Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) l = len(a) b = [] for i in range(l): b.append(a[i]) ans = 0 Ans = 0 summary = a[0] if(summary == 0): a[0] = 1 ans+= 1 b[0] = -1 Ans+= 1 else: b[0] = int(-a[0]/ abs(a[0])) Ans+= abs(a[0]- b[0]) Summary = b[0] for i in range(1, l): if(summary* (summary+ a[i])>= 0): if(summary > 0): ans+= a[i]+ summary+ 1 a[i] = -summary- 1 summary= -1 else: ans+= -summary+ 1- a[i] a[i] = -summary+ 1 summary= 1 else: summary+= a[i] for i in range(1, l): if(Summary* (Summary+ b[i])>= 0): if(Summary > 0): Ans+= b[i]+ Summary+ 1 b[i] = -Summary- 1 Summary= -1 else: Ans+= -Summary+ 1- b[i] b[i] = -Summary+ 1 Summary= 1 else: Summary+= b[i] print(min(ans, Ans)) print(a, b)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = [int(ai) for ai in input().split()] def search(a, flip=False): if not flip: count = 0 else: count = abs(a[0]) + 1 a[0] = 1 if a[0] < 0 else -1 a_sum = a[0] for ai in a[1:]: tmp_sum = a_sum + ai if tmp_sum < 0 and a_sum < 0: c = abs(tmp_sum) + 1 elif tmp_sum > 0 and a_sum > 0: c = -abs(tmp_sum) - 1 elif tmp_sum == 0 and a_sum < 0: c = 1 elif tmp_sum == 0 and a_sum > 0: c = -1 else: c = 0 count += abs(c) a_sum = tmp_sum + c return count print(min(search(a, False), search(a, True)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); vector<int> b(n); vector<int> c(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } int ans_1 = 0; int ans_2 = 0; b.at(0) = a.at(0); if (b.at(0) <= 0) { ans_1 += 1 - b.at(0); b.at(0) = 1; } for (int i = 1; i < n; i++) { b.at(i) = b.at(i - 1) + a.at(i); if ((i % 2) == 1) { if (b.at(i) >= 0) { ans_1 += 1 + b.at(i); b.at(i) = -1; } } else { if (b.at(i) <= 0) { ans_1 += 1 - b.at(i); b.at(i) = 1; } } } b.at(0) = a.at(0); if (b.at(0) >= 0) { ans_2 += 1 + b.at(0); b.at(0) = -1; } for (int i = 1; i < n; i++) { b.at(i) = b.at(i - 1) + a.at(i); if ((i % 2) == 1) { if (b.at(i) <= 0) { ans_2 += 1 - b.at(i); b.at(i) = 1; } } else { if (b.at(i) >= 0) { ans_2 += 1 + b.at(i); b.at(i) = -1; } } } cout << min(ans_1, ans_2) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=[int(i) for i in input().split()] check=a[0] ans=0 if check==0: for i in range(1,n): if check+a[i]==0: continue elif check+a[i]>0: check=-1 ans=1 break else: check=1 ans=1 break for i in range(1,n): check2=check+a[i] if check<0: if check2>0: check=check2 else: ans+=abs(check2)+1 check=1 else: if check2<0: check=check2 else: ans+=abs(check2)+1 check=-1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; signed main() { cin.tie(0); ios::sync_with_stdio(false); int64_t n; cin >> n; vector<int64_t> a(n); for (int64_t i = 0; i < n; i++) cin >> a[i]; int64_t sum1 = 0, cost1 = 0; for (int64_t i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 < 0) sum1 += abs(sum1) + 1, cost1 += abs(sum1) + 1; if (i % 2 == 1 && sum1 > 0) sum1 -= abs(sum1) - 1, cost1 += abs(sum1) + 1; } int64_t sum2 = 0, cost2 = 0; for (int64_t i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0 && sum1 > 0) sum2 -= abs(sum2) - 1, cost2 += abs(sum2) + 1; if (i % 2 == 1 && sum1 < 0) sum2 += abs(sum2) + 1, cost1 += abs(sum2) + 1; } if (sum1 == 0) cost1++; if (sum2 == 0) cost2++; cout << min(cost1, cost2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int f(int a[], int N, bool positive) { int cnt = 0; int sum = a[0]; for (int i = 1; i < N; i++) { int n = a[i]; if (positive) { if (i % 2 == 0) { while (sum + n <= 0) n++, cnt++; } else { while (0 <= sum + n) n--, cnt++; } } else { if (i % 2 == 0) { while (0 <= sum + n) n--, cnt++; } else { while (sum + n <= 0) n++, cnt++; } } sum += n; } return cnt; } int main() { int N; cin >> N; int a[N]; for (int i = 0; i < N; i++) cin >> a[i]; int cnt = min(f(a, N, 1), f(a, N, 0)); cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int dx[4] = {1, -1, 0, 0}; int dy[4] = {0, 0, 1, -1}; int main() { std::ios::sync_with_stdio(false); std::cin.tie(0); int n; cin >> n; int a[100000]; for (int i = 0; i < (n); i++) { cin >> a[i]; } long long int sm = 0; for (int i = 1; i < n; i++) { long long int b = 0; for (int j = 0; j < (i); j++) b += a[j]; cout << (b) << "\n"; if (b * a[i] < 0 && abs(a[i]) > abs(b)) continue; long long int t = (b > 0) ? -b - 1 : -b + 1; sm += abs(t - a[i]); a[i] = t; } cout << (sm) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = [int(i) for i in input().split()] sam = a[0] num = 0 if sam == 0 and a[1] > 0: sam -= 1 num += 1 elif sam == 0: sam += 1 num += 1 old = sam for i in range(1, len(a)): sam += a[i] if sam >= 0 and old > 0: num += (abs(sam) + 1) sam -= (sam + 1) elif sam <= 0 and old < 0: num += (abs(sam) + 1) sam -= (sam - 1) old = sam print(num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strconv" ) func solve(a []int64, ra int) int64 { s := int64(0) // S_i = \sum_i a[i] ans := int64(0) for i, e := range a { if i%2 == ra { if s+e >= 0 { ans += abs(-1 - s - e) s = -1 continue } } else { if s+e <= 0 { ans += abs(1 - s - e) s = 1 continue } } s += e } return ans } func abs(x int64) int64 { if x < 0 { return -x } return x } func min(a, b int64) int64 { if a < b { return a } return b } func main() { var n int fmt.Scan(&n) sc := bufio.NewScanner(os.Stdin) sc.Split(bufio.ScanWords) a := make([]int64, n) for i := 0; i < n; i++ { sc.Scan() x, _ := strconv.Atoi(sc.Text()) a[i] = int64(x) } ans := int64(0) if a[0] == 0 { a[0] = -1 ans = solve(a, 0) a[0] = 1 ans = min(ans, solve(a, 1)) } else if a[0] < 0 { ans = solve(a, 0) } else { // a[0] > 0 ans = solve(a, 1) } fmt.Println(ans) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding:utf-8 -*- def solve(): N = int(input()) A = list(map(int, input().split())) """考え方 ruiseki[i] := i番目までの累積和 ・ruiseki[i]のiが偶数番目を+にするパターン ・ruiseki[i]のiが偶数番目を-にするパターン の2通りを求め、小さい方を答えにする """ # 偶数番目を+にするパターン ans1 = 0 ruiseki = [0] * N ruiseki[0] = A[0] if ruiseki[0] == 0: ruiseki[0] = 1 ans1 += 1 for i in range(1, N): ruiseki[i] = ruiseki[i-1] + A[i] if i%2 != 0: # iが奇数 if ruiseki[i] >= 0: diff = abs(ruiseki[i] - (-1)) ans1 += diff ruiseki[i] = -1 else: # iが偶数 if ruiseki[i] <= 0: diff = abs(ruiseki[i] - 1) ans1 += diff ruiseki[i] = 1 # 偶数番目を-にするパターン ans2 = 0 ruiseki = [0] * N ruiseki[0] = A[0] if ruiseki[0] == 0: ruiseki[0] = -1 ans2 += 1 for i in range(1, N): ruiseki[i] = ruiseki[i-1] + A[i] if i%2 != 0: # iが奇数 if ruiseki[i] <= 0: diff = abs(ruiseki[i] - 1) ans2 += diff ruiseki[i] = 1 else: # iが偶数 if ruiseki[i] >= 0: diff = abs(ruiseki[i] - (-1)) ans2 += diff ruiseki[i] = -1 print(min(ans1, ans2)) def solve2(): N = int(input()) A = list(map(int, input().split())) ans = 0 """ (1) A = [0, 0, 0, 0, 0, 100, ...] みたいなときは A = [-1, 2, -2, 2, -2, 100, ...] にしたい (2) A = [0, 0, 0, 0, 100, ...] みたいなときは A = [1, -2, 2, -2, 100, ...] にしたい """ if A[0] == 0: hugou = 1 # 最後の符号(1:+, -1:-) for i in range(1, N): if A[i] == 0: continue if A[i] > 0: hugou = 1 break else: hugou = -1 break for j in range(i-1, 0, -1): if hugou == -1: A[j] = 2 else: A[j] = -2 hugou *= -1 ans += 2 if hugou > 0: A[0] = -1 else: A[0] = 1 ans += 1 # ruiseki[i] := i番目までの累積和 ruiseki = [0] * N ruiseki[0] = A[0] for i in range(1, N): i_sum = A[i] + ruiseki[i-1] if ruiseki[i-1] > 0: # ruiseki[i]をマイナス値にする必要がある if i_sum < 0: ruiseki[i] = i_sum else: diff = abs(i_sum - (-1)) ans += diff A[i] -= diff i_sum -= diff ruiseki[i] = i_sum elif ruiseki[i-1] < 0: # ruiseki[i]をプラス値にする必要がある if i_sum > 0: ruiseki[i] = i_sum else: diff = abs(i_sum - 1) ans += diff A[i] += diff i_sum += diff ruiseki[i] = i_sum print(ans) if __name__ == "__main__": solve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from functools import reduce N =int(input()) A = map(int, input().split()) def check(A): arr = [0]*(N+1) for i in range(len(A)): arr[i+1] += arr[i-1] + ai if arr[i+1]*arr[i] <=0: return 0 val = abs(min(arr)) return val print(val)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int min(int x, int y) { return x < y ? x : y; } int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; int sum = 0; int cost = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { cost += -sum + 1; sum = 1; } } else { if (sum >= 0) { cost += sum + 1; sum = -1; } } } long long sum2 = 0; long long cost2 = 0; for (int i = 0; i < n; ++i) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 >= 0) { cost2 += sum2 + 1; sum2 = -1; } } else { if (sum2 <= 0) { cost2 += -sum2 + 1; sum2 = 1; } } } long long ans = min(cost, cost2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> unsigned solve(unsigned N, const std::vector<long> &a, int flag) { unsigned c = 0; long s = 0; for (unsigned n = 0; n < N; ++n) { if (n % 2 == flag) { if (s + a[n] < 0) { c += std::abs(1 - (s + a[n])); s = 1; } else { s += a[n]; } } else { if (s + a[n] > 0) { c += std::abs((-1) - (s + a[n])); s = -1; } else { s += a[n]; } } } return c; } int main() { unsigned N; std::cin >> N; std::vector<long> a(N); for (unsigned n = 0; n < N; ++n) { std::cin >> a[n]; } std::cout << std::min(solve(N, a, 0), solve(N, a, 1)) << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int data[10000000]; int main() { int cnt = 0; bool flag = true; int work; cin >> n; for (int i = 0; i < n; i++) { cin >> data[i]; } work = data[0]; if (work < 0) flag = false; for (int i = 1; i < n; i++) { work += data[i]; if (flag && work >= 0) { while (work >= 0) { cnt++; work--; } flag = false; } else if (!(flag) && work <= 0) { while (work <= 0) { cnt++; work++; } flag = true; } else { if (work > 0) flag = true; else flag = false; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#![allow(non_snake_case)] #![allow(dead_code)] #![allow(unused_macros)] #![allow(unused_imports)] use std::str::FromStr; use std::io::*; use std::collections::*; use std::cmp::*; struct Scanner<I: Iterator<Item = char>> { iter: std::iter::Peekable<I>, } macro_rules! exit { () => {{ exit!(0) }}; ($code:expr) => {{ if cfg!(local) { writeln!(std::io::stderr(), "===== Terminated =====") .expect("failed printing to stderr"); } std::process::exit($code); }} } impl<I: Iterator<Item = char>> Scanner<I> { pub fn new(iter: I) -> Scanner<I> { Scanner { iter: iter.peekable(), } } pub fn safe_get_token(&mut self) -> Option<String> { let token = self.iter .by_ref() .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect::<String>(); if token.is_empty() { None } else { Some(token) } } pub fn token(&mut self) -> String { self.safe_get_token().unwrap_or_else(|| exit!()) } pub fn get<T: FromStr>(&mut self) -> T { self.token().parse::<T>().unwrap_or_else(|_| exit!()) } pub fn vec<T: FromStr>(&mut self, len: usize) -> Vec<T> { (0..len).map(|_| self.get()).collect() } pub fn mat<T: FromStr>(&mut self, row: usize, col: usize) -> Vec<Vec<T>> { (0..row).map(|_| self.vec(col)).collect() } pub fn char(&mut self) -> char { self.iter.next().unwrap_or_else(|| exit!()) } pub fn chars(&mut self) -> Vec<char> { self.get::<String>().chars().collect() } pub fn mat_chars(&mut self, row: usize) -> Vec<Vec<char>> { (0..row).map(|_| self.chars()).collect() } pub fn line(&mut self) -> String { if self.peek().is_some() { self.iter .by_ref() .take_while(|&c| !(c == '\n' || c == '\r')) .collect::<String>() } else { exit!(); } } pub fn peek(&mut self) -> Option<&char> { self.iter.peek() } } fn main() { let cin = stdin(); let cin = cin.lock(); let mut sc = Scanner::new(cin.bytes().map(|c| c.unwrap() as char)); let n: usize = sc.get(); let a: Vec<i64> = sc.vec(n); let mut p = 0; let mut ans1 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s > 0 { ans1 += s.abs()+1; s += -s - 1; } else if s == 0 { s += if p > 0 { 1 } else { -1 }; ans1 += 1; } else if s * p > 0 { ans1 += s.abs()+1; s += if s > 0 { -s - 1 } else { s + 1 }; } p = s; } let mut ans2 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s < 0 { ans1 += s.abs()+1; s += s + 1; } else if s == 0 { s += if p > 0 { 1 } else { -1 }; ans2 += 1; } else if s * p > 0 { ans2 += s.abs()+1; s += if s > 0 { -s - 1 } else { s + 1 }; } p = s; } println!("{}", min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sign(int x) { return x < 0 ? -1 : 1; } int main() { int n; cin >> n; vector<int> A(n); for (int i = 0; i < n; i++) { cin >> A[i]; } int cnt = 0; int sum = A[0]; if (sum <= 0) { cnt += abs(sum) + 1; sum = 1; } for (int i = 1; i < n; i++) { int a = A[i]; int newsum = sum + a; if (sign(sum) == sign(newsum) || newsum == 0) { cnt += abs(newsum) + 1; newsum = -sign(sum); } sum = newsum; } int cnt2 = 0; int sum2 = A[0]; if (sum2 >= 0) { cnt2 += abs(sum2) + 1; sum2 = -1; } for (int i = 1; i < n; i++) { int a = A[i]; int newsum = sum2 + a; if (sign(sum2) == sign(newsum) || newsum == 0) { cnt2 += abs(newsum) + 1; newsum = -sign(sum2); } sum2 = newsum; } cout << min(cnt, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] def odd_positive(List, n): sum_a = 0 cost = 0 for a in List: nextsum = sum_a + a if i & 1 and nextsum <= 0: cost = - nextsum + 1 sum_a = 1 elif (not i & 1) and nextsum >= 0: cost = nextsum + 1 sum_a = -1 return cost def odd_negative(List, n): sum_a = 0 cost = 0 for a in List: nextsum = sum_a + a if i & 1 and nextsum >= 0: cost = nextsum + 1 sum_a = -1 elif (not i & 1) and nextsum <= 0: cost = - nextsum + 1 sum_a = 1 return cost ans = min(odd_positive(a,n), odd_negative(a,n)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { long long n, ans = 0; scanf("%lld", &n); long long a[n], sum[n]; for (long long i = 0; i < n; i++) { scanf("%lld", &a[i]); } sum[0] = a[0]; if (sum[0] == 0 && a[1] > 0) { sum[0]--; ans++; } else if (sum[0] == 0 && a[1] <= 0) { sum[0]++; ans++; } for (long long i = 1; i < n; i++) { sum[i] = a[i] + sum[i - 1]; if (sum[i - 1] < 0) { if (sum[i] <= 0) { ans += (llabs(sum[i]) + 1); sum[i] += (llabs(sum[i]) + 1); } } else { if (sum[i] >= 0) { ans += (llabs(sum[i]) + 1); sum[i] -= (llabs(sum[i]) + 1); } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; vector<long long> S; vector<long long> A; int j; bool is_plus; int ans = 0; long long sum = 0; cin >> n; S.push_back(0); for (int i = 0; i < n; i++) { long long a; cin >> a; A.push_back(a); } for (j = 0; j < n; j++) { if (abs(A[j])) { break; } } if (j == n) { cout << A.size() * 2 - 1 << endl; return 0; } if (j) { ans += (j + 1) * 2 - 1; sum = (A[j] > 0) ? -1 : 1; } else { sum = 0; ans = 0; } for (int i = j; i < n; i++) { if (!i) { sum = A[i]; continue; } bool is_plus = sum > 0; sum += A[i]; if (sum == 0) { ans += 1; sum = is_plus ? -1 : 1; } else if (is_plus == (sum > 0)) { ans += abs(sum) + 1; sum = is_plus ? -1 : 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; int i; for (i = 0; i < n; i++) { cin >> a[i]; } int sum = 0; int cnt = 0; if (a[0] > 0) { for (i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum <= 0) { sum++; cnt++; } } else { while (sum >= 0) { sum--; cnt++; } } } } else { for (i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { sum--; cnt++; } } else { while (sum <= 0) { sum++; cnt++; } } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) ans = 0 previous_sum = A[0] # total to i - 1 for i in range(1, N): # if prev_sum is plus and A[i] is more minus than prev_sum, no action. # if prev_sum is plus and minus of A[i] is larger than or equal to prev_sum. if previous_sum > 0 and previous_sum + A[i] >= 0: # the number that need to be subtracted to meet the requirements. require_subtraction = previous_sum + A[i] + 1 # correcting the current number. A[i] -= require_subtraction ans += require_subtraction # if prev_sum is minus and A[i] is more plus than prev_sum, no action. # if prev_sum is minus and minus of A[i] is more smaller than or equal to prev_sum. elif previous_sum < 0 and previous_sum + A[i] <= 0: # the number that need to be added to meet the requirements. require_addition = -(previous_sum + A[i] - 1) # correcting the current number. A[i] += require_addition ans += require_addition previous_sum += A[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
use std::io::*; use std::str::FromStr; use std::collections::HashMap; use std::collections::BTreeMap; use std::collections::BTreeSet; use std::collections::HashSet; use std::cmp; use std::f64::consts; use std::cmp::Ordering; use std::collections::VecDeque; //push_back, pop_front fn main() { let n: i64 = read(); let mut vec: Vec<i64> = (0..n).map(|_| read()).collect(); let mut count1 = 0; // 偶数indexが+の場合 let mut sum = 0; for (i, &e) in vec.iter().enumerate() { sum += e; if i % 2 == 0 { if sum < 0 { count1 += (1-sum).abs(); sum += (1-sum).abs(); } } else { if sum > 0 { count1 += (-1-sum).abs(); sum -= (-1-sum).abs(); } } } if sum == 0 { count1+=1; } let mut count2 = 0; // 奇数indexが+の場合 let mut sum = 0; for (i, &e) in vec.iter().enumerate() { sum += e; if i % 2 == 0 { if sum > 0 { count2 += (-1-sum).abs(); sum -= (-1-sum).abs(); } } else { if sum < 0 { count2 += (1-sum).abs(); sum += (1-sum).abs(); } } } if sum == 0 { count2+=1; } println!("{}", cmp::min(count1, count2)); } fn calc_distance(xa: f64, ya: f64, xb: f64, yb: f64)->f64 { (f64::powf(xb-xa, 2.0) + f64::powf(yb-ya, 2.0)).sqrt() } fn calc_triangle_area(x1: f64, y1: f64, x2: f64, y2: f64, x3: f64, y3: f64) -> f64 { 1.0/2.0 * ((x1-x3)*(y2-y3)-(x2-x3)*(y1-y3)).abs() } fn read<T: FromStr>() -> T { let stdin = stdin(); let stdin = stdin.lock(); let token: String = stdin .bytes() .map(|c| c.expect("failed to read char") as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect(); token.parse().ok().expect("failed to parse token") } // 最大公約数 fn gcd(a: i64, b: i64) -> i64 { match b { 0 => a, _ => gcd(b, a % b) } } // 最小公倍数 fn lcm(a: i64, b: i64) -> i64 { let g = gcd(a ,b); a / g * b } // 階乗-dp (overflow回避で1000000007の余りを使って計算) fn kaijou_dp(n: i64) -> i64 { let mut dp: Vec<i64> = vec![0; n as usize+1]; dp[0] = 1; dp[1] = 1; for i in 1..n { dp[i as usize+1] = dp[i as usize] % 1000000007 * (i+1) % 1000000007; } return dp[n as usize]; } // 階乗 fn kaijou(n: i64)->i64 { if n == 1 { return n; } return n * kaijou(n-1); } // 順列全列挙 pub trait LexicalPermutation { /// Return `true` if the slice was permuted, `false` if it is already /// at the last ordered permutation. fn next_permutation(&mut self) -> bool; } impl<T> LexicalPermutation for [T] where T: Ord { /// Original author in Rust: Thomas Backman <[email protected]> /// let mut data = [1, 2, 3]; // let mut permutations = Vec::new(); // // loop { // permutations.push(data.to_vec()); // if !data.next_permutation() { // break; // } // } // // println!("{:?}", permutations); // // [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]] fn next_permutation(&mut self) -> bool { // These cases only have 1 permutation each, so we can't do anything. if self.len() < 2 { return false; } // Step 1: Identify the longest, rightmost weakly decreasing part of the vector let mut i = self.len() - 1; while i > 0 && self[i-1] >= self[i] { i -= 1; } // If that is the entire vector, this is the last-ordered permutation. if i == 0 { return false; } // Step 2: Find the rightmost element larger than the pivot (i-1) let mut j = self.len() - 1; while j >= i && self[j] <= self[i-1] { j -= 1; } // Step 3: Swap that element with the pivot self.swap(j, i-1); // Step 4: Reverse the (previously) weakly decreasing part self[i..].reverse(); true } } //iより小さい数字の数 = lower_bound(&a, i) as i64; //iより大きい数字の数 = n - upper_bound(&c, i) as i64; fn lower_bound<T: Ord>(vec: &Vec<T>, x: T) -> usize { let (mut left, mut right): (i64, i64) = (-1, vec.len() as i64); while (right - left) > 1 { let mid = (right + left) / 2; if x <= vec[mid as usize] { right = mid; } else { left = mid; } } return right as usize; } fn upper_bound<T: Ord>(vec: &Vec<T>, x: T) -> usize { let (mut left, mut right): (i64, i64) = (-1, vec.len() as i64); while (right - left) > 1 { let mid = (right + left) / 2; if x < vec[mid as usize] { right = mid; } else { left = mid; } } return right as usize; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s, ans, i = 0, 0, 0 while a[i] == 0 and i < n: ans += 2 i += 1 ans = max(0, ans - 1) if i == n: print(ans) exit() if ans > 0: if abs(a[i]) == 1: ans += 1 s = a[i] else: s = abs(a[i]) // a[i] * (abs(a[i]) - 1) else: s = a[0] ##print('{} {} {}'.format(a[i], ans, s)) i += 1 for j in range(i, n): if abs(a[j]) > abs(s) and (a[j] == abs(a[j])) != (s == abs(s)): s += a[j] else: pre_s = s s = -1 * s // abs(s) ans += abs(a[j] - s + pre_s) ## print('{} {} {}'.format(a[j], ans, s)) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); long[] A = new long[N]; for (int i = 0; i < N; i++) { A[i] = sc.nextInt(); } System.out.println( solve(N, A) ); } private static long solve(int N, long[] A) { long a0 = A[0]; if( a0 > 0 ) { long p = solve1(N, A, a0, 0); long m = solve1(N, A, -1, (int)a0 + 1); return Math.min(p, m); } else if( a0 < 0 ) { long p = solve1(N, A, 1, (int)a0 + 1); long m = solve1(N, A, a0, 0); return Math.min(p, m); } else { long p = solve1(N, A, 1, 1); long m = solve1(N, A, -1, 1); return Math.min(p, m); } } private static long solve1(int N, long[] A, long sum, long ans) { for (int i = 1; i < N; i++) { long a = A[i]; if( sum > 0 ) { // 次はminusになるのを期待 if( a + sum >= 0 ) { // sumが-1になるような値にまで変更する // a + sum が 5 の場合、6 だけ操作すると -1 にできる long diff = a + sum + 1; ans += diff; sum = -1; } else { sum += a; } } else { if( a + sum <= 0 ) { long diff = (a + sum) * -1 + 1; ans += diff; sum = 1; } else { sum += a; } } } return ans; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int( input()) A = list( map( int, input().split())) ans = 10**15 for i in [1, -1]: ansi, sums = 0, 0 for a in A: sums += A if sums*i <= 0: ansi += abs(sums-s) sums = s s *= -1 ans = min( ans, ansi) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; int main(int argc, char const *argv[]) { int n; std::cin >> n; std::vector<int> v(n); std::vector<int> sums(2, 0); for (size_t i = 0; i < n; i++) { std::cin >> v[i]; sums[i % 2] += v[i]; } ull ans = 0; if (sums[0] > sums[1] && v[0] <= 0) { ans = ans + abs(v[0]) + 1; } else if (sums[0] < sums[1] && v[0] >= 0) { ans = ans + abs(v[0]) + 1; } ll now, pre; now = pre = v[0]; for (size_t i = 1; i < n; i++) { now += v[i]; if (pre * now >= 0) { if (pre > 0) { ans = ans + abs(now) + 1; now = -1; } else if (pre < 0) { ans = ans + abs(now) + 1; now = 1; } } pre = now; } std::cout << ans << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.chomp.split(" ").map(&:to_i) $count = [0,0] def check(i,arr,t) if i > arr.size - 1 arr[t] += 1 $count += 1 return end if arr[i] > 0 arr[t] -= 1 $count += 1 elsif arr[i] < 0 arr[t] += 1 $count += 1 else check(i+1,arr,t) end end flg = true 2.times do |j| tmp_arr = Marshal.load(Marshal.dump(arr)) sum = tmp_arr[0] + tmp_arr[1] if sum == 0 if flg tmp_arr[1] -= 1 else tmp_arr[1] += 1 end $count[j] += 1 end sum = tmp_arr[0] + tmp_arr[1] (2...tmp_arr.size).each do |i| diff = sum + tmp_arr[i] # puts %(sum : #{sum}) # puts %(diff : #{diff}) if sum > 0 if diff > 0 tmp_arr[i] -= diff.abs+1 $count[j] += diff.abs+1 elsif diff == 0 tmp_arr[i] -= 1 $count[j] += 1 end else if diff < 0 tmp_arr[i] += diff.abs+1 $count[j] += diff.abs+1 elsif diff == 0 tmp_arr[i] += 1 $count[j] += 1 end end sum += tmp_arr[i] # p tmp_arr end flg = false end #p $count #p arr puts $count.min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } int main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; long long a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long cnt = a[0]; long long ans = 0ll; long long p = -1ll; if (a[0] <= 0ll) p = 1ll; for (int i = 1; i < n; ++i) { cnt += a[i]; long long g = 0; if (cnt * p <= 0ll) { g = cnt * -1ll + p; ans += (g * p); cnt = cnt + g; } g = 0; p *= -1ll; } cout << (ans) << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.next()); int[] a1 = new int[n]; int[] a2 = new int[n]; for (int i = 0; i < n; i++) { int temp = Integer.parseInt(sc.next()); a1[i] = temp; a2[i] = temp; } int ans1 = 0; int ans2 = 0; long temp = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && temp + a1[i] >= 0) { ans1 += temp + a1[i] + 1; a1[i] -= temp + a1[i] + 1; } if (i % 2 != 0 && temp + a1[i] <= 0) { ans1 += Math.abs(temp + a1[i] - 1); a1[i] += Math.abs(temp + a1[i] - 1); } temp += a1[i]; } if (Arrays.stream(a1).mapToLong(x -> x).sum() == 0) { ans1++; } temp = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0 && temp + a2[i] <= 0) { ans2 += Math.abs(temp + a2[i] - 1); a2[i] += Math.abs(temp + a2[i] - 1); } if (i % 2 != 0 && temp + a2[i] >= 0) { ans2 += temp + a2[i] + 1; a1[i] -= temp + a2[i] + 1; } temp += a2[i]; } if (Arrays.stream(a2).mapToLong(x -> x).sum() == 0) { ans2++; } System.out.println(Math.min(ans1, ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { public static void main(String[] args){ Scanner sc = new Scanner(System.in); // 整数の入力 int n = sc.nextInt(); int a[] = new int[n]; for(int i = 0; i<n;i++){ int j = sc.nextInt(); a[i] = j; } int sum=a[0]; boolean plusFlag; int ans=0; if(a[0] > 0){ plusFlag = true; }else{ plusFlag = false; } for(int i = 1;i<n;i++){ sum += a[i]; if(plusFlag){ if(sum >= 0){ ans += Math.abs(sum)+1; sum = -1; } }else{ if(sum <= 0){ ans += Math.abs(sum)+1; sum = 1; } } plusFlag = !plusFlag; } System.out.println(ans); sc.close(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; class Program { static void Main(string[] args) { new Calc().Solve(); } public class Calc { public Calc() { } public void Solve() { int n = Utils.ReadLine<int>(); var a = Utils.ReadLine<int>(' '); int sum = 0; int x = 0, y = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0) { if (sum > 0) continue; x += Math.Abs(sum) + 1; sum = 1; } else { if (sum < 0) continue; x += Math.Abs(sum) + 1; sum = -1; } } sum = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 1) { if (sum > 0) continue; y += Math.Abs(sum) + 1; sum = 1; } else { if (sum < 0) continue; y += Math.Abs(sum) + 1; sum = -1; } } Math.Min(x, y).WriteLine(); return; } } } public static class Utils { public static T ReadLine<T>() { return (T)Convert.ChangeType(Console.ReadLine(), typeof(T)); } public static T[] ReadLine<T>(params char[] separators) { return Console.ReadLine() .Split(separators) .Where(_ => _.Length > 0) .Select(_ => (T)Convert.ChangeType(_, typeof(T))) .ToArray(); } public static List<T> ReadLines<T>(int readCount) { List<T> rt = new List<T>(); for (int i = 0; i < readCount; i++) { rt.Add(ReadLine<T>()); } return rt; } public static string Docking<T>(this IEnumerable<T> s, int sequenceRange, Func<T, string> filter = null) { string str = ""; int c = 0; foreach (var item in s) { str += filter == null ? item.ToString() : filter(item); c++; if (c == sequenceRange) break; } return str; } public static string Docking<T>(this IEnumerable<T> s, Func<T, string> filter = null) { return s.Docking(s.Count(), filter); } public static string RangeDocking<T>(this IEnumerable<T> s, int start, int end, Func<T, string> filter = null) { string str = ""; end = end < s.Count() ? end : s.Count(); var items = s.ToArray(); for (int i = start; i < end; i++) { str += filter == null ? items[i].ToString() : filter(items[i]); } return str; } public static int IntParse(this string n) { return int.Parse(n); } public static void WriteLine(this object obj) { Console.WriteLine(obj); } public static void AddTo<T>(this T obj,List<T> list) { list.Add(obj); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n][2]; for (int i = 0; i < n; i++) { cin >> a[i][0]; a[i][1] = a[i][0]; } int sum = 0; int res[2]; for (int check = 0; check < 2; check++) { sum = 0; if (check) { if (a[0][check] > 0) { int temp = -1 - a[0][check]; a[0][check] += temp; res[check] += temp * -1; } else if (a[0][check] < 0) { int temp = 1 - a[0][check]; a[0][check] += temp; res[check] += temp; } } if (a[0][check] == 0) { if (!check) { a[0][check]++; } else { a[0][check]--; } res[check]++; } for (int i = 0; i < n - 1; i++) { sum += a[i][check]; if (sum * (sum + a[i + 1][check]) >= 0) { if (sum > 0) { int temp = -1 - sum - a[i + 1][check]; a[i + 1][check] += temp; res[check] += temp * -1; } else { int temp = 1 - sum - a[i + 1][check]; a[i + 1][check] += temp; res[check] += temp; } } } } cout << min(res[0], res[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T1, class T2> bool chmin(T1 &a, T2 b) { return b < a && (a = b, true); } template <class T1, class T2> bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } using ll = long long; using vll = vector<ll>; using vvll = vector<vll>; using P = pair<ll, ll>; using ld = long double; using vld = vector<ld>; using vi = vector<int>; using vvi = vector<vi>; vll conv(vi &v) { vll r(v.size()); for (long long i = 0; i < (long long)(v.size()); i++) r[i] = v[i]; return r; } inline void input(int &v) { v = 0; char c = 0; int p = 1; while (c < '0' || c > '9') { if (c == '-') p = -1; c = getchar(); } while (c >= '0' && c <= '9') { v = (v << 3) + (v << 1) + c - '0'; c = getchar(); } v *= p; } template <typename T, typename U> ostream &operator<<(ostream &o, const pair<T, U> &v) { o << "(" << v.first << ", " << v.second << ")"; return o; } template <size_t...> struct seq {}; template <size_t N, size_t... Is> struct gen_seq : gen_seq<N - 1, N - 1, Is...> {}; template <size_t... Is> struct gen_seq<0, Is...> : seq<Is...> {}; template <class Ch, class Tr, class Tuple, size_t... Is> void print_tuple(basic_ostream<Ch, Tr> &os, Tuple const &t, seq<Is...>) { using s = int[]; (void)s{0, (void(os << (Is == 0 ? "" : ", ") << get<Is>(t)), 0)...}; } template <class Ch, class Tr, class... Args> auto operator<<(basic_ostream<Ch, Tr> &os, tuple<Args...> const &t) -> basic_ostream<Ch, Tr> & { os << "("; print_tuple(os, t, gen_seq<sizeof...(Args)>()); return os << ")"; } ostream &operator<<(ostream &o, const vvll &v) { for (long long i = 0; i < (long long)(v.size()); i++) { for (long long j = 0; j < (long long)(v[i].size()); j++) o << v[i][j] << " "; o << endl; } return o; } template <typename T> ostream &operator<<(ostream &o, const vector<T> &v) { o << '['; for (long long i = 0; i < (long long)(v.size()); i++) o << v[i] << (i != v.size() - 1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const deque<T> &v) { o << '['; for (long long i = 0; i < (long long)(v.size()); i++) o << v[i] << (i != v.size() - 1 ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T> ostream &operator<<(ostream &o, const unordered_set<T> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U> ostream &operator<<(ostream &o, const map<T, U> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it << (next(it) != m.end() ? ", " : ""); o << "]"; return o; } template <typename T, typename U, typename V> ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) { o << '['; for (auto it = m.begin(); it != m.end(); it++) o << *it; o << "]"; return o; } vector<int> range(const int x, const int y) { vector<int> v(y - x + 1); iota(v.begin(), v.end(), x); return v; } template <typename T> istream &operator>>(istream &i, vector<T> &o) { for (long long j = 0; j < (long long)(o.size()); j++) i >> o[j]; return i; } template <typename T, typename S, typename U> ostream &operator<<(ostream &o, const priority_queue<T, S, U> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.top(); tmp.pop(); o << x << " "; } return o; } template <typename T> ostream &operator<<(ostream &o, const queue<T> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.front(); tmp.pop(); o << x << " "; } return o; } template <typename T> ostream &operator<<(ostream &o, const stack<T> &v) { auto tmp = v; while (tmp.size()) { auto x = tmp.top(); tmp.pop(); o << x << " "; } return o; } template <typename T> unordered_map<T, ll> counter(vector<T> vec) { unordered_map<T, ll> ret; for (auto &&x : vec) ret[x]++; return ret; }; string substr(string s, P x) { return s.substr(x.first, x.second - x.first); } void vizGraph(vvll &g, int mode = 0, string filename = "out.png") { ofstream ofs("./out.dot"); ofs << "digraph graph_name {" << endl; set<P> memo; for (long long i = 0; i < (long long)(g.size()); i++) for (long long j = 0; j < (long long)(g[i].size()); j++) { if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i)))) continue; memo.insert(P(i, g[i][j])); ofs << " " << i << " -> " << g[i][j] << (mode ? " [arrowhead = none]" : "") << endl; } ofs << "}" << endl; ofs.close(); system(((string) "dot -T png out.dot >" + filename).c_str()); } size_t random_seed; namespace std { using argument_type = P; template <> struct hash<argument_type> { size_t operator()(argument_type const &x) const { size_t seed = random_seed; seed ^= hash<ll>{}(x.first); seed ^= (hash<ll>{}(x.second) << 1); return seed; } }; }; // namespace std int main() { int n, a[100100]; cin >> n; int total = 0; int count = 0; for (int i = 0; i < n; ++i) { cin >> a[i]; cerr << "i " << i << ", a[i] " << a[i] << " total: " << total << " count " << count << endl; total += a[i]; if (i == 0) { continue; } if (a[0] >= 0) { cerr << "a[i] >= 0, so... " << endl; if (i % 2 == 1) { if (total >= 0) { count += total + 1; total = -1; cerr << "aaaa should be minus!" << endl; } } else if (total <= 0) { count += abs(total) + 1; total = 1; cerr << "bbbb should be plus!" << endl; } } else { if (i % 2 == 0) { if (total >= 0) { count += total + 1; total = -1; cerr << "cccc should be minus!" << endl; } } else if (total <= 0) { count += abs(total) + 1; total = 1; cerr << "dddd should be plus!" << endl; } } cerr << "total " << total << " is after operation" << endl; } if (total == 0) { cerr << "total is zero, increment total" << endl; ++count; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sa = 0 count = [0, 0] for i in range(n): now = a[i] sa += now if sa <= 0 and i%2 == 0: count[0] += 1 - sa sa = 1 elif sa >= 0 and i%2 == 1: count[0] += 1 + sa sa = -1 sa = 0 for i in range(n): now = a[i] sa += now if sa <= 0 and i%2 == 1: count[1] += 1 - sa sa = 1 elif sa >= 0 and i%2 == 0: count[1] += 1 + sa sa = -1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; int i; int64_t sum; bool default_flag; bool plus_flag, minus_flag; int64_t ope_count; cin >> n; vector<int64_t> a(n); for (i = 0; i < n; i++) { cin >> a.at(i); } sum = 0; ope_count = 0; default_flag = true; plus_flag = false; minus_flag = false; for (i = 0; i < n; i++) { sum += a.at(i); if (default_flag == true) { default_flag = false; if (sum > 0) { plus_flag = true; } else if (sum < 0) { minus_flag = true; } else if (sum == 0) { ope_count++; if (a.at(i + 1) <= 0) { sum++; plus_flag = true; } else if (a.at(i + 1) > 0) { sum--; minus_flag = true; } } } else if (plus_flag == true) { while (sum >= 0) { ope_count++; sum--; } plus_flag = false; minus_flag = true; } else if (minus_flag == true) { while (sum <= 0) { ope_count++; sum++; } plus_flag = true; minus_flag = false; } } cout << ope_count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- trial_num = int(input()) number_lists = list(map(int, input().split())) def main(): sum_num = 0 change_num = 0 if(number_lists[0] < 0): for i in range(trial_num): number_lists[i] = -1 * number_lists[i] for i in range(trial_num): if(i == 0): sum_num = number_lists[0] continue else: if(i%2 == 1): if(sum_num + number_lists[i] < 0): sum_num += number_lists[i] continue else: change_num += abs(sum_num + number_lists[i]) + 1 sum_num = -1 continue else: if (sum_num + number_lists[i] > 0): sum_num += number_lists[i] continue else: change_num += abs(sum_num + number_lists[i]) + 1 sum_num = 1 continue print(change_num) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <string> #include <algorithm> #include <vector> #include <cmath> #include <cstdlib> #include <tuple> using ll = long long; using namespace std; #define modmod 1000000007 #define rep(i,n) for(int i=0;i<n;i++) #define REP(i,k,n) for(int i=k;i<n;i++) int main(){ int N; cin >> N; ll a; ll sum[N] = {0}; ll s = 0; ll old_s = 0; ll count = 0; for(int i = 0; i < N; i++){ cin >> a; if(i != 0 and old_s == 0 and a != 0){ if(a>0){ s = -1; }else{ s = 1; } } old_s = s; s += a; if(s==0){ if(old_s > 0){ s--; count++; }else if(old_s ==0){ count++; }else{ s++; count++; } } if(s > 0 and old_s > 0){ count += s+1; s = -1; }else if(s < 0 and old_s < 0){ count += abs(s)+1; s = 1; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first - r.first, l.second - r.second); } const long long int MOD = 1e9 + 7, INF = 1e18; long long int N, arr[100000], sums[100000]; int main() { cin.tie(0); ios_base::sync_with_stdio(false); cin >> N; for (long long int i = (0), i_end_ = (N); i < i_end_; i++) { cin >> arr[i]; } bool flag; long long int sum = 0; long long int ans = 0; sums[0] = arr[0]; for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) { sums[i + 1] = arr[i + 1] + sums[i]; } for (long long int i = (0), i_end_ = (N); i < i_end_; i++) { cout << sums[i] << " "; } cout << endl; flag = false; for (long long int i = (0), i_end_ = (N); i < i_end_; i++) { sums[i] += sum; if (flag ^ ((i % 2) == 1)) { if (sums[i] >= 0) { sum -= (sums[i] + 1); ans += abs(sums[i] + 1); sums[i] -= (sums[i] + 1); } } else { if (sums[i] <= 0) { sum -= (sums[i] - 1); ans += abs(sums[i] - 1); sums[i] -= (sums[i] - 1); } } } for (long long int i = (0), i_end_ = (N); i < i_end_; i++) { cout << sums[i] << " "; } cout << endl; long long int tmp = ans; sum = 0; ans = 0; sums[0] = arr[0]; for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) { sums[i + 1] = arr[i + 1] + sums[i]; } flag = true; for (long long int i = (0), i_end_ = (N); i < i_end_; i++) { sums[i] += sum; if (flag ^ ((i % 2) == 1)) { if (sums[i] >= 0) { sum -= (sums[i] + 1); ans += abs(sums[i] + 1); sums[i] -= (sums[i] + 1); } } else { if (sums[i] <= 0) { sum -= (sums[i] - 1); ans += abs(sums[i] - 1); sums[i] -= (sums[i] - 1); } } } for (long long int i = (0), i_end_ = (N); i < i_end_; i++) { cout << sums[i] << " "; } cout << endl; cout << min(tmp, ans) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int d[100005]; int main(void) { scanf("%d", &n); for (int i = 1; i <= n; i++) scanf("%d", &d[i]); int ans1 = 0, sum = 0; for (int i = 1; i <= n; i++) { if (i % 2 == 0) { int a = 0; if (sum + d[i] >= 0) { a = abs(sum + d[i]) + 1; ans1 += a; sum = -1; } else sum += d[i]; } else { int a = 0; if (sum + d[i] <= 0) { a = abs(sum + d[i]) + 1; ans1 += a; sum = 1; } else sum += d[i]; } } int ans2 = 0; sum = 0; for (int i = 1; i <= n; i++) { if (i % 2 == 0) { int a = 0; if (sum + d[i] <= 0) { a = abs(sum + d[i]) + 1; ans2 += a; sum = 1; } else sum += d[i]; } else { int a = 0; if (sum + d[i] >= 0) { a = abs(sum + d[i]) + 1; ans2 += a; sum = -1; } else sum += d[i]; } } printf("%d\n", min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); int64_t t = 0LL, res1 = 0LL, res2 = 0LL; for (int i = 0; i < N; i++) { t += a.at(i); if (i % 2 == 0) { if (t <= 0) { res1 += (1 - t); t = 1LL; } } else { if (t >= 0) { res1 += abs(-1 - t); t = -1LL; } } } t = 0LL; for (int i = 0; i < N; i++) { t += a.at(i); if (i % 2 == 1) { if (t <= 0) { res2 += (1 - t); t = 1LL; } } else { if (t >= 0) { res2 += abs(-1 - t); t = -1LL; } } } int res = min(res1, res2); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) currentSum = 0 count = 0 for i in range(N): restSum = currentSum currentSum += A[i] if currentSum <= 0 and restSum < 0: count += abs(currentSum) + 1 currentSum = 1 elif currentSum >= 0 and restSum > 0: count += abs(currentSum) + 1 currentSum = -1 elif currentSum == 0 and restSum == 0 and A[i + 1] >= 0: count += abs(currentSum) + 1 currentSum = -1 elif currentSum == 0 and restSum == 0 and A[i + 1] <= 0: count += abs(currentSum) + 1 currentSum = 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; const double pi = acos(-1.0); const ll MOD = 1e9 + 7; const ll INF = 1LL << 60; void print(vector<ll> vec) { for (int i = 0; i < ((ll)(vec).size()); i++) { if (i) cout << " "; cout << vec[i]; } cout << "\n"; } ll dp[100005]; int main() { ll n; cin >> n; vector<ll> a(n); for (int i = 0; i < n; i++) cin >> a[i]; dp[0] = a[0]; ll ans = 0; for (int i = 1; i < n; i++) { if (dp[i - 1] < 0) { if (dp[i - 1] + a[i] > 0) { dp[i] = dp[i - 1] + a[i]; } else { ll ai = 1 - dp[i - 1]; ans += abs(ai - a[i]); dp[i] = 1; } } if (dp[i - 1] > 0) { if (dp[i - 1] + a[i] < 0) { dp[i] = dp[i - 1] + a[i]; } else { ll ai = -1 - dp[i - 1]; ans += abs(ai - a[i]); dp[i] = -1; } } } ll cnt = 0; if (a[0] > 0) { dp[0] = -1; cnt += abs(a[0] + 1); } else { dp[0] = 1; cnt += abs(a[0] - 1); } for (int i = 1; i < n; i++) { if (dp[i - 1] < 0) { if (dp[i - 1] + a[i] > 0) { dp[i] = dp[i - 1] + a[i]; } else { ll ai = 1 - dp[i - 1]; cnt += abs(ai - a[i]); dp[i] = 1; } } if (dp[i - 1] > 0) { if (dp[i - 1] + a[i] < 0) { dp[i] = dp[i - 1] + a[i]; } else { ll ai = -1 - dp[i - 1]; cnt += abs(ai - a[i]); dp[i] = -1; } } } ans = min(ans, cnt); cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int ans = 0; int part = 0; int a; cin >> a; part += a; bool isP = part > 0 ? true : false; for (int i = 1; i < n; i++) { cin >> a; part += a; if (isP) { if (part > 0) { ans += part + 1; part = -1; } else if (part == 0) { ans++; part = -1; } isP = false; } else { if (part < 0) { ans += 1 - part; part = 1; } else if (part == 0) { ans++; part = 1; } isP = true; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long total = a[0]; long long total2 = a[0]; long long ans = 0; for (int i = (1); i < (n); ++i) { total = total2; total += a[i]; if (total * total2 >= 0) { ans += (abs(total) + 1); if (total > 0) { total = -1; } else { total = 1; } } total2 = total; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a; vector<long long> b; for (long long i = 0; i < n; i++) { long long ai; cin >> ai; a.push_back(ai); b.push_back(ai); } long long countA = 0; long long countB = 0; if (a.at(0) == 0) { a.at(0) = 1; b.at(0) = -1; countA = 1; countB = 1; } long long sumA = a.at(0); long long sumB = b.at(0); for (long long i = 0; i < n - 1; i++) { long long next_sumA = sumA + a.at(i + 1); long long next_sumB = sumB + b.at(i + 1); if (sumA > 0 && next_sumA >= 0) { long long diff = 1 + next_sumA; countA += diff; a.at(i + 1) -= diff; next_sumA -= diff; } else if (sumA < 0 && next_sumA <= 0) { long long diff = 1 - next_sumA; countA += diff; a.at(i + 1) += diff; next_sumA += diff; } if (sumB > 0 && next_sumB >= 0) { long long diff = 1 + next_sumB; countB += diff; b.at(i + 1) -= diff; next_sumB -= diff; } else if (sumB < 0 && next_sumB <= 0) { long long diff = 1 - next_sumB; countB += diff; b.at(i + 1) += diff; next_sumB += diff; } sumA = next_sumA; sumB = next_sumB; } cout << min(countA, countB) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long array[n]; for (int i = 0; i < n; i++) { cin >> array[i]; } long long answer = 0; long long sum = 0; for (int i = 0; i < n; i++) { if (sum == 0) sum += array[i]; else if (sum < 0) { if (sum + array[i] > 0) { sum += array[0]; } else { answer += abs((-1) * sum + 1 - array[i]); sum = 1; } } else { if (sum + array[i] < 0) { sum += array[i]; } else { answer += abs((-1) * sum - 1 - array[i]); sum = -1; } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> v(n); for (int i = 0; i < n; i++) cin >> v[i]; long long cnt = 0; long long sum = 0; for (int i = 0; i < n; i++) { sum += v[i]; if (i % 2 == 0 && sum < 0) { cnt += abs(sum) + 1; sum = 1; } else if (i % 2 == 1 && sum > 0) { cnt += abs(sum) + 1; sum = -1; } if (i % 2 == 0 && sum == 0) { sum = 1; cnt++; } else if (i % 2 == 1 && sum == 0) { sum = -1; cnt++; } } long long ans = cnt; sum = 0; cnt = 0; for (int i = 0; i < n; i++) { sum += v[i]; if (i % 2 == 0 && sum > 0) { cnt += abs(sum) + 1; sum = -1; } else if (i % 2 == 1 && sum < 0) { cnt += abs(sum) + 1; sum = -1; } if (i % 2 == 0 && sum == 0) { sum = -1; cnt++; } else if (i % 2 == 1 && sum == 0) { sum = 1; cnt++; } } ans = min(ans, cnt); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#![allow(unused_imports, unused_macros, dead_code)] macro_rules! min { (.. $x:expr) => {{ let mut it = $x.iter(); it.next().map(|z| it.fold(z, |x, y| min!(x, y))) }}; ($x:expr) => ($x); ($x:expr, $($ys:expr),*) => {{ let t = min!($($ys),*); if $x < t { $x } else { t } }} } macro_rules! max { (.. $x:expr) => {{ let mut it = $x.iter(); it.next().map(|z| it.fold(z, |x, y| max!(x, y))) }}; ($x:expr) => ($x); ($x:expr, $($ys:expr),*) => {{ let t = max!($($ys),*); if $x > t { $x } else { t } }} } macro_rules! ewriteln { ($($args:expr),*) => { let _ = writeln!(&mut std::io::stderr(), $($args),*); }; } macro_rules! trace { ($x:expr) => { ewriteln!(">>> {} = {:?}", stringify!($x), $x) }; ($($xs:expr),*) => { trace!(($($xs),*)) } } macro_rules! put { (.. $x:expr) => {{ let mut it = $x.iter(); if let Some(x) = it.next() { print!("{}", x); } for x in it { print!(" {}", x); } println!(""); }}; ($x:expr) => { println!("{}", $x) }; ($x:expr, $($xs:expr),*) => { print!("{} ", $x); put!($($xs),*) } } const M: i64 = 1_000_000_007; trait Group: std::ops::Add<Output=Self> + std::ops::Sub<Output=Self> + std::ops::Neg<Output=Self> + std::iter::Sum + Clone + Copy { fn zero() -> Self; } impl Group for i32 { fn zero() -> Self { 0 }} impl Group for i64 { fn zero() -> Self { 0 }} impl Group for f32 { fn zero() -> Self { 0.0 }} impl Group for f64 { fn zero() -> Self { 0.0 }} trait Ring: Group + std::ops::Mul<Output=Self> + std::ops::Div<Output=Self> { fn one() -> Self; } impl Ring for i32 { fn one() -> Self { 1 }} impl Ring for i64 { fn one() -> Self { 1 }} impl Ring for f32 { fn one() -> Self { 1.0 }} impl Ring for f64 { fn one() -> Self { 1.0 }} #[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Debug)] enum Hyper<X> { NegInf, Real(X), Inf } use Hyper::{Real, NegInf, Inf}; impl<X> Hyper<X> { fn unwrap(self) -> X { if let Hyper::Real(x) = self { x } else { panic!() } } } impl<X: Ring> std::ops::Add for Hyper<X> { type Output = Self; fn add(self, rhs: Hyper<X>) -> Hyper<X> { match (self, rhs) { (Real(x), Real(y)) => Real(x + y), (Inf, _) => Inf, (_, Inf) => Inf, _ => NegInf, } } } impl<X: Ring> std::ops::Sub for Hyper<X> { type Output = Self; fn sub(self, rhs: Hyper<X>) -> Hyper<X> { self + (-rhs) } } impl<X: Ring> std::ops::Neg for Hyper<X> { type Output = Self; fn neg(self) -> Hyper<X> { match self { Inf => NegInf, NegInf => Inf, Real(x) => Real(-x), } } } fn solve(d: i64, sign: bool, xs: &Vec<i64>) -> i64 { let mut sign = sign; let mut sum = 0; let mut num = 0; for &x in xs.iter() { sum += x; if sign { if sum < 1 { num += 1 - sum; sum = 1; } else if sum > d { num += sum - d; sum = d; } sign = false; } else { if sum > -1 { num += sum + 1; sum = -1; } else if sum < -d { num += -d - sum; sum = -d; } sign = true; } } num } fn main() { let mut sc = Scanner::new(); let n: usize = sc.cin(); let xs: Vec<i64> = sc.vec(n); put!(min!(solve(100000, true, &xs), solve(100000, false, &xs))); } use std::io::{self, Write}; use std::str::FromStr; use std::collections::VecDeque; struct Scanner { stdin: io::Stdin, buffer: VecDeque<String>, } impl Scanner { fn new() -> Self { Scanner { stdin: io::stdin(), buffer: VecDeque::new() } } fn cin<T: FromStr>(&mut self) -> T { while self.buffer.len() == 0 { let mut line = String::new(); let _ = self.stdin.read_line(&mut line); for w in line.split_whitespace() { self.buffer.push_back(String::from(w)); } } self.buffer.pop_front().unwrap().parse::<T>().ok().unwrap() } fn chars(&mut self) -> Vec<char> { self.cin::<String>().chars().collect() } fn vec<T: FromStr>(&mut self, n: usize) -> Vec<T> { (0..n).map(|_| self.cin()).collect() } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int ans = 0; if (a[0] >= 0) { int sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } } } else { int sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<ll, ll>; const ll MOD = 1e9 + 7; const ll INF = 1ll << 60; ll N; vector<ll> a; int main(int argc, char **argv) { cin >> N; a.resize(N); for (ll i = (0); i < (ll)(N); ++i) cin >> a[i]; for (ll i = (0); i < (ll)(N - 1); ++i) a[i + 1] += a[i]; ll res{INF}; ll pre; ll cnt; pre = 0; cnt = 0; for (ll i = (0); i < (ll)(N); ++i) { ll t = a[i] + pre; if (i & 1) { if (t <= 0) { cnt += abs(t) + 1; pre += -t + 1; } } else { if (t >= 0) { cnt += a[i] + 1; pre -= t + 1; } } } res = min(res, cnt); cnt = 0; pre = 0; for (ll i = (0); i < (ll)(N); ++i) { ll t = a[i] + pre; if (~i & 1) { if (t <= 0) { cnt += abs(t) + 1; pre += -t + 1; } } else { if (t >= 0) { cnt += t + 1; pre -= t + 1; } } } res = min(res, cnt); std::cout << res << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.util.*; import java.util.function.IntFunction; import java.util.function.Supplier; import java.util.stream.IntStream; import java.util.stream.Stream; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(); int n=scanner.nextInt(); long[] a=new long[n+1]; for(int i=1;i<=n;i++){ a[i]=scanner.nextInt(); } Arrays.parallelPrefix(a,(c,b)->c+b); //put(Arrays.toString(a)); long ans=0; long ruiseki=0; for(int i=1;i<=n;i++){ //put(format("i=%d",i)); //put(format("ruiseki=%d",ruiseki)); long val=a[i]+ruiseki; long val_=a[i-1]+ruiseki; //put(format("val=%d",val)); //put(format("val_=%d",val_)); if(val==0){ int bit=Long.signum(val_); ruiseki+=bit*1; ans+=Math.abs(bit); }else if(val>0&&val_>0){ ruiseki-=(val+1); ans+=Math.abs(val+1); }else if(val<0&&val_<0){ ruiseki+=Math.abs(val)+1; ans+=Math.abs(val)+1; } //put(ans); //put(); } put(ans); } public static void print(Object object){ System.out.print(object); } public static void put(Object object) { System.out.println(object); } public static void put(){ System.out.println(); } public static String format(String string, Object... args) { return String.format(string, args); } } final class Scanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { n *= 10; n += b - '0'; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } } final class Pair { final public int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int hashCode() { return x+y; } @Override public boolean equals(Object obj) { boolean result=super.equals(obj); if(obj.getClass()!=this.getClass()){ return false; } Pair pair=(Pair)obj; if(this.x==pair.x&&this.y==pair.y) return true; return false; } @Override public String toString() { return String.format("(%d,%d)", x, y); } } final class Tuple<T,V>{ //immutabl1でないことに注意(T,Vがmutableの場合変更可能) final public T t; final public V v; Tuple(T t,V v){ this.t=t; this.v=v; } @Override public int hashCode() { return (t.hashCode()+v.hashCode()); } @Override public boolean equals(Object obj) { if(obj.getClass()!=this.getClass()){ return false; } Tuple<T,V> tuple=(Tuple)obj; return tuple.t.equals(this.t)&&tuple.v.equals(this.v); } @Override public String toString() { return String.format("<Tuple>=<%s,%s>",t,v); } } final class LowerBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) >= 0) ? 1 : -1; } } final class UpperBoundComparator<T extends Comparable<? super T>> implements Comparator<T> { public int compare(T x, T y) { return (x.compareTo(y) > 0) ? 1 : -1; } } final class Util { static long gcd(long a,long b){ if(a%b==0)return b; return gcd(b,a%b); } static long lcm(long a,long b){ long gcd=gcd(a,b); long result=b/gcd; return a*result; } static long kaijoMod(int n,int mod){ if(n<1) return -1; long result=1; for(int i=n;i>1;i--){ result*=i; result%=mod; } return result; } static <T extends Comparable> Map<T,Integer> count(List<T> list){ //副作用 Collections.sort(list); Map<T,Integer> result=new HashMap<>(); int l=0,r=0; while(l<list.size()){ while(r<list.size()-1&&list.get(r).equals(r+1)){ r++; } result.put(list.get(r),r-l+1); r++; l=r; } return result; } static Map<Integer,Integer> count(int[] array){ //副作用 Arrays.sort(array); Map<Integer,Integer> result=new HashMap<>(); int l=0,r=0; while(l<array.length){ while(r<array.length-1&&array[r]==array[r+1]){ r++; } result.put(array[l],r-l+1); r++; l=r; } return result; } static String toStringBWS(Iterable iterable){ Iterator ite=iterable.iterator(); return toStringBWS(ite); } static String toStringBWS(Iterator ite){ StringBuilder sb=new StringBuilder(); sb.append(ite.next()); while(ite.hasNext()){ sb.append(" "); sb.append(ite.next()); } return sb.toString(); } static String toStringBWS(int[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } static String toStringBWS(long[] array){ StringBuilder sb=new StringBuilder(); for(int i=0;i<array.length-1;i++){ sb.append(array[i]); sb.append(" "); } sb.append(array[array.length-1]); return sb.toString(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> x; int temp, ans = 0; for (int i = 0; i != n; ++i) { cin >> temp; x.push_back(temp); } if (!x[0]) { x[0] = -1; ++ans; for (int i = 0; i != n; ++i) { if (x[i] < 0) { x[i] = 1; break; } } } int sum = x[0]; for (int i = 1; i != n; ++i) { int sum2 = sum + x[i]; if (sum * sum2 >= 0) { ans += abs(sum2) + 1; if (sum < 0) sum2 = 1; else sum2 = -1; } sum = sum2; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int abs(int num) { return (num > 0) ? num : -num; } int main() { int n; scanf("%d", &n); int A[n]; int i; int sum = 0; int ans = 0; for (i = 0; i < n; i++) { scanf("%d", &A[i]); } for (i = 0; i < n - 1; i++) { sum += A[i]; if (sum > 0) { if (sum >= -A[i + 1]) { ans += abs(sum + A[i + 1] + 1); A[i + 1] -= abs(sum + A[i + 1] + 1); } } else { if (sum <= -A[i + 1]) { ans += abs(sum + A[i + 1] - 1); A[i + 1] += abs(sum + A[i + 1] + 1); } } } printf("%d\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] a1 = a.copy() cnt1 = 0 sum1 = 0 if a1[0] == 0: a1[0] = 1 cnt1 +=1 a2 = a.copy() cnt2 = 0 sum2 = 0 if a2[0] == 0: a2[0] = -1 cnt2 +=1 for i in range(n-1): sum1 = sum(a1[:i+1]) if sum1 > 0 and (sum1+a1[i+1]) >= 0: cnt1 += abs(((sum1 * -1)-1) - a1[i+1]) a1[i+1] = ((sum1 * -1)-1) elif sum1 < 0 and (sum1 + a1[i+1]) <= 0: cnt1 += abs(abs(sum1)+1 - a1[i+1]) a1[i+1] = abs(sum1)+1 for i in range(n-1): sum2 = sum(a2[:i+1]) if sum2 > 0 and (sum2+a2[i+1]) >= 0: cnt2 += abs(((sum2 * -1)-1) - a2[i+1]) a2[i+1] = ((sum2 * -1)-1) elif sum2 < 0 and (sum2+a2[i+1]) <= 0: cnt2 += abs(abs(sum2)+1 - a2[i+1]) a2[i+1] = abs(sum2)+1 print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; int a[100001]; for (int i = 0; i < N; i++) { cin >> a[i]; } int total = a[0]; int ops = 0; if (total == 0) { ops++; if (a[1] > 0) { total = -1; } else { total = 1; } } for (int i = 1; i < N; i++) { if (total > 0 && (total + a[i]) >= 0) { ops += a[i] + total + 1; total = -1; } else if (total < 0 && (total + a[i]) <= 0) { ops += -(a[i] + total) + 1; total = 1; } else { total += a[i]; } } printf("%d\n", ops); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long a[100000]; int main() { cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; long long sum = a[0]; long long count = 0; bool f; if (a[0] == 0) { sum++; count++; } if (sum > 0) f = true; else f = false; for (int i = 1; i < n; i++) { if (f) { if (sum + a[i] < 0) { sum += a[i]; f = false; continue; } count += (sum + a[i]) + 1; sum = -1; f = false; } else { if (sum + a[i] > 0) { sum += a[i]; f = true; continue; } count -= (sum + a[i]); count++; sum = 1; f = true; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long cnt = 0; long long tot = a.at(0); long long k = 1; if (a.at(0) == 0) { k = -1; for (int i = 1; i < n; i++) { if (a.at(i) != 0) { k = i; break; } } if (k == -1) { cout << 1 + 2 * (n - 1) << endl; return 0; } if (a.at(k) > 0) { tot = -1; cnt = 1 + 2 * (k - 1); } else { tot = 1; cnt = 1 + 2 * (k - 1); } } for (int i = k; i < n; i++) { long long after; if (tot < 0) { after = max(1 - tot, a.at(i)); cnt += abs(after - a.at(i)); } if (tot > 0) { after = min(-1 - tot, a.at(i)); cnt += abs(after - a.at(i)); } tot += after; } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) l = len(a) b = [] for i in range(l): b.append(a[i]) ans = 0 Ans = 0 summary = a[0] if(summary == 0): a[0] = 1 ans+= 1 b[0] = -1 Ans+= 1 else: b[0] = int(-a[0]/ abs(a[0])) Ans+= abs(a[0]- b[0]) Summary = b[0] for i in range(1, l): if(summary* (summary+ a[i])>= 0): if(summary > 0): ans+= a[i]+ summary+ 1 a[i] = -summary- 1 summary= -1 else: ans+= -summary+ 1- a[i] a[i] = -summary+ 1 summary= 1 else: summary+= a[i] for i in range(1, l): if(Summary* (Summary+ b[i])>= 0): if(Summary > 0): Ans+= b[i]+ Summary+ 1 b[i] = -Summary- 1 Summary= -1 else: Ans+= -Summary+ 1- b[i] b[i] = -Summary+ 1 Summary= 1 else: Summary+= b[i] print(min(ans, Ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int gcd(int a, int b) { return (b == 0) ? a : gcd(b, a % b); } int main() { int n; cin >> n; ; vector<ll> a(n); for (int i = 0; i < (n); i++) { cin >> a[i]; }; ll ans = 0; ll tempSum = a[0]; for (int i = 1; i < n; i++) { if (tempSum > 0 && tempSum + a[i] >= 0) { ans += fabs(tempSum + a[i]) + 1; tempSum = -1; } else if (tempSum < 0 && tempSum + a[i] <= 0) { ans += fabs(tempSum + a[i]) + 1; tempSum = 1; } else { tempSum += a[i]; } } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MOD = pow(10, 9) + 7; long long mod(long long A, long long M) { return (A % M + M) % M; } const long long INF = 1LL << 60; template <class T> bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } long long divCeil(long long A, long long B) { return (A + (B - 1)) / B; } long long myctoi(char C) { return C - '0'; } char myitoc(long long N) { return '0' + N; } signed main() { long long N; cin >> N; vector<long long> A(N); for (long long i = 0; i < N; i++) { cin >> A.at(i); } long long ans = 0, sum = A.at(0); for (long long i = 1; i < N; i++) { long long s = sum; sum += A.at(i); if (s > 0 && sum >= 0) { ans += 1 + sum; sum = -1; } else if (s < 0 && sum <= 0) { ans += 1 - sum; sum = 1; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) l.append(0) a1=0 b1=0 a2=0 b2=0 for i in range(n): b1+=l[i] b2+=l[i] if i%2==0: if b1>=0: a1+=abs(-1-b1) b1=-1-l[i+1] if b2<=0: a2+=abs(1-b2) b2=1-l[i+1] else: if b1<=0: a1+=abs(1-b1) b1=1-l[i+1] if b2>=0: a2+=abs(-1-b2) b2=-1-l[i+1] print(min(a1,a2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; using vi = vector<int>; using vc = vector<char>; using vb = vector<bool>; using vs = vector<string>; using vll = vector<long long>; using vp = vector<pair<int, int>>; using vvi = vector<vector<int>>; using vvc = vector<vector<char>>; using vvll = vector<vector<long long>>; template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T &a, T b) { if (b < a) { a = b; return 1; } return 0; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; vll a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; auto f = [&](ll x) { ll sm = x; ll res = 0; for (int i = 1; i < n; ++i) { if (sm > 0) { if (!(a[i] < -sm)) { res += a[i] - (-sm) + 1; a[i] = -sm - 1; } } else { if (!(a[i] > -sm)) { res += -sm - a[i] + 1; a[i] = -sm + 1; } } sm += a[i]; } return res; }; ll ans = 0; if (a[0] == 0) { ll res1 = f(-1); ll res2 = f(1); ans = min(res1, res2); } else { ans = f(a[0]); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long> as; for (int i = 0; i < n; i++) { long a; cin >> a; as.push_back(a); } long currentSum; if (as[0] != 0) { currentSum = as[0]; } else { currentSum = 1; } int op = 0; for (int i = 1; i < n; i++) { if (currentSum > 0) { if (currentSum + as[i] > 0) { op += currentSum + as[i] + 1; currentSum = -1; } else if (currentSum + as[i] == 0) { op += 1; currentSum = -1; } else { currentSum = currentSum + as[i]; } } else { if (currentSum + as[i] < 0) { op += (1 - currentSum - as[i]); currentSum = 1; } else if (currentSum + as[i] == 0) { op += 1; currentSum = 1; } else { currentSum = currentSum + as[i]; } } } cout << op << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
(defun read-num (&optional (stream *standard-input*)) (parse-integer (read-line stream))) (defun read-list-from-string (str) (read-from-string (concatenate 'string "(" str ")"))) (defun read-list (&optional (stream *standard-input*)) (read-list-from-string (read-line stream))) (defun satisfy-num (acc val) (if (> acc 0) (if (< (+ acc val) 0) 0 (- (+ 1 val acc))) (if (> (+ acc val) 0) 0 (- 1 val acc)))) (defun count-shift (list) (let ((acc (car list)) (sum 0)) (dolist (e (cdr list) sum) (let ((shift (satisfy-num acc e))) (incf sum (abs shift)) (incf acc (+ e shift)))))) (defun solve (list) (format t "~D~%" (count-shift list))) (read-num) (solve (read-list))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { long long n, now = 0, ans[2] = {}; bool flag; scanf("%ld", &n); long long a[n]; for (int i = 0; i < n; i++) { scanf("%ld", &a[i]); printf("now :%ld \n", a[i]); } for (int j = 0; j < 2; j++) { if (j == 0) { flag = true; } else { flag = false; } now = a[0]; for (int i = 1; i < n; i++) { now += a[i]; if (flag) { if (now >= 0) { ans[j] += (-1 - now) * (-1); now = -1; } flag = false; } else { if (now <= 0) { ans[j] += 1 - now; now = 1; } flag = true; } } } if (ans[0] > ans[1]) { printf("%ld", ans[1]); } else { printf("%ld", ans[0]); } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) ans = 0 tmp = a[0] for i in range(n-1): if (tmp > 0): while not (-tmp > a[i+1]): n = -tmp - a[i+1] - 1 a[i+1] += n ans += -n elif (tmp < 0): while not (-tmp < a[i+1]): n = -tmp - a[i+1] + 1 a[i+1] += n ans += n tmp += a[i+1] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } long long cnt1 = 0; long long cnt2 = 0; long long now1 = a[0]; long long now2 = a[0]; for (int i = 1; i < (int)(n); i++) { now1 += a[i]; if (i % 2 != 0) { if (now1 >= 0) { cnt1 += now1 + 1; now1 = -1; } } else { if (now1 <= 0) { cnt1 += 1 - now1; now1 = 1; } } } for (int i = 1; i < (int)(n); i++) { now2 += a[i]; if (i % 2 != 0) { if (now2 <= 0) { cnt2 += 1 - now2; now2 = 1; } } else { if (now2 >= 0) { cnt2 += 1 + now2; now2 = -1; } } } long long ans = min(cnt1, cnt2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, *a; cin >> n; a = new int[n]; int ans = 0; int sum = 0; for (int i = 0; i < n; i++) cin >> a[i]; int flag = -1; if (a[0] > 0) flag = 1; else if (a[0] == 0) flag = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (flag > 0 || flag == 0) { if (sum <= 0) { while (sum <= 0) { sum++; ans++; } } flag = -1; } else if (flag < 0) { if (sum >= 0) { while (sum >= 0) { sum--; ans++; } } flag = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); vector<long long> a; for (int i = 0; i < n; i++) { long long an; scanf("%lld", &an); a.push_back(an); } long long op_count = 0; long long now_sum = 0; long long adding = a[0] > 0 ? -1 : 1; for (int i = 0; i < n; i++) { now_sum += a[i]; adding *= -1; if (now_sum == 0) { a[i] += adding; now_sum += adding; op_count++; continue; } if (adding > 0) { const long long last = 1 - now_sum; if (last > 1) { a[i] += last; now_sum += last; op_count += abs(last); } } else { const long long last = -1 - now_sum; if (last < -1) { a[i] += last; now_sum += last; op_count += abs(last); } } } printf("%lld\n", op_count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n + 1]; for (int i = 0; i < n; i++) cin >> a[i]; int64_t sum = a[0]; int c = 1; int64_t ans0 = 0, ans1 = 0; for (int i = 1; i < n; i++) { sum += a[i]; if (sum * c < 1) { ans0 += 1 - sum * c; sum = c; } c *= -1; } c = -1; sum = a[0]; for (int i = 1; i < n; i++) { sum += a[i]; if (sum * c < 1) { ans1 += 1 - sum * c; sum = c; } c *= -1; } if (ans0 < ans1) cout << ans0 << endl; else cout << ans1 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main{ public static void main(String[] args){ Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int[] a = new int[n]; for(int i=0; i<n; i++){ a[i] = scan.nextInt(); } int count = 0; int sum = 0; for(int i=0; i<n-1; i++){ sum = sum+a[i]; if(sum>0){ if(sum+a[i+1]<0){System.out.println(count); } else{System.out.println(count + "t" + sum); int p = -1-a[i+1]-sum; count = count + Math.abs(p); a[i+1] = a[i+1] + p;} } else if(sum<0){ if(sum+a[i+1]>0){System.out.println(count); } else{System.out.println(count + "k" + sum); int b = 1-a[i+1]-sum; count = count + Math.abs(b); a[i+1] = a[i+1] + b;} } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = input() a_s = [int(x) for x in input().split()] sum_i = 0 manipulate_num = 0 for a in a_s: new_sum_i = sum_i + a # print(f"a:{a}, sum_i:{sum_i}, new_sum_i:{new_sum_i}") if new_sum_i == 0: manipulate_num += 1 if new_sum_i * sum_i > 0: manipulate_num += abs(new_sum_i)+1 new_sum_i -= np.sign(new_sum_i)*(abs(new_sum_i)+1) sum_i = new_sum_i # print(f"a:{a}, sum_i:{sum_i}") # print() print(manipulate_num)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int N; cin >> N; long long sum1 = 0, sum2 = 0; long long ans1 = 0, ans2 = 0; for (int i = 0; i < N; ++i) { long long t; cin >> t; if (i == 0) { if (t == 0) { sum1 = 1; ans1 = 1; sum2 = -1; ans2 = 1; } else { sum1 = t; sum2 = t > 0 ? -1 : 1; ans2 += abs(t) + 1; } } else { if (sum1 < 0 && sum1 + t <= 0) { ans1 += 1 - sum1 - t; sum1 = 1; } else if (sum1 > 0 && sum1 + t >= 0) { ans1 += abs(-1 - sum1 - t); sum1 = -1; } else { sum1 += t; } if (sum2 < 0 && sum2 + t <= 0) { ans2 += 1 - sum2 - t; sum2 = 1; } else if (sum2 > 0 && sum2 + t >= 0) { ans2 += abs(-1 - sum2 - t); sum2 = -1; } else { sum2 += t; } } } printf("%ld,%ld\n", ans1, ans2); cout << min(ans1, ans2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from sys import stdin import sys import math n = int(input()) a = list(map(int, stdin.readline().rstrip().split())) pair = 0 odd = 0 for i in range(0, len(a), 2): pair += a[i] for i in range(1, len(a), 2): odd += a[i] #print(odd) #print(pair) count = 0 current_sum = 0 for i in range(len(a)): ## odd if i % 2 == 1 and odd >= pair: if current_sum + a[i] < 1: diff = 1 - (current_sum + a[i]) a[i] += diff count += diff ## odd elif i % 2 == 1 and odd < pair: if current_sum + a[i] > -1: diff = -1 - (current_sum + a[i]) a[i] += diff count += -1 * diff ## pair elif i % 2 == 0 and odd >= pair: if current_sum + a[i] > -1: diff = -1 - (current_sum + a[i]) a[i] += diff count += -1 * diff elif i % 2 == 0 and odd < pair: if current_sum + a[i] < 1: diff = 1 - (current_sum + a[i]) a[i] += diff count += diff else: print("error") current_sum += a[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# input n = int(input()) A = list(map(int, input().split())) # 偶数番目が+ A_even = A S_even = 0 ans_even = 0 for i in range(n): if (S + A_even[i]) * ((-1) ** (i - 1)) > 0: continue ans_even += S + A_even[i] + 1 A_even[i] = (-1) ** (i - 1) - S S = (-1) ** (i - 1) # 奇数番目が+ A_odd = A S_odd = 0 ans_odd = 0 for i in range(n): if (S + A_odd[i]) * ((-1) ** i) > 0: continue ans_odd += S + A_odd[i] + 1 A_odd[i] = (-1) ** i - S S = (-1) ** i ans = min(ans_even, ans_odd) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; signed main() { ios::sync_with_stdio(false); cin.tie(0); long long n; cin >> n; vector<long long> a(n); for (long long i = (0); i < (n); i++) cin >> a[i]; long long sum = a[0], ans = 0; if (a[0] == 0) sum++, ans++; for (long long i = (1); i < (n); i++) { long long nxt = sum + a[i]; if (nxt == 0) { if (i == n - 1) ans++; else if (a[i + 1] > 0) nxt--, ans++; else nxt++, ans++; } else if (nxt * sum >= 0) { if (nxt < 0) { ans += 1 - nxt; nxt = 1; } else { ans += nxt + 1; nxt = -1; } } sum = nxt; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; n > i; i++) cin >> a[i]; int sh = 0; int nw = 0; for (int i = 0; n > i; i++) { nw += a[i]; if (i % 2 == 0) if (nw <= 0) sh += 1 - nw, nw = 1; if (i % 2 == 1) if (nw >= 0) sh += nw + 1, nw = -1; } int hs = 0; nw = 0; for (int i = 0; n > i; i++) { nw += a[i]; if (i % 2 == 1) if (nw <= 0) hs += 1 - nw, nw = 1; if (i % 2 == 0) if (nw >= 0) hs += nw + 1, nw = -1; } cout << min(hs, sh) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; int sum[n]; int count = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } sum[0] = a[0]; for (int i = 0; i < n - 1; i++) { if (a[0] == 0) { int num = 0; int j = 0; while (a[j] == 0) { num++; j++; } if ((num % 2 == 1 && a[num] > 0) || (num % 2 == 0 && a[num] < 0)) { sum[0]--; } if ((num % 2 == 1 && a[num] < 0) || (num % 2 == 0 && a[num] > 0)) { sum[0]++; } } sum[i + 1] = sum[i] + a[i + 1]; if (sum[i] > 0) { while (sum[i + 1] >= 0) { sum[i + 1]--; count++; } } if (sum[i] < 0) { while (sum[i + 1] <= 0) { sum[i + 1]++; count++; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
package main import ( "bufio" "fmt" "os" "strconv" ) func out(x ...interface{}) { fmt.Println(x...) } var sc = bufio.NewScanner(os.Stdin) func getInt() int { sc.Scan() i, e := strconv.Atoi(sc.Text()) if e != nil { panic(e) } return i } func getString() string { sc.Scan() return sc.Text() } func f(a int) int { if a > 0 { return 1 } else if a < 0 { return -1 } return 0 } func min(a, b int) int { if a > b { return b } return a } func main() { sc.Split(bufio.ScanWords) n := getInt() a := make([]int, n) for i := 0; i < n; i++ { a[i] = getInt() } sum := 0 sign := -1 ans := [2]int{0, 0} for k := 0; k < 2; k++ { if k == 0 { sign = -1 } else { sign = 1 } for i := 0; i < n; i++ { sum += a[i] if sign == 1 { if sum >= 0 { ans[k] += 1 + sum sum = -1 } } else { if sum <= 0 { ans[k] += 1 - sum sum = 1 } } sign = -sign } } fmt.Println(min(ans[0], ans[1])) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def count_ops(a): if a[0] == 0: total_ops = 1 if a[1] < 0: accum = 1 else: accum = -1 else: total_ops = 0 accum = a[0] for i in range(1, len(a)): new_accum = accum + a[i] if (accum > 0 and new_accum > 0): ops = ops_needed(new_accum, -1) elif (accum > 0 and new_accum == 0): ops = -1 elif (accum < 0 and new_accum < 0): ops = ops_needed(new_accum, 1) elif (accum < 0 and new_accum == 0): ops = 1 else: ops = 0 total_ops += abs(ops) accum = new_accum + ops return total_ops if __name__ == '__main__': _ = int(input()) a = list(map(int, input().split())) print(count_ops(a))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long sum; cin >> sum; long long ans = 0; for (int i = 1; i < n; i++) { int a; cin >> a; if (sum > 0) { if (sum + a >= 0) { ans += 1 + a + sum; sum = -1; } else { sum += a; } } else { if (sum + a <= 0) { ans += 1 - a - sum; sum = 1; } else { sum += a; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long int; const ll INF = (1LL << 32); const ll MOD = (ll)1e9 + 7; const double EPS = 1e-9; ll dx[8] = {1, 0, -1, 0, 1, -1, -1, 1}; ll dy[8] = {0, 1, 0, -1, 1, 1, -1, -1}; ll n; ll solve(vector<ll> a) { ll sum = a[0]; ll ans = 0; for (ll i = (1); i < (n); i++) { if (sum > 0 and (sum + a[i]) >= 0) { while (sum + a[i] != -1) { a[i]--; ans++; } } else if (sum < 0 and (sum + a[i]) <= 0) { while (sum + a[i] != 1) { a[i]++; ans++; } } sum += a[i]; } return ans; } signed main() { ios::sync_with_stdio(false); cin >> n; vector<ll> a; for (ll i = 0; i < n; i++) { ll x; cin >> x; a.push_back(x); } ll start = a[0]; auto ac = a; ll fa1 = solve(a); ac[0] = ac[0] *= -1; ll fa2 = solve(ac); fa2 += start + 1; cout << min(fa1, fa2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# coding: utf-8 # Here your code N = int(input()) a = [int(i) for i in input().split()] result_1 = 0 before_sum =a[0] after_sum =a[0] for i in range(1,N): before_sum = after_sum after_sum = before_sum + a[i] if before_sum * after_sum > 0: if after_sum < 0: result_1 += 1 - after_sum after_sum = 1 elif after_sum > 0: result_1 += 1 + after_sum after_sum = -1 elif before_sum * after_sum == 0: result_1 += 1 if before_sum < 0: after_sum = 1 else: after_sum = -1 before_sum =int(-a[0]/abs(a[0])) after_sum =before_sum result_2 = 1 + abs(before_sum) for i in range(1,N): before_sum = after_sum after_sum = before_sum + a[i] if before_sum * after_sum > 0: if after_sum < 0: result_2 += 1 - after_sum after_sum = 1 elif after_sum > 0: result_2 += 1 + after_sum after_sum = -1 elif before_sum * after_sum == 0: result_2 += 1 if before_sum < 0: after_sum = 1 else: after_sum = -1 print(min(result_1,result_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.*; import java.util.*; public class Main{ static int n; static long[] a; static long count; static long sum; public static void main(String[] args) throws IOException{ MyReader r = new MyReader(); n = r.i(); a = r.ll(); sum = a[0]; count = 0; if(a[0] == 0){ count = 1; sum = 1; solve(); long temp = count; count = 1; sum = -1; solve(); count = Math.min(count, temp); } else { solve(); long temp = count; sum = -a[1]-1; count = Math.abs(a[0]+a[1]+1); solve(); temp = Math.min(temp, count); sum = -a[1]+1; count = Math.abs(a[0]+a[1]-1); solve(); count = Math.min(temp, count); } println(count); } static void solve(){ for(int i = 1; i < n; i++){ if(sum < 0){ if(a[i]+sum <= 0){ count += -(a[i]+sum)+1; sum = 1; } else sum = a[i]+sum; } else{ if(a[i]+sum>=0){ count += a[i]+sum+1; sum = -1; } else sum = a[i]+sum; } } } static void print(Object o){ System.out.print(o.toString()); } static void println(Object o){ System.out.println(o.toString()); } static int Int(String s){ return Integer.parseInt(s); } static long Long(String s){ return Long.parseLong(s); } static class MyReader extends BufferedReader{ MyReader(){ super(new InputStreamReader(System.in)); } String s() throws IOException{ return readLine(); } String[] ss() throws IOException{ return s().split(" "); } int i() throws IOException{ return Int(s()); } int[] ii() throws IOException{ String[] ss = ss(); int size = ss.length; int[] ii = new int[size]; for(int j = 0; j < size; j++) ii[j] = Integer.parseInt(ss[j]); return ii; } long l() throws IOException{ return Long(s()); } long[] ll() throws IOException{ String[] ss = ss(); int size = ss.length; long[] ll = new long[size]; for(int j = 0; j < size; j++) ll[j] = Long.parseLong(ss[j]); return ll; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sign(int x) { return x < 0 ? -1 : 1; } int main() { int n; cin >> n; int cnt = 0; int sum; cin >> sum; for (int i = 1; i < n; i++) { int a; cin >> a; int newsum = sum + a; if (sign(sum) == sign(newsum)) { int m = min(abs(sum), abs(newsum)); newsum -= sign(sum) * (m + 1); cnt += m + 1; } sum = newsum; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
//#include<bits/stdc++.h> #include<iostream> #include<cmath> #include<cstdio> #include<vector> #include<set> #include<map> #include<stack> #include<queue> #include<utility> #include<algorithm> #include<cstring> #include<sstream> #include <iomanip> using namespace std; typedef long long ll ; typedef double db; typedef vector<int> vi; typedef pair<int,int> pii; typedef vector< pair<int,int> > vii; const double pi = 2*acos(0) ; #define pf printf #define sf scanf #define pb(a) push_back(a) #define mp make_pair #define fi first #define se second #define for0(i,n) for(int i=0;i<n;i++) #define for1(i,n) for(int i=1;i<=n;i++) #define forab(i,a,b) for(int i=a;i<=b;i++) #define lcm(a, b) ((a)*((b)/gcd(a,b))) #define sq(a) (a)*(a) #define nw "\n" #define abs(x) fabs(x) #define pcase(z,x) cout<<"Case "<<z<<": "<<x<<"\n" int main() { int n; cin>>n; vi a(n+1); for1(i,n) cin>>a[i�]; int plus=0,s=0; for1(i,n){ s += a[i]; if(i%2){ if(s<=0){ plus += 1-s; s = 1; } } else{ if(s>=0){ plus += s+1; s = -1; } } } int minus=0; s=0; for1(i,n)�{ s += a[i]; if(i%2){ if(s>=0){ minus += s+1; s = -1; } } else{ if(s<=0){ minus += 1-s; s=1; } } } //cout<<plus<<" "<<minus<<nw; int ans = min(plus,minus); cout<<ans<<nw; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) A = map(int, input().split()) sum_b = 0 cnt_b = 0 sum_c = 0 cnt_c = 0 for i,a in enumerate(A): sum_b += a if (sum_b > 0) != ((i % 2) > 0): cnt_b += abs(sum_b) + 1 sum_b = 1 if ((i % 2) > 0) else -1 sum_c += a if (sum_c > 0) == ((i % 2) > 0): cnt_c += abs(sum_c) + 1 sum_c = -1 if ((i % 2) > 0) else 1 print(min(cnt_b, cnt_c))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int[] a=new int[n]; for(int i=0;i<n;i++)a[i]=sc.nextInt(); int sum=0; int count=0; for(int i=0;i<n-1;i++){ sum+=a[i]; if(sum>0){ while(sum+a[i+1]>=0){ a[i+1]--; count++; } }else if(sum<0){ while(sum+a[i+1]<=0){ a[i+1]++; count++; } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ull = unsigned long long; int main() { int n; cin >> n; ll a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } ll sum = a[0], ans = 0; for (int i = 1; i < n; i++) { if (sum < 0) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(1 - sum - a[i]); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += abs(-1 - sum - a[i]); sum = -1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) b=a[:] for i in range(n): if i%2:b[i]=min(-sum(b[j] for j in range(i))-1,b[i]) else: b[i]=max(-sum(b[j] for j in range(i))+1,b[i]) s=sum(abs(b[i]-a[i]) for i in range(n)) c=a[:] for i in range(n): if i%2:c[i]=max(-sum(c[j] for j in range(i))+1,c[i]) else: c[i]=min(-sum(c[j] for j in range(i))-1,c[i]) t=sum(abs(c[i]-a[i]) for i in range(n)) print(min(s,t))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n), s(n); for (int i = 0; i < n; i++) cin >> a[i]; s[0] = max(a[0], 1); int retval_p = (a[0] <= 0) ? abs(a[0]) + 1 : 0; for (int i = 1; i < n; i++) { s[i] = a[i] + s[i - 1]; if (i % 2 == 1 && s[i] >= 0) { retval_p += abs(s[i]) + 1; s[i] = -1; } else if (i % 2 == 0 && s[i] <= 0) { retval_p += abs(s[i]) + 1; s[i] = 1; } } s[0] = min(a[0], -1); int retval_m = (a[0] >= 0) ? abs(a[0]) + 1 : 0; for (int i = 1; i < n; i++) { s[i] = a[i] + s[i - 1]; if (i % 2 == 1 && s[i] <= 0) { retval_m += abs(s[i]) + 1; s[i] = 1; } else if (i % 2 == 0 && s[i] >= 0) { retval_m += abs(s[i]) + 1; s[i] = -1; } } cout << min(retval_p, retval_m) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long _count = 0; long long sum, _sum; bool _plus = false; int main() { cin >> n; vector<int> a(n, 0); for (int i = 0; i < n; i++) cin >> a[i]; sum = a[0]; if (sum > 0) _plus = true; for (int i = 1; i < n; i++) { _sum = sum; sum = sum + a[i]; if (_plus) { if (sum >= 0) { _count = _count + abs(a[i] - (-_sum - 1)); a[i] = -_sum - 1; sum = _sum + a[i]; } _plus = false; } else { if (sum <= 0) { _count = _count + abs(a[i] - (-_sum + 1)); a[i] = -_sum + 1; sum = _sum + a[i]; } _plus = true; } } cout << _count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; namespace AtCoder { class Program { static int n; static void Main(string[] args) { //[summary]C - Green Bin n = int.Parse(Console.ReadLine()); var a = ReadLine(); long count = 0; if (a[0] == 0) { var a1 = new List<int>(a); a1[0] = 1; long count1 = CountOperactions(a1); var a2 = new List<int>(a); a2[0] = -1; long count2 = CountOperactions(a2); if (count1 < count2) { count = count1 + 1; } else { count = count2 + 1; } } else { count = CountOperactions(a); } Console.WriteLine(count); } static long CountOperactions(List<int> a) { long sum = a[0]; long next = 0; long count = 0; for (int i = 1; i < n; i++) { next = sum + a[i]; if ((sum > 0 && next < 0) | (sum < 0 && next > 0)) { //何もしない } else if (sum > 0) { count += 1 + Math.Abs(next); next = -1; } else { count += 1 + Math.Abs(next); next = 1; } sum = next; } return count; } static List<int> ReadLine() { var line = Console.ReadLine(); var array = line.Split(' '); return array.Select(x => int.Parse(x)).ToList(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int DIM = 1e5 + 5; long long arr[DIM]; inline long long solve(int n) { long long sum(arr[1]), ans(0); for (int i = 2; i <= n; i++) { if (sum < 0 && sum + arr[i] <= 0) ans += 1 - sum - arr[i], sum = 1; else if (sum > 0 && sum + arr[i] >= 0) ans += 1 + sum + arr[i], sum = -1; else sum += arr[i]; } return ans; } int main(void) { int n; cin >> n; long long ans(1e18); for (int i = 1; i <= n; i++) cin >> arr[i]; if (arr[1] != 0) ans = solve(n); else { arr[1] = -1; ans = min(ans, solve(n) + 1); arr[1] = +1; ans = min(ans, solve(n) + 1); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> x; int temp, ans = 0; for (int i = 0; i != n; ++i) { cin >> temp; x.push_back(temp); } if (!x[0]) { x[0] = 1; ++ans; int val, ind; for (int i = 0; i != n; ++i) { if (!x[i]) { val = x[i]; ind = i; break; } } if ((val > 0 && ind % 2) || (val < 0 && !(ind % 2))) x[0] = -1; } int sum = x[0]; for (int i = 1; i != n; ++i) { int sum2 = sum + x[i]; if (sum * sum2 >= 0) { ans += abs(sum2) + 1; if (sum < 0) sum2 = 1; else sum2 = -1; } sum = sum2; } cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int min(int x, int y) { return x < y ? x : y; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; int sum = 0; int cost = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (i % 2 == 0) { if (sum <= 0) { cost += -sum + 1; sum = 1; } } else { if (sum >= 0) { cost += sum + 1; sum = -1; } } } long long sum2 = 0; long long cost2 = 0; for (int i = 0; i < n; ++i) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 >= 0) { cost2 += sum2 + 1; sum2 = -1; } } else { if (sum2 <= 0) { cost2 += -sum2 + 1; sum2 = 1; } } } long long ans = min(cost, cost2); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int a[maxn]; int main() { int n; long long sum; scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%d", &a[i]); sum = a[0]; long long cnt = 0; if (sum == 0) { int i = 1; while (a[i] == 0 && i < n) i++; if (i == n) { cnt = (n - 1) * 2 + 1; printf("%lld\n", cnt); return 0; } if (a[i] > 0 && i & 1 == 1) { sum = -1; cnt++; } else if (a[i] > 0 && i & 1 == 0) { sum = 1; cnt++; } else if (a[i] < 0 && i & 1 == 1) { sum = 1; cnt++; } else if (a[i] < 0 && i & 1 == 0) { sum = -1; cnt++; } } for (int i = 1; i < n; i++) { if (sum > 0) { int t = sum + a[i]; if (t < 0) sum = t; else { int b = abs(t + 1); cnt += b; sum = -1; a[i] -= b; } } else if (sum < 0) { int t = sum + a[i]; if (t > 0) sum = t; else { int b = abs(1 - t); cnt += b; sum = 1; a[i] += b; } } } printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def sign(x): return (x > 0) - (x < 0) def main(): n = int(input()) a = [int(an) for an in input().split()] total = a[0] sign_total = sign(a[0]) ans = 0 for i in range(1, n): total += a[i] if a[i] == 0: total += sign_total * -1 ans += 1 sign_tmp = sign(total) if total == 0 or sign_total == sign_tmp: val = total + sign_total ans += val * sign_total total -= val sign_total *= -1 print(ans) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long MOD = 1000000007; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0]; long long ans = 0; for (int i = 1; i < n; i++) { long long t = sum + a[i]; if ((sum >= 0 && t < 0) || (sum < 0 && t >= 0)) { sum = t; if (sum == 0) { ans++; sum = 1; } continue; } long long at; if (sum >= 0) at = -1 - sum; else at = 1 - sum; ans = ans + abs(a[i] - at); a[i] = at; sum = sum + a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) scanf(" %d", &a[i]); int S = a[0]; int j = 0; for (int i = 1; i < n; i++) { if (S * (S + a[i]) < 0) { S += a[i]; } else { if (S < 0) { j += 1 - S - a[i]; S = 1; } else { j += S + a[i] + 1; S = -1; } } } printf("%d\n", j); }