Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("O3,no-stack-protector")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("avx")
using namespace std;
using Graph = vector<vector<int64_t>>;
const double pi = M_PI;
const int64_t MOD = 1000000007;
int64_t calc(const vector<int64_t> &a, int64_t n, int64_t tem) {
int64_t ans = 0;
if (tem == 0) {
if (0 <= a[1]) {
tem = -1;
ans++;
} else {
tem = 1;
ans++;
}
}
for (int i = 1; i < n; i++) {
if ((0 < tem + a[i] && tem < 0) || (tem + a[i] < 0 && 0 < tem)) {
tem += a[i];
} else {
if (0 <= tem + a[i] && 0 <= tem) {
ans += abs(-1 - (tem + a[i]));
tem = -1;
} else {
ans += abs(1 - (tem + a[i]));
tem = 1;
}
}
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int64_t n;
cin >> n;
vector<int64_t> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int64_t aa = a[0], bb, ansdel;
if (a[0] != 1) {
if (0 <= a[0]) {
bb = -1;
} else {
bb = 1;
}
ansdel = abs(a[0]) + 1;
}
int64_t ans = min(calc(a, n, aa), calc(a, n, bb) + ansdel);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count1 = 0
count2 = 0
count3 = 0
count4 = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count1 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count1 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count1 += 1
currentSum = -1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count2 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count2 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count2 += 1
currentSum = 1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count3 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count3 += abs(currentSum) + 1
currentSum = -1
elif A[i] <= 0 and restSum == 0:
count3 += abs(currentSum) + 1
currentSum = 1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count4 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count4 += abs(currentSum) + 1
currentSum = -1
elif A[i] >= 0 and restSum == 0:
count4 += abs(currentSum) + 1
currentSum = -1
print(count1, count2, count3, count4)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
typedef std::priority_queue<int> IntPrioQueue;
typedef std::priority_queue<int, std::vector<int>, std::greater<int> >
IntReversePrioQueue;
int dx4[4] = {1, 0, -1, 0};
int dy4[4] = {0, 1, 0, -1};
int dx8[8] = {1, 0, -1, 1, -1, 1, 0, -1};
int dy8[8] = {1, 1, 1, 0, 0, -1, -1, -1};
void solve(void) {
int n;
cin >> n;
long long accsums1[n];
long long accsums2[n];
long long temp0;
scanf("%lld\n", &temp0);
accsums1[0] = accsums2[0] = temp0;
for (int i = 0; i <= n - 1 - 1; i++) {
long long temp;
scanf("%lld\n", &temp);
accsums1[i + 1] = temp + accsums1[i];
accsums2[i + 1] = temp + accsums1[i];
}
long long ans1 = 0;
for (int i = 0; i <= n - 1; i++) {
if ((i % 2 == 0 and accsums1[i] > 0) or (i % 2 != 0 and accsums1[i] < 0))
continue;
if (i % 2 == 0) {
long long diff = 1 - accsums1[i];
ans1 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums1[j] += diff;
} else {
long long diff = 1 + accsums1[i];
ans1 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums1[j] -= diff;
}
}
long long ans2 = 0;
for (int i = 0; i <= n - 1; i++) {
if ((i % 2 == 0 and accsums2[i] < 0) or (i % 2 != 0 and accsums2[i] > 0))
continue;
if (i % 2 != 0) {
long long diff = 1 - accsums2[i];
ans2 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums2[j] += diff;
} else {
long long diff = 1 + accsums2[i];
ans2 += diff;
for (int j = i + 1; j <= n - 1; j++) accsums2[j] -= diff;
}
}
cout << min(ans1, ans2) << '\n';
printf("Debug\n");
}
int main(void) {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
now=a[0]
if now==0:
c=1
flag=1
for i in range(1,n):
if not a[i]==0:
flag=abs(a[i])//a[i]
#print(flag)
if i%2==1:
flag*=-1
now=flag
else:
flag=abs(a[0])//a[0]
c=0
#print(c,now,flag)
for i in range(1,n):
tmp=now+a[i]
if not tmp*flag<0:
c+=abs(flag*-1-tmp)
now=flag*-1
else:
now=tmp
flag*=-1
#print(c,now,flag)
print(c) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, chk;
long long ans = 0, ans2 = 0;
scanf("%d", &n);
vector<int> a(n);
for (auto& e : a) scanf("%d", &e);
chk = a[0];
for (int i = 1; i < n; i++) {
if (i % 2) {
chk += a[i];
if (chk >= 0) {
ans += chk + 1;
chk = -1;
}
} else {
chk += a[i];
if (chk <= 0) {
ans += -1 * chk + 1;
chk = 1;
}
}
}
chk = a[0];
for (int i = 1; i < n; i++) {
if (i % 2 == 0) {
chk += a[i];
if (chk >= 0) {
ans2 += chk + 1;
chk = -1;
}
} else {
chk += a[i];
if (chk <= 0) {
ans2 += -1 * chk + 1;
chk = 1;
}
}
}
if (a[0] == 0)
printf("%lld\n", min(ans, ans2));
else if (a[0] > 0)
printf("%lld\n", ans);
else
printf("%lld\n", ans2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int count = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
count += a[i];
if (i % 2 == 0) {
if (count <= 0) {
ans += abs(count - 1);
count = 1;
}
} else {
if (count >= 0) {
ans += abs(count + 1);
count = -1;
}
}
}
int count2 = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
count2 += a[i];
if (i % 2 == 1) {
if (count2 <= 0) {
ans2 += abs(count2 - 1);
count2 = 1;
}
} else {
if (count2 >= 0) {
ans2 += abs(count2 + 1);
count2 = -1;
}
}
}
cout << min(ans, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | parseInt(x) = parse(Int, x)
function main()
n = readline() |> parseInt
a = map(parseInt, split(readline()))
b = Array{Int}(n)
b[1] = a[1]
k = 0
for i in 2:n
b[i] = a[i]+b[i-1]
if b[i]*b[i-1] >= 0
if b[i-1] < 0
k += abs(b[i]-1)
b[i] = 1
else
k += abs(b[i]+1)
b[i] = -1
end
end
end
print(k)
end
main() |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1001001001;
const long long LINF = 1001001001001001001ll;
const int MOD = 1000000007;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
long long sign(long long A) { return (A > 0) - (A < 0); }
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long ans = 0;
long long sum = 0;
int sig;
for (int i = 0; i < (n); ++i) {
sum += a[i];
if (i == 0) {
sig = sign(sum);
continue;
}
if (sig == -sign(sum)) {
sig = sign(sum);
continue;
}
long long diff = -sig - sum;
sum += diff;
ans += abs(diff);
sig = sign(sum);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int calc(bool firstPositive, int a[], int n) {
bool positive = firstPositive;
int cost = 0;
long sum = 0;
for (int i = 0; i < n; ++i) {
bool sumpos = (sum + a[i]) >= 0;
if (sumpos != positive) {
while (((sum + a[i]) >= 0) == sumpos) {
a[i] += sumpos ? -1 : 1;
++cost;
}
}
if ((sum + a[i]) == 0) {
a[i] += sumpos ? -1 : 1;
++cost;
}
sum += a[i];
positive = !positive;
}
return cost;
}
int main(int argc, char *argv[]) {
int n;
std::cin >> n;
int a[1 << 15], b[1 << 15];
for (int i = 0; i < n; ++i) {
std::cin >> a[i];
b[i] = a[i];
}
std::cout << std::min(calc(true, a, n), calc(false, b, n)) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python2 | n=input()
a=map(int,raw_input().split())
#print n
#print a
a1_sum=0
a1=[]
for i in a:
a1_sum+=i
a1.append(a1_sum)
#print a1
#+,-
b=[]
for i,val in enumerate(a1):
for j in b:
val+=j
if i%2==0:
if val>0:
pass
else:
t_val=1-val
b.append(t_val)
else:
if val<0:
pass
else:
t_val=-1-val
b.append(t_val)
ans1=0
if len(b)==0:
ans1=0
else:
for i in b:
ans1+=abs(i)
#-,+
b=[]
for i,val in enumerate(a1):
for j in b:
val+=j
if i%2==0:
if val<0:
pass
else:
t_val=-1-val
b.append(t_val)
else:
if val>0:
pass
else:
t_val=1-val
b.append(t_val)
ans2=0
if len(b)==0:
ans2=0
else:
for i in b:
ans2+=abs(i)
print min(ans1,ans2)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int d[n];
for (int i = 0; i < n; i++) {
cin >> d[i];
}
int count = 0;
int sum = d[0];
int f = 0;
if (d[0] > 0) {
f = -1;
}
if (d[0] < 0) {
f = 1;
}
for (int i = 1; i < n; i++) {
sum += d[i];
if (sum == 0) {
if (f == 1) {
count++;
f = -1;
sum = 1;
continue;
}
if (f == -1) {
count++;
f = 1;
sum = -1;
continue;
}
}
if (sum > 0) {
if (f == 1) {
f = -1;
continue;
}
if (f == -1) {
count += sum + 1;
sum = -1;
f = 1;
continue;
}
}
if (sum < 0) {
if (f == -1) {
f = 1;
continue;
}
if (f == 1) {
count += 1 - sum;
sum = 1;
f = -1;
continue;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int ans = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum = a[i];
continue;
}
if (sum > 0) {
if (sum + a[i] >= 0) {
ans += sum + a[i] + 1;
a[i] -= sum + a[i] + 1;
}
} else {
if (sum + a[i] <= 0) {
ans += sum + a[i] + 1;
a[i] += sum + a[i] - 1;
}
}
sum += a[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long A[100100];
int n;
long long count(long long sum) {
long long num = 0;
for (int i = 1; i < n; i++) {
long long a = A[i];
if (sum > 0) {
sum += a;
if (sum >= 0) {
num += (sum + 1);
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
num += (-sum + 1);
sum = 1;
}
}
}
return num;
}
int main() {
long long num = 0;
cin >> n;
for (int i = 0; i < n; i++) {
long long a;
cin >> a;
A[i] = a;
}
if (A[0] != 0) {
num = count(A[0]);
} else {
num = 1 + min(count(1), count(-1));
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const unsigned long long MOD = 1000000000 + 7;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
int cnt0 = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a.at(i);
if (i % 2 == 0 && sum >= 0) {
cnt0 += 1 + sum;
sum = -1;
} else if (i % 2 == 1 && sum <= 0) {
cnt0 += 1 - sum;
sum = 1;
}
}
int cnt1 = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a.at(i);
if (i % 2 == 0 && sum <= 0) {
cnt1 += 1 - sum;
sum = 1;
} else if (i % 2 == 1 && sum >= 0) {
cnt1 += 1 + sum;
sum = -1;
}
}
cout << min(cnt0, cnt1) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
sum_a = a[0]
cnt = 0
for i in range(1,n):
if sum_a*(sum_a+a[i]) < 0:
sum_a += a[i]
else:
tmp = a[i]
a[i] = int(-sum_a -a[i-1]/abs(a[i-1]))
sum_a += a[i]
cnt += abs(a[i]-tmp)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using long long = long long;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
const long long INF = 1e9;
long long n;
vector<long long> a;
long long solve(int x) {
long long res = 0;
long long sum = x;
for (long long i = 0; i < (n - 1); ++i) {
if (sum < 0) {
if (sum + a[i + 1] > 0) {
sum += a[i + 1];
} else {
res += 1 - sum - a[i + 1];
sum = 1;
}
} else {
if (sum + a[i + 1] < 0) {
sum += a[i + 1];
} else {
res += 1 + sum + a[i + 1];
sum = -1;
}
}
}
return res;
}
int main() {
cin >> n;
a.resize(n);
for (long long i = 0; i < (n); ++i) cin >> a[i];
long long ans = INF;
chmin(ans, solve(a[0]));
chmin(ans, solve(1) + abs(a[0] - 1));
chmin(ans, solve(-1) + abs(a[0] + 1));
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> v(n);
for (__typeof(n) i = (0) - ((0) > (n)); i != (n) - ((0) > (n));
i += 1 - 2 * ((0) > (n)))
cin >> v[i];
long long ans = LLONG_MAX;
long long res1 = 0, res2 = 0;
long long som = v[0];
if (v[0] >= 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = v[0] + 1;
som = -1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
if (v[0] == 0) ans = min(res1, res2);
if (v[0] <= 0) {
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 0)
if (som < 0)
continue;
else {
res1 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res1 += 1 - som;
som = 1;
}
}
res2 = 1 - v[0];
som = 1;
for (__typeof(n) i = (1) - ((1) > (n)); i != (n) - ((1) > (n));
i += 1 - 2 * ((1) > (n))) {
som = som + v[i];
if (i % 2 == 1)
if (som < 0)
continue;
else {
res2 += som + 1;
som = -1;
}
else if (som > 0)
continue;
else {
res2 += 1 - som;
som = 1;
}
}
}
if (v[0] == 0)
cout << min({ans, res1, res2});
else
cout << min(res1, res2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int, input().split()))
sum_now=a[0]
sum_before=-a[0]
count=0
for i in range(n):
while sum_now*sum_before>=0:
if sum_before==0:
sum_now=-a[1]/abs(a[1])
count+=1
else:
count+=abs(int(sum_now))+1
sum_now=-sum_before/abs(sum_before)
if i!=n-1:
sum_before=sum_now
sum_now=sum_now+a[i+1]
print(count) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
static constexpr int mod = (int)1e9 + 7;
static constexpr int inf = 100100100;
static constexpr ll linf = 1e18;
static constexpr double eps = 1e-9;
static constexpr double pi = 3.14159265359;
template <typename T>
int sgn(T val) {
return (T(0) < val) - (val < T(0));
}
int main() {
ll N;
cin >> N;
vector<ll> A;
for (ll i = 0; i < N; ++i) {
ll a;
cin >> a;
A.push_back(a);
}
ll ans = 0;
ll S = A[0];
if (S == 0) {
S = 1;
ans += 1;
}
for (ll i = 0; i < N - 1; ++i) {
int s1 = sgn(S);
S += A[i + 1];
int s2 = sgn(S);
if (s1 != s2) {
if (s2 == 0) {
if (s1 > 0) {
S = -1;
ans += 1;
} else {
S = 1;
ans += 1;
}
}
} else {
ans += abs(S) + 1;
if (s2 > 0) {
S = -1;
} else {
S = 1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int func(vector<int> a, int fugo) {
int ans = 0;
int offset = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == fugo) {
if (a[i] <= offset) {
ans += offset - (a[i] - 1);
offset = a[i] - 1;
}
} else {
if (a[i] >= offset) {
ans += (a[i] + 1) - offset;
offset = a[i] + 1;
}
}
}
return ans;
}
int main() {
cin >> n;
vector<int> a;
int sum_tmp = 0;
for (int i = 0; i < n; i++) {
int tmp;
cin >> tmp;
sum_tmp += tmp;
a.push_back(sum_tmp);
}
int ans = min(func(a, 0), func(a, 1));
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100005];
void solver() {
long long cnt = 0;
long long sum = a[0];
for (int i = 1; i < n; ++i) {
if (sum > 0) {
if (sum + a[i] >= 0) {
cnt += abs(sum + a[i]) + 1;
sum = -1;
} else {
sum = sum + a[i];
}
} else if (sum < 0) {
if (sum + a[i] <= 0) {
cnt += abs(sum + a[i]) + 1;
sum = 1;
} else {
sum = sum + a[i];
}
}
}
cout << cnt << endl;
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
solver();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int j = 0; j < N; j++) {
cin >> a[j];
}
int c1 = 0, c2 = 0;
int sum = 0;
sum = a[0];
for (int i = 1; i < N; i++) {
if (sum < 0 && i == 1) {
c1 += 1 - sum;
sum = 1;
} else
sum += a[i];
if (i % 2 == 1 && sum > 0) {
c1 += +1 + sum;
sum = -1;
}
if (i % 2 == 0 && sum < 0) {
c1 += 1 - sum;
sum = 1;
}
if (sum == 0 && i % 2 == 1) {
c1++;
sum = -1;
}
if (sum == 0 && i % 2 == 0) {
c1++;
sum = 1;
}
}
sum = a[0];
for (int i = 1; i < N; i++) {
if (sum > 0 && i == 1) {
c2 += +1 + sum;
sum = -1;
} else
sum += a[i];
if (i % 2 == 1 && sum < 0) {
c2 += 1 - sum;
sum = 1;
}
if (i % 2 == 0 && sum > 0) {
c2 += +1 + sum;
sum = -1;
}
if (sum == 0 && i % 2 == 1) {
c2++;
sum = 1;
}
if (sum == 0 && i % 2 == 0) {
c2++;
sum = -1;
}
}
cout << min(c1, c2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
bool ch = false;
long long N, i;
long long ans = 0, count = 0;
cin >> N;
long long a[N];
cin >> a[0];
ans += a[0];
if (ans > 0)
ch = true;
else
ch = false;
if (ans == 0) {
count += 1;
ans = -1;
}
for (i = 1; i < N; i++) {
cin >> a[i];
if (ch) {
if (ans >= -a[i]) {
count += ans + a[i] + 1;
ans = -1;
} else
ans += a[i];
ch = false;
} else {
if (ans <= -a[i]) {
count += -ans - a[i] + 1;
ans = 1;
} else
ans += a[i];
ch = true;
}
}
long long con = 0;
if (a[0] > 0) {
ans = -1;
ch = false;
} else {
ans = 1;
ch = true;
}
con = a[0] + 1;
for (i = 1; i < N; i++) {
if (ch) {
if (ans >= -1 * a[i]) {
con += ans + a[i] + 1;
ans = -1;
} else
ans += a[i];
ch = false;
} else {
if (-1 * ans >= a[i]) {
con += -1 * ans - a[i] + 1;
ans = 1;
} else
ans += a[i];
ch = true;
}
}
cout << min(count, con) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long cnt1 = 0, sum;
if (a[0] > 0)
sum = a[0];
else
sum = 1, cnt1 += abs(a[0]) + 1;
for (int i = 1; i < n; i++) {
long long t = sum + a[i];
if (sum > 0 && t > 0) {
if (a[i] >= 0)
cnt1 += a[i] + sum + 1;
else
cnt1 += abs(abs(sum) - abs(a[i])) + 1;
sum = -1;
} else if (sum < 0 && t < 0) {
if (a[i] < 0)
cnt1 += a[i] + sum + 1;
else
cnt1 += abs(abs(sum) - abs(a[i])) + 1;
sum = 1;
} else if (t == 0) {
cnt1++;
if (sum > 0)
sum = -1;
else
sum = 1;
} else
sum += a[i];
}
long long cnt2 = 0;
if (a[0] < 0)
sum = a[0];
else
sum = -1, cnt2 += abs(a[0]) + 1;
for (int i = 1; i < n; i++) {
long long t = sum + a[i];
if (sum > 0 && t > 0) {
if (a[i] >= 0)
cnt2 += a[i] + sum + 1;
else
cnt2 += abs(abs(sum) - abs(a[i])) + 1;
sum = -1;
} else if (sum < 0 && t < 0) {
if (a[i] < 0)
cnt2 += a[i] + sum + 1;
else
cnt2 += abs(abs(sum) - abs(a[i])) + 1;
sum = 1;
} else if (t == 0) {
cnt2++;
if (sum > 0)
sum = -1;
else
sum = 1;
} else
sum += a[i];
}
cout << min(cnt1, cnt2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
constexpr int kMod = 1000000007;
constexpr int kNmax = 1e5 + 1;
int sum[kNmax];
int main() {
int n;
std::cin >> n;
std::cin >> sum[0];
for (int i = 1; i < n; ++i) {
int a;
std::cin >> a;
sum[i] = sum[i - 1] + a;
}
long long cnt1 = 0, cnt2 = 0;
long long offset = 0;
for (int i = 0; i < n; ++i) {
long long v = sum[i] + offset;
if (i % 2 == 0) {
if (v <= 0) {
offset += (-v + 1);
cnt1 += (-v + 1);
}
} else {
if (v >= 0) {
offset -= v + 1;
cnt1 += v + 1;
}
}
}
offset = 0;
for (int i = 0; i < n; ++i) {
long long v = sum[i] + offset;
if (i % 2 == 0) {
if (v >= 0) {
offset -= v + 1;
cnt2 += v + 1;
}
} else {
if (v <= 0) {
offset += (-v + 1);
cnt2 += (-v + 1);
}
}
}
std::cout << std::min(cnt1, cnt2) << std::endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 |
import sys
input = sys.stdin.readline
sys.setrecursionlimit(2147483647)
INF=float("inf")
MOD=10**9+7
# A = [ int(input()) for _ in range(N) ]
##############################
N = int(input())
A = list(map(int, input().split()))
def get_count(summary):
count = 0
for i in range(1, N):
# print(summary)
# 次はマイナス
if summary > 0:
# 条件を満たしてる?
if (summary + A[i]) < 0:
summary += A[i]
else:
# プラスになっちゃってるので修正
summary += A[i]
count += abs(-1-summary)
summary = -1
# 次はプラス
else:
if (summary + A[i]) > 0:
summary += A[i]
else:
# マイナスになっちゃってるので修正
summary += A[i]
count += abs(1-summary)
summary = 1
return count
if A[0] > 0:
plus = get_count(A[0])
minus = get_count(-1)
minus += (A[0]+1)
elif A[0] == 0:
plus = get_count(1)+1
minus = get_count(-1)+1
else:
minus = get_count(A[0])
plus = get_count(1)
plus += (abs(plus)+1)
print(min(plus, minus))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int x = 0; x < (N); x++) {
cin >> A.at(x);
}
long long sign = A.at(0);
long long ans = 0;
for (int x = 0; x < (N - 1); x++) {
if (sign < 0) {
if (sign + A.at(x + 1) <= 0) {
if (x == 0) {
if (abs(A.at(x + 1) - (abs(sign) + 1)) <
abs(sign - (abs(A.at(x + 1)) + 1))) {
ans += abs(A.at(x + 1) - (abs(sign) + 1));
A.at(x + 1) = abs(sign) + 1;
} else {
ans += abs(sign - (abs(A.at(x + 1)) + 1));
}
} else {
ans += abs(A.at(x + 1) - (abs(sign) + 1));
A.at(x + 1) = abs(sign) + 1;
}
}
} else {
if (sign + A.at(x + 1) >= 0) {
if (x == 0) {
if (abs(A.at(x + 1) - (abs(sign) + 1)) <
abs(sign - (abs(A.at(x + 1)) + 1))) {
ans += abs(A.at(x + 1) - (-abs(sign) - 1));
A.at(x + 1) = -abs(sign) - 1;
} else {
ans += abs(sign - (abs(A.at(x + 1)) + 1));
}
} else {
ans += abs(A.at(x + 1) - (-abs(sign) - 1));
A.at(x + 1) = -abs(sign) - 1;
}
}
}
sign += A.at(x + 1);
}
cout << ans << endl;
;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long ans = 0;
if (a[0] == 0) {
sum = 1;
ans++;
}
for (int i = 1; i < n; i++) {
long long sum1 = sum + a[i];
if (sum1 == 0 || sum / abs(sum) == sum1 / abs(sum1)) {
int sign = sum / abs(sum);
sign *= -1;
ans += abs(sum1 - sign);
sum1 = sign;
}
sum = sum1;
}
if (a[0] == 0) {
long long ans2 = 0;
sum = -1;
ans2++;
for (int i = 1; i < n; i++) {
long long sum1 = sum + a[i];
if (sum1 == 0 || sum / abs(sum) == sum1 / abs(sum1)) {
int sign = sum / abs(sum);
sign *= -1;
ans2 += abs(sum1 - sign);
sum1 = sign;
}
sum = sum1;
}
if (ans > ans2) ans = ans2;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
L = [0 for _ in range(n)]
L[0] = a[0]
for i in range(1, n):
L[i] = L[i-1] + a[i]
delay = 0
all_over = 0
anti_delay = 0
anti_all_over = 0
if a[0] != 0:
antiL = L[:]
sign = (a[0] > 0) - (a[0] < 0)
for i in range(1, n):
L[i] += delay
if L[i] <= 0 and sign == -1:
delay += 1 - L[i]
all_over += 1 - L[i]
L[i] = 1
elif L[i] >= 0 and sign == 1:
delay -= L[i] + 1
all_over += L[i] + 1
L[i] = -1
sign *= -1
if antiL[0] < 0:
sign = 1
anti_delay = 1 - antiL[0]
anti_all_over = 1 - antiL[0]
else:
sign = 1
anti_delay = antiL[0] - 1
anti_all_over = antiL[0] - 1
for i in range(1, n):
antiL[i] += anti_delay
if antiL[i] <= 0 and sign == -1:
anti_delay += 1 - antiL[i]
anti_all_over += 1 - antiL[i]
antiL[i] = 1
elif antiL[i] >= 0 and sign == 1:
anti_delay -= antiL[i] + 1
anti_all_over += antiL[i] + 1
antiL[i] = -1
sign *= -1
print(min(anti_all_over, all_over))
else:
posL = L[:]
negL = L[:]
pos_delay, neg_delay = 1, -1
pos_all_over, neg_all_over = 1, 1
sign = 1
for i in range(1, n):
posL[i] += pos_delay
if posL[i] <= 0 and sign == -1:
pos_delay += 1 - posL[i]
pos_all_over += 1 - posL[i]
posL[i] = 1
elif posL[i] >= 0 and sign == 1:
pos_delay -= posL[i] + 1
pos_all_over += posL[i] + 1
posL[i] = -1
sign *= -1
sign = -1
for i in range(1, n):
negL[i] += neg_delay
if negL[i] <= 0 and sign == -1:
neg_delay += 1 - negL[i]
neg_all_over += 1 - negL[i]
negL[i] = 1
elif negL[i] >= 0 and sign == 1:
neg_delay -= negL[i] + 1
neg_all_over += negL[i] + 1
negL[i] = -1
sign *= -1
print(min(pos_all_over, neg_all_over)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i=0; i<n; i++){
a[i] = sc.nextInt();
}
int[] a_sum = new int[n];
a_sum[0] = a[0];
for(int i=1; i<n; i++){
a_sum[i] = a_sum[i-1] + a[i];
}
int[] a_sum_copy = new int[n];
for(int i=0; i<n; i++){
a_sum_copy[i] = a_sum[i];
}
//奇数番目までの和を正に、偶数番目までの和を負にする
int cnt1 = 0;
int cnt2 = 0;
for(int i=0; i<n; i++){
a_sum[i] += cnt1 + cnt2;
if(i%2==0){
if(a_sum[i]<0){
cnt1 += (-a_sum[i]) + 1;
a_sum[i] = 1;
}else if(a_sum[i]==0){
cnt1 += 1;
a_sum[i] = 1;
}
}else if(i%2==1){
if(a_sum[i]>0){
cnt2 -= a_sum[i] + 1;
a_sum[i] = -1;
}else if(a_sum[i]==0){
cnt2 -= 1;
a_sum[i] = -1;
}
}
}
//奇数番目までの和を負に、偶数番目までの和を正にする
int cnt3 = 0;
int cnt4 = 0;
for(int i=0; i<n; i++){
a_sum_copy[i] += cnt3 + cnt4;
if(i%2==1){
if(a_sum_copy[i]<0){
cnt3 += (-a_sum_copy[i]) + 1;
a_sum_copy[i] = 1;
}else if(a_sum_copy[i]==0){
cnt3 += 1;
a_sum_copy[i] = 1;
}
}else if(i%2==0){
if(a_sum_copy[i]>0){
cnt4 -= a_sum_copy[i] + 1;
a_sum_copy[i] = -1;
}else if(a_sum_copy[i]==0){
cnt4 -= 1;
a_sum_copy[i] = -1;
}
}
}
if(cnt1-cnt2>cnt3-cnt4){
System.out.print(cnt3-cnt4);
}else{
System.out.print(cnt1-cnt2);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Linq;
namespace C
{
public class Program
{
static void Main(string[] args)
{
var sw = new StreamWriter(Console.OpenStandardOutput()) { AutoFlush = false };
Console.SetOut(sw);
Solve();
Console.Out.Flush();
}
public static void Solve()
{
var N = int.Parse(Console.ReadLine());
var A = Console.ReadLine().Trim().Split(' ').Select(int.Parse).ToArray();
var answer = (long)1e18;
var t = 1;
for (var k = 0; k < 2; k++)
{
t ^= 1;
var step = 0;
var sum = 0;
var prev = t == 0;
for (var i = 0; i < N; i++)
{
sum += A[i];
if (prev == (sum > 0))
{
step += Math.Abs(sum) + 1;
sum = prev ? -1 : 1;
}
prev = sum > 0;
}
answer = Math.Min(answer, step);
}
Console.WriteLine(answer);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
num_list = list(map(int, input().split()))
count = 0
sum_ = num_list[0]
if sum_ > 0:
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 0:
if sum_ <= 0:
sum_ += abs(sum_) + 1
count += abs(sum_) + 1
else:
if sum_ >= 0:
sum_ -= abs(sum_) + 1
count += abs(sum_) + 1
print(count)
elif sum_ < 0:
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 1:
if sum_ <= 0:
sum_ += abs(sum_) + 1
count += abs(sum_) + 1
else:
if sum_ >= 0:
sum_ += -abs(sum_) - 1
count += abs(sum_) + 1
print(count)
else:
sum_ = 1
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 0:
if sum_ <= 0:
sum_ += abs(sum_) + 1
count += abs(sum_) + 1
else:
if sum_ >= 0:
sum_ -= -abs(sum_) - 1
count += abs(sum_) + 1
count1 = count
sum_ = -1
for i in range(1, n):
sum_ += num_list[i]
if i%2 == 1:
if sum_ <= 0:
sum_ += abs(sum_) + 1
count += abs(sum_) + 1
else:
if sum_ >= 0:
sum_ += abs(sum_) + 1
count += abs(sum_) + 1
count2 = count
print(min(count1, count2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(i) for i in input().split()]
ff = -1
for i in range(n):
if A[i] != 0:
ff = i
break
if A[0] != 0:
ans = 0
S = A[0]
f = A[0]//abs(A[0])
else:
if ff == -1:
ans = 1
S = 1
f = 1
else:
if ff % 2 == 0:
ans = 1
S = 1
f = 1
else:
ans = 1
S = -1
f = -1
for a in A[1:]:
S += a
if S == 0:
ans += 1
S = -f
else:
if S/abs(S) != f*(-1):
ans += abs(S)+1
S = -f
f *= -1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define mp make_pair
#define pb push_back
#define ff first
#define ss second
#define set0(a) memset ((a), 0 , sizeof(a))
#define set1(a) memset((a),-1,sizeof (a))
#define pi pair<int, int>
#define ps pair<string, string>
#define pl pair<long, long>
#define pll pair<long long, long long>
#define vll vector<long long>
#define vl vector<long>
#define vi vector<int>
#define vs vector<string>
#define vps vector< ps >
#define vpi vector< pi >
#define vpl vector< pl >
#define vpll vector< pll >
#define flash ios_base::sync_with_stdio(false); cin.tie(NULL);
#define tc(t) for(long long l=0;l<t;l++)
#define rep(i,s,n,d) for(long long i=s;i<n;i=i+d)
bool sortbysec(const pll &a,
const pll &b)
{
return (a.second < b.second);
}
void func(void)
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
}
int main(){
ll n;
cin>>n;
ll a[n];
rep(i,0,n,1){
cin>>a[i];
}
ll sum[n]={};
sum[0]=a[0];
rep(i,1,n,1){
sum[i]=sum[i-1]+a[i];
}
int sum1=a[0];
int count1=0;
rep(i,1,n,1){
if(sum1*(sum1+a[i])>=0){
int d=1;
if(sum1<0){
d=1;
}else{
d=-1;
}
int dif=abs(sum1+a[i]-d);
count1=count1+dif;
sum1=d;
}
else{
sum1=sum1+a[i];
}
}
cout<<count1<<endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | package main
import (
"bufio"
"fmt"
"os"
"strconv"
)
var sc = bufio.NewScanner(os.Stdin)
func nextInt() int {
sc.Scan()
i, _ := strconv.Atoi(sc.Text())
return i
}
func main() {
sc.Split(bufio.ScanWords)
n := nextInt()
a := make([]int, n)
for i := 0; i < n; i++ {
a[i] = nextInt()
}
sum, cnt := a[0], 0
m, l := 0, 1
if a[0] > 0 {
m, l = 1, 0
}
for i := 1; i < n; i++ {
sum += a[i]
if i%2 == m && sum >= 0 {
cnt += sum + 1
sum = -1
}
if i%2 == l && sum <= 0 {
cnt += 1 - sum
sum = 1
}
}
fmt.Println(cnt)
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ABC059Sequence
{
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
long[] a = new long[n];
string[] vals = Console.ReadLine().Split(' ');
for (int i = 0; i < n; i++)
a[i] = long.Parse(vals[i]);
long num = 0;
if(a[0] == 0)
{
if(a[1] >= 0)
{
a[0]--;
}
else
{
a[0]++;
}
num++;
}
long[] cum = new long[n+1];
for(int i=1; i < n; i++)
{
cum[i] = cum[i - 1] + a[i - 1];
long t;
if(cum[i] > 0)
{
t = cum[i] * -1 - 1;
}
else
{
t = cum[i] * -1 + 1;
}
//Console.WriteLine("target: {0}", t);
long u;
if(t > 0)
{
if(a[i] < t)
{
u = t - a[i];
//Console.WriteLine("u={0}", u);
a[i] += u;
num += u;
}
}
else
{
if(a[i] > t)
{
u = a[i] - t;
//Console.WriteLine("u=-{0}", u);
a[i] -= u;
num += u;
}
}
}
Console.WriteLine(num);
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
int main(int argc, char const *argv[]) {
int n;
std::cin >> n;
std::vector<int> v(n);
std::vector<int> sums(2, 0);
for (size_t i = 0; i < n; i++) {
std::cin >> v[i];
sums[i % 2] += v[i];
}
ull ans = 0;
if (sums[0] > sums[1] && v[0] <= 0) {
ans = ans + abs(v[0]) + 1;
v[0] = 1;
} else if (sums[0] < sums[1] && v[0] >= 0) {
ans = ans + abs(v[0]) + 1;
v[0] = -1;
}
ll now, pre;
now = pre = v[0];
for (size_t i = 1; i < n; i++) {
now += v[i];
if (pre * now >= 0) {
if (pre > 0) {
ans = ans + abs(now) + 1;
now = -1;
} else if (pre < 0) {
ans = ans + abs(now) + 1;
now = 1;
}
}
pre = now;
}
std::cout << ans << '\n';
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long sum1 = 0;
long sum2 = 0;
long tmp;
long lcount = 0;
long rcount = 0;
long a[100000];
char input[1500000];
int i = 0, j = 0;
int cp = 0, tcp = 0;
char tp[12];
tp[12] = '\0';
fgets(input, 1500000, stdin);
n = atoi(input);
fgets(input, 1500000, stdin);
for (i = 0; i < n; i++) {
while (input[cp] != ' ' && input[cp] != '\n') {
tp[tcp] = input[cp];
tcp++;
cp++;
}
tp[tcp] = '\0';
tcp = 0;
cp++;
a[i] = atoi(tp);
}
tmp = a[0];
for (i = 1; i < n; i++) {
if (i % 2 == 0) {
tmp += a[i];
if (tmp > -1) {
lcount += tmp + 1;
tmp = -1;
}
} else {
tmp += a[i];
if (tmp < 1) {
lcount += 1 - tmp;
tmp = 1;
}
}
}
tmp = a[0];
for (i = 1; i < n; i++) {
if (i % 2 == 1) {
tmp += a[i];
if (tmp > -1) {
rcount += tmp + 1;
tmp = -1;
}
} else {
tmp += a[i];
if (tmp < 1) {
rcount += 1 - tmp;
tmp = 1;
}
}
}
printf("%ld\n", lcount > rcount ? rcount : lcount);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long ans = 0;
long long sum = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum = a[i];
continue;
}
if (sum > 0) {
if (sum + a[i] >= 0) {
ans += sum + a[i] + 1;
sum += a[i] - (sum + a[i] + 1);
continue;
}
} else {
if (sum + a[i] <= 0) {
ans -= sum + a[i] - 1;
sum += a[i] - (sum + a[i] - 1);
continue;
}
}
sum += a[i];
}
sum = 0;
int tmp = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
sum = a[i] > 0 ? -1 : 1;
tmp += a[i] > 0 ? a[i] + 1 : -(a[i] - 1);
continue;
}
if (sum > 0) {
if (sum + a[i] >= 0) {
tmp += sum + a[i] + 1;
sum += a[i] - (sum + a[i] + 1);
continue;
}
} else {
if (sum + a[i] <= 0) {
tmp -= sum + a[i] - 1;
sum += a[i] - (sum + a[i] - 1);
continue;
}
}
sum += a[i];
}
cout << (ans < tmp ? ans : tmp) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> List(n);
for (int i = 0; i < n; i++) {
cin >> List.at(i);
}
int cnt = 0;
int Sign = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
Sign = List.at(i);
continue;
}
if (Sign > 0) {
if (Sign + List.at(i) >= 0) {
cnt += abs(Sign + List.at(i)) + 1;
Sign = -1;
} else {
Sign += List.at(i);
}
} else {
if (Sign + List.at(i) <= 0) {
cnt += abs(Sign + List.at(i)) + 1;
Sign = 1;
} else {
Sign += List.at(i);
}
continue;
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
s = []
ss = a[0]
cnt = 0
c = 1
if(a[0] != 0):
s.append(a[0])
else:
while (a[c] == 0):
c += 1
cnt += 2
cnt += 1
if(np.sign(a[c]) == 1):
ss = -1
for i in range(c):
if(i%2 != c%2):
s.append(-1)
else:
s.append(1)
else:
ss = 1
for i in range(c):
if(i%2 != c%2):
s.append(1)
else:
s.append(-1)
for i in range(c, n):
ss += a[i]
if(ss == 0):
if(np.sign(s[i-1]) == -1):
ss += 1
cnt += 1
s.append(1)
else:
ss -= 1
cnt += 1
s.append(-1)
elif(np.sign(s[i-1]) == np.sign(ss)):
if(np.sign(s[i-1]) == -1):
cnt += abs(1 - ss)
ss = 1
s.append(1)
else:
cnt += abs(-1-ss)
ss = -1
s.append(-1)
else:
s.append(ss)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
l=[int(i) for i in input().split()]
sm=l[0]
req=0
pr=1
if sm>0:
pass
else:
req+=-sm+1
sm=1
for i in range(1,n):
if pr==1:
n1=sm+l[i]
if n1<0:
sm+=l[i]
pass
else:
sm+=l[i]
req+=sm+1
sm=-1
else:
n1=sm+l[i]
if n1>0:
sm+=l[i]
pass
else:
sm+=l[i]
req+=(-sm+1)
sm=1
pr=1-pr
req1=0
pr=0
sm=l[0]
if sm<0:
pass
else:
req1+=sm+1
for i in range(1,n):
if pr==1:
n1=sm+l[i]
if n1<0:
sm+=l[i]
pass
else:
sm+=l[i]
req1+=sm+1
sm=-1
else:
n1=sm+l[i]
if n1>0:
sm+=l[i]
pass
else:
sm+=l[i]
req1+=(-sm+1)
sm=1
pr=1-pr
print(min(req,req1)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int solve(vector<int> vec) {
long long int n = vec.size();
long long int sum = vec[0] + vec[1];
int ans = 0;
for (long long int i = 2; i < n; i++) {
if (sum > 0) {
if (sum + vec[i] >= 0) {
ans += 1 + (sum + vec[i]);
sum = -1;
} else {
sum += vec[i];
}
} else if (sum <= 0) {
if (sum + vec[i] <= 0) {
ans += 1 - (sum + vec[i]);
sum = 1;
} else {
sum += vec[i];
}
}
}
return ans;
}
int main() {
int n, Ans;
cin >> n;
vector<int> as;
for (int i = 0; i < n; i++) {
int t;
cin >> t;
as.push_back(t);
}
vector<int> as1, as2;
copy(as.begin(), as.end(), back_inserter(as1));
copy(as.begin(), as.end(), back_inserter(as2));
as1[0] = 1;
as2[0] = -1;
cout << solve(as) << " " << solve(as1) + abs(1 - as[0]) << " "
<< solve(as2) + abs(-1 - as[0]) << endl;
Ans = min(solve(as),
min(solve(as1) + abs(1 - as[0]), solve(as2) + abs(-1 - as[0])));
cout << Ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long cal(int b0, int n, long long* a, long long ans) {
long long b[n];
b[0] = b0;
for (int i = 1; i < n; i++) {
b[i] = b[i - 1] + a[i];
if (b[i] == 0) {
ans++;
b[i] = -1 * b[i - 1] / b[i - 1];
}
if (a[i] * b[i - 1] > 0 || (abs(a[i]) - abs(b[i - 1])) < 0) {
ans += abs(a[i] + b[i - 1]) + 1;
b[i] = -1 * b[i - 1] / b[i - 1];
}
}
return ans;
}
int main() {
int n;
cin >> n;
long long a[n], ans = 0;
for (int i = 0; i < n; i++) cin >> a[i];
if (a[0] != 0) {
cout << cal(a[0], n, a, ans) << endl;
} else {
ans++;
cout << (cal(1, n, a, ans) > cal(-1, n, a, ans) ? cal(1, n, a, ans)
: cal(-1, n, a, ans))
<< endl;
return 0;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long cnt = 0;
if (a[0] == 0) {
for (int j = 1; j < n; j++) {
if (a[j] == 0 && j < n - 1)
continue;
else if (a[j] == 0 && j == n - 1) {
a[0] = 1;
cnt++;
break;
} else {
cnt++;
if (j % 2 == 0 && a[j] > 0)
a[0] = 1;
else if (j % 2 == 0 && a[j] < 0)
a[0] = -1;
else if (j % 2 != 0 && a[j] > 0)
a[0] = -1;
else if (j % 2 != 0 && a[j] > 0)
a[0] = 1;
}
}
}
long long sumi = a[0];
long long sump = a[0];
for (int i = 0; i < n - 1; i++) {
sump += a[i + 1];
if (sumi < 0) {
if (sump <= 0) {
cnt += 1 - sump;
sump = 1;
}
} else if (sumi > 0) {
if (sump >= 0) {
cnt += sump + 1;
sump = -1;
}
}
sumi = sump;
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
vector<int> cumSum(n);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
cumSum[0] = a[0];
for (int i = 1; i < n; i++) {
cumSum[i] = cumSum[i - 1] + a[i];
}
int evenAns = 0;
int oddAns = 0;
int offset = 0;
int ans = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (cumSum[i] + offset > 0) {
} else if (cumSum[i] + offset <= 0) {
int x = 1 - offset - cumSum[i];
evenAns += abs(x);
offset = offset + x;
}
} else {
if (cumSum[i] + offset < 0) {
} else if (cumSum[i] + offset >= 0) {
int x = -1 - offset - cumSum[i];
evenAns += abs(x);
offset = offset + x;
}
}
}
offset = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (cumSum[i] + offset < 0) {
} else if (cumSum[i] + offset >= 0) {
int x = -1 - offset - cumSum[i];
oddAns += abs(x);
offset = offset + x;
}
} else {
if (cumSum[i] + offset > 0) {
} else if (cumSum[i] + offset <= 0) {
int x = 1 - offset - cumSum[i];
oddAns += abs(x);
offset = offset + x;
}
}
}
cout << min(evenAns, oddAns) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long a[100000];
long long b[100001];
int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
b[i] += a[i];
b[i + 1] = b[i];
}
long long sum = 0;
if (b[0] == 0) {
int i = 0;
while (a[i] == 0) {
i++;
}
if (i % 2 == 0) {
b[0] = 1;
} else {
b[0] = -1;
}
sum++;
}
long long sum2 = 0;
for (int i = 1; i < n; i++) {
if (b[i] == 0) {
if (b[i - 1] > 0) {
sum2 -= 1;
b[i] = -1;
sum++;
} else {
sum2++;
b[i] = 1;
sum++;
}
} else {
if (b[i - 1] < 0 && b[i] < 0) {
sum2 += (0 - b[i] + 1);
sum += (0 - b[i] + 1);
b[i] = 1;
} else if (b[i - 1] > 0 && b[i] > 0) {
sum2 -= (b[i] + 1);
sum += (b[i] + 1);
b[i] = -1;
}
}
b[i + 1] += sum2;
}
cout << sum << endl;
cin >> n;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
a,ans=A[0],0
for i in range(1,n):
if a*(a+A[i])<=-1:a=a+A[i]
else:
ans+=abs(a+A[i])+1
if a<=-1:a=1
else:a=-1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
cnt = 0
sum = [0]*n
sum[0] = a[0]
for i in range(1,n):
sum[i] = sum[i-1]+a[i]
if sum[i]*sum[i-1]<0:
continue
elif sum[i-1]*a[i]<0:
cnt += abs(sum[i-1])-abs(a[i])+1
sum[i] = -(sum[i-1]//abs(sum[i-1]))
else:
cnt += abs(sum[i-1])+abs(a[i])+1
sum[i] = -(sum[i-1]//abs(sum[i-1]))
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long int> A(N);
long long int s = 0LL;
vector<long long int> V(N);
for (int i = 0; i < N; i++) {
cin >> A[i];
s += A[i];
V[i] = s;
}
long long int tmp1 = 0LL;
long long int tmp2 = 0LL;
for (int i = 0; i < N - 1; i++) {
if (i % 2 == 0) {
if (V[i] > 0)
continue;
else {
tmp1 += 1LL - V[i];
V[i] = 1LL;
V[i + 1] = 1LL + A[i + 1];
}
} else {
if (V[i] < 0)
continue;
else {
tmp1 += -1LL - V[i];
V[i] = -1LL;
V[i + 1] = -1LL + A[i + 1];
}
}
}
for (int i = 0; i < N - 1; i++) {
if (i % 2 == 1) {
if (V[i] > 0)
continue;
else {
tmp2 += 1LL - V[i];
V[i] = 1LL;
V[i + 1] = 1LL + A[i + 1];
}
} else {
if (V[i] < 0)
continue;
else {
tmp2 += -1LL - V[i];
V[i] = -1LL;
V[i + 1] = -1LL + A[i + 1];
}
}
}
cout << min(tmp1, tmp2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main{
static int N;
static int[] a;
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
N = sc.nextInt();
a = new int[N];
int[] s1 = new int[N];
int[] s2 = new int[N];
for(int i = 0; i < N; i++){
a[i] = sc.nextInt();
if(i == 0){
s1[i] = a[i];
s2[i] = a[i];
}
else {
s1[i] = a[i] + s1[i-1];
s2[i] = a[i] + s2[i-1];
}
}
sc.close();
System.out.println(Math.min(plus(s1), minus(s2)));
}
static int plus(int[] s){
int count = 0;
for(int i = 0; i < N; i++){
if(i%2==0){
if(s[i] > 0)
continue;
else{
count+= 1-s[i];
for(int j = i+1; j < N; j++){
s[j] += 1-s[i];
}
}
}
if(i%2!=0){
if(s[i] < 0)
continue;
else{
count+= s[i] + 1;
for(int j = i+1; j < N; j++){
s[j] -= s[i] + 1;
}
}
}
}
return count;
}
static int minus(int[] s){
int count = 0;
for(int i = 0; i < N; i++){
if(i%2!=0){
if(s[i] > 0)
continue;
else{
count+= 1-s[i];
for(int j = i+1; j < N; j++){
s[j] += 1-s[i];
}
}
}
if(i%2==0){
if(s[i] < 0)
continue;
else{
count+= s[i] + 1;
for(int j = i+1; j < N; j++){
s[j] -= s[i] + 1;
}
}
}
}
return count;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, j, count, sum, x, bsum, s, count2;
vector<int> a, b;
cin >> n;
a.resize(n);
b.resize(n);
cin >> a[0];
for (i = 1; i < n; i++) {
cin >> a[i];
}
b = a;
count = 0;
sum = 0;
if (a[0] == 0) {
a[0] = 1;
count++;
}
for (int i = 0; i < n - 1; i++) {
bsum = sum;
sum += a[i];
if (sum * (sum + a[i + 1]) >= 0) {
x = abs(sum + a[i + 1]) + 1;
s = abs(sum);
if (a[i] * a[i + 1] < 0) {
if (s - 1 > x) {
a[i] = a[i] > 0 ? a[i] - x : a[i] + x;
sum = bsum + a[i];
} else {
a[i] = a[i] > 0 ? a[i] - (s - 1) : a[i] + (s - 1);
sum = bsum + a[i];
s = x - (s - 1);
a[i + 1] = a[i + 1] > 0 ? a[i + 1] + s : a[i + 1] - s;
}
} else {
if (a[i + 1] == 0) {
if (sum < 0)
a[i + 1] = s + 1;
else
a[i + 1] = -s - 1;
} else {
a[i + 1] = a[i + 1] > 0 ? -s - 1 : s + 1;
}
}
count += x;
}
}
sum = 0;
count2 = 0;
if (b[0] == 0) {
b[0] = -1;
count2++;
} else {
count2 = abs(b[0]) + 1;
b[0] = b[0] > 0 ? -1 : 1;
}
for (int i = 0; i < n - 1; i++) {
bsum = sum;
sum += b[i];
if (sum * (sum + b[i + 1]) >= 0) {
x = abs(sum + b[i + 1]) + 1;
s = abs(sum);
if (b[i] * b[i + 1] < 0) {
if (s - 1 > x) {
b[i] = b[i] > 0 ? b[i] - x : b[i] + x;
sum = bsum + b[i];
} else {
b[i] = b[i] > 0 ? b[i] - (s - 1) : b[i] + (s - 1);
sum = bsum + b[i];
s = x - (s - 1);
b[i + 1] = b[i + 1] > 0 ? b[i + 1] + s : b[i + 1] - s;
}
} else {
if (b[i + 1] == 0) {
if (sum < 0)
b[i + 1] = s + 1;
else
b[i + 1] = -s - 1;
} else {
b[i + 1] = b[i + 1] > 0 ? -s - 1 : s + 1;
}
}
count2 += x;
}
}
cout << min(count, count2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
static int solve(const std::vector<int>& va, int initSum, int initCnt = 0) {
int sum = initSum;
int cnt = initCnt;
for (std::remove_reference<decltype(va)>::type::size_type i = 1;
i < va.size(); i++) {
auto nextSum = sum + va[i];
if (nextSum >= 0 && sum > 0) {
cnt += nextSum + 1;
sum = -1;
} else if (nextSum <= 0 && sum < 0) {
cnt += -nextSum + 1;
sum = 1;
} else {
sum = nextSum;
}
}
return cnt;
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int n;
std::cin >> n;
std::vector<int> va(n);
for (auto&& e : va) {
std::cin >> e;
}
std::cout << std::min(solve(va, va[0]),
solve(va, va[0] > 0 ? 1 : -1, std::abs(va[0]) + 1))
<< std::endl;
return EXIT_SUCCESS;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
S=A[0]
ans=0
for i in A[1:]:
if S*(S+i)<0:
S+=i
else:
ans+=abs(S+i)+1
if S<0:
S=1
else:
S=-1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = [int(x) for x in input().split()]
sum_b = 0
cnt_b = 0
sum_c = 0
cnt_c = 0
for i,a in enumerate(A):
sum_b += a
if (sum_b > 0) != ((i % 2) > 0):
cnt_b += abs(sum_b) + 1
sum_b = 1 if ((i % 2) > 0) else -1
sum_c += a
if (sum_c > 0) == ((i % 2) > 0):
cnt_c += abs(sum_c) + 1
sum_c = -1 if ((i % 2) > 0) else 1
print(min(cnt_b, cnt_c))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = (int)(0); i < (int)(n); i++) cin >> a[i];
int ans = 0;
int sum = a[0];
for (int i = (int)(0); i < (int)(n - 1); i++) {
if (sum < 0) {
if (a[i + 1] <= abs(sum)) {
ans += abs(sum) - a[i + 1] + 1;
a[i + 1] += abs(sum) - a[i + 1] + 1;
}
sum += a[i + 1];
} else if (sum > 0) {
if (a[i + 1] >= -sum) {
ans += a[i + 1] + sum + 1;
a[i + 1] -= a[i + 1] + sum + 1;
}
sum += a[i + 1];
} else {
if (a[i + 1] > 0) {
ans += 1;
sum += a[i + 1] - 1;
} else if (a[i + 1] < 0) {
ans += 1;
sum += a[i + 1] + 1;
} else {
ans += 3;
if (a[i + 2] >= 0)
sum += -1;
else
sum += 1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
int dx[] = {1, 0, -1, 0};
int dy[] = {0, 1, 0, -1};
int DX[] = {1, 1, 0, -1, -1, -1, 0, 1};
int DY[] = {0, -1, -1, -1, 0, 1, 1, 1};
int n;
ll hoge(ll a[]) {
ll ans = 0;
ll temp = 0;
for (int(i) = 0; (i) < (n); (i)++) {
if (temp > 0 && temp + a[i] > 0) {
ans += abs(-1 - temp - a[i]);
temp = -1;
} else if (temp < 0 && temp + a[i] < 0) {
ans += abs(1 - temp - a[i]);
temp = 1;
} else if (temp + a[i] == 0) {
if (temp > 0) {
temp = -1;
} else {
temp = 1;
}
ans += 1;
} else {
temp += a[i];
}
}
return ans;
}
void solve() {
cin >> n;
ll a[n];
for (int(i) = 0; (i) < (n); (i)++) cin >> a[i];
ll ans1 = hoge(a);
ll temp = 0;
if (a[0] > 0) {
temp += (a[0] * (-1) - 1);
a[0] = -1;
} else if (a[0] < 0) {
temp = (a[0] * (-1) + 1);
a[0] = 1;
} else {
temp = 1;
a[0] = -1;
}
ll ans2 = hoge(a) + temp;
cout << min(ans1, ans2) << endl;
}
int main() {
solve();
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Linq;
class Program
{
static void Main(string[] args)
{
int n = int.Parse(Console.ReadLine());
var array = Console.ReadLine().Split(' ').Select(i => int.Parse(i)).ToList();
int ans = 0;
// array[0]での符号
int sign0 = 0;
for (int i = 0; i < n; i++)
{
var sum = array.Take(i+1).Sum();
if(sum != 0)
{
sign0 = (sum > 0) ? 1 : -1;
int j = i;
while (j > 0)
{
sign0 *= -1;
j--;
}
break;
}
}
// もし最後まで0なら調整
if(sign0 == 0)
{
array[0] += 1;
sign0 = 1;
ans += 1;
}
int sign = -sign0;
int Sum = 0;
// メインloop
for (int i = 0; i < n; i++)
{
sign *= -1;
Sum += array[i];
if (Sum * sign <= 0)
{
ans -= (Sum * sign-1);
Sum = sign;
}
}
Console.WriteLine(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans = 0
pv = A[0]
flg = (1 if pv >= 0 else -1)
for i in A[1:]:
pv += i
if pv >= 0 and flg == 1:
ans += pv + 1
pv = -1
flg = -1
elif pv <= 0 and flg == -1:
ans += abs(pv) + 1
pv = 1
flg = 1
elif flg == 1:
flg = -1
else:
flg = 1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
A=list(map(int,input().split()))
def solve(a,f):
ans=0
for i in range(1,n):
a[i]+=a[i-1]
if not f:
if a[i]>=0:
ans+=a[i]+1
a[i]=-1
else:
if a[i]<=0:
ans+=a[i]*-1+1
a[i]=1
# print(a,ans,f)
f^=True
return ans
print(min(solve(A,True),solve(A,False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N_MAX = 100000;
int N;
int a[N_MAX];
int All;
int sum[N_MAX];
int sum2[N_MAX];
int main() {
All = 0;
cin >> N;
for (int i = 0; i < N; i++) {
cin >> a[i];
All += a[i];
sum[i] = All;
sum2[i] = All;
}
int sigh = 1;
int ans1 = 0;
int dif = 0;
for (int i = 0; i < N; i++) {
sum[i] += dif;
if (sum[i] == 0) {
dif += sigh;
ans1 += 1;
} else if (((sum[i]) / abs((sum[i]))) != sigh) {
ans1 += (abs(sum[i]) + 1);
int temp = sum[i];
dif += (abs(temp) + 1) * sigh;
}
sigh *= -1;
}
sigh = -1;
int ans2 = 0;
dif = 0;
for (int i = 0; i < N; i++) {
sum2[i] += dif;
if (sum2[i] == 0) {
dif += sigh;
ans2 += 1;
} else if (((sum2[i]) / abs((sum2[i]))) != sigh) {
ans2 += (abs(sum2[i]) + 1);
int temp = sum2[i];
dif += (abs(temp) + 1) * sigh;
}
sigh *= -1;
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
arr = gets.chomp.split(" ").map(&:to_i)
$count = 0
def check(i,arr,t)
if i > arr.size - 1
arr[t] += 1
$count += 1
return
end
if arr[i] > 0
arr[t] -= 1
$count += 1
elsif arr[i] < 0
arr[t] += 1
$count += 1
else
check(i+1,arr,t)
end
end
sum = arr[0] + arr[1]
if sum == 0
check(2,arr,1)
end
sum = arr[0] + arr[1]
(2...arr.size).each do |i|
diff = sum + arr[i]
# puts %(sum : #{sum})
# puts %(diff : #{diff})
if sum > 0
if diff > 0
arr[i] -= diff.abs+1
$count += diff.abs+1
elsif diff == 0
check(i+1,arr,i)
end
else
if diff < 0
arr[i] += diff.abs+1
$count += diff.abs+1
elsif diff == 0
check(i+1,arr,i)
end
end
sum += arr[i]
end
#p arr
puts $count |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n + 1);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
vector<int> b(n + 1);
b[0] = a[0];
int ansa = 0, ansb = 0, sum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (b[i] >= 0) {
ansa += 1 + b[i];
b[i] = -1;
b[i + 1] = b[i] + a[i + 1];
} else
b[i + 1] = b[i] + a[i + 1];
} else {
if (b[i] <= 0) {
ansa += 1 - b[i];
b[i] = 1;
b[i + 1] = b[i] + a[i + 1];
} else
b[i + 1] = b[i] + a[i + 1];
}
}
b[0] = a[0];
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
if (b[i] >= 0) {
ansb += 1 + b[i];
b[i] = -1;
b[i + 1] = b[i] + a[i + 1];
} else
b[i + 1] = b[i] + a[i + 1];
} else {
if (b[i] <= 0) {
ansb += 1 - b[i];
b[i] = 1;
b[i + 1] = b[i] + a[i + 1];
} else
b[i + 1] = b[i] + a[i + 1];
}
}
int ans = min(ansa, ansb);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
long long sign(long long n) {
if (n > 0)
return 1;
else if (n < 0)
return -1;
return 0;
}
long long myabs(long long n) { return (n > 0) ? n : (-n); }
long long calc(long long *a, int n, long long bias, long long cost) {
int i;
assert(a[0] != 0);
long long sum = a[0];
long long sum_eval_prev = sum + bias;
for (i = 1; i < n; i++) {
sum += a[i];
long long sum_eval = sum + bias;
if (sign(sum_eval_prev) == sign(sum_eval) || sign(sum_eval) == 0) {
bias += -1 * sign(sum_eval_prev) - sum_eval;
cost += myabs(-1 * sign(sum_eval_prev) - sum_eval);
}
sum_eval_prev = sum + bias;
}
return cost;
}
int main(void) {
int n;
scanf("%d\n", &n);
long long a[n];
int i;
for (i = 0; i < n; i++) {
scanf("%lld ", &a[i]);
}
long long ret;
if (a[0] == 0) {
long long r0, r1;
a[0] = 1;
r0 = calc(a, n, 0, 1);
a[0] = -1;
r1 = calc(a, n, 0, 1);
if (r0 < r1)
ret = r0;
else
ret = r1;
} else {
ret = calc(a, n, 0, 0);
}
printf("%lld\n", ret);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = [int(x) for x in input().split()]
res = 0
x = 0
for i in range(n-1):
x += a[i]
sign = (x // abs(x)) * (-1)
tmp = sign - (x + a[i+1])
if sign < 0:
tmp = min(tmp, 0)
else:
tmp = max(tmp, 0)
res += abs(tmp)
a[i+1] += tmp
print(res) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n;
long long int a[100000] = {0}, fugo, dif, ans = 0, min = 100000000000000;
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%ld", &a[i]);
}
for (fugo = 0; fugo <= 1; fugo++) {
ans = 0;
int b[100001] = {0};
for (int i = 0; i < n; i++) {
dif = 0;
b[i + 1] = b[i] + a[i];
if ((i + 1) % 2 == fugo) {
if (b[i + 1] <= 0) {
dif += -1 - b[i];
b[i] += dif;
dif += 1 - b[i + 1] - dif;
b[i + 1] += dif;
ans += dif;
}
} else {
if (b[i + 1] >= 0) {
dif += b[i] - 1;
b[i] -= dif;
dif += b[i + 1] + 1 - dif;
b[i + 1] -= dif;
ans += dif;
}
}
}
if (min > ans) min = ans;
}
printf("%d\n", min);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vs = vector<string>;
using vll = vector<long long int>;
const int MOD = 1e9 + 7;
int Get_Digit(long long int A) {
int digits = 0;
while (A > 0) {
A /= 10;
digits++;
}
return digits;
}
int main() {
int n;
cin >> n;
vll a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int count = 0;
int inc = 0;
if (a[0] == 0) {
count++;
a[0]++;
inc++;
}
vll sum(n);
sum[0] = a[0];
for (int i = 0; i < n - 1; i++) sum[i + 1] = sum[i] + a[i + 1];
for (int i = 0; i < n - 1; i++) {
sum[i + 1] += inc;
if (sum[i] > 0) {
while (sum[i + 1] >= 0) {
count++;
inc--;
}
} else if (sum[i] < 0) {
while (sum[i + 1] <= 0) {
count++;
inc++;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
acc = [a[0]]
for i in range(1, n):
acc.append(acc[-1] + a[i])
res = 10 ** 100
def f(fir):
prv_pos = fir > 0
margin = fir - a[0]
ret = abs(margin)
for i in range(1, n):
cur = margin + acc[i]
if prv_pos and cur < 0:
prv_pos = not prv_pos
continue
if not prv_pos and cur > 0:
prv_pos = not prv_pos
continue
if prv_pos:
need = -1
sa = need - cur
margin += sa
ret += abs(sa)
else:
need = 1
sa = need - cur
margin += sa
ret += abs(sa)
prv_pos = not prv_pos
return ret
res = min(res, f(1))
res = min(res, f(-1))
res = min(res, f(a[0]))
print(res)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n = int(input())
a = list(map(int, input().split()))
c = 0
sum = a[0]
for i in range (1, n):
while np.sign(sum + a[i]) == np.sign(sum) or sum + a[i] == 0:
c += 1
if sum > 0:
a[i] -= 1
else:
a[i] += 1
sum += a[i]
print(c) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | #!usr/bin/env python3
from collections import defaultdict
from collections import deque
from heapq import heappush, heappop
import sys
import math
import bisect
import random
import itertools
sys.setrecursionlimit(10**5)
stdin = sys.stdin
bisect_left = bisect.bisect_left
bisect_right = bisect.bisect_right
def LI(): return list(map(int, stdin.readline().split()))
def LF(): return list(map(float, stdin.readline().split()))
def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split()))
def II(): return int(stdin.readline())
def IF(): return float(stdin.readline())
def LS(): return list(map(list, stdin.readline().split()))
def S(): return list(stdin.readline().rstrip())
def IR(n): return [II() for _ in range(n)]
def LIR(n): return [LI() for _ in range(n)]
def FR(n): return [IF() for _ in range(n)]
def LFR(n): return [LI() for _ in range(n)]
def LIR_(n): return [LI_() for _ in range(n)]
def SR(n): return [S() for _ in range(n)]
def LSR(n): return [LS() for _ in range(n)]
mod = 1000000007
inf = float('INF')
#A
def A():
a = input().split()
a = list(map(lambda x: x.capitalize(), a))
a,b,c = a
print(a[0]+b[0]+c[0])
return
#B
def B():
a = II()
b = II()
if a > b:
print("GREATER")
if a < b:
print("LESS")
if a == b:
print("EQUAL")
return
#C
def C():
II()
a = LI()
def f(suma, b):
for i in a[1:]:
if suma * (suma + i) <= 0:
suma += i
continue
b += (abs(suma + i) + 1)
suma = (-1 * (suma > 0)) or 1
return b
if a[0] == 0:
ans = min(f(1, 1), f(-1, 1))
else:
ans = min(f(a[0], 0), f(-a[0], 2 * abs(a[0])))
print(ans)
return
#D
def D():
s = S()
for i in range(len(s) - 1):
if s[i] == s[i+1]:
print(i + 1, i + 2)
return
for i in range(len(s) - 2):
if s[i] == s[i + 2]:
print(i + 1, i + 3)
return
print(-1, -1)
return
#Solve
if __name__ == '__main__':
C()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int inf = 999999999;
const double pi = acos(-1);
long long a[100005] = {};
int main() {
unsigned long long ans = 0;
long long wa = 0, g = 0, k = 0;
int n;
cin >> n;
for (int i = (0); i < (int)(n); i++) {
cin >> a[i];
if (i % 2 == 0) {
if (a[i] > 0)
g++;
else
g--;
} else {
if (a[i] > 0)
k++;
else
k--;
}
}
if (abs(g) > abs(k)) {
if (g > 0) {
wa = a[0];
if (wa < 0) {
ans += 1 - wa;
wa = 1;
}
} else {
wa = a[0];
if (wa > 0) {
ans += wa + 1;
wa = -1;
}
}
} else {
if (k > 0) {
wa = a[0];
if (wa > 0) {
ans += wa + 1;
wa = -1;
}
} else {
wa = a[0];
if (wa < 0) {
ans += 1 - wa;
wa = 1;
}
}
}
for (int i = (1); i < (int)(n); i++) {
if (wa >= 0) {
long long tes = wa + a[i];
if (tes < 0) {
wa = tes;
} else {
ans += (unsigned long long)(-(-1 - tes));
wa = -1;
}
} else {
long long tes = wa + a[i];
if (tes > 0) {
wa = tes;
} else {
ans += (unsigned long long)(1 - tes);
wa = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
signed main() {
long long n;
cin >> n;
long long a[n];
for (long long i = 0; i < n; i++) {
cin >> a[i];
}
long long ans, sum;
ans = sum = 0;
for (long long i = 0; i < n; i++) {
sum += a[i];
if (sum * (sum + a[i + 1]) > 0 && i < (n - 1)) {
if (sum > 0) {
while (sum >= 0) {
ans++;
sum--;
}
} else {
while (sum < 0) {
ans++;
sum++;
}
}
} else if (sum == 0) {
if ((sum + a[i + 1]) > 0)
sum--;
else
sum++;
ans++;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) cin >> v[i];
int op = 0;
int prev_sum = 0;
for (int i = 0; i < n; i++) {
int new_sum = prev_sum + v[i];
if (i == 0 && v[i] != 0)
prev_sum = new_sum;
else if (i == 0 && v[i] == 0) {
op += 1;
prev_sum = 1;
} else if (prev_sum >= 0 && new_sum >= 0) {
op += new_sum + 1;
prev_sum = -1;
} else if (prev_sum <= 0 && new_sum <= 0) {
op += -new_sum + 1;
prev_sum = 1;
} else
prev_sum = new_sum;
}
prev_sum = 0;
int op2 = 0;
for (int i = 0; i < n; i++) {
int new_sum = prev_sum + v[i];
if (i == 0 && v[i] != 0)
prev_sum = new_sum;
else if (i == 0 && v[i] == 0) {
op2 += 1;
prev_sum = -1;
} else if (prev_sum >= 0 && new_sum >= 0) {
op2 += new_sum + 1;
prev_sum = -1;
} else if (prev_sum <= 0 && new_sum <= 0) {
op2 += -new_sum + 1;
prev_sum = 1;
} else
prev_sum = new_sum;
}
cout << min(op, op2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
def input(): return sys.stdin.readline().strip()
def mapint(): return map(int, input().split())
sys.setrecursionlimit(10**9)
N = int(input())
As = list(mapint())
cum = As.pop(0)
ans = 0
for a in As:
if cum*(cum+a)>=0:
ans += abs(cum+a)+1
cum = -1 if cum>0 else 1
else:
cum += a
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
N = int(input())
a_list = list(map(int,input().split()))
a_listg = copy.deepcopy(a_list)
a_sumg = 0
xg = 0
for i in range(10**10):
if a_listg[0] < 1:
a_listg[0] += 1
xg += 1
else:
break
a_sumg += a_listg[0]
for j in range(1,N):
if j%2 != 0:
for k in range(10**10):
if a_sumg + a_listg[j] > -1:
a_listg[j] -= 1
xg += 1
else:
a_sumg += a_listg[j]
break
else:
for l in range(10**10):
if a_sumg + a_listg[j] < 1:
a_listg[j] += 1
xg += 1
else:
a_sumg += a_listg[j]
break
a_listk = copy.deepcopy(a_list)
a_sumk = 0
xk = 0
for m in range(10**10):
if a_listk[0] > -1:
a_listk[0] -= 1
xk += 1
else:
break
a_sumk += a_listk[0]
for n in range(1,N):
if n%2 == 0:
for k in range(10**10):
if a_sumk + a_listk[n] > -1:
a_listk[n] -= 1
xk += 1
else:
a_sumk += a_listk[n]
break
else:
for o in range(10**10):
if a_sumk + a_listk[n] < 1:
a_listk[n] += 1
xk += 1
else:
a_sumk += a_listk[n]
break
print(min([xg,xk]))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int[] a=new int[n];
for(int i=0;i<n;i++)a[i]=sc.nextInt();
int sum=0;
long count=0;
for(int i=0;i<n-1;i++){
sum+=a[i];
if(sum>0){
if(sum+a[i+1]>=0){
count+=sum+a[i+1]+1;
a[i+1]-=sum+a[i+1]+1;
}
}else if(sum<0){
if(sum+a[i+1]<=0){
count+=-1*(sum+a[i+1])+1;
a[i+1]+=-1*(sum+a[i+1])+1;
}
}
}
System.out.println(count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (n); ++i)
#define rep2(i,s,n) for(int i = (s); i < (n); ++i)
#define ll long long
#define ld long double
#define P pair<ll,ll>
#define all(v) v.begin(),v.end()
const ll mod = 1e9+7;
const ll INF = 1e18;
const double pi = acos(-1.0);
int main(void)
{
ll n; cin>>n;
vector<ll> a(n);
rep(i,n) cin>>a[i];
ll ans=0,sum=0;
rep(i,n){
sum+=a[i];
if(i%2==0){
if(sum<=0){
ans+=abs(1-sum);
sum=1;
}
else{
if(sum>=0){
ans+=abs(1-sum);
sum=-1;
}
}
}
}
ll tmp=0,sum=0;
rep(i,n){
sum+=a[i];
if(i%2==1){
if(sum<=0){
tmp+=abs(1-sum);
sum=1;
}
else{
if(sum>=0){
tmp+=abs(1-sum);
sum=-1;
}
}
}
}
ans = min(ans,tmp);
cout<<ans<<endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> v(n);
for (int i = 0; i < n; i++) {
cin >> v.at(i);
}
int s = 0;
if (v.at(0) == 0) {
v.at(0)++;
s++;
}
int t = v.at(0);
if (v.at(0) > 0) {
for (int i = 1; i < n; i += 2) {
t += v.at(i);
while (t >= 0) {
s++;
t--;
}
if (i + 1 < n) {
t += v.at(i + 1);
while (t <= 0) {
s++;
t++;
}
}
}
} else {
for (int i = 1; i < n; i += 2) {
t += v.at(i);
while (t <= 0) {
s++;
t++;
}
if (i + 1 < n) {
t += v.at(i + 1);
while (t >= 0) {
s++;
t--;
}
}
}
}
cout << s << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cnt=0
for i in range(1,n):
# 条件満たすまでループ
for _ in range(3):
print(a)
now_tmp = sum(a[:i])
next_tmp = sum(a[:i+1])
print(i, now_tmp, next_tmp)
# 符号が逆転していればOK かつ 現在までの総和が0でない
# 異なる符号を掛けるとマイナスになる
if now_tmp * next_tmp <0 and now_tmp !=0:
break
else:
# 現在の合計がマイナスの場合
if now_tmp < 0:
a[i] += -next_tmp+1
cnt +=abs(next_tmp+1)
# 現在の合計がプラスの場合
elif now_tmp > 0 :
a[i] += next_tmp-1
cnt +=abs(next_tmp+1)
# 現在の合計が0の場合
elif now_tmp == 0 :
# 1個前がプラスの場合、
if sum(a[:i-1]) > 0:
a[i] += -next_tmp+1
cnt +=abs(next_tmp+1)
# 1個前がマイナスの場合
else:
a[i] += next_tmp+1
cnt +=abs(next_tmp+1)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = (0); i < (n); ++i) cin >> a[i];
int sum1, sum2;
int ans1 = 0;
int ans2 = 0;
for (int i = 0; i < n; i++) {
sum1 += a[i];
sum2 += a[i];
if (i % 2) {
ans1 += max(1 - sum1, 0);
sum1 = max(1, sum1);
ans2 += max(1 + sum2, 0);
sum2 = min(-1, sum2);
} else {
ans1 += max(1 + sum1, 0);
sum1 = min(-1, sum1);
ans2 += max(1 - sum2, 0);
sum2 = max(1, sum2);
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n=int(input())
a=list(map(int,input().split()))
r=[0]
for i in range(n):
r.append(r[i]+a[i])
r.pop(0)
pm=[1-2*(i%2) for i in range(n)]
mp=[1-2*((i+1)%2) for i in range(n)]
sum1,sum2=0,0
sousa1,sousa2=0,0
for i in range(n):
if np.sign(r[i]+sousa1) != pm[i]:
sum1+=abs(pm[i]-r[i]-sousa1)
sousa1=pm[i]-r[i]-sousa1
for i in range(n):
if np.sign(r[i]+sousa2) != mp[i]:
sum2+=abs(mp[i]-r[i]-sousa2)
sousa2=mp[i]-r[i]-sousa2
print(min(sum1,sum2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
import sys
input = sys.stdin.readline
N = int(input())
a = list(map(int, input().split()))
ans1, ans2 = 0, 0
f = a[0]
for i in range(1, N):
if f * (f + a[i]) < 0:
f += a[i]
continue
ans1 += abs(f + a[i]) + 1
if f > 0:
f = -1
else:
f = 1
f = -a[0]
for i in range(1, N):
if f * (f + a[i]) < 0:
f += a[i]
continue
ans2 += abs(f + a[i]) + 1
if f > 0:
f = -1
else:
f = 1
print(min(ans1, ans2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
numbers = list(map(int, input().split()))
counter = 0
sum_in = 0
sum_in1 = numbers[0]
if numbers[0] >= 0:
for i in range(len(numbers)):
sum_in += numbers[i]
if i % 2 == 0:
if sum_in <= 0:
sub = abs(sum_in) + 1
sum_in += sub
numbers[i] += sub
counter += sub
else:
if sum_in >= 0:
sub = abs(sum_in) + 1
sum_in -= sub
numbers[i] -= sub
counter += sub
else:
for i in range(len(numbers)):
sum_in += numbers[i]
if i % 2 != 0:
if sum_in <= 0:
sub = abs(sum_in) + 1
sum_in += sub
numbers[i] += sub
counter += sub
else:
if sum_in >= 0:
sub = abs(sum_in) + 1
sum_in -= sub
numbers[i] -= sub
counter += sub
print(str(counter)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
change = 0
if a[0]==0:
i=0
while a[i]==0:
i+=1
if a[i]<0:
a[i-1]=1
for idx in range(i-2,-1,-1):
a[idx]=a[idx+1]*-1
if a[i]>0:
a[i-1]=-1
for idx in range(i-2,-1,-1):
a[idx]=a[idx+1]*-1
change += i
sum = a[0]
for i in range(1,n):
val = 0
tempsum = sum+a[i]
if sum < 0 and tempsum <=0:
val = 1 - tempsum
if sum > 0 and tempsum >=0:
val = -1 - tempsum
sum = tempsum + val
change += abs(val)
print(change) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | input()
iter_ = iter(map(int, input().rstrip("\n").split()))
sum_ = next(iter_)
ans = 0
for num in iter_:
presum = sum_
sum_ += num
while presum * sum_ >= 0:
sum_ += -1 if presum > 0 else 1
ans += 1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int a[1009];
int b[1009];
int main() {
int n, hh, sum = 0;
while (~scanf("%d", &n)) {
int s = 0;
for (int g = 0; g < n; g++) {
scanf("%d", &a[g]);
s += a[g];
b[g] = s;
}
int i;
for (i = 1; i < n; i++) {
if (b[i] > 0 && b[i - 1] > 0 || b[i] < 0 && b[i - 1] < 0 || b[i] == 0) {
hh = abs(b[i]) + 1;
if (b[i] < 0) {
int x = abs(b[i] + 1);
for (int j = i; j < n; j++) {
b[j] = b[j] + x;
}
} else if (b[i] > 0) {
int y = abs(b[i] + 1);
for (int t = i; t < n; t++) {
b[t] = b[t] - y;
}
} else if (b[i] == 0) {
if (b[i - 1] > 0) {
int c = 1;
for (int t = i; t < n; t++) {
b[t] = b[t] - c;
}
}
if (b[i - 1] < 0) {
int c = 1;
for (int t = i; t < n; t++) {
b[t] = b[t] + c;
}
}
}
sum += hh;
}
}
printf("%d\n", sum);
sum = 0;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vll = vector<ll>;
using ii = pair<int, int>;
using vvi = vector<vi>;
using vii = vector<ii>;
using gt = greater<int>;
using minq = priority_queue<int, vector<int>, gt>;
using P = pair<ll, ll>;
const ll LINF = 1e18L + 1;
const int INF = 1e9 + 1;
int main() {
int n;
cin >> n;
vi a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
ll ans = INF;
ll sum = 0;
ll num = 0;
for (int i = 0; i < (n); ++i) {
sum += a[i];
if (i & 1) {
if (sum >= 0) {
num += (sum + 1);
sum = -1;
}
} else {
if (sum <= 0) {
num += (-sum + 1);
sum = 1;
}
}
}
ans = min(ans, num);
num = 0;
sum = 0;
for (int i = 0; i < (n); ++i) {
sum += a[i];
if (i & 1) {
if (sum <= 0) {
num += (-sum + 1);
sum = 1;
}
} else {
if (sum >= 0) {
num += (sum + 1);
sum = -1;
}
}
}
ans = min(ans, num);
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | program ec12;
var
a,s:array[0..100000] of longint;
n,m,i,j,ans:longint;
begin
readln(n);
ans:=0;
s[0]:=0;
for i:=1 to n do
begin
read(a[i]);
s[i]:=s[i-1]+a[i];
if i>1 then
begin
if s[i-1]<0 then
begin
if s[i]<=0 then
begin
if s[i]=0 then
begin
inc(ans);
s[i]:=1;
end
else
inc(ans,(-s[i])+1);
end;
end
else
begin
if s[i]>=0 then
begin
if s[i]=0 then
begin
inc(ans);
s[i]:=-1;
end
else
begin
inc(ans,s[i]+1);
s[i]:=-1;
end;
end;
end;
end;
end;
writeln(ans);
end. |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
long long gcd(long long x, long long y) {
long long tmp = 0;
if (x < y) {
tmp = x;
x = y;
y = tmp;
}
while (y > 0) {
long long r = x % y;
x = y;
y = r;
}
return x;
}
long long lcm(long long x, long long y) { return x / gcd(x, y) * y; }
const int MAX = 1e6 + 1;
const long long MOD = 1e9 + 7;
long long fac[MAX], finv[MAX], inv[MAX];
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++) {
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD % i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
long long COM(int n, int k) {
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
long long kaijo(long long k) {
long long sum = 1;
for (long long i = 1; i <= k; ++i) {
sum *= i;
sum %= 1000000000 + 7;
}
return sum;
}
long long modpow(long long a, long long n, long long mod) {
long long res = 1;
while (n > 0) {
if (n & 1) res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
vector<bool> IsPrime;
void sieve(size_t max) {
if (max + 1 > IsPrime.size()) {
IsPrime.resize(max + 1, true);
}
IsPrime[0] = false;
IsPrime[1] = false;
for (size_t i = 2; i * i <= max; ++i)
if (IsPrime[i])
for (size_t j = 2; i * j <= max; ++j) IsPrime[i * j] = false;
}
struct UnionFind {
vector<int> par;
UnionFind(int n) : par(n, -1) {}
int root(int x) {
if (par[x] < 0)
return x;
else
return par[x] = root(par[x]);
}
bool issame(int x, int y) { return root(x) == root(y); }
bool merge(int x, int y) {
x = root(x);
y = root(y);
if (x == y) return false;
if (par[x] > par[y]) swap(x, y);
par[x] += par[y];
par[y] = x;
return true;
}
int size(int x) { return -par[root(x)]; }
};
long long count(int n, int a) {
long long bunshi = 1;
for (int i = 0; i < a; i++) {
bunshi *= (n - i);
bunshi %= MOD;
}
long long bunbo = 1;
for (int i = 1; i < a + 1; i++) {
bunbo *= i;
bunbo %= MOD;
}
bunbo = modpow(bunbo, MOD - 2, MOD);
return (bunshi * bunbo) % MOD;
}
vector<long long> divisor(long long n) {
vector<long long> ret;
for (long long i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(begin(ret), end(ret));
return (ret);
}
const long long INF = 1e18;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int flg = 1;
if (a[0] > 0) flg = -1;
int bs = a[0];
long long ans = 0;
for (int i = 1; i < n; i++) {
if (flg == -1) {
if (-1 * (a[i] + bs) <= 0) {
ans += a[i] + bs + 1;
bs = -1;
} else {
bs += a[i];
}
} else {
if ((a[i] + bs) <= 0) {
ans += -(a[i] + bs) + 1;
bs = 1;
} else {
bs += a[i];
}
}
flg *= -1;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int64_t n;
int64_t i;
int64_t sum;
bool default_flag;
bool plus_flag, minus_flag;
int64_t ope_count;
cin >> n;
vector<int64_t> a(n);
for (i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = 0;
ope_count = 0;
default_flag = true;
plus_flag = false;
minus_flag = false;
for (i = 0; i < n; i++) {
sum += a.at(i);
if (default_flag == true) {
default_flag = false;
if (a.at(i) > a.at(i + 1) && signbit(a.at(i)) == signbit(a.at(i + 1))) {
while (sum >= 0) {
ope_count++;
sum--;
}
minus_flag = true;
} else if (a.at(i) <= a.at(i + 1) &&
signbit(a.at(i)) == signbit(a.at(i + 1))) {
while (sum <= 0) {
ope_count++;
sum++;
}
plus_flag = true;
} else if (a.at(i) > a.at(i + 1) &&
signbit(a.at(i)) != signbit(a.at(i + 1))) {
plus_flag = true;
} else if (a.at(i) <= a.at(i + 1) &&
signbit(a.at(i)) != signbit(a.at(i + 1))) {
minus_flag = true;
}
} else if (plus_flag == true) {
while (sum >= 0) {
ope_count++;
sum--;
}
plus_flag = false;
minus_flag = true;
} else if (minus_flag == true) {
while (sum <= 0) {
ope_count++;
sum++;
}
plus_flag = true;
minus_flag = false;
}
}
cout << ope_count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<long long int> vec;
vector<vector<long long int> > vec2;
long long int MOD = 1000000007;
int main() {
long long int N;
cin >> N;
vector<long long int> vec(N, 0);
for (long long int i = 0; i < N; i++) {
cin >> vec[i];
}
long long int ans = 0;
long long int g_ans = 0;
long long int k_ans = 0;
long long int sum = 0;
bool flg = true;
for (long long int i = 0; i < N; i++) {
sum += vec[i];
if (flg == true) {
if (sum <= 0) {
k_ans += abs(1 - sum);
sum += k_ans;
}
flg = false;
} else {
if (sum >= 0) {
k_ans += abs(-1 - sum);
sum += -k_ans;
}
flg = true;
}
}
flg = true;
sum = 0;
for (long long int i = 0; i < N; i++) {
sum += vec[i];
if (flg == false) {
if (sum <= 0) {
g_ans += abs(1 - sum);
sum += g_ans;
}
flg = true;
} else {
if (sum >= 0) {
g_ans += abs(-1 - sum);
sum += -g_ans;
}
flg = false;
}
}
ans = min(k_ans, g_ans);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
long long a[100005], dp[100005];
cin >> n;
long long sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
dp[i] = sum;
}
long long diff = 0, ans = 0;
if (dp[0] == 0) {
if (dp[1] < 0)
diff++, ans++;
else
diff--, ans++;
}
for (int i = 1; i < n; i++) {
if (dp[i] + diff == 0) {
if (dp[i - 1] + diff < 0) diff++, ans++;
if (dp[i - 1] + diff > 0) diff--, ans++;
continue;
}
if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) ==
(dp[i] + diff) / llabs(dp[i] + diff)) {
if (dp[i] + diff < 0) {
ans += llabs(dp[i] + diff) + 1;
diff += llabs(dp[i] + diff) + 1;
} else {
ans += llabs(dp[i] + diff) + 1;
diff -= llabs(dp[i] + diff) + 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using static System.Console;
using static System.Convert;
using static System.Math;
class Program
{
static void Main(string[] args)
{
var num = ToInt32(ReadLine());
var ar = Array.ConvertAll(ReadLine().Split(' '), int.Parse);
WriteLine(Min(GetC(ar, true), GetC(ar, false)));
}
private static int GetC(int[] ar,bool isP)
{
var result = 0;
var sum = 0;
for(var i = 0; i < ar.Length; i++)
{
sum += ar[i];
if (isP)
{
if (sum <= 0) { result += 1 - sum; sum = 1; }
}
else
if (sum >= 0) { result += 1 + sum; sum = -1; }
isP = isP ? false : true;
}
return result;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int s[n];
for (int i = 0; i < n; i++) {
cin >> s[i];
}
int pos = 0;
int neg = 0;
int tmpsum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
tmpsum = tmpsum + s[i];
if (tmpsum <= 0) {
pos = pos + 1 - tmpsum;
tmpsum = 1;
}
} else {
tmpsum = tmpsum + s[i];
if (tmpsum >= 0) {
pos = pos + tmpsum + 1;
tmpsum = -1;
}
}
}
tmpsum = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
tmpsum = tmpsum + s[i];
if (tmpsum >= 0) {
neg = neg + 1 + tmpsum;
tmpsum = -1;
}
} else {
tmpsum = tmpsum + s[i];
if (tmpsum <= 0) {
neg = neg + 1 - tmpsum;
tmpsum = 1;
}
}
}
if (pos > neg) {
cout << neg << endl;
} else {
cout << pos << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const int N = 1e5 + 7, M = 1e7, OO = 0x3f3f3f3f;
long long n, array1[2 * N];
long long solve(long long num) {
long long sum = num, counter = 0;
for (long long i = 1; i < n; ++i) {
long long temp_sum = sum + array1[i];
if (sum > 0) {
if (temp_sum >= 0) {
counter += temp_sum + 1;
temp_sum = -1;
}
} else if (sum < 0) {
if (temp_sum <= 0) {
counter += abs(temp_sum) + 1;
temp_sum = 1;
}
}
sum = temp_sum;
}
return counter;
}
int main() {
long long i, sum = 0;
scanf("%lld", &n);
for (i = 0; i < n; ++i) {
scanf("%lld", &array1[i]);
}
long long mini;
if (array1[0] == 0) {
mini = min(solve(1), solve(-1));
} else {
long long choice1 = solve(array1[0]);
long long choice2 = (array1[0] > 0) ? solve(-1) + array1[0] + 1
: solve(1) + abs(array1[0]) + 1;
mini = min(choice1, choice2);
}
printf("%lld", mini);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
ans1 = 0
sum = A[0]
for a in A[1:]:
if (sum + a) * sum < 0:
sum += a
else:
fugo = sum // abs(sum)
nextsum = - fugo
a_should_be = nextsum - sum
dif = abs(a_should_be - a)
sum += a_should_be
ans1 += dif
#print(ans1)
#A[0]を反転したほうがいいパターンの処理
ans2 = A[0] + 1
sum = - (A[0] // abs(A[0]))
for a in A[1:]:
if (sum + a) * sum < 0:
sum += a
else:
fugo = sum // abs(sum)
nextsum = - fugo
a_should_be = nextsum - sum
dif = abs(a_should_be - a)
sum += a_should_be
ans2 += dif
#print(ans2)
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN |
use std::io::*;
use std::str::FromStr;
pub fn read<T: FromStr>() -> T {
let stdin = stdin();
let stdin = stdin.lock();
let token: String = stdin
.bytes()
.map(|c| c.expect("failed to read char") as char)
.skip_while(|c| c.is_whitespace())
.take_while(|c| !c.is_whitespace())
.collect();
token.parse().ok().expect("failed to parse token")
}
use std::cmp::{max, min};
use std::collections::BTreeMap;
fn main() {
let n = read::<i64>();
let mut vec_a = vec![];
for i in 0..n {
vec_a.push(read::<i64>());
}
let mut prev_sum = vec_a[0];
let mut ans = 0;
// 最初を正にする
if prev_sum <= 0 {
prev_sum = 1;
ans = (1 - prev_sum).abs();
}
for i in 1..vec_a.len() {
let b = vec_a[i as usize];
if 0 < prev_sum {
if 0 <= prev_sum + b {
ans += (1 + prev_sum).abs() + b;
prev_sum = -1;
} else {
prev_sum += b;
}
} else if prev_sum < 0 {
if prev_sum + b <= 0 {
ans += (1 - prev_sum).abs() - b;
prev_sum = 1;
} else {
prev_sum += b;
}
}
}
let plus_min = ans;
// 最初を負にする
prev_sum = vec_a[0];
ans = 0;
if 0 <= prev_sum {
prev_sum = -1;
ans = (1 + prev_sum).abs();
}
for i in 1..vec_a.len() {
let b = vec_a[i as usize];
if 0 < prev_sum {
if 0 <= prev_sum + b {
ans += (1 + prev_sum).abs() + b;
prev_sum = -1;
} else {
prev_sum += b;
}
} else if prev_sum < 0 {
if prev_sum + b <= 0 {
ans += (1 - prev_sum).abs() - b;
prev_sum = 1;
} else {
prev_sum += b;
}
}
}
let minus_min = ans;
ans = min(plus_min, minus_min);
println!("{}", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int result = 0;
bool isPlus = a[0] > 0 ? true : false;
int sum = a[0];
for (int i = 1; i < n; i++) {
int temp_sum = sum + a[i];
if (isPlus) {
if (temp_sum >= 0) {
result += temp_sum + 1;
a[i] -= temp_sum + 1;
}
} else {
if (temp_sum <= 0) {
result += -temp_sum + 1;
a[i] += -temp_sum + 1;
}
}
isPlus = !isPlus;
sum += a[i];
}
cout << result << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
sm=a[0]
ans=0
for i in range(n-1):
sm1=sm+a[i+1]
if sm*sm1>=0:
ans+=abs(sm1)+1
sm//=abs(sm)*(-1)
else:
sm=sm1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct edge {
int to, cost;
};
const int INF = 100000000;
long long int N, A[100010], B[100010], ans1, ans2, mode, sum;
int main() {
cin >> N;
for (int i = 0; i < (N); i++) {
cin >> A[i];
B[i] = A[i];
}
for (int i = 0; i < (N); i++) {
sum += A[i];
if (mode == 0) {
if (sum <= 0) {
ans1 += abs(1 - sum);
sum = 1;
}
mode = 1;
} else {
if (sum >= 0) {
ans1 += abs(-1 - sum);
sum = -1;
}
mode = 0;
}
}
sum = 0;
for (int i = 0; i < (N); i++) {
sum += A[i];
if (mode == 1) {
if (sum <= 0) {
ans2 += abs(1 - sum);
sum = 1;
}
mode = 0;
} else {
if (sum >= 0) {
ans2 += abs(-1 - sum);
sum = -1;
}
mode = 1;
}
}
cout << std::min(ans1, ans2) << endl;
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.