accum += x;
cnt += abs(x);
}
for (int i = 1; i < n; ++i) {
auto new_accum = accum + an[i];
if (new_accum * accum >= 0) {
int x = -sign - new_accum;
new_accum += x;
cnt += abs(x);
}
int new_sign = new_accum > 0 ? 1 : -1;
accum = new_accum;
assert(new_sign == -sign);
sign = new_sign;
}
if (cnt < cnt_min) {
cout << endl;
cnt_min = cnt;
}
}
cout << cnt_min << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct fastio {
fastio() {
ios::sync_with_stdio(false);
cout << setprecision(10) << fixed;
cin.tie(0);
}
};
fastio _fast_io;
const int N = 1e5 + 5;
int n;
int a[N];
long long int add[N];
long long int sum, ans;
int main() {
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
sum = a[0];
for (int i = 1; i < n; ++i) {
long long int nsum = sum + a[i];
if (sum < 0) {
if (nsum <= 0) {
ans += 1 - nsum;
nsum = 1;
}
} else {
if (nsum >= 0) {
ans += nsum + 1;
nsum = -1;
}
}
sum = nsum;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
time = list(map(int, input().split()))
ans = 0
sumTime = time[0]
'''
if (time[0] < 0):
before = False
else:
before = True
'''
for i in range(1, n):
temp = time[i] + sumTime
check = temp * sumTime
if (check < 0):
sumTime = temp
else:
dif = abs(temp) + 1
ans += dif
if (sumTime < 0):
sumTime = 1
else:
sumTime = -1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long linf = 1001002003004005006ll;
const int inf = 1001001001;
const int mod = 1000000007;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long tot = 0;
long long res1 = 0;
{
for (int i = 0; i < (n); ++i) {
if (i % 2 == 0) {
if (tot + a[i] > 0)
tot += a[i];
else {
res1 += 1 - tot - a[i];
tot = 1;
}
} else {
if (tot + a[i] < 0)
tot += a[i];
else {
res1 += 1 + tot + a[i];
tot = -1;
}
}
}
}
tot = 0;
long long res2 = 0;
{
for (int i = 0; i < (n); ++i) {
if (i % 2 != 0) {
if (tot + a[i] > 0)
tot += a[i];
else {
res2 += 1 - tot - a[i];
tot = 1;
}
} else {
if (tot + a[i] < 0)
tot += a[i];
else {
res2 += 1 + tot + a[i];
tot = -1;
}
}
}
}
int ans = min(res1, res2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int signs[2] = {-1, 1};
long long cnt[2] = {0, 0};
for (int i = 0; i < 2; i++) {
long long sum = 0;
int sign = signs[i];
for (int j = 0; j < n; j++) {
sum += a[j];
if (sum == 0) {
sum += sign;
cnt[i]++;
} else if (sum * sign < 0) {
sum = sum + sum * (-1) + sign;
}
sign *= -1;
}
}
cout << (cnt[0] < cnt[1] ? cnt[0] : cnt[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
prv_total =0
cnt = 0
for i in range(n-1):
total = prv_total + a[i]
nxt_total = total+a[i+1]
if total > 0 and nxt_total >= 0:
a[i+1] -= nxt_total+1
cnt += nxt_total+1
nxt_total -= nxt_total+1
elif total < 0 and nxt_total <=0:
a[i+1] += abs(nxt_total)+1
cnt += abs(nxt_total)+1
nxt_total += abs(nxt_total)+1
prv_total = total
total = prv_total + a[-1]
if total == 0:
cnt += 1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int,input().split()))
a = [A,A]
res = [0,0]
sum = 0
for check in range(2):
sum = 0
if check:
if a[check][0] > 0:
temp = -1 - a[check][0]
a[check][0] += temp
res[check] += temp * -1
elif a[check][0] < 0:
temp = 1 - a[check][0]
a[check][0] += temp
res[check] += temp
if a[check][0] == 0:
if check == 0:
a[check][0] += 1
else:
a[check][0] -= 1
res[check] += 1
for i in range(n-1):
sum += a[check][i]
if sum * (sum + a[check][i+1]) >= 0:
if sum > 0:
temp = -1 - sum - a[check][i+1]
a[check][i+1] += temp
res[check] += temp * -1
else:
temp = 1 - sum - a[check][i+1]
a[check][i+1] += temp
res[check] += temp
print(min(res[0],res[1])) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(NULL);
ios::sync_with_stdio(false);
int n;
cin >> n;
long long a[n];
long long sum = 0;
long long count = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
if (i == 0) {
sum = a[i];
if ((sum == 0) && (i < n - 1)) {
if (a[i + 1] < 0) {
sum = 1;
} else {
sum = -1;
}
count += 1;
}
} else {
if (sum < 0) {
if (sum + a[i] <= 0) {
count += 1 - (sum + a[i]);
sum = 1;
} else {
sum = sum + a[i];
}
} else if (sum > 0) {
if (sum + a[i] >= 0) {
count += sum + a[i] - (-1);
sum = -1;
} else {
sum = sum + a[i];
}
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x7fffffff;
const int maxn = 1e5 + 10;
int a[maxn];
int n;
long long cal() {
long long t = a[0], ans = 0;
for (int i = 1; i < n; ++i) {
if (t < 0) {
t += a[i];
if (t <= 0) {
ans += 1 - t;
t = 1;
}
continue;
}
t += a[i];
if (t >= 0) {
ans += t + 1;
t = -1;
}
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 0; i < (n); ++i) {
scanf("%d", &a[i]);
}
long long ans1 = 0, ans2 = 0, ans3 = 0, ans = 0;
int t = a[0];
if (t == 0) {
a[0] = 1;
++ans1;
ans1 = cal();
a[0] = -1;
++ans2;
ans2 = cal();
ans = min(ans1, ans2);
} else {
ans1 = cal();
a[0] = 1;
ans2 += abs(1 - t);
ans2 = cal();
a[0] = -1;
ans3 += abs(-1 - t);
ans3 = cal();
ans = min(ans1, min(ans2, ans3));
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
vector<long long> as(n + 1);
vector<long long> asb(n + 1);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
as[0] = a[0];
for (int i = 0; i < n - 1; i++) {
as[i + 1] = as[i] + a[i + 1];
}
long long ans = 99999999999999;
long long op = 0;
long long bal = 0;
long long diff = 0;
for (int i = 0; i < n; i++) {
diff = as[i] + bal;
if (i % 2 == 0 && diff >= 0) {
op += diff + 1;
bal -= diff + 1;
} else if (i % 2 == 1 && diff <= 0) {
op += diff + 1;
bal += diff + 1;
}
}
if (op > 0) {
ans = min(ans, op);
}
for (int i = 0; i < n; i++) {
diff = as[i] + bal;
if (i % 2 == 1 && diff >= 0) {
op += diff + 1;
bal -= diff + 1;
} else if (i % 2 == 0 && diff <= 0) {
op += diff + 1;
bal += diff + 1;
}
}
if (op > 0) {
ans = min(ans, op);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool dif(int a, int b) {
if (a < 0 && b > 0) return true;
if (a > 0 && b < 0) return true;
return false;
}
int odd(vector<int> v, vector<int> &w) {
int ans = 0;
if (v[0] <= 0)
while (++v[0] != 1)
;
int sum = v[0];
ans = abs(v[0] - w[0]);
for (int i = 1; i < v.size(); i++) {
if (dif(sum, sum + v[i])) {
sum += v[i];
} else {
if (sum > 0) {
v[i] = -1 - sum;
} else if (sum < 0) {
v[i] = 1 - sum;
}
sum += v[i];
}
ans += abs(v[i] - w[i]);
}
return ans;
}
int even(vector<int> v, vector<int> &w) {
int ans = 0;
if (v[0] >= 0)
while (--v[0] != -1)
;
int sum = v[0];
ans = abs(v[0] - w[0]);
for (int i = 1; i < v.size(); i++) {
if (dif(sum, sum + v[i])) {
sum += v[i];
} else {
if (sum > 0) {
v[i] = -1 - sum;
} else if (sum < 0) {
v[i] = 1 - sum;
}
sum += v[i];
}
ans += abs(v[i] - w[i]);
}
return ans;
}
int main() {
int n;
cin >> n;
vector<int> v(n), cpy;
for (int &i : v) cin >> i;
cpy = v;
int ans = min(odd(v, cpy), even(v, cpy));
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; ++i) cin >> a.at(i);
long long cnt, tmp = 0, sum = a.at(0), x;
for (int j = 0; j < 2; j++) {
cnt = 0;
if (j == 1) {
cnt = abs(a.at(0)) + 1;
if (a.at(0) > 0)
a.at(0) = -1;
else
a.at(0) = 1;
sum = a.at(0);
}
if (a.at(0) >= 0)
for (int i = 1; i < n; i++) {
x = 0;
if (i % 2 == 1) {
if (a.at(i) >= 0 || sum + a.at(i) >= 0) x = -1 - a.at(i) - sum;
} else {
if (a.at(i) < 0 || sum + a.at(i) <= 0) x = 1 - a.at(i) - sum;
}
cnt += abs(x);
sum += a.at(i) + x;
}
else {
for (int i = 1; i < n; i++) {
x = 0;
if (i % 2 == 1) {
if (a.at(i) <= 0 || sum + a.at(i) <= 0) x = 1 - a.at(i) - sum;
} else {
if (a.at(i) > 0 || sum + a.at(i) >= 0) x = -1 - a.at(i) - sum;
}
cnt += abs(x);
sum += a.at(i) + x;
}
}
if (j == 0) tmp = cnt;
if (tmp > cnt) tmp = cnt;
}
cout << tmp << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[100010];
long long sum = 0, cnt = 0, sum2 = 0, cnt2 = 0;
for (int i = 0; i < n; i++) cin >> a[i];
bool nextpo = false, nextpo2 = false;
bool nextne = false, nextne2 = false;
sum = a[0];
sum2 = a[0];
if (sum < 0) {
nextpo = true;
} else if (sum > 0) {
nextne = true;
}
if (sum2 < 0) {
nextne2 = true;
cnt2 += abs(sum2) + 1;
sum2 += abs(sum2) + 1;
} else if (sum2 > 0) {
nextpo2 = true;
cnt2 += sum2 + 1;
sum2 -= sum2 + 1;
}
for (int i = 1; i < n; i++) {
if (nextpo) {
nextpo = false;
nextne = true;
sum += a[i];
if (sum == 0) {
sum++;
cnt++;
} else if (sum < 0) {
cnt += abs(sum) + 1;
sum += abs(sum) + 1;
}
} else if (nextne) {
nextpo = true;
nextne = false;
sum += a[i];
if (sum == 0) {
sum--;
cnt++;
} else if (sum > 0) {
cnt += sum + 1;
sum -= sum + 1;
}
}
}
for (int i = 1; i < n; i++) {
if (nextpo2) {
nextpo2 = false;
nextne2 = true;
sum2 += a[i];
if (sum2 == 0) {
sum2++;
cnt2++;
} else if (sum2 < 0) {
cnt2 += abs(sum2) + 1;
sum2 += abs(sum2) + 1;
}
} else if (nextne2) {
nextpo2 = true;
nextne2 = false;
sum2 += a[i];
if (sum2 == 0) {
sum2--;
cnt2++;
} else if (sum2 > 0) {
cnt2 += sum2 + 1;
sum2 -= sum2 + 1;
}
}
}
cout << min(cnt, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve(vector<int> vec) {
long long int n = vec.size();
long long int sum = vec[0] + vec[1];
int ans = 0;
for (long long int i = 2; i < n; i++) {
if (sum > 0) {
if (sum + vec[i] >= 0) {
ans += 1 + (sum + vec[i]);
sum = -1;
} else {
sum += vec[i];
}
} else if (sum <= 0) {
if (sum + vec[i] <= 0) {
ans += 1 - (sum + vec[i]);
sum = 1;
} else {
sum += vec[i];
}
}
}
return ans;
}
int main() {
int n, Ans;
cin >> n;
vector<int> as;
for (int i = 0; i < n; i++) {
int t;
cin >> t;
as.push_back(t);
}
vector<int> as1, as2;
copy(as.begin(), as.end(), back_inserter(as1));
copy(as.begin(), as.end(), back_inserter(as2));
as1[0] = 1;
as2[0] = -1;
Ans = min(solve(as),
min(solve(as1) + abs(1 - as[0]), solve(as2) + abs(-1 - as[0])));
cout << Ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a[100005];
int main() {
int n, sum, num = 0;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sum = a[0];
bool flag;
if (a[0] < 0)
flag = true;
else
flag = false;
for (int i = 1; i < n; i++) {
sum += a[i];
if (flag) {
flag = !flag;
if (sum > 0)
continue;
else if (sum == 0)
num += 1, sum = 1;
else
num += 1 - sum, sum = 1;
} else {
flag = !flag;
if (sum < 0)
continue;
else if (sum == 0)
num += 1, sum = -1;
else
num += sum + 1, sum = -1;
}
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename T,
template <typename ELEM, typename ALLOC = std::allocator<ELEM> >
class Container>
std::ostream& operator<<(std::ostream& o, const Container<T>& container) {
typename Container<T>::const_iterator beg = container.begin();
while (beg != container.end()) o << " " << *beg++;
return o;
}
int n, ans;
long long int d;
vector<long long int> v, a;
int main(int argc, char const* argv[]) {
ios_base::sync_with_stdio(false);
cin >> n;
v.push_back(0);
a.push_back(0);
for (int i = 1; i <= n; i++) {
cin >> d;
a.push_back(d);
v.push_back(v[i - 1] + d);
}
a.push_back(0);
a.push_back(0);
if (a[1] != 0) {
int ans = 0;
for (int i = 2; i <= n; i++) {
if (v[i - 1] > 0 && (v[i - 1] + a[i]) >= 0) {
ans = ans + v[i - 1] + a[i] + 1;
v[i] = -1;
} else if (v[i - 1] < 0 && (v[i - 1] + a[i]) <= 0) {
ans = ans + 1 - (v[i - 1] + a[i]);
v[i] = 1;
} else if (i < n && v[i - 1] > 0 && (v[i - 1] + a[i] < 0) &&
(v[i - 1] + a[i] + a[i + 1] < 0)) {
ans = ans - (v[i - 1] + a[i]) - 1;
v[i] = -1;
} else if (i < n && v[i - 1] < 0 && (v[i - 1] + a[i] > 0) &&
(v[i - 1] + a[i] + a[i + 1] > 0)) {
ans = ans + v[i - 1] + a[i] - 1;
v[i] = 1;
} else
v[i] = v[i - 1] + a[i];
}
cout << ans;
} else {
int ans1 = 0;
int ans2 = 0;
a[1] = 1;
for (int i = 2; i <= n; i++) {
if (v[i - 1] > 0 && (v[i - 1] + a[i]) >= 0) {
ans1 = ans1 + v[i - 1] + a[i] + 1;
v[i] = -1;
} else if (v[i - 1] < 0 && (v[i - 1] + a[i]) <= 0) {
ans1 = ans1 + 1 - (v[i - 1] + a[i]);
v[i] = 1;
} else if (i < n && v[i - 1] > 0 && (v[i - 1] + a[i] < 0) &&
(v[i - 1] + a[i] + a[i + 1] < 0)) {
ans1 = ans1 - (v[i - 1] + a[i]) - 1;
v[i] = -1;
} else if (i < n && v[i - 1] < 0 && (v[i - 1] + a[i] > 0) &&
(v[i - 1] + a[i] + a[i + 1] > 0)) {
ans1 = ans1 + v[i - 1] + a[i] - 1;
v[i] = 1;
} else
v[i] = v[i - 1] + a[i];
}
a[1] = -1;
for (int i = 2; i <= n; i++) {
if (v[i - 1] > 0 && (v[i - 1] + a[i]) >= 0) {
ans2 = ans2 + v[i - 1] + a[i] + 1;
v[i] = -1;
} else if (v[i - 1] < 0 && (v[i - 1] + a[i]) <= 0) {
ans2 = ans2 + 1 - (v[i - 1] + a[i]);
v[i] = 1;
} else if (i < n && v[i - 1] > 0 && (v[i - 1] + a[i] < 0) &&
(v[i - 1] + a[i] + a[i + 1] < 0)) {
ans2 = ans2 - (v[i - 1] + a[i]) - 1;
v[i] = -1;
} else if (i < n && v[i - 1] < 0 && (v[i - 1] + a[i] > 0) &&
(v[i - 1] + a[i] + a[i + 1] > 0)) {
ans2 = ans2 + v[i - 1] + a[i] - 1;
v[i] = 1;
} else
v[i] = v[i - 1] + a[i];
}
cout << min(ans1, ans2);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import std.stdio, std.conv, std.algorithm, std.range, std.array, std.string, std.uni, std.bigint, std.math;
void main() {
auto n = readln.chomp.to!uint;
auto an = readln.split.to!(int[]);
auto sum = 0;
auto cnt = 0;
foreach (a; an) {
if (sum != 0 && (sum + a) * sum >= 0) {
auto na = -sum - sgn(sum);
cnt += abs(na - a);
a = na;
}
sum += a;
}
writeln(cnt);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
unsigned int manipulation(vector<int>& a) {
unsigned int m = 0;
if (a[0] == 0) {
if (a[1] <= 0) {
a[0] = 1;
m++;
} else {
a[0] = -1;
m++;
}
}
int sum = a[0];
bool is_sum_above_0 = sum > 0;
for (unsigned int ii = 1; ii < a.size(); ++ii) {
sum += a[ii];
if (is_sum_above_0) {
while (sum >= 0) {
m++;
sum--;
}
} else {
while (sum <= 0) {
m++;
sum++;
}
}
is_sum_above_0 = !is_sum_above_0;
}
return m;
}
int main() {
unsigned int n;
cin >> n;
vector<int> a(n);
for (unsigned int ii = 0; ii < n; ++ii) cin >> a[ii];
cout << manipulation(a) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
s_pos = 0
s_neg = 0
# start neg val
cum = 0
for i in range(n):
cum += a[i]
if i % 2 == 0 and cum >= 0:
s_neg += abs(cum) + 1
cum = -1
if i % 2 != 0 and cum <= 0:
s_neg += abs(cum) + 1
cum = 1
# start pos val
cum = 0
for i in range(n):
cum += a[i]
if i % 2 == 0 and cum <= 0:
s_pos += abs(cum) + 1
cum = -1
if i % 2 != 0 and cum >= 0:
s_pos += abs(cum) + 1
cum = 1
ans = min(s_pos, s_neg)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(i) for i in input().split()]
c = 10**15
for i in range(2):
A = [-a for a in A]
if A[0] != 0:
ans = 0
S = A[0]
f = A[0]//abs(A[0])
else:
ans = 1
S = 1
f = 1
for a in A[1:]:
S += a
if S == 0:
ans += 1
S = -f
else:
if S/abs(S) != f*(-1):
ans += abs(S)+1
S = -f
f *= -1
c = min(ans, c)
print(c)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count = 0
sum_ = 0
for i in range(n):
if sum_ * (sum_+a[i]) <0 or i == 0:
sum_ += a[i]
elif sum_ > 0:
count += sum_+a[i]+1
a[i] = -sum_-1
sum_ += a[i]
elif sum_ < 0:
count += abs(sum_+a[i])+1
a[i] = -sum_-1
sum_ += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n), dp1(n), dp2(n);
for (long long i = (0); i < (long long)(n); i++) cin >> a[i];
long long ans1 = 0, ans2 = 0;
if (a[0] > 0) {
ans2 = a[0] - (-1);
dp1[0] = a[0];
dp2[0] = -1;
} else if (a[0] == 0) {
ans1 = 1;
ans2 = 1;
dp1[0] = 1;
dp1[0] = -1;
} else {
ans1 = 1 - a[0];
dp1[0] = 1;
dp2[0] = a[0];
}
for (long long i = (1); i < (long long)(n); i++) {
if (dp1[i - 1] < 0) {
if (dp1[i - 1] + a[i] > 0) {
dp1[i] = dp1[i - 1] + a[i];
} else if (dp1[i - 1] + a[i] == 0) {
ans1 += 1;
dp1[i] = 1;
} else {
dp1[i] = 1;
ans1 += 1 - (dp1[i - 1] + a[i]);
}
} else {
if (dp1[i - 1] + a[i] < 0) {
dp1[i] = dp1[i - 1] + a[i];
} else if (dp1[i - 1] + a[i] == 0) {
ans1 += 1;
dp1[i] = -1;
} else {
dp1[i] = -1;
ans1 += (dp1[i - 1] + a[i]) - (-1);
}
}
if (dp2[i - 1] < 0) {
if (dp2[i - 1] + a[i] > 0) {
dp2[i] = dp2[i - 1] + a[i];
} else if (dp2[i - 1] + a[i] == 0) {
ans2 += 1;
dp2[i] = 1;
} else {
dp2[i] = 1;
ans2 += 1 - (dp2[i - 1] + a[i]);
}
} else {
if (dp2[i - 1] + a[i] < 0) {
dp2[i] = dp2[i - 1] + a[i];
} else if (dp2[i - 1] + a[i] == 0) {
ans2 += 1;
dp2[i] = -1;
} else {
dp2[i] = -1;
ans2 += (dp2[i - 1] + a[i]) - (-1);
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long ans = 0;
long long ans2 = 0;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long dp[10010];
dp[0] = 0;
bool flag = true;
for (int i = 0; i < n; i++) {
if (flag == true && dp[i] + a[i] >= 0) {
dp[i + 1] = -1;
ans += abs(a[i] - (-1 - dp[i]));
} else if (flag == false && dp[i] + a[i] <= 0) {
dp[i + 1] = 1;
ans += abs(a[i] - (1 - dp[i]));
} else {
dp[i + 1] = dp[i] + a[i];
}
flag = !flag;
}
flag = false;
for (int i = 0; i < n; i++) {
if (flag == true && dp[i] + a[i] >= 0) {
dp[i + 1] = -1;
ans2 += abs(a[i] - (-1 - dp[i]));
} else if (flag == false && dp[i] + a[i] <= 0) {
dp[i + 1] = 1;
ans2 += abs(a[i] - (1 - dp[i]));
} else {
dp[i + 1] = dp[i] + a[i];
}
flag = !flag;
}
cout << min(ans, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
n = int(input())
A = list(map(int, input().split()))
res = 0
sums = []
for i in range(n):
sums.append(sum(A[:i]) + A[i])
if i == 0:
if A[i] == 0:
index = -1
for num in A:
if num != 0:
index = A.index(num)
break
if index == -1:
res += 1
A[i] = 1
sums[i] = 1
elif (index % 2 and A[index] > 0) or (index % 2 == 0 and A[index] < 0):
A[i] = -1
sums[i] = -1
res += 1
else:
A[i] = 1
sums[i] = 1
res += 1
else:
if sums[i] == 0:
if sums[i-1] > 0:
sums[i] -= 1
A[i] -= 1
res += 1
else:
sums[i] += 1
A[i] += 1
res += 1
elif (sums[i-1] > 0) and (sums[i] > 0):
res += sums[i] + 1
A[i] -= sums[i] + 1
sums[i] -= sums[i] + 1
elif (sums[i-1] < 0) and (sums[i] < 0):
res += abs(sums[i]) + 1
A[i] += abs(sums[i]) + 1
sums[i] += abs(sums[i]) + 1
print(res)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = (int)(0); i < (int)(n); i++) cin >> a[i];
int ans = 0;
int sum = a[0];
for (int i = (int)(0); i < (int)(n - 1); i++) {
if (sum < 0) {
if (a[i + 1] < abs(sum)) {
ans += abs(sum) - a[i + 1] + 1;
a[i + 1] += abs(sum) - a[i + 1] + 1;
}
sum += a[i + 1];
} else if (sum > 0) {
if (a[i + 1] > -sum) {
ans += a[i + 1] + sum + 1;
a[i + 1] -= a[i + 1] + sum + 1;
}
sum += a[i + 1];
}
cout << ans << endl;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n, a;
int ans;
int bef;
int main() {
cin >> n;
cin >> a;
bef = a;
for (int i = 1; i < n; i++) {
cin >> a;
if (bef > 0) {
if (bef + a < 0) {
bef += a;
continue;
}
ans += bef + a + 1;
bef = -1;
} else {
if (bef + a > 0) {
bef += a;
continue;
}
ans -= bef + a - 1;
bef = 1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
def calc(A):
ans = 0
s = A[0]
if s > 0:
flag = 1
elif s < 0:
flag = -1
for i in range(1,N):
s += A[i]
if flag == 1 and s >= 0:
ans += s + 1
s = -1
elif flag == -1 and s <= 0:
ans += 1 - s
s = 1
flag *= -1
return ans
if A[0] != 0:
print(calc(A))
else:
print(min(calc([1]+A[1:]),calc([-1]+A[1:]))+1)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define ll long long;
LL ans1,ans2,sum;
int n;
int a[100010];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sum=0;
for(int i=1,s=1;i<=n;i++,s*=-1){
sum+=a[i];
if(sum*s<=0) ans1+=abs(sum-s),sum=s;
}
sum=0;
for(int i=1,s=-1;i<=n;i++,s*=-1){
sum+=a[i];
if(sum*s<=0) ans2+=abs(sum-s),sum=s;
}
printf("%lld\n",min(ans1,ans2));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int checkSign(int A) { return (int)(A > 0) - (int)(A < 0); }
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) {
cin >> a.at(i);
}
int res = 0;
if (a.at(0) == 0) {
a.at(0)++;
res++;
}
long long sum = a.at(0);
int sign = -a.at(0) / abs(a.at(0));
for (int i = 1; i < N; i++) {
if (checkSign(sum + a.at(i)) == 0 ||
checkSign(sum + a.at(i)) == checkSign(sum)) {
int tmp = sign * (abs(sum) + 1);
res += abs(tmp - a.at(i));
a.at(i) = tmp;
}
sum += a.at(i);
sign *= -1;
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[1000000];
int min(int a, int b) {
int t = a;
if (b <= t) t = b;
return t;
}
int main() {
int n;
cin >> n;
for (int t = 0; t < n; t++) cin >> a[t];
int sum = 0;
long long x = 0;
for (int t = 0; t < n; t++) {
sum += a[t];
if (t % 2 == 1 && sum >= 0) {
long long s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 0 && sum <= 0) {
long s = 1 - sum;
sum = 1;
x += s;
}
}
int positive_x = x;
x = 0;
sum = 0;
for (int t = 0; t < n; t++) {
sum += a[t];
if (t % 2 == 0 && sum >= 0) {
int s = sum + 1;
sum = -1;
x += s;
} else if (t % 2 == 1 && sum <= 0) {
int s = 1 - sum;
sum = 1;
x += s;
}
}
int negative_x = x;
int result = min(positive_x, negative_x);
cout << result << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from collections import Counter
N = int(input())
A = list(map(int, input().split())) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
vector<int> v;
int res = 0;
int sign = 0;
int n, t;
int sum = 0;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> t;
v.push_back(t);
}
sign = 0;
for (int i = 0; i < v.size(); i++) {
sum += v[i];
if (sign == 0) {
if (sum >= 0) {
res += (sum + 1);
sum = -1;
}
} else {
if (sum <= 0) {
res += (abs(sum) + 1);
sum = 1;
}
}
sign = 1 - sign;
}
t = 0;
sign = 1;
sum = 0;
for (int i = 0; i < v.size(); i++) {
sum += v[i];
if (sign == 0) {
if (sum >= 0) {
t += (sum + 1);
sum = -1;
}
} else {
if (sum <= 0) {
t += (abs(sum) + 1);
sum = 1;
}
}
sign = 1 - sign;
}
res = min(res, t);
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
b=[]
for i in range(n):
b.append(a[i])
ct1=0
if a[0]<=0:
a[0]=1
ct1+=1-a[0]
x=a[0]
for i in range(1,n):
y=x+a[i]
if i%2==1:
if y>=0:
ct1+=y+1
a[i]=-x-1
else:
if y<=0:
ct1+=1-y
a[i]=-x+1
x+=a[i]
ct2=0
if b[0]>=0:
b[0]=-1
ct2+=b[0]-1
z=b[0]
for i in range(1,n):
w=z+b[i]
if i%2==0:
if w>=0:
ct2+=w+1
b[i]=-z-1
else:
if w<=0:
ct2+=1-w
b[i]=-z+1
z+=b[i]
print(min(ct1,ct2)) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.