Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
int main(){
long n;
cin >> n;
long a[n],sum = 0;
for(long i = 0;i < n;i++){
cin >> a[i];
}
long kekka = 0;
for(long i = 0;i < n;i++){
sum += a[i];
if(i % 2 == 0 && sum >= 0){
kekkka += sum + 1;
sum = -1;
}
if(i % 2 == 1 && sum <= 0){
kekka += -sum + 1;
sum = 1;
}
}
long result = 0;
sum = 0;
for(long i = 0;i < n;i++){
sum += a[i];
if(i % 2 == 0 && sum <= 0){
result += -sum + 1;
sum = 1;
}
if(i % 2 == 1 && sum >= 0){
result += sum + 1;
sum = -1;
}
}
cout << min(kekka,result) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
b = [int(x) for x in input().split()]
a = list()
temp = 0
count1 = 0
count2 = 0
a = b
if a[0] == 0:
a[0] = 1
count1 = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
if sum > 0:
temp = -1 * abs(sum) - 1
count1 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count1 += abs(temp - a[i])
a[i] = temp
sum += a[i]
count2 = abs(a[0]) + 1
a = b
if a[0] == 0:
a[0] = 1
count1 = 1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
sum = a[0]
for i in range(1, n):
if abs(a[i]) <= abs(sum) or a[i] * sum >= 0:
count2 += abs(sum - a[i]) + 1
if sum > 0:
temp = -1 * abs(sum) - 1
count2 += abs(temp - a[i])
else:
temp = abs(sum) + 1
count2 += abs(temp - a[i])
a[i] = temp
sum += a[i]
print(min(count1, count2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int A[n];
for (int i = 0; i < n; i++) {
cin >> A[i];
}
int countA = 0;
int countB = 0;
int part = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && A[i] + part <= 0) {
countA += 1 - (A[i] + part);
part = 1;
} else if (i % 2 == 1 && A[i] + part >= 0) {
countA += A[i] + part + 1;
part = -1;
} else
part += A[i];
}
part = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && A[i] + part >= 0) {
countB += A[i] + part + 1;
part = -1;
} else if (i % 2 == 1 && A[i] + part <= 0) {
countB += 1 - (A[i] + part);
part = 1;
} else
part += A[i];
}
cout << min(countA, countB) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!usr/bin/env python3
from collections import defaultdict
from collections import deque
from heapq import heappush, heappop
import sys
import math
import bisect
import random
import itertools
sys.setrecursionlimit(10**5)
stdin = sys.stdin
bisect_left = bisect.bisect_left
bisect_right = bisect.bisect_right
def LI(): return list(map(int, stdin.readline().split()))
def LF(): return list(map(float, stdin.readline().split()))
def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split()))
def II(): return int(stdin.readline())
def IF(): return float(stdin.readline())
def LS(): return list(map(list, stdin.readline().split()))
def S(): return list(stdin.readline().rstrip())
def IR(n): return [II() for _ in range(n)]
def LIR(n): return [LI() for _ in range(n)]
def FR(n): return [IF() for _ in range(n)]
def LFR(n): return [LI() for _ in range(n)]
def LIR_(n): return [LI_() for _ in range(n)]
def SR(n): return [S() for _ in range(n)]
def LSR(n): return [LS() for _ in range(n)]
mod = 1000000007
inf = float('INF')
#A
def A():
a = input().split()
a = list(map(lambda x: x.capitalize(), a))
a,b,c = a
print(a[0]+b[0]+c[0])
return
#B
def B():
a = II()
b = II()
if a > b:
print("GREATER")
if a < b:
print("LESS")
if a == b:
print("EQUAL")
return
#C
def C():
II()
a = LI()
def f(suma, b):
for i in a[1:]:
if suma * (suma + i) < 0:
suma += i
continue
b += (abs(suma + i) + 1)
suma = (-1 * (suma > 0)) or 1
return b
if a[0] == 0:
ans = min(f(1, 1), f(-1, 1))
else:
ans = min(f(a[0], 0), f(-a[0], 2 * abs(a[0])))
print(ans)
return
#D
def D():
s = S()
for i in range(len(s) - 1):
if s[i] == s[i+1]:
print(i + 1, i + 2)
return
for i in range(len(s) - 2):
if s[i] == s[i + 2]:
print(i + 1, i + 3)
return
print(-1, -1)
return
#Solve
if __name__ == '__main__':
C()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
static const int INF = 0x3f3f3f3f;
static const long long INFL = 0x3f3f3f3f3f3f3f3fLL;
template <typename T, typename U>
inline void amin(T &x, U y) {
if (y < x) x = y;
}
template <typename T, typename U>
inline void amax(T &x, U y) {
if (x < y) x = y;
}
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long(i) = 0; (i) < (long long)(n); (i)++) cin >> a[i];
long long sum = 0;
long long prev = 0;
sum += a[0];
long long ans = 0;
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans += sum + 1;
sum = -1;
} else if (sum < 0) {
ans += abs(sum) + 1;
sum = 1;
} else {
ans++;
sum = (prev < 0 ? 1 : -1);
}
}
}
sum = 0;
prev = 0;
long long ans2 = 0;
sum += a[0];
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans2 += abs(sum) + 1;
sum = 1;
} else {
ans2++;
sum = 1;
}
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans2 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans2 += abs(sum) + 1;
sum = 1;
} else {
ans2++;
sum = (prev < 0 ? 1 : -1);
}
}
}
sum = 0;
prev = 0;
long long ans3 = 0;
sum += a[0];
if (sum > 0) {
ans3 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans3 += abs(sum) + 1;
sum = 1;
} else {
ans3++;
sum = -1;
}
for (long long(i) = (long long)(1); (i) < (long long)(n); (i)++) {
prev = sum;
sum += a[i];
if (prev * sum < 0) {
continue;
} else {
if (sum > 0) {
ans3 += sum + 1;
sum = -1;
} else if (sum < 0) {
ans3 += abs(sum) + 1;
sum = 1;
} else {
ans3++;
sum = (prev < 0 ? 1 : -1);
}
}
}
cout << min(ans, min(ans3, ans2)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | if __name__ == '__main__':
# C
n = int(input())
a0 = input().split()
a = [int(i) for i in a0]
s1 = 0
s2 = 0
m1 = 0
m2 = 0
o = 1
e = -1
for i in a:
s1 += i
if s1 == 0:
m1 += 1
elif o * s1 < 0:
m1 += abs(s1) + 1
s1 = o
o *= -1
else:
o *= -1
s2 += i
if s2 == 0:
m2 += 1
elif e * s2 < 0:
m2 += abs(s2) + 1
s2 = e
e *= -1
else:
e *= -1
print(min(m1, m2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 1; i <= n; i++) cin >> a[i];
vector<int> a1;
a1 = a;
int sum1 = 0, ans1 = 0;
for (int i = 1; i <= n; i++) {
sum1 += a1[i];
if (i % 2 == 1 && sum1 <= 0) {
int plus = 1 - sum1;
sum1 += 1;
ans1 += plus;
continue;
}
if (i % 2 == 0 && sum1 >= 0) {
int minus = 1 + sum1;
sum1 = -1;
ans1 += minus;
}
}
vector<int> a2;
a2 = a;
int sum2 = 0, ans2 = 0;
for (int i = 1; i <= n; i++) {
sum2 += a2[i];
if (i % 2 == 1 && sum2 >= 0) {
int minus = 1 + sum2;
sum2 = -1;
ans2 += minus;
continue;
} else if (i % 2 == 0 && sum2 <= 0) {
int plus = 1 - sum2;
sum2 = 1;
ans2 += plus;
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class C {
public:
template <typename T>
int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
void solve(std::istream& in, std::ostream& out) {
ios::sync_with_stdio(false);
int n;
in >> n;
vector<long long int> a(n), p(n);
for (int i = 0; i < n; ++i) {
in >> a[i];
}
long long int steps = 0;
long long int steps2 = 0;
p[0] = a[0];
if (a[0] != 0) {
for (int i = 0; i < n - 1; ++i) {
p[i + 1] = p[i] + a[i + 1];
if (sgn(p[i]) == -1) {
if (sgn(p[i + 1]) != 1) {
steps += -p[i + 1] + 1;
p[i + 1] = 1;
}
} else if (sgn(p[i]) == 1) {
if (sgn(p[i + 1]) != -1) {
steps += p[i + 1] + 1;
p[i + 1] = -1;
}
}
}
} else {
p[0] = 1;
for (int i = 0; i < n - 1; ++i) {
p[i + 1] = p[i] + a[i + 1];
if (sgn(p[i]) == -1) {
if (sgn(p[i + 1]) != 1) {
steps += -p[i + 1] + 1;
p[i + 1] = 1;
}
} else if (sgn(p[i]) == 1) {
if (sgn(p[i + 1]) != -1) {
steps += p[i + 1] + 1;
p[i + 1] = -1;
}
}
}
p[0] = -1;
for (int i = 0; i < n - 1; ++i) {
p[i + 1] = p[i] + a[i + 1];
if (sgn(p[i]) == -1) {
if (sgn(p[i + 1]) != 1) {
steps2 += -p[i + 1] + 1;
p[i + 1] = 1;
}
} else if (sgn(p[i]) == 1) {
if (sgn(p[i + 1]) != -1) {
steps2 += p[i + 1] + 1;
p[i + 1] = -1;
}
}
}
steps = min(steps, steps2);
}
if (p[n - 1] == 0) {
++steps;
}
out << steps << endl;
}
};
int main() {
C solver;
std::istream& in(std::cin);
std::ostream& out(std::cout);
solver.solve(in, out);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = [int(i) for i in input().split()]
b=a.copy()
s0p = a[0]
s0n = b[0]
countp = 0
countn = 0
if a.count(0)==n:
print(2*n+1)
exit()
"""
if s0p<=0:
while s0p<=0:
s0p+=1
countp+=1
if s0n>=0:
while s0n>=0:
s0n-=1
countn+=1
"""
for i in range(1,n):
s1 = s0p+a[i]
if s0p*s1>=0:
if s1>0:
a[i]-=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1<0:
a[i]+=(abs(s1)+1)
countp+=(abs(s1)+1)
elif s1==0:
if s0p>0:
a[i]-=1
countp+=1
elif s0p<0:
a[i]+=1
countp+=1
s0p += a[i]
for i in range(1,n):
s1 = s0n+b[i]
if s0n*s1>=0:
if s1>0:
b[i]-=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1<0:
b[i]+=(abs(s1)+1)
countn+=(abs(s1)+1)
elif s1==0:
if s0n>0:
b[i]-=1
countn+=1
elif s0n<0:
b[i]+=1
countn+=1
s0n += b[i]
print(countp if countp<=countn else(countn))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int N;
const int MAX_N = 1.0e5 + 100;
int a[MAX_N];
int main() {
cin >> N;
for (int i = 0; i < N; i++) cin >> a[i];
int e_sum = 0;
int even = 0;
for (int i = 0; i < N; i++) {
e_sum += a[i];
if (i % 2 == 0 && e_sum < 0) {
even += abs(e_sum) + 1;
e_sum = 1;
} else if (i % 2 == 1 && e_sum > 0) {
even += abs(e_sum) + 1;
e_sum = -1;
}
}
int o_sum = 0;
int odd = 0;
for (int i = 0; i < N; i++) {
o_sum += a[i];
if (i % 2 == 1 && o_sum <= 0) {
odd += abs(o_sum) + 1;
o_sum = 1;
} else if (i % 2 == 0 && o_sum >= 0) {
odd += abs(o_sum) + 1;
o_sum = -1;
}
}
cout << min(even, odd) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n], b[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] = a[i];
}
int case1, total;
if (a[0] > 0) {
case1 = 0;
total = a[0];
} else {
case1 = 1 - a[0];
total = 1;
}
for (int i = 1; i < n; i++) {
int ttmp = total + a[i];
int atmp = a[i];
if ((ttmp * total) < 0 && ttmp != 0) {
total = ttmp;
} else {
if (total > 0) {
a[i] = -total - 1;
} else {
a[i] = -total + 1;
}
total += a[i];
}
case1 += abs(a[i] - atmp);
}
int case2;
if (b[0] < 0) {
case2 = 0;
total = b[0];
} else {
case2 = -1 - b[0];
total = -1;
}
for (int i = 1; i < n; i++) {
int ttmp = total + b[i];
int atmp = b[i];
if ((ttmp * total) < 0 && ttmp != 0) {
total = ttmp;
} else {
if (total > 0) {
b[i] = -total - 1;
} else {
b[i] = -total + 1;
}
total += b[i];
}
case2 += abs(b[i] - atmp);
}
cout << min(case1, case2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | input()
a = list(map(int, input().split()))
s = a[0]
ret = 0
for i in a[1:]:
if s * (s+i) < 0:
s = s+i
else:
t = s + i
k = 1 if t > 0 else -1
ret += k * t + 1
s = -k
print(ret) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def resolve(SL):
# L[0]!=0を起点とする
cnt = 0
for i in range(len(SL)-1):
s0 = SL[i]
s1 = SL[i+1]
if(s0>0 and s1>=0):
SL[(i+1):] = [s-(s1+1) for s in SL[(i+1):]]
cnt += (s1+1)
elif(s0<0 and s1<=0):
SL[(i+1):] = [s+(-s1+1) for s in SL[(i+1):]]
cnt += (-s1+1)
# print(SL)
return cnt
def ans(L):
SL = [sum(L[:(i+1)]) for i in range(len(L))]
c0,c1=0,0
if (L[0]>0):
c0 = resolve(SL)
c1 = (L[0]+1) + resolve(list(map(lambda x:x-(L[0]+1), SL)))
elif (L[0]<0):
c0 = resolve(L)
c1 = (-L[0]+1) + resolve(list(map(lambda x:x+(-L[0]+1), SL)))
else:
c0 = 1 + resolve(list(map(lambda x:x+1, SL)))
c1 = 1 + resolve(list(map(lambda x:x-1, SL)))
return(min(c0,c1))
N = int(input())
L = [int(x) for x in input().split(' ')]
print(ans(L))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
long[] A = new long[N];
for (int i = 0; i < N; i++) {
A[i] = sc.nextInt();
}
System.out.println( solve(N, A) );
}
private static long solve(int N, long[] A) {
long a0 = A[0];
if( a0 > 0 ) {
long p = solve1(N, A, a0, 0);
long m = solve1(N, A, -1, a0 + 1);
return Math.min(p, m);
} else if( a0 < 0 ) {
long p = solve1(N, A, 1, a0 + 1);
long m = solve1(N, A, a0, 0);
return Math.min(p, m);
} else {
long p = solve1(N, A, 1, 1);
long m = solve1(N, A, -1, 1);
return Math.min(p, m);
}
}
private static long solve1(int N, long[] A, long sum, long ans) {
for (int i = 1; i < N; i++) {
long a = A[i];
if( sum > 0 ) {
// 次はminusになるのを期待
if( a + sum >= 0 ) {
// sumが-1になるような値にまで変更する
// a + sum が 5 の場合、6 だけ操作すると -1 にできる
long diff = a + sum + 1L;
ans += diff;
sum = -1;
} else {
sum += a;
}
} else {
if( a + sum <= 0 ) {
long diff = Math.abs(a + sum) + 1L;
ans += diff;
sum = 1;
} else {
sum += a;
}
}
}
return ans;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int checkSign(int A) { return (int)(A > 0) - (int)(A < 0); }
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i = 0; i < N; i++) {
cin >> a.at(i);
}
int res1 = 0;
int sum = 0;
int sign = 1;
for (int i = 0; i < N; i++) {
int tmp = a.at(i);
if (checkSign(sum + a.at(i)) == 0 ||
checkSign(sum + a.at(i)) == checkSign(sum)) {
tmp = sign * (abs(sum) + 1);
res1 += abs(tmp - a.at(i));
}
sum += tmp;
sign *= -1;
}
int res2 = 0;
sum = 0;
sign = -1;
for (int i = 0; i < N; i++) {
int tmp = a.at(i);
if (checkSign(sum + a.at(i)) == 0 ||
checkSign(sum + a.at(i)) == checkSign(sum)) {
tmp = sign * (abs(sum) + 1);
res2 += abs(tmp - a.at(i));
}
sum += tmp;
sign *= -1;
}
cout << min(res1, res2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long Sum = a[0], ans = 0;
if (Sum == 0) {
ans++;
Sum++;
}
for (int i = 0; i < n - 1; i++) {
if (Sum < 0 && Sum + a[i + 1] <= 0) {
ans += -(Sum + a[i + 1]) + 1;
Sum = 1;
} else if (Sum > 0 && Sum + a[i + 1] >= 0) {
ans += Sum + a[i + 1] + 1;
Sum = -1;
} else {
Sum += a[i + 1];
}
}
long long S1 = a[0], t1 = 0;
if (S1 == 0) {
ans++;
Sum--;
}
for (int i = 0; i < n - 1; i++) {
if (S1 < 0 && S1 + a[i + 1] <= 0) {
t1 += -(S1 + a[i + 1]) + 1;
S1 = 1;
} else if (S1 > 0 && S1 + a[i + 1] >= 0) {
t1 += S1 + a[i + 1] + 1;
S1 = -1;
} else {
S1 += a[i + 1];
}
}
ans = min(ans, t1);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
cin >> n;
long long a[n];
for (long i = 0; i < n; i++) {
cin >> a[i];
}
long long sum_pn, sum_np;
long long count_pn, count_np, count;
sum_pn = 0;
sum_np = 0;
count_pn = 0;
count_np = 0;
for (long i = 0; i < n; i++) {
sum_pn += a[i];
sum_np += a[i];
long long sign;
sign = ((i) % 2 * 2 - 1);
if (sum_pn * (sign) <= 0) {
count_pn = count_pn - sign * sum_pn + 1;
sum_pn = sum_pn - sum_pn + sign;
}
if (sum_np * (-sign) <= 0) {
count_np = count_np + sign * sum_np + 1;
sum_np = sum_np - sum_np - sign;
}
cout << "i sum_pn sum_np " << i << " " << sum_pn << " " << sum_np << endl;
cout << " sign count_pn np " << sign << " " << count_pn << " " << count_np
<< endl;
}
if (count_pn < count_np) {
count = count_pn;
} else {
count = count_np;
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long int;
const ll INF = (1LL << 32);
const ll MOD = (ll)1e9 + 7;
const double EPS = 1e-9;
ll dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
ll dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
ll n;
ll solve(vector<ll> a) {
ll sum = a[0];
ll ans = 0;
for (ll i = (1); i < (n); i++) {
if (sum > 0 and (sum + a[i]) > 0) {
while (sum + a[i] != -1) {
a[i]--;
ans++;
}
} else if (sum < 0 and (sum + a[i]) < 0) {
while (sum + a[i] != 1) {
a[i]++;
ans++;
}
}
sum += a[i];
}
if (sum == 0) ans++;
return ans;
}
signed main() {
ios::sync_with_stdio(false);
cin >> n;
vector<ll> a;
for (ll i = 0; i < n; i++) {
ll x;
cin >> x;
a.push_back(x);
}
ll start = a[0];
auto ac = a;
ll fa1 = solve(a);
ac[0] = ac[0] *= -1;
ll fa2 = solve(ac);
fa2 += start + 1;
cout << min(fa1, fa2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
count=0
A=[int(i) for i in input().split()]
if A[0]==0:
A[0]+=1
count+=1
elif A[0]<0:
for i in range(len(A)):
A[i]*=(-1)
for i in range(1,len(A)):
if i%2==0:
while sum(A[:i+1])<=0:
A[i]+=1
count+=1
else:
while sum(A[:i+1])>=0:
A[i]-=1
count+=1
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
void solve() {}
int main() {
int n;
vector<int> a, a2;
cin >> n;
int x;
for (int i = 0; i < n; i++) {
cin >> x;
a.push_back(x);
}
bool pl = false;
bool mi = false;
bool zero = false;
if (a[0] > 0) {
pl = true;
} else if (a[0] < 0) {
mi = true;
} else {
zero = true;
}
ll sum = a[0];
ll sum2 = a[0];
ll ans = 0;
ll ans2 = 0;
if (zero) {
copy((a).begin(), (a).end(), back_inserter(a2));
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum >= 0) {
int tmp = a[i];
a[i] -= sum + 1;
ans += sum + 1;
sum -= tmp;
sum += a[i];
}
} else {
if (sum <= 0) {
int tmp = a[i];
a[i] += (-1) * sum + 1;
ans += (-1) * sum + 1;
sum -= tmp;
sum += a[i];
}
}
}
for (int i = 1; i < n; i++) {
sum2 += a2[i];
if (i % 2 == 1) {
if (sum <= 0) {
int tmp = a2[i];
a2[i] += (-1) * sum + 1;
ans2 += (-1) * sum + 1;
sum -= tmp;
sum += a2[i];
}
} else {
if (sum >= 0) {
int tmp = a2[i];
a2[i] -= sum + 1;
ans2 += sum + 1;
sum -= tmp;
sum += a2[i];
}
}
}
if (ans2 < ans) {
ans = ans2;
}
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (pl) {
if (i % 2 == 1) {
if (sum >= 0) {
int tmp = a[i];
a[i] -= sum + 1;
ans += sum + 1;
sum -= tmp;
sum += a[i];
}
} else {
if (sum <= 0) {
int tmp = a[i];
a[i] += (-1) * sum + 1;
ans += (-1) * sum + 1;
sum -= tmp;
sum += a[i];
}
}
} else if (mi) {
if (i % 2 == 1) {
if (sum <= 0) {
int tmp = a[i];
a[i] += (-1) * sum + 1;
ans += (-1) * sum + 1;
sum -= tmp;
sum += a[i];
}
} else {
if (sum >= 0) {
int tmp = a[i];
a[i] -= sum + 1;
ans += sum + 1;
sum -= tmp;
sum += a[i];
}
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=[int(i) for i in input().split(" ")]
(o,s) = (0,0)
for i in range(n):
k=a[i]
if (s+a[i]==0): a[i]= -s+1 if (s<0) else 1+s
elif ((s<0 and s+a[i]<0) or (s>0 and s+a[i]>0)): a[i]=-s+1 if (s+a[i]<0) else -s-1
o+=abs(k-a[i])
s+=a[i]
print(o) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans = 0
sum = A[0]
for a in A[1:]:
if (sum + a) * sum < 0:
sum += a
else:
fugo = sum // abs(sum)
nextsum = - fugo
a_should_be = nextsum - sum
dif = abs(a_should_be - a)
sum += a_should_be
ans += dif
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
arr = gets.chomp.split(" ").map(&:to_i)
$count = [0,0]
def check(i,arr,t)
if i > arr.size - 1
arr[t] += 1
$count += 1
return
end
if arr[i] > 0
arr[t] -= 1
$count += 1
elsif arr[i] < 0
arr[t] += 1
$count += 1
else
check(i+1,arr,t)
end
end
flg = true
2.times do |j|
tmp_arr = Marshal.load(Marshal.dump(arr))
sum = tmp_arr[0] + tmp_arr[1]
if sum == 0
if flg
tmp_arr[1] -= 1
else
tmp_arr[1] += 1
end
$count[j] += 1
end
if flg
tmp_arr[1] -= sum+1 if sum > 0
else
tmp_arr[1] += sum+1 if sum < 0
end
sum = tmp_arr[0] + tmp_arr[1]
(2...tmp_arr.size).each do |i|
diff = sum + tmp_arr[i]
# puts %(sum : #{sum})
# puts %(diff : #{diff})
if sum > 0
if diff > 0
tmp_arr[i] -= diff.abs+1
$count[j] += diff.abs+1
elsif diff == 0
tmp_arr[i] -= 1
$count[j] += 1
end
else
if diff < 0
tmp_arr[i] += diff.abs+1
$count[j] += diff.abs+1
elsif diff == 0
tmp_arr[i] += 1
$count[j] += 1
end
end
sum += tmp_arr[i]
# p tmp_arr
end
flg = false
end
#p $count
#p arr
puts $count.min |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # encoding:utf-8
import copy
import random
import bisect #bisect_left これで二部探索の大小検索が行える
import fractions #最小公倍数などはこっち
import math
mod = 10**9+7
n = int(input())
a = [int(i) for i in input().split()]
sums = [0 for i in range(n)]
tmp = 0
if a[0] > 0:
status_pos = True
else:
status_pos = False
ans = 0
for i in range(n):
tmp += a[i]
if status_pos and tmp <= 0:
ans += 1-tmp
tmp = 1
elif status_pos == False and tmp >= 0:
ans += 1+tmp
tmp = -1
status_pos = not(status_pos)
ans2 = abs(a[0])+1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
tmp = a[0]
if a[0] > 0:
status_pos = True
else:
status_pos = False
for i in range(1,n):
tmp += a[i]
if status_pos and tmp <= 0:
ans2 += 1-tmp
tmp = 1
elif status_pos == False and tmp >= 0:
ans2 += 1+tmp
tmp = -1
status_pos = not(status_pos)
print(min(ans,ans2))
"""
1 -2 2 -2
1 -1 1 1
"""
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
num = a[0]
ans = 0
if a[0]>0:
for i in range(1,n):
num += a[i]
if i%2==1:
if num>=0:
ans += num+1
num = -1
else:
if num<=0:
ans += 1-num
num = 1
elif a[0]<0:
for i in range(1,n):
num += a[i]
if i%2==1:
if num <= 0:
ans += 1-num
num = 1
else:
if num >= 0:
ans += num+1
num = -1
else:
num = 0
ansp = 1
ansn = 1
for i in range(1,n):
num += a[i]
if i%2==1:
if num>=0:
ansp += num+1
num = -1
else:
if num<=0:
ansp += 1-num
num = 1
for i in range(1,n):
num += a[i]
if i%2==1:
if num <= 0:
ansm += 1-num
num = 1
else:
if num >= 0:
ansm += num+1
num = -1
ans = min(ansp,ansm)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n + 1];
for (int i = 0; i < n; i++) cin >> a[i];
int sum = a[0];
int c = 1;
int ans0 = 0, ans1 = 0;
for (int i = 1; i < n; i++) {
sum += a[i];
if (sum * c < 1) {
ans0 += 1 - sum * c;
sum = c;
}
c *= -1;
}
c = -1;
sum = a[0];
for (int i = 1; i < n; i++) {
sum += a[i];
if (sum * c < 1) {
ans1 += 1 - sum * c;
sum = c;
}
c *= -1;
}
if (ans0 < ans1)
cout << ans0 << endl;
else
cout << ans1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def resolve():
# 整数 1 つ
n = int(input())
# 整数複数個
# a, b = map(int, input().split())
# 整数 N 個 (改行区切り)
# N = [int(input()) for i in range(N)]
# 整数 N 個 (スペース区切り)
A = list(map(int, input().split()))
# 整数 (縦 H 横 W の行列)
# A = [list(map(int, input().split())) for i in range(H)]
sumi = A[0]
cnt = 0
for i in range(1, n-1):
sumi += A[i]
suminext = sumi + A[i+1]
if sumi * suminext < 0:
continue
else:
change = abs(suminext) +1
cnt += change
if sumi < 0:
A[i+1] = A[i+1] + change
else:
A[i+1] = A[i+1] - change
print(cnt)
resolve() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int m, i, si0;
int64_t t = 0, ans = 0;
cin >> m;
vector<int64_t> x(m), s(2);
for (i = 0; i < m; i++) {
cin >> x.at(i);
s.at(i % 2) += x.at(i);
}
if (s.at(0) >= s.at(1))
si0 = 1;
else
si0 = -1;
for (i = 0; i < m; i++) {
t += x.at(i);
if (i % 2 == 0 && si0 == 1 && t <= 0) {
ans += abs(t) + 1;
t = 1;
} else if (i % 2 == 0 && si0 == -1 && t >= 0) {
ans += abs(t) + 1;
t = -1;
} else if (i % 2 == 1 && si0 == 1 && t >= 0) {
ans += abs(t) + 1;
t = -1;
} else if (i % 2 == 1 && si0 == -1 && t <= 0) {
ans += abs(t) + 1;
t = 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
class Main{
static int[] dh = {0, 0, 1, -1, -1, -1, 1, 1};
static int[] dw = {-1, 1, 0, 0, -1, 1, -1, 1};
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
int ans = 0;
int sum = 0;
for(int i = 0; i < n; i++) {
sum += a[i];
if(sum == 0) {
if(sum - a[i] < 0) sum += 1;
else sum -= 1;
ans++;
}
if(i == 0) continue;
if(sum - a[i] < 0 && sum < 0) {
ans += Math.abs(sum) + 1;
sum = 1;
}
else if(sum - a[i] > 0 && sum > 0){
ans += Math.abs(sum) + 1;
sum = -1;
}
}
System.out.println(ans);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
arr = gets.chomp.split(" ").map(&:to_i)
$count = 0
def check(i,arr)
if i > arr.size - 1
arr[1] += 1
$count += 1
return
end
if arr[i] > 0
arr[1] -= 1
$count += 1
elsif arr[i] < 0
arr[1] += 1
$count += 1
else
check(i+1,arr)
end
end
num = arr[0] + arr[1]
if num == 0
check(2,arr)
end
num = arr[0] + arr[1]
(2...arr.size).each do |i|
diff = num + arr[i]
# puts %(num : #{num})
# puts %(diff : #{diff})
if num > 0
if diff > 0
arr[i] -= diff.abs+1
$count += diff.abs+1
end
else
if diff < 0
arr[i] += diff.abs+1
$count += diff.abs+1
end
end
if diff == 0
if num > 0
arr[i] -= 1
else
arr[i] += 1
end
$count += 1
end
num += arr[i]
end
#p arr
puts $count |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int t;
if (a[0] >= 0)
t = 1;
else
t = -1;
int sum = a[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
int sum2 = sum + a[i];
if (sum > 0 && sum2 > 0) {
ans += sum2 + 1;
sum = -1;
} else if (sum < 0 && sum2 < 0) {
ans += -sum2 + 1;
sum = 1;
} else if (sum2 == 0) {
ans++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = sum2;
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
cum_a = [0 for _ in range(n)]
cum_a[0] = a[0]
for i in range(n-1):
cum_a[i+1] = cum_a[i] + a[i+1]
cum_a = np.array(cum_a)
count = 0
flag = 0
def r_flag(n):
if n > 0:
return 1
elif n < 0:
return -1
else:
return 0
flag = r_flag(cum_a[0])
for i in range(1, len(cum_a)):
tmp_flag = r_flag(cum_a[i])
if tmp_flag * flag == -1:
flag = tmp_flag
elif tmp_flag * flag == 1:
count += abs(-1*tmp_flag-(cum_a[i]))
cum_a[i:] += -1*tmp_flag-(cum_a[i])
flag = -1 * tmp_flag
else:
try:
next_flag = r_flag(cum_a[i+1])
if next_flag == 1:
cum_a[i:] -= 1
count += 1
else:
cum_a[i:] += 1
count += 1
except:
count += 1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const long long INF = (1ll << 60);
const int MAXN = (1e+5) + 5;
using namespace std;
long long n, sum, ans, a[MAXN], b[MAXN];
int main() {
cin >> n >> a[1];
b[1] = a[1];
for (int i = 2; i <= n; i++) {
cin >> a[i];
if (b[i - 1] > 0) {
if (b[i - 1] + a[i] < 0)
b[i] = b[i - 1] + a[i];
else {
b[i] = -1;
ans += b[i - 1] + a[i] + 1;
}
} else {
if (b[i - 1] + a[i] > 0)
b[i] = b[i - 1] + a[i];
else {
b[i] = 1;
ans += 1 - b[i - 1] - a[i];
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> data(N);
int y;
cin >> y;
data.at(0) = y;
for (int i = 1; i < N; i++) {
int x;
cin >> x;
data.at(i) = data.at(i - 1) + x;
}
int sei_ans = 0;
int hu_ans = 0;
int zyoutai = 0;
for (int i = 0; i < N; i++) {
if (i % 2 == 0) {
int a = max(0, 1 - data.at(i) + zyoutai);
zyoutai += a;
sei_ans += a;
} else {
int a = 1 + max(0, data.at(i) + zyoutai);
zyoutai -= a;
sei_ans += a;
}
}
for (int i = 0; i < N; i++) {
if (i % 2 != 0) {
int a = max(0, 1 - data.at(i) + zyoutai);
zyoutai += a;
hu_ans += a;
} else {
int a = 1 + max(0, data.at(i) + zyoutai);
zyoutai -= a;
hu_ans += a;
}
}
cout << min(sei_ans, hu_ans) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(void) {
double num[10 * 10 * 10 * 10 * 10];
int i, n, ssign;
double sum = 0;
double count = 0;
double fsum, fnum;
scanf("%d", &n);
for (i = 0; i < n; i++) {
scanf("%lf", &num[i]);
}
if (num[0] == 0) {
num[0]++;
count++;
}
for (i = 1; i < n; i++) {
sum += num[i - 1];
fsum = fabs(sum);
fnum = fabs(num[i]);
while (1) {
if (fsum > fnum) {
if (sum < 0) {
num[i]++;
count++;
} else if (sum > 0) {
num[i]--;
count++;
}
} else if (fsum == fnum) {
if (sum < 0) {
num[i]++;
count++;
} else {
num[i]--;
count++;
}
} else if (fsum < fnum && sum > 0 && num[i] > 0) {
num[i]--;
count++;
} else if (fsum < fnum && sum < 0 && num[i] < 0) {
num[i]++;
count++;
} else
break;
}
}
for (i = 0; i < n; i++) {
sum += num[i];
if (sum == 0.0) {
if ((sum - num[i]) > 0)
num[i]--;
else
num[i]++;
count++;
}
}
printf("%f\n", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
static const long long MOD_NUM = 1000000007;
template <class _T>
static void getint(_T& a) {
std::cin >> a;
}
template <class _T>
static void getint(_T& a, _T& b) {
std::cin >> a >> b;
}
template <class _T>
static void getint(_T& a, _T& b, _T& c) {
std::cin >> a >> b >> c;
}
template <class _T>
static _T tp_abs(_T a) {
if (a < (_T)0) {
a *= (_T)-1;
}
return a;
}
static void exec();
int main() {
exec();
fflush(stdout);
return 0;
}
static void exec() {
int N;
getint(N);
std::vector<long long> ai(N);
for (int i = 0; i < N; i++) {
getint(ai[i]);
}
long long ans = 0;
long long sum = ai[0];
if (ai[0] == 0) {
for (int i = 1; i < N; i++) {
if (ai[i] > 0) {
if (i % 2) {
sum++;
} else {
sum--;
}
ans++;
break;
} else if (ai[i] < 0) {
if (i % 2) {
sum--;
} else {
sum++;
}
ans++;
break;
}
}
if (ans == 0) {
sum++;
ans++;
}
}
for (int i = 1; i < N; i++) {
int bfrSign = (sum > 0) ? 1 : -1;
sum += ai[i];
if ((bfrSign > 0) && (sum >= 0)) {
ans += (tp_abs(sum) + 1);
sum = -1;
} else if ((bfrSign < 0) && (sum <= 0)) {
ans += (tp_abs(sum) + 1);
sum = 1;
}
}
printf("%lld\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"math"
"os"
"strconv"
)
const pi = math.Pi
var mod int = pow(10, 9) + 7
var Umod uint64 = 1000000007
var ans_1, ans_2 int
func main() {
reader.Split(bufio.ScanWords)
n, _ := strconv.Atoi(read())
a := make([]int, n)
for i := 0; i < n; i++ {
a[i], _ = strconv.Atoi(read())
}
sum := make([]int, n)
sum[0] = a[0]
if sum[0] != 0 {
for i := 1; i < n; i++ {
sum[i] += a[i] + sum[i-1]
if 0 < sum[i-1] && 0 <= sum[i] {
// NGパターン
ans_1 += sum[i] + 1
sum[i] = -1
} else if sum[i-1] < 0 && sum[i] <= 0 {
// NGパターン
ans_1 += 1 - sum[i]
sum[i] = 1
}
}
fmt.Println(ans_1)
} else {
sum[0], ans_1 = -1, 1
for i := 1; i < n; i++ {
sum[i] += a[i] + sum[i-1]
if 0 < sum[i-1] && 0 <= sum[i] {
// NGパターン
ans_1 += sum[i] + 1
sum[i] = -1
} else if sum[i-1] < 0 && sum[i] <= 0 {
// NGパターン
ans_1 += 1 - sum[i]
sum[i] = 1
}
}
sum = make([]int, n)
sum[0], ans_2 = 1, 1
for i := 1; i < n; i++ {
sum[i] += a[i] + sum[i-1]
if 0 < sum[i-1] && 0 <= sum[i] {
// NGパターン
ans_2 += sum[i] + 1
sum[i] = -1
} else if sum[i-1] < 0 && sum[i] <= 0 {
// NGパターン
ans_2 += 1 - sum[i]
sum[i] = 1
}
}
fmt.Println(min(ans_1, ans_2))
}
}
/* ---------------------------------------- */
var reader = bufio.NewScanner(os.Stdin)
func read() string {
reader.Scan()
return reader.Text()
}
func lcm(x, y int) int {
return (x / gcd(x, y)) * y
}
func gcd(x, y int) int {
if x%y == 0 {
return y
} else {
r := x % y
return gcd(y, r)
}
}
var fac [1000000]int
var finv [1000000]int
var inv [1000000]int
func combination_init() {
fac[0], fac[1] = 1, 1
finv[0], finv[1] = 1, 1
inv[1] = 1
// invは a^(-1) mod p
// pをaで割ることを考える
// p/a*(a) + p%a = p
// p/a*(a) + p%a = 0 (mod p)
// -p%a = p/a*(a) (mod p)
// -p%a *a^(-1)= p/a (mod p)
// a^(-1)= p/a * (-p%a)^(-1) (mod p)
// a^(-1) =
for i := 2; i < 1000000; i++ {
fac[i] = fac[i-1] * i % mod
inv[i] = mod - inv[mod%i]*(mod/i)%mod
finv[i] = finv[i-1] * inv[i] % mod
}
}
func combination(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[y] * finv[x-y] % mod) % mod
//return fac[x] / (fac[y] * fac[x-y])
}
func permutation(x, y int) int {
if x < y {
return 0
}
if fac[0] != 1 {
combination_init()
}
return fac[x] * (finv[x-y] % mod) % mod
//return fac[x] / fac[x-y]
}
func max(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Max(float64(x[i]), float64(res)))
}
return res
}
func min(x ...int) int {
var res int = x[0]
for i := 1; i < len(x); i++ {
res = int(math.Min(float64(x[i]), float64(res)))
}
return res
}
func pow(x, y int) int { return int(math.Pow(float64(x), float64(y))) }
func abs(x int) int { return int(math.Abs(float64(x))) }
func floor(x int) int { return int(math.Floor(float64(x))) }
func ceil(x int) int { return int(math.Ceil(float64(x))) }
type SortBy [][]int
func (a SortBy) Len() int { return len(a) }
func (a SortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a SortBy) Less(i, j int) bool { return a[i][0] < a[j][0] }
type PriorityQueue []int
func (h PriorityQueue) Len() int { return len(h) }
func (h PriorityQueue) Less(i, j int) bool { return h[i] < h[j] }
func (h PriorityQueue) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *PriorityQueue) Push(x interface{}) { *h = append(*h, x.(int)) }
func (h *PriorityQueue) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
long body(std::vector<long>& a) {
long ans = 0;
std::vector<long> s(a.size());
s.at(0) = a.at(0);
for (unsigned long i = 1; i < a.size(); i++) {
s.at(i) = s.at(i - 1) + a.at(i);
}
long diff = 0;
for (unsigned long i = 1; i < s.size(); i++) {
s.at(i) += diff;
long n = 0;
if (s.at(i - 1) > 0 && s.at(i) >= 0) {
n = s.at(i) + 1;
ans += n;
diff -= n;
s.at(i) += diff;
} else if (s.at(i - 1) < 0 && s.at(i) <= 0) {
n = -s.at(i) + 1;
ans += n;
diff += n;
s.at(i) += diff;
}
}
return ans;
}
int main(int argc, char** argv) {
long n;
std::cin >> n;
std::vector<long> a(n);
for (long i = 0; i < n; i++) {
std::cin >> a.at(i);
}
long a0 = a.at(0);
long ans_a, ans_b;
{
if (a.at(0) > 0) {
ans_a = body(a);
} else {
a.at(0) = 1;
ans_a = body(a) + (-a0 + 1);
}
}
{
if (a.at(0) < 0) {
ans_b = body(a);
} else {
a.at(0) = -1;
ans_b = body(a) + (a0 + 1);
}
}
long ans = std::min(ans_a, ans_b);
std::cout << ans << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const bool debug = false;
using namespace std;
const long long MOD = 1000000007;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main(void) {
cin.tie(0);
ios::sync_with_stdio(false);
long long n;
cin >> n;
vector<long long> a(n);
for (int(i) = 0; (i) < (n); (i)++) {
cin >> a[i];
}
function<long long()> solve = [&]() {
long long sum = 0, cnt = 0;
for (int(i) = 0; (i) < (n); (i)++) {
if (i == 0) {
sum = a[0];
continue;
}
if (sum > 0 && sum + a[i] >= 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum < 0 && sum + a[i] <= 0) {
cnt += -(sum + a[i]) + 1;
sum = 1;
} else {
sum += a[i];
}
}
return cnt;
};
long long res;
if (a[0] == 0) {
a[0] = 1;
res = solve();
a[0] = -1;
chmin(res, solve());
res++;
} else {
res = solve();
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, sum, b, c;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] <= 0) {
b = 1 - a[0];
sum = 1;
} else {
sum = a[0];
b = 0;
}
for (int i = 1; i < n; i++) {
if (i % 2) {
if (-sum <= a[i]) {
b += abs(a[i] + sum + 1);
sum = -1;
} else {
sum += a[i];
}
} else {
if (-sum >= a[i]) {
b += abs(a[i] + sum - 1);
sum = 1;
} else {
sum += a[i];
}
}
}
if (a[0] >= 0) {
c = 1 - a[0];
sum = -1;
} else {
sum = a[0];
c = 0;
}
for (int i = 1; i < n; i++) {
if (i % 2) {
if (-sum >= a[i]) {
c += abs(a[i] + sum - 1);
sum = 1;
} else {
sum += a[i];
}
} else {
if (-sum <= a[i]) {
c += abs(a[i] + sum + 1);
sum = -1;
} else {
sum += a[i];
}
}
}
cout << min(b, c);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool umin(T &a, const T &b) {
return b < a ? a = b, 1 : 0;
}
template <class T>
bool umax(T &a, const T &b) {
return a < b ? a = b, 1 : 0;
}
template <class A>
void read(vector<A> &v);
template <class A, size_t S>
void read(array<A, S> &a);
template <class T>
void read(T &x) {
cin >> x;
}
void read(double &d) {
string t;
read(t);
d = stod(t);
}
void read(long double &d) {
string t;
read(t);
d = stold(t);
}
template <class H, class... T>
void read(H &h, T &...t) {
read(h);
read(t...);
}
template <class A>
void read(vector<A> &x) {
for (auto &a : x) read(a);
}
template <class A, size_t S>
void read(array<A, S> &x) {
for (auto &a : x) read(a);
}
string to_string(char c) { return string(1, c); }
string to_string(bool b) { return b ? "true" : "false"; }
string to_string(const char *s) { return string(s); }
string to_string(string s) { return s; }
string to_string(vector<bool> v) {
string res;
for (long long i = (0);
(1) > 0 ? i < ((long long)(v).size()) : i > ((long long)(v).size());
i += (1))
res += char('0' + v[i]);
return res;
}
template <size_t S>
string to_string(bitset<S> b) {
string res;
for (long long i = (0); (1) > 0 ? i < (S) : i > (S); i += (1))
res += char('0' + b[i]);
return res;
}
template <class T>
string to_string(T v) {
bool f = 1;
string res;
for (auto &x : v) {
if (!f) res += ' ';
f = 0;
res += to_string(x);
}
return res;
}
template <class A>
void write(A x) {
cout << to_string(x);
}
template <class H, class... T>
void write(const H &h, const T &...t) {
write(h);
write(t...);
}
void print() { write("\n"); }
template <class H, class... T>
void print(const H &h, const T &...t) {
write(h);
if (sizeof...(t)) write(' ');
print(t...);
}
template <class T, class U>
void vti(vector<T> &v, U x, size_t n) {
v = vector<T>(n, x);
}
template <class T, class U>
void vti(vector<T> &v, U x, size_t n, size_t m...) {
v = vector<T>(n);
for (auto &a : v) vti(a, x, m);
}
void solve() {
long long n;
read(n);
vector<long long> a(n);
read(a);
long long ans = 0;
if (!a[0]) {
a[0] = (a[1] < 0) ? 1 : -1;
ans = 1;
}
long long sum = a[0];
for (long long i = (1); (1) > 0 ? i < (n) : i > (n); i += (1)) {
long long x = sum;
long long y = sum + a[i];
if (x > 0 && y > 0 || x < 0 && y < 0 || !y) {
long long t = (sum > 0) ? sum + 1 : sum - 1;
ans += abs(a[i] + t);
sum = (sum > 0) ? -1 : 1;
} else {
sum += a[i];
}
}
print(ans);
}
int32_t main() {
ios::sync_with_stdio(0);
cin.tie(0);
long long tt = 1;
for (long long i = (0); (1) > 0 ? i < (tt) : i > (tt); i += (1)) {
solve();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = 0;
long long sum = 0;
long long tmp = 0;
for (int j = 0; j < 2; j++) {
for (int i = 0; i < n; i++) {
if (j == 0 && i == 0) {
sum = a[i];
continue;
} else if (j == 1 && i == 0) {
tmp = ans;
ans = 0;
sum = a[i] > 0 ? -1 : 1;
ans += a[i] > 0 ? a[i] + 1 : -(a[i] - 1);
continue;
}
if (sum > 0) {
if (sum + a[i] >= 0) {
ans += sum + a[i] + 1;
sum = -1;
continue;
}
} else {
if (sum + a[i] <= 0) {
ans -= sum + a[i] - 1;
sum = 1;
continue;
}
}
sum += a[i];
}
}
cout << (ans < tmp ? ans : tmp) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> vector;
long long temp;
for (int i = 0; i < n; i++) {
cin >> temp;
vector.push_back(temp);
}
long long answer1 = 0;
long long answer2 = 0;
long long sum1 = 0;
long long sum2 = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum1 = vector[0];
} else if (sum1 < 0) {
if (sum1 + vector[i] > 0) {
sum1 += vector[i];
} else {
answer1 += abs((-1) * sum1 + 1 - vector[i]);
sum1 = 1;
}
} else {
if (sum1 + vector[i] < 0) {
sum1 += vector[i];
} else {
answer1 += abs((-1) * sum1 - 1 - vector[i]);
sum1 = -1;
}
}
}
for (int i = 0; i < n; i++) {
if (i == 0) {
if (vector[0] > 0) {
sum2 = -1;
answer2 += abs(-1 - vector[0]);
} else {
sum2 = 1;
answer2 += abs(1 - vector[0]);
}
} else if (sum2 < 0) {
if (sum2 + vector[i] > 0) {
sum2 += vector[i];
} else {
answer2 += abs((-1) * sum2 + 1 - vector[i]);
sum2 = 1;
}
} else {
if (sum2 + vector[i] < 0) {
sum2 += vector[i];
} else {
answer2 += abs((-1) * sum2 - 1 - vector[i]);
sum2 = -1;
}
}
}
cout << min(answer1, answer2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sum, ans, n, i;
int a[100005];
int main() {
cin >> n;
for (i = 1; i <= n; i++) {
cin >> a[i];
}
ans = 0;
sum = 0;
for (i = 1; i <= n; i++) {
if (a[i] == 0) {
sum++;
} else
break;
}
if (sum % 2 == 0) {
if (a[sum + 1] > 0) {
a[1] = 1;
ans += 1;
} else {
a[1] = -1;
ans += 1;
}
} else {
if (a[sum + 1] > 0) {
a[1] = -1;
ans += 1;
} else {
a[1] = 1;
ans += 1;
}
}
sum = a[1];
for (i = 2; i <= n; i++) {
if (sum == 0) {
if (a[i - 1] > 0) {
ans++;
sum--;
} else {
ans++;
sum++;
}
}
if (sum > 0) {
if (a[i] + sum >= 0) {
ans += a[i] + sum + 1;
sum = -1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum <= 0) {
ans += abs(a[i] + sum) + 1;
sum = 1;
} else {
sum += a[i];
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
ans = 0
o = 0
for i in range(n):
o += a[i-1]
if i == 0:
if a[i] == 0:
f = "+"
a[i] = 1
elif a[0] > 0:
f = "+"
elif a[0] < 0:
f = "-"
else:
if f == "+":
if a[i] + o > 0:
c = -1 - o
ans += abs(c - a[i])
a[i] = c
f = "-"
else:
if a[i] + o == 0:
a[i] -= 1
ans += 1
f = "-"
elif f == "-":
if a[i] + o < 0:
c = 1 - o
ans += abs(c - a[i])
a[i] = c
f = "+"
else:
if a[i] + o == 0:
a[i] += 1
ans += 1
f = "+"
#print(a)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import scala.io.StdIn
import scala.annotation.tailrec
object Main extends App {
val n = StdIn.readInt
val a = StdIn.readLine.split(" ").map(_.toInt)
val ans1 = a.tail./:(a.head,0)((acc,i) => {
val (bsum, bcnt) = acc
val sum = bsum + i
val cnt = if(bsum < 0 && sum < 0) 1 - sum
else if(bsum >= 0 && sum >= 0) -1 - sum
else if(sum == 0) if(bsum < 0) 1 else -1
else 0
// println(sum + " " + cnt)
(sum+cnt, bcnt+cnt.abs)
})._2
val ans2 = a.tail./:(-a.head,a.head.abs+1)((acc,i) => {
val (bsum, bcnt) = acc
val sum = bsum + i
val cnt = if(bsum < 0 && sum < 0) 1 - sum
else if(bsum >= 0 && sum >= 0) -1 - sum
else if(sum == 0) if(bsum < 0) 1 else -1
else 0
// println(sum + " " + cnt)
(sum+cnt, bcnt+cnt.abs)
})._2
println(math.min(ans1,ans2))
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a(int arr[], int n) {
int sum = arr[0];
int c = 0;
for (int i = 1; i < n; i++) {
if (sum > 0) {
if (sum + arr[i] < 0)
sum = sum + arr[i];
else {
c += (sum + arr[i]) + 1;
sum = -1;
}
} else {
if (sum + arr[i] > 0)
sum = sum + arr[i];
else {
c += abs(sum + arr[i]) + 1;
sum = 1;
}
}
}
return c;
}
int main() {
ios_base ::sync_with_stdio(false);
cin.tie(NULL);
;
int n;
cin >> n;
int arr[n];
for (int i = 0; i < n; i++) cin >> arr[i];
int ans1 = a(arr, n);
int ans2 = 1 + abs(arr[0]);
arr[0] = -arr[0];
ans2 += a(arr, n);
cout << min(ans1, ans2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long change_num(long long p[], int N) {
long long res = 0;
long long next_sum;
long long sum = p[0];
for (int i = 1; i < N; i++) {
next_sum = sum + p[i];
if ((sum < 0 && next_sum > 0) || (sum > 0 && next_sum < 0)) {
sum = next_sum;
continue;
}
if (sum > 0 && next_sum >= 0) {
res += next_sum + 1;
sum = -1;
continue;
}
if (sum < 0 && next_sum <= 0) {
res += 1 - next_sum;
sum = 1;
continue;
}
}
return res;
}
int main() {
int N;
cin >> N;
long long a[N];
for (int i = 0; i < N; i++) cin >> a[i];
long long ans = 0;
long long sum = a[0];
long long plus_ans = 0;
long long minus_ans = 0;
if (a[0] == 0) {
plus_ans = 1;
a[0] = 1;
plus_ans += change_num(a, N);
minus_ans = 1;
a[0] = -1;
minus_ans += change_num(a, N);
} else if (a[0] > 0) {
plus_ans = 0;
plus_ans += change_num(a, N);
minus_ans = 1 + a[0];
a[0] = -1;
minus_ans += change_num(a, N);
} else {
plus_ans = 1 - a[0];
a[0] = 1;
plus_ans += change_num(a, N);
minus_ans = 0;
minus_ans += change_num(a, N);
}
if (plus_ans < minus_ans) {
ans = plus_ans;
} else {
ans = minus_ans;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int Inf = 1e9;
const double EPS = 1e-9;
int gcd(int a, int b) {
if (b == 0) {
return a;
} else {
return gcd(b, a % b);
}
}
int lcm(int a, int b) { return a * b / gcd(a, b); }
int bitCount(long bits) {
bits = (bits & 0x55555555) + (bits >> 1 & 0x55555555);
bits = (bits & 0x33333333) + (bits >> 2 & 0x33333333);
bits = (bits & 0x0f0f0f0f) + (bits >> 4 & 0x0f0f0f0f);
bits = (bits & 0x00ff00ff) + (bits >> 8 & 0x00ff00ff);
return (bits & 0x0000ffff) + (bits >> 16 & 0x0000ffff);
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
int ans = Inf;
int cnt = 0;
vector<int> a(n), b(n);
for (int i = 0; i < (int)n; ++i) {
cin >> a[i];
b[i] = a[i];
}
int sum = 0;
for (int i = 0; i < (int)n; ++i) {
sum += a[i];
if (i % 2 == 1 && sum >= 0) {
int diff = abs(sum) + 1;
cnt += diff;
sum = -1;
} else if (i % 2 == 0 && sum <= 0) {
int diff = abs(sum) + 1;
cnt += diff;
sum = 1;
}
}
ans = min(ans, cnt);
cnt = 0;
sum = 0;
for (int i = 0; i < (int)n; ++i) {
sum += a[i];
if (i % 2 == 0 && sum >= 0) {
int diff = abs(sum) + 1;
cnt += diff;
sum = -1;
} else if (i % 2 == 1 && sum <= 0) {
int diff = abs(sum) + 1;
cnt += diff;
sum = 1;
}
}
ans = min(ans, cnt);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (int)(n); i++) cin >> a.at(i);
ll ans = 0, sum = 0;
for (int i = 0; i < (int)(n); i++) {
int now = a.at(i);
if (i == 0) {
if (now == 0) {
if (a.at(1) > 0)
sum++;
else
sum--;
ans++;
} else {
sum += now;
}
continue;
}
if ((sum < 0 && sum + now > 0) || (sum > 0 && sum + now < 0)) {
sum += now;
} else {
int add = abs(sum + now) + 1;
if (sum < 0)
sum = 1;
else
sum = -1;
ans += add;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
vector<int> answer(2, 0);
long long sumi = 0;
bool flag = false;
cin >> t;
vector<long long> A(t);
for (int i = 0; i < t; i++) {
cin >> A[i];
}
for (int j = 0; j < 2; j++) {
for (int i = 0; i < t; i++) {
sumi += A[i];
if (sumi == 0) {
answer[j] += 1;
if (flag) {
sumi = -1;
} else {
sumi = 1;
}
} else if (sumi > 0 == flag) {
answer[j] += abs(sumi) + 1;
if (sumi > 0) {
sumi = -1;
} else {
sumi = 1;
}
}
flag = !flag;
}
flag = true;
sumi = 0;
}
cout << min(answer[0], answer[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1000000001;
const double PI = 3.141592653589;
const long long LMAX = 1000000000000001;
long long gcd(long long a, long long b) {
if (a < b) swap(a, b);
while ((a % b) != 0) {
a = b;
b = a % b;
}
return b;
}
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, 1, 0, -1};
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
vector<vector<long long>> dp(2, vector<long long>(n, 0));
vector<long long> sum(2, a[0]);
if (sum[0] > 0)
sum[1] = -1;
else
sum[1] = 1;
dp[1][0] = abs(a[0]) + 1;
for (int j = 0; j < 2; j++) {
for (int i = 1; i < n; i++) {
if (sum[j] > 0) {
if (sum[j] + a[i] < 0) {
dp[j][i] = dp[j][i - 1];
sum[j] += a[i];
} else {
dp[j][i] = dp[j][i - 1] + abs(sum[j] + a[i]) + 1;
sum[j] = -1;
}
} else {
if (sum[j] + a[i] > 0) {
dp[j][i] = dp[j][i - 1];
sum[j] += a[i];
} else {
dp[j][i] = dp[j][i - 1] + abs(sum[j] + a[i]) + 1;
sum[j] = 1;
}
}
}
}
cout << min(dp[0][n - 1], dp[1][n - 1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define forx(i,a,b) for(int i=(a);i<(b);i++)
#define rep(j,n) for(int j=0;j<(n);j++)
typedef long long ll;
int main()
{
int n,ansa=0,ansb=0,suma=0;sumb=0,cin>>n;
bool plus=true;
rep(i,n){
int a,b;
cin>>b;
a=b;
while(plus&&suma+a<=0){
a++;
ansa++;
}
while(!plus&&suma+a>=0){
a--;
ansa++;
}
while(plus&&sumb+b>=0){
b++;
ansb++;
}
while(!plus&&sumb+b<=0){
b--;
ansb++;
}
suma+=a;
sumb+=b;
plus=!plus;
}
cout<<min(ansa,ansb)<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
const long long INF = 1ll << 60;
const long long MOD = 1e9 + 7ll;
const double PI = 3.14159265358979323846;
int main() {
int n;
cin >> n;
vector<long long> A(n);
for (int i = 0; i < n; i++) scanf("%lld", &A.at(i));
long long res1 = 0ll;
long long res2 = 0ll;
vector<long long> sum1(n);
vector<long long> sum2(n);
if (A.at(0) == 0) {
sum1.at(0) = 1ll;
sum2.at(0) = -1ll;
} else if (A.at(0) > 0) {
sum1.at(0) = A.at(0);
sum2.at(0) = -1ll;
res2 += A.at(0) + 1ll;
} else {
sum1.at(0) = A.at(0);
sum2.at(0) = 1ll;
res2 += -A.at(0) + 1ll;
}
for (int i = 1; i < n; i++) {
sum1.at(i) = sum1.at(i - 1) + A.at(i);
if (sum1.at(i) == 0) {
if (sum1.at(i - 1) < 0)
sum1.at(i) = 1ll;
else
sum1.at(i) = -1ll;
res1++;
}
if (sum1.at(i) * sum1.at(i - 1) > 0) {
if (sum1.at(i) < 0) {
res1 += -sum1.at(i) + 1ll;
sum1.at(i) = 1ll;
} else {
res1 += sum1.at(i) + 1ll;
sum1.at(i) = -1ll;
}
}
sum2.at(i) = sum2.at(i - 1) + A.at(i);
if (sum2.at(i) == 0) {
if (sum2.at(i - 1) < 0)
sum2.at(i) = 1ll;
else
sum2.at(i) = -1ll;
res2++;
}
if (sum2.at(i) * sum2.at(i - 1) > 0) {
if (sum2.at(i) < 0) {
res2 += -sum2.at(i) + 1ll;
sum2.at(i) = 1ll;
} else {
res2 += sum2.at(i) + 1ll;
sum2.at(i) = -1ll;
}
}
}
long long res = min(res1, res2);
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int solve(std::vector<int> &v, bool positiveStart) {
int sum = v[0];
int count = 0;
if (positiveStart && sum < 0) {
count = 1 - sum;
sum = 1;
}
if (!positiveStart && sum > 0) {
count = sum - (-1);
sum = -1;
}
for (int i = 1; i < v.size(); i++) {
int tmp = sum + v[i];
if (sum * tmp < 0) {
sum = tmp;
continue;
}
int next_sum = (-1) * sum / abs(sum);
count += abs(next_sum - tmp);
sum = next_sum;
}
return count;
}
int main() {
int n;
std::cin >> n;
std::vector<int> v(n);
for (int i = 0; i < v.size(); i++) {
std::cin >> v[i];
}
int count = std::min(solve(v, true), solve(v, false));
std::cout << count << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main(int argc, char const *argv[]) {
int N;
std::cin >> N;
long long a[N];
for (size_t i = 0; i < N; i++) {
std::cin >> a[i];
}
int sum_1 = 0;
int ans_1 = 0;
for (size_t i = 0; i < N; i++) {
if (i % 2 == 0 && sum_1 + a[i] >= 0) {
ans_1 += sum_1 + a[i] + 1;
sum_1 = -1;
} else if (i % 2 == 1 && sum_1 + a[i] <= 0) {
ans_1 += 1 - sum_1 - a[i];
sum_1 = 1;
} else {
sum_1 += a[i];
}
}
int sum_2 = 0;
int ans_2 = 0;
for (size_t i = 0; i < N; i++) {
if (i % 2 == 0 && sum_2 + a[i] <= 0) {
ans_2 += 1 - sum_2 - a[i];
sum_2 = 1;
} else if (i % 2 == 1 && sum_2 + a[i] >= 0) {
ans_2 += sum_2 + a[i] + 1;
sum_2 = -1;
} else {
sum_2 += a[i];
}
}
std::cout << std::min(ans_1, ans_2) << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
std::vector<int64_t> data(n);
for (int i = 0; i < n; i++) {
cin >> data.at(i);
}
int answer = 0;
int64_t sum_a = data.at(0);
for (int i = 1; i < n; i++) {
sum_a += data.at(i);
if (data.at(0) > 0) {
if (i % 2 != 0 && sum_a >= 0) {
while (sum_a >= 0) {
sum_a--;
answer++;
}
}
if (i % 2 == 0 && sum_a <= 0) {
while (sum_a <= 0) {
sum_a++;
answer++;
}
}
}
if (data.at(0) < 0) {
if (i % 2 != 0 && sum_a <= 0) {
while (sum_a <= 0) {
sum_a++;
answer++;
}
}
if (i % 2 == 0 && sum_a >= 0) {
while (sum_a >= 0) {
sum_a--;
answer++;
}
}
}
}
cout << answer << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MAXN = 100 * 1000 + 10;
int main() {
long long n, f = 0, z = 0, s = 0, sum = 0;
cin >> n;
long long b[n];
for (long long i = 0; i < n; i++) {
cin >> b[i];
if (i % 2 == 0) {
f += b[i];
} else {
z += b[i];
}
}
if (f > z) {
if (b[0] <= 0) {
s += -1 * b[0] + 1;
b[0] = 1;
}
} else {
if (b[0] >= 0) {
s += b[0] + 1;
b[0] = -1;
}
}
for (long long i = 0; i < n - 1; i++) {
sum += b[i];
if (sum < 0 && sum + b[i + 1] < 0) {
s += -1 * (sum + b[i + 1]);
b[i + 1] += -1 * (sum + b[i + 1]);
} else if (sum > 0 && sum + b[i + 1] >= 0) {
s += sum + b[i + 1] + 1;
b[i + 1] -= sum + b[i + 1];
}
if (sum + b[i + 1] == 0) {
if (sum < 0) {
b[i + 1] += 1;
} else {
b[i + 1] -= 1;
}
s++;
}
}
cout << s;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a;
for (int i = 0; i < n; i++) {
long long ai;
cin >> ai;
a.push_back(ai);
}
long long count = 0;
if (a.at(0) == 0) {
a.at(0) = 1;
count = 1;
}
long long sum = a.at(0);
for (int i = 0; i < n - 1; i++) {
long long next_sum = sum + a.at(i + 1);
if (sum > 0 && next_sum >= 0) {
long long diff = 1 + next_sum;
count += diff;
a.at(i + 1) -= diff;
next_sum -= diff;
} else if (sum < 0 && next_sum <= 0) {
long long diff = 1 - next_sum;
count += diff;
a.at(i + 1) += diff;
next_sum += diff;
}
sum = next_sum;
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1e9 + 7;
long long n, g, ans, t;
int main() {
cin >> n;
cin >> t;
g = t;
while (--n) {
cin >> t;
if (g > 0) {
g += t;
if (g > -1) {
ans += g + 1;
g = -1;
}
} else {
g += t;
if (g < 1) {
ans += 1 - g;
g = 1;
}
}
}
cout << ans;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = list(map(int, input().split()))
ans = 0
_a = [a[0]]
prev_sign = 1
if a[0] < 0:
prev_sign = -1
for i in range(1, N):
c = a[i]
if c >= 0 and prev_sign > 0:
ans += abs(c - (-1))
c = -1
elif c <= 0 and prev_sign < 0:
ans += abs(c - 1)
c = 1
if c > 0:
prev_sign = 1
else:
prev_sign = -1
_a.append(c)
__a = [_a[0]]
acm_sum = _a[0]
for i in range(1, N):
c = _a[i]
if abs(acm_sum) >= abs(c):
if c < 0:
c = -1*(abs(acm_sum)+1)
else:
c = abs(acm_sum)+1
acm_sum += c
ans += abs(c - _a[i])
__a.append(c)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
scanf("%ld", &n);
vector<long> a(n);
for (long i = 0; i < n; i++) scanf(" %ld", &a[i]);
long sum = a[0];
long j = 0;
for (long i = 1; i < n; i++) {
if (sum * (sum + a[i]) < 0)
sum += a[i];
else {
j += abs(sum + a[i]) + 1;
if (sum < 0)
sum = 1;
else if (sum > 0)
sum = -1;
}
}
printf("%ld\n", j);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count1 = 0
count2 = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count1 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count1 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count1 += 1
currentSum = -1
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count2 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count2 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count2 += 1
currentSum = -1
print(min(count1, count2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
n = int(input())
an = list(map(int, input().split()))
sum = an[0]
ans = 0
for i in range(1,n):
if sum * (sum + an[i]) < 0:
sum += an[i]
else:
if sum > 0:
ans += abs(sum + an[i] + 1)
sum = -1
else:
ans += abs(sum + an[i] - 1)
sum = 1
ans1 = ans
sum = -an[0]
ans = an[0]
for i in range(1, n):
if sum * (sum + an[i]) < 0:
sum += an[i]
else:
if sum > 0:
ans += abs(sum + an[i] + 1)
sum = -1
else:
ans += abs(sum + an[i] - 1)
sum = 1
print(min([ans1,ans]))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long a[110000], s[110000];
cin >> n;
for (int(i) = (0); (i) < (n); (i)++) cin >> a[i];
long t = 0;
for (int(i) = (0); (i) < (n); (i)++) {
t += a[i];
s[i] = t;
}
int diff;
long cnt = 0;
for (int(i) = (1); (i) < (n); (i)++) {
if (s[i - 1] < 0 && s[i] <= 0) {
diff = 1 - s[i];
s[i] = 1;
cnt += diff;
for (int(j) = (i + 1); (j) < (n); (j)++) s[j] += diff;
} else if (s[i - 1] > 0 && s[i] >= 0) {
diff = s[i] + 1;
s[i] = -1;
cnt += diff;
for (int(j) = (i + 1); (j) < (n); (j)++) s[j] -= diff;
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
count=0
x = 0
if a[0]>0:
for i in range(n):
if i%2==0:
x+=a[i]
if x<0:
count+=-1*x+1
a[i]+=-1*x+1
x+=-1*x+1
else:
x+=a[i]
if x>0:
count+=x+1
a[i]+=-1*x-1
x+=-1*x-1
else:
for i in range(n):
if i%2==0:
x+=a[i]
if x>0:
count+=x+1
a[i]+=-1*x-1
x+=-1*x-1
else:
x+=a[i]
if x<0:
count+=-1*x+1
a[i]+=-1*x+1
x+=-1*x+1
if x==0:
count+=1
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
b=list(map(int,input().split()))
a=b[:]
condition=''
cnt=0
wa=0
for i in range(n):
wa+=a[i]
if i == 0:
if a[i]>0:
condition='minus'
else:
condition='plus'
elif condition == 'plus':
condition='minus'
if wa<=0:
cnt+=abs(wa)+1
a[i]+=abs(wa)+1
wa+=abs(wa)+1
elif condition == 'minus':
condition='plus'
if wa>=0:
cnt+=abs(wa)+1
a[i]-=abs(wa)+1
wa-=abs(wa)+1
cnt1=cnt
a=b[:]
condition=''
cnt=0
wa=0
for i in range(n):
a[i]=a[i]/abs(a[i])*(-1)
cnt+=abs(a[i])+1
wa+=a[i]
if i == 0:
if a[i]>0:
condition='minus'
else:
condition='plus'
elif condition == 'plus':
condition='minus'
if wa<=0:
cnt+=abs(wa)+1
a[i]+=abs(wa)+1
wa+=abs(wa)+1
elif condition == 'minus':
condition='plus'
if wa>=0:
cnt+=abs(wa)+1
a[i]-=abs(wa)+1
wa-=abs(wa)+1
cnt2=cnt
print(min(cnt1,cnt2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
enum State { Plus, Minus, Zero };
State GetState(int sum) {
State state;
if (sum > 0)
state = Plus;
else if (sum == 0)
state = Zero;
else
state = Minus;
return state;
}
int main() {
int n;
cin >> n;
vector<long long> a(n);
cin >> a[0];
unsigned long long count = 0;
State state = GetState(a[0]);
if (state == Zero) {
a[0] = 1;
state = Plus;
count++;
}
long long sum = a[0];
for (int i = 1; i < n; i++) {
cin >> a[i];
State nextState = GetState(sum + a[i]);
switch (nextState) {
case Plus:
if (state == Plus) {
long long bf_a = a[i];
a[i] = -1 - sum;
count += abs(a[i] - bf_a);
nextState = Minus;
}
break;
case Minus:
if (state == Minus) {
long long bf_a = a[i];
a[i] = 1 - sum;
count += abs(a[i] - bf_a);
nextState = Plus;
}
break;
case Zero:
if (state == Plus) {
long long bf_a = a[i];
a[i] = -1 - sum;
count += abs(a[i] - bf_a);
nextState = Minus;
} else if (state == Minus) {
long long bf_a = a[i];
a[i] = 1 - sum;
count += abs(a[i] - bf_a);
nextState = Plus;
}
default:
break;
}
sum += a[i];
state = nextState;
}
if (sum == 0) count++;
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | object Main {
def main(args: Array[String]): Unit = {
import scala.io.StdIn.readLine
val _ = readLine
val datA = readLine.split(" ").map(_.toLong)
val work = datA.map(a => (a, 0L)).foldLeft((0L, 0L)){ case ((sum, count),(a, _)) =>
if (sum > 0) {
if (sum + a >= 0) (-1, count + math.abs(sum + a) + 1)
else (sum + a, count)
}
else if (sum < 0) {
if (sum + a <= 0) (1, count + math.abs(sum + a) + 1)
else (sum + a, count)
} else {
(a, count)
}
}
val ans = work._2
println(ans)
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long counter = 0;
long a[100100], b[100100];
bool hugou = true;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
b[0] = a[0];
if (b[0] == 0) {
counter++;
b[0]++;
hugou = true;
}
if (b[0] < 0) {
hugou = false;
}
if (hugou) {
for (int i = 1; i < n; i++) {
b[i] = b[i - 1] + a[i];
if (i % 2 == 0) {
if (b[i] < 1) {
counter += 1 - b[i];
b[i] = 1;
}
} else {
if (b[i] > -1) {
counter += b[i] - (-1);
b[i] = -1;
}
}
}
} else {
for (int i = 1; i < n; i++) {
b[i] = b[i - 1] + a[i];
if (i % 2 == 0) {
if (b[i] > -1) {
counter += b[i] - (-1);
b[i] = -1;
}
} else {
if (b[i] < 1) {
counter += 1 - b[i];
b[i] = 1;
}
}
}
}
cout << counter << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # input
n = int(input())
A = list(map(int, input().split()))
# 偶数番目が+
A_even = A
S_even = 0
ans_even = 0
for i in range(n):
if (S_even + A_even[i]) * ((-1) ** (i - 1)) > 0:
S_even += A_even[i]
continue
A_even[i] = (-1) ** (i - 1) - S_even
ans_even += abs(A[i] - A_even[i])
S_even = (-1) ** (i - 1)
# 奇数番目が+
A_odd = A
S_odd = 0
ans_odd = 0
for i in range(n):
if (S_odd + A_odd[i]) * ((-1) ** i) > 0:
S_odd += A_odd[i]
continue
A_odd[i] = (-1) ** i - S_odd
ans_odd += abs(A[i] - A_odd[i])
S_odd = (-1) ** i
ans = int(min(ans_even, ans_odd))
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = (int)1e9 + 7;
const int INF = 100100100;
const double PI = 3.14159265358979323846;
int main() {
int n, a[100001] = {0};
int res = 0;
cin >> n;
for (int i = 0; i < (n); ++i) cin >> a[i];
int minPlus = 0, minMinus = 0;
long long sumPlus = 0, sumMinus = 0;
for (int i = 0; i < (n); ++i) {
sumPlus += a[i];
if (i % 2 == 0 && sumPlus <= 0) {
minPlus += 1 - sumPlus;
sumPlus = 1;
} else if (i % 2 == 1 && sumPlus >= 0) {
minPlus += sumPlus + 1;
sumPlus = -1;
}
}
for (int i = 0; i < (n); ++i) {
sumMinus += a[i];
if (i % 2 == 0 && sumMinus >= 0) {
minMinus += sumMinus + 1;
sumMinus = -1;
} else if (i % 2 == 1 && sumMinus <= 0) {
minMinus += 1 - sumMinus;
sumMinus = 1;
}
}
res = minPlus < minMinus ? minPlus : minMinus;
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const int N = 1e5 + 7, M = 1e7, OO = 0x3f3f3f3f;
int main() {
long long n, array1[2 * N], counter = 0, i, sum = 0;
scanf("%lld", &n);
for (i = 0; i < n; ++i) {
scanf("%lld", &array1[i]);
}
if (array1[0] == 0) {
if (array1[1] >= 0) {
array1[0] = -1;
} else {
array1[0] = 1;
}
counter++;
}
sum = array1[0];
for (i = 1; i < n; ++i) {
long long temp_sum = sum + array1[i];
if (sum > 0) {
if (temp_sum >= 0) {
counter += temp_sum + 1;
temp_sum = -1;
}
} else if (sum < 0) {
if (temp_sum <= 0) {
counter += abs(temp_sum) + 1;
temp_sum = 1;
}
}
sum = temp_sum;
}
printf("%lld", counter);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
cin >> n;
int i;
long a[n], su, cnt, cnt2;
su = 0;
cnt = 0;
cnt2 = 0;
for (i = 0; i < n; i++) {
cin >> a[i];
}
for (i = 0; i < n; i++) {
su += a[i];
if (a[0] >= 0) {
if (i % 2 == 0) {
if (su <= 0) {
cnt += 1 - su;
su = 1;
}
} else {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
}
} else {
if (i % 2 == 0) {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
} else {
if (su <= 0) {
cnt += 1 - su;
su = 1;
}
}
}
}
for (i = 0; i < n; i++) {
su += a[i];
if (a[0] > 0) {
if (i % 2 == 0) {
if (su <= 0) {
cnt2 += 1 - su;
su = 1;
}
} else {
if (su >= 0) {
cnt2 += su + 1;
su = -1;
}
}
} else {
if (i % 2 == 0) {
if (su >= 0) {
cnt2 += su + 1;
su = -1;
}
} else {
if (su <= 0) {
cnt2 += 1 - su;
su = 1;
}
}
}
}
cout << min(cnt, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int dy[] = {0, 0, 1, -1, 0};
int dx[] = {1, -1, 0, 0, 0};
template <class T = int>
T in() {
T x;
cin >> x;
return (x);
}
template <class T>
void print(T& x) {
cout << x << '\n';
}
const int MOD = (int)1e9 + 7;
const int MAX = 510000;
long long fac[MAX], finv[MAX], inv[MAX];
void COMint() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
long long COM(int n, int k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
long long gcd(long long a, long long b) {
if (b == 0) return a;
if (a > b) {
swap(a, b);
}
return gcd(a, b % a);
}
long long lcm(long long a, long long b) {
long long g;
g = gcd(a, b);
return a * b / g;
}
double ep(int all, double p) { return all * (1 / p); }
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int N = in();
vector<int> a(N);
for (int i = 0; i < (N); ++i) {
cin >> a[i];
}
int sum;
sum = 0;
int ans;
ans = 0;
int fugo;
fugo = 1;
for (int i = 0; i < (N); ++i) {
sum += a[i];
if (sum * fugo == 0) {
ans++;
sum = fugo;
} else if (sum * fugo < 0) {
ans += abs(sum - fugo);
sum = fugo;
}
fugo *= -1;
}
fugo = -1;
sum = 0;
int ans_;
ans_ = 0;
for (int i = 0; i < (N); ++i) {
sum += a[i];
if (sum * fugo == 0) {
ans_++;
sum = fugo;
} else if (sum * fugo < 0) {
ans_ += abs(sum - fugo);
sum = fugo;
}
fugo *= -1;
}
print(min(ans, ans_));
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main()
{
int n,ans;
cin>>n;
vector<int>a(n);
for(int i=0;i<n;i++){
cin>>a.at(i);
}
for(int i=0;i<n-1;i++){
while(a.at(i)*a.at(i+1)>=0){
if(a.at(i)>0){
a.at(i+1)--;
ans++;
}
if(a.at(i)<0){
a.at(i+1)++;
ans++;
}
}
int p=0;
for(int j=i+1;j>=0;j--)p+=a.at(j);//sum
if(p==0){
if(a.at(i)>0)a.at(i+1)++;
else a.at(i+1)--;
ans++;
}
cout<<ans<<endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
# 整数の入力
n=int(input())
a=input().split()
counter=0
S=a[0]
# 出力
for i in range(1,n):
S+=a[i]
if S<0 and S+int(a[i])<=0:
counter+=-S-int(a[i])+1
a[i]=-S+1
elif S>0 and S+int(a[i])>=0:
counter+=S+int(a[i])+1
a[i]=-S-1
print(counter) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
list_a = list(map(int, input().split()))
sum_a = list_a[0]
count = 0
for i in range(1, n):
if sum_a > 0:
if sum_a + list_a[i] >= 0:
diff = abs(-1 - list_a[i] - sum_a)
else:
diff = 0
sum_a = sum_a + list_a[i] - diff
count += diff
else:
if sum_a + list_a[i] <= 0:
diff = abs(1 - sum_a - list_a[i])
else:
diff = 0
sum_a = sum_a + list_a[i] + diff
count += diff
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list([int(i) for i in input().split()])
sum_a = []
count = 0
sum_a.append(a[0])
for i in range(1,n):
sum_a.append(sum_a[i-1] + a[i])
if sum_a[i] == 0:
if sum_a[i-1] < 0:
sum_a[i] += 1
count += 1
else:
sum_a[i] -= 1
count += 1
elif sum_a[i-1] * sum_a[i]>0:
if sum_a[i] > 0:
sum_a[i] = -1
count += 1 + abs(sum_a[i-1]+a[i])
else:
sum_a[i] = 1
count += 1 + abs(sum_a[i-1]+a[i])
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN |
use std::io::*;
use std::str::FromStr;
pub fn read<T: FromStr>() -> T {
let stdin = stdin();
let stdin = stdin.lock();
let token: String = stdin
.bytes()
.map(|c| c.expect("failed to read char") as char)
.skip_while(|c| c.is_whitespace())
.take_while(|c| !c.is_whitespace())
.collect();
token.parse().ok().expect("failed to parse token")
}
use std::cmp::{max, min};
use std::collections::BTreeMap;
fn main() {
let n = read::<i64>();
let mut vec_a = vec![];
for i in 0..n {
vec_a.push(read::<i64>());
}
let mut prev_sum = vec_a[0];
let mut ans = 0;
for i in 1..vec_a.len() {
let b = vec_a[i as usize];
if 0 < prev_sum {
if 0 <= prev_sum + b {
ans += (1 + prev_sum).abs() + b;
prev_sum = -1;
} else {
prev_sum += b;
}
} else if prev_sum < 0 {
if prev_sum + b <= 0 {
ans += (1 - prev_sum).abs() - b;
prev_sum = 1;
} else {
prev_sum += b;
}
}
}
println!("{}", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int,input().split()))
s = A[0]
ans = 0
for k in range(1,N):
if s*(s+A[k])<=-1:
s += A[k]
else:
if s > 0:
if s + A[k] >= 0:
ans += s + A[k] + 1
s = -1
elif s < 0:
if s + A[k] <= 0:
ans += 1 - s - A[k]
s = 1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; ++i) cin >> a[i];
bool positive;
if (a[0] > 0)
positive = true;
else
positive = false;
int total, cnt = 0;
for (int i = 1; i < n; ++i) {
total = accumulate(a.begin(), a.begin() + i, 0) + a[i];
if (positive && total >= 0) {
a[i] -= (total + 1);
cnt += (total + 1);
positive = false;
} else if (!positive && total <= 0) {
a[i] += (abs(total) + 1);
cnt += (abs(total) + 1);
positive = true;
} else
positive = !positive;
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> sum(N,0);
int now;
cin >> now;
sum[0] = now;
for (int i=1; i<N; i++) {
cin >> now;
sum[i] = sum[i-1] + now;
}
long change = 0;
long ansp = 0;
int i = 0;
while (i<N) {
ansp += max(1-(sum[i]+change),0);
change += max(1-(sum[i]+change),0);
i++;
if (i==N) {
break;
}
ansp += max((sum[i]+change)+1,0);
change -= max((sum[i]+change)+1,0);
i++;
}
change = 0;
long ansm = 0;
i = 0;
while (i<N) {
ansm += max((sum[i]+change)+1,0);
change -= max((sum[i]+change)+1,0);
i++;
if (i==N) {
break;
}
ansm += max(1-(sum[i]+change),0);
change += max(1-(sum[i]+change),0);
i++;
}
cout << min(ansp,ansm) << endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100004];
int main() {
scanf("%d", &n);
for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]);
long long ans = 0;
if (!a[1]) ++ans;
for (int i = (2); i <= (int)(n); ++i) {
if (a[i - 1] > 0) {
if (a[i] + a[i - 1] < 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] + 1 + a[i - 1]);
a[i] = -1;
} else {
if (a[i] + a[i - 1] > 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] - 1 + a[i - 1]);
a[i] = 1;
}
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
int N;
cin >> N;
vector<long long> a(N);
for (int i = 0; i < N; i++) {
cin >> a.at(i);
}
int ans1 = 0;
int ans2 = 0;
long long mysum1 = 0;
long long mysum2 = 0;
for (int i = (0); i < (N); ++i) {
mysum1 += a.at(i);
if ((i % 2 == 0) & (mysum1 <= 0)) {
ans1 += abs(mysum1) + 1;
mysum1 = 1;
} else if ((i % 2 == 1) & (mysum1 >= 0)) {
ans1 += abs(mysum1) + 1;
mysum1 = -1;
}
}
for (int i = (0); i < (N); ++i) {
mysum2 += a.at(i);
if ((i % 2 == 1) & (mysum2 <= 0)) {
ans2 += abs(mysum2) + 1;
mysum2 = 1;
} else if ((i % 2 == 0) & (mysum2 >= 0)) {
ans2 += abs(mysum2) + 1;
mysum2 = -1;
}
}
cout << min(ans1, ans2) << '\n';
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> as(n);
for (int i = 0; i < n; i++) {
cin >> as[i];
}
long long kotae1 = 0;
int sum1 = 0;
long long kotae2 = 0;
int sum2 = 0;
for (int i = 0; i < n; i++) {
sum1 += as[i];
if (i % 2 == 0) {
if (sum1 <= 0) {
kotae1 += (1 - sum1);
sum1 = 1;
}
} else {
if (sum1 >= 0) {
kotae1 += (sum1 - (-1));
sum1 = -1;
}
}
}
for (int i = 0; i < n; i++) {
sum2 += as[i];
if (i % 2 == 1) {
if (sum2 <= 0) {
kotae2 += (1 - sum2);
sum2 = 1;
}
} else {
if (sum2 >= 0) {
kotae2 += (sum2 - (-1));
sum2 = -1;
}
}
}
int kotae = 0;
kotae = kotae1 < kotae2 ? kotae1 : kotae2;
cout << kotae << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #
# abc059 c
#
import sys
from io import StringIO
import unittest
class TestClass(unittest.TestCase):
def assertIO(self, input, output):
stdout, stdin = sys.stdout, sys.stdin
sys.stdout, sys.stdin = StringIO(), StringIO(input)
resolve()
sys.stdout.seek(0)
out = sys.stdout.read()[:-1]
sys.stdout, sys.stdin = stdout, stdin
self.assertEqual(out, output)
def test_入力例_1(self):
input = """4
1 -3 1 0"""
output = """4"""
self.assertIO(input, output)
def test_入力例_2(self):
input = """5
3 -6 4 -5 7"""
output = """0"""
self.assertIO(input, output)
def test_入力例_3(self):
input = """6
-1 4 3 2 -5 4"""
output = """8"""
self.assertIO(input, output)
def resolve():
N = int(input())
A = list(map(int, input().split()))
ans = 0
s = A[0]
f = A[0] // abs(A[0])
for i in range(1, N):
a = A[i]
if f == 1 and s+a >= 0:
ans += abs(s+a) + 1
s = -1
elif f == -1 and s+a <= 0:
ans += abs(s+a) + 1
s = 1
else:
s += a
f = s // abs(s)
print(ans)
if __name__ == "__main__":
# unittest.main()
resolve()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<int> a;
int N;
signed main() {
cin >> N;
for (int i = 0; i < (int)(N); i++) {
int t;
cin >> t;
a.push_back((t));
}
int res = 0;
int cnt = 0;
int sum = 0;
for (int i = 0; i < (int)(N); i++) {
sum += a[i];
if (sum <= 0) {
cnt += -sum + 1;
sum = 1;
}
i++;
if (i == N) break;
sum += a[i];
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
}
res = cnt;
sum = 0;
cnt = 0;
for (int i = 0; i < (int)(N); i++) {
sum += a[i];
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
i++;
if (i == N) break;
sum += a[i];
if (sum <= 0) {
cnt += -sum + 1;
sum = 1;
}
}
res = min(res, cnt);
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
import sys
import numpy as np
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
N = int(readline())
A = list(map(int,readline().split()))
S = np.cumsum(A)
ans1 = 0
ans2 = 0
# 偶数項-,奇数項を+にする
for i in range(N):
if i & 1:
if S[i] >= 0:
ans1 += S[i]+1
S -= S[i]+1
else:
if S[i] <= 0:
ans1 += 1-S[i]
S += 1-S[i]
S = np.cumsum(A)
for i in range(N):
if i & 1:
if S[i] <= 0:
ans2 += 1-S[i]
S += 1-S[i]
else:
if S[i] >= 0:
ans2 += S[i]+1
S -= S[i]+1
print(min(ans1,ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
const double EPS = 1e-9;
const int INF = 1 << 29;
long long int a[100054];
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
long long int ans = 0;
long long int sum = a[1];
for (int i = 2; i <= n; ++i) {
if (sum < 0) {
long long int num = 1 - sum;
if (a[i] < num) ans += num - a[i], a[i] = num;
} else {
long long int num = -1 - sum;
if (a[i] > num) ans += a[i] - num, a[i] = num;
}
sum += a[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
class MYCP {
public:
static const long long TEISUU = 1000 * 1000 * 1000 + 7;
static long long DebugFlag;
static string MakeString_LongLong(vector<long long> const& numbers,
string const& str) {
if (numbers.size() == 0) return "";
string result = "" + to_string(numbers[0]);
for (long long i = 1; i < numbers.size(); i++) {
result += str;
result += to_string(numbers[i]);
}
return result;
}
static string MakeString_LongLong(vector<long long> const& numbers) {
if (numbers.size() == 0) return "";
string result = "" + to_string(numbers[0]);
for (long long i = 1; i < numbers.size(); i++) {
result += " ";
result += to_string(numbers[i]);
}
return result;
}
static string MakeString_VectorString(vector<string> const& str) {
string result = "";
for (long long i = 0; i < str.size(); i++) {
result += str[i] + "\n";
}
return result;
}
static vector<string> MyReadLineSplit(long long n) {
vector<string> str(n);
for (long long i = 0; i < n; i++) {
std::cin >> str[i];
}
return str;
}
static vector<long long> ReadInts(long long number) {
vector<long long> a(number);
for (int i = 0; i < number; i++) {
std::cin >> a[i];
}
return a;
}
static bool PrimeCheck_Int(long long number) {
if (number < 2) return false;
for (unsigned long long i = 2; i * i <= number; i++) {
if (number % i == 0) return false;
}
return true;
}
static vector<long long> MakePrimeList(long long n) {
vector<long long> list;
long long i, j, p;
bool flag;
for (i = 2; i <= n; i++) {
flag = true;
for (j = 0; j < list.size(); j++) {
if (!(list[j] * list[j] <= i)) break;
if (i % list[j] == 0) {
flag = false;
break;
}
}
if (flag) list.push_back(i);
}
return list;
}
static vector<string> split(string const& str, char sep) {
vector<std::string> v;
auto first = str.begin();
while (first != str.end()) {
auto last = first;
while (last != str.end() && *last != sep) last++;
v.push_back(string(first, last));
if (last != str.end()) last++;
first = last;
}
return v;
}
static long long Sum(vector<long long> a) {
long long i, sum = 0;
for (i = 0; i < a.size(); i++) {
sum += a[i];
}
return sum;
}
static bool Komoji(char a) {
if (a >= 'a' && a <= 'z') return true;
return false;
}
static bool Oomoji(char a) {
if (a >= 'A' && a <= 'Z') return true;
return false;
}
static long long KiriageWarizan(long long a, long long b) {
long long result = a / b;
if (a % b > 0) result++;
return result;
}
static long long GreatestCommonFactor(long long a, long long b) {
long long temp;
if (a < b) {
temp = b;
b = a;
a = temp;
}
while (true) {
temp = a % b;
a = b;
b = temp;
if (b == 0) break;
}
return a;
}
static long long LeastCommonMultiple(long long a, long long b) {
return (a / GreatestCommonFactor(a, b)) * b;
}
static vector<vector<long long> > PrimeFactorization(long long n) {
vector<long long> p_list, s_list;
long long i, j, k, count;
for (i = 2; n > 1; i++) {
if (i * i > n) {
p_list.push_back(n);
s_list.push_back(1);
break;
}
if (n % i == 0) {
count = 0;
while (n % i == 0) {
n /= i;
count++;
}
p_list.push_back(i);
s_list.push_back(count);
}
}
vector<vector<long long> > result;
result.push_back(p_list);
result.push_back(s_list);
return result;
}
static long long Combination(long long n, long long r) {
r = min(r, n - r);
vector<long long> p(n + 1, 0);
long long i, j, k, a, b, c;
for (i = 1; i <= r; i++) {
auto temp = MYCP::PrimeFactorization(i);
for (j = 0; j < temp[0].size(); j++) {
p[temp[0][j]] -= temp[1][j];
}
a = i + n - r;
temp = MYCP::PrimeFactorization(a);
for (j = 0; j < temp[0].size(); j++) {
p[temp[0][j]] += temp[1][j];
}
}
long long result = 1;
for (i = 0; i < p.size(); i++) {
if (p[i] > 0) {
for (j = 0; j < p[i]; j++) {
result *= i;
result %= MYCP::TEISUU;
}
}
}
return result;
}
static long long sign(long long x) {
if (x > 0) return 1;
if (x < 0) return -1;
return 0;
}
static long long DebugPrintf(string output) {
if (MYCP::DebugFlag != 0) {
std::cout << output << endl;
}
return MYCP::DebugFlag;
}
static long long DebugCin() {
long long a;
if (MYCP::DebugFlag != 0) {
cin >> a;
}
return a;
}
};
long long MYCP::DebugFlag = 0;
class Syakutori {
private:
vector<long long> list;
public:
void MakeArray(vector<long long> data) {
long long i;
list = data;
list.push_back(0);
list[0] = 0;
for (i = 1; i < list.size(); i++) {
list[i] = list[i - 1] + data[i - 1];
}
}
long long Sum(long long start, long long end) {
if (end < start) {
std::cout << "startがendより大きいです";
return 0;
}
if (start < 0 || end >= list.size()) {
std::cout << "範囲が異常";
return 0;
}
return list[end] - list[start];
}
};
int main(void) {
MYCP::DebugFlag = 0;
long long i, j, k, n, m;
long long count = 0;
cin >> n;
auto a = MYCP::ReadInts(n);
if (a[0] == 0) {
a[0]++;
count++;
}
long long sum = a[0], next;
for (i = 1; i < n; i++) {
long long sign = MYCP::sign(sum);
sign *= MYCP::sign(sum + a[i]);
if (sign != -1) {
sign = MYCP::sign(sum) * (-1);
k = sign - sum;
count += abs(a[i] - k);
a[i] = k;
}
sum += a[i];
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = [int(i) for i in input().split()]
sam = a[0]
old = sam
num = 0
for i in range(1, len(a)):
sam += a[i]
if sam >= 0 and old > 0:
num += (abs(sam) + 1)
sam -= (sam + 1)
elif sam <= 0 and old < 0:
num += (abs(sam) + 1)
sam -= (sam + 1)
old = sam
print(sam)
print(num)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN |
solver::[Integer]->Integer
solver xs = if head xs == 0 then min (check_tot 1 1 (tail xs)) (check_tot 1 (-1) (tail xs))
else check_tot 0 (head xs) (tail xs)
main::IO()
main=do
_<-getLine
datc<-getLine
print (solver (map read (words datc)))
--おそい。Step_sumを作る事無く、シーケンシャルにいく
--今のカウント手数、ここまでの修正されたトータル(これはゼロでない事が保証される)、食べるリスト。
check_tot::Integer -> Integer -> [Integer] -> Integer
check_tot st _ [] = st
check_tot st tot xs
| (tot > 0)&&((tot+(head xs))>=0) = let dec = (tot+(head xs))+1 in check_tot (dec+st) (-1) (tail xs)
| (tot > 0)&&((tot+(head xs)) <0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs)) >0) = check_tot st (tot+(head xs)) (tail xs)
| (tot < 0)&&((tot+(head xs))<=0) = let inc = 1-(tot+(head xs)) in check_tot (inc+st) 1 (tail xs)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def sign(x):
if x>0:
return 1
elif x<0:
return -1
else:
return 0
n = int(input())
a = [int(i) for i in input().split()]
s = [sum(a[:i+1]) for i in range(n)]
sp = [s[i] for i in range(n)]
sm = [s[i] for i in range(n)]
P0=0
M0=0
if s[0]==0:
P0+=1
M0+=1
for j in range(n):
sp[j]+=1
sm[j]+=1
elif s[0]>0:
M0+=abs(s[0]+1)
for j in range(n):
sm[j]-=(abs(s[0])+1)
else:
P0+=abs(s[0]+1)
for j in range(n):
sp[j]+=(abs(s[0])+1)
for i in range(1,n):
if sm[i-1]*sm[i]>=0:
M0+=abs(sm[i])+1
h=sign(sm[i-1])*(-1)*(abs(sm[i])+1)
for j in range(i,n):
sm[j]+=h
if sp[i-1]*sp[i]>=0:
P0+=abs(sp[i])+1
h=sign(sp[i-1])*(-1)*(abs(sp[i])+1)
for j in range(i,n):
sp[j]+=h
print(min([M0,P0]))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = 0; i < (long long)n; ++i) cin >> a[i];
long long ans = 0;
long long sum = 0;
for (long long i = 0; i < (long long)n; ++i) {
if (sum < 0 and sum + a[i] <= 0) {
ans += -(sum + a[i]) + 1;
a[i] = -sum + 1;
} else if (sum > 0 and sum + a[i] >= 0) {
ans += sum + a[i] + 1;
a[i] = -sum - 1;
}
sum += a[i];
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int num_count = sc.nextInt();
int[] array = new int[num_count];
int first_plus_cost = 0;
int sum = 0;
for(int i = 0;i < num_count;i++){
array[i] = sc.nextInt();
}
for(int i = 0;i < num_count;i++){
int temp = sum;
temp += array[i];
if(i % 2 == 0 && temp <= 0){
int cost = 1 - temp;
first_plus_cost += cost;
temp += cost;
}else if(i % 2 == 1 && temp >= 0){
int cost = 1 + temp;
first_plus_cost += cost;
temp -= cost;
}
sum = temp;
}
int second_plus_cost = 0;
sum = 0;
for(int i = 0;i < num_count;i++){
int temp = sum;
temp += array[i];
if(i % 2 == 0 && temp >= 0){
int cost = 1 + temp;
second_plus_cost += cost;
temp -= cost;
}else if(i % 2 == 1 && temp <= 0){
int cost = 1 - temp;
second_plus_cost += cost;
temp += cost;
}
sum = temp;
}
int min_cost = first_plus_cost < second_plus_cost ? first_plus_cost : second_plus_cost;
System.out.println(min_cost);
sc.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int ans1 = 0;
int ans2 = 0;
int sum1 = 0;
int sum2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
sum2 += a[i];
if (i % 2 == 0) {
if (sum1 > 0) {
} else {
ans1 += abs(sum1) + 1;
sum1 = 1;
}
if (sum2 < 0) {
} else {
ans2 += abs(sum2) + 1;
sum2 = -1;
}
} else {
if (sum1 < 0) {
} else {
ans1 += abs(sum1) + 1;
sum1 = 1;
}
if (sum2 > 0) {
} else {
ans2 += abs(sum2) + 1;
sum2 = -1;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) {
try {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
StringTokenizer str = new StringTokenizer(br.readLine(), " ");
long[] A = new long[n];
for(int i = 0; i < n ; i++) {
A[i] = Integer.parseInt(str.nextToken());
}
long c = func(A,n);
System.out.println(c);
} catch (IOException e) {
System.out.println("error");
}
}
static long func(long[] A,int n){
long sum = 0;
long c1 = 0,c2 = 0;
for(int i = 0; i < n; i++){
if(i%2==0 && sum+A[i]>=0){ //次は負
c1 += (sum+A[i] + 1);
sum = -1;
}
else if(i%2==1 && sum+A[i]<=0){
c1 += 1+(-sum-A[i]);
sum = 1;
}
else{
sum+=A[i];
}
}
sum = 0;
for(int i = 0; i < n; i++){
if(i%2==0 && sum+A[i]<=0){ //次は負
c2 += (sum+A[i] + 1);
sum = 1;
}
else if(i%2==1 && sum+A[i]>=0){
c2 += 1+(-sum-A[i]);
sum = -1;
}
else{
sum+=A[i];
}
}
return Math.min(c1,c2);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
int former(const vector<T> &v, T x) {
return upper_bound(v.begin(), v.end(), x) - v.begin() - 1;
}
template <class T>
int latter(const vector<T> &v, T x) {
return lower_bound(v.begin(), v.end(), x) - v.begin();
}
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
const long long LLINF = 1LL << 60;
const int INTINF = 1 << 30;
const int MAX = 510000;
const int MOD = 1000000007;
long long fac[MAX], finv[MAX], inv[MAX];
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
long long COM(int n, int k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
struct UnionFind {
vector<long long> par;
UnionFind(long long n) : par(n, -1) {}
void init(long long n) { par.assign(n, -1); }
long long root(long long x) {
if (par[x] < 0)
return x;
else
return par[x] = root(par[x]);
}
bool issame(long long x, long long y) { return root(x) == root(y); }
bool merge(long long x, long long y) {
x = root(x);
y = root(y);
if (x == y) return false;
if (par[x] > par[y]) swap(x, y);
par[x] += par[y];
par[y] = x;
return true;
}
long long size(long long x) { return -par[root(x)]; }
};
template <typename T>
vector<T> dijkstra(int s, vector<vector<pair<int, T> > > &G) {
const T INF = numeric_limits<T>::max();
using P = pair<T, int>;
int n = G.size();
vector<T> d(n, INF);
vector<int> b(n, -1);
priority_queue<P, vector<P>, greater<P> > q;
d[s] = 0;
q.emplace(d[s], s);
while (!q.empty()) {
P p = q.top();
q.pop();
int v = p.second;
if (d[v] < p.first) continue;
for (auto &e : G[v]) {
int u = e.first;
T c = e.second;
if (d[u] > d[v] + c) {
d[u] = d[v] + c;
b[u] = v;
q.emplace(d[u], u);
}
}
}
return d;
}
vector<vector<int> > bfs(vector<string> &s, int sy, int sx, char wall,
int dir) {
int h = s.size(), w = s.front().size();
vector<vector<int> > dp(h, vector<int>(w, -1));
using P = pair<int, int>;
queue<P> q;
dp[sy][sx] = 0;
q.emplace(sy, sx);
int dy[] = {1, -1, 0, 0, 1, 1, -1, -1};
int dx[] = {0, 0, 1, -1, 1, -1, 1, -1};
auto in = [&](int y, int x) { return 0 <= y && y < h && 0 <= x && x < w; };
while (!q.empty()) {
int y, x;
tie(y, x) = q.front();
q.pop();
for (int k = 0; k < dir; k++) {
int ny = y + dy[k], nx = x + dx[k];
if (!in(ny, nx) || s[ny][nx] == wall) continue;
if (~dp[ny][nx]) continue;
dp[ny][nx] = dp[y][x] + 1;
q.emplace(ny, nx);
}
}
return dp;
}
int64_t power(int64_t x, int64_t n, int64_t mod) {
int64_t ret = 1;
while (n > 0) {
if (n & 1) (ret *= x) %= mod;
(x *= x) %= mod;
n >>= 1;
}
return ret;
}
vector<int> sieve_of_eratosthenes(int n) {
vector<int> primes(n);
for (int i = 2; i < n; ++i) primes[i] = i;
for (int i = 2; i * i < n; ++i)
if (primes[i])
for (int j = i * i; j < n; j += i) primes[j] = 0;
return primes;
}
std::vector<long long> divisor(long long n) {
std::vector<long long> ret;
for (long long i = 1; i * i <= n; ++i) {
if (n % i == 0) {
ret.push_back(i);
if (i != 1 && i * i != n) {
ret.push_back(n / i);
}
}
}
return ret;
}
const int dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
const int dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
int main(void) {
long long n;
cin >> n;
vector<long long> a(n);
for (long long i = 0, i_len = (n); i < i_len; ++i) cin >> a[i];
long long sum = 0;
long long count = 0;
long long ans = 0;
for (long long i = 0, i_len = (n); i < i_len; ++i) {
sum += a[i];
if (i % 2 == 0)
if (sum < 0) {
ans += 1 - sum;
sum += ans;
}
if (i % 2 != 0)
if (sum > 0) {
ans += sum + 1;
sum -= ans;
}
}
sum = 0;
for (long long i = 0, i_len = (n); i < i_len; ++i) {
sum += a[i];
if (i % 2 == 0)
if (sum > 0) {
count += sum + 1;
sum -= count;
}
if (i % 2 != 0)
if (sum < 0) {
count += 1 - sum;
sum += count;
}
}
chmin(ans, count);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n, a[100010] = {};
cin >> n;
long long odd = 0, even = 0;
for (int i = 0; i < n; ++i) {
cin >> a[i];
if (i % 2 == 0)
even += a[i];
else
odd += a[i];
}
if (odd > even) {
odd = 1;
even = -1;
} else {
odd = -1;
even = 1;
}
long long sum = 0, ans = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (i % 2 == 0) {
if (sum * even > 0) {
continue;
} else {
ans += 1 - sum * even;
sum = even;
}
} else {
if (sum * odd > 0) {
continue;
} else {
ans += 1 - sum * odd;
sum = odd;
}
}
}
cout << ans << endl;
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.