Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> data(N);
for (int i = 0; i < N; i++) cin >> data[i];
int count = 0;
int ans = data[0];
int saisyo;
for (int i = 1; i < N; i++) {
ans += data[i];
if (i % 2 == 0) {
while (ans <= 0) {
ans++;
count++;
}
} else {
while (ans >= 0) {
ans--;
count++;
}
}
}
saisyo = count;
count = 0;
ans = data[0];
while (ans >= 0) {
ans--;
count++;
}
for (int i = 0; i < N; i++) {
ans += data[i];
if (i % 2 != 0) {
while (ans <= 0) {
ans++;
count++;
}
} else {
while (ans >= 0) {
ans--;
count++;
}
}
}
saisyo = min(saisyo, count);
cout << saisyo << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = (long long)1e9;
const long long MOD = (long long)1e9 + 7;
const long long MAX = 510000;
vector<int> dx = {1, 0, -1, 0}, dy = {0, 1, 0, -1};
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
int main() {
long long N, sum, ans = 0;
cin >> N;
long long A[N], B[N];
bool f = false;
for (long long i = 0; i < N; i++) {
cin >> A[i];
B[i] = A[i];
}
if (A[0] == 0) {
A[0] = 1;
B[0] = -1;
f = true;
}
sum = A[0];
for (long long i = 1; i < N; i++) {
if (sum * (sum + A[i]) >= 0) {
ans += abs(A[i] - sum);
if (sum > 0)
sum = -1;
else
sum = 1;
} else
sum += A[i];
}
if (f) {
long long sumb = B[0], ansb = 0;
for (long long i = 1; i < N; i++) {
if (sumb * (sumb + B[i]) >= 0) {
ans += abs(B[i] - sumb);
if (sumb > 0)
sumb = -1;
else
sumb = 1;
} else
sumb += B[i];
}
ans = min(ans, ansb);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using P = pair<int, int>;
using ll = long long;
int main() {
int n;
cin >> n;
int a[114514];
int cnt1 = 0, sum1 = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
if (i % 2 == 0) {
if (sum1 == 0) {
if (a[i] > 0) {
sum1 += a[i];
} else if (a[i] < 0) {
cnt1 += 1 - a[i];
sum1 += 1;
} else {
sum1 += 1;
cnt1 += 1;
}
} else {
int plus = 1 - sum1;
if (a[i] >= plus) {
sum1 += a[i];
} else {
cnt1 += plus - a[i];
sum1 = 1;
}
}
} else {
if (sum1 == 0) {
if (a[i] < 0) {
sum1 += a[i];
} else if (a[i] > 0) {
cnt1 += a[i] + 1;
sum1--;
} else {
sum1--;
cnt1 += 1;
}
} else {
int minus = -1 - sum1;
if (a[i] <= minus) {
sum1 += a[i];
} else {
cnt1 += a[i] - minus;
sum1 = -1;
}
}
}
}
int ans1 = cnt1;
cnt1 = 0;
sum1 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (sum1 == 0) {
if (a[i] < 0) {
sum1 += a[i];
} else if (a[i] > 0) {
cnt1 += a[i] + 1;
sum1--;
} else {
sum1--;
cnt1 += 1;
}
} else {
int minus = -1 - sum1;
if (a[i] <= minus) {
sum1 += a[i];
} else {
cnt1 += a[i] - minus;
sum1 = -1;
}
}
} else {
if (sum1 == 0) {
if (a[i] > 0) {
sum1 += a[i];
} else if (a[i] < 0) {
cnt1 += 1 - a[i];
sum1 += 1;
} else {
sum1 += 1;
cnt1 += 1;
}
} else {
int plus = 1 - sum1;
if (a[i] >= plus) {
sum1 += a[i];
} else {
cnt1 += plus - a[i];
sum1 = 1;
}
}
}
}
cout << min(ans1, cnt1) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long sum = 0, num = 0;
for (int i = 0; i < n; i++) {
long long a;
cin >> a;
if (sum > 0 && sum + a >= 0) {
num += sum + a + 1;
a -= sum + a + 1;
} else if (sum < 0 && sum + a <= 0) {
num += abs(sum + a) + 1;
a += abs(sum + a) + 1;
}
sum += a;
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a[100000];
int getTotal(int n, int dir) {
int total{}, sum{};
for (int i{0}; i < n; ++i) {
int diff{};
if (dir > 0) {
while (sum + a[i] + diff <= 0) {
++diff;
++total;
}
} else {
while (sum + a[i] + diff >= 0) {
--diff;
++total;
}
}
sum += a[i] + diff;
dir *= -1;
}
return total;
}
int main() {
int n;
scanf("%d", &n);
for (int i{0}; i < n; ++i) scanf("%d", &a[i]);
int try1 = getTotal(n, 1);
int try2 = getTotal(n, -1);
printf("%d\n", ((try1) < (try2) ? (try1) : (try2)));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
use std::cmp::min;
fn main() {
let n: usize = read();
let a: Vec<i64> = read_vec();
//start with plus
let mut cnt1: i64 = 0;
let mut sum = a[0];
if sum < 0 {
cnt1 += 1 - sum;
sum = 1;
}
for i in 1..n {
if sum > 0 {
if a[i] + sum < 0 {
sum += a[i];
} else {
cnt1 += a[i] + sum + 1;
sum = -1;
}
} else {
if a[i] + sum > 0 {
sum += a[i];
} else {
cnt1 += 1 - sum - a[i];
sum = 1;
}
}
}
//start with minus
let mut cnt2: i64 = 0;
let mut sum = a[0];
if sum > 0 {
cnt2 += 1 + sum;
sum = -1;
}
for i in 1..n {
if sum > 0 {
if a[i] + sum < 0 {
sum += a[i];
} else {
cnt2 += a[i] + sum + 1;
sum = -1;
}
} else {
if a[i] + sum > 0 {
sum += a[i];
} else {
cnt2 += 1 - sum - a[i];
sum = 1;
}
}
}
println!("{}", min(cnt1, cnt2));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<string>
#include<algorithm>
#include<vector>
#include<iomanip>
#include<math.h>
#include<complex>
#include<queue>
#include<deque>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<functional>
#include<assert.h>
#include<numeric>
using namespace std;
#define REP(i,m,n) for(int i=(int)(m) ; i < (int) (n) ; ++i )
#define rep(i,n) REP(i,0,n)
#define pint pair<int,int>
#define pll pair<ll,ll>
using ll = long long;
const int inf=1e9+7;
const ll longinf=1LL<<60 ;
const ll mod=1e9+7 ;
int main(){
int n;
cin >> n;
ll a[n];
rep(i,n)cin >> a[i];
ll sum[n]={},sum2[n]={};
ll temp=0,temp2=0;
rep(i,n){
if(i==0){
sum[i]=a[i];
if(a[i]<=0){
temp+=-a[i]+1;
sum[i]=1;
}
}
else{
sum[i]=a[i]+sum[i-1];
if(sum[i]*sum[i-1]>=0){
if(i%2==0){
temp+=-sum[i]+1;
sum[i]=1;
}else{
temp+=sum[i]+1;
sum[i]=-1;
}
}
}
}
rep(i,n){
if(i==0){
sum2[i]=a[i];
if(sum2[i]>=0){
temp2+=a[i]+1;
sum2[i]=-1;
}
}
else{
sum2[i]=a[i]+sum2[i-1];
if(sum2[i]*sum2[i-1]>=0){
if(i%2==0){
temp2+=sum2[i]+1;
sum2[i]=-1;
}else{
temp2+=-sum2[i]+1;
sum[i]=1;
}
}
}
}
// cout << temp << ' ' << temp2 << endl;
cout << min(temp,temp2) << endl;
return 0;} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> x(n), y, z, cnt(4, 0);
for (int i = 0; i < n; i++) cin >> x[i];
auto f1 = [&n](vector<int>& a) {
int tmp_sum;
int cnt = 0;
if (a[0] > 0) {
tmp_sum = a[0];
} else {
tmp_sum = 1;
cnt += abs(a[0]) + 1;
}
for (int i = 1; i < n; i++) {
tmp_sum += a[i];
if (i % 2 == 1 && tmp_sum >= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum -= (abs(tmp_sum) + 1);
}
if (i % 2 == 0 && tmp_sum <= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum += (abs(tmp_sum) + 1);
}
}
return cnt;
};
auto f2 = [&n](vector<int>& a) {
int tmp_sum;
int cnt = 0;
if (a[0] < 0) {
tmp_sum = a[0];
} else {
tmp_sum = -1;
cnt += abs(a[0]) + 1;
}
for (int i = 1; i < n; i++) {
tmp_sum += a[i];
if (i % 2 == 0 && tmp_sum >= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum -= (abs(tmp_sum) + 1);
}
if (i % 2 == 1 && tmp_sum <= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum += (abs(tmp_sum) + 1);
}
}
return cnt;
};
if (x[0] == 0) {
y = x;
z = x;
y[0] = 1;
z[0] = -1;
cnt[0] = f1(y);
cnt[1] = f2(y);
cnt[2] = f1(z);
cnt[3] = f2(z);
auto s = min_element(cnt.begin(), cnt.end());
cout << *s + 1 << endl;
} else {
cnt[0] = f1(x);
cnt[1] = f2(x);
auto s = min_element(cnt.begin(), cnt.begin() + 2);
cout << *s << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve(int *a, int n) {
int count = 0;
int calc = 0;
int state, pstate;
if (a[0] < 0) state = -1;
if (a[0] > 0) state = 1;
for (int i = 1; i < n; i++) {
pstate = state;
int tmp = a[i] + calc;
if (tmp < 0) state = -1;
if (tmp == 0) state = 0;
if (tmp > 0) state = 1;
if (pstate == state) {
if (state == -1) {
count += 1 - tmp;
calc += 1 - tmp;
state = 1;
} else if (state == 1) {
count += tmp + 1;
calc += -1 - tmp;
state = -1;
}
}
if (state == 0) {
if (pstate == -1) {
count += 1;
calc += 1;
state = 1;
} else if (pstate == 1) {
count += 1;
calc += -1;
state = -1;
}
}
}
return count;
}
int main() {
int n;
int ans;
int *a;
cin >> n;
a = new int[n];
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 1; i < n; i++) a[i] = a[i - 1] + a[i];
if (a[0] == 0) {
int bs, cs;
int *b = new int[n];
int *c = new int[n];
for (int i = 0; i < n; i++) b[i] = a[i] + 1;
for (int i = 0; i < n; i++) c[i] = a[i] - 1;
bs = solve(b, n);
cs = solve(c, n);
ans = bs < cs ? bs : cs;
} else
ans = solve(a, n);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n = 0, suma = 0, sumb = 0;
cin >> n;
long long counta = 0, countb = 0;
int* a = new int[n];
int* b = new int[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
}
if (a[0] >= 0) {
counta += (a[0] + 1);
a[0] = -1;
}
suma += a[0];
for (int i = 1; i < n; i++) {
if (suma <= -1) {
if (suma + a[i] <= 0) {
counta += (1 - suma - a[i]);
suma = 1;
}
} else if (suma >= 1) {
if (suma + a[i] >= 0) {
counta += (suma + a[i] + 1);
suma = -1;
}
}
}
if (b[0] <= 0) {
countb += (1 - b[0]);
b[0] = 1;
}
sumb += b[0];
for (int i = 1; i < n; i++) {
if (sumb <= -1) {
if (sumb + b[i] <= 0) {
countb += (1 - sumb - b[i]);
sumb = 1;
}
} else if (sumb >= 1) {
if (sumb + b[i] >= 0) {
countb += (sumb + b[i] + 1);
sumb = -1;
}
}
}
if (counta < countb)
cout << counta;
else
cout << countb;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const long long LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
bool diff(long long a, long long b) {
if (a < 0 && b > 0) return true;
if (a > 0 && b < 0) return true;
return false;
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> a(n);
for (int i = (0); i < (n); ++i) cin >> a[i];
long long ans = 0, sum = a[0];
for (int i = (1); i < (n); ++i) {
if (diff(sum + a[i], sum)) {
sum += a[i];
} else {
long long need = (sum > 0 ? -1 : 1);
long long now = need - sum;
ans += abs(now - a[i]);
sum = need;
}
}
long long tmp = abs(a[0]) + 1;
sum = (a[0] > 0 ? -1 : 1);
for (int i = (1); i < (n); ++i) {
if (diff(sum + a[i], sum)) {
sum += a[i];
} else {
long long need = (sum > 0 ? -1 : 1);
long long now = need - sum;
tmp += abs(now - a[i]);
sum = need;
}
}
cout << min(ans, tmp) << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
private static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int n = sc.nextInt();
long sum = sc.nextLong();
long ret = 0;
long tmp = 0;
for (int i = 1;i < n;i++) {
long a = sc.nextInt();
tmp = sum;
sum += a;
if ((tmp<0&&sum>=0)||(tmp>=0&&sum<0)) continue;
long l = Math.abs(sum)+1;
if (sum>=0) {
sum -= l;
} else {
sum += l;
}
ret += l;
}
if (sum==0) ret++;
System.out.println(ret);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int resp = 0;
long long s = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (s + a[i] > 0) {
s += a[i];
} else {
resp += 1 - s - a[i];
s = 1;
}
} else {
if (s + a[i] < 0) {
s += a[i];
} else {
resp += s + a[i] + 1;
s = -1;
}
}
}
int resm = 0;
s = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if (s + a[i] > 0) {
s += a[i];
} else {
resm += 1 - s - a[i];
s = 1;
}
} else {
if (s + a[i] < 0) {
s += a[i];
} else {
resm += s + a[i] + 1;
s = -1;
}
}
}
int res = min(resp, resm);
cout << res << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def sequence(N: int, A: list) -> int:
s = A[0]
op = 0
for a in A[1:]:
if s < 0:
if s + a > 0:
# OK
s = s + a
continue
else:
op += 1 - (s + a)
s = 1
else: # s > 0
if s + a < 0:
# OK
s = s + a
continue
else:
op += (s + a) - (-1)
s = -1
return op
if __name__ == "__main__":
N = int(input())
A = [int(s) for s in input().split()]
ans = sequence(N, A)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
#waszero=0
#cnt=0
#total=a[0]
def calc(n,a,total):
cnt=0
for i in range(1,n):
if total*(total+a[i])<0:
total+=a[i]
else:
if total>0:
shouldbe=-total-1
cnt+=abs(shouldbe-a[i])
total=-1
elif total<0:
shouldbe=-total+1
cnt+=abs(shouldbe-a[i])
total=1
else:
pass
return cnt
cntlsit=[]
cntlsit.append(calc(n,a,a[0]))
cntlsit.append(calc(n,a,1))
cntlsit.append(calc(n,a,-1))
print(min(cntlsit)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define set0(a) memset ((a), 0 , sizeof(a))
#define set1(a) memset((a),-1,sizeof (a))
#define pi pair<int, int>
#define ps pair<string, string>
#define pl pair<long, long>
#define pll pair<long long, long long>
#define vll vector<long long>
#define vl vector<long>
#define vi vector<int>
#define vs vector<string>
#define vps vector< ps >
#define vpi vector< pi >
#define vpl vector< pl >
#define vpll vector< pll >
#define flash ios_base::sync_with_stdio(false); cin.tie(NULL);
#define tc(t,T) for(long long t=0;t<T;t++)
#define rep(i,s,n,d) for(long long i=s;i<n;i=i+d)
bool sortbysec(const pll &a,
const pll &b)
{
return (a.second < b.second);
}
void func(void)
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
}
int main(){
ll n;
cin>>n;
ll a[n];
rep(i,0,n,1){
cin>>a[i];
}
ll count1=0;
if(a[0]==0){
if(a[1]>=0){
a[0]=-1;
}
else a[0]=1;
count1++;
}
ll sum[n]={};
sum[0]=a[0];
rep(i,1,n,1){
sum[i]=sum[i-1]+a[i];
}
ll sum1=a[0];
rep(i,1,n,1){
ll d=0;
ll dif=0;
if(sum1>0){
if(a[i]+sum1>=0){
d=-1;
dif=abs(a[i]+sum1-d);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
else{
if(a[i]+sum1<=0){
d=1;
dif=abs(a[i]+sum1-d);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
}
cout<<count1<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # https://atcoder.jp/contests/abc059/tasks/arc072_a
# C - Sequence
import copy
N = int(input().split()[0])
a_list = list(map(int, input().split()))
c = 0
w_list = copy.copy(a_list)
c_list = []
for mode in [0, 1]:
s_list = []
w_list = copy.copy(a_list)
c = 0
for i in range(N):
s = sum(w_list[:i+1])
if i % 2 == mode and s < 0:
w_list[i] += abs(s)
c += abs(s)
elif i % 2 != mode and s >= 0:
w_list[i] -= abs(s+1)
c += abs(s+1)
s = sum(w_list[:i+1])
if s == 0:
a = w_list[i]
w_list[i] = a + 1 if a >= 0 else a - 1
c += 1
s = sum(w_list[:i+1])
s_list.append(s)
c_list.append(c)
ans = min(c_list)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
def read_input():
n = int(input())
alist = list(map(int, input().split()))
return n, alist
def get_sign(x):
if x > 0:
return 1
elif x < 0:
return -1
return 0
def submit():
n, alist = read_input()
# pattern 1
s = alist[0]
sign = get_sign(s)
edit = 0
if sign != 1:
edit += 1 - s
s = 1
sign = get_sign(s)
for a in alist[1:]:
temp = s + a
temp_sign = get_sign(temp)
if sign == temp_sign:
edit += temp_sign * temp
temp -= temp
if temp == 0:
edit += 1
temp -= sign
s = temp
sign = get_sign(s)
edit1 = edit
# pattern 2
s = alist[0]
sign = get_sign(s)
edit = 0
if sign != -1:
edit += s + 1
s = -1
get_sign(s)
for a in alist[1:]:
temp = s + a
temp_sign = get_sign(temp)
if sign == temp_sign:
edit += temp_sign * temp
temp -= temp
if temp == 0:
edit += 1
temp -= sign
s = temp
sign = get_sign(s)
edit2 = edit
print(min(edit1, edit2))
if __name__ == '__main__':
submit() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
long long cnt = 0;
long long wa = 0;
long long wa2 = 0;
wa = a.at(0);
for (int i = 0; i < n - 1;) {
wa2 = wa + a.at(i + 1);
if (wa > 0) {
if (wa2 < 0) {
i++;
wa = wa2;
} else if (wa2 > 0) {
cnt++;
a.at(i + 1) -= 1;
} else if (wa2 == 0) {
cnt++;
a.at(i + 1) -= 1;
}
} else if (wa < 0) {
if (wa2 < 0) {
cnt++;
a.at(i + 1) += 1;
} else if (wa2 > 0) {
i++;
wa = wa2;
} else if (wa2 == 0) {
cnt++;
a.at(i + 1) += 1;
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
x=list(map(int,input().split()))
k=x[0]
s=""
if x[0]>0:
s="True"
else:
s="Folus"
l=0
for i in range(1,n):
k+=x[i]
if k>=0 and s=="True":
l+=k+1
k=-1
s="Folus"
elif k<=0 and s=="Folus":
l+=k*(-1)+1
k=1
s="True"
else:
if s=="True":
s="Folus"
else:
s="True"
print(l) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, i, j, ans = 0, sum = 0, flag;
cin >> n;
vector<long long> a(n);
for (i = 0; i < n; i++) {
cin >> a[i];
}
sum += a[0];
if (sum == 0) {
sum++;
for (i = 0; i < n; i++) {
if (a[i] != 0) {
if (i % 2 == 0) {
sum = 1;
} else {
sum = -1;
}
break;
}
}
}
for (i = 1; i < n; i++) {
if (sum > 0) {
flag = 1;
} else {
flag = 0;
}
if (flag == 1) {
sum += a[i];
if (sum >= 0) {
ans += (sum + 1);
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long cnt1 = 0, cnt2 = 0;
long long sumv = 0;
for (int i = 0; i < n; i++) {
sumv += a[i];
if (i % 2 == 1 && sumv < 0) {
sumv = 1;
cnt1 += abs(sumv) + 1;
} else if (i % 2 == 1 && sumv > 0) {
sumv = -1;
cnt1 += abs(sumv) + 1;
}
}
sumv = 0;
for (int i = 0; i < n; i++) {
sumv += a[i];
if (i % 2 == 0 && sumv > 0) {
sumv = -1;
cnt2 += abs(sumv) + 1;
} else if (i % 2 == 1 && sumv < 0) {
sumv = 1;
cnt2 += abs(sumv) + 1;
}
}
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int A[100005], N;
long long ch(int init) {
int t = A[0];
long long res = init;
for (int i = 1; i < N; i++) {
if (t * (t + A[i]) >= 0) {
if (t > 0) {
res += abs(t + 1 + A[i]);
t = -1;
} else {
res += abs(t) + 1 - A[i];
t = 1;
}
} else {
t += A[i];
}
}
return res;
}
int main() {
scanf("%d", &N);
for (int i = 0; i < N; i++) scanf("%d", &A[i]);
long long t = ch(0), a, p;
if (A[0] == 0) t = 15;
a = -A[1];
a > 0 ? a++ : a--;
p = abs(a - A[0]);
t = min(t, ch(p));
printf("%lld\n", t);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <class T, class S>
void cmin(T &a, const S &b) {
if (a > b) a = b;
}
template <class T, class S>
void cmax(T &a, const S &b) {
if (a < b) a = b;
}
using namespace std;
signed main() {
long long int n;
cin >> n;
vector<long long int> v(n), sum(n);
for (long long int i = 0; i < n; i++) cin >> v[i];
long long int ans = 0;
bool used = true, flag = false;
for (long long int i = 0; i < n; i++) {
if (i)
sum[i] = v[i] + sum[i - 1];
else
sum[i] = v[i];
if (used) {
if (sum[i] > 0) {
flag = true;
used = false;
continue;
}
if (sum[i] < 0) {
flag = false;
used = false;
continue;
}
ans++;
continue;
}
if (flag) {
if (sum[i] < 0) {
flag = false;
continue;
}
if (sum[i] >= 0) {
flag = false;
ans += abs(sum[i]) + 1;
sum[i] = -1;
continue;
}
} else {
if (sum[i] > 0) {
flag = true;
continue;
}
if (sum[i] <= 0) {
flag = true;
ans += abs(sum[i]) + 1;
sum[i] = 1;
continue;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
int n;
int a, sum[10000000], cnt[2] = {}, b;
scanf("%d", &n);
scanf("%ld", &a);
sum[0] = a;
for (int i = 1; i < n; i++) {
scanf("%ld", &a);
sum[i] = sum[i - 1] + a;
}
b = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum[i] + b >= 0) {
cnt[0] += sum[i] + b + 1;
b -= sum[i] + b + 1;
} else if (i % 2 == 1 && sum[i] + b <= 0) {
cnt[0] -= sum[i] + b;
cnt[0]++;
b += 1 - (sum[i] + b);
}
}
b = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum[i] + b <= 0) {
cnt[1] -= sum[i] + b;
cnt[1]++;
b += 1 - (sum[i] + b);
} else if (i % 2 == 1 && sum[i] + b >= 0) {
cnt[1] += sum[i] + b + 1;
b -= sum[i] + b + 1;
}
}
if (cnt[0] < cnt[1])
printf("%ld\n", cnt[0]);
else
printf("%ld\n", cnt[1]);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using Graph = vector<vector<long long>>;
const long long mod = 1000000007;
long long digitsum(long long n, long long b) {
if (b < 2) return -1;
if (n < b) return n;
return digitsum(n / b, b) + n % b;
}
long long mpow(long long a, long long x);
long long m_inv(long long n);
vector<long long> split(long long n, long long a);
string xal_number(long long n, long long x);
long long gcd(long long x, long long y) { return y ? gcd(y, x % y) : x; }
long long lcm(long long x, long long y) { return x * y / gcd(x, y); }
class Factorial {
private:
vector<long long> fac;
public:
Factorial(long long N) {
fac.push_back(1);
for (long long i = (0); i < (N); ++i) fac.push_back(fac[i] * (i + 1) % mod);
}
long long fact(long long a) { return fac[a]; }
long long ifac(long long a) { return m_inv(fac[a]); }
long long cmb(long long n, long long r);
};
struct UnionFind {
vector<long long> par;
UnionFind(long long n = 1) { init(n); }
void init(long long n = 1) {
par.resize(n);
for (long long i = (0); i < (n); ++i) par[i] = -1;
}
long long root(long long x) {
if (par[x] < 0)
return x;
else
return par[x] = root(par[x]);
}
long long size(long long x) { return -par[root(x)]; }
bool issame(long long x, long long y) { return root(x) == root(y); }
bool connect(long long x, long long y);
};
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = (0); i < (n); ++i) cin >> a[i];
long long ans = 0;
vector<long long> S(n + 1);
S[0] = 0;
for (long long i = (0); i < (n); ++i) {
S[i + 1] = S[i] + a[i];
if (S[i + 1] * S[i] > 0) {
ans += abs(S[i + 1]) + 1;
S[i + 1] = (S[i] > 0) ? -1 : 1;
}
if (S[i + 1] == 0) {
ans += 1;
S[i + 1] += (S[i] > 0) ? -1 : 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long int> v(n);
for (int i = 0; (i) < (n); i++) {
cin >> v[i];
}
long long int result_a = 0, result_b = abs(v[0]) + 1;
vector<long long int> tmp(n);
tmp[0] = v[0];
for (int i = (1); (i) < (n); (i)++) {
tmp[i] = v[i] + tmp[i - 1];
if (tmp[i] * tmp[i - 1] >= 0) {
result_a += abs(tmp[i]) + 1;
tmp[i] = ((tmp[i - 1] > 0) ? -1 : 1);
}
}
tmp[0] = v[0] > 0 ? -1 : 1;
for (int i = (1); (i) < (n); (i)++) {
tmp[i] = v[i] + tmp[i - 1];
if (tmp[i] * tmp[i - 1] >= 0) {
result_b += abs(tmp[i]) + 1;
tmp[i] = ((tmp[i - 1] > 0) ? -1 : 1);
}
}
cout << min(result_a, result_b) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N;
long long a[100001];
int main() {
cin >> N;
for (int i = 0; i < N; i++) {
cin >> a[i];
}
long long ans = 0;
long long ans2 = 0;
long long R = a[0];
if (a[0] <= 0) {
ans = 1 - a[0];
R = 1;
}
for (int i = 1; i < N; i++) {
if (R < 0) {
R += a[i];
if (R >= 0) {
ans += R + 1;
R = -1;
}
} else {
R += a[i];
if (R <= 0) {
ans += 1 - R;
R = 1;
}
}
}
R = a[0];
if (a[0] >= 0) {
ans2 = a[0] - 1;
R = -1;
}
for (int i = 1; i < N; i++) {
if (R < 0) {
R += a[i];
if (R <= 0) {
ans2 += 1 - R;
R = 1;
}
} else {
R += a[i];
if (R >= 0) {
ans2 += R + 1;
R = -1;
}
}
}
long long ans3 = min(ans, ans2);
cout << ans3 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count = 0
sum_ = 0
for i in range(n):
if sum_ * (sum_+a[i]) >=0 and i!=0:
if sum_ > 0:
count += sum_+a[i]+1
a[i] = -sum_-1
elif sum_ < 0:
count += -sum_-a[i]+1
a[i] = -sum_+1
sum_ += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
def sol(S):
ret = 0
B = [S]
for a in A[1:]:
b = a
if S * (S + b) > 0:
b = (abs(S) + 1) * (1 if S < 0 else -1)
if S + b == 0:
b = b - 1 if b < 0 else b + 1
ret += abs(b - a)
S += b
B.append(b)
return ret
ans = min(
sol(A[0]),
sol(-A[0] // abs(A[0])) + abs(A[0]) + 1 if A[0] != 0 else 10**18
)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class C {
public:
template <typename T>
int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
void solve(std::istream& in, std::ostream& out) {
ios::sync_with_stdio(false);
int n, prevSign;
in >> n;
vector<int> a(n), p(n);
for (int i = 0; i < n; ++i) {
in >> a[i];
}
int steps = 0;
int steps2 = 0;
p[0] = a[0];
if (a[0] != 0) {
for (int i = 0; i < n - 1; ++i) {
p[i + 1] = p[i] + a[i + 1];
if (sgn(p[i]) == -1) {
if (p[i + 1] == 0) {
++p[i + 1];
++steps;
} else if (sgn(p[i + 1]) == -1) {
steps += -p[i + 1] + 1;
p[i + 1] = 1;
}
} else if (sgn(p[i]) == 1) {
if (p[i + 1] == 0) {
--p[i + 1];
++steps;
} else if (sgn(p[i + 1]) == 1) {
steps += p[i + 1] + 1;
p[i + 1] = -1;
}
}
}
} else {
p[0] = 1;
for (int i = 0; i < n - 1; ++i) {
p[i + 1] = p[i] + a[i + 1];
if (sgn(p[i]) == -1) {
if (p[i + 1] == 0) {
++p[i + 1];
++steps;
} else if (sgn(p[i + 1]) == -1) {
steps += -p[i + 1] + 1;
p[i + 1] = 1;
}
} else if (sgn(p[i]) == 1) {
if (p[i + 1] == 0) {
--p[i + 1];
++steps;
} else if (sgn(p[i + 1]) == 1) {
steps += p[i + 1] + 1;
p[i + 1] = -1;
}
}
}
p[0] = -1;
for (int i = 0; i < n - 1; ++i) {
p[i + 1] = p[i] + a[i + 1];
if (sgn(p[i]) == -1) {
if (p[i + 1] == 0) {
++p[i + 1];
++steps2;
} else if (sgn(p[i + 1]) == -1) {
steps2 += -p[i + 1] + 1;
p[i + 1] = 1;
}
} else if (sgn(p[i]) == 1) {
if (p[i + 1] == 0) {
--p[i + 1];
++steps2;
} else if (sgn(p[i + 1]) == 1) {
steps2 += p[i + 1] + 1;
p[i + 1] = -1;
}
}
}
steps = min(steps, steps2);
}
out << steps << endl;
}
};
int main() {
C solver;
std::istream& in(std::cin);
std::ostream& out(std::cout);
solver.solve(in, out);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using LL = long long int;
using LD = long double;
using pii = pair<int, int>;
using pll = pair<LL, LL>;
using pdd = pair<double, double>;
using vi = vector<int>;
using vvi = vector<vi>;
using vvvi = vector<vvi>;
using vl = vector<LL>;
using vvl = vector<vl>;
using vvvl = vector<vvl>;
using vd = vector<double>;
using vvd = vector<vd>;
using vs = vector<string>;
using vb = vector<bool>;
using vvb = vector<vb>;
const int INF = (1 << 30) - 1;
const LL INF64 = ((LL)1 << 62) - 1;
const double PI = 3.1415926535897932384626433832795;
const int dy[] = {0, 1, 0, -1};
const int dx[] = {1, 0, -1, 0};
int gcd(int x, int y) { return y ? gcd(y, x % y) : x; }
LL gcd(LL x, LL y) { return y ? gcd(y, x % y) : x; }
int n;
vi a;
int solve(int num) {
int res = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum * num <= 0) {
res += abs(sum - num);
sum = num;
}
num *= -1;
}
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
a.resize(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
cout << min(solve(1), solve(-1)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long change_num(long long p[], int N) {
long long res = 0;
long long sum = p[0];
for (int i = 1; i < N; i++) {
if ((sum < 0 && (sum + p[i]) > 0) || (sum > 0 && (sum + p[i]) < 0)) {
sum += p[i];
continue;
}
if (sum > 0 && sum + p[i] >= 0) {
sum += p[i];
while (sum >= 0) {
res++;
sum--;
}
continue;
}
if (sum < 0 && sum + p[i] <= 0) {
sum += p[i];
while (sum <= 0) {
res++;
sum++;
}
continue;
}
}
return res;
}
int main() {
int N;
cin >> N;
long long a[N];
for (int i = 0; i < N; i++) cin >> a[i];
long long ans = 0;
long long sum = a[0];
if (a[0] == 0) {
long long plus_ans = 0;
a[0] = 1;
plus_ans = change_num(a, N) + 1;
long long minus_ans = 0;
a[0] = -1;
minus_ans = change_num(a, N) + 1;
if (plus_ans < minus_ans) {
ans = plus_ans;
} else {
ans = minus_ans;
}
cout << ans << endl;
return 0;
} else {
ans = change_num(a, N);
cout << ans << endl;
return 0;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
int res1 = 0;
int sum1 = 0;
for (int i = 0; i < n; ++i) {
sum1 += a[i];
if (i % 2 == 0 && sum1 <= 0) {
res1 += (1 - sum1), sum1 = 1;
}
if (i % 2 != 0 && sum1 >= 0) {
res1 += (sum1 + 1), sum1 = -1;
}
}
int res2 = 0;
int sum2 = 0;
for (int i = 0; i < n; ++i) {
sum2 += a[i];
if (i % 2 == 0 && sum2 >= 0) {
res2 += (sum2 + 1), sum2 = -1;
}
if (i % 2 != 0 && sum2 <= 0) {
res2 += (1 - sum2), sum2 = 1;
}
}
cout << min(res1, res2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ans = 0;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) {
cin >> v[i];
}
long sum = v[0];
for (int i = 1; i < n; i++) {
if (sum < 0) {
if (v[i] + sum <= 0) {
ans += abs(1 - (v[i] + sum));
sum = 1;
} else {
sum += v[i];
}
} else {
if (v[i] + sum >= 0) {
ans += abs(-1 - v[i] - sum);
sum = -1;
} else {
sum += v[i];
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 999999999;
const int MOD = (int)1e9 + 7;
const int EPS = 1e-9;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n, a;
cin >> n;
vector<int> A;
for (int i = (0); i < (n); ++i) {
cin >> a;
A.push_back(a);
}
int mn = INF;
for (int j = (0); j < (2); ++j) {
int ans = 0;
int sum = A[0];
if (j == 1) {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else {
ans += (-sum + 1);
sum = 1;
}
}
for (int i = (1); i < (n); ++i) {
a = A[i];
if (sum > 0) {
sum += a;
if (sum >= 0) {
ans += (sum + 1);
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
ans += (-sum + 1);
sum = 1;
}
}
}
mn = min(mn, ans);
}
cout << mn << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int N[100000], E[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> N[i];
}
for (int i = 0; i < n; i++) {
E[i] = N[i];
}
int sumA = 0, sumB = 0;
int ansA = 0, ansB = 0;
for (int i = 0; i < n; i++) {
sumA = sumA + N[i];
if (i % 2 == 0 && sumA <= 0) {
N[i] = N[i] - sumA + 1;
ansA = ansA - sumA + 1;
sumA = 1;
}
if (i % 2 == 1 && sumA >= 0) {
N[i] = N[i] - sumA - 1;
ansA = ansA + sumA + 1;
sumA = -1;
}
}
for (int i = 0; i < n; i++) {
sumB = sumB + E[i];
if (i % 2 == 0 && sumB >= 0) {
E[i] = E[i] - sumB - 1;
ansB = ansB + sumB + 1;
sumB = -1;
}
if (i % 2 == 1 && sumB <= 0) {
E[i] = E[i] - sumB + 1;
ansB = ansB - sumB + 1;
sumB = 1;
}
}
int ans;
ans = min(ansA, ansB);
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | // -*- coding:utf-8-unix -*-
#![allow(dead_code)]
#![allow(unused_imports)]
use std::cmp::*;
use std::collections::*;
use std::fs::File;
use std::io::prelude::*;
use std::io::*;
use std::mem;
use std::str;
use std::vec;
const INF: i64 = 1223372036854775807;
const MEM_SIZE: usize = 202020;
const MOD: i64 = 1000000007;
// const MOD: i64 = 998244353;
use std::cmp::*;
use std::collections::*;
use std::io::stdin;
use std::io::stdout;
use std::io::Write;
#[allow(dead_code)]
fn read<T: std::str::FromStr>() -> T {
let mut s = String::new();
std::io::stdin().read_line(&mut s).ok();
s.trim().parse().ok().unwrap()
}
#[allow(dead_code)]
fn readi() -> (i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
iter.next().unwrap().parse::<i64>().unwrap()
}
#[allow(dead_code)]
fn read_vec<T: std::str::FromStr>() -> Vec<T> {
read::<String>()
.split_whitespace()
.map(|e| e.parse().ok().unwrap())
.collect()
}
#[allow(dead_code)]
fn read_vec2<T: std::str::FromStr>(n: u32) -> Vec<Vec<T>> {
(0..n).map(|_| read_vec()).collect()
}
#[allow(dead_code)]
fn readii() -> (i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
#[allow(dead_code)]
fn readiii() -> (i64, i64, i64) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
iter.next().unwrap().parse::<i64>().unwrap(),
)
}
#[allow(dead_code)]
fn readuu() -> (usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
#[allow(dead_code)]
fn readuuu() -> (usize, usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
#[allow(dead_code)]
fn readuuuu() -> (usize, usize, usize, usize) {
let mut str = String::new();
let _ = stdin().read_line(&mut str).unwrap();
let mut iter = str.split_whitespace();
(
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
iter.next().unwrap().parse::<usize>().unwrap(),
)
}
/// Equivalent to std::lowerbound and std::upperbound in c++
pub trait BinarySearch<T> {
fn lower_bound(&self, x: &T) -> usize;
fn upper_bound(&self, x: &T) -> usize;
}
impl<T: Ord> BinarySearch<T> for [T] {
fn lower_bound(&self, x: &T) -> usize {
let mut low = 0;
let mut high = self.len();
while low != high {
let mid = (low + high) / 2;
match self[mid].cmp(x) {
Ordering::Less => {
low = mid + 1;
}
Ordering::Equal | Ordering::Greater => {
high = mid;
}
}
}
low
}
fn upper_bound(&self, x: &T) -> usize {
let mut low = 0;
let mut high = self.len();
while low != high {
let mid = (low + high) / 2;
match self[mid].cmp(x) {
Ordering::Less | Ordering::Equal => {
low = mid + 1;
}
Ordering::Greater => {
high = mid;
}
}
}
low
}
}
fn solve() {
let n: usize = read();
let vec: Vec<i64> = read_vec();
let mut s: i64 = 0;
let mut res: i64 = 0;
let mut flg = true;
if vec[0] < 0 {
flg = false;
}
for i in 0..n {
s += vec[i];
if flg {
if s < 1 {
res += 1 - s;
s = 1;
}
} else {
if s > -1 {
res += 1 + s;
s = -1;
}
}
// println!("{:?}", (s, res, flg));
flg ^= true;
}
println!("{:?}", res);
}
fn main() {
solve()
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int count = 0;
int sum = 0;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
int Ah = 0;
int Bh = 0;
int sumA = 0;
int sumB = 0;
if (a.at(0) == 0) {
if (a.at(1) > 0)
a.at(0) = -1;
else
a.at(0) = 1;
count++;
}
for (int i = 0; i < n - 1; i++) {
sumA += a.at(i);
Ah = 0;
Bh = 0;
for (;;) {
sumB = sumA + a.at(i + 1);
if (sumA > 0)
Ah = 1;
else
Ah = -1;
if (sumB > 0)
Bh = 1;
else if (sumB < 0)
Bh = -1;
else
Bh = 0;
if ((Ah == 1 && Bh == -1) || (Ah == -1 && Bh == 1))
break;
else if (Ah == 1 && Bh != -1) {
a.at(i + 1) -= abs(sumB) + 1;
count += abs(sumB) + 1;
break;
} else {
a.at(i + 1) += abs(sumB) + 1;
count += abs(sumB) + 1;
break;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | fun main(args: Array<String>) {
val n = readLine()?.toInt() ?: return
val aList = readLine()?.split(" ")?.map { it.toLong() } ?: return
val v1 = calc(aList, true)
val v2 = calc(aList, false)
println(Math.min(v1, v2))
}
private fun calc(list: List<Long>, type: Boolean): Long {
var count = 0L
var sum = if (type) Math.abs(list[0]) else -Math.abs(list[0])
if (sum == 0L) {
sum += if (type) 1 else -1
count++
} else {
count += Math.abs(sum - list[0])
}
for (i in 1 until list.size) {
val sign = sum < 0
if (sign == (sum + list[i] > 0)) {
sum += list[i]
continue
}
val expected = if (sign) Math.abs(sum) + 1 else -Math.abs(sum) - 1
val diff = Math.abs(expected - list[i])
sum += expected
count += diff
}
return count
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
vector<long long> cusum(n);
cusum[0] = a[0];
for (int i = 1; i < n; i++) {
cusum[i] = cusum[i - 1] + a[i];
}
int tc = 2;
long long ans = 1e18;
while (tc--) {
long long sum = 0;
long long tmp = 0;
for (int i = 0; i < n; i++) {
long long x = cusum[i] + sum;
if (x > 0) {
if ((tc && i % 2 == 0) || (tc == 0 && i % 2 == 1)) {
continue;
} else {
tmp += x + 1;
sum -= (x + 1);
}
} else {
if ((tc && i % 2 == 0) || (tc == 0 && i % 2 == 1)) {
tmp += ((-1) * x + 1);
sum += ((-1) * x + 1);
} else {
continue;
}
}
}
if (cusum[n - 1] + sum == 0) tmp++;
ans = min(ans, tmp);
}
cout << ans << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.util.*;
import java.util.function.IntFunction;
import java.util.function.Supplier;
import java.util.stream.IntStream;
import java.util.stream.Stream;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner();
int n=scanner.nextInt();
long[] a=new long[n+1];
for(int i=1;i<=n;i++){
a[i]=scanner.nextInt();
}
Arrays.parallelPrefix(a,(c,b)->c+b);
//put(Arrays.toString(a));
long ans=0;
long ruiseki=0;
for(int i=1;i<=n;i++){
//put(format("i=%d",i));
//put(format("ruiseki=%d",ruiseki));
long val=a[i]+ruiseki;
long val_=a[i-1]+ruiseki;
//put(format("val=%d",val));
//put(format("val_=%d",val_));
if(val==0){
int bit=Long.signum(val_);
ruiseki+=-bit;
ans+=Math.abs(bit);
}else if(val>0&&val_>0){
ruiseki-=(val+1);
ans+=Math.abs(val+1);
}else if(val<0&&val_<0){
ruiseki+=Math.abs(val)+1;
ans+=Math.abs(val)+1;
}
//put(ans);
//put();
}
put(ans);
}
public static void print(Object object){
System.out.print(object);
}
public static void put(Object object) {
System.out.println(object);
}
public static void put(){
System.out.println();
}
public static String format(String string, Object... args) {
return String.format(string, args);
}
}
final class Scanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() {
if (hasNextByte())
return buffer[ptr++];
else
return -1;
}
private boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {
while (hasNextByte() && !isPrintableChar(buffer[ptr]))
ptr++;
return hasNextByte();
}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
} else if (b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE)
throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
final class Pair {
final public int x, y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int hashCode() {
return x+y;
}
@Override
public boolean equals(Object obj) {
boolean result=super.equals(obj);
if(obj.getClass()!=this.getClass()){
return false;
}
Pair pair=(Pair)obj;
if(this.x==pair.x&&this.y==pair.y) return true;
return false;
}
@Override
public String toString() {
return String.format("(%d,%d)", x, y);
}
}
final class Tuple<T,V>{
//immutabl1でないことに注意(T,Vがmutableの場合変更可能)
final public T t;
final public V v;
Tuple(T t,V v){
this.t=t;
this.v=v;
}
@Override
public int hashCode() {
return (t.hashCode()+v.hashCode());
}
@Override
public boolean equals(Object obj) {
if(obj.getClass()!=this.getClass()){
return false;
}
Tuple<T,V> tuple=(Tuple)obj;
return tuple.t.equals(this.t)&&tuple.v.equals(this.v);
}
@Override
public String toString() {
return String.format("<Tuple>=<%s,%s>",t,v);
}
}
final class LowerBoundComparator<T extends Comparable<? super T>>
implements Comparator<T>
{
public int compare(T x, T y)
{
return (x.compareTo(y) >= 0) ? 1 : -1;
}
}
final class UpperBoundComparator<T extends Comparable<? super T>>
implements Comparator<T>
{
public int compare(T x, T y)
{
return (x.compareTo(y) > 0) ? 1 : -1;
}
}
final class Util {
static long gcd(long a,long b){
if(a%b==0)return b;
return gcd(b,a%b);
}
static long lcm(long a,long b){
long gcd=gcd(a,b);
long result=b/gcd;
return a*result;
}
static long kaijoMod(int n,int mod){
if(n<1) return -1;
long result=1;
for(int i=n;i>1;i--){
result*=i;
result%=mod;
}
return result;
}
static <T extends Comparable> Map<T,Integer> count(List<T> list){
//副作用
Collections.sort(list);
Map<T,Integer> result=new HashMap<>();
int l=0,r=0;
while(l<list.size()){
while(r<list.size()-1&&list.get(r).equals(r+1)){
r++;
}
result.put(list.get(r),r-l+1);
r++;
l=r;
}
return result;
}
static Map<Integer,Integer> count(int[] array){
//副作用
Arrays.sort(array);
Map<Integer,Integer> result=new HashMap<>();
int l=0,r=0;
while(l<array.length){
while(r<array.length-1&&array[r]==array[r+1]){
r++;
}
result.put(array[l],r-l+1);
r++;
l=r;
}
return result;
}
static String toStringBWS(Iterable iterable){
Iterator ite=iterable.iterator();
return toStringBWS(ite);
}
static String toStringBWS(Iterator ite){
StringBuilder sb=new StringBuilder();
sb.append(ite.next());
while(ite.hasNext()){
sb.append(" ");
sb.append(ite.next());
}
return sb.toString();
}
static String toStringBWS(int[] array){
StringBuilder sb=new StringBuilder();
for(int i=0;i<array.length-1;i++){
sb.append(array[i]);
sb.append(" ");
}
sb.append(array[array.length-1]);
return sb.toString();
}
static String toStringBWS(long[] array){
StringBuilder sb=new StringBuilder();
for(int i=0;i<array.length-1;i++){
sb.append(array[i]);
sb.append(" ");
}
sb.append(array[array.length-1]);
return sb.toString();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
s=[0]*n
s[0]=a[0]
cnt=0
for i in range(1,n):
s[i]=s[i-1]+a[i]
if 0<s[i] and 0<s[i-1]:
cnt+=abs(-1-s[i])
s[i]=-1
elif s[i]<0 and s[i-1]<0:
cnt+=abs(1-s[i])
s[i]=1
elif s[i]==0:
if s[i-1]<0:
cnt+=1
s[i]=1
elif 0<s[i-1]:
cnt+=1
s[i]=-1
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using i_i = pair<int, int>;
using ll_ll = pair<ll, ll>;
using d_ll = pair<double, ll>;
using ll_d = pair<ll, double>;
using d_d = pair<double, double>;
template <class T>
using vec = vector<T>;
static constexpr ll LL_INF = 1LL << 60;
static constexpr int I_INF = 1 << 28;
static constexpr double PI =
static_cast<double>(3.14159265358979323846264338327950288);
static constexpr double EPS = numeric_limits<double>::epsilon();
static map<type_index, const char* const> scanType = {{typeid(int), "%d"},
{typeid(ll), "%lld"},
{typeid(double), "%lf"},
{typeid(char), "%c"}};
template <class T>
static void scan(vector<T>& v);
[[maybe_unused]] static void scan(vector<string>& v, bool isWord = true);
template <class T>
static inline bool chmax(T& a, T b);
template <class T>
static inline bool chmin(T& a, T b);
template <class T>
static inline T gcd(T a, T b);
template <class T>
static inline T lcm(T a, T b);
template <class A, size_t N, class T>
static void Fill(A (&arr)[N], const T& val);
template <class T>
T mod(T a, T m);
template <class Monoid>
struct SegmentTree {
using F = function<Monoid(Monoid, Monoid)>;
int sz;
vector<Monoid> seg;
const F f;
const Monoid M1;
SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) {
sz = 1;
while (sz < n) sz <<= 1;
seg.assign(2 * sz, M1);
}
void set(int k, const Monoid& x) { seg[k + sz] = x; }
void build() {
for (int k = sz - 1; k > 0; k--) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void update(int k, const Monoid& x) {
k += sz;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
Monoid query(int a, int b) {
Monoid L = M1, R = M1;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) L = f(L, seg[a++]);
if (b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
Monoid operator[](const int& k) const { return seg[k + sz]; }
template <class C>
int find_subtree(int a, const C& check, Monoid& M, bool type) {
while (a < sz) {
Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
if (check(nxt))
a = 2 * a + type;
else
M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template <class C>
int find_first(int a, const C& check) {
Monoid L = M1;
if (a <= 0) {
if (check(f(L, seg[1]))) return find_subtree(1, check, L, false);
return -1;
}
int b = sz;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) {
Monoid nxt = f(L, seg[a]);
if (check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template <class C>
int find_last(int b, const C& check) {
Monoid R = M1;
if (b >= sz) {
if (check(f(seg[1], R))) return find_subtree(1, check, R, true);
return -1;
}
int a = sz;
for (b += sz; a < b; a >>= 1, b >>= 1) {
if (b & 1) {
Monoid nxt = f(seg[--b], R);
if (check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
int main(int argc, char* argv[]) {
ll n;
cin >> n;
vec<ll> a(n);
scan(a);
SegmentTree<ll> seg(
n, [](ll x, ll y) { return x + y; }, 0LL);
for (int i = (0); i < (n); i++) {
seg.set(i, a[i]);
}
seg.build();
ll ans = 0;
bool next_sign = (a[0] < 0) ? true : false;
if (a[0] == 0) seg.update(0, 1LL);
for (int i = (2); i < (n + 1); i++) {
ll sum = seg.query(0, i);
if ((next_sign && sum > 0) || (!next_sign && sum < 0)) {
next_sign = !next_sign;
continue;
}
ll to = (next_sign) ? 1 : -1;
ll diff = abs(sum - to);
ans += diff;
seg.update(i - 1, seg[i - 1] + (to - sum));
next_sign = !next_sign;
}
ll ans2 = 0;
for (int i = (0); i < (n); i++) {
seg.update(i, a[i]);
}
next_sign = (a[0] < 0) ? true : false;
if (a[0] == 0) seg.update(0, -1LL);
for (int i = (2); i < (n + 1); i++) {
ll sum = seg.query(0, i);
if ((next_sign && sum > 0) || (!next_sign && sum < 0)) {
next_sign = !next_sign;
continue;
}
ll to = (next_sign) ? 1 : -1;
ll diff = abs(sum - to);
ans2 += diff;
seg.update(i - 1, seg[i - 1] + (to - sum));
next_sign = !next_sign;
}
((cout) << (min(ans, ans2)) << (endl));
return 0;
}
template <class T>
static void scan(vector<T>& v) {
auto tFormat = scanType[typeid(T)];
for (T& n : v) {
scanf(tFormat, &n);
}
}
static void scan(vector<string>& v, bool isWord) {
if (isWord) {
for (auto& n : v) {
cin >> n;
}
return;
}
int i = 0, size = v.size();
string s;
getline(cin, s);
if (s.size() != 0) {
i++;
v[0] = s;
}
for (; i < size; ++i) {
getline(cin, v[i]);
}
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline T gcd(T a, T b) {
return __gcd(a, b);
}
template <class T>
inline T lcm(T a, T b) {
T c = min(a, b), d = max(a, b);
return c * (d / gcd(c, d));
}
template <class A, size_t N, class T>
void Fill(A (&arr)[N], const T& val) {
std::fill((T*)arr, (T*)(arr + N), val);
}
template <class T>
T mod(T a, T m) {
return (a % m + m) % m;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100000];
long long c[2];
long long csum;
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
c[0] = 0;
c[1] = 0;
for (int l = 0; l < 2; l++) {
csum = 0;
long long sign;
if (l == 0) {
sign = 1;
} else {
sign = -1;
}
csum += a[0];
if (csum == 0) {
c[l] += 1;
csum += sign;
} else if (csum * sign < 0) {
csum += -csum + sign;
}
for (int i = 1; i < n; i++) {
long long bsum = csum;
bsum += a[i];
if (csum * bsum >= 0) {
if (csum > 0) {
c[l] += (bsum + 1);
bsum -= (bsum + 1);
} else {
c[l] += (-bsum + 1);
bsum += (-bsum + 1);
}
}
csum = bsum;
}
}
cout << min(c[0], c[1]) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void Main() {
int n;
cin >> n;
long long ct = 0;
long long now = 0;
bool rev = false;
bool allzero = true;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
if (allzero == true) {
if (a[i] > 0) {
rev = false;
allzero = false;
} else if (a[i] < 0) {
rev = true;
allzero = false;
}
}
}
for (int i = 0; i < n; i++) {
now += a[i];
if ((i % 2) xor rev == 0) {
if (now <= 0) {
ct += 1 - now;
now = 1;
}
} else {
if (now >= 0) {
ct += now + 1;
now = (-1);
}
}
}
cout << ct << "\n";
}
int main() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << fixed << setprecision(15);
Main();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1LL << 60;
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
long long count = 0;
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
long long nowand = 0;
long long count1 = 0;
for (long long i = 0; i < n; i++) {
nowand += a[i];
if (nowand >= 0) {
count1 += nowand + 1;
nowand = -1;
}
}
long long count2 = 0;
nowand = 0;
for (long long i = 0; i < n; i++) {
nowand += a[i];
if (nowand >= 0) {
count2 += nowand + 1;
nowand = -1;
}
}
cout << min(count1, count2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
#初期化
dp = [[0,0]]*N
if A[0] == 0:
for i in range(1,N):
if A[i] > 0:
dp[i-1][0] = 2*i-1
dp[i-1][1] = -1
break
elif A[i] < 0:
dp[i-1][0] = 2*i-1
dp[i-1][1] = 1
break
else:
pass
else:
dp[N-1][0] = 2*N-1
else:
dp[0][1] = A[0]
#dp
for j in range(N-1):
S_j = dp[j][1]
if (S_j > 0 and A[j+1] < -S_j) or (S_j < 0 and A[j+1] > -S_j):
dp[j+1][0] = dp[j][0]
dp[j+1][1] = dp[j][1]+A[j+1]
elif S_j > 0:
dp[j+1][0] = dp[j][0]+S_j+A[j+1]+1
dp[j+1][1] = -1
elif S_j < 0:
dp[j+1][0] = dp[j][0]-S_j-A[j+1]+1
dp[j+1][1] = -1
print(dp[N-1][0]) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using Int = long long;
Int INF = 1 << 30;
Int large0(std::vector<Int> a, Int n) {
Int ans = 0;
Int sum = a[0];
for (Int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum >= 0) {
ans += sum + 1;
sum = -1;
}
if (i % 2 == 0 && sum <= 0) {
ans += 1 - sum;
sum = 1;
}
}
return ans;
}
Int small0(std::vector<Int> a, Int n) {
Int ans = 0;
Int sum = a[0];
for (Int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum <= 0) {
ans += 1 - sum;
sum = 1;
}
if (i % 2 == 0 && sum >= 0) {
ans += sum + 1;
sum = -1;
}
}
return ans;
}
int main() {
Int n;
std::cin >> n;
std::vector<Int> a(n);
for (Int i = 0; i < n; i++) std::cin >> a[i];
Int ans = 0;
Int sum = a[0];
if (a[0] > 0) {
std::cout << large0(a, n) << std::endl;
}
if (a[0] < 0) {
std::cout << small0(a, n) << std::endl;
}
if (a[0] == 0) {
Int res1 = 0;
Int res2 = 0;
a[0] = 1LL;
res1 = large0(a, n);
a[0] = -1LL;
res2 = small0(a, n);
std::cout << std::min(res1, res2) + 1 << std::endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
long long a[100010];
int main() {
int n, i, j, k;
long long s, x, y;
while (scanf("%d", &n) != EOF) {
for (i = 0; i < n; i++) scanf("%lld", &a[i]);
s = 0;
x = a[0];
for (i = 1; i < n; i++) {
y = x;
x = x + a[i];
if (x < 0 && y > 0) continue;
if (y < 0 && x > 0) continue;
if (y < 0) {
s = s - x + 1;
x = 1;
} else if (y > 0) {
s = s + x + 1;
x = -1;
}
}
printf("%lld\n", s);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = scan.nextLong();
}
long sum1 = 0;
long sum2 = 0;
long ans1 = 0;
long ans2 = 0;
for (int i = 0; i < n-1; i++) {//偶数添字が正
sum1 += a[i];
if (i%2 == 0) {
if (sum1 > 0) continue;
else {
ans1 += (1 + Math.abs(sum1));
sum1 = 1;
}
}
else if (i%2 == 1) {
if (sum1 < 0) continue;
else {
ans1 += (sum1 + 1);
sum1 = -1;
}
}
}
for (int i = 0; i < n-1; i++) {//奇数添字が正
sum2 += a[i];
if (i%2 == 1) {
if (sum2 > 0) continue;
else {
ans2 += (1 + Math.abs(sum2));
sum2 = 1;
}
}
else if (i%2 == 0) {
if (sum2 < 0) continue;
else {
ans2 += (sum2 + 1);
sum2 = -1;
}
}
}
if (ans1 == 0) {
ans1++;
}
if (ans2 == 0) {
ans2++;
}
System.out.println(Math.min(ans1, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
n = int(input())
l = map(int, input().split())
ll = []
for q in range(len(l)):
ll.append(l[q])
print(ll)
sums1 = [0] * n
count1 = 0
sums1[0] = ll[0]
for i in range(1, len(ll)):
sums1[i] = sums1[i-1] + ll[i]
if l[0] == 0:
for v in range(len(sums1)):
sums1 += [1] * len(sums1)
count1 += 1
for k in range(1, len(sums1)):
while sums1[k] == 0 or sums1[k] * sums1[k-1] > 0:
if sums1[k] == 0:
for p in range(k, len(sums1)):
sums1[p] += -(sums1[k-1]/abs(sums1[k-1]))
count1 += 1
if sums1[k] * sums1[k-1] > 0:
for p in range(k, len(sums1)):
sums1[p] += (abs(sums1[k])+1) * (-(sums1[k])/abs(sums1[k]))
count1 += abs(sums1[k])+1
sums2 = [0] * n
count2 = 0
sums2[0] = ll[0]
for i in range(1, len(ll)):
sums2[i] = sums2[i-1] + ll[i]
if l[0] == 0:
for v in range(len(sums2)):
sums2 -= [1] * len(sums2)
count2 += 1
for k in range(1, len(sums2)):
while sums2[k] == 0 or sums2[k] * sums2[k-1] > 0:
if sums2[k] == 0:
for p in range(k, len(sums2)):
sums2[p] += -sums2[k-1]/abs(sums2[k-1])
count2 += 1
if sums2[k] * sums2[k-1] > 0:
for p in range(k, len(sums1)):
sums2[p] += -(abs(sums2[k])+1) * ((sums2[k])/abs(sums2[k]))
count2 += abs(sums1[k])+1
print(min(count2, count2) * 2) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
}
int p = 0, sum = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
if (a.at(i) <= 0) {
p += 1 - a.at(i);
a.at(i) = 1;
}
} else {
if (sum > 0 && sum + a.at(i) >= 0) {
p += sum + a.at(i) + 1;
a.at(i) = -sum - 1;
} else if (sum < 0 && sum + a.at(i) <= 0) {
p -= sum + a.at(i) - 1;
a.at(i) = -sum + 1;
}
}
sum += a.at(i);
}
int ne = 0;
sum = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
if (b.at(i) >= 0) {
ne += 1 + b.at(i);
b.at(i) = -1;
}
} else {
if (sum > 0 && sum + b.at(i) >= 0) {
ne += sum + b.at(i) + 1;
b.at(i) = -sum - 1;
} else if (sum < 0 && sum + b.at(i) <= 0) {
ne -= sum + b.at(i) - 1;
b.at(i) = -sum + 1;
}
}
sum += b.at(i);
}
cout << min(p, ne) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #![allow(unused_imports)]
#![allow(unused_variables)]
#![allow(non_snake_case)]
#![allow(dead_code)]
#![allow(deprecated)]
use std::cell::{Cell, Ref, RefCell, RefMut};
use std::cmp::{max, min, Ordering};
use std::collections::*;
use std::fmt::{Debug, Formatter, Write as FmtWrite};
use std::io::{stderr, stdin, BufRead, Write};
use std::mem::{replace, swap};
use std::ops::*;
use std::rc::Rc;
use std::usize;
const MOD_10_9_7: u64 = 1_000_000_007;
const INF: i64 = 1_000_000_000_000;
const MIN_INF: i64 = -1_000_000_000_000;
/// FYI: https://github.com/vain0x/scan-bench
#[allow(unused_macros)]
macro_rules! read {
([$t:ty] ; $n:expr) =>
((0..$n).map(|_| read!([$t])).collect::<Vec<_>>());
($($t:ty),+ ; $n:expr) =>
((0..$n).map(|_| read!($($t),+)).collect::<Vec<_>>());
([$t:ty]) =>
(rl().split_whitespace().map(|w| w.parse().unwrap()).collect::<Vec<$t>>());
($t:ty) =>
(rl().parse::<$t>().unwrap());
($($t:ty),*) => {{
let buf = rl();
let mut w = buf.split_whitespace();
($(w.next().unwrap().parse::<$t>().unwrap()),*)
}};
}
fn rl() -> String {
let mut buf = String::new();
stdin().read_line(&mut buf).unwrap();
buf.trim_right().to_owned()
}
#[allow(unused_macros)]
macro_rules! debug {
($($a:expr),*) => {
eprintln!(concat!($(stringify!($a), " = {:?}, "),*), $($a),*);
}
}
fn main() {
let n = read!(usize);
let a: Vec<i64> = read![[i64]];
let mut ans = 0;
let mut s = a[0];
for &ai in &a[1..] {
if s > 0 {
if s + ai < 0 {
s = s + ai;
continue;
} else {
// ai を s + ai = -1 になるように操作する
ans += ai + 1 + s;
s = -1;
continue;
}
} else {
if s + ai > 0 {
s = s + ai;
continue;
} else {
// ai を s + ai = 1 になるように操作する
ans += 1 - s - ai;
s = 1;
continue;
}
}
}
println!("{}", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1e18;
int n;
int a[100000];
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
int total = 0, ans1 = 0, ans2 = 0;
for (int i = 0; i < n; i++) {
total += a[i];
if (i % 2 == 0 && total <= 0) {
while (total != 1) {
total++;
ans1++;
}
} else if (i % 2 != 0 && total >= 0) {
while (total != -1) {
total--;
ans1++;
}
}
}
total = 0;
for (int i = 0; i < n; i++) {
total += a[i];
if (i % 2 != 0 && total <= 0) {
while (total != 1) {
total++;
ans2++;
}
} else if (i % 2 == 0 && total >= 0) {
while (total != -1) {
total--;
ans2++;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<iostream>
#include<string>
#include<vector>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<numeric>
#include<iomanip>
#include<deque>
#include<tuple>
#include<queue>
#include<map>
#include <cstdint>
#include <boost/multiprecision/cpp_int.hpp>
#define rep(i, n) for(int i = 0; i < (int)(n); i++)
#define FOR(i,a,b) for(int i=(a);i<(b);i++)
#define vi vector<int>
#define all(x) (x).begin(),(x).end()
#define Endl endl
#define F first
#define S second
namespace mp = boost::multiprecision;
using cpp_int = mp::cpp_int;
using ll = long long;
using namespace std;
int main() {
int n;
cin >> n;
vector<ll>sum(n),a(n);
rep(i, n) {
cin >> a[i];
}
ll count = 0;
sum[0] = a[0];
FOR(i,1, n) {
sum[i] = sum[i - 1] + a[i];
if (sum[i - 1] > 0) {
if (sum[i] >= 0) {
count += sum[i] + 1;
sum[i] = -1;
}
}
else if (sum[i - 1] < 0) {
if (sum[i] <= 0) {
count += abs(sum[i]) + 1;
sum[i] = 1;
}
}
else if (sum[i - 1] == 0) {
break;
}
}
cout << count << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
#include <utility>
#include <vector>
#include <tuple>
#include <cstdint>
using namespace std;
// Type aliases
using i8 = int8_t; using u8 = uint8_t;
using i16 = int16_t; using u16 = uint16_t;
using i32 = int32_t; using u32 = uint32_t;
using i64 = int64_t; using u64 = uint64_t;
template <class T> using V = vector<T>;
// Loops
#define REP(i, n) for (int i = 0; i < (n); ++i)
#define REPR(i, n) for (int i = (n) - 1; i >= 0; --i)
#define FOR(i, n, m) for (int i = (n); i < (m); ++i)
#define FORR(i, n, m) for (int i = (m) - 1; i >= (n); --i)
#define FORE(x, xs) for (auto &x: (xs))
// Utils for Tuple
namespace tuple_utils {
template<size_t...> struct seq{};
template<size_t N, size_t... Is>
struct gen_seq : gen_seq<N - 1, N - 1, Is...>{};
template<size_t... Is>
struct gen_seq<0, Is...> : seq<Is...>{};
template <class Tuple, size_t... Is>
void read(istream &stream, Tuple &t, seq<Is...>) {
static_cast<void>((int[]){0, (void(stream >> get<Is>(t)), 0)...});
}
template<class Tuple, size_t... Is>
void print(ostream& stream, Tuple const& t, seq<Is...>) {
static_cast<void>((int[]){0, (void(stream << (Is == 0 ? "" : ", ") << get<Is>(t)), 0)...});
}
}
// Input
template <class F, class S>
istream &operator>>(istream &stream, pair<F, S> &pair) {
stream >> pair.first;
stream >> pair.second;
return stream;
}
template <class ...Args>
istream &operator>>(istream &stream, tuple<Args...> &tuple) {
tuple_utils::read(stream, tuple, tuple_utils::gen_seq<sizeof...(Args)>());
return stream;
}
template <class T>
T read() {
T t;
cin >> t;
return t;
}
template <class F, class S>
pair<F, S> read() {
pair<F, S> p;
cin >> p;
return p;
}
template <class T1, class T2, class T3, class ...Args>
tuple<T1, T2, T3, Args...> read() {
tuple<T1, T2, T3, Args...> t;
cin >> t;
return t;
}
template <class T>
V<T> read(const int length) {
V<T> ts(length);
for (auto& t: ts) {
cin >> t;
}
return ts;
}
template <class F, class S>
V<pair<F, S>> read(const int length) {
V<pair<F, S>> ps(length);
for (auto& p: ps) {
cin >> p;
}
return ps;
}
template <class T1, class T2, class T3, class ...Args>
V<tuple<T1, T2, T3, Args...>> read(const int length) {
V<tuple<T1, T2, T3, Args...>> ts(length);
for (auto& t: ts) {
cin >> t;
}
return ts;
}
// Output
namespace debug {
template <class F, class S>
ostream &operator<<(ostream& stream, const pair<F, S> &pair) {
stream << "{" << pair.first << ", " << pair.second << "}";
return stream;
}
template <class ...Args>
ostream &operator<<(ostream& stream, const tuple<Args...> &tuple) {
stream << "{";
tuple_utils::print(stream, tuple, tuple_utils::gen_seq<sizeof...(Args)>());
stream << "}";
return stream;
}
template <class T, class Alloc>
ostream &operator<<(ostream& stream, const vector<T, Alloc> &vector) {
stream << "[";
for (auto i = 0; i < vector.size(); i++) {
stream << vector[i];
if (i != vector.size() - 1) {
stream << "," << ((i % 10 == 9) ? "\n " : "\t");
}
}
stream << "]";
return stream;
}
}
// Body
void body() {
auto n = read<i32>();
auto as = read<i64>(n);
auto solve = [](auto as) {
i64 total = 0;
u64 retval = 0;
FORE (a, as) {
if (total != 0 && total * (total + a) >= 0) {
// total -> (total + a)で符号が変わらないまたは0になる
retval += abs(total + a) + 1;
a -= (total + a); // total + a = 0にする
if (total > 0) {
a -= 1;
} else {
a += 1;
}
}
total += a;
}
return retval;
};
if (as[0] == 0) {
auto as2 = as;
as2[0] = 1;
auto r1 = solve(as2);
as[0] = -1;
auto r2 = solve(as);
using namespace debug;
cout << min(r1, r2) + 1 << endl;
} else {
cout << solve(as) << endl;
}
}
// main function (DO NOT EDIT)
int main () {
ios_base::sync_with_stdio(false);
body();
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
const int INF = 1e7;
int main() {
int n;
cin >> n;
vector<int> v(n);
vector<int> s(n, 0);
for (int i = 0; i < (n); ++i) {
cin >> v[i];
}
int ans = 0;
if (v[0] == 0) {
for (int i = 0; i < (n); ++i) {
if (v[i] != 0) {
if (i % 2 == 0) {
if (v[i] > 0) {
v[0]++;
ans++;
} else {
v[0]--;
ans++;
}
} else {
if (v[i] > 0) {
v[0]--;
ans++;
} else {
v[0]++;
ans++;
}
}
}
}
}
s[0] = v[0];
for (int i = (1); i < (int)(n); ++i) {
if (s[i - 1] > 0) {
while ((s[i - 1] + v[i]) >= 0) {
v[i]--;
ans++;
}
}
if (s[i - 1] < 0) {
while ((s[i - 1] + v[i]) <= 0) {
v[i]++;
ans++;
}
}
s[i] = s[i - 1] + v[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 100000000000000LL;
long long a[100001];
long long t[2][100001] = {};
long long r[2] = {};
int main() {
int n;
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
t[0][0] = a[0];
if (t[0][0] == 0) {
t[0][0] = -1;
t[0][0] = 1;
r[0] = 1;
r[1] = 1;
}
if (t[0][0] > 0) {
t[1][0] = -1;
r[1] = t[0][0] + 1;
}
if (t[0][0] < 0) {
t[1][0] = 1;
r[1] = -t[0][0] + 1;
}
for (int i = 0; i < 2; ++i) {
for (int j = 1; j < n; ++j) {
t[i][j] = t[i][j - 1] + a[j];
if (t[i][j - 1] < 0 && t[i][j] < 0) {
r[i] += 1 - t[i][j];
t[i][j] = 1;
}
if (t[i][j - 1] > 0 && t[i][j] > 0) {
r[i] += 1 + t[i][j];
t[i][j] = -1;
}
}
}
cout << min(r[0], r[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
int dy[] = {0, 0, 1, -1};
int dx[] = {1, -1, 0, 0};
int main() {
ll n;
cin >> n;
vector<ll> a(n);
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n) cin >> a[i];
vector<ll> sum(n);
sum[0] = a[0];
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n - 1) sum[i + 1] =
sum[i] + a[i + 1];
ll c = 0;
ll d = 0;
if (sum[0] == 0) {
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 1, n) {
if (sum[i] == 0) continue;
if (sum[i] < 0) d++;
if (sum[i] > 0) d--;
c++;
break;
}
}
(i, a, b) for (ll(i) = a; (i) < (b); ++(i))(i, 0, n - 1) {
if ((d + sum[i]) * (d + sum[i + 1]) < 0) continue;
if (d + sum[i] >= 0) {
c += d + sum[i + 1] + 1;
d -= d + sum[i + 1] + 1;
} else {
c += abs(d + sum[i + 1]) + 1;
d += abs(d + sum[i + 1]) + 1;
}
}
cout << c << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<ll> v(n, 0);
for (int i = (int)(0); i < (int)(n); i++) cin >> v[i];
vector<int> p1(n + 1, 1);
for (int i = (int)(0); i < (int)(n + 1); i++) {
if (i % 2 == 0) p1[i] *= -1;
}
cerr << "v"
":[ ";
for (auto macro_vi : v) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
ll c[2];
vector<ll> sum_until(n + 1, 0);
ll cnt = 0;
cerr << "p1"
":[ ";
for (auto macro_vi : p1) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
for (int i = 1; i <= n; i++) {
sum_until[i] = 0ll + sum_until[i - 1] + v[i - 1];
if (not(sum_until[i] * p1[i] < 0)) {
int plus = abs(sum_until[i]);
sum_until[i] += plus * p1[i] + p1[i];
cnt += abs(plus * p1[i]) + 1;
} else if (sum_until[i] == 0) {
sum_until[i] = p1[i];
cnt += 1;
}
}
cerr << "sum_until"
":[ ";
for (auto macro_vi : sum_until) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
c[0] = cnt;
cerr << "\"next\""
":"
<< "next" << endl;
fill(sum_until.begin(), sum_until.end(), 0ll);
cnt = 0;
for (int i = (int)(0); i < (int)(n + 1); i++) {
if (i % 2 == 1)
p1[i] = -1;
else
p1[i] = 1;
}
cerr << "p1"
":[ ";
for (auto macro_vi : p1) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
for (int i = 1; i <= n; i++) {
sum_until[i] = sum_until[i - 1] + v[i - 1];
if (sum_until[i] * p1[i] < 0) {
int plus = abs(sum_until[i]);
sum_until[i] += plus * p1[i] + p1[i];
cnt += abs(plus * p1[i]) + 1;
} else if (sum_until[i] == 0) {
sum_until[i] = p1[i];
cnt += 1;
}
}
cerr << "sum_until"
":[ ";
for (auto macro_vi : sum_until) {
cerr << macro_vi << " ";
}
cerr << "]" << endl;
c[1] = cnt;
cerr << "("
"c[0]"
","
"c[1]"
"):("
<< c[0] << "," << c[1] << ")" << endl;
cout << min(c[1], c[0]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long long sum1 = 0;
long long sum2 = 0;
long long tmp;
long long lcount = 0;
long long rcount = 0;
long long a[100000];
char input[1000000];
int i = 0, j = 0;
int cp = 0, tcp = 0;
char tp[12];
tp[12] = '\0';
fgets(input, 1000000, stdin);
n = atoi(input);
fgets(input, 1000000, stdin);
for (i = 0; i < n; i++) {
while (input[cp] != ' ' && input[cp] != '\n') {
tp[tcp] = input[cp];
tcp++;
cp++;
}
tp[tcp] = '\0';
tcp = 0;
cp++;
a[i] = atoi(tp);
}
tmp = a[0];
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
tmp += a[i];
while (tmp > -1) {
lcount++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
lcount++;
tmp++;
}
}
}
tmp = a[0];
for (i = 1; i < n; i++) {
if (i % 2 == 1) {
tmp += a[i];
while (tmp > -1) {
rcount++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
rcount++;
tmp++;
}
}
}
printf("%ld\n", lcount > rcount ? rcount : lcount);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int check(int sum, int ans, vector<int> T, int N, bool pre_pm) {
for (int i = 1; i < N; i++) {
if (pre_pm) {
sum += T.at(i);
while (0 <= sum) {
sum--;
ans++;
}
pre_pm = false;
} else {
sum += T.at(i);
while (sum <= 0) {
sum++;
ans++;
}
pre_pm = true;
}
}
return ans;
}
int main() {
int N;
vector<int> T;
cin >> N;
for (int i = 0; i < N; i++) {
int tmp;
cin >> tmp;
T.push_back(tmp);
}
int ans = 0;
int sum = 0;
bool pre_pm;
sum = T.at(0);
if (0 <= sum) {
pre_pm = true;
int tmp1 = check(sum, ans, T, N, pre_pm);
pre_pm = false;
int tmp2 = check(-1, 1 + sum, T, N, pre_pm);
cout << min(tmp1, tmp2) << endl;
} else {
pre_pm = false;
int tmp1 = check(sum, ans, T, N, pre_pm);
pre_pm = true;
int tmp2 = check(1, 1 + sum, T, N, pre_pm);
cout << min(tmp1, tmp2) << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(a) for a in input().split()]
previous = a[0]
for i in range(1, n):
if previous < 0:
if previous + a[i] > 0:
previous = previous + a[i]
else:
break
elif previous > 0:
if previous + a[i] < 0:
previous = previous + a[i]
else:
break
else:
print(0)
exit()
times1 = 0
times2 = 0
if a[0] < 0:
times1 += abs(1 + abs(a[0]) - a[1])
times2 += 1 - a[0] + abs(-2 - a[1])
for i in range(3, n+1):
if i % 2 != 0:
times1 += abs(-2 - a[i-1])
times2 += abs(2 - a[i-1])
else:
times1 += abs(2 - a[i-1])
times2 += abs(-2 - a[i-1])
else:
times1 += abs(-(1 + a[0]) - a[1])
times2 += abs(-1 - a[0]) + abs(2 - a[1])
for i in range(3, n+1):
if i % 2 != 0:
times1 += abs(2 - a[i-1])
times2 += abs(-2 - a[i-1])
else:
times1 += abs(-2 - a[i-1])
times2 += abs(2 - a[i-1])
print(min(times1, times2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
long long sum;
cin >> sum;
if (sum == 0) {
long long delta1 = 1;
sum = 1;
long long ar[N];
for (int i = 1; i < N; ++i) {
cin >> ar[i];
long long temp = ar[i];
if (sum > 0 && sum + temp >= 0) {
delta1 += sum + temp + 1;
sum = -1;
} else if (sum < 0 && sum + temp <= 0) {
delta1 += 1 - (sum + temp);
sum = 1;
} else {
sum += temp;
}
}
long long delta2 = 1;
sum = -1;
for (int i = 1; i < N; ++i) {
long long temp = ar[i];
if (sum > 0 && sum + temp >= 0) {
sum = -1;
delta2 += sum + temp + 1;
} else if (sum < 0 && sum + temp <= 0) {
sum = 1;
delta2 += 1 - (sum + temp);
} else {
sum += temp;
}
}
if (delta1 < delta2)
cout << delta1;
else
cout << delta2;
} else {
long long delta = 0;
for (int i = 1; i < N; ++i) {
long long temp;
cin >> temp;
if (sum > 0 && sum + temp >= 0) {
delta += sum + temp + 1;
sum = -1;
} else if (sum < 0 && sum + temp <= 0) {
delta += 1 - (sum + temp);
sum = 1;
} else {
sum += temp;
}
}
cout << delta;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
bool plus = false;
long long ans = 0;
long long sum = a[0];
if (sum > 0) {
plus = false;
} else if (sum < 0) {
plus = true;
} else {
sum = 1;
ans = 1;
plus = false;
}
for (int i = 1; i < n; ++i) {
sum += a[i];
if (plus == false) {
if (sum >= 0) {
ans += (abs(sum) + 1);
sum = -1;
}
plus = true;
} else {
if (sum <= 0) {
ans += (abs(sum) + 1);
sum = 1;
}
plus = false;
}
}
if (sum == 0) ans++;
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long gcd(long long x, long long y) {
if (y == 0) return x;
return gcd(y, x % y);
}
long long lcm(long long x, long long y) { return x * y / gcd(x, y); }
long long n, a[100001], d[100001] = {0};
bool b[100001] = {0};
int up() {
int cnt = 0, ud = 0;
for (int i = 1; i <= n; i++) {
if (i % 2 == 1) {
if (d[i] + ud <= 0) {
cnt -= d[i] + ud - 1;
ud = -(d[i] + ud - 1);
}
} else {
if (d[i] + ud >= 0) {
cnt += d[i] + ud + 1;
ud = -(d[i] + ud + 1);
}
}
}
return cnt;
}
int down() {
int cnt = 0, ud = 0;
for (int i = 1; i <= n; i++) {
if (i % 2 == 0) {
if (d[i] + ud <= 0) {
cnt -= d[i] + ud - 1;
ud = -(d[i] + ud - 1);
}
} else {
if (d[i] + ud >= 0) {
cnt += d[i] + ud + 1;
ud = -(d[i] + ud + 1);
}
}
}
return cnt;
}
int main() {
cin >> n;
b[0] = 1;
for (int i = 0; i < n; i++) {
cin >> a[i];
d[i + 1] = d[i] + a[i];
}
cout << min(up(), down()) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;
const ll MOD = 1e9 + 7;
const ll LINF = 1LL << 60;
const int INF = 1e9 + 7;
vector<vector<ll>> g(100010);
vector<ll> dist(100010);
int main() {
ll n;
cin >> n;
ll a[n];
for (ll i = 0; i < n; ++i) cin >> a[i];
ll ans = 0;
ll sum;
if (a[0] >= 0) {
sum = -1;
ans += a[0] + 1;
} else {
sum = a[0];
}
for (ll i = 1; i < n; ++i) {
if ((i & 1 && sum + a[i] <= 0) || (!(i & 1) && sum + a[i] >= 0)) {
ans += llabs(sum + a[i]) + 1;
sum = -1 * (sum / llabs(sum));
} else {
sum += a[i];
}
}
ll res = 0;
if (a[0] <= 0) {
sum = 1;
res += a[0] + 1;
} else {
sum = a[0];
}
for (ll i = 1; i < n; ++i) {
if ((!(i & 1) && sum + a[i] <= 0) || (i & 1 && sum + a[i] >= 0)) {
res += llabs(sum + a[i]) + 1;
sum = -1 * (sum / llabs(sum));
} else {
sum += a[i];
}
}
ans = min(ans, res);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve();
int solve1(vector<long> adder);
int solve2(vector<long> adder);
int adds(int i, int num, vector<long> *adder);
int show(vector<long> adder);
vector<long> adde;
int N;
int main() {
cin >> N;
adde = vector<long>(N + 1);
adde.at(0) = 0;
long buf;
for (int i = 0; i < N; i++) {
cin >> buf;
adde.at(i + 1) = adde.at(i) + buf;
}
solve();
}
int solve1(vector<long> adder) {
int buf;
int score = 0;
for (int i = 0; i < N; i++) {
show(adder);
buf = abs(adder.at(i + 1)) + 1;
if (i % 2 == 0) {
if (adder.at(i + 1) > 0) {
} else {
adds(i + 1, buf, &adder);
score += buf;
}
} else {
if (adder.at(i + 1) > 0) {
adds(i + 1, -buf, &adder);
score += buf;
} else {
}
}
}
return score;
}
int solve2(vector<long> adder) {
int buf;
int score = 0;
for (int i = 0; i < N; i++) {
show(adder);
buf = abs(adder.at(i + 1)) + 1;
if (i % 2 != 0) {
if (adder.at(i + 1) > 0) {
} else {
adds(i + 1, buf, &adder);
score += buf;
}
} else {
if (adder.at(i + 1) > 0) {
adds(i + 1, -buf, &adder);
score += buf;
} else {
}
}
}
return score;
}
int solve() {
cout << min(solve1(adde), solve2(adde)) << endl;
return 0;
}
int adds(int i, int num, vector<long> *adder) {
for (int j = i; j < N + 1; j++) {
(*adder).at(j) += num;
}
return 0;
}
int show(vector<long> adder) { return 0; }
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long chk1, chk2, ans1 = 0, ans2 = 0;
scanf("%d", &n);
vector<int> a(n);
for (auto& e : a) scanf("%d", &e);
chk1 = a[0];
chk2 = a[0];
for (int i = 1; i < n; i++) {
if (i % 2) {
chk1 += a[i];
chk2 += a[i];
if (chk1 >= 0) {
ans1 += chk1 + 1;
chk1 = -1;
}
if (chk2 <= 0) {
ans2 += -1 * chk2 + 1;
chk2 = 1;
}
} else {
chk1 += a[i];
chk2 += a[i];
if (chk1 <= 0) {
ans1 += -1 * chk1 + 1;
chk1 = 1;
}
if (chk2 >= 0) {
ans2 += chk2 + 1;
chk2 - 1;
}
}
}
printf("%lld\n", min(ans1, ans2));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
long long n;
cin >> n;
long long a[n];
long long sum[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long count = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum[i] = a[i];
} else {
sum[i] = sum[i - 1] + a[i];
if (sum[i] != 0 && sum[i - 1] == abs(sum[i - 1]) &&
sum[i] == abs(sum[i])) {
count += sum[i] + 1;
sum[i] = -1;
} else if (sum[i] != 0 && sum[i - 1] != abs(sum[i - 1]) &&
sum[i] != abs(sum[i])) {
count += 1 - sum[i];
sum[i] = 1;
}
}
if (sum[i] == 0) {
count++;
if (i == 0) {
if (a[i + 1] == abs(a[i + 1]))
sum[i] = -1;
else
sum[i] = 1;
} else {
if (sum[i - 1] == abs(sum[i - 1]))
sum[i] = -1;
else
sum[i] = 1;
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long a[100005], dp[100005];
cin >> n;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
dp[i] = sum;
}
long long diff = 0, ans = 0;
for (int i = 1; i < n; i++) {
if (dp[i] + diff == 0) {
if (dp[i - 1] + diff < 0) diff++, ans++;
if (dp[i - 1] + diff > 0) diff--, ans++;
continue;
}
if ((dp[i - 1] + diff) / abs(dp[i - 1] + diff) ==
(dp[i] + diff) / abs(dp[i] + diff)) {
if (dp[i] + diff >= 0) {
ans += abs(dp[i] + diff) + 1;
diff -= abs(dp[i] + diff) + 1;
} else {
ans += abs(dp[i] + diff) + 1;
diff += abs(dp[i] + diff) + 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int odd = 0, even = 0, sum, sign;
sum = 0;
sign = 1;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum == 0 || (sum > 0 && sign == 1) || (sum < 0 && sign == -1)) {
odd += abs(sum) + 1;
sum = -1 * sign;
}
sign *= -1;
}
sum = 0;
sign = -1;
for (int i = 0; i < n; i++) {
sum += a[i];
if (sum == 0 || (sum > 0 && sign == 1) || (sum < 0 && sign == -1)) {
even += abs(sum) + 1;
sum = -1 * sign;
}
sign *= -1;
}
cout << min(odd, even) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
import itertools
from collections import Counter
from collections import defaultdict
import bisect
from heapq import heappush, heappop
def main():
n = int(input())
a = list(map(int, input().split()))
ans = 10**10
cumulative = 0
count = 0
for i in range(len(a)):
cumulative += a[i]
if i % 2 == 0: # positive
if cumulative <= 0:
count += abs(cumulative) + 1
cumulative += (abs(cumulative) + 1)
else: # negative
if cumulative >= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
# print('count = {} c = {}'.format(count, cumulative))
ans = min(ans, count)
cumulative = 0
count = 0
for i in range(len(a)):
cumulative += a[i]
if i % 2 == 0: # negative
if cumulative >= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
else: # positive
if cumulative <= 0:
count += abs(cumulative) + 1
cumulative += (abs(cumulative) + 1)
# print('count = {} c = {}'.format(count, cumulative))
ans = min(ans, count)
print(ans)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("O3,no-stack-protector")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx")
using namespace std;
using Graph = vector<vector<int64_t>>;
const double pi = M_PI;
const int64_t MOD = 1000000007;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int64_t n;
cin >> n;
vector<int64_t> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int64_t ans = 0, tem = a[0];
if (tem == 0) {
if (0 <= a[1]) {
tem = -1;
ans++;
} else {
tem = 1;
ans++;
}
}
for (int i = 1; i < n; i++) {
if ((0 < tem + a[i] && tem < 0) || (tem + a[i] < 0 && 0 < tem)) {
tem += a[i];
} else {
if (0 <= tem + a[i] && 0 <= tem) {
ans += abs(-1 - (tem + a[i]));
tem = -1;
} else {
ans += abs(1 - (tem + a[i]));
tem = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int f(int isum, vector<int>& a, int n, int ans) {
for (int i = 1; i < n; i++) {
int temp = isum;
isum += a[i];
if (temp > 0) {
if (isum >= 0) {
ans += (1 + isum);
isum = -1;
}
} else if (temp < 0) {
if (isum <= 0) {
ans += (1 + abs(isum));
isum = 1;
}
}
}
return ans;
}
void solve() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int p = 1;
int ne = -1;
int pans = 1;
int nans = 1;
if (a[0] > 0) {
p = a[0];
nans = a[0] + 1;
pans--;
} else if (a[0] < 0) {
ne = a[0];
nans--;
pans = a[0] + 1;
}
cout << min(f(p, a, n, pans), f(ne, a, n, nans));
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int64_t sum_from1tok(vector<int> vec, int k) {
int64_t sum = 0;
for (int i = 0; i < (int)(k); i++) {
sum += vec.at(i);
}
return sum;
}
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) {
int num;
cin >> num;
a.at(i) = num;
}
int count = 0;
int64_t sum = a.at(0);
if (a.at(0) > 0) {
for (int i = 1; i < n; i++) {
sum += a.at(i);
if (i % 2 != 0) {
if (sum >= 0) {
count += abs(sum) + 1;
sum = -1;
}
} else {
if (sum <= 0) {
count += abs(sum) + 1;
sum = 1;
}
}
}
cout << count << endl;
} else if (a.at(0) < 0) {
for (int i = 1; i < n; i++) {
sum += a.at(i);
if (i % 2 != 0) {
if (sum <= 0) {
count += abs(sum) + 1;
sum = 1;
}
} else {
if (sum >= 0) {
count += abs(sum) + 1;
sum = -1;
}
}
}
cout << count << endl;
} else {
a.at(0) = 1;
int64_t seisum = 1;
int seicount = 1;
for (int i = 1; i < n; i++) {
seisum += a.at(i);
if (i % 2 != 0) {
if (seisum >= 0) {
seicount += abs(seisum) + 1;
seisum = -1;
}
} else {
if (seisum <= 0) {
seicount += abs(seisum) + 1;
seisum = 1;
}
}
cout << count << endl;
}
a.at(0) = -1;
int64_t fusum = -1;
int fucount = 1;
for (int i = 1; i < n; i++) {
fusum += a.at(i);
if (i % 2 != 0) {
if (fusum <= 0) {
fucount += abs(fusum) + 1;
fusum = 1;
}
} else {
if (fusum >= 0) {
fucount += abs(fusum) + 1;
fusum = -1;
}
}
}
cout << min(seisum, fusum) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = 1e9 + 7;
int n;
vector<ll> a;
ll cost(bool sign) {
ll cst = 0, rs = 0;
for (int i = 0; i < n; i++) {
rs += a[i];
if (rs == 0) {
ll x = sign ? 1 : -1;
cst += x;
rs += x;
} else {
if ((rs > 0) == true && !sign) {
cst += rs + 1;
rs = -1;
} else if ((rs > 0) == false && sign) {
cst += abs(rs) + 1;
rs = 1;
}
}
sign = !sign;
}
return cst;
}
int main() {
cin >> n;
a.resize(n);
for (ll &i : a) cin >> i;
ll ans = cost(true);
ans = min(ans, cost(false));
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
long long modinv(long long a, long long m) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
u %= m;
if (u < 0) u += m;
return u;
}
vector<pair<long long, long long>> prim;
void pf(long long n) {
long long s = sqrt(n);
long long r = 0;
for (long long i = 2; i <= s; i++) {
if ((n % i) == 0) {
r = 0;
do {
r++;
n = n / i;
} while ((n % i) == 0);
prim.push_back({i, r});
}
}
if (n > s) {
prim.push_back({n, 1});
}
}
void solve() {
long long N;
cin >> N;
vector<long long> a(N);
for (long long i = 0; i < (N); i++) cin >> a[i];
long long asum = 0;
long long ans = 0;
if (a[0] == 0) {
if (a[0] + a[1] > 0) {
a[0] = -1;
ans++;
} else {
a[0] = 1;
ans++;
}
}
asum = a[0];
cerr << a[0] << " ";
for (long long i = 1; i < N; i++) {
if (asum * (asum + a[i]) >= 0) {
long long nas = (asum > 0) ? -1 : 1;
long long na = nas - (asum);
ans += abs(a[i] - na);
a[i] = na;
}
asum += a[i];
cerr << a[i] << "(" << asum << ") ";
}
cerr << "\n";
cout << ans << endl;
}
int main(void) { solve(); }
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using i64 = long long;
using f80 = long double;
using vi32 = vector<int>;
using vi64 = vector<i64>;
using vf80 = vector<f80>;
using vstr = vector<string>;
inline void yes() {
cout << "Yes" << endl;
exit(0);
}
inline void no() {
cout << "No" << endl;
exit(0);
}
inline i64 gcd(i64 a, i64 b) {
if (min(a, b) == 0) return max(a, b);
if (a % b == 0) return b;
return gcd(b, a % b);
}
inline i64 lcm(i64 a, i64 b) {
if (min(a, b) == 0) return max(a, b);
return a / gcd(a, b) * b;
}
template <typename T>
class pqasc : public priority_queue<T, vector<T>, greater<T>> {};
template <typename T>
class pqdesc : public priority_queue<T, vector<T>, less<T>> {};
template <typename T>
inline void amax(T &x, T y) {
x = max(x, y);
}
template <typename T>
inline void amin(T &x, T y) {
x = min(x, y);
}
template <typename T>
inline T exp(T x, i64 n, T e = 1) {
T r = e;
while (n > 0) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &v) {
for (int i = 0; i < int(v.size()); i++) {
if (i) os << ' ';
os << v[i];
}
return os;
}
void solve();
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout << fixed << setprecision(16);
solve();
return 0;
}
void solve() {
int n;
cin >> n;
vi32 a(n);
cin >> a;
i64 ans = 1e18;
auto f = [&](int sum) -> i64 {
i64 cnt = 0;
for (int i = 1; i <= int(n - 1); i++) {
if (sum > 0) {
if (sum + a[i] >= 0) {
cnt += abs(sum + a[i]) + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (sum + a[i] <= 0) {
cnt += abs(sum + a[i]) + 1;
sum = 1;
} else {
sum += a[i];
}
}
}
return cnt;
};
if (a[0] == 0) {
amin(ans, f(1));
amin(ans, f(-1));
} else {
amin(ans, f(a[0]));
amin(ans, f(a[0] > 0 ? -1 : 1) + abs(a[0]) + 1);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, count = 0;
double a[100001], sum;
scanf("%d", &n);
for (i = 0; i < n; i++) {
scanf("%lf", &a[i]);
}
if (a[0] == 0) {
if (a[1] >= 0)
a[0]--;
else
a[0]++;
count++;
}
sum = a[0];
for (i = 1; i < n; i++) {
if (a[i] == 0) {
if (sum > 0) {
while (sum + a[i] >= 0) {
a[i]--;
count++;
}
} else {
while (sum + a[i] <= 0) {
a[i]++;
count++;
}
}
} else if (sum > 0) {
while (sum + a[i] >= 0) {
a[i]--;
count++;
}
} else if (sum < 0) {
while (sum + a[i] <= 0) {
a[i]++;
count++;
}
}
sum += a[i];
}
printf("%d\n", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(x) for x in input().split()]
def check(a, t):
ans = 0
x = 0
for i in a:
x += i
if t == True and x < 1:
ans += 1 - x
x = 1
elif t == False and x > -1:
ans += x + 1
x = -1
t = not t
return ans
print(min(chk(a, True), chk(a, False)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | /* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
class Main
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] input = new int[n];
int[] result = new int[n];
int even = 0;
int odd = 0;
boolean sign = true; //正=true, 負=false
for(int i = 0; i < n; i++) {
input[i] = sc.nextInt();
if(i % 2 == 0) {
even += input[i];
} else {
odd += input[i];
}
}
if(even > 0 && odd < 0) { //正負
sign = true;
} else if(even < 0 && odd > 0) { //負正
sign = false;
} else if(even > 0 && odd > 0) { //正正
if(even > odd) {
sign = true;
} else {
sign = false;
}
} else if(even < 0 && odd < 0) { //負負
if(even > odd) {
sign = false;
} else {
sign = true;
}
} else if(even == 0) {
if(odd < 0) {
sign = true;
} else {
sign = false;
}
} else if(odd == 0){
if(even > 0) {
sign = true;
} else {
sign = false;
}
}
//System.out.println(Arrays.toString(input));
//System.out.println(sign + "");
//System.out.println(counting(input, result, 0, 0, sign));
counting(input, result, 0, 0, sign);
}
public static void counting(int[] input, int[] result, int count, int index, boolean sign) {
if(index > 0) {
result[index] = result[index - 1] + input[index];
} else {
result[index] = input[index];
}
if(sign) {
if(result[index] <= 0) {
count += Math.abs(result[index]) + 1;
result[index] = result[index] + Math.abs(result[index]) + 1;
}
sign = false;
} else {
if(result[index] >= 0) {
count += Math.abs(result[index]) + 1;
result[index] = result[index] - Math.abs(result[index]) - 1;
}
sign = true;
}
if(index < result.length - 1) {
counting(input, result, count, index+1, sign);
} else {
System.out.println(count);
}
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
R = [0] * n
R[0] = A[0]
for i in range(1, n):
R[i] = R[i-1] + A[i]
# search
def solve(r, inc=0):
ans = 0
is_plus = (r[0] > 0)
for i in range(1, n):
if (is_plus and r[i]+inc >= 0) or (not is_plus and r[i]+inc <= 0):
ans += abs(r[i]+inc) + 1
if (r[i]+inc) > 0:
inc -= abs(r[i]+inc) + 1
else:
inc += abs(r[i]+inc) + 1
is_plus = (r[i]+inc > 0)
return ans
# normal
ret = solve(R, 0)
#print(R, ret)
# modify
is_plus = (R[0] > 0)
ans0 = abs(R[0]) + 1
if is_plus:
for i in range(n):
R[i] -= abs(R[0]) + 1
else:
for i in range(n):
R[i] += abs(R[0]) + 1
ret2 = ans0 + solve(R, 0)
#print(R, ret2)
print(min(ret, ret2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
sum = a[0]
cnt = 0
for i in range(1,n):
if sum>0:
if sum+a[i]>=0:
cnt+=abs(a[i]-1-sum)
sum = -1
else:
sum +=a[i]
else:
if sum+a[i]<=0:
cnt+=abs(a[i]-1-sum)
sum = 1
else:
sum+=a[i]
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
acc = [0] * n
acc[0] = A[0]
for i in range(1, n):
acc[i] = acc[i - 1] + A[i]
ans = 0
cur = acc[0]
x = 0
for i in range(1, n):
acc[i] += x
if cur > 0:
if acc[i] > 0:
ans += acc[i] + 1
x -= acc[i] + 1
acc[i] = -1
else:
if acc[i] < 0:
ans += abs(acc[i]) + 1
x += abs(acc[i]) + 1
acc[i] = 1
cur = acc[i]
if acc[n - 1] == 0:
ans += 1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | # main
n = gets.to_i
ary = gets.split(' ').map(&:to_i)
sum = ary[0]
cnt = 0
(1...n).each{ |i|
if sum < 0
sum += ary[i]
if sum <= 0
diff = -sum+1
cnt += diff
sum += diff
end
elsif sum > 0
sum += ary[i]
if sum >= 0
diff = sum+1
cnt += diff
sum -= diff
end
end
}
puts cnt |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, t = 0, sum = 0, count = 0, count2 = 0;
cin >> n;
int a[n];
cin >> a[0];
if (a[0] > 0) {
t = 1;
} else if (a[0] < 0) {
t = -1;
}
sum += a[0];
for (int i = 1; i < n; i++) {
cin >> a[i];
sum += a[i];
if (t == -1) {
while (sum <= 0) {
sum++;
count++;
}
t = 1;
} else if (t == 1) {
while (sum >= 0) {
sum--;
count++;
}
t = -1;
}
}
sum = 0;
if (a[0] > 0) {
t = 1;
} else {
t = -1;
}
for (int i = 0; i < n; i++) {
sum += a[i];
if (t == -1) {
while (sum <= 0) {
sum++;
count2++;
}
t = 1;
} else if (t == 1) {
while (sum >= 0) {
sum--;
count2++;
}
t = -1;
}
}
cout << min(count, count2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
unsigned long op = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
for (int i = 1; i < n; i++) {
if (a[i] == 0) {
continue;
} else if (a[i] > 0) {
if (i % 2 == 0) {
a[0] = 1;
} else {
a[0] = -1;
}
op = 1;
break;
} else {
if (i % 2 == 0) {
a[0] = -1;
} else {
a[0] = 1;
}
op = 1;
break;
}
}
if (op == 1) {
a[0] = 1;
op = 1;
}
}
long sum = a[0];
for (int i = 1; i < n; i++) {
if (sum > 0) {
if (sum + a[i] >= 0) {
op += abs(-1 - sum - a[i]);
sum = -1;
} else {
sum += a[i];
}
} else {
if (sum + a[i] <= 0) {
op += abs(1 - sum - a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
cout << op << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
const long long INF = 1e18;
const double pi = acos(-1.0);
int main(void) {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long ans, sum = 0, res1 = 0, res2 = 0;
for (int sign = 0; sign < (2); ++sign) {
for (int i = 0; i < (n); ++i) {
sum += a[i];
if ((i % 2 ^ sign) && sum >= 0) {
res1 += sum + 1;
sum = -1;
}
if (!(i % 2 ^ sign) && sum <= 0) {
res2 += abs(sum - 1);
sum = 1;
}
}
}
ans = min(res1, res2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const int MOD = 1000000007;
using namespace std;
int main() {
int n, a[100000], sum, ans = 0, m = 1;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] < 0) m = -1;
sum = a[0];
for (int i = 1; i < n; i++) {
m *= -1;
sum += a[i];
if (m > 0 && sum <= 0) {
ans += 1 - sum;
sum = 1;
}
if (m < 0 && sum >= 0) {
ans += 1 + sum;
sum = -1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define FOR(i,a,b) for(int i=(a);i<(b);i++)
#define VS vector<string>
#define ll long long int
#define debug(x) cout << x << " :" <<#x << endl
int main(void) {
int n;
cin >> n;
vector<ll> a(100001);
ll s;
REP(i,n) {
cin >{ s;
a[i] = s;
a[i] = s;
}
ll oddsum = 0, evensum = 0;
bool odd = true, even = false;
REP(i,n) {
oddsum += a[i];
evensum += a[i];
if(odd && oddsum <= 0) {
oddcount += 1 - oddsum;
oddsum = 1;
}
if(even && oddsum >= 0) {
oddcount += 1 + oddsum;
oddsum = -1;
}
if(even && evensum <= 0) {
evencount += 1 - evensum;
evensum = 1;
}
if(odd && evensum >= 0) {
evencount += 1 + evensum;
evensum = -1;
}
odd = !odd;
even = !even;
//debug(a[i]);
//debug(oddsum);
//debug(oddcount);
//debug(evensum);
//debug(evencount);
//cout << endl;
}
cout << fmin(oddcount, evencount) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt();
int sum = 0, ans = 0, ans2 = 0;
// 偶数位置までの和:正、奇数位置までの和:負
for(int i = 0 ; i < n ; i++) {
if(i % 2 == 0) {
if(sum + a[i] >= 0) {
ans += sum + a[i] + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if(sum + a[i] <= 0) {
ans += 1 - (sum + a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
sum = 0;
// 偶数位置までの和:正、奇数位置までの和:負
for(int i = 0 ; i < n ; i++) {
if(i % 2 == 1) {
if(sum + a[i] >= 0) {
ans2 += sum + a[i] + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if(sum + a[i] <= 0) {
ans2 += 1 - (sum + a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
System.out.println(Math.min(ans, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
c1 = 0
a0 = a[0]
if a0 == 0:
c1 += 1
a[0] = 1
sum = a[0]
for i in range(1, n):
if not (np.sign(sum) != np.sign(sum + a[i]) and sum + a[i] != 0):
if sum > 0:
c1 += a[i] + sum + 1
sum = -1
else:
c1 += -a[i] - sum + 1
sum = 1
else:
sum += a[i]
c2 = abs(a[0]) + 1
if a0 == 0:
c2 = 1
a[0] = 1
sum = - a[0]
for i in range(1, n):
if not (np.sign(sum) != np.sign(sum + a[i]) and sum + a[i] != 0):
if sum > 0:
c2 += a[i] + sum + 1
sum = -1
else:
c2 += -a[i] - sum + 1
sum = 1
else:
sum += a[i]
print(min(c1, c2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vpii = vector<pair<int, int>>;
using vpll = vector<pair<ll, ll>>;
int main(void) {
int N;
cin >> N;
vector<ll> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
ll ans = 0;
ll cur = A[0];
if (cur == 0) {
ans++;
int i = 1;
while (A[i] == 0 && i < N) i++;
if (i == N)
cur++;
else if (A[i] > 0 && i % 2 == 0)
cur++;
else if (A[i] > 0 && i % 2 == 1)
cur--;
else if (A[i] < 0 && i % 2 == 0)
cur--;
else
cur++;
}
for (int i = 1; i < N; i++) {
if (cur > 0 && cur + A[i] > 0) {
ans += abs(-1 - (cur + A[i]));
cur = -1;
} else if (cur > 0 && cur + A[i] == 0) {
ans++;
cur = -1;
} else if (cur < 0 && cur + A[i] == 0) {
ans++;
cur = 1;
} else if (cur < 0 && cur + A[i] < 0) {
ans += abs(1 - (cur + A[i]));
cur = 1;
} else
cur += A[i];
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long check(vector<long> a) {
long time = 0;
long pre_sum = a.at(0);
int n = a.size();
if (a.at(0) < 0) {
for (int i = 1; i < n; i++) {
long sum = pre_sum + a.at(i);
if (i % 2 == 1 && sum <= 0) {
time += abs(sum - 1);
sum = 1;
} else if (i % 2 == 0 && sum >= 0) {
time += abs(sum + 1);
sum = -1;
}
pre_sum = sum;
}
} else if (a.at(0) > 0) {
for (int i = 1; i < n; i++) {
long sum = pre_sum + a.at(i);
if (i % 2 == 0 && sum <= 0) {
time += abs(sum - 1);
sum = 1;
} else if (i % 2 == 1 && sum >= 0) {
time += abs(sum + 1);
sum = -1;
}
pre_sum = sum;
}
}
return time;
}
long zerocheck(vector<long> a) {
a.at(0) = 1;
long time1 = check(a) + 1;
a.at(0) = -1;
long time2 = check(a) + 1;
long time = min(time1, time2);
return time;
}
int main() {
int n;
cin >> n;
long time = 0;
vector<long> a(n);
for (auto& x : a) {
cin >> x;
}
if (a.at(0) == 0) {
time = zerocheck(a);
} else {
time = check(a);
}
cout << time << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MaxN = 1e5;
bool flag, ok;
long long sum, ans, anv, anw;
int n;
int a[MaxN + 5], b[MaxN + 5], c[MaxN + 5];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
c[i] = a[i];
}
sum = a[1];
if (a[1] < 0) flag = 1, ok = 1;
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + a[i] <= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = 1 - sum;
ans += (a[i] - t);
sum += a[i];
} else
sum += a[i];
flag = 0;
} else {
if (sum + a[i] >= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = -1 - sum;
ans += (t - a[i]);
sum += a[i];
} else
sum += a[i];
flag = 1;
}
}
int tr = b[1];
if (ok)
b[1] = 1, flag = 0;
else
b[1] = -1, flag = 1;
anv += (abs(b[1] - tr));
sum = b[1];
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + b[i] <= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = 1 - sum;
anv += (b[i] - t);
sum += b[i];
} else
sum += b[i];
flag = 0;
} else {
if (sum + b[i] >= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = -1 - sum;
anv += (t - b[i]);
sum += b[i];
} else
sum += b[i];
flag = 1;
}
}
int te = c[1];
if (!ok)
c[1] = 1, flag = 0;
else
c[1] = -1, flag = 1;
anw += (abs(c[1] - te));
sum = c[1];
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + c[i] <= 0) {
long long ant = sum + c[i];
int t = c[i];
c[i] = 1 - sum;
anw += (c[i] - t);
sum += c[i];
} else
sum += c[i];
flag = 0;
} else {
if (sum + c[i] >= 0) {
long long ant = sum + c[i];
int t = c[i];
c[i] = -1 - sum;
anw += (t - c[i]);
sum += c[i];
} else
sum += c[i];
flag = 1;
}
}
printf("%lld\n", min(ans, min(anv, anw)));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1LL << 60;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> A(n);
vector<int> B(n + 1);
vector<int> B2(n + 1);
B[0] = 0;
B2[0] = 0;
for (long long i = 0; i < n; i++) {
cin >> A[i];
B[i + 1] = A[i] + B[i];
B2[i + 1] = B[i + 1];
}
int sum_p = 0;
for (long long i = 1; i < n + 1; i++) {
int del = 0;
if (i % 2 && B[i] < 0) del = abs(B[i]) + 1;
if (i % 2 == 0 && B[i] > 0) del = -(B[i] + 1);
for (long long j = i; j < n + 1; j++) {
B[j] += del;
}
sum_p += abs(del);
}
int sum_m = 0;
for (long long i = 1; i < n + 1; i++) {
int del = 0;
if (i % 2 == 0 && B2[i] <= 0) del = abs(B2[i]) + 1;
if (i % 2 && B2[i] >= 0) del = -(B2[i] + 1);
for (long long j = i; j < n + 1; j++) {
B2[j] += del;
}
sum_m += abs(del);
}
cout << min(sum_p, sum_m) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long *a = new long[n];
for (int i = 0; i < n; i++) cin >> a[i];
int sum1 = a[0];
int sum2 = a[0];
int count1 = 0;
int count2 = 0;
if (a[0] >= 0) {
count2 = 1 + a[0];
sum2 = -1;
}
if (a[0] <= 0) {
count1 = 1 - a[0];
sum1 = 1;
}
for (int i = 1; i < n; i++) {
if (sum1 * (sum1 + a[i]) < 0) {
sum1 = sum1 + a[i];
} else {
if (sum1 > 0) {
count1 += abs(sum1 + 1 + a[i]);
sum1 = -1;
} else {
count1 += abs(a[i] + sum1 - 1);
sum1 = 1;
}
}
if (sum2 * (sum2 + a[i]) < 0) {
sum2 = sum2 + a[i];
} else {
if (sum2 > 0) {
count2 += abs(sum2 + 1 + a[i]);
sum2 = -1;
} else {
count2 += abs(a[i] + sum2 - 1);
sum2 = 1;
}
}
}
if (count1 < count2) {
cout << count1 << endl;
} else {
cout << count2 << endl;
}
cin >> n;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(a) for a in input().split()]
times = 0
previous = a[0]
for i in range(1, n):
if previous < 0:
if previous + a[i] > 0:
previous = previous + a[i]
else:
times += 1 - (previous + a[i])
previous = 1
elif previous > 0:
if previous + a[i] < 0:
previous = previous + a[i]
else:
times += abs(-1 - (previous + a[i]))
previous = -1
times2 = 0
if a[0] > 0:
times2 += abs(-1 - a[0])
previous = -1
else:
times2 += 1 - a[0]
previous = 1
for i in range(1, n):
if previous < 0:
if previous + a[i] > 0:
previous = previous + a[i]
else:
times2 += 1 - (previous + a[i])
previous = 1
elif previous > 0:
if previous + a[i] < 0:
previous = previous + a[i]
else:
times2 += abs(-1 - (previous + a[i]))
previous = -1
times3 = 0
if a[0] > 0:
times3 += abs(1 - a[0])
previous = 1
else:
times3 += -1 - a[0]
previous = -1
for i in range(1, n):
if previous < 0:
if previous + a[i] > 0:
previous = previous + a[i]
else:
times3 += 1 - (previous + a[i])
previous = 1
elif previous > 0:
if previous + a[i] < 0:
previous = previous + a[i]
else:
times3 += abs(-1 - (previous + a[i]))
previous = -1
print(min(times, times2, times3))
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.