Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100004], temp[100004]; long long solve() { long long ans = 0; for (int i = (2); i <= (int)(n); ++i) { if (a[i - 1] > 0) { if (a[i] + a[i - 1] < 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] + 1 + a[i - 1]); a[i] = -1; } else { if (a[i] + a[i - 1] > 0) { a[i] += a[i - 1]; continue; } ans += abs(a[i] - 1 + a[i - 1]); a[i] = 1; } } return ans; } int main() { scanf("%d", &n); for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]); long long ans = 0; if (!a[1]) { a[1] = 1; memcpy(temp, a, sizeof(a)); ans = solve() + 1; memcpy(a, temp, sizeof(temp)); a[1] = -1; ans = min(ans, solve() + 1); } else ans = solve(); printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; int a[n]; long long int s = 0; long long int ans = INT_MAX; int i; for (i = 0; i < n; i++) cin >> a[i]; s = a[0]; long long int p = 0; if (s > 0) { for (i = 1; i < n; i++) { if (i % 2) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = -1; ans = min(ans, p); p = a[0] + 1; for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } ans = min(ans, p); cout << ans << endl; } else if (s < 0) { for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = 1; ans = min(ans, p); p = (-1) * a[0] + 1; for (i = 1; i < n; i++) { if (i % 2 == 1) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } ans = min(ans, p); cout << ans << endl; } else { p = 1; s = 1; for (i = 1; i < n; i++) { if (i % 2) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } s = -1; ans = min(ans, p); p = 1; for (i = 1; i < n; i++) { if (i % 2 == 0) { if (s + a[i] < 0) { s += a[i]; } else { p += 1 + s + a[i]; s = -1; } } else { if (s + a[i] > 0) s += a[i]; else { p += 1 - s - a[i]; s = 1; } } } ans = min(ans, p); cout << ans << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) { cin >> a[i]; } long long sum = 0; long long ans = 0; for (int i = 0; i < N; i++) { sum += a[i]; if (i % 2 == 0) { if (sum < 0) { ans += -(sum) + 1; sum = 1; } else if (sum == 0) { ans++; sum = 1; } } else { if (sum > 0) { ans += sum + 1; sum = -1; } else if (sum == 0) { ans++; sum = -1; } } } sum = 0; long long ans2 = 0; for (int i = 0; i < N; i++) { sum += a[i]; if (i % 2 == 0) { if (sum < 0) { ans2 += -(sum) + 1; sum = 1; } else if (sum == 0) { ans2++; sum = 1; } } else { if (sum > 0) { ans2 += sum + 1; sum = -1; } else if (sum == 0) { ans2++; sum = -1; } } } cout << min(ans, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> clock_t CLOCK; using namespace std; using ll = long long; using ld = long double; using vll = vector<ll>; using vvll = vector<vector<ll>>; using mll = map<ll, ll>; using qll = queue<ll>; using P = pair<ll, ll>; constexpr ll INF = 0x3f3f3f3f3f3f3f3f; constexpr ld PI = 3.141592653589793238462643383279; ll get_digit(ll x) { return to_string(x).size(); } ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } vector<P> factorize(ll n) { vector<P> result; for (ll i = 2; i * i <= n; ++i) { if (n % i == 0) { result.push_back({i, 0}); while (n % i == 0) { n /= i; result.back().second++; } } } if (n != 1) { result.push_back({n, 1}); } return result; } vll divisor(ll n) { vll ret; for (ll i = 1; i * i <= n; i++) { if (n % i == 0) { ret.push_back(i); if (i * i != n) ret.push_back(n / i); } } sort(ret.begin(), ret.end()); return (ret); } signed main() { cin.tie(0); ios::sync_with_stdio(false); ll N; cin >> N; vll A(N); for (ll i = 0; i < (ll)(N); ++i) cin >> A[i]; ll ans = 0; ll current_num; ll before_sign = true; bool start_flag = false; for (ll i = 0; i < (ll)(N); ++i) { if (!start_flag) { if (A[i] == 0) { ans++; } else { before_sign = A[i] > 0; current_num = A[i]; start_flag = true; } continue; } current_num += A[i]; if (before_sign) { if (current_num >= 0) { ans += current_num + 1; current_num = -1; } } else { if (current_num <= 0) { ans += abs(current_num) + 1; current_num = 1; } } before_sign = !before_sign; } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int ans; int main() { int n; cin >> n; int arr[n]; for (int i = 0; i < n; i++) cin >> arr[i]; int prefix[n]; prefix[0] = arr[0]; for (int i = 1; i < n; i++) prefix[i] = prefix[i - 1] + arr[i]; int res = 0, cntr = 0; for (int i = 0; i < n; i++) { if (i % 2) { if (prefix[i] + cntr <= 0) { res += 1 - prefix[i] - cntr; cntr += 1 - prefix[i] - cntr; } } else { if (prefix[i] + cntr >= 0) { res += prefix[i] + cntr + 1; cntr -= prefix[i] + cntr + 1; } } } ans = res; res = 0; cntr = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (prefix[i] + cntr <= 0) { res += 1 - prefix[i] - cntr; cntr += 1 - prefix[i] - cntr; } } else { if (prefix[i] + cntr >= 0) { res += prefix[i] + cntr + 1; cntr -= prefix[i] + cntr + 1; } } } ans = min(ans, res); cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < (n); i++) cin >> a[i]; long long cnt = 0; long long s = 0; for (int i = 1; i < n; i++) { s += a[i - 1]; long long t = 0, u; if (s > 0) { u = (-1) * s - 1; if (u < a[i]) { t = a[i] - u; a[i] = u; } } else { u = (-1) * s + 1; if (u > a[i]) { t = u - a[i]; a[i] = u; } } cnt += t; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long l1[n + 1]; long long x = 0, s = 0; for (int i = 1; i <= n; i++) { cin >> l1[i]; x += l1[i]; if (i == 1 && l1[i] == 0 && l1[i + 1] <= 0) x++, s++, l1[i] = 1; else if (i == 1 && l1[i] == 0 && l1[i + 1] > 0) x--, s++, l1[i] = -1; if (i >= 2) { if (x - l1[i] <= 0 && x <= 0) { s += abs(-(x - l1[i]) + 1 - l1[i]); cout << abs(-(x - l1[i]) + 1 - l1[i]) << endl; x = 1; } else if (x - l1[i] >= 0 && x >= 0) { s += abs(-(x - l1[i]) - 1 - l1[i]); cout << abs(-(x - l1[i]) - 1 - l1[i]) << endl; x = -1; } } } cout << s << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = [int(i) for i in input().split()] b=a.copy() s0p = a[0] s0n = b[0] countp = 0 countn = 0 if a.count(0)==n: print(2*n+1) exit() if s0p<=0: s0p+=(abs(s0p)+1) countp+=1 if s0n>=0: s0n-=(abs(s0n)+1) countn+=1 for i in range(1,n): s1 = s0p+a[i] if s0p*s1>=0: if s1>0: a[i]-=(abs(s1)+1) countp+=(abs(s1)+1) elif s1<0: a[i]+=(abs(s1)+1) countp+=(abs(s1)+1) elif s1==0: if s0p>0: a[i]-=1 countp+=1 elif s0p<0: a[i]+=1 countp+=1 s0p += a[i] for i in range(1,n): s1 = s0n+b[i] if s0n*s1>=0: if s1>0: b[i]-=(abs(s1)+1) countn+=(abs(s1)+1) elif s1<0: b[i]+=(abs(s1)+1) countn+=(abs(s1)+1) elif s1==0: if s0n>0: b[i]-=1 countn+=1 elif s0n<0: b[i]+=1 countn+=1 s0n += b[i] print(countp if countp<=countn else(countn))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 30; long long a[111111]; int total[2], cnt[2]; int main() { int n; scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%lld", &a[i]); for (int i = 0; i < 2; i++) { for (int j = 1; j <= n; j++) { total[i] += a[j]; if ((i + j) % 2 == 0) { if (total[i] >= 0) { cnt[i] += total[i] + 1; total[i] = -1; } } else { if (total[i] <= 0) { cnt[i] += (1 - total[i]); total[i] = 1; } } } } cout << min(cnt[0], cnt[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) ans = 0 prev_sm = A[0] # total to i - 1 for i in range(1, N): # if prev_sum is plus and a is more minus than prev_sum. if prev_sm > 0 and prev_sm + A[i] < 0: pass # if prev_sum is plus and a is larger than or equal to prev_sum. elif prev_sm > 0 and prev_sm + A[i] >= 0: ans += prev_sm + A[i] + 1 A[i] -= prev_sm + A[i] + 1 # if prev_sum is minus and a is more plus than prev_sum. elif prev_sm < 0 and prev_sm + A[i] > 0: pass # if prev_sum is minus and a is more smaller than or equal to prev_sum. elif prev_sm < 0 and prev_sm + A[i] <= 0: ans += -(prev_sm + A[i] - 1) A[i] += -(prev_sm + A[i] + 1) prev_sm += A[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
public class Main { private static java.util.Scanner scanner = new java.util.Scanner(System.in); public static void main(String[] args) { int n = scanner.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = scanner.nextInt(); int m1 = 0, m2 = 0, s1 = 0, s2 = 0; for (int i = 0; i < n; i++) { s1 += a[i]; s2 += a[i]; if ((i & 1) == 0) { if (s1 <= 0) { m1 += Math.abs(s1) + 1; s1 = 1; } if (s2 >= 0) { m2 += Math.abs(s2) + 1; s2 = -1; } } else { if (s1 >= 0) { m1 += Math.abs(s1) + 1; s1 = 1; } if (s2 <= 0) { m2 += Math.abs(s2) + 1; s2 = -1; } } } System.out.println(Math.min(m1, m2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using pll = pair<ll, ll>; const ll MOD = 1e9 + 7; const ll LINF = 1LL << 60; const int INF = 1e9 + 7; vector<vector<ll>> g(100010); vector<ll> dist(100010); int main() { ll n; cin >> n; ll a[n]; for (ll i = 0; i < n; ++i) cin >> a[i]; ll ans = 0; ll sum; if (a[0] >= 0) { sum = -1; ans += a[0] + 1; } else { sum = a[0]; } for (ll i = 1; i < n; ++i) { if ((i & 1 && sum + a[i] <= 0) || (!(i & 1) && sum + a[i] >= 0)) { ans += abs(sum + a[i]) + 1; sum = -1 * (sum / abs(sum)); } else { sum += a[i]; } } ll res = 0; if (a[0] <= 0) { sum = 1; res += a[0] + 1; } else { sum = a[0]; } for (ll i = 1; i < n; ++i) { if ((!(i & 1) && sum + a[i] <= 0) || (i & 1 && sum + a[i] >= 0)) { res += abs(sum + a[i]) + 1; sum = -1 * (sum / abs(sum)); } else { sum += a[i]; } } ans = min(ans, res); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long total = a[0]; long long total2 = a[0]; long long ans = 0; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans += total + 1; total = -1; } else { ans += -total + 1; total = 1; } } total2 = total; } total = a[0]; total2 = a[0]; long long ans2 = 0; if (total2 > 0) { ans2 += total2 + 1; total2 = -1; } else { ans2 += -total2 + 1; total2 = 1; } total = total2; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans2 += total + 1; total = -1; } else { ans2 += -total + 1; total = 1; } } total2 = total; } total = a[0]; total2 = a[0]; long long ans3 = 0; if (total2 > 0) { ans3 += total2 - 1; total2 = 1; } else { ans3 += -total2 - 1; total2 = -1; } total = total2; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans3 += total + 1; total = -1; } else { ans3 += -total + 1; total = 1; } } total2 = total; } cout << min(min(ans, ans2), ans3) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = [int(i) for i in input().split()] b=a.copy() s0p = a[0] s0n = b[0] countp = 0 countn = 0 if a.count(0)==n: print(2*n+1) exit() if s0p<=0: while s0p<=0: s0p+=1 countp+=1 if s0n>=0: while s0n>=0: s0n-=1 countn+=1 """ for i in range(1,n): s1 = s0p+a[i] if s0p*s1>=0: if s1>0: a[i]-=(abs(s1)+1) countp+=(abs(s1)+1) elif s1<0: a[i]+=(abs(s1)+1) countp+=(abs(s1)+1) elif s1==0: if s0p>0: a[i]-=1 countp+=1 elif s0p<0: a[i]+=1 countp+=1 s0p += a[i] """ for i in range(1,n): s1 = s0n+b[i] if s0n*s1>=0: if s1>0: b[i]-=(abs(s1)+1) countn+=(abs(s1)+1) elif s1<0: b[i]+=(abs(s1)+1) countn+=(abs(s1)+1) elif s1==0: if s0n>0: b[i]-=1 countn+=1 elif s0n<0: b[i]+=1 countn+=1 s0n += b[i] print(countp if countp<=countn else(countn))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using VI = vector<int>; using VVI = vector<VI>; using VB = vector<bool>; using VVB = vector<VB>; using VS = vector<string>; using PII = pair<int, int>; using VPII = vector<PII>; using VL = vector<long long>; using VVL = vector<VL>; int n; VI A; long long numoperations() { long long ret = (A[0] == 0) ? 1 : 0; long long sum = (A[0] == 0) ? 1 : A[0]; assert(A[0] != 0); for (int i = 1; i < (int)n; ++i) { long long prevsum = sum; sum += A[i]; if (prevsum > 0 && sum >= 0) { ret += abs(-1 - sum); sum = -1; } else if (prevsum < 0 && sum <= 0) { ret += 1 - sum; sum = 1; } } return ret; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n; A = VI(n); for (int i = 0; i < (int)n; ++i) cin >> A[i]; cout << numoperations() << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long ans(int n, int *, int change); int main() { int n; int a[110000]; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; long long pAns, nAns; pAns = ans(n, a, 1); nAns = ans(n, a, -1); printf("%d\n", min(pAns, nAns)); } long long ans(int n, int *a, int change) { long long Ans = 0; long long sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; switch (change) { case -1: if (sum > -1) Ans += 1 + sum, sum = -1; change *= -1; break; case 1: if (sum < 1) Ans += 1 - sum, sum = 1; change *= -1; break; } } return Ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strconv" ) func abs(x int64) int64 { if x < 0 { return -x } return x } func min(a, b int64) int64 { if a < b { return a } return b } func main() { var n int fmt.Scan(&n) sc := bufio.NewScanner(os.Stdin) sc.Split(bufio.ScanWords) a := make([]int64, n) for i := 0; i < n; i++ { sc.Scan() x, _ := strconv.Atoi(sc.Text()) a[i] = int64(x) } ans := int64(0) if a[0] == 0 { a[0] = -1 ans = solve(a, 0) a[0] = 1 ans = min(ans, solve(a, 1)) } else { ans = min(solve(a, 0), solve(a, 1)) } fmt.Println(ans) } func solve(a []int64, ra int) int64 { s := int64(0) // S_i = \sum_i a[i] ans := int64(0) for i, e := range a { if i%2 == ra { if s+e >= 0 { ans += abs(-1 - s - e) s = -1 continue } } else { if s+e <= 0 { ans += abs(1 - s - e) s = 1 continue } } s += int64(e) } return ans }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) count = 0 sum_ = 0 for i in range(n): if sum_ * (sum_+a[i]) >=0 and i!=0: if sum_ > 0: count += sum_+a[i]+1 a[i] = -sum_-1 if sum_ < 0: count += abs(sum_+a[i])+1 a[i] = -sum_+1 sum_ += a[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using namespace std; int main() { int n; cin >> n; int a[n]; int sum = 0; for (long long i = 0; i < n; i++) { int x; cin >> x; sum += x; a[i] = sum; } int f = (a[0] > 0 ? 1 : -1); long long int ans = 0; long long int fix = 0; for (long long i = 0; i < n; i++) { if (f == 1) { if (a[i] + fix <= 0) { ans += 1 - (fix + a[i]); fix += 1 - (fix + a[i]); } f = -1; } else { if (a[i] + fix >= 0) { ans += (fix + a[i]) + 1; fix -= ((fix + a[i]) + 1); } f = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np N = int(input()) a_s = input().split() for i in range(N): a_s[i] = int(a_s[i]) a_s = np.array(a_s) def get_sign(x): if x>0: return +1 elif x<0: return -1 else: return 0 ans = 0 for i,a in enumerate(a_s): if i==0: if a!=0: S = a else: ans += 1 if np.all(a)==0: S = +1 else: for j in range(1,N): if a_s[j]!=0: S = get_sign(a_s[j])* ((-1)**j) break else: S_tmp = S0 + a if (get_sign(S_tmp)!=get_sign(S0))&(S_tmp!=0): S = S_tmp else: #S should be sign(S0)*-1 S = get_sign(S0) * (-1) ans += abs(S - S_tmp) S0 = S print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) cnt = 0 sum = [0]*n sum[0] = a[0] for i in range(1,n): sum[i] = sum[i-1]+a[i] if sum[i]*sum[i-1]<0: continue elif sum[i-1]*a[i]<0: cnt += abs(sum[i-1])-abs(a[i])+1 sum[i] = -1*(sum[i-1]//abs(sum[i-1])) else: cnt += abs(sum[i-1])+abs(a[i])+1 sum[i] = -1*(sum[i-1]//abs(sum[i-1])) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline sys.setrecursionlimit(2147483647) INF=float("inf") MOD=10**9+7 # A = [ int(input()) for _ in range(N) ] ############################## N = int(input()) A = list(map(int, input().split())) count = 0 summary = A[0] for i in range(1, N): # print(summary) # 次はマイナス if summary > 0: # 条件を満たしてる? if (summary + A[i]) < 0: summary += A[i] else: # プラスになっちゃってるので修正 summary += A[i] count += abs(-1-summary) summary = -1 # 次はプラス else: if (summary + A[i]) > 0: summary += A[i] else: # マイナスになっちゃってるので修正 summary += A[i] count += abs(1-summary) summary = 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define MOD 1000000007 # define INF (1 < <29) #define MODSET(d) if ((d) >= MOD) d %= MOD; #define MODNEGSET(d) if ((d) < 0) d = ((d % MOD) + MOD) % MOD; #define MODADDSET(d) if ((d) >= MOD) d -= MOD; #define MODADDWHILESET(d) while ((d) >= MOD) d -= MOD; //defines #define FILE_IO freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #define sc1(a,type) type a; cin>>a; #define sc2(a,b,type) type a,b; cin>>a>>b; #define sc3(a, b, c,type) type a,b,c; cin>>a>>b>>c; #define sc4(a, b, c, d,type) type a ,b,c,d; cin>>a>>b>>c>>d; #define nl cout<<"\n"; #define foreach(v, c) for(__typeof( (c).begin()) v = (c).begin(); v != (c).end(); ++v) #define revforeach(v, c) for(__typeof( (c).rbegin()) v = (c).rbegin(); v != (c).rend(); ++v) #define fastio ios_base::sync_with_stdio(0);cin.tie(0); #define re(i,b) for(int i=0;i<int(b);i++) #define re1(i,b) for(int i=1;i<=int(b);i++) #define all(c) c.begin(), c.end() #define rall(c) c.rbegin(),c.rend() #define mpresent(container, element) (container.find(element) != container.end()) //for map,set..etc (returns true/false value) #define vpresent(container, element) (find(all(container),element) != container.end()) //for vectors,strings,list,deque (returns true/false value) #define eb emplace_back #define mp make_pair #define fi first #define se second #define pb push_back #define pf push_front #define ins insert #define F first #define S second #define clr clear() #define sz(x) ((int)x.size()) #define dt distance #define test(t) int t; cin>>t; while(t--) #define csb(i) __builtin_popcount(i) #define csbll(i) __builtin_popcountll(i) #define clz(x) __builtin_clz(x) #define clzl(x) __builtin_clzl(x) #define cp(x) __builtin_parity(x) #define adv(v,num) advance(v,num)//used for lists and other structures that use iterators,when you can't access elements randomly ( iterator moves num positions) #define mod 1000000007 #define MAX_ARR 1000000 #define v2d(rowsize,colsize,type,name) vector<vector<type>> name(rowsize,vector<type>(colsize)); #define digits_in(i) (ll)log10(i)+1 // gives no of digits in a number #define sqr(x) (x)*(x) //does not apply for i==0 , add an excetion contition for n==0 ( cust return count 1 for that inseted of using this function) //typedef typedef string str; typedef long long ll; typedef unsigned long long ull; typedef vector<int> vi; typedef vector<ll> vll; typedef vector<str> vs; typedef vector<char> vc; typedef pair<int,int> pii; typedef pair<str,int> psi; typedef pair<int,str> pis; typedef vector<pii> vii; typedef map<int,int> mii; typedef map<ll,ll> mll; typedef map<str,int> msi; typedef map<char,int> mci; typedef map<int,str> mis; typedef unordered_map<int,int> umii; typedef unordered_map<str,int> umsi; typedef unordered_map<int,str> umis; typedef unordered_map<str,str> umss; typedef unordered_map<char,int> umci; typedef set<str> ss; typedef set<int> si; typedef unordered_set<str> uss; typedef unordered_set<int> usi; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> pbds; // #ifndef ONLINE_JUDGE // #include "debug.h" // #else // #define debug(args...) // #endif int main(){fastio // #ifndef ONLINE_JUDGE // FILE_IO // #endif vll v; test(t){ int temp;cin>>temp; v.pb(temp); } vll v1(all(v)); ll ct=0; re(i,sz(v)-1){ // debug(v[i] ,v[i]+v[i+1]); if( (v[i]<0 && v[i]+v[i+1]<0) || (v[i]>0 && v[i]+v[i+1]>0 || v[i]+v[i+1]==0) ){ if( v[i]>0 && v[i]+v[i+1]>0){ ct+=v[i]+v[i+1]+1; } else if(v[i]<0 && v[i]+v[i+1]<0 ){ ct+=abs(v[i]+v[i+1])+1; } else{ ct+=1; } v[i+1]= v[i]>0?-1:1; } else{ v[i+1]+=v[i]; } // debug(ct); } ll ct1=0; re(i,sz(v)-1)v1[i]*=-1; re(i,sz(v)-1){ // debug(v[i] ,v[i]+v[i+1]); if( (v1[i]<0 && v1[i]+v1[i+1]<0) || (v1[i]>0 && v1[i]+v1[i+1]>0 || v1[i]+v1[i+1]==0) ){ if( v1[i]>0 && v1[i]+v1[i+1]>0){ ct1+=v1[i]+v1[i+1]+1; } else if(v1[i]<0 && v1[i]+v1[i+1]<0 ){ ct1+=abs(v1[i]+v1[i+1])+1; } else{ ct1+=1; } v1[i+1]= v1[i]>0?-1:1; } else{ v1[i+1]+=v1[i]; } // debug(ct); } cout<<min(ct,ct1); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = (0); i < ((n)); i++) cin >> a[i]; int sum = 0; bool plus = true; int64_t ans1 = 0; for (int i = (0); i < ((n)); i++) { sum += a[i]; if (plus) { if (sum < 0) { ans1 += abs(sum) + 1; sum = 1; } } else { if (sum > 0) { ans1 += abs(sum) + 1; sum = -1; } } plus ^= true; } sum = 0; plus = false; int64_t ans2 = 0; for (int i = (0); i < ((n)); i++) { sum += a[i]; if (plus) { if (sum < 0) { ans2 += abs(sum) + 1; sum = 1; } } else { if (sum > 0) { ans2 += abs(sum) + 1; sum = -1; } } plus ^= true; } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) lst1 = list(map(int,input().split())) odd = sum(lst1[::2]) even = sum(lst1[1::2]) if odd < even: need = "-" else: need = "+" ans = 0 now = 0#現在のi迄の和 for i in range(n): if lst1[i] < 0: if need == "-": if abs(now) >= abs(lst1[i]): ans += now+lst1[i]+1 now = -1 else: now += lst1[i] need = "+" else: #need == "+" ans += abs(now)-lst1[i] + 1 now = 1 need = "-" else: if need == "+": if abs(now) >= abs(lst1[i]): ans += abs(now)-lst1[i]+1 now = 1 else: now += lst1[i] need = "-" else: #need == "-" ans += abs(now)+lst1[i]+1 now = -1 need = "+" print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N), S(N + 7); for (int i = 0; i < N; i++) { cin >> a[i]; } int ans = 0; S[0] = a[0]; if (S[0] == 0) { for (int i = 0; i < N; i++) { if (a[i] > 0) { if (i % 2 == 0) { S[0] = 1; ans++; break; } else { S[0] = -1; ans++; break; } } else if (a[i] < 0) { if (i % 2 == 0) { S[0] = -1; ans++; break; } else { S[0] = 1; ans++; break; } } else if (i == N - 1 && a[i] == 0) { ans = (2 * N) - 1; cout << ans << endl; return 0; } } } for (int i = 1; i < N; i++) { S[i] = S[i - 1] + a[i]; } for (int i = 1; i < N; i++) { if (S[i - 1] > 0 && S[i] >= 0) { ans += abs(S[i]) + 1; S[i] = -1; if (i != N - 1) { S[i + 1] = S[i] + a[i + 1]; } } else if (S[i - 1] < 0 && S[i] <= 0) { ans += abs(S[i]) + 1; S[i] = 1; if (i != N - 1) { S[i + 1] = S[i] + a[i + 1]; } } if (i != N - 1) { S[i + 1] = S[i] + a[i + 1]; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = list(map(int,input().split())) S = [0]*N S[0] = a[0] for i in range(1,N): S[i] = S[i-1] + a[i] count = [0]*N num = [0]*2 for i in range(2): value = 0 for j in range(N): if (S[j]+value)*((-1)**(i+j)) <= 0: num[i] += abs(S[j] + value - (-1)**(i+j)) value += (-1)**(i+j) - S[j] #print(i,num,value) #print(S) print(min(num))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans = 0; long long sum = 0; long long tmp = 0; for (int j = 0; j < 2; j++) { for (int i = 0; i < n; i++) { if (j == 0 && i == 0) { sum = a[i]; continue; } else if (j == 1 && i == 0) { tmp = ans; ans = 0; sum = a[i] > 0 ? -1 : 1; ans += a[i] > 0 ? a[i] + 1 : -(a[i] - 1); continue; } if (sum > 0) { if (sum + a[i] >= 0) { ans += sum + a[i] + 1; sum += a[i] - (sum + a[i] + 1); continue; } } else { if (sum + a[i] <= 0) { ans -= sum + a[i] - 1; sum += a[i] - (sum + a[i] - 1); continue; } } sum += a[i]; } } cout << (ans < tmp ? ans : tmp) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int dy[] = {0, 0, 1, -1}; int dx[] = {1, -1, 0, 0}; int ny, nx; using namespace std; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long m, long long n) { if ((0 == m) || (0 == n)) return 0; return ((m / gcd(m, n)) * n); } long long llpow(long long x, long long y) { long long ans = 1; for (int i = 0, i_len = (y); i < i_len; ++i) ans *= x; return ans; } int ctoi(char c) { if (c >= '0' && c <= '9') { return c - '0'; } return 0; } class UnionFind { public: vector<long long> par; vector<long long> siz; UnionFind(long long sz_) : par(sz_), siz(sz_, 1LL) { for (long long i = 0; i < sz_; ++i) par[i] = i; } void init(long long sz_) { siz.assign(sz_, 1LL); par.resize(sz_); for (long long i = 0; i < sz_; ++i) par[i] = i; } long long root(long long x) { while (par[x] != x) { x = par[x] = par[par[x]]; } return x; } bool merge(long long x, long long y) { x = root(x); y = root(y); if (x == y) return false; if (siz[x] < siz[y]) swap(x, y); siz[x] += siz[y]; par[y] = x; return true; } bool issame(long long x, long long y) { return root(x) == root(y); } long long size(long long x) { return siz[root(x)]; } }; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0, i_len = (n); i < i_len; ++i) cin >> a[i]; int odd = 0, even = 0; bool flag = false; long long total = 0, res = 0; for (int i = 0, i_len = (n); i < i_len; ++i) { total += a[i]; if (i % 2 != 0) { if (total == 0 or total > 0) { even += abs(total + 1); total = -1; } } else { if (total == 0 or total < 0) { even += abs(total - 1); total = 1; } } } for (int i = 0, i_len = (n); i < i_len; ++i) { res += a[i]; if (i % 2 == 0) { if (res == 0 or res > 0) { odd += abs(res + 1); res = -1; } } else { if (res == 0 or res < 0) { odd += abs(res - 1); res = 1; } } } cout << min(odd, even) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n=int(input()) a=list(map(int,input().split())) r=[0] for i in range(n): r.append(r[i]+a[i]) r.pop(0) q=[r[i] for i in range(n)] pm=[1-2*(i%2) for i in range(n)] mp=[1-2*((i+1)%2) for i in range(n)] sum1,sum2=0,0 sousa1,sousa2=0,0 for i in range(n): if np.sign(r[i]) != pm[i]: sum1+=abs(pm[i]-r[i]) sousa1=pm[i]-r[i] for j in range(n-i-1): r[i+j+1]=r[i+j+1]+sousa1 for i in range(n): if np.sign(q[i]) != mp[i]: sum2+=abs(mp[i]-q[i]) sousa2=mp[i]-q[i] for j in range(n-i-1): q[i+j+1]=q[i+j+1]+sousa2 print(min(sum1,sum2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy n=int(input()) a=[int(i) for i in input().split()] ans=0 sum=0 for j in a: if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0: ans+=abs(sum+j)+1 sum=-numpy.sign(sum) else: sum+=j print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i a = gets.split.map(&:to_i) s = a[0] c = 0 if s == 0 s = a[1] > 0 ? -1 : 1 c += 1 end a[1..-1].each do |i| sign = s > 0 s += i if s == 0 c += 1 s = sign ? -1 : 1 next end if sign if s > 0 c += s + 1 s = -1 end else if s < 0 c += -s + 1 s = 1 end end end p c
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int count(vector<int> a, bool plus) { plus = !plus; long sum = 0; long count = 0; int n = a.size(); for (int i = 0; i < n; i++) { plus = !plus; sum += a.at(i); if (plus) { if (sum > 0) { continue; } else { count += 1 - sum; sum = 1; } } else { if (sum < 0) { continue; } else { count += 1 + sum; sum = -1; } } } return count; } int main() { long n; cin >> n; vector<int> a(n); for (int &x : a) { cin >> x; } cout << min(count(a, true), count(a, false)) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 999999999; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int64_t sum1 = 0; int count1 = 0; int64_t sum2 = 0; int count2 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0) { if (sum1 <= 0) { count1 += abs(sum1) + 1; sum1 = 1; } } else { if (sum1 >= 0) { count1 += abs(sum1) + 1; sum1 = -1; } } } for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 >= 0) { count2 += abs(sum2) + 1; sum2 = -1; } } else { if (sum2 <= 0) { count2 += abs(sum2) + 1; sum2 = 1; } } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# # Written by NoKnowledgeGG @YlePhan # ('ω') # #import math #mod = 10**9+7 #import itertools #import fractions #import numpy as np #mod = 10**4 + 7 """def kiri(n,m): r_ = n / m if (r_ - (n // m)) > 0: return (n//m) + 1 else: return (n//m)""" """ n! mod m 階乗 mod = 1e9 + 7 N = 10000000 fac = [0] * N def ini(): fac[0] = 1 % mod for i in range(1,N): fac[i] = fac[i-1] * i % mod""" """mod = 1e9+7 N = 10000000 pw = [0] * N def ini(c): pw[0] = 1 % mod for i in range(1,N): pw[i] = pw[i-1] * c % mod""" """ def YEILD(): yield 'one' yield 'two' yield 'three' generator = YEILD() print(next(generator)) print(next(generator)) print(next(generator)) """ """def gcd_(a,b): if b == 0:#結局はc,0の最大公約数はcなのに return a return gcd_(a,a % b) # a = p * b + q""" """def extgcd(a,b,x,y): d = a if b!=0: d = extgcd(b,a%b,y,x) y -= (a//b) * x print(x,y) else: x = 1 y = 0 return d""" def readInts(): return list(map(int,input().split())) mod = 10**9 + 7 def main(): n = int(input()) A = readInts() cur = 0 ans1 = 0 for i in range(n): cur += A[i] if i % 2: if cur <= 0: ans1 += -cur+1 cur = 1 else: if cur >= 0: ans1 += cur + 1 cur = -1 cur = 0 ans2 = 0 for i in range(n): cur += A[i] if i % 2: if cur >= 0: ans2 += cur + 1 cur = -1 else: if cur <= 0: ans2 += -cur + 1 cur = 1 print(min(ans1,ans2)) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sum = a[0] count = 0 for i in range(1, n) : if sum == 0 : count += 1 if a[i] > 0 : sum = -1 elif a[i] > 0 : sum = 1 temp = sum sum += a[i] if temp > 0 and sum > 0 : count += sum + 1 sum = -1 elif temp < 0 and sum < 0 : count += -sum + 1 sum = 1 if sum == 0 : count += 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def solve(N, As): positive = True if As[0] < 0 else False for i, a in enumerate(As): if a != 0: if i % 2 == 0: positive = True if a < 0 else False else: positive = False if a < 0 else True break ans = 0 i = As[0] if i == 0: ans = 1 if positive: i = -1 else: i = 1 for a in As[1:]: if positive: if i + a <= 0: ans += abs(1 - (i + a)) a += 1 - (i + a) else: if i + a >= 0: ans += abs(-1 - (i + a)) a += -1 - (i + a) i += a positive = not positive return ans if __name__ == "__main__": n = int(input()) As = list(map(int, input().split(" "))) print(solve(n, As))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(nullptr), cout.tie(nullptr); int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; vector<long long> cusum(n); cusum[0] = a[0]; for (int i = 1; i < n; i++) { cusum[i] = cusum[i - 1] + a[i]; } int tc = 2; long long ans = 1e12; while (tc--) { long long sum = 0; long long tmp = 0; for (int i = 0; i < n; i++) { long long x = cusum[i] + sum; if (x > 0) { if ((tc && i % 2 == 0) || (tc == 0 && i % 2 == 1)) { continue; } else { tmp += x + 1; sum -= (x + 1); } } else { if ((tc && i % 2 == 0) || (tc == 0 && i % 2 == 1)) { tmp += ((-1) * x + 1); sum += ((-1) * x + 1); } else { continue; } } } ans = min(ans, tmp); } cout << ans << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 29; inline int two(int n) { return 1 << n; } inline int test(int n, int b) { return (n >> b) & 1; } inline void set_bit(int &n, int b) { n |= two(b); } inline void unset_bit(int &n, int b) { n &= ~two(b); } const long long mod = 1e9 + 7; const int N = 1e6 + 9; long long a[N], n; vector<long long> v[N]; long long modexp(long long a, long long n) { long long r = 1; while (n) { if (n & 1) r = (r * a) % mod; a = (a * a) % mod; n >>= 1; } return r; } bool cmp(const pair<double, long long> &a, const pair<double, int> &b) { if (a.first == b.first) { return a.second < b.second; } else return a.first > b.first; } long long solve(long long sum, long long k, long long ans) { for (int i = 1; i < n; i++) { sum += a[i]; if (k == 1) { if (sum >= 0) { ans += sum + 1; sum = -1; } } else { if (sum <= 0) { ans += sum + 1; sum = 1; } } if (k == 0) k = 1; else k = 0; } return ans; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long ans1 = 0, ans2 = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum1 = a[0]; if (sum1 <= 0) { ans1 += sum1 + 1; sum1 = 1; } long long p = solve(sum1, 1, ans1); long long sum2 = a[0]; if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } long long pp = solve(sum2, 0, ans2); cout << min(p, pp) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) total = a[0] ans = 0 hugo = 0 if total == 0: if a[1] >= 0: total = -1 ans = 1 hugo = -1 else: total = 1 ans = 1 hugo = 1 elif total > 0: ans = 0 hugo = 1 elif total < 0: ans = 0 hugo = -1 for i in range(1,n): total += a[i] if hugo == -1 and total <= 0: ans = ans + (1-total) total = 1 hugo = 1 elif hugo == -1 and total > 0: hugo = 1 elif hugo == 1 and total >= 0: ans = ans + (1+total) total = -1 hugo = -1 elif hugo == 1 and total < 0: hugo = -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sequence(N: int, A: list) -> int: def count_op(s: int) -> int: s = (s // abs(s)) * A[0] op = 0 for a in A[1:]: if s < 0: if s + a > 0: # OK s = s + a continue else: op += 1 - (s + a) s = 1 else: # s > 0 if s + a < 0: # OK s = s + a continue else: op += (s + a) - (-1) s = -1 return op return min(count_op(1), count_op(-1)) if __name__ == "__main__": N = int(input()) A = [int(s) for s in input().split()] ans = sequence(N, A) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long cnt = 0; if (sum == 0) sum = (a[1] > 0 ? -1 : 1); for (int i = 1; i < n; i++) { long long nsum = sum + a[i]; if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) { sum = nsum; continue; } if (nsum == 0) { sum = (sum > 0 ? -1 : 1); cnt += 1; } else { if (sum > 0 && nsum > 0) sum = -1; else sum = 1; cnt += abs(nsum) + 1; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int a[100010]; int solve(int sign) { int ans = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (sign == 1) { if (sum <= 0) { ans = ans + 1 - sum; sum = 1; } } else { if (sum >= 0) { ans = ans + 1 + sum; sum = -1; } } sign *= -1; } return ans; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); long t = 1; while (t--) { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; cout << min(solve(1), solve(-1)); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int calc(bool firstPositive, int a[], int n) { bool positive = firstPositive; int cost = 0; long sum = 0; for (int i = 0; i < n; ++i) { bool sumpos = (sum + a[i]) >= 0; if (sumpos != positive) { while (((sum + a[i]) >= 0) == sumpos) { a[i] += sumpos ? -1 : 1; ++cost; } } if ((sum + a[i]) == 0) { a[i] += sumpos ? -1 : 1; ++cost; } sum += a[i]; positive = !positive; } return cost; } int main(int argc, char *argv[]) { int n; std::cin >> n; int a[1 << 11], b[1 << 11]; for (int i = 0; i < n; ++i) { std::cin >> a[i]; b[i] = a[i]; } std::cout << std::min(calc(true, a, n), calc(false, b, n)) << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long int answer(vector<long long int> a, int s) { int n = a.size(); long long int ans = 0, sum = 0; if (s == 1) { if (a[0] < 0) a[0] += 1 - a[0]; for (size_t i = 0; i < n; i++) { if (sum * (sum + a[i]) > 0) { if (sum < 0) { ans += abs(1 - (sum + a[i])); a[i] += abs(1 - (sum + a[i])); } else if (sum > 0) { ans += abs(-1 - (sum + a[i])); a[i] += -1 - (sum + a[i]); } } if (sum + a[i] == 0) { if (sum > 0) a[i]--; else a[i]++; ans++; } sum += a[i]; } } else { if (a[0] > 0) a[0] -= a[0] + 1; for (size_t i = 0; i < n; i++) { if (sum * (sum + a[i]) > 0) { if (sum < 0) { ans += abs(1 - (sum + a[i])); a[i] += abs(1 - (sum + a[i])); } else if (sum > 0) { ans += abs(-1 - (sum + a[i])); a[i] += -1 - (sum + a[i]); } } if (sum + a[i] == 0) { if (sum > 0) a[i]--; else a[i]++; ans++; } sum += a[i]; } } return ans; } int main(int argc, char const *argv[]) { long long int n, ans = 0, sum = 0; cin >> n; vector<long long int> a(n); for (size_t i = 0; i < n; i++) cin >> a[i]; cout << min(answer(a, 1), answer(a, -1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9; const long long MOD = 1e9 + 7; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; ++i) { cin >> a[i]; } vector<long long> sum(n); sum[0] = a[0]; for (long long i = 1; i < n; i++) { sum[i] += sum[i - 1] + a[i]; } long long even_sum = 0; long long odd_sum = 0; for (long long i = 0; i < n - 1; ++i) { if (i % 2 == 0 && sum[i] >= 0) { even_sum += 1 + sum[i]; } if (i % 2 == 1 && sum[i] <= 0) { even_sum += 1 - sum[i]; } } for (long long i = 0; i < n - 1; ++i) { if (i % 2 == 0 && sum[i] <= 0) { odd_sum += 1 - sum[i]; } if (i % 2 == 1 && sum[i] >= 0) { odd_sum += 1 + sum[i]; } } cout << min(odd_sum, even_sum) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long sign(long long A) { return (A > 0) - (A < 0); } int main(void) { long long n; vector<long long> a; long long count = 0; cin >> n; for (int i = 0; i < n; i++) { long long temp; cin >> temp; a.push_back(temp); } long long diff = a[0]; for (int i = 1; i < n; i++) { if (diff + a[i] == 0 || diff * (diff + a[i]) > 0) { count += abs(-1 * sign(diff) * (abs(diff) + 1) - a[i]); diff = -1 * sign(diff); } else diff += a[i]; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = tuple(map(int, input().split(' '))) cs = A[0] ans1 = 0 for na in A[1:]: if cs >= 0: cs += na if cs < 0: continue ans1 += cs + 1 cs = -1 else: cs += na if cs > 0: continue ans1 += -cs + 1 cs = 1 cs = A[-1] ans2 = 0 for na in reversed(A[:-1]): if cs >= 0: cs += na if cs < 0: continue ans2 += cs + 1 cs = -1 else: cs += na if cs > 0: continue ans2 += -cs + 1 cs = 1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e18; int n; int a[100000]; int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; int total = 0, ans1 = 0, ans2 = 0; for (int i = 0; i < n; i++) { total += a[i]; if (i % 2 == 0 && total <= 0) { ans1 += 1 - total; total = 1; } else if (i % 2 != 0 && total >= 0) { ans1 += total - (-1); total = -1; } } total = 0; for (int i = 0; i < n; i++) { total += a[i]; if (i % 2 != 0 && total <= 0) { ans2 += 1 - total; total = 1; } else if (i % 2 == 0 && total >= 0) { ans2 += total - (-1); total = -1; } } cout << min(ans1, ans2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; string flag; vector<int> a; int str; long long str_sum = 0, str_nsum = 0; int num; long long co = 0; int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> num; for (int i = 0; i < num; i++) { cin >> str; a.push_back(str); } if (a[0] > 0) { flag = "up"; } else if (a[0] < 0) { flag = "down"; } else { if (a[1] >= 0) { flag = "down"; co++; a[0] = -1; } else { flag = "up"; co++; a[0] = 1; } } str_sum = a[0]; for (int i = 1; i < num; i++) { str_sum += a[i]; if (flag == "up" && str_sum >= 0) { co += str_sum + 1; str_sum -= str_sum + 1; } else if (flag == "down" && str_sum <= 0) { co += 0 - str_sum + 1; str_sum += 0 - str_sum + 1; } if (str_sum > 0) { flag = "up"; } else if (str_sum < 0) { flag = "down"; } } cout << co << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { long long sum, ans = 0, b; int n; scanf("%d %lld", &n, &sum); for (int i = 0; i < n - 1; i++) { scanf("%lld", &b); if (sum >= 0 && sum + b >= 0) { while (sum >= 0 && sum + b >= 0) { sum--; ans++; } } else if (sum <= 0 && sum + b <= 0) { while (sum <= 0 && sum + b <= 0) { sum++; ans++; } } sum += b; } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MX = 1e5 + 5, INF = 5 << 60, MOD = 1e9 + 7; long long N; vector<long long> A; void input() { cin >> N; A.resize(N); for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) { cin >> A[i]; } } void solve() { long long ans = INF; long long fugo; for (long long fg = (long long)(0); fg <= (long long)(0); ++fg) { if (fg == 1) { fugo = 1; } else fugo = 0; long long prev = 0; long long s = 0; long long ans1 = 0; for (long long i = (long long)(0); i <= (long long)(N - 1); ++i) { s += A[i]; if (fugo) { if (s > 0) { ans1 += 0; } else if (s == 0) { ans1 += 1; s = 1; } else { ans1 += abs(s) + 1; s = 1; } } else { if (s > 0) { ans1 += (abs(s) + 1); s = -1; } else if (s == 0) { ans1 += 1; s = -1; } else { ans1 += 0; } } prev = s; fugo ^= 1; } ans = min(ans1, ans); } cout << ans << endl; } signed main() { input(); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long INF = 1e18; const double pi = acos(-1.0); int main(void) { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long ans, sum = 0, res1 = 0, res2 = 0; for (int sign = 0; sign < (2); ++sign) { for (int i = 0; i < (n); ++i) { sum += a[i]; if ((i % 2 ^ sign) && sum >= 0) { res1 += sum + 1; sum = -1; } else if (!(i % 2 ^ sign) && sum <= 0) { res2 += abs(sum - 1); sum = 1; } } } ans = min(res1, res2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <algorithm> #include <cmath> #include <limits> #include <vector> #include <cstdio> #include <bits/stdc++.h> #include <set> #include <map> #include <stdio.h> #include <stack> #include <queue> #include <deque> #include <numeric> using namespace std; using ll = long long; map <int ,int> mpa,mpb; typedef pair<ll, ll> P; priority_queue<P, vector<P>, greater<P>> pque; int main(){ ios::sync_with_stdio(false); cin.tie(NULL); int N; cin >> N; int a[N+2]; for(int i=1;i<=N;i++){ cin >> a[i]; } int cnt1=0,cnt2=0; sum=0; for(int i=1,s=1;i<=N;i++,s*=-1){ sum+=a[i]; if(sum*s<=0) cnt1+=abs(sum-s),sum=s; } sum=0; for(int i=1,s=-1;i<=N;i++,s*=-1){ sum+=a[i]; if(sum*s<=0) cnt2+=abs(sum-s),sum=s; } cout << min(cnt1,cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n, 0); for (int i = 0; i < n; i++) { cin >> a[i]; } int cnt1 = 0; int cnt2 = 0; for (int i = 0, sum1 = 0, sum2 = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 <= 0) { cnt1 += 1 - sum1; sum1 = 1; } else if (i % 2 == 1 && sum1 >= 0) { cnt1 += sum1 + 1; sum1 = -1; } sum2 += a[i]; if (i % 2 == 0 && sum2 >= 0) { cnt2 += sum2 + 1; sum2 = -1; } else if (i % 2 == 1 && sum2 <= 0) { cnt2 += 1 - sum2; sum2 = 1; } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long n; long long f(vector<long long>& sum, vector<long long>& pm) { long long tmp; tmp = 0; for (int i = 0; i < (n - 1); i++) { sum[i + 1] += pm[i]; if (sum[i] * sum[i + 1] >= 0) { if (sum[i + 1] == 0) { if (sum[i] < 0) sum[i + 1] = pm[i + 1] = 1; else sum[i + 1] = pm[i + 1] = -1; } else if (sum[i + 1] < 0) { pm[i + 1] = 1 - sum[i + 1]; sum[i + 1] = 1; } else if (sum[i + 1] > 0) { pm[i + 1] = -1 - sum[i + 1]; sum[i + 1] = -1; } tmp += abs(pm[i + 1]); } } return tmp; } signed main(void) { cin >> n; vector<long long> s(n), t, pm(n, 0); long long ans, tmp; for (int i = 0; i < (n); i++) { int a; cin >> a; s[i] = a; } for (int i = 0; i < (n - 1); i++) s[i + 1] += s[i]; ans = 1e18; copy(s.begin(), s.end(), back_inserter(t)); tmp = 0; if (t[0] <= 0) { pm[0] = 1 - t[0]; t[0] = 1; tmp += abs(pm[0]); } tmp += f(t, pm); ans = min(ans, tmp); for (int i = 0; i < (n); i++) pm[i] = 0; tmp = 0; if (s[0] >= 0) { pm[0] = -1 - s[0]; s[0] = -1; tmp += abs(pm[0]); } tmp += f(s, pm); ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int fplus(int n, int arr[]) { int ans = 0, sum = 0; for (int i = 0; i < n; i++) { sum += arr[i]; if (i % 2) { if (sum <= 0) { ans += -sum + 1; sum = 1; } } else { if (sum >= 0) { ans += sum + 1; sum = -1; } } } return ans; } int fminus(int n, int arr[]) { int ans = 0, sum = 0; for (int i = 0; i < n; i++) { sum += arr[i]; if (i % 2) { if (sum >= 0) { ans += sum + 1; sum = -1; } } else { if (sum <= 0) { ans += -sum + 1; sum = 1; } } } return ans; } int main() { int n, a[100000]; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; int ans = min(fplus(n, a), fminus(n, a)); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int atcoder() { long long n; cin >> n; long long ans = 0; long long a[110000] = {}; for (int i = 0; i < n; ++i) cin >> a[i]; long long tmpsum = a[0]; for (int i = 1; i < n; ++i) { if (tmpsum * (a[i] + tmpsum) >= 0) { if (a[i] + tmpsum > 0) { ans += a[i] + tmpsum + 1; tmpsum = -1; } else if (a[i] + tmpsum < 0) { ans += -(a[i] + tmpsum) + 1; tmpsum = 1; } else { ans++; if (tmpsum < 0) tmpsum = 1; else if (tmpsum > 0) tmpsum = -1; } } else tmpsum += a[i]; } cout << ans << "\n"; return 0; } int main() { cin.tie(0); ios::sync_with_stdio(false); atcoder(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); const long long INF = 1000000007; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } int main(void) { int N; cin >> N; vector<long long> a(N); for (int i = (0); i < (N); ++i) cin >> a[i]; vector<long long> s(N); s[0] = a[0]; for (int i = (0); i < (N - 1); ++i) s[i + 1] = s[i] + a[i + 1]; long long offset = 0, ans = 0; for (int i = (0); i < (N - 1); ++i) { if ((s[i] + offset) * (s[i + 1] + offset) >= 0) { ans += abs(s[i + 1] + offset) + 1; if (s[i + 1] + offset > 0) offset -= s[i + 1] + offset + 1; else offset += -(s[i + 1] + offset - 1); } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(int argc, char *argv[]) { int n; cin >> n; long sum; long ans = 0; cin >> sum; for (int i = 1; i < n; i++) { long ai; cin >> ai; if (sum * (sum + ai) < 0) { sum += ai; } else { ans += abs(sum + ai) + 1; if (sum > 0) sum = -1; else sum = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt(); int sum = 0, cnt = 0; for(int i = 0 ; i < n ; i++) { sum += a[i]; if(i % 2 == 0 && sum <= 0) { // 正に変える cnt += Math.abs(sum) + 1; sum = 1; } else if(i % 2 == 1 && sum >= 0) { // 負に変える cnt += sum + 1; sum = -1; } } int sum1 = 0; int cnt1 = 0; for(int i = 0 ; i < n ; i++) { sum1 += a[i]; if(i % 2 == 0 && sum1 >= 0) { // 負に変える cnt1 += sum1 + 1; sum1 = -1; } else if(i % 2 == 1 && sum1 <= 0) { // 正に変える cnt1 += Math.abs(sum1) + 1; sum1 = 1; } } System.out.println(Math.min(cnt, cnt1)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX = 100005; int main() { int n, tmp; int ans1{0}; int ans2{0}; cin >> n; int A[MAX], B[MAX]; int cum_sum = 0; for (int i = 0; i < n; i++) { cin >> tmp; cum_sum += tmp; A[i] = cum_sum; B[i] = cum_sum; } tmp = 0; if (A[0] <= 0) { tmp = -A[0] + 1; ans1 += tmp; for (int i = 0; i < n; i++) { A[i] += tmp; } } for (int i = 0; i < n - 1; i++) { if (A[i] > 0) { if (A[i + 1] >= 0) { tmp = (A[i + 1] + 1); ans1 += tmp; for (int j = i + 1; j < n; j++) A[j] -= tmp; } } else if (A[i] < 0) { if (A[i + 1] <= 0) { tmp = (-A[i + 1] + 1); ans1 += tmp; for (int j = i + 1; j < n; j++) A[j] += tmp; } } } tmp = 0; if (B[0] >= 0) { tmp = B[0] + 1; ans2 += tmp; for (int i = 0; i < n; i++) { A[i] -= tmp; } } for (int i = 0; i < n - 1; i++) { if (B[i] > 0) { if (B[i + 1] >= 0) { tmp = (B[i + 1] + 1); ans2 += tmp; for (int j = i + 1; j < n; j++) B[j] -= tmp; } } else if (B[i] < 0) { if (B[i + 1] <= 0) { tmp = (-B[i + 1] + 1); ans2 += tmp; for (int j = i + 1; j < n; j++) B[j] += tmp; } } } int ans = (ans1 > ans2 ? ans2 : ans1); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <cmath> using namespace std; int main(){ int n;cin>>n; int a[n]; for(int i = 0; n > i; i++)cin>>a[i]; long long sh = 0; long long nw = 0; for(int i = 0; n > i; i++){ (long long)nw += a[i]; if(i % 2 == 0)if(nw<=0)(long long)sh += 1-nw,nw=1; if(i % 2 == 1)if(nw>=0)(long long)sh += nw+1,nw=-1; } long long hs = 0; nw = 0; for(int i = 0; n > i; i++){ (long long)nw += a[i]; if(i % 2 == 1)if(nw<=0)(long long)hs += 1-nw,nw=1; if(i % 2 == 0)if(nw>=0)(long long)hs += nw+1,nw=-1; } cout << min(hs,sh) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using namespace std; using vl = vector<long long>; using vvl = vector<vector<long long>>; using vs = vector<string>; const int mod = 1000000007; class mint { public: long long x; mint(long long x = 0) : x((x % mod + mod) % mod) {} mint operator-() const { return mint(-x); } mint& operator+=(const mint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } mint& operator-=(const mint& a) { if ((x += mod - a.x) >= mod) x -= mod; return *this; } mint& operator*=(const mint& a) { (x *= a.x) %= mod; return *this; } mint operator+(const mint& a) const { mint res(*this); return res += a; } mint operator-(const mint& a) const { mint res(*this); return res -= a; } mint operator*(const mint& a) const { mint res(*this); return res *= a; } mint pow(long long t) const { if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } mint inv() const { return pow(mod - 2); } mint& operator/=(const mint& a) { return (*this) *= a.inv(); } mint operator/(const mint& a) const { mint res(*this); return res /= a; } friend ostream& operator<<(ostream& os, const mint& m) { os << m.x; return os; } }; long long modpow(long long x, long long n, long long p = 1000000007) { if (n == 0) return 1 % p; if (n % 2 == 0) return modpow(x * x % p, n / 2, p); else return x * modpow(x, n - 1, p) % p; } void Main() { long long N; cin >> N; vl v(N); for (long long i = 0; i < N; i++) cin >> v[i]; long long ans = 0; ; if (v[0]) { long long flg = (v[0] > 0); long long acc = v[0]; for (long long i = 1; i < N; i++) { acc += v[i]; if (flg && acc >= 0) { ans += acc + 1; acc = -1; } else if (!flg && acc <= 0) { ans += -acc + 1; acc = 1; } flg ^= 1; } } else { v[0] = -1; long long flg = (v[0] > 0); long long ans1 = 1; long long acc = v[0]; for (long long i = 1; i < N; i++) { acc += v[i]; if (flg && acc >= 0) { ans1 += acc + 1; acc = -1; } else if (!flg && acc <= 0) { ans1 += -acc + 1; acc = 1; } flg ^= 1; } v[0] = 1; flg = (v[0] > 0); long long ans2 = 1; acc = v[0]; for (long long i = 1; i < N; i++) { acc += v[i]; if (flg && acc >= 0) { ans2 += acc + 1; acc = -1; } else if (!flg && acc <= 0) { ans2 += -acc + 1; acc = 1; } flg ^= 1; } ans = min(ans1, ans2); } cout << ans << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); long long t = 1; for (long long i = 0; i < t; i++) Main(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; using System.Collections.Generic; using static System.Math; using static System.Console; using System.Text; class Program { static void Main(string[] args) { solve(); } static Scanner cin; static int n; static int[] a; static void input() { cin = new Scanner(); n = cin.nextInt(); a = cin.ArrayInt(n); } static void solve() { input(); int sum = 0; int ans = 0; for(int i = 0; i < n; i++) { sum += a[i]; if(sum * (sum - a[i]) > 0) { if(sum > 0) { int x = -1 - sum; ans += Abs(x); a[i] += x; sum = -1; } else { int x = 1 - sum; ans += Abs(x); a[i] += x; sum = 1; } } else if(sum == 0) { if(sum - a[i] > 0) { sum = -1; } else { sum = 1; } ans++; } } WriteLine(ans); } class Scanner { string[] s; int i; char[] cs = new char[] { ' ' }; public Scanner() { s = new string[0]; i = 0; } public string next() { if (i < s.Length) return s[i++]; string st = Console.ReadLine(); while (st == "") st = Console.ReadLine(); s = st.Split(cs, StringSplitOptions.RemoveEmptyEntries); if (s.Length == 0) return next(); i = 0; return s[i++]; } public int nextInt() { return int.Parse(next()); } public int[] ArrayInt(int N, int add = 0) { int[] Array = new int[N]; for(int i = 0; i < N; i++) { Array[i] = nextInt() + add; } return Array; } public long nextLong() { return long.Parse(next()); } public long[] ArrayLong(int N, long add = 0) { long[] Array = new long[N]; for(int i = 0; i < N; i++) { Array[i] = nextLong() + add; } return Array; } public double nextDouble() { return double.Parse(next()); } public double[] ArrayDounble(int N, int add = 0) { double[] Array = new double[N]; for (int i = 0; i < N; i++) { Array[i] = nextDouble() + add; } return Array; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); List<Long> alist = new ArrayList<>(); for (int i = 0; i < n; i++) { alist.add(sc.nextLong()); } int cntOdd = 0; int cntEvn = 0; long sum = 0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); //iが偶数のとき正 if(i%2 == 0) { if(sum > 0) { continue; } else { long diff = 1-sum; cntEvn += 1-sum; sum += diff; } } else { if(sum < 0) { continue; } else { long diff = 1+sum; cntEvn += 1+sum; sum -= diff; } } } sum =0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); //iが偶数のとき負 if (i%2 == 0) { if(sum < 0) { continue; } else { long diff = 1+sum; cntOdd += 1+sum; sum -= diff; } } else { if(sum > 0) { continue; } else { long diff = 1-sum; cntOdd += 1-sum; sum += diff; } } } if(cntOdd <= cntEvn) { System.out.println(cntOdd); } else { System.out.println(cntEvn); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) al = list(map(int, input().split())) import itertools alsum = list(itertools.accumulate(al)) temp1 = 0 temp2 = 0 for i in range(n): if i % 2 ==0: if alsum[i] >0: pass else: y = abs(alsum[i])+1 temp1 += y alsum = list(map(lambda x:x +y ,alsum)) else: if alsum[i] <0: pass else: y = alsum[i]+1 temp1 += y alsum = list(map(lambda x:x-y,alsum)) import itertools alsum = list(itertools.accumulate(al)) for j in range(n): if j % 2 ==0: if alsum[j] <0: pass else: y = abs(alsum[j])+1 temp2 += y alsum = list(map(lambda x:x-y,alsum)) else: if alsum[j] >0: pass else: y = abs(alsum[j])+1 temp2 += y alsum = list(map(lambda x:x+y,alsum)) print(min(temp1,temp2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int top = a[0], cnt = 0; bool sign = (top >= 0 ? true : false); for (int i = 1; i < n; i++) { if (sign && top + a[i] < 0) { top += a[i]; sign = false; } else if (!sign && top + a[i] > 0) { top += a[i]; sign = true; } else if (top + a[i] == 0) { cnt++; if (sign) { top = -1; sign = false; } else { top = 1; sign = false; } } else { if (sign) { cnt += (top + a[i]) + 1; top = -1; sign = false; } else { cnt += 1 - (top + a[i]); top = 1; sign = true; } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const long long MOD = 1000000007; using namespace std; map<long long, int> mp; signed main() { ios_base::sync_with_stdio(0); cin.tie(0); int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; int ans1 = 0; int ans2 = 0; int sum = 0; for (int i = 0; i < (n); i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { ans1 += 1 - sum; sum = 1; } } else { if (sum >= 0) { ans1 += sum + 1; sum = -1; } } } sum = 0; for (int i = 0; i < (n); i++) { sum += a[i]; if (i % 2 != 0) { if (sum <= 0) { ans2 += 1 - sum; sum = 1; } } else { if (sum >= 0) { ans2 += sum + 1; sum = -1; } } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n; long sum1 = 0; long sum2 = 0; long tmp; long lcount = 0; long rcount = 0; long a[150000]; char input[1500000]; int i = 0, j = 0; int cp = 0, tcp = 0; char tp[12]; tp[12] = '\0'; fgets(input, 1500000, stdin); n = atoi(input); fgets(input, 1500000, stdin); for (i = 0; i < n; i++) { while (input[cp] != ' ' && input[cp] != '\n') { tp[tcp] = input[cp]; tcp++; cp++; } tp[tcp] = '\0'; tcp = 0; cp++; a[i] = atoi(tp); } tmp = a[0]; for (i = 1; i < n; i++) { if (i % 2 == 0) { tmp += a[i]; if (tmp > -1) { lcount += tmp + 1; tmp = -1; } } else { tmp += a[i]; if (tmp < 1) { lcount += 1 - tmp; tmp = 1; } } } tmp = a[0]; for (i = 1; i < n; i++) { if (i % 2 == 1) { tmp += a[i]; if (tmp > -1) { rcount += tmp + 1; tmp = -1; } } else { tmp += a[i]; if (tmp < 1) { rcount += 1 - tmp; tmp = 1; } } } printf("%ld\n", lcount > rcount ? rcount : lcount); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long N, M; cin >> N >> M; if (N == M) { cout << "EQUAL"; } else if (N < M) { cout << "GREATER"; } else { cout << "LESS"; } cout << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int,input().split())) totals = [0] * N totals[0] = A[0] con = 0 if totals[0] == 0: for i in range(1,N): if A[i] != 0: f = A[i] if f > 0: totals[0] = -1 else: totals[0] = 1 break else: totals[0] = 1 con += 1 for i in range(1,N): totals[i] = totals[i - 1] + A[i] if totals[i - 1] * totals[i] >= 0: if totals[i - 1] < 0: con += abs(1 - totals[i]) totals[i] += abs(1 - totals[i]) elif totals[i - 1] > 0: con += abs(-1 - totals[i]) totals[i] -= abs(-1 - totals[i]) print(con)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; double a[10002] = {}; double b[10002] = {}; for (int i = 0; i < n; i++) { cin >> a[i]; } for (int i = 0; i < n; i++) { b[i] = a[i]; } int eve = 0, sum = 0; for (int j = 0; j < n; j++) { if (j % 2 == 0 && sum + a[j] <= 0) { eve += abs(a[j] + sum) + 1; a[j] = abs(sum) + 1; } if (j % 2 == 1 && sum + a[j] >= 0) { eve += a[j] + sum + 1; a[j] = -abs(sum) - 1; } sum += a[j]; } sum = 0; int odd = 0; for (int k = 0; k < n; k++) { if (k % 2 == 0 && sum + b[k] >= 0) { odd += abs(b[k] + sum) + 1; b[k] = -abs(sum) - 1; } if (k % 2 == 1 && sum + b[k] <= 0) { odd += abs(sum + b[k]) + 1; b[k] = abs(sum) + 1; } sum += b[k]; } cout << min(odd, eve) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); long[] a = new long[n]; boolean flag = true; long sum = 0, ans = 0; int i = 1; for (int j = 0; j < a.length; j++) { a[j] = in.nextLong(); } in.close(); if (a[0] != 0) { sum += a[0]; flag = a[0] > 0; } else { ++ans; for (; i < a.length; i++) { if (a[i] != 0) { flag = a[i] > 0; if (flag) { sum = a[i] - 1; } else { sum = a[i] + 1; } i++; break; } ans += 2; } } for (; i < a.length; i++) { if (flag && sum + a[i] >= 0) { ans += sum + a[i] + 1; sum = -1; flag = false; } else if (!flag && sum + a[i] <= 0) { ans += 1 - (sum + a[i]); sum = 1; flag = true; } else { sum += a[i]; flag = sum > 0; } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100001]; int main() { int N; cin >> N; for (int i = 0; i < N; i++) { cin >> a[i]; } for (int i = 1; i < N; i++) { a[i] += a[i - 1]; } long long add = 0, res1 = 0, res2 = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (a[i] + add > 0) { res1 += abs(a[i] + add + 1); add -= (a[i] + add + 1); } else if (a[i] + add == 0) { add--; res1++; } } else { if (a[i] + add < 0) { res1 += abs(-a[i] + add + 1); add += (-a[i] + add + 1); } else if (a[i] + add == 0) { add++; res1++; } } } add = 0; for (int i = 0; i < N; i++) { if (i % 2 == 1) { if (a[i] + add > 0) { res2 += abs(a[i] + add + 1); add -= (a[i] + add + 1); } else if (a[i] == 0) { add--; res2++; } } else { if (a[i] + add < 0) { res2 += abs(-a[i] + add + 1); add += (-a[i] + add + 1); } else if (a[i] == 0) { add++; res2++; } } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int sum = 0, num = 0; for (int i = 0; i < n; i++) { int a; cin >> a; if (sum > 0 && sum + a >= 0) { num += sum + a + 1; a -= sum + a + 1; } else if (sum < 0 && sum + a <= 0) { num += abs(sum + a) + 1; a += sum + a + 1; } sum += a; } cout << num << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long calc(long long a[], int n) { long long sum = a[0]; long long res = 0; for (int i = 1; i < n; i++) { if (sum < 0 && sum + a[i] <= 0) { res += 1 - sum - a[i]; a[i] += 1 - sum - a[i]; } else if (sum > 0 && sum + a[i] >= 0) { res += abs(a[i] - (-1 - sum)); a[i] = -1 - sum; } sum += a[i]; } return res; } int main() { int n; long long a[100010]; scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%lld", &a[i]); long long res = 0; if (a[0] == 0) { res++; a[0] = 1; res += calc(a, n); a[0] = -1; res = min(calc(a, n) + 1, res); } else { res = calc(a, n); } cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=map(int,input().split()) ans1,ans2=0,0 m1,m2=0,0 k=1 for i in a: m1+=i m2+=i if k: k=0 if m1>=0: ans1+=m1+1 m1=-1 if m2<=0: ans2+=1-m2 m2=1 else: k=1 if m1<=0: ans1+=1-m1 m1=1 if m2>=0: ans2+=m2+1 m2=-1 print(ans1,ans2)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = list(map(int, input().split())) ans1 = 0 sum = A[0] for a in A[1:]: if (sum + a) * sum < 0: sum += a else: fugo = sum // abs(sum) nextsum = - fugo #print('fugo={}, nextsum={}'.format(fugo, nextsum)) a_should_be = nextsum - sum dif = abs(a_should_be - a) #print('a_shoule_be={}, dif={}'.format(a_should_be, dif)) sum = nextsum ans1 += dif #print(ans1) #A[0]を反転したほうがいいパターンの処理 ans2 = abs(A[0]) + 1 sum = - (A[0] // abs(A[0])) for a in A[1:]: if (sum + a) * sum < 0: sum += a else: fugo = sum // abs(sum) nextsum = - fugo a_should_be = nextsum - sum dif = abs(a_should_be - a) sum = nextsum ans2 += dif #print(ans2) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } bool plus = false; long long ans = 0; long long sum = a[0]; if (sum > 0) { plus = false; } else if (sum < 0) { plus = true; } for (int i = 1; i < n; ++i) { sum += a[i]; if (plus == false) { if (sum >= 0) { ans += (abs(sum)+1); sum = -1; } plus = true; } else { if (sum <= 0) { ans += (abs(sum)+1); sum = 1; } plus = false; } } if (sum == 0) ans++; cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) ans=0 if l[0]==0: for i in range(n): if l[i]!=0: s=-1**(i%2) ans=1 k1=l[0] for i in range(1,n): if k1>0: k1+=l[i] if k1>=0: ans+=k1+1 k1=-1 continue if k1<0: k1+=l[i] if k1<=0: ans+=abs(k1)+1 k1=1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[100000]; int even() { int res = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { res += -sum + 1; sum = 1; } } else { if (sum >= 0) { res += sum + 1; sum = -1; } } } } int odd() { int res = 0; int sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum >= 0) { res += sum + 1; sum = -1; } } else { if (sum <= 0) { res += -sum + 1; sum = 1; } } } } int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } cout << min(even(), odd()) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0; long long res1 = 0; long long res2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum + a[i] > 0) { sum += a[i]; } else { res1 = res1 + 1 - (sum + a[i]); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { res1 = res1 + (sum + a[i]) + 1; sum = -1; } } } for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum + a[i] < 0) { sum += a[i]; } else { res2 = res2 + 1 + sum; a[i]; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { res2 = res2 + 1 - sum - a[i]; sum = 1; } } } cout << min(res1, res2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void answer1() { cin.tie(0); ios_base::sync_with_stdio(false); int n; cin >> n; vector<int> a(n); for (int& a_i : a) { cin >> a_i; } long count = 0; long sum = 0; long count2 = 0; long sum2 = 0; bool is_positive = a.at(0) > 0; for (int i = 0; i < a.size(); i++) { sum += a.at(i); if (is_positive) { if (sum <= 0) { long diff = 1 - sum; count += diff; sum += diff; } if (sum2 >= 0) { long diff = 1 + sum2; count2 += diff; sum2 -= diff; } } else { if (sum >= 0) { long diff = 1 + sum; count += diff; sum -= diff; } if (sum2 <= 0) { long diff = 1 - sum2; count2 += diff; sum2 += diff; } } is_positive = !is_positive; } cout << min(count, count2) << endl; } int main() { answer1(); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long sum; cin >> sum; long long delta = 0; for (int i = 1; i < N; ++i) { int temp; cin >> temp; if (sum > 0 && sum + temp >= 0) { delta += sum + temp + 1; sum = -1; } else if (sum < 0 && sum + temp <= 0) { delta += 1 - (sum + temp); sum = 1; } else { sum += temp; } } cout << delta; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int n, ans = 0, tmp = 0; scanf("%d", &n); int a[n], sum[n]; for (int i = 0; i < n; i++) { scanf("%d", &a[i]); } for (int i = 0; i < n; i++) { sum[i] = sum[i - 1] + a[i]; sum[0] = a[0]; if (i % 2 == 0) { if (sum[i] <= 0) { tmp += -1 * sum[i] + 1; sum[i] = 1; } } else { if (sum[i] >= 0) { tmp += sum[i] + 1; sum[i] = -1; } } } for (long long i = 0; i < n; i++) { sum[i] = sum[i - 1] + a[i]; sum[0] = a[0]; if (i % 2 == 0) { if (sum[i] >= 0) { ans += sum[i] + 1; sum[i] = -1; } } else { if (sum[i] <= 0) { ans += -1 * sum[i] + 1; sum[i] = 1; } } } if (tmp < ans) { ans = tmp; } printf("%d\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) def sol(S): ret = 0 B = [S] for a in A[1:]: b = a if S * (S + b) > 0: b = (abs(S) + 1) * (1 if S < 0 else -1) if S + b == 0: b = b - 1 if b < 0 else b + 1 ret += abs(b - a) S += b B.append(b) return ret ans = min( sol(A[0]), sol(-A[0] // abs(A[0])) + abs(A[0]) + 1 ) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> std::vector<int> seq, sum; int main() { int n; std::cin >> n; seq.resize(n); sum.resize(n); std::cin >> seq[0]; sum[0] = seq[0]; for (int i = 1; i < n; i++) { std::cin >> seq[i]; sum[i] = sum[i - 1] + seq[i]; } bool is_plus = (sum[0] > 0); long ans = 0; int dif = 0; for (int i = 1; i < sum.size(); i++) { if (is_plus && sum[i] + dif >= 0) { int tmp = -(sum[i] + dif) - 1; dif += tmp; ans += (tmp < 0 ? -tmp : tmp); } else if (!is_plus && sum[i] + dif <= 0) { int tmp = 1 - (sum[i] + dif); dif += tmp; ans += (tmp < 0 ? -tmp : tmp); } is_plus = !is_plus; } std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> A(n); for (int i = 0; i < n; i++) { cin >> A[i]; } long ans = 0; if (A[0] == 0) { if (0 < A[1]) A[0]--; else A[0]++; ans++; } long acc = 0; int psign = 0; for (int i = 0; i < n; i++) { acc += A[i]; int sign = (acc < 0) ? -1 : 1; if (acc == 0 || psign == sign) { int tmp = abs(acc) + 1; ans += tmp; acc -= psign * tmp; psign = -sign; } else { psign = sign; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); pair<long long, long long> maxP(vector<long long> a, long long size) { pair<long long, long long> p; long long Max = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] > Max) { Max = a[i]; place = i; } } p.first = Max; p.second = place; return p; } pair<long long, long long> minP(vector<long long> a, long long size) { pair<long long, long long> p; long long min = a[0]; long long place = 0; for (int i = (0); i < (size); ++i) { if (a[i] < min) { min = a[i]; place = i; } } p.first = min; p.second = place; return p; } long long sumL(vector<long long> a, long long size) { long long sum = 0; for (int i = (0); i < (size); ++i) { sum += a[i]; } return sum; } long long counT(vector<long long> a, long long t) { sort(a.begin(), a.end()); return upper_bound(a.begin(), a.end(), t) - lower_bound(a.begin(), a.end(), t); } long long DIV[1000 + 1][1000 + 1]; void divide(long long n, long long m) { DIV[0][0] = 1; for (int i = (1); i < (n + 1); ++i) { DIV[i][0] = 0; } for (int i = (0); i < (n + 1); ++i) { DIV[i][1] = 1; } for (int i = (1); i < (m + 1); ++i) { for (int t = (0); t < (n + 1); ++t) { if (DIV[t][i] > 0) continue; if (t >= i) { DIV[t][i] = DIV[t - i][i] + DIV[t][i - 1]; } else { DIV[t][i] = DIV[t][i - 1]; } } } } bool IsPrime(int num) { if (num < 2) return false; else if (num == 2) return true; else if (num % 2 == 0) return false; double sqrtNum = sqrt(num); for (int i = 3; i <= sqrtNum; i += 2) { if (num % i == 0) { return false; } } return true; } class UnionFind { public: vector<long long> par; vector<long long> rank; UnionFind(long long N) : par(N), rank(N) { for (int i = (0); i < (N); ++i) par[i] = i; for (int i = (0); i < (N); ++i) rank[i] = 0; } ~UnionFind() {} long long root(long long x) { if (par[x] == x) return x; else { par[x] = root(par[x]); return par[x]; } } void unite(long long x, long long y) { long long rx = root(x); long long ry = root(y); if (rx == ry) return; if (rank[rx] < rank[ry]) { par[rx] = ry; } else { par[ry] = rx; if (rank[rx] == rank[ry]) { rank[rx]++; } } } bool same(long long x, long long y) { long long rx = root(x); long long ry = root(y); return rx == ry; } }; class BFS_shortestDistance { public: BFS_shortestDistance(vector<vector<char> > p_, long long h_, long long w_) { p = p_; h = h_; w = w_; initial_number = h * w * 2; for (int i = (0); i < (h); ++i) { vector<long long> k(w); for (int t = (0); t < (w); ++t) k[t] = initial_number; field.push_back(k); } } vector<vector<char> > p; long long h; long long w; long long initial_number; vector<vector<long long> > field; pair<long long, long long> plus(pair<long long, long long> &a, pair<long long, long long> &b) { pair<long long, long long> p; p.first = a.first + b.first; p.second = a.second + b.second; return p; } bool equal(pair<long long, long long> &a, pair<long long, long long> &b) { return (a.first == b.first && a.second == b.second); } bool is_in_field(int h, int w, const pair<long long, long long> &point) { const int c = point.second; const int r = point.first; return (0 <= c && c < w) && (0 <= r && r < h); } void init() { for (int i = (0); i < (field.size()); ++i) { for (int t = (0); t < (field[i].size()); ++t) { field[i][t] = initial_number; } } } void shortest(long long sy, long long sx) { init(); pair<long long, long long> c[4]; c[0].first = 0; c[0].second = 1; c[1].first = 0; c[1].second = -1; c[2].first = 1; c[2].second = 0; c[3].first = -1; c[3].second = 0; queue<pair<long long, long long> > Q; pair<long long, long long> s; s.first = sy; s.second = sx; field[sy][sx] = 0; Q.push(s); while (Q.empty() == false) { pair<long long, long long> now = Q.front(); Q.pop(); for (int u = 0; u < 4; u++) { pair<long long, long long> x = c[u]; pair<long long, long long> next = plus(now, x); if (is_in_field(h, w, next)) { if (p[next.first][next.second] == '.') { if (field[next.first][next.second] == initial_number) { field[next.first][next.second] = field[now.first][now.second] + 1; Q.push(next); } else { } } } } } } }; bool Ischanged(long long a, long long b) { if (a * b < 0) { return true; } else { return false; } } int main() { long long n; cin >> n; vector<long long> a(n); for (int i = (0); i < (n); ++i) cin >> a[i]; long long sum = 0; long long count = 0; for (int i = (0); i < (n); ++i) { if (i == 0) { sum += a[i]; if (sum == 0 && n != 1) { if (a[1] >= 0) { sum = -1; } else { sum = 1; } count++; } else if (sum == 0 && n == 1) { count++; } } else { long long was = sum; sum += a[i]; if (Ischanged(was, sum)) { continue; } else { if (sum < 0) { count += abs(sum) + 1; sum = 1; } else { count += abs(sum) + 1; sum = -1; } } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) if l[0]!=0: count=0 suml=l[0] for i in range(1,n): if suml>0 and suml+l[i]<0: suml+=l[i] elif suml<0 and suml+l[i]>0: suml+=l[i] elif suml>0 and suml+l[i]>=0: count+=suml+l[i]+1 suml=-1 else: count+=-suml-l[i]+1 suml=1 a1=count count=abs(l[0])+1 suml=-l[0] for i in range(1,n): if suml>0 and suml+l[i]<0: suml+=l[i] elif suml<0 and suml+l[i]>0: suml+=l[i] elif suml>0 and suml+l[i]>=0: count+=suml+l[i]+1 suml=-1 else: count+=-suml-l[i]+1 suml=1 a2=count print(min(a1,a2)) else: count=1 suml1=1 for i in range(1,n): if suml1>0 and suml1+l[i]<0: suml1+=l[i] elif suml1<0 and suml1+l[i]>0: suml1+=l[i] elif suml1>0 and suml1+l[i]>=0: count+=suml1+l[i]+1 suml1=-1 else: count+=-suml1-l[i]+1 suml1=1 k1=count count=1 suml2=-1 for i in range(1,n): if suml2>0 and suml2+l[i]<0: suml2+=l[i] elif suml2<0 and suml2+l[i]>0: suml2+=l[i] elif suml2>0 and suml2+l[i]>=0: count+=suml2+l[i]+1 suml2=-1 else: count+=-suml2-l[i]+1 suml2=1 k2=count print(min(k1,k2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main{ public static void main(String[]args){ Scanner sc = new Scanner(System.in); int N = Integer.parseInt(sc.nextLine()); long now = sc.nextInt(); long ans = now == 0 ? 1 : 0; for(int i = 1; i < N; i++){ int A = sc.nextInt(); if(now > 0){ if(now + A >= 0){ ans += now+A+1; now = -1; }else{ now = now+A; } }else if(now < 0){ if(now + A <= 0){ ans += Math.abs(now+A)+1; now = 1; }else{ now = now+A; } }else{ if(A < 0){ ans++; now++; }else if(A > 0){ ans++; now--; }else{ ans+=2; } } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define forx(i,a,b) for(int i=(a);i<(b);i++) #define rep(j,n) for(int j=0;j<(n);j++) typedef long long ll; int main() { int n,ansa=0,ansb=0,sum=0; cin>>n; bool plus=true; rep(i,n){ int a; cin>>a; while(plus&&sum+a<=0){ a++; ansa++; } while(!plus&&sum+a>=0){ a--; ansa++; } sum+=a; plus=!plus } plus=false; sum=0; rep(i,n){ int a; cin>>a; while(plus&&sum+a>=0){ a++; ansb++; } while(!plus&&sum+a<=0){ a--; ansb++; } sum+=a; plus=!plus } cout<<min(ansa,ansb)<<endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
_,*A=map(int,open(0).read().split()) def is_plus(x): return 0 <= x total_cnt=1 if A[0]==0 else 0 cur_sum=A[0]+total_cnt pre_sum=cur_sum for a in A[1:]: cur_sum+=a if is_plus(pre_sum)==is_plus(cur_sum) or cur_sum==0: total_cnt+=abs(cur_sum)+1 cur_sum=-1 if is_plus(cur_sum) else +1 pre_sum=cur_sum print(total_cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = (0); i < (n); ++i) cin >> a[i]; long long sum1, sum2; long long ans1 = 0; long long ans2 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; sum2 += a[i]; if (i % 2) { ans1 += max((long long)1 - sum1, (long long)0); sum1 = max((long long)1, sum1); ans2 += max((long long)1 + sum2, (long long)0); sum2 = min((long long)-1, sum2); } else { ans1 += max((long long)1 + sum1, (long long)0); sum1 = min((long long)-1, sum1); ans2 += max((long long)1 - sum2, (long long)0); sum2 = max((long long)1, sum2); } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.List; import java.util.Scanner; import java.util.stream.Collectors; import java.util.stream.IntStream; public class Main { public static void main(final String[] args) { final Scanner scanner = new Scanner(System.in); final int n = scanner.nextInt(); final List<Long> list = IntStream.range(0, n) .mapToObj(i -> scanner.nextLong()) .collect(Collectors.toList()); final long answer; if (list.get(0) != 0) { answer = sum(list.get(0), 0, list); } else { answer = Math.min(sum(1, 1, list), sum(-1, 1, list)); } System.out.println(answer); } private static long sum(final long firstValue, final long firstCost, final List<Long> list) { long sum1 = firstValue, sum2 = firstValue; long cost1 = firstCost, cost2 = firstCost; long sign1 = 1, sign2 = -1; for (int i = 1; i < list.size(); i++) { final long a = list.get(i); sum1 += a; sum2 += a; if (sign1 == 1 && sum1 < 1) { cost1 += 1 - sum1; sum1 = 1; } else if (sign1 == -1 && sum1 > -1) { cost1 += sum1 + 1; sum1 = -1; } if (sign2 == 1 && sum2 < 1) { cost2 += 1 - sum2; sum2 = 1; } else if (sign2 == -1 && sum2 > -1) { cost2 += sum2 + 1; sum2 = -1; } sign1 *= -1; sign2 *= -1; } return Math.min(cost1, cost2); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int N[100000]; cin >> n; for (int i = 0; i < n; i++) { cin >> N[i]; } for (int i = 1; i < n; i++) { N[i] = N[i] + N[i - 1]; } int ans = 0; if (N[0] == 0) { if (N[1] <= 0) { for (int i = 0; i < n; i++) { N[i]++; ans = 1; } } else { for (int i = 0; i < n; i++) { N[i] = N[i] - 1; } ans = 1; } } for (int i = 1; i < n; i++) { if (N[i - 1] < 0) { if (N[i] <= 0) { ans = ans - N[i] + 1; for (int j = i; j < n; j++) { N[j] = N[j] - N[i] + 1; } } } if (N[i - 1] > 0) { if (N[i] >= 0) { ans = ans + N[i] + 1; for (int j = i; j < n; j++) { N[j] = N[j] - N[i] - 1; } } } } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) if a[0] >= 0: flag = 1 else: flag = -1 ans = 0 dp = [0 for i in range(n)] dp[0] = a[0] for i in range(1, n): dp[i] = dp[i - 1] + a[i] if flag == 1 and dp[i] >= 0: ans += abs(-1 - dp[i]) dp[i] = -1 elif flag == -1 and dp[i] <= 0: ans += (1 - dp[i]) dp[i] = 1 flag *= -1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
# -*- coding:utf-8 -*- n = int(raw_input()) numlist = (raw_input()).split(' ') count = 0 i = 0 while (int(numlist[i]) == 0): i += 1 if (int(numlist[0]) == 0): if (int(numlist[i]) > 0): numlist[0] = (-1) ** i else: numlist[0] = (-1) ** (i+1) count += 1 sumlist = [int(numlist[0])] for i in range(1, n): sumlist.append(sumlist[i-1] + int(numlist[i])) while (True): if (sumlist[i-1] > 0 and sumlist[i] > 0): #i-1,i番目までのsumがともに正 numlist[i] = int(numlist[i]) - (sumlist[i] + 1) count += sumlist[i] + 1 sumlist[i] = -1 elif (sumlist[i-1] < 0 and sumlist[i] < 0): #i-1,i番目までのsumがともに負 numlist[i] = int(numlist[i]) + ((-1)*sumlist[i] + 1) count += (-1)*sumlist[i] + 1 sumlist[i] = 1 elif (sumlist[i] == 0): #i番目までのsum=0 if (sumlist[i-1] > 0): numlist[i] = int(numlist[i]) - 1 sumlist[i] -= 1 if (sumlist[i-1] < 0): numlist[i] = int(numlist[i]) + 1 sumlist[i] += 1 count += 1 else: break #print numlist #print sumlist print count
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool debug = false; int main() { int n; long long a[100005]; long long cnt = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0] + a[1]; bool plus; if (sum >= 0) plus = true; else plus = false; for (int i = 2; i < n; i++) { sum += a[i]; if (debug) cout << "sum:" << sum << endl; if (plus) { if (sum >= 0) { cnt += sum + 1; sum = -1; } plus = false; } else { if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } plus = true; } } if (sum == 0) cout << cnt + 1 << endl; else cout << cnt << endl; return 0; }