Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using pii = pair<int, int>;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
long long sum = a[0], befsum = a[0];
long long ans = 0;
for (int i = 1; i < n; ++i) {
sum += a[i];
if (sum * befsum >= 0) {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum < 0) {
ans += -sum + 1;
sum = 1;
} else if (sum == 0) {
ans += 1;
if (befsum > 0)
sum = -1;
else
sum = 1;
}
}
befsum = sum;
}
long long tmp = abs(a[0]) + 1;
if (a[0] > 0) {
sum = -1;
befsum = -1;
} else {
sum = 1;
befsum = 1;
}
for (int i = 1; i < n; ++i) {
sum += a[i];
if (sum * befsum >= 0) {
if (sum > 0) {
tmp += abs(sum) + 1;
sum = -1;
} else if (sum < 0) {
tmp += abs(sum) + 1;
sum = 1;
} else if (sum == 0) {
tmp += 1;
if (befsum > 0)
sum = -1;
else
sum = 1;
}
}
befsum = sum;
}
ans = min(ans, tmp);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n, buf, ans;
int flg, flg1;
ans = 0;
buf = 0;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
buf += a[i];
if (i == 0) {
if (a[i] < 0) flg = -1;
if (a[i] > 0) flg = 1;
} else {
if (buf < 0) flg = -1;
if (buf > 0) flg = 1;
}
if (i != 0) {
if (flg == flg1) {
if (buf > 0) {
ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = -1;
flg = -1;
} else if (buf < 0) {
ans += ((buf) > 0 ? (buf) : (buf * -1)) + 1;
buf = 1;
flg = 1;
} else if (buf == 0) {
ans += 1;
if (flg1 == 1) flg = -1;
if (flg1 == -1) flg = 1;
}
}
}
flg1 = flg;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace AtCoder
{
class Code3
{
static void Main(string[] args)
{
string s1 = Console.ReadLine();
string s2 = Console.ReadLine();
Console.WriteLine(funcMain(s1,s2));
}
static private string funcMain(string arg1, string arg2)
{
long cnt = 0;
long ret = 0;
long ret1 = 0;
long ret2 = 0;
long sum = 0;
short sign = 0;
for (int i = 0; i <= 1; i++) // 0はそのまま、1は逆符号
{
cnt = sum = ret = 0;
foreach (string buf in arg2.Split())
{
cnt++;
if (cnt > long.Parse(arg1)) break;
if (sum == 0)
{
sum = long.Parse(buf);
if (sum >= 0)
sign = 1;
else
sign = -1;
if (i == 1)
{
ret += Math.Abs(sum) + 1;
sum = sign * -1;
sign *= -1;
}
}
else
{
sum += long.Parse(buf);
if ((sum * sign) >= 0)
{
ret += Math.Abs(sum) + 1;
sum = sign * -1;
}
sign *= -1;
}
}
if (i == 0)
ret1 = ret;
else
ret2 = ret;
}
ret = Math.Min(ret1, ret2);
return ret.ToString();
}
static private void test()
{
string arg1, arg2;
arg1 = "4";
arg2 = "1 -3 1 0";
Console.WriteLine("4" == funcMain(arg1, arg2));
arg1 = "5";
arg2 = "3 -6 4 -5 7";
Console.WriteLine("0" == funcMain(arg1, arg2));
arg1 = "6";
arg2 = "-1 4 3 2 -5 4";
Console.WriteLine("8" == funcMain(arg1, arg2));
arg1 = "6";
arg2 = "-1 -2 -3 -4 -5 -6";
Console.WriteLine("16" == funcMain(arg1, arg2));
arg1 = "3";
arg2 = "1 10 -100";
Console.WriteLine("2" == funcMain(arg1, arg2));
Console.ReadKey();
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
def sign(x) :
if x > 0 :
return 1
elif x < 0 :
return -1
else :
return 0
def calc() :
ret = 0
s = a[0]
for i in range(1, n) :
pre = sign(s)
cur = sign(s+a[i])
if pre == cur or cur == 0:
d = (abs(s) + 1) * pre * -1
ret += abs(d - a[i])
s = 1 * pre * -1
else :
s += a[i]
return ret
if a[0] == 0 :
a[0] = 1
s = calc()
a[1] = -1
t = calc()
print(min(s, t) + 1)
else :
print(calc()) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) cin >> v.at(i);
int sum1 = 0, ans1 = 0;
for (int i = 0; i < n; i++) {
sum1 += v.at(i);
if (i % 2 == 0) {
if (sum1 <= 0) {
ans1 += 1 - sum1;
sum1 += 1 - sum1;
}
} else {
if (sum1 >= 0) {
ans1 += 1 + sum1;
sum1 -= 1 + sum1;
}
}
}
int sum2 = 0, ans2 = 0;
for (int i = 0; i < n; i++) {
sum2 += v.at(i);
if (i % 2 == 0) {
if (sum2 >= 0) {
ans2 += 1 + sum2;
sum2 -= 1 + sum2;
}
} else {
if (sum2 <= 0) {
ans2 += 1 - sum2;
sum2 += 1 - sum2;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using P = pair<long long, long long>;
const int dx[]{0, 1, 0, -1, -1, -1, 1, 1}, dy[]{1, 0, -1, 0, -1, 1, -1, 1};
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
int N;
cin >> N;
;
vector<long long> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
;
long long cnt = 0;
long long ans1 = 0;
long long ans2 = 0;
long long sum = 0;
for (int i = 0; i < N; i++) {
sum += A[i];
A[i] = sum;
}
vector<long long> B = A;
for (int i = 0; i < N - 1; i++) {
A[i + 1] += cnt;
if (i % 2 == 0) {
if (A[i] < A[i + 1] && (A[i] >= 0 || A[i + 1] <= 0)) {
if (abs(A[i] - (-1)) > abs(A[i + 1] - 1)) {
ans1 += abs(A[i + 1] - 1);
cnt += 1 - A[i + 1];
A[i + 1] = 1;
} else {
ans1 += abs(A[i] - (-1));
cnt += -1 - A[i];
A[i + 1] += -1 - A[i];
A[i] = -1;
}
} else if (A[i] >= A[i + 1]) {
ans1 += abs(A[i] - (-1));
cnt += -1 - A[i];
A[i + 1] += -1 - A[i];
A[i] = -1;
ans1 += abs(A[i + 1] - 1);
cnt += 1 - A[i + 1];
A[i + 1] = 1;
}
} else {
if (A[i] > A[i + 1] && (A[i] <= 0 || A[i + 1] >= 0)) {
if (abs(A[i + 1] - (-1)) > abs(A[i] - 1)) {
ans1 += abs(A[i] - 1);
cnt += 1 - A[i];
A[i + 1] += 1 - A[i];
A[i] = 1;
} else {
ans1 += abs(A[i + 1] - (-1));
cnt += -1 - A[i + 1];
A[i + 1] = -1;
}
} else if (A[i] <= A[i + 1]) {
ans1 += abs(A[i] - 1);
cnt += 1 - A[i];
A[i + 1] += 1 - A[i];
A[i] = 1;
ans1 += abs(A[i + 1] - (-1));
cnt += -1 - A[i + 1];
A[i + 1] = -1;
}
}
}
cnt = 0;
for (int i = 0; i < N - 1; i++) {
B[i + 1] += cnt;
if (i % 2 == 1) {
if (B[i] < B[i + 1] && (B[i] >= 0 || B[i + 1] <= 0)) {
if (abs(B[i] - (-1)) > abs(B[i + 1] - 1)) {
ans2 += abs(B[i + 1] - 1);
cnt += 1 - B[i + 1];
B[i + 1] = 1;
} else {
ans2 += abs(B[i] - (-1));
cnt += -1 - B[i];
B[i + 1] += -1 - B[i];
B[i] = -1;
}
} else if (B[i] >= B[i + 1]) {
ans2 += abs(B[i] - (-1));
cnt += -1 - B[i];
B[i + 1] += -1 - B[i];
B[i] = -1;
ans2 += abs(B[i + 1] - 1);
cnt += 1 - B[i + 1];
B[i + 1] = 1;
}
} else {
if (B[i] > B[i + 1] && (B[i] <= 0 || B[i + 1] >= 0)) {
if (abs(B[i + 1] - (-1)) > abs(B[i] - 1)) {
ans2 += abs(B[i] - 1);
cnt += 1 - B[i];
B[i + 1] += 1 - B[i];
B[i] = 1;
} else {
ans2 += abs(B[i + 1] - (-1));
cnt += -1 - B[i + 1];
B[i + 1] = -1;
}
} else if (B[i] <= B[i + 1]) {
ans2 += abs(B[i] - 1);
cnt += 1 - B[i];
B[i + 1] += 1 - B[i];
B[i] = 1;
ans2 += abs(B[i + 1] - (-1));
cnt += -1 - B[i + 1];
B[i + 1] += -1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T1, class T2>
bool chmin(T1 &a, T2 b) {
return b < a && (a = b, true);
}
template <class T1, class T2>
bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using P = pair<ll, ll>;
using ld = long double;
using vld = vector<ld>;
using vi = vector<int>;
using vvi = vector<vi>;
vll conv(vi &v) {
vll r(v.size());
for (long long i = 0; i < (long long)(v.size()); i++) r[i] = v[i];
return r;
}
inline void input(int &v) {
v = 0;
char c = 0;
int p = 1;
while (c < '0' || c > '9') {
if (c == '-') p = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
v = (v << 3) + (v << 1) + c - '0';
c = getchar();
}
v *= p;
}
template <typename T, typename U>
ostream &operator<<(ostream &o, const pair<T, U> &v) {
o << "(" << v.first << ", " << v.second << ")";
return o;
}
template <size_t...>
struct seq {};
template <size_t N, size_t... Is>
struct gen_seq : gen_seq<N - 1, N - 1, Is...> {};
template <size_t... Is>
struct gen_seq<0, Is...> : seq<Is...> {};
template <class Ch, class Tr, class Tuple, size_t... Is>
void print_tuple(basic_ostream<Ch, Tr> &os, Tuple const &t, seq<Is...>) {
using s = int[];
(void)s{0, (void(os << (Is == 0 ? "" : ", ") << get<Is>(t)), 0)...};
}
template <class Ch, class Tr, class... Args>
auto operator<<(basic_ostream<Ch, Tr> &os, tuple<Args...> const &t)
-> basic_ostream<Ch, Tr> & {
os << "(";
print_tuple(os, t, gen_seq<sizeof...(Args)>());
return os << ")";
}
ostream &operator<<(ostream &o, const vvll &v) {
for (long long i = 0; i < (long long)(v.size()); i++) {
for (long long j = 0; j < (long long)(v[i].size()); j++)
o << v[i][j] << " ";
o << endl;
}
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const vector<T> &v) {
o << '[';
for (long long i = 0; i < (long long)(v.size()); i++)
o << v[i] << (i != v.size() - 1 ? ", " : "");
o << "]";
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const deque<T> &v) {
o << '[';
for (long long i = 0; i < (long long)(v.size()); i++)
o << v[i] << (i != v.size() - 1 ? ", " : "");
o << "]";
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const set<T> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++)
o << *it << (next(it) != m.end() ? ", " : "");
o << "]";
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const unordered_set<T> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++)
o << *it << (next(it) != m.end() ? ", " : "");
o << "]";
return o;
}
template <typename T, typename U>
ostream &operator<<(ostream &o, const map<T, U> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++)
o << *it << (next(it) != m.end() ? ", " : "");
o << "]";
return o;
}
template <typename T, typename U, typename V>
ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++) o << *it;
o << "]";
return o;
}
vector<int> range(const int x, const int y) {
vector<int> v(y - x + 1);
iota(v.begin(), v.end(), x);
return v;
}
template <typename T>
istream &operator>>(istream &i, vector<T> &o) {
for (long long j = 0; j < (long long)(o.size()); j++) i >> o[j];
return i;
}
template <typename T, typename S, typename U>
ostream &operator<<(ostream &o, const priority_queue<T, S, U> &v) {
auto tmp = v;
while (tmp.size()) {
auto x = tmp.top();
tmp.pop();
o << x << " ";
}
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const queue<T> &v) {
auto tmp = v;
while (tmp.size()) {
auto x = tmp.front();
tmp.pop();
o << x << " ";
}
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const stack<T> &v) {
auto tmp = v;
while (tmp.size()) {
auto x = tmp.top();
tmp.pop();
o << x << " ";
}
return o;
}
template <typename T>
unordered_map<T, ll> counter(vector<T> vec) {
unordered_map<T, ll> ret;
for (auto &&x : vec) ret[x]++;
return ret;
};
string substr(string s, P x) { return s.substr(x.first, x.second - x.first); }
void vizGraph(vvll &g, int mode = 0, string filename = "out.png") {
ofstream ofs("./out.dot");
ofs << "digraph graph_name {" << endl;
set<P> memo;
for (long long i = 0; i < (long long)(g.size()); i++)
for (long long j = 0; j < (long long)(g[i].size()); j++) {
if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i))))
continue;
memo.insert(P(i, g[i][j]));
ofs << " " << i << " -> " << g[i][j]
<< (mode ? " [arrowhead = none]" : "") << endl;
}
ofs << "}" << endl;
ofs.close();
system(((string) "dot -T png out.dot >" + filename).c_str());
}
size_t random_seed;
namespace std {
using argument_type = P;
template <>
struct hash<argument_type> {
size_t operator()(argument_type const &x) const {
size_t seed = random_seed;
seed ^= hash<ll>{}(x.first);
seed ^= (hash<ll>{}(x.second) << 1);
return seed;
}
};
}; // namespace std
int main() {
int n, a[100100];
cin >> n;
int total = 0;
int pcount = 0;
int mcount = 0;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
for (int i = 0; i < n; ++i) {
total += a[i];
if (i % 2 == 1) {
if (total >= 0) {
pcount += total + 1;
total = -1;
}
} else {
if (total <= 0) {
pcount += abs(total) + 1;
total = 1;
}
}
}
if (total == 0) ++pcount;
total = 0;
for (int i = 0; i < n; ++i) {
total += a[i];
if (i % 2 == 0) {
if (total >= 0) {
mcount += total + 1;
total = -1;
}
} else {
if (total <= 0) {
mcount += abs(total) + 1;
total = 1;
}
}
}
cerr << pcount << mcount << endl;
if (total == 0) ++mcount;
if (pcount > mcount)
cout << mcount << endl;
else
cout << pcount << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
b = [a[0]]
su = 0
for i in range(n-1):
b.append(b[-1]+a[1+i])
if b[-1] * b[-2] > 0:
su += abs(b[-1]) + 1
if b[-2] > 0:
b[-1] = -1
else:
b[-1] = 1
else:
if b[-1] == 0:
su += 1
if b[-2] > 0:
b[-1] = -1
else:
b[-1] = 1
print(su) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using VI = vector<int>;
using VVI = vector<VI>;
using VB = vector<bool>;
using VVB = vector<VB>;
using VS = vector<string>;
using PII = pair<int, int>;
using VPII = vector<PII>;
using VL = vector<long long>;
using VVL = vector<VL>;
int n;
VI A;
long long numoperations() {
long long ret = (A[0] == 0) ? 1 : 0;
long long sum = (A[0] == 0) ? 1 : A[0];
for (int i = 1; i < (int)n; ++i) {
long long prevsum = sum;
sum += A[i];
if (prevsum > 0 && sum >= 0) {
ret += abs(-1 - sum);
sum = -1;
} else if (prevsum < 0 && sum <= 0) {
ret += 1 - sum;
sum = 1;
}
}
return ret;
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
cin >> n;
A = VI(n);
for (int i = 0; i < (int)n; ++i) cin >> A[i];
cout << numoperations() << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
s=0
l=a[0]
if l==0:
s+=1
if a[1]<=0:
l=1
else:
l=-1
for i in range(n-1):
r=l+a[i+1]
if r*l>=0:
if l<=0:
s+=1-r
r=1
else:
s+=1+r
r=-1
l=r
print(s) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a_list = [int(i) for i in input().split(' ')]
total = a_list[0]
pre_total = 0
counter = 0
if total == 0:
total = -1*a_list[1]/abs(a_list[1])
for a in a_list[1:]:
pre_total = total
total += a
if pre_total>0 and total>=0:
counter += total+1
total = -1
elif pre_total<0 and total<=0:
counter += abs(total)+1
total = 1
else:
pass
print(counter) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
now=a[0]
if now==0:
c=1
flag=1
for i in range(1,n):
if not a[i]==0:
flag=abs(a[i])//a[i]
#print(flag)
if i%2==1:
flag*=-1
now=flag
else:
flag=abs(a[0])//a[0]
c=0
#print(c,now,flag)
for i in range(1,n):
tmp=now+a[i]
if not tmp*flag<0:
c+=abs(flag*-1-tmp)
now=flag*-1
else:
now=tmp
flag*=-1
#print(c,now,flag)
print(0) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int d[n];
for (int i = 0; i < n; i++) {
cin >> d[i];
}
int count = 0;
int sum = d[0];
int f = 0;
if (d[0] > 0) {
f = -1;
}
if (d[0] < 0) {
f = 1;
}
for (int i = 1; i < n; i++) {
sum += d[i];
if (sum == 0) {
if (f == 1) {
count++;
f = -1;
continue;
}
if (f == -1) {
count++;
f = 1;
continue;
}
}
if (sum > 0) {
if (f == 1) {
f = -1;
continue;
}
if (f == -1) {
count += sum + 1;
sum = -1;
f = 1;
continue;
}
}
if (sum < 0) {
if (f == -1) {
f = 1;
continue;
}
if (f == 1) {
count += 1 - sum;
sum = 1;
f = -1;
continue;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long cal(long long b0, int n, long long* a, long long ans) {
long long b[n];
b[0] = b0;
for (int i = 1; i < n; i++) {
b[i] = b[i - 1] + a[i];
if (b[i] == 0) {
ans++;
b[i] = -1 * b[i - 1] / abs(b[i - 1]);
}
if (a[i] * b[i - 1] > 0 || (abs(a[i]) - abs(b[i - 1])) < 0) {
ans += abs(a[i] + b[i - 1]) + 1;
b[i] = -1 * b[i - 1] / abs(b[i - 1]);
}
}
return ans;
}
int main() {
int n;
cin >> n;
long long a[n], ans = 0;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] != 0) {
cout << cal(a[0], n, a, ans) << endl;
} else {
ans++;
cout << (cal(1, n, a, ans) < cal(-1, n, a, ans) ? cal(1, n, a, ans)
: cal(-1, n, a, ans))
<< endl;
return 0;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long ans = 0;
if (a[0] == 0) {
sum = 1;
ans++;
}
for (int i = 1; i < n; i++) {
long long sum1 = sum + a[i];
if (sum1 == 0 || sum / abs(sum) == sum1 / abs(sum1)) {
ans += abs(sum1 + sum / abs(sum));
sum1 = sum / abs(sum) * -1;
}
sum = sum1;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = input()
b = input().split()
a = [int(b[i]) for i in range(len(b))]
def check(a):
sum = 0
for i in range(len(a)):
if(i == 0):
sum += a[0]
continue
if(sum > 0):
sum += a[i]
if(a[i] == 0 or sum >= 0):
return (i, -1)
else:
sum += a[i]
if(a[i] == 0 or sum <= 0):
return (i, +1)
return True
ans = 0
while(True):
c = check(a)
if(c == True):
break
a[c[0]] += c[1]
ans += 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n + 1, 0);
for (long long &x : a) cin >> x;
long long ans_1 = 0, ans = 0;
long long sum_1 = a[0], sum = a[0];
for (int i = 1; i < n; i++) {
sum_1 += a[i];
if (i % 2 == 1) {
while (sum_1 >= 0) {
sum_1--;
ans_1++;
}
}
if (i % 2 == 0) {
while (sum_1 <= 0) {
sum_1++;
ans_1++;
}
}
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
while (sum <= 0) {
sum++;
ans++;
}
}
if (i % 2 == 0) {
while (sum >= 0) {
sum--;
ans++;
}
}
}
cout << min(ans_1, ans) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long sum1 = 0;
long sum2 = 0;
long tmp;
long count = 0;
int a[100000];
char input[2000000];
int i = 0, j = 0;
int cp = 0, tcp = 0;
char tp[12];
tp[12] = '\0';
fgets(input, 2000000, stdin);
n = atoi(input);
fgets(input, 2000000, stdin);
for (i = 0; i < n; i++) {
while (input[cp] != ' ' && input[cp] != '\n') {
tp[tcp] = input[cp];
tcp++;
cp++;
}
tp[tcp] = '\0';
tcp = 0;
cp++;
a[i] = atoi(tp);
}
for (i = 0; i < n; i++) {
if (i % 2 == 0)
sum2 += a[i];
else
sum1 += a[i];
}
tmp = a[0];
if (sum1 == sum2) {
if (a[0] < 0) {
sum1++;
} else {
sum2++;
}
}
for (i = 1; i < n; i++) {
if (sum1 > sum2) {
if (i % 2 == 0) {
tmp += a[i];
while (tmp > -1) {
count++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
count++;
tmp++;
}
}
} else if (sum2 > sum1) {
if (i % 2 == 1) {
tmp += a[i];
while (tmp > -1) {
count++;
tmp--;
}
} else {
tmp += a[i];
while (tmp < 1) {
count++;
tmp++;
}
}
}
}
printf("%ld\n", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(ai) for ai in input().split()]
count = 0
a_sum = 0
for i, ai in enumerate(a):
if i == 0:
a_sum += ai
else:
tmp_sum = a_sum
tmp_sum += ai
if tmp_sum < 0 and a_sum < 0:
c = abs(tmp_sum) + 1
elif tmp_sum > 0 and a_sum > 0:
c = -abs(tmp_sum) - 1
elif tmp_sum == 0 and a_sum < 0:
c = 1
elif tmp_sum == 0 and a_sum > 0:
c = -1
else:
c = 0
count += abs(c)
a_sum = tmp_sum + c
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool amax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool amin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
struct aaa {
aaa() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
};
} aaaaaaa;
const int INF = 1001001001;
const long long LINF = 1001001001001001001ll;
const int MOD = 1e9 + 7;
const double EPS = 1e-9;
const int dx[] = {1, 1, 0, -1, -1, -1, 0, 1},
dy[] = {0, 1, 1, 1, 0, -1, -1, -1};
signed main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0, i_len = n; i < i_len; ++i) {
cin >> a.at(i);
}
int cnt{};
int cnt2{};
int sum = 0;
for (int i = 0, i_len = n; i < i_len; ++i) {
sum += a.at(i);
if (i % 2 != 0) {
if (sum <= 0) {
cnt += abs(1 - sum);
sum = 1;
}
} else {
if (sum >= 0) {
cnt += abs(sum + 1);
sum = -1;
}
}
}
sum = 0;
for (auto i = 0; i != n; ++i) {
sum += a.at(i);
if (i % 2 == 0) {
if (sum <= 0) {
cnt2 += abs(1 - sum);
sum = 1;
}
} else {
if (sum >= 0) {
cnt2 += abs(sum + 1);
sum = -1;
}
}
}
cout << min(cnt, cnt2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<ll> a(n);
vector<ll> A(n);
for (int i = 0; i < (int)(n); i++) {
cin >> a[i];
}
ll cnt = 0;
for (int j = 0; j < (int)(n); j++) {
A[j] += a[j];
if (a[0] == 0) {
cnt++;
a[0]++;
}
if (a[0] > 0) {
cnt += a[0] + 1;
for (int i = 2; i < n; i++) {
if (i % 2 == 0) {
cnt += abs(a[i] - 2);
} else {
cnt += abs(a[i] + 2);
}
}
}
if (a[0] < 0) {
cnt += -a[0] + 1;
for (int i = 2; i < n; i++) {
if (i % 2 == 0) {
cnt += abs(a[i] + 2);
} else {
cnt += abs(a[i] - 2);
}
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9 + 10;
int dx[5] = {0, 0, 1, -1, 0}, dy[5] = {1, -1, 0, 0, 0};
const double EPS = 1e-10;
bool cmp(pair<int, int> a, pair<int, int> b) { return a.second < b.second; }
int n;
int a[100010];
long long ans = INF;
long long solve(int a[], int x, int y) {
long long sum = 0, cnt = 0, res = INF;
for (int i = 0; i < n; i++) {
if (sum + a[i] == 0) {
(a[i] >= 0 ? a[i]++ : a[i]--);
cnt++;
}
sum += a[i];
if (i % 2 == x && sum < 0) {
cnt += abs(sum) + 1;
sum = 1;
}
if (i % 2 == y && sum > 0) {
cnt += abs(sum) + 1;
sum = -1;
}
}
res = min(res, cnt);
return res;
}
int main(void) {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
ans = min(solve(a, 0, 1), solve(a, 1, 0));
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
long long b[n];
long long c[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
c[i] = a[i];
}
long long ans1 = 0;
long long ans2 = b[0] - 1;
long long ans3 = c[0] + 1;
b[0] = 1;
c[0] = -1;
for (int i = 1; i < n; i++) {
a[i] += a[i - 1];
if (a[i] >= 0 && a[i - 1] > 0) {
ans1 += abs(a[i] + 1);
a[i] = -1;
} else if (a[i] <= 0 && a[i - 1] < 0) {
ans1 += abs(a[i] - 1);
a[i] = 1;
}
}
for (int i = 1; i < n; i++) {
b[i] += b[i - 1];
if (b[i] >= 0 && b[i - 1] > 0) {
ans2 += abs(b[i] + 1);
b[i] = -1;
} else if (b[i] <= 0 && b[i - 1] < 0) {
ans2 += abs(b[i] - 1);
b[i] = 1;
}
}
for (int i = 1; i < n; i++) {
c[i] += c[i - 1];
if (c[i] >= 0 && c[i - 1] > 0) {
ans3 += abs(c[i] + 1);
c[i] = -1;
} else if (c[i] <= 0 && c[i - 1] < 0) {
ans3 += abs(c[i] - 1);
c[i] = 1;
}
}
if (a[0] == 0) {
cout << min(ans2, ans3) << endl;
} else {
cout << min(ans1, min(ans2, ans3)) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
}
template <class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
}
template <class T>
inline T sqr(T x) {
return x * x;
}
const double EPS = 1e-10;
const double PI = acos(-1.0);
pair<long long, long long> maxP(vector<long long> a, long long size) {
pair<long long, long long> p;
long long Max = a[0];
long long place = 0;
for (int i = (0); i < (size); ++i) {
if (a[i] > Max) {
Max = a[i];
place = i;
}
}
p.first = Max;
p.second = place;
return p;
}
pair<long long, long long> minP(vector<long long> a, long long size) {
pair<long long, long long> p;
long long min = a[0];
long long place = 0;
for (int i = (0); i < (size); ++i) {
if (a[i] < min) {
min = a[i];
place = i;
}
}
p.first = min;
p.second = place;
return p;
}
long long sumL(vector<long long> a, long long size) {
long long sum = 0;
for (int i = (0); i < (size); ++i) {
sum += a[i];
}
return sum;
}
long long counT(vector<long long> a, long long t) {
sort(a.begin(), a.end());
return upper_bound(a.begin(), a.end(), t) -
lower_bound(a.begin(), a.end(), t);
}
long long DIV[1000 + 1][1000 + 1];
void divide(long long n, long long m) {
DIV[0][0] = 1;
for (int i = (1); i < (n + 1); ++i) {
DIV[i][0] = 0;
}
for (int i = (0); i < (n + 1); ++i) {
DIV[i][1] = 1;
}
for (int i = (1); i < (m + 1); ++i) {
for (int t = (0); t < (n + 1); ++t) {
if (DIV[t][i] > 0) continue;
if (t >= i) {
DIV[t][i] = DIV[t - i][i] + DIV[t][i - 1];
} else {
DIV[t][i] = DIV[t][i - 1];
}
}
}
}
bool IsPrime(int num) {
if (num < 2)
return false;
else if (num == 2)
return true;
else if (num % 2 == 0)
return false;
double sqrtNum = sqrt(num);
for (int i = 3; i <= sqrtNum; i += 2) {
if (num % i == 0) {
return false;
}
}
return true;
}
class UnionFind {
public:
vector<long long> par;
vector<long long> rank;
UnionFind(long long N) : par(N), rank(N) {
for (int i = (0); i < (N); ++i) par[i] = i;
for (int i = (0); i < (N); ++i) rank[i] = 0;
}
~UnionFind() {}
long long root(long long x) {
if (par[x] == x)
return x;
else {
par[x] = root(par[x]);
return par[x];
}
}
void unite(long long x, long long y) {
long long rx = root(x);
long long ry = root(y);
if (rx == ry) return;
if (rank[rx] < rank[ry]) {
par[rx] = ry;
} else {
par[ry] = rx;
if (rank[rx] == rank[ry]) {
rank[rx]++;
}
}
}
bool same(long long x, long long y) {
long long rx = root(x);
long long ry = root(y);
return rx == ry;
}
};
class BFS_shortestDistance {
public:
BFS_shortestDistance(vector<vector<char> > p_, long long h_, long long w_) {
p = p_;
h = h_;
w = w_;
initial_number = h * w * 2;
for (int i = (0); i < (h); ++i) {
vector<long long> k(w);
for (int t = (0); t < (w); ++t) k[t] = initial_number;
field.push_back(k);
}
}
vector<vector<char> > p;
long long h;
long long w;
long long initial_number;
vector<vector<long long> > field;
pair<long long, long long> plus(pair<long long, long long> &a,
pair<long long, long long> &b) {
pair<long long, long long> p;
p.first = a.first + b.first;
p.second = a.second + b.second;
return p;
}
bool equal(pair<long long, long long> &a, pair<long long, long long> &b) {
return (a.first == b.first && a.second == b.second);
}
bool is_in_field(int h, int w, const pair<long long, long long> &point) {
const int c = point.second;
const int r = point.first;
return (0 <= c && c < w) && (0 <= r && r < h);
}
void init() {
for (int i = (0); i < (field.size()); ++i) {
for (int t = (0); t < (field[i].size()); ++t) {
field[i][t] = initial_number;
}
}
}
void shortest(long long sy, long long sx) {
init();
pair<long long, long long> c[4];
c[0].first = 0;
c[0].second = 1;
c[1].first = 0;
c[1].second = -1;
c[2].first = 1;
c[2].second = 0;
c[3].first = -1;
c[3].second = 0;
queue<pair<long long, long long> > Q;
pair<long long, long long> s;
s.first = sy;
s.second = sx;
field[sy][sx] = 0;
Q.push(s);
while (Q.empty() == false) {
pair<long long, long long> now = Q.front();
Q.pop();
for (int u = 0; u < 4; u++) {
pair<long long, long long> x = c[u];
pair<long long, long long> next = plus(now, x);
if (is_in_field(h, w, next)) {
if (p[next.first][next.second] == '.') {
if (field[next.first][next.second] == initial_number) {
field[next.first][next.second] = field[now.first][now.second] + 1;
Q.push(next);
} else {
}
}
}
}
}
}
};
bool Ischanged(long long a, long long b) {
if (a * b < 0) {
return true;
} else {
return false;
}
}
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = (0); i < (n); ++i) cin >> a[i];
long long sum = 0;
long long count = 0;
for (int i = (0); i < (n); ++i) {
if (i == 0) {
sum += a[i];
if (sum == 0 && n != 1) {
if (a[1] >= 0) {
sum = -1;
} else {
sum = 1;
}
count++;
} else if (sum == 0 && n == 1) {
count++;
}
} else {
long long was = sum;
sum += a[i];
if (Ischanged(was, sum)) {
continue;
} else {
if (sum < 0) {
count += abs(sum) + 1;
sum = 1;
} else if (sum > 0) {
count += abs(sum) + 1;
sum = -1;
} else {
if (was < 0) {
sum = 1;
} else {
sum = -1;
}
count++;
}
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
cin >> n;
vector<long> a(n + 1);
vector<long> b(n + 1);
for (long i = 1; i <= n; i++) cin >> a.at(i);
for (long i = 1; i <= n; i++) b.at(i) = a.at(i);
long ans = 0;
long anst = 0;
if (a.at(1) != 0) {
for (long i = 1; i <= n - 1; i++) {
if (abs(a.at(i + 1)) > abs(a.at(i)) && a.at(i + 1) * a.at(i) < 0) {
a.at(i + 1) += a.at(i);
} else {
ans += abs(a.at(i + 1) -
((abs(a.at(i)) + 1) * (-1) * a.at(i) / abs(a.at(i))));
a.at(i + 1) = (-1) * a.at(i) / abs(a.at(i));
}
}
} else {
b.at(1) = 1;
anst = 1;
for (long i = 1; i <= n - 1; i++) {
if (abs(b.at(i + 1)) > abs(b.at(i)) && b.at(i + 1) * b.at(i) < 0) {
b.at(i + 1) += b.at(i);
} else {
anst += abs(b.at(i + 1) -
((abs(b.at(i)) + 1) * (-1) * b.at(i) / abs(b.at(i))));
b.at(i + 1) = (-1) * b.at(i) / abs(b.at(i));
}
}
a.at(1) = -1;
ans = 1;
for (long i = 1; i <= n - 1; i++) {
if (abs(a.at(i + 1)) > abs(a.at(i)) && a.at(i + 1) * a.at(i) < 0) {
a.at(i + 1) += a.at(i);
} else {
ans += abs(a.at(i + 1) -
((abs(a.at(i)) + 1) * (-1) * a.at(i) / abs(a.at(i))));
a.at(i + 1) = (-1) * a.at(i) / abs(a.at(i));
}
}
ans = min(ans, anst);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int,input().split()))
sum_odd = sum(a[1::2])
sum_eve = sum(a[::2])
ans = 0
sum_a = 0
if sum_odd >= sum_eve:#奇数の和がおおきいので、偶数 0,2,4...を負にする
for i in range(n):
sum_a = sum_a + a[i]
if sum_a *(-1)**(i+1) < 1:
kari = 1-sum_a *(-1)**(i+1)
a[i] += 1*(-1)**(i+1) *(kari)
sum_a += 1*(-1)**(i+1) *(kari)
ans = ans + abs(kari)
else:
for i in range(n):
sum_a = sum_a + a[i]
if sum_a *(-1)**(i) < 1:
kari = (1-sum_a *(-1)**(i))
a[i] += 1*(-1)**(i) * kari
sum_a += 1*(-1)**(i) * kari
ans = ans + abs(kari)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!/usr/bin/env python3
import sys
def solve(n: int, a: "List[int]"):
def _solve():
from itertools import cycle
ab = 0
for aa in map(lambda a_o: a_o[0]*a_o[1], zip(a, cycle([1, -1] if a[0] > 0 else [-1, 1]))):
ab -= aa
if ab >= 0:
yield ab + 1
ab = -1
ab = abs(ab)
return sum(_solve())
# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools (tips: You use the default template now. You can remove this line by using your custom template)
def main():
def iterate_tokens():
for line in sys.stdin:
for word in line.split():
yield word
tokens = iterate_tokens()
n = int(next(tokens)) # type: int
a = [int(next(tokens)) for _ in range(n)] # type: "List[int]"
print(solve(n, a))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
using namespace std;
long long gcd(long long a, long long b) {
if (a < b) swap(a, b);
if (b == 0) return a;
return gcd(b, a % b);
}
long long lcm(long long a, long long b) {
long long g = gcd(a, b);
return a / g * b;
}
bool prime(long long n) {
for (long long i = 2; i <= sqrt(n); i++) {
if (n % i == 0) return false;
}
return n != 1;
}
const long long MOD = 1000000007;
const long long INF = 1e17;
signed main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < (n); i++) cin >> a[i];
long long ans = 0;
long long ans2 = 0;
long long sum = 0;
for (long long i = 0; i < (n); i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
}
}
sum = 0;
for (long long i = 0; i < (n); i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum <= 0) {
ans += 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
}
}
cout << (min(ans, ans2)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool DifSign(int a, int b) {
if (a == 0 || b == 0) return false;
return ((a > 0 && b < 0) || (a < 0 && b > 0));
}
int main() {
int N;
int ans = 0;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
if (!DifSign(A[0], A[0] + A[1])) {
if (A[0] >= 0 && A[0] < A[1]) {
A[0] = -1;
ans += abs(A[0]) + 1;
} else if (A[0] < 0 && A[0] > A[1]) {
A[0] = 1;
ans += abs(A[0]) + 1;
}
}
int sum = A[0];
for (int i = 1; i < N; i++) {
if (!DifSign(sum, sum + A[i])) {
int tmp = abs(sum + A[i]) + 1;
ans += tmp;
if (sum + A[i] > 0)
A[i] -= tmp;
else
A[i] += tmp;
}
sum += A[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
arr = [int(x) for x in input().split()]
def exec(sign):
a = [x for x in arr]
res = 0
if a[0] == 0:
a[0] = sign * (-1)
res += 1
x = 0
for i in range(n-1):
x += a[i]
tmp = sign - (x + a[i+1])
if sign < 0:
tmp = min(tmp, 0)
else:
tmp = max(tmp, 0)
res += abs(tmp)
a[i+1] += tmp
sign *= (-1)
return res
print(min(exec(1), exec(-1)))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n = 0;
long sum[2] = {0, 0}, ans[2] = {0, 0};
long hoge, foo;
long flag[2] = {0, 1};
scanf("%d", &n);
int in[n];
for (int i = 0; i < n; i++) {
scanf("%ld", &in[i]);
}
for (int i = 0; i < n; i++) {
long tmp[2];
tmp[0] = in[i];
tmp[1] = tmp[0];
if (i == 0) {
sum[0] = tmp[0];
sum[1] = tmp[1];
continue;
}
long foo[2] = {tmp[0], tmp[0]};
for (int j = 0; j < 2; j++) {
if (sum[j] + tmp[j] <= 0 && !flag[j]) {
tmp[j] = abs(sum[j]) + 1;
ans[j] += abs(abs(sum[j]) - abs(foo[j])) + 1;
sum[j] += tmp[j];
flag[j] = 1;
} else if (sum[j] + tmp[j] > 0 && !flag[j]) {
flag[j] = 1;
sum[j] += tmp[j];
} else if (sum[j] + tmp[j] < 0 && flag[j]) {
sum[j] += tmp[j];
flag[j] = 0;
} else if (sum[j] + tmp[j] >= 0 && flag[j]) {
tmp[j] = -1 * (abs(sum[j]) + 1);
ans[j] += abs(sum[j]) + abs(foo[j]) + 1;
sum[j] += tmp[j];
flag[j] = 0;
} else
printf("ogehogeho");
}
}
printf("%ld\n", ans[0] < ans[1] ? ans[0] : ans[1]);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def main():
import sys
input = sys.stdin.readline
n = int(input())
a = list(map(int, input().split()))
A = []
A_append = A.append
cnt = 0
for i in range(n-1):
A_append((a[i]))
x = sum(A)
if x > 0 and x + a[i+1] > 0:
y = -(x + a[i+1] + 1)
cnt -= y
a[i+1] += y
elif x < 0 and x + a[i+1] < 0:
y = -(x - a[i+1]+ 1)
cnt += y
a[i+1] += y
if sum(a) == 0:
cnt += 1
print(cnt)
if __name__ == '__main__':
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD7 = 1000000007;
const long long MOD9 = 1000000009;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long long N;
cin >> N;
vector<long long> vec(N);
for (long long i = 0; i < N; i++) cin >> vec[i];
vector<long long> partial;
copy((vec).begin(), (vec).end(), back_inserter(partial));
partial_sum(partial.begin(), partial.end(), partial.begin());
long long res = 0;
bool flag_plus = partial[0] > 0;
for (long long i = 1; i < N; ++i) {
if (flag_plus) {
if (partial[i] < 0) {
} else {
vec[i] -= abs(partial[i]) + 1;
res += abs(partial[i]) + 1;
partial_sum(vec.begin(), vec.end(), partial.begin());
}
} else {
if (partial[i] > 0) {
} else {
vec[i] += abs(partial[i]) + 1;
res += abs(partial[i]) + 1;
partial_sum(vec.begin(), vec.end(), partial.begin());
}
}
flag_plus = !flag_plus;
}
cout << res << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A2 = list(map(int,input().split()))
#print(A)
def getSign(a):
if a < 0:
return -1
elif a == 0:
return 0
else:
return 1
counts = []
for j in range(2):
A = list(A2)
count = 0
sumN = A[0]
beforeSign = getSign(A[0])
if j == 0:
add = -A[0] - beforeSign
A[0] += add
count += abs(add)
for i in range(1,N):
sumN += A[i]
#print("be",i,sumN,A[i],count)
if 0 <= beforeSign * sumN:
add = -sumN - beforeSign
A[i] += add
sumN += add
count += abs(add)
beforeSign = getSign(sumN)
#print("af",i,sumN,A[i],count)
counts.append(count)
print(min(counts)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
int s[maxn];
long long ans[maxn];
int main() {
int n, j;
cin >> n;
long long sum = 0;
for (int i = 1; i <= n; i++) {
cin >> s[i];
}
for (int i = 1; i < n; i++) {
ans[i] = ans[i - 1] + s[i];
if (ans[i] > 0) {
if (s[i + 1] >= 0) {
sum += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
} else {
if (abs(s[i + 1]) > ans[i]) {
} else {
sum += (s[i + 1] + ans[i] + 1);
s[i + 1] = -(ans[i] + 1);
}
}
} else if (ans[i] == 0) {
sum++;
if (s[i + 1] <= 0) {
ans[i]++;
} else if (s[i + 1] > 0) {
ans[i]--;
}
} else if (ans[i] < 0) {
if (s[i + 1] > 0) {
if (abs(ans[i]) < s[i + 1]) {
} else {
sum += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
} else {
sum += (1 - ans[i] - s[i + 1]);
s[i + 1] = -ans[i] + 1;
}
}
}
cout << sum << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
import itertools
from collections import Counter
from collections import defaultdict
import bisect
from heapq import heappush, heappop
def main():
n = int(input())
a = list(map(int, input().split()))
ans = 0
cumulative = 0
count = 0
for i in range(len(a)):
cumulative += a[i]
if i % 2 == 0: # positive
if cumulative <= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
else: # negative
if cumulative >= 0:
count += abs(cumulative) + 1
cumulative += (abs(cumulative) + 1)
ans = max(ans, count)
for i in range(len(a)):
cumulative += a[i]
if i % 2 == 0: # negative
if cumulative >= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
else: # positive
if cumulative <= 0:
count += abs(cumulative) + 1
cumulative -= (abs(cumulative) + 1)
ans = max(ans, count)
print(ans)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
int n;cin>>n;
int a[n];
for (int i=0;i<n;i++)
cin>>a[i];
ll mn=1e18;
for (int i=0;i<2;i++) {
ll sm=0;
ll cnt=0;
for (int j=0;j<n;j++) {
sm+=a[j];
if ((i+j)%2==0) {
if (sm<=0) {
cnt+=-sm+1;
sm=1;
}
} else {
if (sm>=0) {
cnt+=sm+1;
sm=-1;
}
}
}
mn=min(mn,cnt);
}
cout<<cnt<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using llong = long long;
int main() {
uint n;
cin >> n;
vector<llong> a(n, 0);
vector<llong> S(n, 0);
for (size_t i = 0; i < a.size(); ++i) cin >> a[i];
llong op = 0;
S[0] = a[0];
if (S[0] == 0) {
size_t j = 0;
while (j < a.size()) {
if (a[j] != 0) break;
++j;
}
if (j == a.size()) {
S[0] = 1;
++op;
} else if (j % 2 == 0) {
S[0] = a[j] / abs(a[j]);
++op;
} else {
S[0] = -a[j] / abs(a[j]);
++op;
}
}
for (size_t i = 1; i < a.size(); ++i) {
S[i] = S[i - 1] + a[i];
if (S[i] == 0) {
S[i] = -(S[i - 1] / abs(S[i - 1]));
++op;
} else {
if (S[i - 1] * S[i] > 0) {
op = op + abs(S[i]) + 1;
S[i] = -(S[i] / abs(S[i]));
}
}
}
cout << op << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
count = 0
sum_ = 0
for i in range(n):
if sum_ * (sum_+a[i]) <0 or i == 0:
sum_ += a[i]
elif sum_ > 0:
count += sum_+a[i]+1
a[i] = -sum_-1
sum_ += a[i]
elif sum_ < 0:
count += abs(sum_+a[i])+1
a[i] = -sum_+1
sum_ += a[i]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
int solve(bool sign, vi &a, int N) {
int S = a.at(0);
int ans = 0;
if (sign) {
if (S <= 0) {
ans = -S + 1;
S = 1;
}
} else {
if (S >= 0) {
ans = S + 1;
S = -1;
}
}
for (int i = (1); i < (N); ++i) {
if (S > 0) {
S += a.at(i);
if (S >= 0) {
ans += (S + 1);
S = -1;
}
} else {
S += a.at(i);
if (S <= 0) {
ans += (-S + 1);
S = 1;
}
}
}
return ans;
}
int main() {
int N;
cin >> N;
vi a(N);
for (int i = (0); i < (N); ++i) {
cin >> a.at(i);
}
int ans;
ans = min(solve(false, a, N), solve(true, a, N));
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long mod = 1e9 + 7;
template <class T>
void cout_vec(const vector<T> &vec1) {
for (long long i = 0; i < long long(vec1.size()); i++) {
cout << vec1[i] << ' ';
}
cout << '\n';
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> a(n + 1), sum(n + 1, 0);
for (long long i = 1; i < n + 1; i++) cin >> a[i];
long long ans = 0;
for (long long i = 1; i < n + 1; i++) {
sum[i] = sum[i - 1] + a[i];
if (sum[i] == 0) {
if (sum[i - 1] < 0) {
sum[i]++;
ans++;
} else {
sum[i]--;
ans++;
}
}
if (sum[i] > 0 && sum[i - 1] > 0) {
sum[i] = -1;
ans += a[i] + sum[i - 1] + 1;
}
if (sum[i] < 0 && sum[i - 1] < 0) {
sum[i] = 1;
ans += a[i] - sum[i - 1] - 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
char moji[26] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r',
's', 't', 'u', 'v', 'w', 'x', 'y', 'z'};
char moji2[26] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R',
'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'};
char moji3[10] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'};
int main() {
int n;
cin >> n;
long long ans = 0, tmp, wa = 0;
cin >> tmp;
wa = tmp;
bool issei;
if (wa > 0)
issei = true;
else
issei = false;
for (int i = 0; i < n - 1; i++) {
cin >> tmp;
if (i == 0 and wa == 0) {
if (tmp < 0) {
wa = 1;
ans = 1;
issei = true;
} else {
wa = -1;
ans = 1;
issei = false;
}
}
if (issei) {
ans += max(long long(0), wa + tmp + 1);
wa = min(wa + tmp, long long(-1));
issei = false;
} else {
ans += max(long long(0), 1 - (wa + tmp));
wa = max(wa + tmp, long long(1));
issei = true;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
class Main {
int n;
int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Main m = new Main(sc);
m.solve();
sc.close();
}
Main(Scanner sc) {
n = sc.nextInt();
a = new int[n];
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
}
void solve() {
int sign = (a[0]>=0)?1:-1;
int cnt = (a[0]==0)?1:0;
int sum = (a[0]==0)?1:a[0];
//System.out.println(sum);
for(int i=1;i<n;i++){
sum += a[i];
if(sum*sign>=0){
cnt += Math.abs(sum) + 1;
sum = -sign;
}
//System.out.println(sum);
sign *= -1;
}
System.out.println(cnt);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
void print(const T &value) {
std::cout << value << std::endl;
}
void yesno(bool a) {
if (a)
cout << "Yes" << endl;
else
cout << "No" << endl;
}
void YESNO(bool a) {
if (a)
cout << "YES" << endl;
else
cout << "NO" << endl;
}
template <class T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int cnt1 = 0;
int sum1[n + 1];
sum1[0] = 0;
for (int i = 0; i < n; i++) {
sum1[i + 1] = sum1[i] + a[i];
if (i % 2 == 0 && sum1[i + 1] <= 0) {
cnt1 += 1 - sum1[i + 1];
sum1[i + 1] = 1;
}
if (i % 2 == 1 && sum1[i + 1] >= 0) {
cnt1 += 1 + sum1[i + 1];
sum1[i + 1] = -1;
}
}
int cnt2 = 0;
int sum2[n + 1];
sum2[0] = 0;
for (int i = 0; i < n; i++) {
sum2[i + 1] = sum2[i] + a[i];
if (i % 2 == 1 && sum2[i + 1] <= 0) {
cnt2 += 1 - sum2[i + 1];
sum2[i + 1] = 1;
}
if (i % 2 == 0 && sum2[i + 1] >= 0) {
cnt2 += 1 + sum2[i + 1];
sum2[i + 1] = -1;
}
}
print(min(cnt1, cnt2));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n, cnt = 0;
cin >> n;
bool flag;
vector<ll> a;
ll x;
for (int i = 0; i < n; i++) {
cin >> x;
a.push_back(x);
}
if (a[0] >= 0) {
flag = true;
} else {
flag = false;
}
int sum = a[0];
if (sum == 0) {
if (a[1] >= 0) {
sum++;
cnt++;
} else {
sum--;
cnt++;
}
}
for (int i = 1; i < n; i++) {
bool flag2;
int tmp = sum;
sum += a[i];
if (sum == 0) {
if (flag) {
sum -= 1;
flag = false;
cnt++;
} else {
sum += 1;
flag = true;
cnt++;
}
} else {
if (sum > 0) {
flag2 = true;
} else if (sum < 0) {
flag2 = false;
}
if (flag == flag2) {
if (flag2) {
while (sum >= 0) {
sum--;
cnt++;
}
flag2 = false;
} else {
while (sum <= 0) {
sum++;
cnt++;
}
flag2 = true;
}
}
flag = flag2;
}
}
if (sum == 0) cnt++;
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ttl = a[0]
cst = 0
if a[0]>=0:
flg = 1
elif a[0]<0:
flg = -1
for i in range(1,n):
ttl += a[i]
if ttl*flg < 0:
flg *= -1
else:
if flg > 0:
memo = abs(ttl)+1
ttl -= memo
cst += memo
elif flg < 0:
memo = abs(ttl)+1
ttl += memo
cst += memo
flg *= -1
ttl = a[0]
cst2 = 0
if a[0]>0:
flg = -1
cst2 += abs(ttl)+1
ttl += 0-ttl-1
elif a[0]<0:
flg = 1
cst2 += abs(ttl)+1
ttl += 0-ttl+1
for i in range(1,n):
ttl += a[i]
if ttl*flg < 0:
flg *= -1
else:
if flg > 0:
memo = abs(ttl)+1
ttl -= memo
cst2 += memo
elif flg < 0:
memo = abs(ttl)+1
ttl += memo
cst2 += memo
flg *= -1
print(min(cst,cst2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long top = a[0], cnt1 = 0;
if (top >= 0) {
top = -1;
cnt1 = a[0] + 1;
}
for (int i = 1, sign = 1; i < n; i++, sign *= -1) {
if ((top + a[i]) * sign < 0) {
cnt1 += abs(top) + abs(a[i]) + 1;
top = sign;
} else if ((top + a[i]) == 0) {
cnt1++;
top = sign;
} else {
top += a[i];
}
}
top = a[0];
long long cnt2 = 0;
if (top <= 0) {
top = 1;
cnt2 = abs(a[0]) + 1;
}
for (int i = 1, sign = -1; i < n; i++, sign *= -1) {
if ((top + a[i]) * sign < 0) {
cnt2 += abs(top) + abs(a[i]) + 1;
top = sign;
} else if ((top + a[i]) == 0) {
cnt2++;
top = sign;
} else {
top += a[i];
}
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*; import java.io.*; import java.math.*;
public class Main{
//Don't have to see. start------------------------------------------
static class InputIterator{
ArrayList<String> inputLine = new ArrayList<String>(1024);
int index = 0; int max; String read;
InputIterator(){
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
try{
while((read = br.readLine()) != null){
inputLine.add(read);
}
}catch(IOException e){}
max = inputLine.size();
}
boolean hasNext(){return (index < max);}
String next(){
if(hasNext()){
return inputLine.get(index++);
}else{
throw new IndexOutOfBoundsException("There is no more input");
}
}
}
static HashMap<Integer, String> CONVSTR = new HashMap<Integer, String>();
static InputIterator ii = new InputIterator();//This class cannot be used in reactive problem.
static PrintWriter out = new PrintWriter(System.out);
static void flush(){out.flush();}
static void myout(Object t){out.println(t);}
static void myerr(Object t){System.err.print("debug:");System.err.println(t);}
static String next(){return ii.next();}
static boolean hasNext(){return ii.hasNext();}
static int nextInt(){return Integer.parseInt(next());}
static long nextLong(){return Long.parseLong(next());}
static double nextDouble(){return Double.parseDouble(next());}
static ArrayList<String> nextStrArray(){return myconv(next(), 8);}
static ArrayList<String> nextCharArray(){return myconv(next(), 0);}
static ArrayList<Integer> nextIntArray(){
ArrayList<String> input = nextStrArray(); ArrayList<Integer> ret = new ArrayList<Integer>(input.size());
for(int i = 0; i < input.size(); i++){
ret.add(Integer.parseInt(input.get(i)));
}
return ret;
}
static ArrayList<Long> nextLongArray(){
ArrayList<String> input = nextStrArray(); ArrayList<Long> ret = new ArrayList<Long>(input.size());
for(int i = 0; i < input.size(); i++){
ret.add(Long.parseLong(input.get(i)));
}
return ret;
}
static String myconv(Object list, int no){//only join
String joinString = CONVSTR.get(no);
if(list instanceof String[]){
return String.join(joinString, (String[])list);
}else if(list instanceof ArrayList){
return String.join(joinString, (ArrayList)list);
}else{
throw new ClassCastException("Don't join");
}
}
static ArrayList<String> myconv(String str, int no){//only split
String splitString = CONVSTR.get(no);
return new ArrayList<String>(Arrays.asList(str.split(splitString)));
}
public static void main(String[] args){
CONVSTR.put(8, " "); CONVSTR.put(9, "\n"); CONVSTR.put(0, "");
solve();flush();
}
//Don't have to see. end------------------------------------------
static void solve(){//Here is the main function
int N = nextInt();
ArrayList<Integer> tmp = nextIntArray();
int[] list = new int[N];
for(int i = 0; i < N; i++){
list[i] = tmp.get(i);
}
int oddCount = 0;
int evenCount = 0;
int[] oddSum = new int[N];//1, -1, 1, -1
int[] evenSum = new int[N];//-1, 1 ,-1 ,1
if(list[0] == 0){
oddSum[0] = 1;
evenSum[0] = -1;
oddCount++;
evenCount++;
}else{
if(list[0] < 0){
oddCount += Math.abs(list[0]) + 1;
oddSum[0] = 1;
evenSum[0] = list[0];
}else{
evenCount += Math.abs(list[0]) + 1;
evenSum[0] = -1;
oddSum[0] = list[0];
}
}
for(int i = 1; i < N; i++){
oddSum[i] = oddSum[i - 1] + list[i];
evenSum[i] = evenSum[i - 1] + list[i];
if((oddSum[i - 1] < 0 && oddSum[i] > 0) || (oddSum[i - 1] > 0 && oddSum[i] < 0)){
}else{
if((oddSum[i - 1] > 0)){
oddCount += oddSum[i] + 1;
oddSum[i] = -1;
}else{
oddCount += Math.abs(oddSum[i]) + 1;
oddSum[i] = 1;
}
}
if((evenSum[i - 1] < 0 && evenSum[i] > 0) || (evenSum[i - 1] > 0 && evenSum[i] < 0)){
}else{
if((evenSum[i - 1] > 0)){
evenCount += evenSum[i] + 1;
evenSum[i] = -1;
}else{
evenCount += Math.abs(evenSum[i]) + 1;
evenSum[i] = 1;
}
}
}
myout(Math.min(evenCount, oddCount));
}
//Method addition frame start
//Method addition frame end
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using static System.Console;
using static System.Convert;
class Program
{
static void Main(string[] args)
{
var length = ToInt32(ReadLine());
var result = 0;
var nums = Array.ConvertAll(ReadLine().Split(' '), int.Parse);
var sum = nums[0];
if (sum == 0) { sum++; result++; }
var lastSum = sum;
for(var i = 1; i < length; i++)
{
sum += nums[i];
while (!IsDifferentSign(lastSum, sum))
{
sum = lastSum > 0 ? --sum : ++sum;
result++;
}
lastSum = sum;
}
WriteLine(result);
}
private static bool IsDifferentSign(int lastSum,int sum)
{
return sum != 0 && ((lastSum > 0 && sum < 0) || (lastSum < 0 && sum > 0));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
input=sys.stdin.readline
def main():
N = int(input())
A = list(map(int, input().split()))
s = A[0]
n = 0
for i in range(1,N):
if s * (s+A[i]) >= 0:
if s < 0:
n += abs(-s+1 -A[i])
A[i] = -s+1
else:
n += abs(-s-1 -A[i])
A[i] = -s-1
s += A[i]
print(n)
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input().strip())
A = list(map(int, input().strip().split(" ")))
prev = A[0]
s = prev
sign = prev > 0
count = 0
for a in A[1:]:
prev = s
sign = prev > 0
s += a
if s == 0:
count += 1
if sign: # previous is positive
s -= 1
else: # prev is negative
s += 1
elif sign == (s > 0): # previous and current have the same sign
count += abs(s)+1
if s > 0:
s = -1
else:
s = 1
else:
pass
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long sum1 = 0, sum2 = 0;
long long ans1 = 0, ans2 = 0;
int first;
cin >> first;
if (first > 0) {
sum1 = first;
sum2 = -first;
ans2 += first * 2;
} else if (first < 0) {
sum1 = -first;
sum2 = first;
ans1 += -first * 2;
} else {
sum1 = 1;
sum2 = -1;
ans1++, ans2++;
}
for (int i = 0; i < n - 1; i++) {
int a;
cin >> a;
if (sum1 > 0) {
if (sum1 + a >= 0) {
ans1 += abs(-sum1 - 1 - a);
sum1 = -1;
} else {
sum1 += a;
}
} else if (sum1 < 0) {
if (sum1 + a <= 0) {
ans1 += -sum1 + 1 - a;
sum1 = 1;
} else {
sum1 += a;
}
}
if (sum2 > 0) {
if (sum2 + a >= 0) {
ans2 += abs(-sum2 - 1 - a);
sum2 = -1;
} else {
sum2 += a;
}
} else if (sum2 < 0) {
if (sum2 + a <= 0) {
ans2 += -sum2 + 1 - a;
sum2 = 1;
} else {
sum2 += a;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
ans = 0
cumsum = a[0]
p = a[0] > 0
for i in range(1, n):
if p:
if cumsum+a[i] >= 0:
ans += cumsum+a[i]+1
cumsum = -1
else:
cumsum += a[i]
p = False
else:
if cumsum+a[i] <= 0:
ans += 1-(cumsum+a[i])
cumsum = 1
else:
cumsum += a[i]
p = True
# print(cumsum)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) cin >> a.at(i);
int count1 = 0;
int sum = 0;
for (int i = 0; i < N; i++) {
int new_sum = sum + a.at(i);
if (i == 0) {
if (a.at(0) == 0) {
sum = 1;
count1++;
} else
sum = a.at(0);
} else if (i % 2 == 0 && new_sum >= 0) {
count1 += new_sum + 1;
sum = -1;
} else if (i % 2 != 0 && sum + a.at(i) <= 0) {
count1 += -new_sum + 1;
sum = 1;
} else {
sum += a.at(i);
}
}
int count2 = 0;
sum = 0;
for (int i = 0; i < N; i++) {
int new_sum = sum + a.at(i);
if (i == 0) {
if (a.at(0) == 0) {
sum = -1;
count2++;
} else
sum = a.at(0);
} else if (i % 2 != 0 && new_sum >= 0) {
count2 += new_sum + 1;
sum = -1;
} else if (i % 2 == 0 && sum + a.at(i) <= 0) {
count2 += -new_sum + 1;
sum = 1;
} else {
sum += a.at(i);
}
}
if (count1 < count2) {
cout << count1 << endl;
} else {
cout << count2 << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n], cntplus = 0, cntplus1 = 0, cntminus = 0, cntminus1 = 0;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] > 0) {
int s = a[0];
for (int i = 1; i < n; i++) {
if (i % 2) {
while (0 <= s + a[i]) {
a[i]--;
cntplus++;
}
} else {
while (s + a[i] <= 0) {
a[i]++;
cntplus++;
}
}
s += a[i];
}
s = -1;
cntplus1 += a[0] + 1;
for (int i = 1; i < n; i++) {
if (i % 2) {
while (s + a[i] <= 0) {
a[i]++;
cntplus1++;
}
} else {
while (0 <= s + a[i]) {
a[i]--;
cntplus1++;
}
}
s += a[i];
}
cout << min(cntplus, cntplus1) << endl;
} else {
int s = a[0];
for (int i = 1; i < n; i++) {
if (i % 2) {
while (s + a[i] <= 0) {
a[i]++;
cntminus++;
}
} else {
while (0 <= s + a[i]) {
a[i]--;
cntminus++;
}
}
s += a[i];
}
s = 1;
cntplus1 += -a[0] + 1;
for (int i = 1; i < n; i++) {
if (i % 2) {
while (0 <= s + a[i]) {
a[i]--;
cntminus1++;
}
} else {
while (s + a[i] <= 0) {
a[i]++;
cntminus1++;
}
}
s += a[i];
}
cout << min(cntminus, cntminus1) << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
if a[0] < 0:
for i in range(n):
a[i] *= -1
a_orig = a[:]
ans1 = 0
ans2 = 0
tot = [0 for i in range(n)]
tot[0] = a[0]
for i in range(1, n):
tot[i] = tot[i-1] + a[i]
if i % 2 == 0:
if tot[i] <= 0:
tot[i] = 1
a[i] = tot[i] - tot[i-1]
else:
if tot[i] >= 0:
tot[i] = -1
a[i] = tot[i] - tot[i-1]
for i in range(n):
ans1 += abs(a[i]-a_orig[i])
tot = [0 for i in range(n)]
tot[0] = a[0]
for i in range(1, n):
tot[i] = tot[i-1] + a[i]
if i % 2 == 1:
if tot[i] <= 0:
tot[i] = 1
a[i] = tot[i] - tot[i-1]
else:
if tot[i] >= 0:
tot[i] = -1
a[i] = tot[i] - tot[i-1]
for i in range(n):
ans2 += abs(a[i]-a_orig[i])
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int* a = new int[n];
bool flg = false;
long long sum = 0;
long long cnt = 0;
for (int i = 0; i < n; ++i) {
cin >> a[i];
if (i == 0) {
if (a[0] < 0)
flg = false;
else
flg = true;
}
sum += a[i];
if (flg == false && i % 2 == 0 && sum >= 0) {
while (sum >= 0) {
--sum;
++cnt;
}
} else if (flg == false && i % 2 == 1 && sum <= 0) {
while (sum <= 0) {
++sum;
++cnt;
}
} else if (flg == true && i % 2 == 0 && sum <= 0) {
while (sum <= 0) {
++sum;
++cnt;
}
} else if (flg == true && i % 2 == 1 && sum >= 0) {
while (sum >= 0) {
--sum;
++cnt;
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
l = list(map(int,input().split()))
import copy
l1 = copy.copy(l)
l2 = copy.copy(l)
ans1 = 0
ans2 = 0
goukei = 0
#最初が正の時
if l1[0]<0:
while l1[0]==+1:
l1[0]+1
ans1 = ans1 + 1
for i in range(n):
goukei = sum(l1[:i+1])
#print(i,goukei)
if i%2 == 0:
while goukei<=0:
l1[i] = l1[i] + 1
goukei = sum(l1[:i+1])
ans1 = ans1 + 1
else:
while goukei>=0:
l1[i] = l1[i] - 1
goukei = sum(l1[:i+1])
ans1 = ans1 + 1
#print(l)
#print(l1)
#print(ans1)
#最初が負の時
if l2[0]>0:
while l2[0]==-1:
l2[0]-1
ans2 = ans2 + 1
for i in range(n):
goukei = sum(l2[:i+1])
#print(i,goukei)
if i%2 != 0:
while goukei<=0:
l2[i] = l2[i] + 1
goukei = sum(l2[:i+1])
ans2 = ans2 + 1
else:
while goukei>=0:
l2[i] = l2[i] - 1
goukei = sum(l2[:i+1])
ans2 = ans2 + 1
#print(l)
#print(l2)
#print(ans2)
print(min(ans1,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | l = int(input())
n = [int(i) for i in input().split()]
count = 0
nsum = n[0]
for i in range(1, l):
tmp = n[i]
tmp_1 = n[i-1]
while(True):
if (tmp_1 * tmp >= 0) or (nsum * (nsum + tmp) >= 0):
if tmp_1 < 0:
count += 1
tmp += 1
else:
count += 1
tmp -= 1
else:
n[i] = tmp
nsum += tmp
break
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using lint = long long;
using uli = unsigned long long;
uli gcd(uli a, uli b) {
while (1) {
if (a < b) swap(a, b);
if (!b) break;
a %= b;
}
return a;
}
uli lcm(uli a, uli b) { return a * b / gcd(a, b); }
const uli mod = 1000000007;
const double pi = 3.141592653589793238462;
const lint intmax = 9223372036854775807;
uli _PowMod(uli x, uli y, uli _mod) {
if (y == 0) {
return 1;
} else if (y == 1) {
return x % _mod;
} else if (y % 2 == 0) {
auto tmp = _PowMod(x, y / 2, _mod);
return tmp * tmp % _mod;
} else {
auto tmp = _PowMod(x, y / 2, _mod);
return (tmp * tmp % _mod) * x % _mod;
}
}
uli PowMod(uli x, uli y) { return _PowMod(x, y, mod); }
uli getModInv(uli N) { return PowMod(N, mod - 2); }
lint nCrMod(lint start, lint n, lint r) {
if (n < r) {
return 0;
}
lint a = start;
for (size_t i = n; i >= n - r + 1; i--) {
a *= i;
a %= mod;
}
for (size_t i = 1; i <= r; i++) {
a *= getModInv(i);
a %= mod;
}
return a;
}
lint nHrMod(lint start, lint n, lint r) { return nCrMod(start, n + r - 1, r); }
lint _nCrMod(lint start, lint n, lint r) {
if (n <= 0) {
return 0;
}
return nCrMod(start, n, r);
}
struct uf {
vector<lint> p;
uf(lint n) : p(n) {
for (size_t i = 0; i < n; i++) {
p[i] = i;
}
}
lint rt(lint n) { return p[n] == n ? n : p[n] = rt(p[n]); }
void un(lint n, lint m) { p[rt(n)] = p[rt(m)]; }
bool eq(lint n, lint m) { return rt(n) == rt(m); }
};
bool lineCol(lint a1x, lint a1y, lint a2x, lint a2y, lint b1x, lint b1y,
lint b2x, lint b2y) {
auto ta = (b1x - b2x) * (a1y - b1y) + (b1y - b2y) * (b1x - a1x);
auto tb = (b1x - b2x) * (a2y - b1y) + (b1y - b2y) * (b1x - a2x);
auto tc = (a1x - a2x) * (b1y - a1y) + (a1y - a2y) * (a1x - b1x);
auto td = (a1x - a2x) * (b2y - a1y) + (a1y - a2y) * (a1x - b2x);
return tc * td < 0 && ta * tb < 0;
}
lint powInt(lint a, lint b) {
if (b == 0) {
return 1;
}
if (b == 1) {
return a;
}
lint tmp = powInt(a, b / 2);
return (b % 2 == 1 ? a * tmp * tmp : tmp * tmp);
}
lint _sMod(string n, lint mod) {
lint k = (n[0] - '0') % mod;
for (size_t i = 1; i < n.length(); i++) {
k *= 10;
k += (n[i] - '0');
k %= mod;
}
return k;
}
template <typename T>
void vsort(vector<T>& v) {
sort(v.begin(), v.end());
}
template <typename T>
void vsortr(vector<T>& v) {
sort(v.rbegin(), v.rend());
}
lint div2(lint p, lint q) { return (p + q - 1) / q; }
struct xy {
lint x, y;
xy() : x(0), y(0) {}
xy(lint _x, lint _y) : x(_x), y(_y) {}
};
template <class T>
bool exist(vector<T>& v, const T& val) {
return find(v.begin(), v.end(), val) != v.end();
}
template <class T, class Pr>
bool exist_if(vector<T>& v, Pr pred) {
return find_if(v.begin(), v.end(), pred) != v.end();
}
lint n_dig(lint n) {
lint ans = 0;
while (n > 0) {
n /= 10;
ans++;
}
return ans;
}
string yn(bool f, string y, string n) { return f ? y : n; }
const lint alpn = 'z' - 'a' + 1;
template <class T>
T sgn(T val) {
if (val == T(0)) return T(0);
if (val < 0) return T(-1);
if (val > 0) return T(1);
}
int main() {
lint n;
cin >> n;
vector<lint> a(n);
for (lint i = 0; i < n; i++) cin >> a[i];
lint s = 0, sg = sgn(a[0]), ans = 0;
for (lint i = 0; i < n; i++) {
s += a[i];
if (sgn(s) != sg) {
ans += abs(sg - s);
s = sg;
}
sg *= (-1);
}
s = 0, sg = sgn(a[0]) * (-1);
lint ans2 = 0;
for (lint i = 0; i < n; i++) {
s += a[i];
if (sgn(s) != sg) {
ans2 += abs(sg - s);
s = sg;
}
sg *= (-1);
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
#define int long long
#define r(i,n) for(int i=0;i<n;i++)
using namespace std;
int a[100009],n;
int d1(){
int sum=0,ans=0;
for(int i=0;i<n;i++){
if(i%2==0){
if(sum+a[i]>=0)ans+=abs(sum-a[i]+1),sum=-1;
else sum+=a[i];
}
else{
if(sum+a[i]<=0)ans+=abs(1-sum+a[i]),sum=1;
else sum+=a[i];
}
}
return ans;
}
int d2(){
int sum=0,ans=0;
for(int i=0;i<n;i++){
if(i%2==1){
if(sum+a[i]>=0)ans+=abs(sum-a[i]+1),sum=-1;
else sum+=a[i];
}
else{
if(sum+a[i]<=0)ans+=abs(1-sum+a[i]),sum=1;
else sum+=a[i];
}
}
return ans;
}
main(){
cin>>n;
r(i,n)cin>>a[i];
cout<<min(d1(),d2())<<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
double num[10 * 10 * 10 * 10 * 10];
int i, n, ssign;
double sum = 0;
double count = 0;
scanf("%d", &n);
for (i = 0; i < n; i++) {
scanf("%lf", &num[i]);
}
if (num[0] == 0) {
num[0]++;
count++;
}
for (i = 1; i < n; i++) {
sum += num[i - 1];
while (1) {
if (fabs(sum) > fabs(num[i])) {
if (sum < 0) {
num[i]++;
count++;
} else if (sum > 0) {
num[i]--;
count++;
}
} else if (fabs(sum) == fabs(num[i])) {
if (sum < 0) {
num[i]++;
count++;
} else {
num[i]--;
count++;
}
} else if (sum > 0 && num[i] > 0 && fabs(sum) < fabs(num[i])) {
num[i]--;
count++;
} else if (sum < 0 && num[i] < 0 && fabs(sum) < fabs(num[i])) {
num[i]++;
count++;
} else
break;
}
}
printf("%f\n", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pint = pair<int, int>;
using pll = pair<ll, ll>;
const long long MOD = 1000000007;
ll N, a[100010];
ll solve(ll z) {
ll ans = !(a[0] == z), sum = a[0];
a[0] = z;
for (int(i) = (1); (i) < (N); ++(i)) {
if (sum > 0) {
ans += max(0LL, sum + a[i] + 1);
sum += a[i] - max(0LL, sum + a[i] + 1);
} else if (sum < 0) {
ans += max(0LL, -a[i] - sum + 1);
sum += a[i] + max(0LL, -a[i] - sum + 1);
}
}
return ans;
}
signed main() {
cin >> N;
for (int(i) = 0; (i) < (N); ++(i)) cin >> a[i];
if (a[0] == 0)
cout << (min(solve(1), solve(-1))) << "\n";
else
cout << (solve(a[0])) << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
a_1 = a
ans = 0
ans_2 = 0
o = 0
for i in range(n):
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "+"
elif a[0] < 0:
f = "-"
else:
o += a[i-1]
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans += 1
f = "+"
a = a_1
for i in range(n):
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "-"
elif a[0] < 0:
f = "+"
else:
o += a[i-1]
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans_2 += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans_2 += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans += 1
f = "+"
#print(a)
print(min(ans,ans_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long s[100005], h[100005];
int main() {
long long n, sum = 0;
scanf("%lld", &n);
for (int i = 1; i <= n; i++) scanf("%lld", &s[i]);
for (int i = 2; i <= n; i++) {
if (s[i] + s[i - 1] >= 0 && s[i - 1] > 0) {
sum += abs(s[i] + s[i - 1] + 1);
s[i] = -1;
} else if (s[i] + s[i - 1] <= 0 && s[i - 1] < 0) {
sum += abs(s[i] + s[i - 1] - 1);
s[i] = 1;
} else
s[i] = s[i] + s[i - 1];
}
printf("%lld", sum);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
b=list(map(int,input().split()))
a=b
condition=''
cnt=0
for i in range(n):
if i == 0:
if a[i]>0:
condition='minus'
else:
condition='plus'
elif condition == 'plus':
condition='minus'
if sum(a[0:i+1])<=0:
cnt+=abs(sum(a[0:i+1]))+1
a[i]+=abs(sum(a[0:i+1]))+1
elif condition == 'minus':
condition='plus'
if sum(a[0:i+1])>=0:
cnt+=abs(sum(a[0:i+1]))+1
a[i]-=abs(sum(a[0:i+1]))+1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
sum=a[0]
if(sum==0):
opp=1
sum=1
for i in a[1:]:
if(sum*(sum+i)>=0):
opp+=abs(sum+i)+1
if(sum<0):sum=1
else:sum=-1
else:sum+=i
opm=1
sum=-1
for i in a[1:]:
if(sum*(sum+i)>=0):
opm+=abs(sum+i)+1
if(sum<0):sum=1
else:sum=-1
else:sum+=i
op=min(opm,opp)
else:
opp=0
for i in a[1:]:
if(sum*(sum+i)>=0):
opp+=abs(sum+i)+1
if(sum<0):sum=1
else:sum=-1
else:sum+=i
opm=abs(sum)+1
if(sum>0):sum=-1
else:sum=1
for i in a[1:]:
if(sum*(sum+i)>=0):
opm+=abs(sum+i)+1
if(sum<0):sum=1
else:sum=-1
else:sum+=i
op=min(opp,opm)
print(op) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | fun main() {
val n = readLine()!!.toInt()
val a = readLine()!!.split(" ").map { it.toLong() }
var answer = 0L
var total = 0L
for (i in 0 until n) {
val tmp = total
total = total + a[i]
if (total == 0L) {
if (tmp > 0) {
answer += 1
total = -1
} else if (tmp < 0) {
answer += 1
total = 1
}
continue
}
if (tmp > 0 && total > 0) {
answer += (total + 1)
total = -1
} else if (tmp < 0 && total < 0) {
answer += (-total + 1)
total = 1
}
}
println(answer)
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> A(n);
for (int i = 0; i < n; i++) cin >> A[i];
long long sum1 = 0, cnt1 = 0;
for (int i = 0; i < n; i++) {
sum1 += A[i];
if (i % 2 == 0 && sum1 < 0) {
cnt1 += 1 - sum1;
sum1 = 1;
}
if (i % 2 == 1 && sum1 > 0) {
cnt1 += 1 + sum1;
sum1 = -1;
}
}
long long sum2 = 0, cnt2 = 0;
for (int i = 0; i < n; i++) {
sum2 += A[i];
if (i % 2 == 0 && sum2 > 0) {
cnt2 += 1 + sum2;
sum2 = -1;
}
if (i % 2 == 1 && sum2 < 0) {
cnt2 += 1 - sum2;
sum2 = 1;
}
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
N=list(map(int,input().split()))
emptylists=[]
number=0
for i in range(n):
number+=N[i]
emptylists.append(number)
ans1=0
use=0
for i in range(n):
#偶数番が正、奇数番が負の時
if i%2==0:
#奇数番め
if emptylists[i]+use<0:
continue
if emptylists[i]+use>=0:
ans1+=emptylists[i]+1
use=use-emptylists[i]-1
if i%2!=0:
#偶数番め
if emptylists[i]+use>0:
continue
if emptylists[i]+use<=0:
ans1+=1-emptylists[i]-use
use=use+1-emptylists[i]
ans2=0
uses=0
for i in range(n):
#偶数番が負、奇数番が正の時
if i%2!=0:
#ぐう数番め
if emptylists[i]<0:
continue
if emptylists[i]>=0:
ans2+=emptylists[i]+1
uses=uses-emptylists[i]-1
if i%2==0:
#き数番め
if emptylists[i]>0:
continue
if emptylists[i]<=0:
ans2+=1-emptylists[i]-uses
uses=uses+1-emptylists[i]
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long inf = 1ll << 60, mod = 1e9 + 7;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(0);
long long i, n, a[100000], s, ans = 0;
cin >> n;
for (i = 0; i < n; i++) {
cin >> a[i];
}
s = a[0];
for (i = 1; i < n; i++) {
if (s > 0) {
if (s + a[i] >= 0) {
ans += abs(s + a[i]) + 1;
s = -1;
} else {
s += a[i];
}
} else {
if (s + a[i] < 0) {
ans += abs(s + a[i]) + 1;
s = 1;
} else {
s += a[i];
}
}
}
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
ans=0
s0=a[0]
if a[0]==0:
if a[1]>=0:
s0=-1
ans+=1
else:
s0=1
ans+=1
s1=s0+a[1]
if s0*s1>=0:
if s1>0:
ans+=abs(s1)+1
s1=-1
elif s1<0:
ans+=abs(s1)+1
s1=1
else:
if s0>0:
ans+=1
s1=-1
else:
ans+=1
s1=1
for i in range(1,n-1):
s0=s1
s1=s1+a[i+1]
if s0*s1>=0:
if s1>0:
ans+=abs(s1)+1
s1=-1
elif s1<0:
ans+=abs(s1)+1
s1=1
else:
if s0>0:
ans+=1
s1=-1
else:
ans+=1
s1=1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = list(map(int, input().split()))
r_sum = [0]*(N+1)
sum = a[0]
ans = 0
for i in range(1, N):
if sum < 0:
if abs(sum) < a[i]:
sum += a[i]
else:
ans += abs(sum)-a[i]+1
sum += 1
elif sum > 0:
if sum + a[i] < 0:
sum += a[i]
else:
ans += abs(-1-sum-a[i])
sum = -1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1000000;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (long long int i = 0; i < n; i++) cin >> a[i];
int ans_plus = 0;
vector<int> sum_plus(n);
if (a[0] > 0) {
sum_plus[0] = a[0];
} else {
ans_plus += 1 - a[0];
sum_plus[0] = 1;
}
for (int i = 1; i < n; ++i) {
sum_plus[i] = sum_plus[i - 1] + a[i];
if (sum_plus[i] * sum_plus[i - 1] > 0) {
if (sum_plus[i - 1] > 0) {
ans_plus += 1 + sum_plus[i];
sum_plus[i] = -1;
} else if (sum_plus[i - 1] < 0) {
ans_plus += 1 - sum_plus[i];
sum_plus[i] = 1;
}
} else if (sum_plus[i] == 0) {
if (sum_plus[i - 1] > 0) {
sum_plus[i] = -1;
} else if (sum_plus[i - 1] < 0) {
sum_plus[i] = 1;
}
ans_plus++;
}
}
int ans_minus = 0;
vector<int> sum_minus(n);
if (a[0] < 0) {
sum_minus[0] = a[0];
} else {
ans_minus += 1 + a[0];
sum_minus[0] = -1;
}
for (int i = 1; i < n; ++i) {
sum_minus[i] = sum_minus[i - 1] + a[i];
if (sum_minus[i] * sum_minus[i - 1] > 0) {
if (sum_minus[i - 1] > 0) {
ans_minus += 1 + sum_minus[i];
sum_minus[i] = -1;
} else if (sum_minus[i - 1] < 0) {
ans_minus += 1 - sum_minus[i];
sum_minus[i] = 1;
} else if (sum_minus[i] == 0) {
if (sum_minus[i - 1] > 0) {
sum_minus[i] = -1;
} else if (sum_minus[i - 1] < 0) {
sum_minus[i] = 1;
}
ans_minus++;
}
}
}
std::cout << min(ans_minus, ans_plus) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
def ssa(n):
arr = A
memo =['inf'] * (n + 1)
def _ssa(n):
if n == 0:
return arr[0]
if memo[n] != 'inf':
return memo[n]
memo[n] = _ssa(n -1) + arr[n]
return memo[n]
return _ssa(n)
cnt = 0
chg = 0
for i in range(n - 1):
if ssa(i) + chg > 0:
if ssa(i + 1) + chg >= 0:
cnt += ssa(i + 1) + chg + 1
chg += -(ssa(i + 1)+ chg + 1)
elif ssa(i) + chg < 0:
if ssa(i + 1) + chg <= 0:
cnt += 1 - ssa(i + 1) - chg
chg += 1 - ssa(i + 1) - chg
if ssa(n - 1) + chg == 0:
cnt +=1
print(cnt)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
long[] s1 = new long[n];
long[] s2 = new long[n];
int sum1 = 0;
int sum2 = 0;
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
s1[0] = a[0];
int count = 0;
// - + - + となる場合
while (s1[0] >= 0) {
s1[0]--;
count++; sum1++;
}
for (int i = 1; i < n; i++) {
count = 0;
s1[i] = s1[i-1] + a[i];
// iが奇数の場合は正にする
if (i % 2 != 0) {
while (s1[i-1]*s1[i] >= 0) {
s1[i]++;
count++; sum1++;
}
}
// iが偶数の場合は負にする
else {
while (s1[i-1]*s1[i] >= 0) {
s1[i]--;
count++; sum1++;
}
}
}
s2[0] = a[0];
count = 0;
// + - + - となる場合
while (s2[0] <= 0) {
s2[0]++;
count++; sum2++;
}
for (int i = 1; i < n; i++) {
count = 0;
s2[i] = s2[i-1] + a[i];
if (i % 2 != 0) {
while (s2[i-1]*s2[i] >= 0) {
s2[i]--;
count++; sum2++;
}
}
else {
while (s2[i-1]*s2[i] >= 0) {
s2[i]++;
count++; sum2++;
}
}
}
System.out.println(Math.min(sum1, sum2));
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
if a[0] > 0:
f = 1
else:
f = -1
m = a[0]
cnt = 0
for i in range(1, n):
f *= -1
m += a[i]
if f == 1:
if m <= 0:
cnt += f-m
m += f-m
else:
if m >= 0:
cnt += m-f
m -= m-f
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[10002] = {};
int b[10002] = {};
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
b[i] = a[i];
}
int eve = 0, sum = 0;
for (int j = 0; j < n; j++) {
if (j % 2 == 0 && sum + a[j] <= 0) {
eve += abs(a[j] + sum) + 1;
a[j] = abs(sum) + 1;
}
if (j % 2 == 1 && sum + a[j] >= 0) {
eve += a[j] + sum + 1;
a[j] = -abs(sum) - 1;
}
sum += a[j];
}
sum = 0;
int odd = 0;
for (int k = 0; k < n; k++) {
if (k % 2 == 0 && sum + b[k] >= 0) {
odd += abs(b[k] + sum) + 1;
b[k] = -abs(sum) - 1;
}
if (k % 2 == 1 && sum + b[k] <= 0) {
odd += abs(sum + b[k]) + 1;
b[k] = abs(sum) + 1;
}
sum += b[k];
}
cout << min(odd, eve) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int N;
cin >> N;
long long sum = 0;
long long ans = 0;
int pre = 0;
for (int i = 0; i < N; i++) {
long long tmp;
int next;
cin >> tmp;
sum += tmp;
if (pre > 0) {
if (sum < 0)
;
else if (sum >= 0) {
ans += (sum + 1);
sum = -1;
}
} else if (pre < 0) {
if (sum > 0)
;
else if (sum <= 0) {
ans += (-sum + 1);
sum = 1;
}
}
if (pre == 0) {
if (sum > 0)
next = 1;
else
next = -1;
} else {
next = -pre;
}
pre = next;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<int, int>;
int INF = 1e9;
template <typename T>
struct BIT {
int n;
vector<T> d;
BIT(int n = 0) : n(n), d(n + 1) {}
void add(int i, T x = 1) {
for (i++; i <= n; i += i & -i) {
d[i] += x;
}
}
T sum(int i) {
T x = 0;
for (i++; i > 0; i -= i & -i) {
x += d[i];
}
return x;
}
};
int main() {
int n;
cin >> n;
vector<ll> a(n);
BIT<ll> tree1(100005), tree2(100005);
for (int i = 0; i < (n); ++i) {
cin >> a[i];
tree1.add(i, a[i]);
tree2.add(i, a[i]);
}
ll ans = 1e18;
ll count = 0;
ll flag;
if (a[0] > 0)
flag = 1;
else
flag = -1;
for (int i = 1; i < n; i++) {
ll sum = tree1.sum(i);
if (sum * flag >= 0) {
tree1.add(i, -(llabs(sum) + 1) * flag);
count += llabs(sum) + 1;
}
flag *= -1;
}
ans = min(ans, count);
if (a[0] > 0)
flag = 1;
else
flag = -1;
count = 0;
for (int i = 0; i < n; i++) {
ll sum = tree2.sum(i);
if (sum * flag >= 0) {
tree2.add(i, -(llabs(sum) + 1) * flag);
count += llabs(sum) + 1;
}
flag *= -1;
}
ans = min(ans, count);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main(void) {
int n;
cin >> n;
ll a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
ll sum = 0L;
int count = 0;
int f, p, prev_p;
sum = a[0];
if (sum > 0) {
prev_p = 1;
} else if (sum < 0) {
prev_p = 0;
} else {
prev_p = 1;
sum++;
count++;
}
for (int i = 1; i < n; i++) {
sum = sum + a[i];
if (sum > 0) {
p = 1;
} else if (sum < 0) {
p = 0;
} else {
p = 1;
sum++;
count++;
}
if (prev_p == p) {
if (sum < 0) {
while (sum <= 0) {
sum++;
count++;
p = 1;
}
} else {
while (sum >= 0) {
sum--;
count++;
p = 0;
}
}
}
prev_p = p;
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list([int(i) for i in input().split()])
sum_a = []
count = 0
sum_a.append(a[0])
print(a)
for i in range(1,n):
sum_a.append(sum_a[i-1] + a[i])
if sum_a[i] == 0:
if sum_a[i-1] < 0:
sum_a[i] += 1
count += 1
else:
sum_a[i] -= 1
count += 1
elif sum_a[i-1] * sum_a[i]>0:
if sum_a[i] > 0:
sum_a[i] = -1
count += 1 + abs(sum_a[i-1]+a[i])
else:
sum_a[i] = 1
count += 1 + abs(sum_a[i-1]+a[i])
print(sum_a)
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = [int(i) for i in input().split()]
b=a.copy()
s0p = a[0]
s0n = b[0]
countp = 0
countn = 0
if a.count(0)==n:
print(2*n-1)
exit()
if s0p<=0:
s0p+=(abs(s0p)+1)
countp+=abs(s0p)
if s0n>=0:
s0n-=(abs(s0n)+1)
countn+=abs(s0n)
for i in range(1,n):
s1 = s0p+a[i]
if s0p*s1>=0:
if s1>0:
a[i]-=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1<0:
a[i]+=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1==0:
if s0p>0:
a[i]-=1
countp+=1
elif s0p<0:
a[i]+=1
countp+=1
s0p += a[i]
for i in range(1,n):
s1 = s0n+b[i]
if s0n*s1>=0:
if s1>0:
b[i]-=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1<0:
b[i]+=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1==0:
if s0n>0:
b[i]-=1
countn+=1
elif s0n<0:
b[i]+=1
countn+=1
s0n += b[i]
print(countp if countp<=countn else(countn))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | if __name__ == '__main__':
N = input()
array = raw_input().split()
ans = 0
total = int(array[0])
totalZero = False
if total == 0:
totalZero = True
flag = False
if total > 0:
flag = True
for a in array[1:]:
if totalZero == True:
ans += 1
if a > 0:
total = -1
flag = False
else:
total = 1
flag = True
totalZero = False
total += int(a)
if total > 0 and flag == True:
ans += total + 1
total = -1
elif total < 0 and flag ==False:
ans += -1 * total + 1
total = 1
elif total == 0:
totalZero = True
if total > 0:
flag = True
elif total < 0:
flag = False
if totalZero == True:
ans += 1
print ans
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a1 = [a[0]] * n
b = a[0]
ans = 0
def f(x):
if x == 0:
return 0
else:
return x // abs(x)
for i in range(1, n):
if a1[i - 1] * a[i] >= 0:
a1[i] = -a[i]
else:
a1[i] = a[i]
if b * (b + a1[i]) >= 0:
a1[i] = -f(a1[i - 1]) - b
if b + a1[i] == 0:
a1[i] += f(a1[i])
ans += abs(a1[i] - a[i])
b += a1[i]
a2 = [a[0]] * n
b1 = a2[0]
ans1 = abs(-f(a2[0]) - a2[0])
a2[0] = -f(a2[0])
for i in range(1, n):
if a2[i - 1] * a[i] >= 0:
a2[i] = -a[i]
else:
a2[i] = a[i]
if b * (b + a2[i]) >= 0:
a2[i] = -f(a2[i - 1]) - b1
if b1 + a2[i] == 0:
a2[i] += f(a2[i])
ans1 += abs(a2[i] - a[i])
b1 += a2[i]
print(min(ans1, ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
arr = gets.split.map(&:to_i)
pre = arr[0]
if pre == 0
if arr[1] >= 0
pre = -(arr[1] + 1)
else
pre = -(arr[1] - 1)
end
end
count = 0
# binding.pry
(arr.size - 1).times do |i|
pre2 = arr[i + 1]
if pre > 0
if pre + pre2 >= 0
pre2 = -(pre + 1)
end
pre += pre2
count += (pre2 - arr[i + 1]).abs
elsif pre < 0
if pre + pre2 <= 0
pre2 = -(pre - 1)
end
pre += pre2
count += (pre2 - arr[i + 1]).abs
end
end
puts count |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long int ans1, ans2, sum1, sum2;
int n, i;
long long int a[100005];
int main() {
cin >> n;
for (i = 1; i <= n; i++) {
cin >> a[i];
}
if (a[1] >= 0) {
sum1 = a[1];
ans2 = a[1] + 1;
sum2 = -1;
} else {
sum1 = 1;
ans1 = abs(a[1]) + 1;
sum2 = a[1];
}
for (i = 2; i < n; i++) {
if (sum1 > 0) {
if (a[i] + sum1 >= 0) {
ans1 += a[i] + sum1 + 1;
sum1 = -1;
} else {
sum1 += a[i];
}
} else {
if (a[i] + sum1 <= 0) {
ans1 += abs(sum1 + a[i]) + 1;
sum1 = 1;
} else {
sum1 += a[i];
}
}
}
if (sum1 + a[n] == 0) {
ans1++;
}
for (i = 2; i < n; i++) {
if (sum2 > 0) {
if (a[i] + sum2 >= 0) {
ans2 += a[i] + sum2 + 1;
sum2 = -1;
} else {
sum2 += a[i];
}
} else {
if (a[i] + sum2 <= 0) {
ans2 += abs(sum2 + a[i]) + 1;
sum2 = 1;
} else
sum2 += a[i];
}
}
if (sum2 + a[n] == 0) {
ans2++;
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long sums[n], sum = 0;
for (int i = 0; i < n; i++) {
long long num;
cin >> num;
sum += num;
sums[i] = sum;
}
int cnt = 0;
sum = sums[0];
for (int i = 1; i < n; i++) {
int add = 0;
if (sum < 0) {
if (sums[i] == 0) {
add = 1;
cnt++;
} else if (sums[i] < 0) {
add = sums[i] * (-1) + 1;
cnt += add;
}
} else if (sum > 0) {
if (sums[i] == 0) {
add = -1;
cnt++;
} else if (sums[i] > 0) {
add = sums[i] * (-1) - 1;
cnt += add * (-1);
}
}
for (int j = i; j < n; j++) {
sums[j] += add;
}
sum = sums[i];
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int, input().split()))
fusei = 0
cnt = 0
if a[0] > 0:
cnt = -1
fusei += abs(a[0])+1
flag = 1
for i in range(1, n):
if flag == 1:
ai = a[i]
if ai > 0:
if ai + cnt <= 0:
fusei += abs(cnt) + 1
cnt = 1
else:
cnt += ai
else:
fusei += abs(cnt)+1
cnt = 1
else:
ai = a[i]
if ai < 0:
if ai + cnt >= 0:
fusei += abs(cnt) + 1
cnt = -1
else:
cnt += ai
else:
fusei += abs(cnt) +1
cnt = -1
seifu = 0
cnt = 0
if a[0] < 0:
cnt = 1
seifu += abs(a[0])+1
flag = -1
for i in range(1, n):
if flag == 1:
ai = a[i]
if ai > 0:
if ai + cnt <= 0:
seifu += abs(cnt) + 1
cnt = 1
else:
cnt += ai
else:
seifu += abs(cnt)+1
cnt = 1
else:
ai = a[i]
if ai < 0:
if ai + cnt >= 0:
seifu += abs(cnt) + 1
cnt = -1
else:
cnt += ai
else:
seifu += abs(cnt) +1
cnt = -1
print(min(fusei, seifu)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int ans = 0, c, n, count = 0, b = 0;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> c;
if (i == 0) {
count = c;
if (c < 0) b = 1;
} else {
count += c;
if (b == 0) {
while (count >= 0) {
ans++;
count--;
}
b = 1;
} else {
while (count <= 0) {
ans++;
count++;
}
b = 0;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | fun main() {
val n = readLine()!!.toInt()
val a = readLine()!!.split(" ").map { it.toLong() }
var answer = 0L
var total = 0L
for (i in 0 until n) {
val tmp = total
total = total + a[i]
if (total == 0L) {
if (tmp > 0) {
answer += 1
total = -1
} else if (tmp < 0) {
answer += 1
total = 1
} else if (tmp == 0L) { //i ==0
answer += 1
total = getTotal(a)
}
continue
}
if (tmp > 0 && total > 0) {
answer += (total + 1)
total = -1
} else if (tmp < 0 && total < 0) {
answer += (-total + 1)
total = 1
}
}
println(answer)
}
fun getTotal(a: List<Long>): Long {
for (x in a) {
if (x > 0) {
return -1
} else if (x < 0) {
return 1
}
}
return 1
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[100005];
long long sum, ans = 100000000, res, n;
int main() {
bool flag = 0;
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = 1; i <= n; i++) {
sum += a[i];
if (!flag) {
if (sum <= 0) {
res += 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
res += sum + 1;
sum = -1;
}
}
flag ^= 1;
}
if (res < ans) ans = res;
flag = 0, res = sum = 0;
for (int i = 1; i <= n; i++) {
sum += a[i];
if (!flag) {
if (sum >= 0) {
res += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
res += 1 - sum;
sum = 1;
}
}
flag ^= 1;
}
if (res < ans) ans = res;
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int* a = new int[n];
bool flg = false;
long long sum = 0;
int cnt = 0;
for (int i = 0; i < n; ++i) {
cin >> a[i];
if (i == 0) {
if (a[0] < 0)
flg = false;
else
flg = true;
}
sum += a[i];
if (flg == false && i % 2 == 0 && sum >= 0) {
while (sum >= 0) {
--sum;
++cnt;
}
} else if (flg == false && i % 2 == 1 && sum <= 0) {
while (sum <= 0) {
++sum;
++cnt;
}
} else if (flg == true && i % 2 == 0 && sum <= 0) {
while (sum <= 0) {
++sum;
++cnt;
}
} else if (flg == true && i % 2 == 1 && sum >= 0) {
while (sum >= 0) {
--sum;
++cnt;
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = list(map(int, input().split()))
def judge_pm(a,b):
if a*b<0:
return True
else:
return False
a1 = copy.deepcopy(a)
tmp_sum = a1[0]
operate_num1 = 0
for i in range(1, n):
if judge_pm(tmp_sum, tmp_sum+a1[i]):
pass
elif tmp_sum<0:
tmp_operate_num = - tmp_sum + 1 - a1[i]
operate_num1 += tmp_operate_num
a1[i] += tmp_operate_num
else:
tmp_operate_num = tmp_sum + 1 + a1[i]
operate_num1 += tmp_operate_num
a1[i] -= tmp_operate_num
tmp_sum += a1[i]
a2 = copy.deepcopy(a)
operate_num2 = 0
if a2[0]<0:
operate_num2 += min(-a2[0] - a[1] + 1, -a[0] + 1)
a2[0] += operate_num2
else:
operate_num2 += min(a2[0] + a[1] - 1, a[0] - 1)
a2[0] -= operate_num2
tmp_sum = a2[0]
for i in range(1, n):
if judge_pm(tmp_sum, tmp_sum+a2[i]):
pass
elif tmp_sum<0:
tmp_operate_num = - tmp_sum + 1 - a2[i]
operate_num2 += tmp_operate_num
a2[i] += tmp_operate_num
else:
tmp_operate_num = tmp_sum + 1 + a2[i]
operate_num2 += tmp_operate_num
a2[i] -= tmp_operate_num
tmp_sum += a2[i]
print(min(operate_num1, operate_num2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int VX[] = {0, 1, 0, -1};
const int VY[] = {1, 0, -1, 0};
const long long MOD = pow(10, 9) + 7;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n, cost = 0;
cin >> n;
vector<int> a(n);
for (int i = (0); i < (n); i++) cin >> a[i];
bool sign = a[0] > 0;
for (int i = (1); i < (n); i++) {
sign = !sign;
a[i] += a[i - 1];
if (sign) {
if (a[i] <= 0) {
while (a[i] != 1) {
a[i]++;
cost++;
}
}
} else {
if (a[i] >= 0) {
while (a[i] != -1) {
a[i]--;
cost++;
}
}
}
}
cout << cost << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n = 0;
cin >> n;
int* all = new int[n];
for (int i = 0; i < n; i++) cin >> all[i];
long long ans = 0;
int sum = 0;
int last = 0;
long long ans2 = 0;
int sum2 = 0;
int last2 = 0;
bool flag = false;
if (all[0] > 0)
last = -1;
else if (all[0] < 0)
last = 1;
else {
last = -1;
all[0] = 1;
ans++;
flag = true;
}
for (int i = 0; i < n; i++) {
sum += all[i];
if (last == 1) {
if (sum >= 0) {
ans += sum + 1;
sum = -1;
}
last = -1;
} else if (last == -1) {
if (sum <= 0) {
ans += -1 * sum + 1;
sum = 1;
}
last = 1;
}
}
if (all[0] > 0) {
if (flag) {
last2 = -1;
ans2++;
all[0] = -1;
} else {
last2 = 1;
ans2 += all[0] + 1;
all[0] = -1;
}
} else if (all[0] < 0) {
last2 = -1;
ans2 += all[0] * -1 + 1;
all[0] = 1;
}
for (int i = 0; i < n; i++) {
sum2 += all[i];
if (last2 == 1) {
if (sum2 >= 0) {
ans2 += sum2 + 1;
sum2 = -1;
}
last2 = -1;
} else if (last2 == -1) {
if (sum2 <= 0) {
ans2 += -1 * sum2 + 1;
sum2 = 1;
}
last2 = 1;
}
}
if (ans < ans2)
cout << ans;
else
cout << ans2;
system("pause");
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
import java.util.Arrays;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int [n];
for(int i = 0;i < n;i++){
a[i] = sc.nextInt();
}
int[] sum = new int[n];
sum[0] = a[0];
int count = 0;
count = Math.min(solve1(sum,a,count),solve2(sum,a,count));
System.out.println(count);
}
public static int solve1(int[] sum,int[] a,int count){
if(sum[0] == 0){
count++;
sum[0] = 1;
}
for(int i = 0;i < sum.length-1;i++){
sum[i+1] = sum[i] + a[i+1];
if((i+1) % 2 == 1){
if(sum[i+1] >= 0){
count += 1 + sum[i+1];
sum[i+1] = -1;
}
}
if((i+1) % 2 == 0){
if(sum[i+1] <= 0){
count += 1 - sum[i+1];
sum[i+1] = 1;
}
}
}
return count;
}
public static int solve2(int[] sum,int[] a,int count){
if(sum[0] == 0){
count++;
sum[0] = -1;
}
for(int i = 0;i < sum.length-1;i++){
sum[i+1] = sum[i] + a[i+1];
if((i+1) % 2 == 1){
if(sum[i+1] <= 0){
count += 1 - sum[i+1];
sum[i+1] = 1;
}
}
if((i+1) % 2 == 0){
if(sum[i+1] >= 0){
count += 1 + sum[i+1];
sum[i+1] = -1;
}
}
}
return count;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(i) for i in input().split()]
cur = 0
ans1, ans2 = 0,0
for i, x in enumerate(a):
cur += x
if i%2 == 0:
if cur >= 1:
continue
else:
ans1 += abs(1-x)
else:
if cur <= -1:
continue
else:
ans1 += abs(-1-x)
for i, x in enumerate(a):
cur += x
if i%2 != 0:
if cur >= 1:
continue
else:
ans2 += abs(1-x)
else:
if cur <= -1:
continue
else:
ans2 += abs(-1-x)
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a.at(i);
int64_t sumi = 0, val1 = 0;
int ne = 0;
if (a.at(0) == 0) {
while (a.at(ne) == 0) {
if (ne == 0)
val1++;
else
val1 += 2;
ne++;
if (ne == n) break;
}
}
int64_t val2 = val1;
for (int i = ne; i < n;) {
if (a.at(0) == 0 && sumi == 0) {
if (ne % 2 == 0)
sumi = -1;
else
sumi = 1;
i++;
}
if (i % 2 == 1) {
if (sumi + a.at(i) < 0)
sumi += a.at(i);
else {
val1 += (sumi + a.at(i) + 1);
sumi = -1;
}
} else {
if (sumi + a.at(i) > 0)
sumi += a.at(i);
else {
val1 += (abs(sumi + a.at(i)) + 1);
sumi = 1;
}
}
}
sumi = 0;
for (int i = ne; i < n;) {
if (a.at(0) == 0 && sumi == 0) {
if (ne % 2 == 0)
sumi = 1;
else
sumi = -1;
i++;
}
if (i % 2 == 1) {
if (sumi + a.at(i) > 0)
sumi += a.at(i);
else {
val2 += (abs(sumi + a.at(i)) + 1);
sumi = 1;
}
} else {
if (sumi + a.at(i) < 0)
sumi += a.at(i);
else {
val2 += (sumi + a.at(i) + 1);
sumi = -1;
}
}
}
cout << min(val1, val2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
sc.close();
// +-+-+...の場合
long sum1 = a[0];
long count1 = 0;
for (int i = 1; i < n; i++) {
sum1 += a[i];
if (i % 2 == 0) {
if (sum1 <= 0) {
count1 += 1 - sum1;
sum1 = 1;
}
} else {
if (0 <= sum1) {
count1 += sum1 + 1;
sum1 = -1;
}
}
}
// -+-+_...の場合
long sum2 = a[0];
long count2 = 0;
for (int i = 1; i < n; i++) {
sum2 += a[i];
if (i % 2 == 0) {
if (0 <= sum2) {
count2 += sum2 + 1;
sum2 = -1;
}
} else {
if (sum2 <= 0) {
count2 += 1 - sum2;
sum2 = 1;
}
}
}
System.out.println(Math.min(count1, count2));
}
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.