Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, i, j; vector<int> a; int sum, count, count2; cin >> n; a.resize(n); for (int i = 0; i < n; i++) { cin >> a[i]; } count = 0; count2 = 0; sum = 0; if (a[0] < 0) { sum = 1; count += abs(a[0]) + 1; } else { sum = a[0]; } for (int i = 0; i < n - 1; i++) { if (sum + a[i + 1] == 0) { count++; if (sum < 0) sum = 1; else sum = -1; } else if (sum < 0 && (sum + a[i + 1]) < 0) { j = 1 - sum; count += j - a[i + 1]; sum = 1; } else if (sum > 0 && (sum + a[i + 1]) > 0) { j = sum + 1; count += j + a[i + 1]; sum = -1; } else { sum += a[i + 1]; } } if (a[0] > 0) { sum = -1; count2 += abs(a[0]) + 1; } else { sum = a[0]; } for (int i = 0; i < n - 1; i++) { if (sum + a[i + 1] == 0) { count2++; if (sum < 0) sum = 1; else sum = -1; } else if (sum < 0 && (sum + a[i + 1]) < 0) { j = 1 - sum; count2 += j - a[i + 1]; sum = 1; } else if (sum > 0 && (sum + a[i + 1]) > 0) { j = sum + 1; count2 += j + a[i + 1]; sum = -1; } else { sum += a[i + 1]; } } cout << min(count, count2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum; int input; cin >> sum; int ans = 0; int reigai = 0; int ans1, ans2, sum1, sum2; if (sum == 0) { ans1 = 1; ans2 = 1; sum1 = 1; sum2 = -1; reigai = 1; } for (int i = 1; i < n; ++i) { cin >> input; if (sum * (sum + input) >= 0) { ans += abs(sum + input) + 1; if (sum < 0) sum = 1; else sum = -1; } else sum += input; if (reigai == 1) { if (sum1 * (sum1 + input) >= 0) { ans1 += abs(sum1 + input) + 1; if (sum1 < 0) sum1 = 1; else sum1 = -1; } else sum1 += input; if (sum2 * (sum2 + input) >= 0) { ans2 += abs(sum2 + input) + 1; if (sum2 < 0) sum2 = 1; else sum2 = -1; } else sum2 += input; } } if (reigai == 0) cout << ans << endl; else cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e+9 + 7; long long n, m, l; string s, t; long long d[100000], dp[100][100]; int main() { cin >> n; for (long long i = (0); i < (n); i++) cin >> d[i]; int sum1 = 0, sum2 = 0; int ans1 = 0, ans2 = 0; for (long long i = (0); i < (n); i++) { sum1 += d[i]; if (i % 2 == 0) { if (sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } } else { if (sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } } for (long long i = (0); i < (n); i++) { sum2 += d[i]; if (i % 2 != 0) { if (sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } else { if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } } cout << (min(ans1, ans2)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=[int(i) for i in input().split()] for i in range(1,n): a[i]+=a[i-1] if a[0]>0: pm=0 c=0 for i in range(1,n): a[i]+=pm if i%2==1: if a[i]>=0: pm-=(a[i]+1) c+=(a[i]+1) else: if a[i]<=0: pm+=(-a[i]+1) c+=(-a[i]+1) print(c) elif a[0]<0: pm=0 c=0 for i in range(1,n): a[i]+=pm if i%2==0: if a[i]>=0: pm-=(a[i]+1) c+=(a[i]+1) else: if a[i]<=0: pm+=(-a[i]+1) c+=(-a[i]+1) print(c) else: pm1=1 c1=1 for i in range(1,n): a[i]+=pm1 if i%2==1: if a[i]>=0: pm1-=(a[i]+1) c1+=(a[i]+1) else: if a[i]<=0: pm1+=(-a[i]+1) c1+=(-a[i]+1) pm2=-1 c2=1 for i in range(1,n): a[i]+=pm2 if i%2==0: if a[i]>=0: pm2-=(a[i]+1) c2+=(a[i]+1) else: if a[i]<=0: pm2+=(-a[i]+1) c2+=(-a[i]+1) print(min(c1,c2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) import numpy as np ans = 0 sum0 = a[0] sum1 = a[0] for i in range(1, n): sum1 += a[i] if np.sign(sum0) != np.sign(sum1) and sum1 != 0: #合計の符号が逆となっており、0でない sum0 = sum1 pass elif sum1 == 0: #合計が0になった場合は、符号が逆になるよう1か-1を足す sum1 -= 1 * np.sign(sum0) ans += 1 sum0 = sum1 elif np.sign(sum0) == np.sign(sum1): #符号が同じ場合は、+1か-1になるまで足す if np.sign(sum1) == 1: #sum0もsum1もプラスの場合 ans += (sum1 + 1) # sum1 = -1 else: ans += (abs(sum1) +1) sum1 = 1 sum0 = sum1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import core.bitop; import std.algorithm; import std.ascii; import std.bigint; import std.conv; import std.functional; import std.math; import std.numeric; import std.range; import std.stdio; import std.string; import std.random; import std.typecons; import std.container; alias sread = () => readln.chomp(); ulong bignum = 1_000_000_007; alias Pair = Tuple!(long, "begin", long, "end"); T lread(T = long)() { return readln.chomp.to!T(); } T[] aryread(T = long)() { return readln.split.to!(T[])(); } void scan(TList...)(ref TList Args) { auto line = readln.split(); foreach (i, T; TList) { T val = line[i].to!(T); Args[i] = val; } } void main() { auto n = lread(); auto a = aryread(); long c_sum = a[0], change; foreach (e; a[1 .. $]) { if (c_sum + e < 0) { if (c_sum > 0) c_sum += e; else { change += abs(1 - c_sum - e); c_sum = 1; } } else if(c_sum + e > 0) { if (c_sum < 0) c_sum += e; else { change += abs(-1 - c_sum - e); c_sum = -1; } } else { change += 1; if(c_sum < 0) c_sum = 1; else c_sum = -1; } // c_sum.writeln(" c_sum"); // change.writeln(" change"); } change.writeln(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n, i, j, sw, sw2, count = 0, add = 0; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) cin >> a[i]; if (a[0] > 0) sw = 1; else sw = -1; add += a[0]; for (i = 1; i < n; i++) { add += a[i]; if (sw == 1) { if (add < 0) { } else { while (add != -1) { a[i]--; add--; count++; } } } else { if (add > 0) { } else { while (add != 1) { a[i]++; add++; count++; } } } if (a[i] > 0) sw = 1; else sw = -1; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> long long n, a[111111], hoge, huga, nyaa = 0, nyan = 0; int main() { scanf("%lld", &n); for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } if (!a[0]) { hoge = 1; huga = -1; nyaa = nyan = 1; } else { hoge = ((a[0]) > (-a[0]) ? (a[0]) : (-a[0])); huga = ((a[0]) > (-a[0]) ? (-a[0]) : (a[0])); nyaa += abs(a[0] - hoge); nyan += abs(a[0] - huga); } int p = 1; for (int i = 1; i < n; i++) { hoge += a[i]; if (p) { if (hoge >= 0) { nyaa += hoge + 1; hoge = -1; } } else { if (hoge <= 0) { nyaa += 1 - hoge; hoge = 1; } } huga += a[i]; if (p) { if (huga <= 0) { nyan += 1 - huga; huga = 1; } } else { if (huga >= 0) { nyan += huga + 1; huga = -1; } } p ^= 1; } printf("%lld\n", ((nyaa) > (nyan) ? (nyan) : (nyaa))); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int cnt = 0; int current_div0PlusSum = 0; int current_div0MinusSum = 0; int cnt_div0Plus = 0; int cnt_div0Minus = 0; for (int i = 0; i < n; i++) { current_div0PlusSum += a[i]; if (i % 2 == 0) { if (current_div0PlusSum > 0) continue; else { while (current_div0PlusSum <= 0) { current_div0PlusSum++; cnt_div0Plus++; } } } else { if (current_div0PlusSum < 0) continue; else { while (current_div0PlusSum >= 0) { current_div0PlusSum--; cnt_div0Plus++; } } } } for (int i = 0; i < n; i++) { current_div0MinusSum += a[i]; if (i % 2 == 0) { if (current_div0MinusSum < 0) continue; else { while (current_div0MinusSum >= 0) { current_div0MinusSum--; cnt_div0Minus++; } } } else { if (current_div0MinusSum > 0) continue; else { while (current_div0MinusSum <= 0) { current_div0MinusSum++; cnt_div0Minus++; } } } } cout << min(cnt_div0Plus, cnt_div0Minus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def resolve(): N = int(input()) A = list(map(int, input().split())) total = A[0] ope = 0 positive = True if A[0] > 0 else False for i in range(1, len(A)): if positive: # 次は負の数=正の数になるなら補正 if total + A[i] >= 0: ope += abs(total + A[i]) + 1 total = total + A[i] - abs(total + A[i]) - 1 else: total += A[i] else: # 次は正の数=負の数になるなら補正 if total + A[i] <= 0: ope += abs(total + A[i]) + 1 total = total + A[i] + abs(total + A[i]) + 1 else: total += A[i] positive = (not positive) print(ope) if '__main__' == __name__: resolve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) L = [0 for _ in range(n)] L[0] = a[0] for i in range(1, n): L[i] = L[i-1] + a[i] delay = 0 all_over = 0 if a[0] != 0: sign = (a[0] > 0) - (a[0] < 0) for i in range(1, n): L[i] += delay if L[i] <= 0 and sign == -1: delay += 1 - L[i] all_over += 1 - L[i] L[i] = 1 elif L[i] >= 0 and sign == 1: delay -= L[i] + 1 all_over += L[i] + 1 L[i] = -1 sign *= -1 print(all_over) else: posL = L[:] negL = L[:] pos_delay, neg_delay = 1, -1 pos_all_over, neg_all_over = 1, 1 sign = 1 for i in range(1, n): posL[i] += pos_delay if posL[i] <= 0 and sign == -1: pos_delay += 1 - posL[i] pos_all_over += 1 - posL[i] posL[i] = 1 elif posL[i] >= 0 and sign == 1: pos_delay -= posL[i] + 1 pos_all_over += posL[i] + 1 posL[i] = -1 sign *= -1 sign = -1 for i in range(1, n): negL[i] += neg_delay if negL[i] <= 0 and sign == -1: neg_delay += 1 - negL[i] neg_all_over += 1 - negL[i] negL[i] = 1 elif negL[i] >= 0 and sign == 1: neg_delay -= negL[i] + 1 neg_all_over += negL[i] + 1 negL[i] = -1 sign *= -1 print(min(pos_all_over, neg_all_over))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7; const long long INF = 1e12; const int inf = 1e9; const int mod = 1e9 + 7; int main() { cout << fixed << setprecision(10); int n; cin >> n; vector<int> v(n, 0); for (int i = 0; i < (n); i++) cin >> v[i]; int ans = inf; for (int i = 0; i < (2); i++) { int now = 0; int sum = 0; for (int j = 0; j < (n); j++) { if (i == 0) { sum += v[j]; if (j % 2 == 0) { if (sum == 0) { sum = 1; now++; } else if (sum < 0) { now += 1 - sum; sum = 1; } } else { if (sum == 0) { sum = -1; now++; } else if (sum > 0) { now += sum + 1; sum = -1; } } } else { sum += v[j]; if (j % 2 == 0) { if (sum == 0) { sum = -1; now++; } else if (sum > 0) { now += sum + 1; sum = -1; } } else { if (sum == 0) { sum = 1; now++; } else if (sum < 0) { now += 1 - sum; sum = 1; } } } } ans = min(ans, now); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; class Program { static void Main() { int n = int.Parse(Console.ReadLine()); var inp = Array.ConvertAll(Console.ReadLine().Split(), long.Parse); long ans = 0; long cumsum = inp[0]; for (int i = 1; i < n; i++) { if (cumsum * inp[i] >= 0) { ans += Math.Abs(cumsum + inp[i]) + 1; inp[i] = inp[i] > 0 ? -(cumsum + 1) : cumsum + 1; } else if (Math.Abs(cumsum) >= Math.Abs(inp[i])) { ans += Math.Abs(cumsum + inp[i]) + 1; inp[i] = inp[i] > 0 ? Math.Abs(cumsum) + 1 : -(Math.Abs(cumsum) + 1); } cumsum += inp[i]; } Console.WriteLine(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 10E9; const long long MOD = 1000000007; const long double PI = 3.1415926; template <class T> T &chmin(T &a, const T &b) { return a = min(a, b); } template <class T> T &chmax(T &a, const T &b) { return a = max(a, b); } long long int n, m, k, ans = 0, sum = 0, cnt = 0; string s; int main() { long long int n; cin >> n; vector<long long int> acc(n); long long int x = 0; for (long long int i = (long long int)(0); i < (long long int)(n); i++) { cin >> acc[i]; acc[i] += x; x = acc[i]; } bool minus = true; long long int tmp = 0; for (long long int i = (long long int)(0); i < (long long int)(n); i++) { if ((minus && acc[i] + tmp >= 0) || (!minus && acc[i] + tmp <= 0)) { ans += llabs(acc[i] + tmp) + 1; if (!minus) tmp += (llabs(acc[i] + tmp) + 1); else tmp -= (llabs(acc[i] + tmp) + 1); } minus = !minus; } long long int ans1 = ans; minus = false; tmp = 0; for (long long int i = (long long int)(0); i < (long long int)(n); i++) { if ((minus && acc[i] + tmp >= 0) || (!minus && acc[i] + tmp <= 0)) { ans += llabs(acc[i] + tmp) + 1; if (!minus) tmp += (llabs(acc[i] + tmp) + 1); else tmp -= (llabs(acc[i] + tmp) + 1); } minus = !minus; } cout << min(ans, ans1) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string divide[4] = {"dream", "dreamer", "erase", "eraser"}; int main() { int N, C, K; cin >> N >> C >> K; vector<int> T(N); for (int i = 0; i < N; i++) { cin >> T.at(i); } int sum = 0; int cnt1 = 0; for (int i = 0; i < N; i++) { sum += T.at(i); if (i % 2 == 0) { if (sum <= 0) { cnt1 += -sum + 1; sum = 1; } } else { if (sum >= 0) { cnt1 += sum + 1; sum = -1; } } } int cnt2 = 0; sum = 0; for (int i = 0; i < N; i++) { sum += T.at(i); if (i % 2 == 1) { if (sum <= 0) { cnt2 += -sum + 1; sum = 1; } } else { if (sum >= 0) { cnt2 += sum + 1; sum = -1; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void err(istream_iterator<string> it) {} template <typename T, typename... Args> void err(istream_iterator<string> it, T a, Args... args) { cerr << *it << " = " << a << endl; err(++it, args...); } int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int ans1 = 0; int ans2 = 0; int sum[n]; sum[0] = a[0]; for (int i = 1; i < n; i++) sum[i] = a[i] + sum[i - 1]; int sum1 = 0; int sum2 = 0; int i = 0; while (i < n) { sum1 += a[i]; sum2 += a[i]; if (i % 2 == 0 && sum1 <= 0) { ans1 += 1 - sum1; sum1 += 1 - sum1; } if (i % 2 == 1 && sum1 >= 0) { ans1 += sum1 + 1; sum1 -= sum1 + 1; } if (i % 2 == 0 && sum2 >= 0) { ans2 += 1 + sum2; sum2 -= 1 + sum2; } if (i % 2 == 1 && sum2 <= 0) { ans2 += 1 - sum2; sum2 += -sum2 + 1; } i++; } cout << min(ans1, ans2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const unsigned long long MOD = 1000000000 + 7; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int cnt0 = 0; long long sum = 0; for (int i = 0; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum >= 0) { cnt0 += 1 + sum; sum = -1; } else if (i % 2 == 1 && sum <= 0) { cnt0 += 1 - sum; sum = 1; } } int cnt1 = 0; sum = 0; for (int i = 0; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum <= 0) { cnt1 += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { cnt1 += 1 + sum; sum = -1; } } cout << min(cnt0, cnt1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- # 整数の入力 n=int(input()) a=input().split() counter=0 # 出力 for i in range(1,n): S=0 for j in range(0,i): S+=int(a[j]) if S<0 and S+int(a[i])<=0: counter+=-S-int(a[i])+1 a[i]=-S+1 elif S>0 and S+int(a[i])>=0: counter+=S+int(a[i])+1 a[i]=-S-1 print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int resp = 0; int s = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (s + a[i] > 0) { s += a[i]; } else { resp += 1 - s - a[i]; s = 1; } } else { if (s + a[i] < 0) { s += a[i]; } else { resp += s + a[i] + 1; s = -1; } } } int resm = 0; s = 0; for (int i = 0; i < n; i++) { if (i % 2 == 1) { if (s + a[i] > 0) { s += a[i]; } else { resm += 1 - s - a[i]; s = 1; } } else { if (s + a[i] < 0) { s += a[i]; } else { resm += s + a[i] + 1; s = -1; } } } int res = min(resp, resm); cout << res << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n + 1); for (int i = 0; i < n; i++) { cin >> a.at(i); } vector<int> b(n + 1); b[0] = a[0]; int ansa = 0, ansb = 0, sum = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (b[i] >= 0) { ansa += 1 + b[i]; b[i] = -1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } else { if (b[i] <= 0) { ansa += 1 - b[i]; b[i] = 1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } } b[0] = a[0]; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (b[i] <= 0) { ansb += 1 - b[i]; b[i] = 1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } else { if (b[i] >= 0) { ansb += 1 + b[i]; b[i] = -1; b[i + 1] = b[i] + a[i + 1]; } else b[i + 1] = b[i] + a[i + 1]; } } int ans = min(ansa, ansb); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> v(n); for (int i = 0; i < (int)(n); i++) cin >> v[i]; int ans = 0; int crnt = v[0]; int pre = v[0]; if (v[0] < 0) { ans += abs(v[0]) + 1; crnt = 1; pre = 1; } for (int i = 1; i < n; i++) { pre = crnt; crnt += v[i]; if (crnt * pre >= 0) { if (pre > 0) { ans += crnt + 1; crnt -= crnt + 1; } else { ans += abs(crnt) + 1; crnt += abs(crnt) + 1; } } } int fans = 0; crnt = v[0]; pre = v[0]; if (crnt > 0) { fans += v[0] + 1; crnt = -1; pre = -1; } for (int i = 1; i < n; i++) { pre = crnt; crnt += v[i]; if (crnt * pre >= 0) { if (pre > 0) { fans += crnt + 1; crnt -= crnt + 1; } else { fans += abs(crnt) + 1; crnt += abs(crnt) + 1; } } } cout << ans << " " << fans << endl; cout << min(fans, ans) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX_N = (int)1e5 + 5; int n, a[MAX_N]; int ans; int main(void) { scanf("%d", &n); for (int i = 0; i < n; ++i) { scanf("%d", &a[i]); } int zans = 0, zcur = 0; for (int i = 0; i < n; ++i) { zcur += a[i]; if (i % 2 == 0) { if (zcur <= 0) { zans += (1 - zcur); zcur = 1; } } else { if (zcur >= 0) { zans += (zcur - (-1)); zcur = -1; } } } int oans = 0, ocur = 0; for (int i = 0; i < n; ++i) { ocur += a[i]; if (i % 2 == 0) { if (ocur >= 0) { oans += (ocur - (-1)); ocur = -1; } } else { if (ocur <= 0) { oans += (1 - ocur); ocur = 1; } } } ans = min(zans, oans); printf("%d\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct point { int x; int y; }; int gcd(int m, int n) { if ((0 == m) || (0 == n)) return 0; while (m != n) { if (m > n) m = m - n; else n = n - m; } return m; } int lcm(int m, int n) { if ((0 == m) || (0 == n)) return 0; return ((m / gcd(m, n)) * n); } int input() { int x; cin >> x; return x; } int moji(char in) { int ans = (int)in - (int)'a'; if ((ans < 0) || (ans > 25)) { ans = 26; } return ans; } const int VV = 10; int cost[VV][VV]; int d[VV]; bool used[VV]; void dijkstra(int s) { fill(d, d + VV, 100000); fill(used, used + VV, false); d[s] = 0; while (true) { int v = -1; for (int u = 0; u < VV; u++) { if (!used[u] && (v == -1 || d[u] < d[v])) v = u; } if (v == -1) break; used[v] = true; for (int u = 0; u < VV; u++) { d[u] = min(d[u], d[v] + cost[v][u]); } } } int compare_int(const void* a, const void* b) { return *(int*)a - *(int*)b; } int binary_searchh(long long x, long long k[], int n) { int l = 0; int r = n; while (r - l >= 1) { int i = (l + r) / 2; if (k[i] == x) return i; else if (k[i] < x) l = i + 1; else r = i; } return -1; } struct File { int aa; int bb; File(const int& aa, const int& bb) : aa(aa), bb(bb) {} }; bool operator<(const File& a, const File& b) { return std::tie(a.aa, a.bb) < std::tie(b.aa, b.bb); } long long gcd(long long a, long long b) { if (b == 0) { return a; } return gcd(b, a % b); } long long lcm(long long a, long long b) { long long g = gcd(a, b); return a / g * b; } long long kaijo(long long x) { long long l = 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 * 10 + 7; long long sum = 1; for (int i = x; i > 0; i--) { sum *= i; if (sum > l) { sum %= l; } } return sum; } int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0; long long tmp = a[0]; for (int i = 1; i < n; i++) { if (tmp >= 0) { tmp += a[i]; if (tmp > 0) { sum += tmp + 1; tmp = -1; } } else { tmp += a[i]; if (tmp <= 0) { sum += abs(tmp) + 1; tmp = 1; } } } cout << sum << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def resolve(List): # L[0]!=0を起点とする L = List cnt = 0 s = L[0] for i in range(1,len(L)): a = L[i] if(s>0 and s+a>=0): L[i] = -s-1 cnt += (s+a+1) s = -1 elif(s<0 and s+a<=0): L[i] = -s+1 cnt += (-s-a+1) s = 1 else: s += a return cnt def ans(L): a = L[0] c0,c1=0,0 if (a>0): c0 = resolve(L) c1 = (a+1) + resolve([-1]+L[1:]) elif (a<0): c0 = resolve(L) c1 = (-a+1) + resolve([1]+L[1:]) else: c0 = 1 + resolve([1]+L[1:]) c1 = 1 + resolve([-1]+L[1:]) return(min(c0,c1)) N = int(input()) L = [int(x) for x in input().split(' ')] print(ans(L))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; int a[n]; for (int i = 1; i <= n; i++) { cin >> a[i]; } long long int sum = 0; int count = 0; int prev; for (int i = 1; i <= n; i++) { sum += a[i]; if (i != 1) { if (sum == 0) { if (prev == 0) { a[i] += 1; prev = 1; count++; sum += 1; } else { a[i] -= 1; prev = 0; count++; sum -= 1; } } else { if (prev == 0) { if (sum < 0) { count += 1 - sum; a[i] = a[i] + (1 - sum); sum += (1 - sum); } prev = 1; } else { if (sum > 0) { count += sum + 1; a[i] = a[i] - (1 + sum); sum -= (1 + sum); } prev = 0; } } } else { if (sum >= 0) prev = 1; else prev = 0; } } cout << count << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a[100000], ans, sumb = 0, suma = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { sumb = suma; suma += a[i]; if (suma == 0) { if (sumb > 0) suma--; else suma++; ans++; } else if (suma * sumb > 0) { if (sumb > 0) { ans += suma + 1; suma -= suma + 1; } else if (sumb < 0) { ans += 1 - suma; suma += 1 - suma; } } else { } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.ByteString.Char8 as BC import Data.Maybe (fromJust) main = do n <- readLn :: IO Int (a:as) <- getIntListBC print $ solve a as bsToInt :: BC.ByteString -> Int bsToInt = fst . fromJust . BC.readInt getIntListBC :: IO [Int] getIntListBC = map bsToInt . BC.words <$> BC.getLine solve :: Int -> [Int] -> Int solve _ [] = 0 solve s (a:as) | s > 0 = let n = negate $ s + 1 in if n > a then solve (s + a) as else (abs $ a - n) + solve (s + n) as | otherwise = let n = negate $ s - 1 in if n < a then solve (s + a) as else (abs $ n - a) + solve (s + n) as
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) ans = 0 total = A[0] if A[0] == 0: ans += 1 total = -A[1] // A[1] for i in range(1, len(A)): if total > 0: if total + A[i] >= 0: ans += total + A[i] + 1 total = -1 else: total += A[i] else: if total + A[i] <= 0: ans += 1 - (total + A[i]) total = 1 else: total += A[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef vector<vector<int> > vii; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)n; i++) cin >> a[i]; int sum = a[0], op_cnt = 0; for (int i = (int)1; i < (int)n; i++) { if (sum < 0 && sum + a[i] <= 0) { op_cnt += (0 - sum - a[i]) + 1; sum = 1; } else if (sum >= 0 && sum + a[i] >= 0) { op_cnt += sum + a[i] + 1; sum = -1; } else sum += a[i]; } cout << op_cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n; cin >> n; long long a[n]; for (long long i = 0; i < (long long)(n); i++) { cin >> a[i]; } long long ans = 1000000000; for (long long p = 0; p <= 1; p++) { long long tmpans = 0; long long sum = 0; for (long long i = 0; i < (long long)(n); i++) { if (i % 2 == p) { if (a[i] + sum <= 0) { tmpans += 1 - (a[i] + sum); sum = 1; } else { sum = a[i] + sum; } } else { if (a[i] + sum >= 0) { tmpans += 1 + a[i] + sum; sum = -1; } else { sum = a[i] + sum; } } } ans = min(ans, tmpans); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long INF = (long long)1e18 + 1; int n, m; vector<int> a(100001); int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n; long long ps = 0, ans = 0; for (int i = 0; i < n; i++) { cin >> a[i]; if (ps + a[i] == 0) { ans++; if (ps > 0) ps = -1; else ps = 1; } else if ((ps + a[i] < 0 && ps >= 0) || (ps + a[i] > 0 && ps <= 0)) { ps += a[i]; } else if (ps + a[i] < 0 && ps < 0) { ans += abs(ps + a[i]) + 1; ps = 1; } else { ans += abs(ps + a[i]) + 1; ps = -1; } } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int array[n]; cin >> n; for (int i = 0; i < n; i++) { cin >> array[i]; } int answer = 0; int sum = 0; for (int i = 0; i < n; i++) { if (sum == 0) sum += array[0]; else if (sum < 0) { if (sum + array[i] > 0) { sum += array[i]; } else { if (sum == -1) { answer += abs(2 - array[i]); sum += 2; } else { answer += abs((-1) * sum + 1 - array[i]); sum = 1; } } } else { if (sum + array[i] < 0) { sum += array[i]; } else { if (sum == 1) { answer += abs(-2 - array[i]); sum += -2; } else { answer += abs((-1) * sum - 1 - array[i]); sum = -1; } } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<ll> v(n, 0); for (int i = (int)(0); i < (int)(n); i++) cin >> v[i]; vector<int> p1(n + 1, 1); for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 0) p1[i] *= -1; } int c[2]; vector<ll> sum_until(n + 1, 0); int cnt = 0; for (int i = 1; i <= n; i++) { sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); sum_until[i] += plus * p1[i] + p1[i]; cnt += abs(plus * p1[i]) + 1; } else if (sum_until[i] == 0) { sum_until[i] = p1[i]; cnt += 1; } } c[0] = cnt; fill(sum_until.begin(), sum_until.end(), 0ll); cnt = 0; for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 1) p1[i] = -1; else p1[i] = 1; } for (int i = 1; i <= n; i++) { sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); sum_until[i] += plus * p1[i] + p1[i]; cnt += abs(plus * p1[i]) + 1; } else if (sum_until[i] == 0) { sum_until[i] = p1[i]; cnt += 1; } } c[1] = cnt; cout << min(c[1], c[0]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using pii = pair<int, int>; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) cin >> a[i]; int sum = a[0], befsum = a[0]; int ans = 0; for (int i = 1; i < n; ++i) { sum += a[i]; if (sum * befsum >= 0) { if (sum > 0) { ans += sum + 1; sum = -1; } else if (sum < 0) { ans += -sum + 1; sum = 1; } else if (sum == 0) { ans += 1; if (befsum > 0) sum = -1; else sum = 1; } } befsum = sum; } int tmp = abs(a[0]) + 1; if (a[0] > 0) { sum = -1; befsum = -1; } else { sum = 1; befsum = 1; } for (int i = 1; i < n; ++i) { sum += a[i]; if (sum * befsum >= 0) { if (sum > 0) { tmp += abs(sum) + 1; sum = -1; } else if (sum < 0) { tmp += abs(sum) + 1; sum = 1; } else if (sum == 0) { tmp += 1; if (befsum > 0) sum = -1; else sum = 1; } } befsum = sum; } ans = min(ans, tmp); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long int ans = 0; long long int cnt = a[0]; for (int i = 1; i < n; i++) { if (i % 2 == 0) { if (0 < cnt + a[i]) { cnt += a[i]; } else { ans += 1 - (cnt + a[i]); cnt = 1; } } else { if (cnt + a[i] < 0) { cnt += a[i]; } else { ans += 1 + (cnt + a[i]); cnt = -1; } } } long long int ans2 = 0; cnt = a[0]; for (int i = 1; i < n; i++) { if (i % 2 == 1) { if (0 < cnt + a[i]) { cnt += a[i]; } else { ans2 += 1 - (cnt + a[i]); cnt = 1; } } else { if (cnt + a[i] < 0) { cnt += a[i]; } else { ans2 += 1 + (cnt + a[i]); cnt = -1; } } } if (ans < 0) { ans = ans2; } else if (ans > ans2) { if (0 <= ans2) { ans = ans2; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.NoSuchElementException; public class Main { int N; long[] a; public long calc(long[] a){ long ans = 0; long now = 0; for(int i = 0;i < N-1;i++){ now += a[i]; if(now < 0 && now+a[i+1] <= 0){ long add = Math.abs(now+a[i+1])+1; a[i+1] += add; ans += add; }else if(now > 0 && now+a[i+1] >= 0){ long add = now+a[i+1]+1; a[i+1] -= add; ans += add; } } if(now + a[N-1] == 0){ ans++; } return ans; } public void solve() { N = nextInt(); a = new long[N]; for(int i = 0;i < N;i++){ a[i] = nextInt(); } if(a[0] == 0){ a[0] = 1; long ans = calc(a); a[0] = -1; ans = Math.min(ans, calc(a)); out.println(ans); return; } out.println(calc(a)); } public static void main(String[] args) { out.flush(); new Main().solve(); out.close(); } /* Input */ private static final InputStream in = System.in; private static final PrintWriter out = new PrintWriter(System.out); private final byte[] buffer = new byte[2048]; private int p = 0; private int buflen = 0; private boolean hasNextByte() { if (p < buflen) return true; p = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) return false; return true; } public boolean hasNext() { while (hasNextByte() && !isPrint(buffer[p])) { p++; } return hasNextByte(); } private boolean isPrint(int ch) { if (ch >= '!' && ch <= '~') return true; return false; } private int nextByte() { if (!hasNextByte()) return -1; return buffer[p++]; } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = -1; while (isPrint((b = nextByte()))) { sb.appendCodePoint(b); } return sb.toString(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def main(): _ = input() a = [int(s) for s in input().split()] print(solve(a)) def solve(a): if a[0] > 0: return min(rec(a[0], a[1:], 0), rec(-1, a[1:], a[0] + 1)) else: return min(rec(a[0], a[1:], 0), rec(1, a[1:], 1 - a[0])) def rec(s, a, r): if not a: return r elif s < 0: n = max(s + a[0], 1) return rec(n, a[1:], r + (n - (s + a[0]))) else: n = min(s + a[0], -1) return rec(n, a[1:], r + s + a[0] - n) main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) A=list(map(int, input().split())) ans=0 for i in range(N): if i==0: a=A[0] if a==0: if A[1]>0: a=-1 ans+=1 else: a=1 ans+=1 SUM=a else: a=A[i] isplus=(SUM>0) if isplus: if a>0: ans+=SUM+1 a=-1 else: if SUM+a>=0: ans+=1+SUM+a SUM=-1 else: SUM+=a else: if a>0: if SUM+a<=0: ans+=-(SUM+a)+1 SUM=1 else: SUM+=a else: ans+=-a-SUM+1 SUM=1 #print(SUM) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static double sequence(int a[], double start) { double count = 0.0, presum = -1.0 * start, sum = 0.0; for(int i : a) { sum += (double)i; if(i == 0)sum += start; if(sum * presum > 0) { double min = Math.abs(sum) + 1; if(presum > 0)sum -= min; else sum += min; count += min; } if(sum == 0) { if(presum > 0)sum--; else sum++; ++count; } presum = sum; } return count; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n, a[]; double count = 0; n = sc.nextInt(); a = new int[n]; for(int i = 0; i < n; ++i) a[i] = sc.nextInt(); sc.close(); if(a[0] == 0)a[0]++; int tmp = Math.abs(a[0]) + 1; if(a[0] > 0)tmp = a[0] - tmp; else tmp = a[0] + tmp; count = Math.min(sequence(a, (double)a[0]),sequence(a, tmp)); System.out.printf("%.0f\n", count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using static AtCoder.Io; namespace AtCoder { class Program { static void Main() { var n = ReadInt(); var a = ReadIntArray(); long count = 0; long sum = a[0]; var isPositive = sum > 0; for (int i = 1; i < a.Length; i++) { isPositive = !isPositive; if (sum + a[i] >= 0 && !isPositive) { var diff = -1 - (sum + a[i]); count += Math.Abs(diff); sum += a[i] + diff; } else if (sum + a[i] <= 0 && isPositive) { var diff = 1 - (sum + a[i]); count += Math.Abs(diff); sum += a[i] + diff; } else { sum += a[i]; } } Console.WriteLine($"{count}"); } } public static class Io { public static string ReadString() => Console.ReadLine(); public static string[] ReadStringArray() => ReadString().Split(' '); public static int ReadInt() => int.Parse(ReadString()); public static long ReadLong() => long.Parse(ReadString()); public static int[] ReadIntArray() => ReadStringArray().ParseInt().ToArray(); public static long[] ReadLongArray() => ReadStringArray().ParseLong().ToArray(); public static IEnumerable<int> ParseInt(this IEnumerable<string> source) => source.Select(int.Parse); public static IEnumerable<long> ParseLong(this IEnumerable<string> source) => source.Select(long.Parse); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using vll = vector<ll>; const int INF = 1e9; int main() { int n; cin >> n; vll s(n, 0); for (int i = 0; i < n; i++) { ll a; cin >> a; if (i == 0) { s[i] = a; } else { s[i] = s[i - 1] + a; } } bool sgn; ll tmp = 0LL, cnt = 0LL; for (int i = 0; i < n; i++) { if (i == 0) sgn = (s[0] > 0) ? true : false; s[i] += tmp; if (sgn) { if (s[i] <= 0) { while (s[i] < 1) { s[i]++; tmp++; cnt++; } } } else { if (s[i] >= 0) { while (s[i] > -1) { s[i]--; tmp--; cnt++; } } } sgn = (sgn) ? false : true; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def culc(a, sum, plus, ans): for i in range(1, n): plus = not(plus) sum += a[i] if plus: if sum <= 0: ans += abs(sum) + 1 sum = 1 else: if sum >= 0: ans += abs(sum) + 1 sum = -1 return ans n = int(input()) a = list(map(int, input().split())) plus = None if a[0] > 0: plus = True else: plus = False ans1 = culc(a, a[0], plus, 0) a[0] = a[0] // abs(a[0]) * -1 ans2 = abs(a[0]) + 1 ans2 = culc(a, a[0], not(plus), abs(a[0]) + 1) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#region using using System; using System.Collections.Generic; using System.Linq; using IEnumerable = System.Collections.IEnumerable; using IEnumerator = System.Collections.IEnumerator; using BitArray = System.Collections.BitArray; using BigInteger = System.Numerics.BigInteger; using TextReader = System.IO.TextReader; using System.Text; #endregion namespace AtCoderProject { public class Program { public object Calc() { var N = consoleReader.Int; a = consoleReader.Split.Int; return Math.Min(CalcImpl(true), CalcImpl(false)); } long CalcImpl(bool startPositive) { long count = 0; long sum = 0; bool isPositive = startPositive; for (int i = 0; i < a.Length; i++) { sum += a[i]; if (isPositive && sum <= 0) sum += count += 1 - sum; else if (!isPositive && sum >= 0) sum -= count += sum + 1; isPositive = !isPositive; } return count; } int[] a; #region いつもの #pragma warning disable private ConsoleReader consoleReader; public Program(ConsoleReader consoleReader) { this.consoleReader = consoleReader; } static void Main() => Console.WriteLine(new Program(new ConsoleReader(Console.In)).Calc()); static string AllLines<T>(IEnumerable<T> source) => string.Join("\n", source); } static class Ext { public static Dictionary<TKey, int> GroupCount<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector) => source.GroupBy(keySelector).ToDictionary(g => g.Key, g => g.Count()); public static Dictionary<TKey, int> GroupCount<TKey>(this IEnumerable<TKey> source) => source.GroupCount(i => i); } public class ConsoleReader { private string[] ReadLineSplit() => textReader.ReadLine().Split(Array.Empty<char>(), StringSplitOptions.RemoveEmptyEntries); private string[] line = Array.Empty<string>(); private int linePosition; private TextReader textReader; public ConsoleReader(TextReader tr) { textReader = tr; } public int Int => int.Parse(String); public long Long => long.Parse(String); public double Double => double.Parse(String); public string String { get { if (linePosition >= line.Length) { linePosition = 0; line = ReadLineSplit(); } return line[linePosition++]; } } public class SplitLine { private string[] splited; public SplitLine(ConsoleReader cr) { splited = cr.ReadLineSplit(); cr.line = Array.Empty<string>(); } public int[] Int => String.Select(x => int.Parse(x)).ToArray(); public int[] Int0 => String.Select(x => int.Parse(x) - 1).ToArray(); public long[] Long => String.Select(x => long.Parse(x)).ToArray(); public double[] Double => String.Select(x => double.Parse(x)).ToArray(); public string[] String => splited; } public SplitLine Split => new SplitLine(this); public class RepeatReader : IEnumerable<ConsoleReader> { ConsoleReader cr; int count; public RepeatReader(ConsoleReader cr, int count) { this.cr = cr; this.count = count; } public IEnumerator<ConsoleReader> GetEnumerator() => Enumerable.Repeat(cr, count).GetEnumerator(); System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() => GetEnumerator(); public IEnumerable<string> String => this.Select(cr => cr.String); public IEnumerable<int> Int => this.Select(cr => cr.Int); public IEnumerable<int> Int0 => this.Select(cr => cr.Int - 1); public IEnumerable<long> Long => this.Select(cr => cr.Long); public IEnumerable<double> Double => this.Select(cr => cr.Double); } public RepeatReader Repeat(int count) => new RepeatReader(this, count); } #endregion }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; const int INF = 1001001001; int main() { int n; cin >> n; vector<long long> a(n); for (long long(i) = 0; (i) < (n); (i)++) cin >> a[i]; long long s = a[0]; long long ans = 0; for (int i = 1; i < n; ++i) { long long cur = s + a[i]; if (s > 0) { if (cur >= 0) { ans += abs(cur) + 1; s = -1; } else { s += a[i]; } } else { if (cur <= 0) { ans += abs(cur) + 1; s = 1; } else { s += a[i]; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#!/usr/bin/env ruby STDIN.gets.chomp.to_i array = STDIN.gets.chomp.split(' ').map(&:to_i) def get_answer(first, array) ans = 0 sum = first array.each do |a| if sum >= 0 if sum + a < 0 sum += a else ans += (-1 - (sum + a)).abs sum = -1 end else # sumがマイナス if sum + a > 0 sum += a else ans += (1 - (sum + a)).abs sum = 1 end end end return ans end first = array.shift if first == 0 ans = [get_answer(1, array), get_answer(-1, array)].min + 1 else ans1 = get_answer(first, array) ans2 = get_answer((-1 * first/first), array) + first.abs + 1 ans = [ans1, ans2].min end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using pint = pair<int, int>; using pll = pair<ll, ll>; template <typename T> auto compare = [](T x, T y) -> bool { return (x < y); }; const int MOD = 1000000007; ll N, a[100010]; ll solve(ll s) { ll sum = a[0] + s, ans = abs(s); if (sum == 0) return LONG_LONG_MAX; for (int(i) = (1); (i) < (N); ++(i)) { if (sum * (sum + a[i]) < 0) { sum += a[i]; } else { if (sum < 0) { ans += 1 - (sum + a[i]); sum = 1; } else if (sum > 0) { ans += 1 + (sum + a[i]); sum = -1; } } } return ans; } signed main() { cin >> N; for (int(i) = 0; (i) < (N); ++(i)) cin >> a[i]; cout << (min(solve(0), min(solve(1), solve(-1)))) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) cin >> a[i]; int sum = 0; int plus = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 0) { if (sum + a[i] < 1) { plus += 1 - (sum + a[i]); sum = 1; } else sum += a[i]; } else { if (sum + a[i] > -1) { plus += 1 + (sum + a[i]); sum = -1; } else sum += a[i]; } } sum = 0; int minus = 0; for (int i = 0; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 1) { minus += 1 - (sum + a[i]); sum = 1; } else sum += a[i]; } else { if (sum + a[i] > -1) { minus += 1 + (sum + a[i]); sum = -1; } else sum += a[i]; } } cout << min(plus, minus) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
program ec12; var ans:int64; a,s:array[0..100000] of int64; n,m,i,j:longint; begin readln(n); ans:=0; s[0]:=0; for i:=1 to n do begin read(a[i]); s[i]:=s[i-1]+a[i]; if i>1 then begin if s[i-1]<0 then begin if s[i]<=0 then begin if s[i]=0 then begin inc(ans); s[i]:=1; end else inc(ans,(-s[i])+1); end; end else begin if s[i]>=0 then begin if s[i]=0 then begin inc(ans); s[i]:=-1; end else begin inc(ans,s[i]+1); s[i]:=-1; end; end; end; end; end; writeln(ans); end.
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { size_t N; std::cin >> N; std::vector<int64_t> A(N); for (size_t n = 0; n < N; ++n) { std::cin >> A[n]; } int64_t a[2] = {0, 0}; for (size_t i = 0; i < 2; ++i) { int64_t c = 0; if (i == 0) { a[i] = 0; c = A[0]; } else { a[i] = abs(A[0]) + 1; c = (A[0] < 0) ? 1 : -1; } for (size_t n = 1; n < N; ++n) { if (c + A[n] == 0) { a[i] += abs(c + A[n]) + 1; c = (c < 0) ? 1 : -1; } if ((c < 0) == (c + A[n] < 0)) { a[i] += abs(c + A[n]) + 1; c = (c < 0) ? 1 : -1; } else { c += A[n]; } } } std::cout << std::min(a[0], a[1]) << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) s = [] for i in range(n): s.append(sum(a[0:i+1])) count = 0 ans1 = 0 for i in range(n): if i%2 == 0: if s[i]+count > 0: continue else: ans1 += 1-(s[i]+count) count += 1-(s[i]+count) else: if s[i]+count < 0: continue else: ans1 += (s[i]+count) + 1 count -= (s[i]+count) + 1 count1 = 0 ans2 = 0 for i in range(n): if i%2 == 1: if s[i]+count1 > 0: continue else: ans2 += 1-(s[i]+count1) count1 += 1-(s[i]+count1) else: if s[i]+count1 < 0: continue else: ans2 += (s[i]+count1) + 1 count1 -= (s[i]+count1) + 1 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.util.Scanner; public class Main { public static void main(String[] args) throws IOException{ Sequence solver = new Sequence(); solver.readInput(); solver.solve(); solver.writeOutput(); } static class Sequence { private int n; private int a[]; private int output; private Scanner scanner; public Sequence() { this.scanner = new Scanner(System.in); } public void readInput() { n = Integer.parseInt(scanner.next()); a = new int[n]; for(int i=0; i<n; i++) { a[i] = Integer.parseInt(scanner.next()); } } private int count(boolean sign) { int count=0; long sum=0; for(int i=0; i<n; i++) { sum += a[i]; if((i%2==0) == sign) { // a[i]までの合計を正にするとき if(sum<=0) { count += Math.abs(sum)+1; sum = 1; } } else { // a[i]までの合計を負にするとき if(0<=sum) { count += Math.abs(sum)+1; sum = -1; } } } return count; } public void solve() { output = Math.min(this.count(true), this.count(false)); } public void writeOutput() { System.out.println(output); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) A=list(map(int,input().split())) W=[] wa=0 for i in range(n): wa=A[i]+wa W.append(wa) counter=0 for i in range(n): if i==n-1: break elif W[i]<0 and W[i+1]<0: counter=abs(W[i+1])+1-abs(W[i])+counter elif W[i]>0 and W[i+1]>0: counter=abs(W[i+1])+1+counter-abs(W[i]) print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) l = len(a) ans = 0 summary = a[0] if(summary == 0): if(a[1] > 0): summary = -1 ans+= 1 else: summary = 1 ans+= 1 for i in range(1, l): if(summary* (summary+ a[i])>= 0): if(summary > 0): ans+= a[i]+ summary+ 1 a[i] = -summary- 1 summary= -1 else: ans+= -summary+ 1- a[i] a[i] = -summary+ 1 summary= 1 else: summary+= a[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) cnt = 0 w = A[0] for i in range(n - 1): nw = w + A[i + 1] if w > 0: if nw >= 0: cnt += nw + 1 chg = -(nw + 1) else: if nw <= 0: cnt += 1 - nw chg = 1 - nw w = nw + chg chg = 0 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) n, *a = map(int, read().split()) now = a[0] ans = 0 for i, aa in enumerate(a[1:]): if now > 0: if now + aa + 1 < 0: now += aa else: ans += max(0, now + aa + 1) now = -1 else: if -(now + aa) + 1 < 0: now += aa else: ans += max(0, -(now + aa) + 1) now = 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# sys.stdin.readline import sys input = sys.stdin.readline class AtCoder: def main(self): n = int(input()) a = list(map(int, input().split())) ans = 0 if a[0] == 0: if a[1] < 0: a[0] = 1 else: a[0] = -1 ans += 1 for i in range(1, n): a[i] = a[i] + a[i - 1] if a[i - 1] > 0 and a[i] >= 0: ans += a[i] + 1 a[i] = - 1 elif a[i - 1] < 0 and a[i] < 0: ans += -1 * a[i] + 1 a[i] = 1 elif a[i] == 0: a[i] = 1 ans += 1 print(ans) # Run main if __name__ == '__main__': AtCoder().main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 999999999; const int MOD = (int)1e9 + 7; const int EPS = 1e-9; int main() { cin.tie(0); ios::sync_with_stdio(false); int n, a; cin >> n; vector<int> A; for (int i = (0); i < (n); ++i) { cin >> a; A.push_back(a); } int mn = INF; for (int i = (0); i < (2); ++i) { int sum = 0; int op = 0; for (int j = (0); j < (n); ++j) { sum += A[j]; if ((i + j) % 2 == 0 && sum >= 0) { op += (sum + 1); sum = -1; } else if ((i + j) % 2 == 1 && sum <= 0) { op += (-sum + 1); sum = 1; } } mn = min(mn, op); } cout << mn << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); pair<long long, long long> maxP(vector<long long> a, long long size) { pair<long long, long long> p; long long Max = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] > Max) { Max = a[i]; place = i; } } p.first = Max; p.second = place; return p; } pair<long long, long long> minP(vector<long long> a, long long size) { pair<long long, long long> p; long long min = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] < min) { min = a[i]; place = i; } } p.first = min; p.second = place; return p; } long long sumL(vector<long long> a, long long size) { long long sum = 0; for (int i = (0); i < (size); ++i) { sum += a[i]; } return sum; } long long counT(vector<long long> a, long long t) { sort(a.begin(), a.end()); return upper_bound(a.begin(), a.end(), t) - lower_bound(a.begin(), a.end(), t); } long long DIV[1000 + 1][1000 + 1]; void divide(long long n, long long m) { DIV[0][0] = 1; for (int i = (1); i < (n + 1); ++i) { DIV[i][0] = 0; } for (int i = (0); i < (n + 1); ++i) { DIV[i][1] = 1; } for (int i = (1); i < (m + 1); ++i) { for (int t = (0); t < (n + 1); ++t) { if (DIV[t][i] > 0) continue; if (t >= i) { DIV[t][i] = DIV[t - i][i] + DIV[t][i - 1]; } else { DIV[t][i] = DIV[t][i - 1]; } } } } bool IsPrime(int num) { if (num < 2) return false; else if (num == 2) return true; else if (num % 2 == 0) return false; double sqrtNum = sqrt(num); for (int i = 3; i <= sqrtNum; i += 2) { if (num % i == 0) { return false; } } return true; } class UnionFind { public: vector<long long> par; vector<long long> rank; UnionFind(long long N) : par(N), rank(N) { for (int i = (0); i < (N); ++i) par[i] = i; for (int i = (0); i < (N); ++i) rank[i] = 0; } ~UnionFind() {} long long root(long long x) { if (par[x] == x) return x; else { par[x] = root(par[x]); return par[x]; } } void unite(long long x, long long y) { long long rx = root(x); long long ry = root(y); if (rx == ry) return; if (rank[rx] < rank[ry]) { par[rx] = ry; } else { par[ry] = rx; if (rank[rx] == rank[ry]) { rank[rx]++; } } } bool same(long long x, long long y) { long long rx = root(x); long long ry = root(y); return rx == ry; } }; class BFS_shortestDistance { public: BFS_shortestDistance(vector<vector<char> > p_, long long h_, long long w_) { p = p_; h = h_; w = w_; initial_number = h * w * 2; for (int i = (0); i < (h); ++i) { vector<long long> k(w); for (int t = (0); t < (w); ++t) k[t] = initial_number; field.push_back(k); } } vector<vector<char> > p; long long h; long long w; long long initial_number; vector<vector<long long> > field; pair<long long, long long> plus(pair<long long, long long> &a, pair<long long, long long> &b) { pair<long long, long long> p; p.first = a.first + b.first; p.second = a.second + b.second; return p; } bool equal(pair<long long, long long> &a, pair<long long, long long> &b) { return (a.first == b.first && a.second == b.second); } bool is_in_field(int h, int w, const pair<long long, long long> &point) { const int c = point.second; const int r = point.first; return (0 <= c && c < w) && (0 <= r && r < h); } void init() { for (int i = (0); i < (field.size()); ++i) { for (int t = (0); t < (field[i].size()); ++t) { field[i][t] = initial_number; } } } void shortest(long long sy, long long sx) { init(); pair<long long, long long> c[4]; c[0].first = 0; c[0].second = 1; c[1].first = 0; c[1].second = -1; c[2].first = 1; c[2].second = 0; c[3].first = -1; c[3].second = 0; queue<pair<long long, long long> > Q; pair<long long, long long> s; s.first = sy; s.second = sx; field[sy][sx] = 0; Q.push(s); while (Q.empty() == false) { pair<long long, long long> now = Q.front(); Q.pop(); for (int u = 0; u < 4; u++) { pair<long long, long long> x = c[u]; pair<long long, long long> next = plus(now, x); if (is_in_field(h, w, next)) { if (p[next.first][next.second] == '.') { if (field[next.first][next.second] == initial_number) { field[next.first][next.second] = field[now.first][now.second] + 1; Q.push(next); } else { } } } } } } }; bool Ischanged(long long a, long long b) { if (a * b < 0) { return true; } else { return false; } } int main() { long long n; cin >> n; vector<long long> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; long long sum = 0; long long count = 0; for (int i = (0); i < (n); ++i) { if (i == 0) { sum += a[i]; if (sum == 0 && n != 1) { if (a[1] >= 0) { sum = -1; } else { sum = 1; } } count++; } else { long long was = sum; sum += a[i]; if (Ischanged(was, sum)) { continue; } else { if (sum < 0) { count += abs(sum) + 1; sum = 1; } else { count += abs(sum) + 1; sum = -1; } } } } cout << count; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(int(i) for i in input().split()) b = [] for i in range(0,len(a)): b.append(a[i]) def solve(cnt,A,N): for i in range(1, N): if sum(A[0:i])>0: while sum(A[0:i+1])>=0: A[i]-=1 cnt+=1 else: while sum(A[0:i+1])<=0: A[i]+=1 cnt+=1 return cnt cnt1=0 if b[0]<=0: while b[0]<=0: b[0]+=1 cnt1+=1 ans1=solve(cnt1,b,n) cnt2=0 if a[0]>=0: while a[0]>=0: a[0]-=1 cnt2+=1 ans2=solve(cnt2,a,n) print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n=int(input()) a=[int(i) for i in input().split()] ap = np.array(a) an = np.array(a) #+-+-... if ap[0] <= 0: ap[0] = 1 for i in range(1, n): if sum(ap[:i+1]) <= 0 and i%2 == 0: ap[i] = 1 - sum(ap[:i]) if sum(ap[:i+1]) >= 0 and i%2 == 1: ap[i] = -1 - sum(ap[:i]) #-+-+... if an[0] >= 0: an[0] = -1 for i in range(1, n): if sum(an[:i+1]) <= 0 and i%2 == 1: an[i] = 1 - sum(an[:i]) if sum(an[:i+1]) >= 0 and i%2 == 0: an[i] = -1 - sum(an[:i]) print(min(sum(abs(np.array(a) - ap)), sum(abs(np.array(a) - an))))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void fnInput(vector<int>& rvnNum) { int nSize; cin >> nSize; rvnNum.resize(nSize); for (int& rnElm : rvnNum) cin >> rnElm; } int fnSignChgTimes(const vector<int>& cnrvnNum) { vector<int> vnTimes(2); for (int nParity = 0; nParity < 2; nParity++) { int nTimes = 0; int nSum = 0; for (int n = 0; n < cnrvnNum.size(); n++) { nSum += cnrvnNum[n]; if (n % 2 == nParity) if (nSum > 0) ; else { nTimes += 1 - nSum; nSum = 1; } else if (nSum >= 0) { nTimes += 1 + nSum; nSum = -1; } else ; } vnTimes[nParity] = nTimes; } auto itElm = min_element(begin(vnTimes), end(vnTimes)); return *itElm; } int main() { vector<int> vnNum; fnInput(vnNum); cout << fnSignChgTimes(vnNum) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int a, b = 0, c = 0; int n; cin >> n >> a; b += a; for (int i = 1; i < n; i++) { cin >> a; while ((a + b) * b >= 0) { if (a + b > 0) a--; else if (a + b < 0) a++; else if (b > 0) a--; else if (b < 0) a++; c++; } b += a; } cout << c << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> x; int temp, ans = 0; for (int i = 0; i != n; ++i) { cin >> temp; x.push_back(temp); } if (!x[0]) { x[0] = 1; ++ans; int val, ind; for (int i = 1; i != n; ++i) { if (!x[i]) { val = x[i]; ind = i; break; } } if ((val > 0 && ind % 2) || (val < 0 && !(ind % 2))) x[0] = -1; } int sum = x[0]; for (int i = 1; i != n; ++i) { int sum2 = sum + x[i]; if (sum * sum2 >= 0) { ans += abs(sum2) + 1; if (sum < 0) sum2 = 1; else sum2 = -1; } sum = sum2; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i as = gets.split(' ').map { |e| e.to_i } x = 0 bs = [] as.each { |e| x += e bs << x } # p bs memo = 0 ans = 0 for i in (1..(n - 1)) a, b = bs[i - 1], bs[i] a += memo b += memo if a >= 0 && b >= 0 d = b + 1 memo -= d ans += d elsif a <= 0 && b <= 0 d = -1 * b + 1 memo += d ans += d end end puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int inf = (1 << 30); const int mod = 1000000007; using ll = long long; using namespace std; int main() { ll n; cin >> n; vector<ll> a(n); for (auto &k : a) cin >> k; ll zcnt = 0; ll ans = 0; ll sum = 0; ll sign = 0; for (int i = 0; i < n; ++i) { if (a[i] == 0) ++zcnt; else break; } if (zcnt == n) { cout << 2 * n - 1 << endl; return 0; } if (zcnt > 0) { ans += 2 * zcnt - 1; sum = sign = (a[zcnt] > 0) ? -1 : 1; } else { sum = a[0]; sign = (sum > 0) ? 1 : -1; zcnt = 1; } for (int i = zcnt; i < n; ++i) { sign *= -1; ll tempsum = sum + a[i]; ll sumsign = (tempsum > 0) ? 1 : -1; if (sumsign != sign) { ans += abs(abs(sum - sign) * sign - a[i]); sum = sign; } else { sum += a[i]; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int number[100001]; int N; int sum[100001]; int main() { int mul = 0; long long int answer = 0; int fugou = 0; scanf("%d", &N); for (int i = 0; i < N; i++) { scanf("%d", &(number[i])); sum[0] = number[0]; mul += number[i]; if (i > 0) { if (sum[i - 1] * mul >= 0) { answer += (long long int)abs(mul) + 1; if (sum[i - 1] < 0) { mul += abs(mul) + 1; sum[i] += abs(mul) + 1; } if (sum[i - 1] > 0) { mul -= abs(mul) + 1; sum[i] -= abs(mul) + 1; } } else { sum[i] = mul; } } } printf("%lld\n", answer); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = [int(ai) for ai in input().split()] def search(a, flip=False): if flip: count = 0 else: count = abs(a[0]) + 1 a[0] = 1 if a[0] < 0 else -1 a_sum = a[0] for ai in a[1:]: tmp_sum = a_sum + ai if tmp_sum < 0 and a_sum < 0: c = +1 - tmp_sum a_sum = 1 elif tmp_sum > 0 and a_sum > 0: c = -1 - tmp_sum a_sum = -1 elif tmp_sum == 0 and a_sum < 0: c = 1 a_sum = 1 elif tmp_sum == 0 and a_sum > 0: c = 1 a_sum = -1 else: c = 0 count += abs(c) a_sum = tmp_sum + c return count print(min(search(a, False), search(a, True)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
def rec(ary, n, i, sum, cnt) return cnt if i == n if sum < 0 sum += ary[i] if sum <= 0 diff = -sum+1 cnt += diff sum += diff end elsif sum > 0 sum += ary[i] if sum >= 0 diff = sum+1 cnt += diff sum -= diff end elsif sum == 0 # never if ary[i+1] > 0 sum -= 1 cnt += 1 else sum += 1 cnt += 1 end end rec(ary, n, i+1, sum, cnt) end # main n = gets.to_i ary = gets.split(' ').map(&:to_i) puts rec(ary, n, 1, ary[0], 0)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) cin >> a[i]; int cnt = 0; if (a[0] >= 0) { for (int i = 0; i < n; ++i) { if (i % 2 == 0) { int sum = 0; for (int j = 0; j <= i; ++j) { sum += a[j]; } if (sum <= 0) { cnt += abs(sum) + 1; a[i] += abs(sum) + 1; } } else { int sum = 0; for (int j = 0; j <= i; ++j) { sum += a[j]; } if (sum >= 0) { cnt += abs(sum) + 1; a[i] += -(abs(sum) + 1); } } } } else { for (int i = 0; i < n; ++i) { if (i % 2 == 0) { int sum = 0; for (int j = 0; j <= i; ++j) { sum += a[j]; } if (sum >= 0) { cnt += abs(sum) + 1; a[i] += -(abs(sum) + 1); } } else { int sum = 0; for (int j = 0; j <= i; ++j) { sum += a[j]; } if (sum <= 0) { cnt += abs(sum) + 1; a[i] += abs(sum) + 1; } } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# input = sys.stdin.readline from bisect import * from collections import * from heapq import * # import functools # import itertools # import math n=int(input()) A=list(map(int,input().split())) temp=A[0] if temp<0: flag=0 if temp>0: flag=1 count=0 for i in range(1,n): temp+=A[i] if flag: if temp>=0: count+=temp-(-1) temp=-1 flag=0 else: if temp<=0: count+=1-temp temp=1 flag=1 #print(temp,flag) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- n = int(input()) an = list(map(int, input().split())) sum = an[0] ans = 0 for i in range(1,n): if sum * (sum + an[i]) < 0: sum += an[i] else: if sum > 0: ans += abs(sum + an[i] + 1) sum = -1 else: ans += abs(sum + an[i] - 1) sum = 1 ans1 = ans if an[0] > 0: sum = -1 else: sum = 1 ans = abs(an[0])+1 for i in range(1, n): if sum * (sum + an[i]) < 0: sum += an[i] else: if sum > 0: ans += abs(sum + an[i] + 1) sum = -1 else: ans += abs(sum + an[i] - 1) sum = 1 print(ans1, ans) print(min([ans1, ans]))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> A(N); for (int x = 0; x < (N); x++) { cin >> A.at(x); } long long sign = A.at(0); long long ans = 0; for (int x = 0; x < (N - 1); x++) { if (sign < 0) { if (sign + A.at(x + 1) <= 0) { while (sign + A.at(x + 1) <= 0) { A.at(x + 1)++; ans++; } } } else { if (sign + A.at(x + 1) >= 0) { while (sign + A.at(x + 1) >= 0) { A.at(x + 1)--; ans++; } } } sign += A.at(x + 1); } cout << ans << endl; ; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum[n]; sum[0] = a[0]; long long ans = 0; if (sum[0] == 0) { ans = 1; sum[0] = 1; for (int i = 0; i < n; i++) { if (a[i] != 0) { sum[0] = abs(a[i]) / a[i] * pow(-1, (i % 2)); } } } for (int i = 1; i <= (int)(n - 1); i++) { long long t = sum[i - 1] + a[i]; if (t == 0) { ans += 1; sum[i] = -abs(sum[i - 1]) / sum[i - 1]; } else if (abs(t) / t != abs(sum[i - 1]) / sum[i - 1]) { sum[i] = t; continue; } else { ans += abs(t) + 1; sum[i] = -abs(t) / t; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using pint = pair<int, int>; using pll = pair<ll, ll>; const long long MOD = 1000000007; ll N, a[100010]; signed main() { cin >> N; for (int(i) = 0; (i) < (N); ++(i)) cin >> a[i]; ll ans = 0; if (a[0] == 0) { ll i = 0; while (i < N && a[i] == 0) i++; if (i == N || a[i] < 0) a[0] = 1; else a[0] = -1; ans++; } ll sum = a[0]; for (int(i) = (1); (i) < (N); ++(i)) { if (sum > 0) { ans += max(0LL, sum + a[i] + 1); a[i] -= max(0LL, sum + a[i] + 1); } else if (sum < 0) { ans += max(0LL, -a[i] - sum + 1); a[i] += max(0LL, -a[i] - sum + 1); } sum += a[i]; } cout << (ans) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, suma = 0, sumb = 0; cin >> n; bool plus = true; for (int i = 0; i < (n); i++) { int a, b; cin >> b; a = b; while (plus && suma + a <= 0) { a++; ansa++; } while (!plus && suma + a >= 0) { a--; ansa++; } while (plus && sumb + b >= 0) { b--; ansb++; } while (!plus && sumb + b <= 0) { b++; ansb++; } suma += a; sumb += b; plus = !plus; } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(_) for _ in input().split()] ans = 0 s = A[0] i = 1 while i < N: a = A[i] # print(i, s, ans) sign = (s // abs(s)) abs_min = abs(s) + 1 if a == 0: ans += abs_min s = -sign i += 1 continue abs_a = abs(a) a_sign = (a // abs_a) if a_sign == sign: A[i] = 0 ans += abs_a else: if abs_min <= abs_a: s = (abs_a - abs(s)) * a_sign else: ans += abs_min - abs_a s = -sign i += 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int count = 0; vector<int> a(100000); cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } vector<long long int> sum(100000); sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[i] * sum[i - 1] >= 0) { if (sum[i - 1] < 0) { count += 1 - sum[i]; sum[i] = 1; } else { count += sum[i] + 1; sum[i] = -1; } } } cout << count; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n, f = 1, pn = 0, mn = 0, p = 0, m = 0, i, t; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &t); pn += t; mn += t; if (pn * f <= 0) { p += (pn * f * -1) + 1; pn = f; } if (mn * f >= 0) { m += (mn * f) + 1; mn = f * -1; } f *= -1; } printf("%d", p < m ? p : m); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; const int MOD = 1000000007; const int mod = 1000000007; const int INF = 1000000000; const long long LINF = 1e18; const int MAX = 510000; bool code(long long int n) { if (n < 0) return 1; else if (n > 0) return 0; } int main() { int n; long long int sum = 0; long long int ans = 0; long long int ans2 = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } if (a.at(0) != 0) { sum = a.at(0); for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << ans << endl; return 0; } else if (a.at(0) == 0) { sum = -1; ans = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } long long int sum2 = 1; ans2 = 1; for (int i = 1; i < n; i++) { if (sum2 + a.at(i) == 0) { ans2++; if (sum2 > 0) sum2 = -1; else if (sum2 < 0) sum2 = 1; } else if (code(sum2 + a.at(i)) == code(sum2)) { ans2 += abs(sum2 + a.at(i)) + 1; if (sum2 > 0) sum2 = -1; else if (sum2 < 0) sum2 = 1; } else { sum2 = a.at(i) + sum2; } } if (ans > ans2) cout << ans2 << endl; else { cout << ans << endl; } } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); int n; cin >> n; long long a, sum1 = 0, sum2 = 0; int ans1 = 0, ans2 = 0; for (int i = 1; i <= n; ++i) { cin >> a; sum1 += a; sum2 += a; if (i % 2 != 0) { if (sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } if (sum2 >= 0) { ans2 += 1 + sum2; sum2 = -1; } } else { if (sum1 >= 0) { ans1 += 1 + sum1; sum1 = -1; } if (sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } } cout << min(ans1, ans2) << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100000]; int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long count = 0; bool f; if (a[0] == 0) { for (int i = 1; i < n; i++) { if (a[i] != 0) { if (a[i] > 0) { if (i % 2 == 0) { sum--; count--; break; } else { sum++; count++; break; } } else { if (i % 2 == 0) { sum++; count++; break; } else { sum--; count--; break; } } } } } if (sum == 0) { sum++; count++; } if (sum > 0) f = true; else f = false; for (int i = 1; i < n; i++) { if (f) { if (sum + a[i] < 0) { sum += a[i]; f = false; continue; } count += (sum + a[i]) + 1; sum = -1; f = false; } else { if (sum + a[i] > 0) { sum += a[i]; f = true; continue; } count -= (sum + a[i]); count++; sum = 1; f = true; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N, sum, ans, ans2; cin >> N; sum = 0; vector<long long> x(N); for (int i = 0; i < N; i++) { cin >> x[i]; } for (int i = 0; i < N; i++) { sum += x[i]; if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } if (i % 2 == 1 && sum >= 0) { ans += 1 + sum; sum = -1; } } ans2 = ans; ans = 0; sum = 0; for (int i = 0; i < N; i++) { sum += x[i]; if (i % 2 == 1 && sum <= 0) { ans += 1 - sum; sum = 1; } if (i % 2 == 0 && sum >= 0) { ans += 1 + sum; sum = -1; } } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static const int INF = 2000000000; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; long long ans = 0; long long wa; if (a[0] != 0) { wa = a[0]; for (int i = 1; i < n; i++) { if (wa > 0) { wa += a[i]; if (wa < 0) continue; else { ans += wa + 1; wa = -1; } } else { wa += a[i]; if (wa > 0) continue; else { ans += 1 - wa; wa = 1; } } } cout << ans << endl; } else { long long ans1 = 1, ans2 = 1; wa = 1; for (int i = 1; i < n; i++) { if (wa > 0) { wa += a[i]; if (wa < 0) continue; else { ans1 += wa + 1; wa = -1; } } else { wa += a[i]; if (wa > 0) continue; else { ans1 += 1 - wa; wa = 1; } } } wa = -1; for (int i = 1; i < n; i++) { if (wa > 0) { wa += a[i]; if (wa < 0) continue; else { ans2 += wa + 1; wa = -1; } } else { wa += a[i]; if (wa > 0) continue; else { ans2 += 1 - wa; wa = 1; } } } if (ans1 < ans2) cout << ans1 << endl; else cout << ans2 << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.strip.to_i a = gets.strip.split.map(&:to_i) cum_a = [a.first] (1..n-1).to_a.each do |index| cum_a[index] = cum_a[index-1]+a[index] end # mins first minus_first_result = 0 minus_first_a = cum_a.dup (0..n-1).to_a.each do |index| current = minus_first_a.shift current_count=0 if index.even? && current>=0 current_count = (current+1) minus_first_a = minus_first_a.map {|x| x-current_count } elsif index.odd? && current<=0 current_count = (-1*current+1) minus_first_a = minus_first_a.map {|x| x+current_count } end minus_first_result += current_count end plus_first_result = 0 plus_first_a = cum_a.dup (0..n-1).to_a.each do |index| current = plus_first_a.shift current_count=0 if index.even? && current<=0 current_count = (-1*current+1) plus_first_a = plus_first_a.map {|x| x+current_count } elsif index.odd? && current>=0 current_count = (current+1) plus_first_a = plus_first_a.map {|x| x-current_count } end plus_first_result += current_count end p [plus_first_result, minus_first_result].min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; long long prevArraySum = a[0]; long long currentArraySum = a[0]; long long res = 0; if (a[0] == 0) { res = 1; prevArraySum = 1; currentArraySum = 1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } long long res1 = res; res = 1; for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } res = min(res, res1); } else { for (int i = (1); i < (n); ++i) { if (prevArraySum > 0) { currentArraySum = prevArraySum + a[i]; if (currentArraySum >= 0) { res += abs(-1 - currentArraySum); prevArraySum = -1; } else { prevArraySum = currentArraySum; } } else { currentArraySum = prevArraySum + a[i]; if (currentArraySum <= 0) { res += abs(1 - currentArraySum); prevArraySum = 1; } else { prevArraySum = currentArraySum; } } } } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; typedef vector<vector<int> > vii; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)n; i++) cin >> a[i]; long long sum = a[0], op_cnt = 0; for (int i = (int)1; i < (int)n; i++) { if (sum < 0 && sum + a[i] <= 0) { op_cnt += (-1) * (sum + a[i]) + 1; sum = 1; } else if (sum > 0 && sum + a[i] >= 0) { op_cnt += sum + a[i] + 1; sum = -1; } else sum += a[i]; } cout << op_cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } long long gcd(long long a, long long b) { if (b == 0) return a; else return gcd(b, a % b); } long long keta(long long n) { string s = to_string(n); long long num = s.size(); return num; } const long long INF = 1LL << 60; const int dh[4] = {1, 0, -1, 0}; const int dw[4] = {0, 1, 0, -1}; struct Edge { int to; int weight; Edge(int t, int w) : to(t), weight(w) {} }; using Graph = vector<vector<Edge>>; using P = pair<long long, int>; class UnionFind { public: vector<int> Parent; UnionFind(int n) { Parent = vector<int>(n, -1); } int root(int a) { if (Parent[a] < 0) return a; return Parent[a] = root(Parent[a]); } bool issame(int a, int b) { return root(a) == root(b); } int size(int a) { return -Parent[root(a)]; } bool merge(int a, int b) { a = root(a); b = root(b); if (a == b) return false; if (size(a) < size(b)) swap(a, b); Parent[a] += Parent[b]; Parent[b] = a; return true; } }; vector<int> MP(string s) { vector<int> A(s.size() + 1); A[0] = -1; int j = -1; for (int i = 0; i < s.size(); i++) { while (j >= 0 && s[i] != s[j]) j = A[j]; j++; A[i + 1] = j; } return A; } vector<int> Manacher(string s) { vector<int> R(s.size()); int i = 0, j = 0; while (i < s.size()) { while (i - j >= 0 && i + j < s.size() && s[i - j] == s[i + j]) ++j; R[i] = j; int k = 1; while (i - k >= 0 && i + k < s.size() && k + R[i - k] < j) R[i + k] = R[i - k], k++; i += k; j -= k; } return R; } vector<int> Z_algorithm(string& s) { vector<int> Z(s.size()); Z[0] = s.size(); int i = 1, j = 0; while (i < s.size()) { while (i + j < s.size() && s[j] == s[i + j]) j++; Z[i] = j; if (j == 0) { ++i; continue; } int k = 1; while (i + k < s.size() && k + Z[k] < j) Z[i + k] = Z[k], ++k; i += k; j -= k; } return Z; } const int MAX = 1e6 + 1; long long fac[MAX], finv[MAX], inv[MAX]; void COMinit() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for (int i = 2; i < MAX; i++) { fac[i] = fac[i - 1] * i % (1000000007); inv[i] = (1000000007) - inv[(1000000007) % i] * ((1000000007) / i) % (1000000007); finv[i] = finv[i - 1] * inv[i] % (1000000007); } } long long COM(long long n, long long k) { if (n >= MAX) { long long tmp = 1; for (int i = 0; i < k; i++) { tmp *= (n - i); tmp %= (1000000007); } return tmp * finv[k] % (1000000007); } if (n < k) return 0; if (n < 0 || k < 0) return 0; return fac[n] * (finv[k] * finv[n - k] % (1000000007)) % (1000000007); } long long POW(long long x, long long n) { long long ret = 1; if (n < 0) { n *= -1; x = inv[x]; } while (0 < n) { if (n % 2 == 0) { x = x * x % (1000000007); n /= 2; } else { ret = ret * x % (1000000007); n--; } } return ret; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; vector<long long> s(n); long long ans1 = 0, ans2 = 0; for (int i = 0; i < n; i++) { if (i == 0) s[i] = a[i]; else s[i] = s[i - 1] + a[i]; if (i % 2 == 0) { if (s[i] < 0) { ans1 += 1 - s[i]; s[i] = 1; } } else { if (s[i] > 0) { ans1 += s[i] + 1; s[i] = -1; } } } for (int i = 0; i < n; i++) { if (i == 0) s[i] = a[i]; else s[i] = s[i - 1] + a[i]; if (i % 2 == 1) { if (s[i] <= 0) { ans2 += 1 - s[i]; s[i] = 1; } } else { if (s[i] >= 0) { ans2 += s[i] + 1; s[i] = -1; } } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) c = 0 s = a[0] fugo = a[0] # print(a) for i in range(1, n): s = s + a[i] while fugo * s >= 0: # 符号が一緒だったら if a[i - 1] < 0: s += 1 else: s -= 1 c += 1 # print(s, c) fugo = s # print(s, c, fugo) print(c)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const long long mod2 = 998244353; long long bin(long long bina) { long long ans = 0; for (long long i = 0; bina > 0; i++) { ans = ans + (bina % 2) * pow(10, i); bina = bina / 2; } return ans; } bool prime(long long n) { for (long long i = 2; i <= sqrt(n); i++) { if (n % i == 0) return false; } return n != 1; } long long gcd(long long x, long long y) { if (y == 0) return x; return gcd(y, x % y); } long long lcm(long long x, long long y) { return x * y / gcd(x, y); } long long kai(long long x) { if (x == 0) return 1; return kai(x - 1) * x % mod; } long long mod_pow(long long x, long long y, long long m) { long long res = 1; while (y > 0) { if (y & 1) { res = res * x % m; } x = x * x % m; y >>= 1; } return res; } long nCr(long long n, long long r) { long long ans = 1; for (long long i = n; i > n - r; --i) { ans = ans * i; } for (long long i = 1; i < r + 1; ++i) { ans = ans / i; } return ans; } struct union_find { long long par[200010], size_[200010]; void init(long long x) { for (long long i = 0; i < x; ++i) { par[i] = i; size_[i] = 1; } } long long find(long long x) { if (par[x] == x) return x; return par[x] = find(par[x]); } void unite(long long x, long long y) { x = find(x); y = find(y); if (x == y) return; if (size_[x] < size_[y]) { par[x] = y; size_[y] += size_[x]; } else { par[y] = x; size_[x] += size_[y]; } } }; long long a[100010]; signed main() { long long n; cin >> n; for (long long i = 0; i < n; ++i) { cin >> a[i]; } long long ans = 0, ans2 = 0; long long sum = 0; for (long long i = 0; i < n; ++i) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { ans += 1 - sum; sum = 1; } } else { if (sum > 0) { ans += sum + 1; sum = -1; } } } sum = 0; for (long long i = 0; i < n; ++i) { sum += a[i]; if (i % 2 != 0) { if (sum <= 0) { ans2 += 1 - sum; sum = 1; } } else { if (sum > 0) { ans2 += sum + 1; sum = -1; } } } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <cstdio> #include <iostream> #define ll long long const int MAXN = 1e5 + 7; const ll Inf = 1ll << 60; using namespace std; ll a[MAXN]; ll sum, ans = INF, res, n; int main() { bool flag = 0; cin>>n; for(int i = 1; i <= n; i++) cin>>a[i]; for(int i = 1; i <= n; i++) { sum += a[i]; if(!flag) { // if flag is 0 , means sum is postive if(sum <= 0) { res += 1 - sum; sum = 1; } }else { if(sum >= 0) { res += sum + 1; sum = -1; } } flag ^= 1; } if(res < ans) ans = res; flag = 0, res = sum = 0; for(int i = 1; i <= n; i++) { sum += a[i]; if(!flag) { // if flag is 0 , means sum is negative if(sum >= 0) { res += sum + 1; sum = -1; } }else { if(sum <= 0) { res += 1 - sum; sum = 1; } } flag ^= 1; } if(res < ans) ans = res; cout<<ans<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, suma = 0, sumb = 0; cin >> n; for (int i = 0; i < (n); i++) { int c; cin >> c; suma += c; sumb += c; if (i % 2 == 0) { if (suma <= 0) { ansa += 1 - suma; suma = 1; } if (sumb >= 0) { ansb += sumb + 1; sumb = -1; } } else { if (suma >= 0) { ansa += suma + 1; suma = -1; } if (sumb <= 0) { ansb += 1 - sumb; sumb = 1; } } } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long func(vector<long long int>& s, vector<int>& hugo, long long int k) { long long int ret = 0; for (int i = 1; i < n; i++) { if (s[i] == k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret++; k--; } else { hugo[i] = 0; ret++; k++; } } else if (s[i] > k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret += s[i] - k + 1; k += s[i] - k + 1; } else { hugo[i] = 0; } } else { if (hugo[i - 1] == 0) { hugo[i] = 1; } else { hugo[i] = 0; ret += k - s[i] + 1; k -= k - s[i] + 1; } } } return ret; } void solve() { cin >> n; vector<long long int> v(n), sum(n), sum2(n); for (int i = 0; i < n; i++) { cin >> v[i]; if (i == 0) sum[i] = v[i]; else sum[i] = sum[i - 1] + v[i]; } vector<int> hugo(n); sum2 = sum; long long int ans = 0; if (sum[0] == 0) { vector<int> hugo2(n); hugo[0] = 0; ans = min(func(sum, hugo, -1), func(sum2, hugo2, 1)); } else if (sum[0] > 0) { hugo[0] = 0; ans = func(sum, hugo, 0); } else { hugo[0] = 1; ans = func(sum, hugo, 0); } cout << ans << endl; return; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] tmp1 = 0 tmp2 = 0 S = [0]*n if a[0] > 0: S[0] = a[0] else: S[0] = 1 tmp1 += abs(1-a[0]) for i in range(1,n): tmpS = a[i] + S[i-1] if tmpS*S[i-1] < 0: S[i] = tmpS continue else: if i%2 == 0: S[i] = 1 tmp1 += abs(1 - tmpS) else: S[i] = -1 tmp1 += abs(-1-tmpS) if a[0] < 0: S[0] = a[0] else: S[0] = -1 tmp2 += abs(-1-a[0]) for i in range(1,n): tmpS = a[i] + S[i-1] if tmpS*S[i-1] < 0: continue else: if i%2 == 1: S[i] = -1 tmp2 += abs(-1 - tmpS) else: S[i] = 1 tmp2 += abs(1-tmpS) print(min(tmp1,tmp2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(X): if X==0: return 0 else: return [-1,1][X>0] N = int(input()) A = [int(T) for T in input().split()] Count = 0 SumNow = 0 SumRes = 0 for TA in range(0,N): SumNow += A[TA] if SumNow==0: if sign(SumRes)==1: Count += 1 SumNow = -1 else: Count += 1 SumNow = 1 else: if sign(SumNow)==sign(SumRes)==1: Count += SumNow+1 SumNow = -1 elif sign(SumNow)==sign(SumRes)==-1: Count += 1-SumNow SumNow = 1 SumRes = SumNow print(Count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline sys.setrecursionlimit(2147483647) INF=float("inf") MOD=10**9+7 # A = [ int(input()) for _ in range(N) ] ############################## N = int(input()) A = list(map(int, input().split())) def get_count(summary): count = 0 for i in range(1, N): # print(summary) # 次はマイナス if summary > 0: # 条件を満たしてる? if (summary + A[i]) < 0: summary += A[i] else: # プラスになっちゃってるので修正 summary += A[i] count += abs(-1-summary) summary = -1 # 次はプラス else: if (summary + A[i]) > 0: summary += A[i] else: # マイナスになっちゃってるので修正 summary += A[i] count += abs(1-summary) summary = 1 return count if A[0] > 0: plus = get_count(A[0]) minus = get_count(-1*A[0]) minus += (A[0]+1) else: minus = get_count(A[0]) plus = get_count(-1*A[0]) plus += abs(-1-A[0]) print(min(plus, minus))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, count = 0, type = 1; long long a[100009], res; cin >> N; cin >> a[0]; res = a[0]; if (a[0] == 0) { a[0] = 1; count++; } else if (a[0] < 0) type = -1; long long sum = a[0]; for (int i = 1; i < N; i++) { cin >> a[i]; sum += a[i]; type = -type; if (sum == 0) { sum += type; count++; } else if ((sum > 0) && (type == -1)) { count += sum + 1; sum = -1; } else if ((sum < 0) && (type == 1)) { count += -sum + 1; sum = 1; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "math" "os" "strconv" ) const pi = math.Pi var mod int = pow(10, 9) + 7 var Umod uint64 = 1000000007 var ans int64 func main() { reader.Split(bufio.ScanWords) n, _ := strconv.Atoi(read()) a := make([]int, n) for i := 0; i < n; i++ { a[i], _ = strconv.Atoi(read()) } sum := make([]int64, n) sum[0] = int64(a[0]) for i := 1; i < n; i++ { sum[i] += int64(a[i]) + sum[i-1] if (0 <= sum[i-1] && 0 <= sum[i]) || (sum[i-1] <= 0 && sum[i] <= 0) { // NGパターン if sum[i] < 0 { ans += 1 - sum[i] sum[i] = 1 } else if 0 < sum[i] { ans += sum[i] + 1 sum[i] = -1 } else { if sum[i-1] < 0 { ans += 1 - sum[i] sum[i] = 1 } else if 0 < sum[i-1] { ans += sum[i] + 1 sum[i] = -1 } } } } fmt.Println(ans) } /* ---------------------------------------- */ var reader = bufio.NewScanner(os.Stdin) func read() string { reader.Scan() return reader.Text() } func lcm(x, y int) int { return (x / gcd(x, y)) * y } func gcd(x, y int) int { if x%y == 0 { return y } else { r := x % y return gcd(y, r) } } var fac [1000000]int var finv [1000000]int var inv [1000000]int func combination_init() { fac[0], fac[1] = 1, 1 finv[0], finv[1] = 1, 1 inv[1] = 1 // invは a^(-1) mod p // pをaで割ることを考える // p/a*(a) + p%a = p // p/a*(a) + p%a = 0 (mod p) // -p%a = p/a*(a) (mod p) // -p%a *a^(-1)= p/a (mod p) // a^(-1)= p/a * (-p%a)^(-1) (mod p) // a^(-1) = for i := 2; i < 1000000; i++ { fac[i] = fac[i-1] * i % mod inv[i] = mod - inv[mod%i]*(mod/i)%mod finv[i] = finv[i-1] * inv[i] % mod } } func combination(x, y int) int { if x < y { return 0 } if fac[0] != 1 { combination_init() } return fac[x] * (finv[y] * finv[x-y] % mod) % mod //return fac[x] / (fac[y] * fac[x-y]) } func permutation(x, y int) int { if x < y { return 0 } if fac[0] != 1 { combination_init() } return fac[x] * (finv[x-y] % mod) % mod //return fac[x] / fac[x-y] } func max(x ...int) int { var res int = x[0] for i := 1; i < len(x); i++ { res = int(math.Max(float64(x[i]), float64(res))) } return res } func min(x ...int) int { var res int = x[0] for i := 1; i < len(x); i++ { res = int(math.Min(float64(x[i]), float64(res))) } return res } func pow(x, y int) int { return int(math.Pow(float64(x), float64(y))) } func abs(x int) int { return int(math.Abs(float64(x))) } func floor(x int) int { return int(math.Floor(float64(x))) } func ceil(x int) int { return int(math.Ceil(float64(x))) } type SortBy [][]int func (a SortBy) Len() int { return len(a) } func (a SortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a SortBy) Less(i, j int) bool { return a[i][0] < a[j][0] } type PriorityQueue []int func (h PriorityQueue) Len() int { return len(h) } func (h PriorityQueue) Less(i, j int) bool { return h[i] < h[j] } func (h PriorityQueue) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *PriorityQueue) Push(x interface{}) { *h = append(*h, x.(int)) } func (h *PriorityQueue) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i a = gets.split.map(&:to_i) b = a.dup ans0 = 0 if b[0] < 0 ans0 += -b[0] + 1 b[0] = 1 end (n-1).times do |i| b[i+1] += b[i] seki = b[i+1] * b[i] if seki < 0 next else sgn = b[i] > 0 ? 1 : -1 ans0 += (b[i+1]).abs + 1 b[i+1] = -sgn end end b = a.dup ans1 = 0 if b[0] > 0 ans1 += b[0] + 1 b[0] = -1 end (n-1).times do |i| b[i+1] += b[i] seki = b[i+1] * b[i] if seki < 0 next else sgn = b[i] > 0 ? 1 : -1 ans1 += (b[i+1]).abs + 1 b[i+1] = -sgn end end # p [ans0, ans1] puts ans0 < ans1 ? ans0 : ans1
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int abs(int a) { if (a < 0) return -a; else return a; } bool isDifAbs(long int a, long int b) { if (a * b < 0) return true; return false; } int main() { int n, tmp, ttmp, ans = 0; long int sum; bool isOk; cin >> n; cin >> sum; for (int i = 1; i < n; i++) { isOk = true; cin >> tmp; if (!isDifAbs(sum, sum + tmp)) { ttmp = tmp; if (sum < 0) tmp = abs(tmp) + 1; else if (sum > 0) tmp = -(abs(tmp) + 1); ans += abs(tmp - ttmp); } if (sum + tmp == 0) { if (sum < 0) tmp++; if (sum > 0) tmp--; ans++; } sum += tmp; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys sys.setrecursionlimit(10 ** 7) input = sys.stdin.readline n = int(input()) a = list( map(int, input().split())) from itertools import accumulate acc = a acc = list(accumulate(acc)) # a[i]+...+a[j]までは b[j+1]-b[i] def dfs(ind,prev,tmp,ans): if ind == n: return ans now = acc[ind] if prev +tmp > 0: if now + tmp >= 0: ans +=abs(now + tmp +1) tmp += -(now + tmp +1) elif prev +tmp < 0: if now + tmp <= 0: ans +=abs(now + tmp -1) tmp += -(now + tmp -1) return dfs(ind+1, now+tmp,tmp,ans) ansM = dfs(0,-1,0,0) ansP = dfs(0,+1,0,0) print(min(ansM,ansP))