Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws Exception {
// Your code here!
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] str_a = br.readLine().split(" ");
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = Integer.parseInt(str_a[i]);
}
int sum = 0;
int count = 0;
sum += a[0];
if (sum == 0) {
a[0]++;
sum++;
count++;
}
for (int i = 1; i < n; i++) {
sum += a[i];
if (i % 2 == (a[0]>0?1:0)) {
while (sum >= 0) {
a[i]--;
sum--;
count++;
}
}
else {
while (sum <= 0) {
a[i]++;
sum++;
count++;
}
}
}
System.out.println(count);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using std::abs;
using std::cin;
using std::cout;
using std::endl;
using std::max;
using std::min;
using std::priority_queue;
using std::queue;
using std::set;
using std::sort;
using std::string;
using std::to_string;
using std::vector;
int main(void) {
int n;
cin >> n;
vector<long> a(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long sum;
long cnt;
sum = a[0] == 0 ? 1 : a[0];
cnt = a[0] == 0 ? 1 : 0;
for (int i = 1; i < n; i++) {
if (sum > 0) {
sum += a[i];
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
cnt += -sum + 1;
sum = 1;
}
}
}
long ans = cnt;
sum = a[0] == 0 ? -1 : a[0];
cnt = a[0] == 0 ? 1 : 0;
for (int i = 1; i < n; i++) {
if (sum > 0) {
sum += a[i];
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
cnt += -sum + 1;
sum = 1;
}
}
}
ans = min(ans, cnt);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
a = list(map(int,input().split(" ")))
def is_positive(sumval,modify):
if sumval <= 0:
modify += abs(sumval - 1)
sumval = 1
return sumval,modify
def is_negative(sumval,modify):
if sumval >= 0:
modify += abs(sumval + 1)
sumval = (-1)
return sumval,modify
pos_sum,pos_modi = is_negative(a[0],0)
neg_sum,neg_modi = is_positive(a[0],0)
for i in range(1,N):
tmp_sum,tmp_modi = is_positive(pos_sum + a[i],pos_modi)
pos_sum,pos_modi = is_negative(neg_sum + a[i],neg_modi)
neg_sum = neg_sum
neg_modi = tmp_modi
print(min(pos_modi,neg_modi))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long sum = 0;
long long res1 = 0;
long long res2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (sum + a[i] > 0) {
sum += a[i];
} else {
res1 = res1 + 1 - (sum + a[i]);
sum = 1;
}
} else {
if (sum + a[i] < 0) {
sum += a[i];
} else {
res1 = res1 + (sum + a[i]) + 1;
sum = -1;
}
}
}
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
if (sum + a[i] < 0) {
} else {
res2 = res2 + 1 + sum;
a[i];
sum = -1;
}
} else {
if (sum + a[i] > 0) {
sum += a[i];
} else {
res2 = res2 + 1 - sum - a[i];
sum = 1;
}
}
}
cout << min(res1, res2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int getS(int val) {
if (val < 0) return -1;
if (val > 0) return 1;
return 0;
}
int minNum(vector<int> &arr, int n, int sign) {
int acu, sol = 0;
for (int i = 0; i < n; i++) {
acu += arr[i];
if (getS(acu) != sign) {
sol += abs(sign - acu);
acu = sign;
}
sign = sign * -1;
}
return sol;
}
int main() {
int n;
cin >> n;
vector<int> arr(n);
for (int i = 0; i < n; i++) cin >> arr[i];
int a1 = minNum(arr, n, -1);
int a2 = minNum(arr, n, 1);
cout << (a1 < a2 ? a1 : a2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2,fma")
using namespace std;
void __print(int x) { cerr << x; }
void __print(long x) { cerr << x; }
void __print(long long x) { cerr << x; }
void __print(unsigned x) { cerr << x; }
void __print(unsigned long x) { cerr << x; }
void __print(unsigned long long x) { cerr << x; }
void __print(float x) { cerr << x; }
void __print(double x) { cerr << x; }
void __print(long double x) { cerr << x; }
void __print(char x) { cerr << '\'' << x << '\''; }
void __print(const char *x) { cerr << '\"' << x << '\"'; }
void __print(const string &x) { cerr << '\"' << x << '\"'; }
void __print(bool x) { cerr << (x ? "true" : "false"); }
template <typename T, typename V>
void __print(const pair<T, V> &x) {
cerr << '{';
__print(x.first);
cerr << ',';
__print(x.second);
cerr << '}';
}
template <typename T>
void __print(const T &x) {
int f = 0;
cerr << '{';
for (auto &i : x) cerr << (f++ ? "," : ""), __print(i);
cerr << "}";
}
void _print() { cerr << "]\n"; }
template <typename T, typename... V>
void _print(T t, V... v) {
__print(t);
if (sizeof...(v)) cerr << ", ";
_print(v...);
}
const long long int MOD = 1e9 + 7;
const long long int INF = 1e18;
const long long int maxn = 1e6 + 4;
void solve() {
int n;
cin >> n;
vector<vector<pair<int, int> > > dp(n + 1, vector<pair<int, int> >(2));
dp[0][0] = {0, 0};
dp[0][0] = {0, 0};
vector<int> v(n);
for (int i = 0; i < n; i++) {
cin >> v[i];
}
for (int i = 0; i < n; i++) {
dp[i + 1][1].first = dp[i][0].first;
if (-dp[i][0].second < v[i]) {
dp[i + 1][1].second = v[i] + dp[i][0].second;
} else {
dp[i + 1][1].first += abs(-dp[i][0].second - v[i]) + 1;
dp[i + 1][1].second = -dp[i][0].second + 1 + dp[i][0].second;
}
dp[i + 1][0].first = dp[i][1].first;
if (-dp[i][0].second > v[i]) {
dp[i + 1][0].second = v[i] + dp[i][1].second;
} else {
dp[i + 1][0].first += abs(-dp[i][1].second - v[i]) + 1;
dp[i + 1][0].second = -dp[i][1].second - 1 + dp[i][1].second;
}
}
cout << min(dp[n][0].first, dp[n][1].first);
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
solve();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const long long INF = INT_MAX / 2;
const long long MOD = 1000000007;
const long double PI = 3.1415926;
using namespace std;
long long int n, ans = 0, sum = 0, cnt = 0;
string s;
vector<long long int> v;
vector<long long int> v1;
vector<pair<long long int, long long int> > vp;
vector<pair<long long int, long long int> > vp1;
vector<vector<long long int> > vv(50, vector<long long int>(50, INF));
vector<string> vs;
vector<char> vc;
set<long long int> st;
map<char, long long int> mp;
long long int cal(long long int a, long long int n) {
for (long long int i = (long long int)(0); i < (long long int)(n); i++) {
sum += v[i];
if (i % 2 == a && sum <= 0) {
ans += (1 - sum);
sum = 1;
} else if (i % 2 != a && sum >= 0) {
ans += (sum + 1);
sum = -1;
}
}
return ans;
}
int main() {
cin >> n;
v.resize(n);
for (long long int i = (long long int)(0); i < (long long int)(n); i++)
cin >> v[i];
cout << min(cal(0, n), cal(1, n)) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int a[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int cnt1 = 0;
int sum1 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum1 + a[i] <= 0) {
cnt1 += 1 - sum1 - a[i];
sum1 = 1;
} else if (i % 2 == 1 && sum1 + a[i] >= 0) {
cnt1 += sum1 + a[i] + 1;
sum1 = -1;
} else {
sum1 += a[i];
}
}
int cnt2 = 0;
int sum2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 0 && sum2 + a[i] >= 0) {
cnt2 += sum2 + a[i] + 1;
sum2 = -1;
} else if (i % 2 == 1 && sum2 + a[i] <= 0) {
cnt2 += 1 - sum2 - a[i];
sum2 = 1;
} else {
sum2 += a[i];
}
}
if (cnt1 < cnt2) {
cout << cnt1 << endl;
} else {
cout << cnt2 << endl;
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int,input().split()))
ans=0
res=0 #0が正、1が負
sum=a[0]
if a[0]<0:
res=1
for i in range(n-1):
sum = sum+a[i+1]
if sum<0:
if res==1:
adj = 1-sum
a[i+1]=a[i+1]+adj
ans=ans+abs(adj)
sum=sum+adj
res = 0
else:
res=1
elif sum>0:
if res==0:
adj = -1-sum
a[i+1]=a[i+1]+adj
ans=ans+abs(adj)
sum=sum+adj
res = 1
else:
res=0
if sum==0:
if res == 1:
a[i+1]=a[i+1]+1
sum=sum+1
ans+=1
res=0
else:
a[i+1]=a[i+1]-1
sum=sum-1
ans+=1
res=1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long ans = 0;
if (sum == 0) {
int i = 1;
while (a[i] == 0) i++;
sum = a[i] / abs(a[i]);
if (i % 2 != 0) sum *= -1;
ans++;
}
for (int i = 1; i < n; i++) {
long long tmp = sum + a[i];
if (sum > 0 && tmp > 0) {
ans += tmp + 1;
sum = -1;
} else if (sum < 0 && tmp < 0) {
ans += -tmp + 1;
sum = 1;
} else if (tmp == 0) {
ans++;
if (sum < 0)
sum = 1;
else
sum = -1;
} else
sum = tmp;
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MaxN = 1e5;
bool flag, ok;
long long sum, ans, anv;
int n;
int a[MaxN + 5], b[MaxN + 5];
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
}
sum = a[1];
if (a[1] < 0) flag = 1, ok = 1;
if (a[1] != 0) {
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + a[i] <= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = 1 - sum;
ans += (a[i] - t);
sum += a[i];
} else
sum += a[i];
flag = 0;
} else {
if (sum + a[i] >= 0) {
long long ant = sum + a[i];
int t = a[i];
a[i] = -1 - sum;
ans += (t - a[i]);
sum += a[i];
} else
sum += a[i];
flag = 1;
}
}
}
if (a[1] == 0) ans = 1LL << 60;
int tr = b[1];
if (ok)
b[1] = 1, flag = 0;
else
b[1] = -1, flag = 1;
anv += (abs(b[1] - tr));
sum = b[1];
for (int i = 2; i <= n; i++) {
if (flag == 1) {
if (sum + b[i] <= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = 1 - sum;
anv += (b[i] - t);
sum += b[i];
} else
sum += b[i];
flag = 0;
} else {
if (sum + b[i] >= 0) {
long long ant = sum + b[i];
int t = b[i];
b[i] = -1 - sum;
anv += (t - b[i]);
sum += b[i];
} else
sum += b[i];
flag = 1;
}
}
printf("%lld\n", min(ans, anv));
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
namespace ProgramingStudying2
{
class Program
{
static void Main(string[] args)
{
var n = int.Parse(Console.ReadLine());
var a = Console.ReadLine().Split().Select(int.Parse).ToArray();
int Solve(int first)
{
var sum = first;
var ans = 0;
for(int i = 1; i < n; i++)
{
if (sum > 0)
{
sum += a[i];
if (sum >= 0)
{
ans += sum + 1;
sum = -1;
}
}
else if(sum < 0)
{
sum += a[i];
if (sum <= 0)
{
ans += -sum + 1;
sum = 1;
}
}
}
return ans;
}
if(a[0] > 0)
{
Console.WriteLine(Math.Min(Solve(a[0]), Solve(-1) + a[0] + 1));
}
else if(a[0] < 0)
{
Console.WriteLine(Math.Min(Solve(a[0]), Solve(1) - a[0] + 1));
}
else
{
Console.WriteLine(Math.Min(Solve(1) + 1, Solve(-1) + 1));
}
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N=int(input())
s=list(map(int,input().split()))
def f(N,s,t):
ss=s[0]
w=0
for i in range(N-1):
if t==1:
if ss+s[i+1]>=t:
ss=ss+s[i+1]
else:
w+=t-ss-s[i+1]
ss=1
t=-1
elif t==-1:
if ss+s[i+1]<=t:
ss=ss+s[i+1]
else:
w+=ss+s[i+1]-t
ss=-1
t=1
return w
if s[0]<0:
t=1
print(f(N,s,t))
elif s[0]>0:
t=-1
print(f(N,s,t))
else:
t=1
a=f(N,s,t)
t=-1
b=f(N,s,t)
print(min(a,b)+1)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i = 0 ; i < n ; i++) a[i] = sc.nextInt();
long sum = 0, ans = 0, ans2 = 0;
// + - + - + ...
for(int i = 0 ; i < n ; i++) {
sum += a[i];
if(i % 2 == 0 && sum <= 0) {
ans += 1 - sum;
sum = 1;
} else if(i % 2 == 1 && sum >= 0) {
ans += sum + 1;
sum = -1;
}
}
// - + - + - ...
for(int i = 0 ; i < n ; i++) {
sum += a[i];
if(i % 2 == 0 && sum >= 0) {
ans2 += sum + 1;
sum = -1;
} else if(i % 2 == 1 && sum <= 0) {
ans2 += 1 - sum;
sum = 1;
}
}
System.out.println(Math.min(ans, ans2));
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from itertools import accumulate
def sgn(n):
if n>0:
return 1
elif n==0:
return 0
else:
return -1
n=int(input())
a=[int(i) for i in input().split()]
b=list(accumulate(a))
#print(list(accumulate(a)))
if b[0]>0:
f=1
else:
f=-1
ans=0
for i in range(n):
#print(i,b)
if ((i%2==0) and(sgn(b[i])!=f)) or ((i%2==1) and(sgn(b[i])!=-f)):
tmp = abs(b[i])+1
ans += tmp
for j in range(i,n):
b[j] += -tmp*f*(-1)**(i-1)
#print(b)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=[int(x) for x in input().split()]
for num,i in enumerate(a):
if i!=0:
non0=num
break
if non0==0:
ans=0
elif non0==1:
ans=2
else:
ans=(non0-2)*2+2
Sum=a[non0]
if a[non0]>0:
flag=+1
else:
flag=-1
for i in range(non0+1,n):
Sum+=a[i]
if flag==1:
if Sum>=0:
ans+=Sum+1
Sum=-1
flag=-1
elif flag==-1:
if Sum<=0:
ans+=1-Sum
Sum=1
flag=1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long sum = 0;
long long num = 0;
for (int i = 0; i < n; i++) {
long long a;
cin >> a;
if (i == 0) {
sum = a;
continue;
}
if (sum > 0) {
sum += a;
if (sum >= 0) {
num += (sum + 1);
sum = -1;
}
} else {
sum += a;
if (sum <= 0) {
num += (-sum + 1);
sum = 1;
}
}
}
cout << num << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
void ctsm(const long long &tmp, long long int &sm, long long int &ct) {
if ((0 <= sm + tmp) && (0 < sm)) {
ct += 1 + sm + tmp;
sm = -1;
} else if ((sm + tmp <= 0) && (sm < 0)) {
ct += 1 - sm - tmp;
sm = 1;
} else
sm = sm + tmp;
}
int main() {
int n;
if (scanf("%d", &n) < 1) return 0;
long long int tmp;
long long int sm = 0;
long long int ct = 0;
if (scanf("%lld", &tmp) < 1) return 0;
sm = sm + tmp;
long long int opsm = 0;
long long int opct = 0;
tmp = (-1) * tmp;
opsm = opsm + tmp;
opct += abs(tmp) + 1;
for (int i = 1; i < n; i++) {
if (scanf("%lld", &tmp) < 1) return 0;
ctsm(tmp, sm, ct);
ctsm(tmp, opsm, opct);
}
printf("%lld\n", ct < opct ? ct : opct);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(1001);
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int c1 = 0, s1 = 0;
int c2 = 0, s2 = 0;
for (int i = 0; i < n; i++) {
s1 += a[i];
s2 += a[i];
if (i % 2 == 0) {
if (s1 <= 0) {
c1 += 1 - s1;
s1 = 1;
}
if (s2 >= 0) {
c2 += s2 + 1;
s2 = -1;
}
} else {
if (s2 <= 0) {
c2 += 1 - s2;
s2 = 1;
}
if (s1 >= 0) {
c1 += s1 + 1;
s1 = -1;
}
}
}
cout << min(c1, c2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | fun main(args: Array<String>) {
val n = readLine()?.toInt() ?: return
val aList = readLine()?.split(" ")?.map { it.toLong() } ?: return
val v1 = calc(aList, true)
val v2 = calc(aList, false)
println(Math.min(v1, v2))
}
private fun calc(list: List<Long>, type: Boolean): Long {
var count = 0L
var sum = if (type) Math.abs(list[0]) else -Math.abs(list[0])
if (sum == 0L) {
sum += if (type) 1 else -1
count++
}
for (i in 1 until list.size) {
val sign = sum < 0
if (sign == (sum + list[i] > 0)) {
sum += list[i]
continue
}
val expected = if (sign) Math.abs(sum) + 1 else -Math.abs(sum) - 1
val diff = Math.abs(expected - list[i])
sum += expected
count += diff
}
return count
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
scanf("%d", &n);
int A[n];
for (int i = 0; i < n; i++) scanf("%d", &A[i]);
long long cnt1 = 0, cnt2 = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 0) {
if (sum <= 0) {
cnt1 += abs(sum) + 1;
sum += abs(sum) + 1;
}
} else {
if (sum >= 0) {
cnt1 += abs(sum) + 1;
sum -= abs(sum) + 1;
}
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 1) {
if (sum <= 0) {
cnt2 += abs(sum) + 1;
sum += abs(sum) + 1;
}
} else {
if (sum >= 0) {
cnt2 += abs(sum) + 1;
sum -= abs(sum) + 1;
}
}
}
cout << cnt1 << " " << cnt2 << endl;
cout << min(cnt1, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, j, count, sum, count2, x, bsum, s;
vector<int> a;
cin >> n;
a.resize(n);
cin >> a[0];
for (i = 1; i < n; i++) {
cin >> a[i];
}
count = 0;
sum = 0;
for (int i = 0; i < n - 1; i++) {
bsum = sum;
sum += a[i];
if (sum * (sum + a[i + 1]) > 0) {
x = abs(sum + a[i + 1]) + 1;
s = abs(sum);
if (a[i] * a[i + 1] < 0) {
if (s - 1 > x) {
a[i] = a[i] > 0 ? a[i] - x : a[i] + x;
sum = bsum + a[i];
} else {
a[i] = a[i] > 0 ? a[i] - (s - 1) : a[i] + (s - 1);
sum = bsum + a[i];
s = x - (s - 1);
a[i + 1] = a[i + 1] > 0 ? a[i + 1] + s : a[i + 1] - s;
}
} else {
a[i + 1] = a[i + 1] > 0 ? -s - 1 : s + 1;
}
count += x;
}
if (sum + a[i + 1] == 0) {
count++;
a[i + 1] > 0 ? a[i + 1]++ : a[i + 1]--;
}
}
cout << count;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int n;
int a[100000];
int solve(int t) {
int res = 0, sum = 0;
for (int i = 0; i < n; i++, t = -t) {
sum += a[i];
if (sum * t > 0) continue;
res += abs(sum - t);
sum += t * abs(sum - t);
}
return res;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
int res = solve(1);
res = min(res, solve(-1));
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, const char* argv[]) {
long long int n, x;
long long int cnt;
vector<long long int> v, sum;
cin >> n;
for (long long int i = 0; i < n; i++) {
cin >> x;
v.push_back(x);
sum.push_back(0);
}
sum[0] = v[0];
cnt = 0;
if (sum[0] == 0 && sum[1] >= 0) {
cnt++;
v[0]--;
sum[0] = -1;
} else if (sum[0] == 0 && sum[1] < 0) {
cnt++;
v[0]++;
sum[0] = 1;
}
for (long long int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + v[i];
if (sum[i - 1] >= 0 && sum[i] >= 0) {
cnt += sum[i - 1] + 1 + v[i];
v[i] = sum[i - 1] * (-1) - 1;
sum[i] = -1;
} else if (sum[i - 1] < 0 && sum[i] < 0) {
cnt += sum[i - 1] * (-1) + 1 - v[i];
v[i] = sum[i - 1] * (-1) + 1;
sum[i] = 1;
} else if (sum[i] == 0 && sum[i - 1] > 0) {
cnt++;
v[i]--;
sum[i] = -1;
} else if (sum[i] == 0 && sum[i - 1] < 0) {
cnt++;
v[i]++;
sum[i] = 1;
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using i_i = pair<int, int>;
using ll_ll = pair<ll, ll>;
using d_ll = pair<double, ll>;
using ll_d = pair<ll, double>;
using d_d = pair<double, double>;
template <class T>
using vec = vector<T>;
static constexpr ll LL_INF = 1LL << 60;
static constexpr int I_INF = 1 << 28;
static constexpr double PI =
static_cast<double>(3.14159265358979323846264338327950288);
static constexpr double EPS = numeric_limits<double>::epsilon();
static map<type_index, const char* const> scanType = {{typeid(int), "%d"},
{typeid(ll), "%lld"},
{typeid(double), "%lf"},
{typeid(char), "%c"}};
template <class T>
static void scan(vector<T>& v);
[[maybe_unused]] static void scan(vector<string>& v, bool isWord = true);
template <class T>
static inline bool chmax(T& a, T b);
template <class T>
static inline bool chmin(T& a, T b);
template <class T>
static inline T gcd(T a, T b);
template <class T>
static inline T lcm(T a, T b);
template <class A, size_t N, class T>
static void Fill(A (&arr)[N], const T& val);
template <class T>
T mod(T a, T m);
template <class Monoid>
struct SegmentTree {
using F = function<Monoid(Monoid, Monoid)>;
int sz;
vector<Monoid> seg;
const F f;
const Monoid M1;
SegmentTree(int n, const F f, const Monoid& M1) : f(f), M1(M1) {
sz = 1;
while (sz < n) sz <<= 1;
seg.assign(2 * sz, M1);
}
void set(int k, const Monoid& x) { seg[k + sz] = x; }
void build() {
for (int k = sz - 1; k > 0; k--) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void update(int k, const Monoid& x) {
k += sz;
seg[k] = x;
while (k >>= 1) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
Monoid query(int a, int b) {
Monoid L = M1, R = M1;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) L = f(L, seg[a++]);
if (b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
Monoid operator[](const int& k) const { return seg[k + sz]; }
template <class C>
int find_subtree(int a, const C& check, Monoid& M, bool type) {
while (a < sz) {
Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
if (check(nxt))
a = 2 * a + type;
else
M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template <class C>
int find_first(int a, const C& check) {
Monoid L = M1;
if (a <= 0) {
if (check(f(L, seg[1]))) return find_subtree(1, check, L, false);
return -1;
}
int b = sz;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if (a & 1) {
Monoid nxt = f(L, seg[a]);
if (check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template <class C>
int find_last(int b, const C& check) {
Monoid R = M1;
if (b >= sz) {
if (check(f(seg[1], R))) return find_subtree(1, check, R, true);
return -1;
}
int a = sz;
for (b += sz; a < b; a >>= 1, b >>= 1) {
if (b & 1) {
Monoid nxt = f(seg[--b], R);
if (check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
int main(int argc, char* argv[]) {
ll n;
cin >> n;
vec<ll> a(n);
scan(a);
SegmentTree<ll> seg(
n, [](ll x, ll y) { return x + y; }, 0LL);
for (int i = (0); i < (n); i++) {
seg.set(i, a[i]);
}
seg.build();
ll ans = 0;
bool next_sign = (a[0] < 0) ? true : false;
if (a[0] == 0) seg.update(0, 1LL);
for (int i = (2); i < (n + 1); i++) {
ll sum = seg.query(0, i);
if ((next_sign && sum > 0) || (!next_sign && sum < 0)) {
next_sign = !next_sign;
continue;
}
ll to = (next_sign) ? 1 : -1;
ll diff = abs(sum - to);
ans += diff;
seg.update(i - 1, seg[i - 1] + (to - sum));
next_sign = !next_sign;
}
((cout) << (ans) << (endl));
return 0;
}
template <class T>
static void scan(vector<T>& v) {
auto tFormat = scanType[typeid(T)];
for (T& n : v) {
scanf(tFormat, &n);
}
}
static void scan(vector<string>& v, bool isWord) {
if (isWord) {
for (auto& n : v) {
cin >> n;
}
return;
}
int i = 0, size = v.size();
string s;
getline(cin, s);
if (s.size() != 0) {
i++;
v[0] = s;
}
for (; i < size; ++i) {
getline(cin, v[i]);
}
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline T gcd(T a, T b) {
return __gcd(a, b);
}
template <class T>
inline T lcm(T a, T b) {
T c = min(a, b), d = max(a, b);
return c * (d / gcd(c, d));
}
template <class A, size_t N, class T>
void Fill(A (&arr)[N], const T& val) {
std::fill((T*)arr, (T*)(arr + N), val);
}
template <class T>
T mod(T a, T m) {
return (a % m + m) % m;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1e9 + 7;
const long long INF = 1e12;
const int inf = 1e9;
const int mod = 1e9 + 7;
int main() {
cout << fixed << setprecision(10);
int n;
cin >> n;
vector<long long> v(n, 0);
for (int i = 0; i < (n); i++) cin >> v[i];
long long ans = inf;
for (int i = 0; i < (2); i++) {
long long now = 0;
long long sum = 0;
for (int j = 0; j < (n); j++) {
if (i == 0) {
sum += v[j];
if (j % 2 == 0) {
if (sum <= 0) {
now += 1 - sum;
sum = 1;
}
} else {
if (sum >= 0) {
now += sum + 1;
sum = -1;
}
}
} else {
sum += v[j];
if (j % 2 == 0) {
if (sum >= 0) {
now += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
now += 1 - sum;
sum = 1;
}
}
}
}
ans = min(ans, now);
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import numpy as np
n=int(input())
a=list(map(int,input().split()))
r=[0]
for i in range(n):
r.append(r[i]+a[i])
r.pop(0)
print(r)
pm=[1-2*(i%2) for i in range(n)]
mp=[1-2*((i+1)%2) for i in range(n)]
print(pm)
print(mp)
sum1,sum2=0,0
sousa1,sousa2=0,0
for i in range(n):
if np.sign(r[i]+sousa1) != pm[i]:
sum1+=abs(pm[i]-r[i]-sousa1)
sousa1+=1-2*(i%2)-r[i]
for i in range(n):
if np.sign(r[i]+sousa2) != mp[i]:
sum2+=abs(mp[i]-r[i]-sousa2)
sousa2+=1-2*((i+1)%2)-r[i]
print(min(sum1,sum2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
vector<int> a;
int N;
signed main() {
cin >> N;
for (int i = 0; i < (int)(N); i++) {
int t;
cin >> t;
a.push_back((t));
}
int res = 0;
int cnt = 0;
int sum = 0;
for (int i = 0; i < (int)(N); i++) {
sum += a[i];
if (sum < 0) {
cnt += -sum + 1;
sum = 1;
}
i++;
if (i == N) break;
sum += a[i];
if (sum > 0) {
cnt += sum + 1;
sum = -1;
}
}
res = cnt;
cnt = 0;
for (int i = 0; i < (int)(N); i++) {
sum += a[i];
if (sum > 0) {
cnt += sum + 1;
sum = -1;
}
i++;
if (i == N) break;
sum += a[i];
if (sum < 0) {
cnt += -sum + 1;
sum = 1;
}
}
res = min(res, cnt);
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
struct Setup {
Setup() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
}
} SETUP;
template <class T>
bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
const long long INF = 1LL << 60;
signed main() {
long long n;
cin >> n;
vector<long long> v(n);
for (auto& a : v) {
cin >> a;
}
vector<long long> acc(n + 1);
acc[0] = 0;
long long ans = 0;
for (long long i = 0; i < n; i++) {
acc[i + 1] = acc[i] + v[i];
if (acc[i] < 0 && acc[i + 1] < 0) {
ans += abs(1 - acc[i + 1]);
acc[i + 1] = 1;
} else if (acc[i] > 0 && acc[i + 1] > 0) {
ans += abs(-1 - acc[i + 1]);
acc[i + 1] = -1;
} else if (acc[i + 1] == 0) {
if (acc[i] < 0) {
ans++;
acc[i + 1]++;
} else if (acc[i] > 0) {
ans++;
acc[i + 1]--;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<int, int>;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < (n); i++) cin >> a[i];
int sum = 0;
int ans1 = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
ans1 += -sum + 1;
sum = 1;
}
}
}
int ans2 = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
} else {
if (sum <= 0) {
ans2 += -sum + 1;
sum = 1;
}
}
}
int ans = min(ans1, ans2);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
long long a[100004];
int main() {
scanf("%d", &n);
for (int i = (1); i <= (int)(n); ++i) scanf("%lld", &a[i]);
long long ans = 0;
if (!a[1]) ++ans;
if (a[2] > 0)
a[1] = -1;
else
a[1] = 1;
for (int i = (2); i <= (int)(n); ++i) {
if (a[i - 1] > 0) {
if (a[i] + a[i - 1] < 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] + 1 + a[i - 1]);
a[i] = -1;
} else {
if (a[i] + a[i - 1] > 0) {
a[i] += a[i - 1];
continue;
}
ans += abs(a[i] - 1 + a[i - 1]);
a[i] = 1;
}
}
printf("%lld\n", ans);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
prv_total =0
cnt = 0
if a[0] == 0:
if a[1]>= 0:
a[0] = -1
else:
a[0] = -1
cnt += 1
for i in range(n-1):
total = prv_total + a[i]
nxt_total = total+a[i+1]
if total == 0 and i != 0:
if prv_total > 0:
cnt += 1
total -= 1
else:
cnt += 1
total += 1
if total > 0 and nxt_total >= 0:
a[i+1] -= nxt_total+1
cnt += nxt_total+1
nxt_total -= nxt_total+1
elif total < 0 and nxt_total <=0:
a[i+1] += abs(nxt_total)+1
cnt += abs(nxt_total)+1
nxt_total += abs(nxt_total)+1
prv_total = total
total = prv_total + a[-1]
if total == 0:
cnt += 1
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const ll mod = 1e9 + 7;
int n;
vector<ll> a;
ll cost(ll a0) {
ll cst = 0, rs = a0;
bool sign = rs > 0;
for (int i = 1; i < n; i++) {
sign = !sign;
rs += a[i];
if (rs == 0) {
cst += sign ? 1 : -1;
} else {
if (rs > 0 == true && !sign) {
cst += rs + 1;
rs = -1;
} else if (rs > 0 == false && sign) {
cst += abs(rs) + 1;
rs = 1;
}
}
}
return cst;
}
int main() {
cin >> n;
a.resize(n);
for (ll &i : a) cin >> i;
ll ans;
if (a[0] == 0) {
ans = cost(-1);
ans = min(ans, cost(1));
cout << ans << endl;
} else {
ans = cost(a[0]);
cout << ans << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MOD = 1000000007;
const int INF = 1e9;
//long long
using ll = long long;
//出力系
#define print(x) cout << x << endl
#define yes cout << "Yes" << endl
#define YES cout << "YES" << endl
#define no cout << "No" << endl
#define NO cout << "NO" << endl
// begin() end()
#define all(x) (x).begin(),(x).end()
//for
#define REP(i,n) for(int i=0, i##_len=(n); i<i##_len; ++i)
#define REPR(i,n) for(int i=n, i##_len=(n); i>=0; i--)
#define FOR(i,a,b) for(int i=(a), i##_len=(b); i<i##_len; ++i)
//最大公約数
unsigned gcd(unsigned a, unsigned b) {
if(a < b) return gcd(b, a);
unsigned r;
while ((r=a%b)) {
a = b;
b = r;
}
return b;
}
int main(){
int n;
cin >> n
vector<int> a(n);
REP(i, n) cin >> a[i];
int ans1;
// +-+-の場合
if(n.at(0) <= 0) a[i] = a[i] + abs(1 - a[i]);
for(int i = 0; i < N; i++){
if(i % 2 == 0){
if(a[i] + a[i + 1] >= 0 ){
ans1 += -1 - a[i];
a[i] + a[i + 1] = a[i] + (-1 - a[i]);
}
}else if(i % 2 == 1){
if(a[i] + a[i + 1] >= 0){
ans1 += abs(1 - a[i]);
a[i] + a[i + 1] = a[i] + abs(1 - a[i]);
}
}
}
int ans2;
if(n.at(0) <= 0) a[i] = a[i] + abs(1 - a[i]);
for(int i = 0; i < N; i++){
if(a[i] + a[i + 1] >= 0){
ans2 += abs(1 - a[i]);
a[i] + a[i + 1] = a[i] + abs(1 - a[i]);
}else if(i % 2 == 1){
if(i % 2 == 0){
if(a[i] + a[i + 1] >= 0 ){
ans2 += -1 - a[i];
a[i] + a[i + 1] = a[i] + (-1 - a[i]);
}
}
}
}
// +-+-の場合
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | a = [1,-3, 1, 0]
X = 0
ans = 0
for i in a:
X += i
if X > 0:
b = -1 - X
ans += b - a[i+1]
else:
b = 1 - X
ans += b - a[i+1]
print (ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int ch_sign(int n) {
if (n == 0) return 0;
return (n > 0) - (n < 0);
}
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; ++i) cin >> a[i];
int sign = (a[0] > 0) - (a[0] < 0);
int s = a[0];
int ans = 0;
for (int i = 1; i < n; ++i) {
s += a[i];
sign *= -1;
if (ch_sign(s) != sign) {
ans += abs(s - sign);
s = sign;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
const double PI = acos(-1);
const double EPS = 1e-15;
long long INF = (long long)1E17;
long mod(long a) {
long long c = a % (long long)(1E9 + 7);
if (c >= 0) return c;
return c + (long long)(1E9 + 7);
}
using namespace std;
bool prime_(int n) {
if (n == 1) {
return false;
} else if (n == 2) {
return true;
} else {
for (int i = 2; i <= sqrt(n); i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
long long gcd_(long long a, long long b) {
if (a < b) {
swap(a, b);
}
if (a % b == 0) {
return b;
} else {
return gcd_(b, a % b);
}
}
long long lcm_(long long x, long long y) { return (x / gcd_(x, y)) * y; }
class UnionFind {
public:
vector<int> Parent;
UnionFind(int N) { Parent = vector<int>(N, -1); }
int root(int A) {
if (Parent[A] < 0) return A;
return Parent[A] = root(Parent[A]);
}
int size(int A) { return -Parent[root(A)]; }
bool connect(int A, int B) {
A = root(A);
B = root(B);
if (A == B) {
return false;
}
if (size(A) < size(B)) swap(A, B);
Parent[A] += Parent[B];
Parent[B] = A;
return true;
}
};
int main() {
int n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long s = 0;
long long ans = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
s += a[i];
if (s > 0) continue;
ans += 1 - s;
s = 1;
} else {
s += a[i];
if (s < 0) continue;
ans += s + 1;
s = -1;
}
}
s = 0;
long long temp = 0;
for (int i = 0; i < n; i++) {
if (i == 0) {
s += a[i];
if (s < 0) continue;
temp += s + 1;
s = -1;
} else {
s += a[i];
if (s > 0) continue;
temp += 1 - s;
s = 1;
}
}
ans = min(ans, temp);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n;
cin >> n;
long long int sum;
long long int ans1 = 0, ans2 = 0;
vector<long long int> a;
for (int i = 1; i <= n; i++) {
long long int tmp;
cin >> tmp;
a.push_back(tmp);
}
sum = 0;
for (int i = 1; i <= n; i++) {
sum += a[i - 1];
if (i % 2 == 0 && sum < 0) {
ans1 += abs(sum) + 1;
sum = 1;
} else if (i % 2 == 1 && sum > 0) {
ans1 += abs(sum) + 1;
sum = -1;
}
}
sum = 0;
for (int i = 1; i <= n; i++) {
sum += a[i - 1];
if (i % 2 == 0 && sum > 0) {
ans2 += abs(sum) + 1;
sum = -1;
} else if (i % 2 == 1 && sum < 0) {
ans2 += abs(sum) + 1;
sum = 1;
}
}
std::cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int n;
cin >> n;
long long int a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long int count = 0;
if (a[0] == 0) {
for (int i = 0; i > n; ++i) {
if (a[i] > 0) {
a[0] = -1;
++count;
break;
} else if (a[i] < 0) {
a[0] = 1;
++count;
break;
}
}
}
long long int cal = a[0];
if (a[0] == 0) {
cout << n * (n + 1) / 2;
} else {
for (int i = 1; i < n; ++i) {
if (cal + a[i] == 0) {
if (cal < 0) {
++count;
++a[i];
cal = 1;
} else {
++count;
--a[i];
cal = -1;
}
} else if (cal < 0 && cal + a[i] < 0) {
count += -(cal + a[i] - 1);
a[i] += -(cal + a[i] - 1);
} else if (cal > 0 && cal + a[i] > 0) {
count += (cal + a[i] + 1);
a[i] -= (cal + a[i] + 1);
}
cal += a[i];
}
}
cout << count << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
const ll MOD = 1000000007;
int main() {
ll N, sum = 0, ans = 0;
cin >> N;
vector<ll> A(N);
for (long long i = 0; i < (N); ++i) cin >> A.at(i);
if (A.at(0) == 0) {
A.at(0) = 1;
ans++;
for (long long i = 0; i < (N); ++i) {
if (i == 0) {
sum += A.at(i);
continue;
}
if (sum > 0) {
if (sum + A.at(i) < 0) {
sum += A.at(i);
} else {
ans += sum + A.at(i) + 1;
sum = -1;
}
} else {
if (sum + A.at(i) > 0) {
sum += A.at(i);
} else {
ans += 1 - (sum + A.at(i));
sum = 1;
}
}
}
A.at(0) = -1;
ll ans1 = 1;
for (long long i = 0; i < (N); ++i) {
if (i == 0) {
sum += A.at(i);
continue;
}
if (sum > 0) {
if (sum + A.at(i) < 0) {
sum += A.at(i);
} else {
ans1 += sum + A.at(i) + 1;
sum = -1;
}
} else {
if (sum + A.at(i) > 0) {
sum += A.at(i);
} else {
ans1 += 1 - (sum + A.at(i));
sum = 1;
}
}
}
cout << min(ans, ans1) << endl;
return 0;
}
for (long long i = 0; i < (N); ++i) {
if (i == 0) {
sum += A.at(i);
continue;
}
if (sum > 0) {
if (sum + A.at(i) < 0) {
sum += A.at(i);
} else {
ans += sum + A.at(i) + 1;
sum = -1;
}
} else {
if (sum + A.at(i) > 0) {
sum += A.at(i);
} else {
ans += 1 - (sum + A.at(i));
sum = 1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | a = list(map(int, input().split()))
t1, s1 = 0, 0
for i, x in enumerate(a):
s1 += x
if i % 2 == 0:
if s1 < 1:
t1 += (1-s1)
s1 = 1
else:
if s1 > -1:
t1 += (s1+1)
s1 = -1
t2, s2 = 0, 0
for i, x in enumerate(a):
s2 += x
if i % 2 == 0:
if s2 > -1:
t2 += (s2+1)
s2 = -1
else:
if s2 < 1:
t2 += (1-s2)
s2 = 1
print(min(t1, t2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
int a[1000000] = {};
for (int i = 0; i < n; i++) {
cin >> a[i];
}
ll s1, s2;
int ans1 = 0, ans2 = 0;
if (a[0] != 0) {
s1 = a[0];
} else {
s1 = (a[1] > 0) ? -1 : 1;
ans1++;
}
for (int i = 1; i < n; i++) {
if (s1 > 0 && s1 + a[i] > 0) {
ans1 += s1 + a[i] + 1;
s1 = -1;
} else if (s1 < 0 && s1 + a[i] < 0) {
ans1 += -(s1 + a[i]) + 1;
s1 = 1;
} else if (s1 + a[i] == 0) {
if (s1 > 0) {
s1 = -1;
} else {
s1 = 1;
}
ans1++;
} else {
s1 += a[i];
}
}
cout << ans1 << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int i = 0; i < N; i++) cin >> A.at(i);
bool flag;
bool flag2 = false;
for (int i = 0; i < N; i++) {
if (A.at(i) > 0) {
flag = true;
flag2 = true;
break;
} else if (A.at(i) < 0) {
flag = false;
flag2 = true;
break;
}
}
if (!flag2) {
cout << 0 << endl;
return 0;
}
int ans = 0;
int total = A.at(0);
for (int i = 0; i < N - 1; i++) {
int count = 0;
if (flag) {
if (total + A.at(i + 1) >= 0) {
count = -1 - total - A.at(i + 1);
ans += abs(count);
A.at(i + 1) = A.at(i + 1) + count;
}
total += A.at(i + 1);
flag = false;
} else if (!flag) {
if (total + A.at(i + 1) <= 0) {
count = 1 - total - A.at(i + 1);
ans += abs(count);
A.at(i + 1) = A.at(i + 1) + count;
}
total += A.at(i + 1);
flag = true;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto& x : a) {
cin >> x;
}
int sum = 0;
int count1 = 0;
int count2 = 0;
for (int i = 0; i < n; i++) {
sum += a.at(i);
if (sum >= 0 && i % 2 == 1) {
sum -= abs(sum) + 1;
count1 += abs(sum) + 1;
} else if (sum <= 0 && i % 2 == 0) {
sum += abs(sum) + 1;
count1 += abs(sum) + 1;
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a.at(i);
if (sum >= 0 && i % 2 == 0) {
sum -= abs(sum) + 1;
count2 += abs(sum) + 1;
} else if (sum <= 0 && i % 2 == 1) {
sum += abs(sum) + 1;
count2 += abs(sum) + 1;
}
}
int count;
count = min(count1, count2);
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long> a(n);
long long wa = 0;
int now_sign = 0;
int pre_sign = 0;
long long count = 0;
long long min_count = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] != 0) {
pre_sign = a[0] / abs(a[0]);
wa = a[0];
for (int i = 1; i < n; i++) {
wa += a[i];
if (wa != 0)
now_sign = wa / abs(wa);
else
now_sign = 0;
if (now_sign == pre_sign || now_sign == 0) {
count += abs(wa) + 1;
wa = -1 * pre_sign;
now_sign = -1 * pre_sign;
}
pre_sign = now_sign;
}
min_count = count;
} else {
pre_sign = 1;
wa = 1;
count = 1;
for (int i = 1; i < n; i++) {
wa += a[i];
if (wa != 0)
now_sign = wa / abs(wa);
else
now_sign = 0;
if (now_sign == pre_sign || now_sign == 0) {
count += abs(wa) + 1;
wa = -1 * pre_sign;
now_sign = -1 * pre_sign;
}
pre_sign = now_sign;
}
min_count = count;
pre_sign = -1;
wa = -1;
count = 1;
for (int i = 1; i < n; i++) {
wa += a[i];
if (wa != 0)
now_sign = wa / abs(wa);
else
now_sign = 0;
if (now_sign == pre_sign || now_sign == 0) {
count += abs(wa) + 1;
wa = -1 * pre_sign;
now_sign = -1 * pre_sign;
}
pre_sign = now_sign;
}
min_count = min(min_count, count);
}
cout << min_count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
template <typename T>
using V = vector<T>;
template <typename T, typename U>
using P = pair<T, U>;
int n;
V<int> a;
int solve(bool first_plus) {
bool will_plus = first_plus;
int manip_count = 0;
int sum = 0;
for (int i = 0; i < (n); ++i) {
int not_enough = 0;
if (will_plus) {
if (!(sum + a[i] > 0)) {
not_enough = 1 - (sum + a[i]);
manip_count += not_enough;
}
} else {
if (!(sum + a[i] < 0)) {
not_enough = -1 - (sum + a[i]);
manip_count += abs(not_enough);
}
}
sum += a[i] + not_enough;
will_plus = !will_plus;
}
return manip_count;
}
int main() {
cin >> n;
a.resize(n);
for (int i = 0; i < (n); ++i) {
cin >> a[i];
}
int first_plus = solve(true);
int first_minus = solve(false);
cout << min(first_plus, first_minus) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 5, Inf = 0x3f3f3f3f;
long long a[N], n;
long long sum[N];
int main() {
ios::sync_with_stdio(false);
cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
long long cost = 0, ans = Inf;
for (int i = 1; i <= n; ++i) {
sum[i] = sum[i - 1] + a[i];
if (i & 1) {
if (sum[i] >= 0) cost += sum[i] + 1, sum[i] = -1;
} else {
if (sum[i] <= 0) cost += -sum[i] + 1, sum[i] = 1;
}
}
ans = min(ans, cost);
cost = 0;
for (int i = 1; i <= n; ++i) {
sum[i] = sum[i - 1] + a[i];
if (!(i & 1)) {
if (sum[i] >= 0) cost += sum[i] + 1, sum[i] = -1;
} else {
if (sum[i] <= 0) cost += -sum[i] + 1, sum[i] = 1;
}
}
ans = min(ans, cost);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long N;
cin >> N;
vector<long> A(N), SP(N), SN(N);
long ansp = 0, ansn = 0;
for (int i = 0; i < N; i++) cin >> A[i];
for (int i = 0; i < N; i++) {
SP[i] = (i == 0 ? 0 : SP[i - 1]) + A[i];
while ((i % 2 == 0 && SP[i] <= 0) || (i % 2 == 1 && SP[i] >= 0)) {
SP[i] += 1 - 2 * (i % 2);
ansp++;
}
}
for (int i = 0; i < N; i++) {
SN[i] = (i == 0 ? 0 : SN[i - 1]) + A[i];
while ((i % 2 == 0 && SN[i] >= 0) || (i % 2 == 1 && SN[i] <= 0)) {
SN[i] += -1 + 2 * (i % 2);
ansn++;
}
}
cout << min(ansp, ansn);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
vector<int> v;
int res = 0;
int sign = 0;
int n, t;
int sum = 0;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> t;
v.push_back(t);
}
if (v[0] > 0) {
sign = 0;
} else {
sign = 1;
}
sum += v[0];
for (int i = 1; i < v.size(); i++) {
sum += v[i];
if (sign == 0) {
if (sum >= 0) {
res += (sum + 1);
sum -= (sum + 1);
}
} else {
if (sum <= 0) {
res += ((-1 * sum) + 1);
sum += ((-1 * sum) + 1);
}
}
sign = 1 - sign;
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
int a[n];
for (long long i = (0); i < (n); i++) {
cin >> a[i];
}
for (long long i = (0); i < (n - 1); i++) {
a[i + 1] += a[i];
}
int ans1 = 0, cnt = 0;
for (long long i = (0); i < (n); i++) {
if (i % 2 == 0) {
if (a[i] + cnt <= 0) {
ans1 += -(a[i] + cnt) + 1;
cnt += -(a[i] + cnt) + 1;
}
} else {
if (a[i] + cnt >= 0) {
ans1 += a[i] + cnt + 1;
cnt -= a[i] + cnt + 1;
}
}
}
int ans2 = 0;
cnt = 0;
for (long long i = (0); i < (n); i++) {
if (i % 2 == 1) {
if (a[i] + cnt <= 0) {
ans2 += -(a[i] + cnt) + 1;
cnt += -(a[i] + cnt) + 1;
}
} else {
if (a[i] + cnt >= 0) {
ans2 += a[i] + cnt + 1;
cnt -= a[i] + cnt + 1;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main() {
long long int n, i, a[100000], sum, count = 0, flag = 0;
scanf("%lld", &n);
for (i = 0; i < n; i++) {
scanf("%lld", &a[i]);
if (a[0] == 0 && a[i] != 0 && flag == 0) flag = i;
}
if (flag != 0) {
if ((a[flag] > 0 && flag % 2 == 0) || (a[flag] < 0 && flag % 2 == 1))
a[0] = 1;
else
a[0] = -1;
count++;
} else if (flag == 0 && a[0] == 0 && a[n - 1] == 0) {
a[0]++;
count++;
}
for (i = 0; i < n; i++) {
if (i == 0)
sum = a[0];
else {
if (sum > 0 && sum + a[i] >= 0) {
count += 1 + sum + a[i];
a[i] = -1 * sum - 1;
sum = -1;
} else if (sum < 0 && sum + a[i] <= 0) {
count += 1 - sum - a[i];
a[i] = -1 * sum + 1;
sum = 1;
} else if (sum + a[i] == 0) {
if (sum > 0)
a[i]--;
else if (sum < 0)
a[i]++;
count++;
sum += a[i];
} else
sum += a[i];
}
}
printf("%lld\n", count);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = [int(x) for x in input().split()]
ans_plusstart = 0
sum_plusstart = 0
ans_minusstart = 0
sum_minusstart = 0
if A[0] < 0:
ans_plusstart += 1 - A[0]
sum_minusstart = A[0]
sum_plusstart = 1
else:
ans_minusstart += 1 + A[0]
sum_minusstart = -1
sum_plusstart = max(1, A[0])
if A[0] == 0:
ans_plusstart = 1
for i in range(1, N):
#print(sum_plusstart, ans_plusstart, sum_minusstart, ans_minusstart)
if i % 2 == 0: # スタートと同じ記号にしたい
if A[i] + sum_plusstart > 0:
sum_plusstart = A[i] + sum_plusstart
if A[i] + sum_plusstart <= 0:
ans_plusstart += 1-(A[i] + sum_plusstart)
sum_plusstart = 1
if A[i] + sum_minusstart < 0:
sum_minusstart = A[i] + sum_minusstart
if A[i] + sum_minusstart >= 0:
ans_minusstart += 1 + A[i] + sum_minusstart
sum_minusstart = -1
else: # スタートと違う記号にしたい
if A[i] + sum_plusstart < 0:
sum_plusstart = A[i] + sum_plusstart
if A[i] + sum_plusstart >= 0:
ans_plusstart += 1+A[i] + sum_plusstart
sum_plusstart = -1
if A[i] + sum_minusstart > 0:
sum_minusstart = A[i] + sum_minusstart
if A[i] + sum_minusstart <= 0:
ans_minusstart += 1 - (A[i] + sum_minusstart)
sum_minusstart = -1
print(min(ans_minusstart, ans_plusstart))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long sub_mod(long long a, long long b, long long x) {
long long tmp = (a - b) % x;
if (tmp < 0) tmp += x;
return tmp;
}
long long gcd(long long a, long long b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
int dx[] = {0, 1, 0, -1};
int dy[] = {-1, 0, 1, 0};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
vector<int> nums(n, 0);
for (int i = 0; i < n; ++i) {
cin >> nums[i];
}
int out = (1e9);
for (int idx = 0; idx < 2; ++idx) {
int sum = 0, base = idx, ans = 0;
for (int i = 0; i < n; ++i) {
if (base == 0 && sum + nums[i] < 0) {
ans += abs(sum + nums[i] - 1);
sum = 1;
} else if (base == 1 && sum + nums[i] > 0) {
ans += abs(sum + nums[i] + 1);
sum = -1;
} else if (sum + nums[i] == 0) {
sum = (base == 0 ? 1 : -1);
ans += 1;
} else {
sum += nums[i];
}
base = 1 - base;
}
out = min(out, ans);
}
cout << out << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
import math
INF = 10**9+7
def k(i):
if(i == 1):
return 1
else:
return(i * k(i-1))
def comb(n, r):
if(n == r or r == 1):
return 1
else:
return k(n) / (k(n-r) * k(r))
stdin = sys.stdin
def na(): return map(int, stdin.readline().split())
def ns(): return stdin.readline().strip()
def nsl(): return list(stdin.readline().strip())
def ni(): return int(stdin.readline())
def nil(): return list(map(int, stdin.readline().split()))
n = ni()
a = nil()
b = []
for i in range(n):
b.append(a[i])
sum = 0
c1 = 0
c2 = 0
if a[0] == 0:
a[0] = 1
c1 += 1;
for i in range(0, n-1):
sum += a[i]
sum2 = sum + a[i+1]
if sum2 == 0:
if sum >0:
a[i+1] -= 1
sum2 -= 1
c1 -=1
if(sum * sum2 >= 0):
k = abs(sum2) + 1
h = k - (abs(sum) - 1)
l = k - h
if sum > 0 :
a[i] -= l
sum -= l
a[i + 1] -= h
else:
a[i] += l
sum += l
a[i + 1] += h
c1 += h+l
sum = 0
a = b
if a[0] == 0:
a[0] = 1
c2 += 1;
else:
c2 = abs(a[0]) + 1
if a[0] > 0:
a[0] = -1
else:
a[0] = 1
for i in range(0, n-1):
sum += a[i]
sum2 = sum + a[i+1]
if sum2 == 0:
if sum >0:
a[i+1] -= 1
sum2 -= 1
c2 -=1
if(sum * sum2 >= 0):
k = abs(sum2) + 1
h = k - (abs(sum) - 1)
l = k - h
if sum > 0 :
a[i] -= l
sum -= l
a[i + 1] -= h
else:
a[i] += l
sum += l
a[i + 1] += h
c2 += k
print(min(c1, c2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int main() {
int s[10000];
int i, n;
scanf("%d", &n);
for (i = 0; i < n; i++) scanf("%d", &s[i]);
int sum = s[0], op = 0;
i = 0;
while (i < n - 1) {
if (sum > 0) {
while (s[i + 1] >= -sum) {
s[i + 1]--;
op++;
}
} else {
while (s[i + 1] <= -sum) {
s[i + 1]++;
op++;
}
}
i++;
}
printf("%d", op);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a;
cin >> a;
long long sum = a;
long long cnt = 0;
for (int i = 1; i < n; ++i) {
cin >> a;
int next = sum + a;
int c, diff;
c = diff = 0;
if (sum > 0) {
if (next > 0) {
diff = (-1 - sum);
a = diff - a;
c = diff;
}
} else {
if (next < 0) {
diff = (1 - sum) - a;
a += diff;
c = diff;
}
}
sum += a;
cnt += abs(c);
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input().strip())
A = list(map(int, input().strip().split(" ")))
def solver(_sign):
s = A[0]
count = 0
if s == 0:
count += 1
if n == 1:
return count
else:
if _sign: # 先頭が正
s = 1
else:
s = -1
for a in A[1:]:
prev = s
sign = prev > 0
s += a
if s == 0:
count += 1
if sign: # previous is positive
s = -1
else: # prev is negative
s = 1
elif sign == (s > 0): # previous and current have the same sign
count += abs(s)+1
if s > 0:
s = -1
else:
s = 1
else:
pass
return count
print(min(solver(True), solver(False))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long func(long long a[], int n) {
long long cnt = 0;
long long s = 0;
for (int i = 1; i < n; i++) {
s += a[i - 1];
long long t = 0, u;
if (s > 0) {
u = (-1) * s - 1;
if (u < a[i]) {
t = a[i] - u;
a[i] = u;
}
} else {
u = (-1) * s + 1;
if (u > a[i]) {
t = u - a[i];
a[i] = u;
}
}
cnt += t;
}
return cnt;
}
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < (n); i++) cin >> a[i];
long long cnt1 = func(a, n);
int d;
if (a[0] > 0) {
d = a[0] + 1;
a[0] = -1;
} else {
d = (-1) * a[0] + 1;
a[0] = 1;
}
long long cnt2 = d + func(a, n);
cout << min(cnt1, cnt1) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=[int(i) for i in input().split()]
check=a[0]
ans=0
if check==0:
for i in range(1,n):
if check+a[i]==0:
continue
elif check+a[i]>0:
check=-1
ans=1
break
else:
check=1
ans=1
break
for i in range(1,n):
check2=check+a[i]
if check<0:
if check2>0:
check=check2
else:
ans+=abs(check2+1)
check=1
else:
if check2<0:
check=check2
else:
ans+=abs(check2+1)
check=-1
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INFTY = 1001001001;
int main() {
int N;
cin >> N;
vector<long long> a(N + 1), b(N + 1);
for (int i = 0; i < N; ++i) {
cin >> a[i];
b[i] = a[i];
if (i != 0) {
a[i] += a[i - 1];
b[i] += b[i - 1];
}
}
long long ans = INFTY;
bool sign;
for (int i = 0; i < 2; ++i) {
sign = i;
if (sign) {
for (int i = 0; i < N + 1; ++i) {
a[i] = b[i];
}
}
long long v = 0, count = 0;
for (int i = 0; i < N; ++i) {
if (sign) {
if (a[i] >= 0) {
count += abs(-a[i] - 1);
v -= abs(-a[i] - 1);
}
} else {
if (a[i] <= 0) {
count += abs(-a[i] + 1);
v += abs(-a[i] + 1);
}
}
a[i + 1] += v;
sign = !(sign);
}
ans = min(ans, count);
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int cnt = 0;
int tmp_sum = 0;
if (a[0] == 0) {
int pos = -1;
for (int i = 1; i < n && pos == -1; i++)
if (a[i] != 0) pos = i;
if (pos != -1) {
if (a[pos] > 0) {
for (int j = 1; pos - j >= 0; j++) {
if (j % 2 == 1)
a[pos - j] = -1;
else
a[pos - j] = 1;
}
} else {
for (int j = 1; pos - j >= 0; j++) {
if (j % 2 == 1)
a[pos - j] = 1;
else
a[pos - j] = -1;
}
}
cnt += pos;
} else {
cnt = n * 2 - 1;
}
}
if (a[0] > 0) {
tmp_sum = a[0];
for (int i = 1; i < n; i++) {
tmp_sum += a[i];
if (i % 2 == 1 && tmp_sum >= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum -= (abs(tmp_sum) + 1);
}
if (i % 2 == 0 && tmp_sum <= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum += (abs(tmp_sum) + 1);
}
}
} else if (a[0] < 0) {
tmp_sum = a[0];
for (int i = 1; i < n; i++) {
tmp_sum += a[i];
if (i % 2 == 1 && tmp_sum <= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum += (abs(tmp_sum) + 1);
}
if (i % 2 == 0 && tmp_sum >= 0) {
cnt += (abs(tmp_sum) + 1);
tmp_sum -= (abs(tmp_sum) + 1);
}
}
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T1, class T2>
bool chmin(T1 &a, T2 b) {
return b < a && (a = b, true);
}
template <class T1, class T2>
bool chmax(T1 &a, T2 b) {
return a < b && (a = b, true);
}
using ll = long long;
using vll = vector<ll>;
using vvll = vector<vll>;
using P = pair<ll, ll>;
using ld = long double;
using vld = vector<ld>;
using vi = vector<int>;
using vvi = vector<vi>;
vll conv(vi &v) {
vll r(v.size());
for (long long i = 0; i < (long long)(v.size()); i++) r[i] = v[i];
return r;
}
inline void input(int &v) {
v = 0;
char c = 0;
int p = 1;
while (c < '0' || c > '9') {
if (c == '-') p = -1;
c = getchar();
}
while (c >= '0' && c <= '9') {
v = (v << 3) + (v << 1) + c - '0';
c = getchar();
}
v *= p;
}
template <typename T, typename U>
ostream &operator<<(ostream &o, const pair<T, U> &v) {
o << "(" << v.first << ", " << v.second << ")";
return o;
}
template <size_t...>
struct seq {};
template <size_t N, size_t... Is>
struct gen_seq : gen_seq<N - 1, N - 1, Is...> {};
template <size_t... Is>
struct gen_seq<0, Is...> : seq<Is...> {};
template <class Ch, class Tr, class Tuple, size_t... Is>
void print_tuple(basic_ostream<Ch, Tr> &os, Tuple const &t, seq<Is...>) {
using s = int[];
(void)s{0, (void(os << (Is == 0 ? "" : ", ") << get<Is>(t)), 0)...};
}
template <class Ch, class Tr, class... Args>
auto operator<<(basic_ostream<Ch, Tr> &os, tuple<Args...> const &t)
-> basic_ostream<Ch, Tr> & {
os << "(";
print_tuple(os, t, gen_seq<sizeof...(Args)>());
return os << ")";
}
ostream &operator<<(ostream &o, const vvll &v) {
for (long long i = 0; i < (long long)(v.size()); i++) {
for (long long j = 0; j < (long long)(v[i].size()); j++)
o << v[i][j] << " ";
o << endl;
}
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const vector<T> &v) {
o << '[';
for (long long i = 0; i < (long long)(v.size()); i++)
o << v[i] << (i != v.size() - 1 ? ", " : "");
o << "]";
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const deque<T> &v) {
o << '[';
for (long long i = 0; i < (long long)(v.size()); i++)
o << v[i] << (i != v.size() - 1 ? ", " : "");
o << "]";
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const set<T> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++)
o << *it << (next(it) != m.end() ? ", " : "");
o << "]";
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const unordered_set<T> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++)
o << *it << (next(it) != m.end() ? ", " : "");
o << "]";
return o;
}
template <typename T, typename U>
ostream &operator<<(ostream &o, const map<T, U> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++)
o << *it << (next(it) != m.end() ? ", " : "");
o << "]";
return o;
}
template <typename T, typename U, typename V>
ostream &operator<<(ostream &o, const unordered_map<T, U, V> &m) {
o << '[';
for (auto it = m.begin(); it != m.end(); it++) o << *it;
o << "]";
return o;
}
vector<int> range(const int x, const int y) {
vector<int> v(y - x + 1);
iota(v.begin(), v.end(), x);
return v;
}
template <typename T>
istream &operator>>(istream &i, vector<T> &o) {
for (long long j = 0; j < (long long)(o.size()); j++) i >> o[j];
return i;
}
template <typename T, typename S, typename U>
ostream &operator<<(ostream &o, const priority_queue<T, S, U> &v) {
auto tmp = v;
while (tmp.size()) {
auto x = tmp.top();
tmp.pop();
o << x << " ";
}
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const queue<T> &v) {
auto tmp = v;
while (tmp.size()) {
auto x = tmp.front();
tmp.pop();
o << x << " ";
}
return o;
}
template <typename T>
ostream &operator<<(ostream &o, const stack<T> &v) {
auto tmp = v;
while (tmp.size()) {
auto x = tmp.top();
tmp.pop();
o << x << " ";
}
return o;
}
template <typename T>
unordered_map<T, ll> counter(vector<T> vec) {
unordered_map<T, ll> ret;
for (auto &&x : vec) ret[x]++;
return ret;
};
string substr(string s, P x) { return s.substr(x.first, x.second - x.first); }
void vizGraph(vvll &g, int mode = 0, string filename = "out.png") {
ofstream ofs("./out.dot");
ofs << "digraph graph_name {" << endl;
set<P> memo;
for (long long i = 0; i < (long long)(g.size()); i++)
for (long long j = 0; j < (long long)(g[i].size()); j++) {
if (mode && (memo.count(P(i, g[i][j])) || memo.count(P(g[i][j], i))))
continue;
memo.insert(P(i, g[i][j]));
ofs << " " << i << " -> " << g[i][j]
<< (mode ? " [arrowhead = none]" : "") << endl;
}
ofs << "}" << endl;
ofs.close();
system(((string) "dot -T png out.dot >" + filename).c_str());
}
size_t random_seed;
namespace std {
using argument_type = P;
template <>
struct hash<argument_type> {
size_t operator()(argument_type const &x) const {
size_t seed = random_seed;
seed ^= hash<ll>{}(x.first);
seed ^= (hash<ll>{}(x.second) << 1);
return seed;
}
};
}; // namespace std
int main() {
int n, a[100100];
cin >> n;
int total = 0;
int count = 0;
for (int i = 0; i < n; ++i) {
cin >> a[i];
cerr << "i " << i << ", a[i] " << a[i] << " total: " << total << " count "
<< count << endl;
total += a[i];
if (i == 0) {
continue;
}
if (a[0] >= 0) {
cerr << "a[i] >= 0, so... " << endl;
if (i % 2 == 1) {
if (total >= 0) {
count += total + 1;
total = -1;
cerr << "aaaa should be minus!" << endl;
}
} else if (total < 0) {
count += abs(total) + 1;
total = 1;
cerr << "bbbb should be plus!" << endl;
}
} else {
if (i % 2 == 0) {
if (total >= 0) {
count += total + 1;
total = -1;
cerr << "cccc should be minus!" << endl;
}
} else if (total < 0) {
count += abs(total) + 1;
total = 1;
cerr << "dddd should be plus!" << endl;
}
}
cerr << "total " << total << " is after operation" << endl;
}
if (total == 0) {
cerr << "total is zero, increment total" << endl;
++count;
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, sum = 0, ans = 0;
cin >> N;
int m;
for (int i = 0; i < N; i++) {
int a;
cin >> a;
if (i == 0)
m = a;
else {
a += m;
if (m > 0) {
if (a <= 0) {
if (m + a == 0) {
ans++;
a--;
}
} else {
for (;;) {
if (a < 0) break;
ans++;
a--;
}
}
} else {
if (a >= 0) {
if (m + a == 0) {
ans++;
a++;
}
} else {
for (;;) {
if (a > 0) break;
ans++;
a++;
}
}
}
m = a;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int array[n];
for (int i = 0; i < n; i++) {
cin >> array[i];
}
int answer = 0;
int sum = 0;
for (int i = 0; i < n; i++) {
if (sum == 0)
sum += array[0];
else if (sum < 0) {
if (sum + array[i] > 0) {
sum += array[i];
} else {
if (sum == -1) {
answer += abs(2 - array[i]);
sum += 2;
} else {
answer += abs((-1) * sum + 1 - array[i]);
sum = 1;
}
}
} else {
if (sum + array[i] < 0) {
sum += array[i];
} else {
if (sum == 1) {
answer += abs(-2 - array[i]);
sum += -2;
} else {
answer += abs((-1) * sum - 1 - array[i]);
sum = -1;
}
}
}
}
cout << answer << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
template <typename T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) {
for (typename std::vector<T>::size_type i = 0; i < v.size(); ++i) {
os << v[i];
if (i + 1 < v.size()) {
os << ' ';
}
}
return os;
}
unsigned solve(unsigned N, const std::vector<long long> &a, int flag) {
unsigned c = 0;
long long s = 0;
for (unsigned n = 0; n < N; ++n) {
long long b = s + a[n];
if (n % 2 == flag) {
if (b <= 0) {
c += std::abs((+1) - b);
s = +1;
} else {
s = b;
}
} else {
if (b >= 0) {
c += std::abs((-1) - b);
s = -1;
} else {
s = b;
}
}
}
return c;
}
int main() {
unsigned N;
std::cin >> N;
std::vector<long long> a(N);
for (unsigned n = 0; n < N; ++n) {
std::cin >> a[n];
}
std::cout << std::min(solve(N, a, 0), solve(N, a, 1)) << std::endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #pragma warning disable
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.Serialization.Formatters.Binary;
using System.Text;
using System.Text.RegularExpressions;
using System.Diagnostics;
using System.Numerics;
using System.Collections;
static class MainClass
{
public static void Main(string[] args)
{
var n = Console.ReadLine().ToInt32();
var an = Console.ReadLine().SplittedStringToInt32List();
var sum = 0;
var ruisekiwa = new int[n];
ruisekiwa[0] = an[0];
var count = 0;
for (int i = 1; i < n; i++)
{
var before = ruisekiwa[i - 1] + an[i];
if ((before < 0 && ruisekiwa[i - 1] < 0))
{
count += Math.Abs(before) + 1;
before = 1;
}
else if (before > 0 && ruisekiwa[i - 1] > 0)
{
count += before + 1;
before = -1;
}
ruisekiwa[i] = before;
}
if (ruisekiwa[n - 1] == 0)
count++;
Console.WriteLine(count);
Console.ReadLine();
//var nm = Console.ReadLine().SplittedStringToInt32List();
//var n = nm[0];
//var m = nm[1];
//InitializeUnionFind(n);
//var abs = new List<KeyValuePair<int,int>>();
//for (int i = 0; i < m; i++)
//{
// var ab = Console.ReadLine().SplittedStringToInt32List();
// abs.Add(new KeyValuePair<int, int>(ab[0] - 1, ab[1] - 1));
//}
//abs.Reverse();
//var ls = new List<int>();
//foreach (var item in abs)
//{
// Unite(item.Key, item.Value);
// ls.Add(ParentCount);
//}
//ls.Reverse();
//var before = -1;
//var befores = 0;
//for (int i = 0; i < m; i++)
//{
// if (before != -1)
// {
// var num = ls[i] - befores;
// Console.WriteLine((num * (num - 1))/2 + before);
// before = (num * (num - 1)) / 2 + before;
// }
// else
// {
// var num = ls[i] - befores;
// Console.WriteLine((num * ( num - 1)) / 2);
// before = (num * (num - 1)) / 2;
// }
// befores = ls[i];
//}
//Console.ReadLine();
}
public static BigInteger[] factors;
public static BigInteger[] revFactors;
public static void SetFactor(int N)
{
factors = new BigInteger[N];
factors[0] = 1;
revFactors = new BigInteger[N];
for (int i = 1; i < N; i++)
{
factors[i] = factors[i - 1] * i;
factors[i] %= Mod1e9;
}
revFactors[N - 1] = BigInteger.ModPow(factors[N - 1], Mod1e9 - 2, Mod1e9);
for (int i = N - 2; i >= 0; i--)
{
revFactors[i] = revFactors[i + 1] * (i + 1);
revFactors[i] %= Mod1e9;
}
}
public static BigInteger GetCombination(int a, int b)
{
return a >= b ? (((factors[a] * revFactors[b]) % Mod1e9) * revFactors[a - b]) % Mod1e9 : 0;
}
public static int ParentCount;
public static int[] Parents;
public static int[] IfParentsChildrenCount;
public static int[] Ranks;
public static void InitializeUnionFind(int N)
{
Parents = new int[N];
Ranks = new int[N];
IfParentsChildrenCount = new int[N];
for (int i = 0; i < N; i++)
{
Parents[i] = i;
Ranks[i] = 0;
IfParentsChildrenCount[i] = 1;
}
ParentCount = N + 1;
}
public static int Root(int a)
{
if (Parents[a] == a)
{
return a;
}
else
{
Parents[a] = Root(Parents[a]);
return Parents[a];
}
}
public static bool Same(int a, int b)
{
return Root(a) == Root(b);
}
public static void Unite(int a, int b)
{
var parentA = Root(a);
var parentB = Root(b);
if (parentA == parentB)
return;
if (Ranks[parentA] < Ranks[parentB])
{
Parents[parentA] = parentB;
IfParentsChildrenCount[parentB] += IfParentsChildrenCount[parentA];
ParentCount -= IfParentsChildrenCount[parentA];
IfParentsChildrenCount[parentA] = 0;
}
else
{
Parents[parentB] = parentA;
if (Ranks[parentA] == Ranks[parentB])
{
Ranks[parentA]++;
}
IfParentsChildrenCount[parentA] += IfParentsChildrenCount[parentB];
ParentCount -= IfParentsChildrenCount[parentB];
IfParentsChildrenCount[parentB] = 0;
}
}
#region ライブラリ
public static long ToInt64(this string str) => long.Parse(str);
public static int ToInt32(this string str) => int.Parse(str);
public static BigInteger ToBigInteger(this string str) => BigInteger.Parse(str);
public static List<string> SplittedStringToList(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).ToList();
public static List<int> SplittedStringToInt32List(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).Select(x => int.Parse(x)).ToList();
public static List<long> SplittedStringToInt64List(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).Select(x => long.Parse(x)).ToList();
public static List<BigInteger> SplittedStringToBigInteger(this string str) => str.Split(new[] { ' ' }, StringSplitOptions.RemoveEmptyEntries).Select(x => BigInteger.Parse(x)).ToList();
public const int INF = int.MaxValue / 4;
public const long LONGINF = long.MaxValue / 2;
public const int Mod1e9 = 1000000007;
public static void PrintArray(bool[,] array)
{
for (int i = 0; i < array.GetLength(0); i++)
{
var sb = new StringBuilder();
for (int j = 0; j < array.GetLength(1); j++)
{
sb.Append(array[i, j]).Append(" ");
}
Console.WriteLine(sb.ToString());
}
}
public static int Manhattan(int x1, int x2, int y1, int y2)
{
return Math.Abs(x1 - x2) + Math.Abs(y1 - y2);
}
public static Dictionary<T, int> ToCountedDictionary<T>(this IEnumerable<T> items)
{
var dic = new Dictionary<T, int>();
foreach (var item in items)
{
if (dic.ContainsKey(item))
dic[item]++;
else
dic.Add(item, 1);
}
return dic;
}
public static long Sums(IEnumerable<int> list)
{
var sum = 0l;
foreach (var item in list)
{
sum += item;
}
return sum;
#endregion
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
n = 6
A = [-1, 4, 3, 2, -5, 4]
import numpy as np
b = A.copy()
c = A.copy()
#+-+-+-
def pm(a):
for i in range(len(a)):
if i==0:
if a[i] <= 0:
a[i] = 1
elif i%2==0:
if sum(a[:i+1]) <= 0:
a[i] = 1 - sum(a[:i])
elif i%2==1:
if sum(a[:i+1]) >= 0:
a[i] = -1 - sum(a[:i])
return sum(abs(np.array(a) - np.array(b)))
#-+-+-+
def mp(a):
for i in range(len(a)):
if i==0:
if a[i] >= 0:
a[i] = -1
elif i%2==0:
if sum(a[:i+1]) >= 0:
a[i] = -1 - sum(a[:i])
elif i%2==1:
if sum(a[:i+1]) <= 0:
a[i] = 1 - sum(a[:i])
return sum(abs(np.array(a) - np.array(b)))
print(min(pm(A), mp(c))) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
bool debug = false;
int main() {
int n;
int a[10005];
long long cnt = 0;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
bool plus;
if (sum >= 0)
plus = true;
else
plus = false;
for (int i = 1; i < n; i++) {
sum += a[i];
if (debug) cout << "sum:" << sum << endl;
if (plus) {
if (sum >= 0) {
cnt += sum + 1;
sum = -1;
}
plus = false;
} else {
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
plus = true;
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
long long ans = 0, sum = a[0];
for (int i = 1; i < n; i++) {
long long sum_c = sum;
sum += a[i];
if (sum_c < 0 && sum <= 0) {
ans += 1 - sum;
sum = 1;
} else if (sum_c > 0 && sum >= 0) {
ans += sum + 1;
sum = -1;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ansa = 0, ansb = 0, suma = 0, sumb = 0;
cin >> n;
for (int i = 0; i < (n); i++) {
int c;
cin >> c;
suma += c;
sumb += c;
if (i % 2 == 0) {
if (suma + c <= 0) {
ansa += 1 - c - suma;
suma = 1;
}
if (sumb + c >= 0) {
ansb += sumb + c + 1;
sumb = -1;
}
} else {
if (suma + c >= 0) {
ansa += suma + c + 1;
suma = -1;
}
if (sumb + c <= 0) {
ansb += 1 - c - sumb;
sumb = 1;
}
}
}
cout << min(ansa, ansb) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int MAXN = 100010;
int n;
long long a[MAXN];
long long s[MAXN];
long long countNum(bool direction) {
long long cnt = 0;
long long carry = 0;
if (a[0] == 0) {
a[0] = 1;
cnt = 1;
carry = 1;
}
cnt = direction ? cnt : abs(a[0]);
carry = direction ? carry : -a[0];
s[0] = direction ? a[0] : -a[0];
for (int i = 1; i < n; i++) {
s[i] = s[i - 1] + a[i];
}
for (int i = 1; i < n; i++) {
if ((s[i] + carry) * s[i - 1] >= 0) {
cnt += abs(s[i] + carry) + 1;
if (s[i - 1] < 0) {
carry += abs(s[i] + carry) + 1;
s[i] = 1;
} else {
carry -= abs(s[i] + carry) + 1;
s[i] = -1;
}
} else {
s[i] += carry;
}
}
return cnt;
}
void solve() {
long long maxCnt = min(countNum(true), countNum(false));
cout << maxCnt << endl;
}
int main() {
cin >> n;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
solve();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main {
private static final int mod =(int)1e9+7;
public static void main(String[] args) throws Exception {
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
int n=sc.nextInt();
long a[]=new long[n];
for(int i=0;i<n;i++) {
a[i]=sc.nextLong();
}
long sum=a[0];
long operations=0;
if(a.length==1) {
if(a[0]!=0) {
System.out.println(0);
}else {
System.out.println(1);
}
}else {
// if(sum==0) {
// if(a.length>=2&&sum+a[1]>0)
// sum--;
// else
// sum++;
//
// operations++;
// }
for(int i=0;i<n;i++) {
if(sum>0) {
if(sum+a[i]<0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum+=a[i]-1;
operations++;
}else {
long req=(long)-1-1l*sum;
sum=-1;
operations+=(-1l*req+a[i]);
}
}
}else if(sum<0) {
if(sum+a[i]>0) {
sum+=a[i];
}else {
if(sum+a[i]==0) {
sum+=a[i]+1;
operations++;
}else {
long req=(long)1+-1l*sum;
sum=1;
operations+=(req-a[i]);
}
}
}else {
if(sum+a[i]>0) {
sum--;
operations++;
}else {
sum++;
operations++;
}
}
}
System.out.println(operations);
}
}
static boolean vis[]=new boolean[10001];
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
// Function to find gcd of array of
// numbers
static int f(int arr[], int n)
{
int result = n;
int max=-1;
int ans=0;
for (int element: arr){
if(vis[element]==false)
result = gcd(n, element);
if(result>max) {
max=result;
ans=element;
}
}
return ans;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> data(N);
for (int i = 0; i < N; i++) cin >> data[i];
int count = 0;
int ans = data[0];
int saisyo;
for (int i = 1; i < N; i++) {
ans += data[i];
if (i % 2 == 0) {
while (ans <= 0) {
ans++;
count++;
}
} else {
while (ans >= 0) {
ans--;
count++;
}
}
}
saisyo = count;
count = 0;
ans = data[0];
for (int i = 1; i < N; i++) {
ans += data[i];
if (i % 2 != 0) {
while (ans <= 0) {
ans++;
count++;
}
} else {
while (ans >= 0) {
ans--;
count++;
}
}
}
saisyo = min(saisyo, count);
cout << saisyo << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | var read = require('readline').createInterface({
input: process.stdin,
output: process.stdout
});
var obj;
var inLine = [];
read.on('line', function(input){inLine.push(input);});
read.on('close', function(){
obj = init(inLine);
myerr("-----start-----");
var start = new Date();
Main();
var end = new Date() - start;
myerr("----- end -----");
myerr("time : " + (end) + "ms");
});
function nextInt(){return myconv(next(),1);} function nextStrArray(){return myconv(next(),2);}
function nextIntArray(){return myconv(next(),4);} function nextCharArray(){return myconv(next(),6);}
function next(){return obj.next();} function hasNext(){return obj.hasNext();}
function init(input){
var returnObj = {
list : input, index : 0, max : input.length,
hasNext : function(){return (this.index < this.max);},
next : function(){if(!this.hasNext()){throw "ArrayIndexOutOfBoundsException これ以上ないよ";}else{var returnInput = this.list[this.index];this.index++;return returnInput;}}
};
return returnObj;
}
function myout(s){console.log(s);}
function myerr(s){console.error("debug:" + require("util").inspect(s,false,null));}
//[no]要素の扱い。数値型
//不明値、異常時:引数そのまま返す 1:数値へ変換
//2:半角SPで分割 4:半角SPで分割し、数値配列へ
//6:1文字で分割 7:1文字で分割し、数値配列へ
//8:半角SPで結合 9:改行で結合 0:文字なしで結合
function myconv(i,no){try{switch(no){case 1:return parseInt(i);case 2:return i.split(" ");case 4:return i.split(" ").map(Number);case 6:return i.split("");case 7:return i.split("").map(Number);case 8:return i.join(" ");case 9:return i.join("\n");case 0:return i.join("");default:return i;}}catch(e){return i;}}
function Main(){
var N = nextInt();
var list = nextIntArray();
var output = 0;
var sum = new Array(N);
sum[0] = list[0];
for(var i = 1; i < N; i++){
sum[i] = sum[i - 1] + list[i];
if((sum[i - 1] < 0 && sum[i] > 0) || (sum[i - 1] > 0 && sum[i] < 0)){
myerr("?");
}else{
if((sum[i - 1] > 0)){
output += sum[i] + 1;
sum[i] = -1;
}else{
output += Math.abs(sum[i]) + 1;
sum[i] = 1;
}
}
}
myout(output)
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
arr = list(map(int, input().split()))
c = 0
prev = 0
for i in range(n):
t = prev + arr[i]
if i > 0:
if prev > 0 and t >= 0:
diff = t + 1
c += diff
arr[i] -= diff
elif prev < 0 and t <= 0:
diff = -1 * t + 1
c += diff
arr[i] += diff
prev += arr[i]
print(c) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pl = pair<ll, ll>;
ll LINF = 1000000000000000000;
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
struct UnionFind {
vector<int> d;
UnionFind(int n = 0) : d(n, -1) {}
int root(int x) {
if (d[x] < 0) return x;
return d[x] = root(d[x]);
}
bool unite(int x, int y) {
x = root(x);
y = root(y);
if (x == y) return false;
if (d[x] > d[y]) swap(x, y);
d[x] += d[y];
d[y] = x;
return true;
}
bool same(int x, int y) { return root(x) == root(y); }
int size(int x) { return -d[root(x)]; }
int factor_size() {
int ans = 0;
for (ll i = 0; i < (d.size()); ++i) {
if (d[i] < 0) {
ans++;
}
}
return ans;
}
};
ll d[201][201];
void warshall_floyd(ll n) {
for (ll k = 0; k < (n); ++k) {
for (ll i = 0; i < (n); ++i) {
for (ll j = 0; j < (n); ++j) {
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
}
}
}
struct edge {
ll to, cost;
};
struct dijkstra {
ll V;
vector<vector<edge>> G;
vector<ll> d;
dijkstra(ll n) { init(n); }
void init(ll n) {
V = n;
G.resize(V);
d.resize(V);
for (ll i = 0; i < (V); ++i) {
d[i] = LINF;
}
}
void add_edge(ll s, ll t, ll cost) {
edge e;
e.to = t, e.cost = cost;
G[s].push_back(e);
}
void run(ll s) {
for (ll i = 0; i < (V); ++i) {
d[i] = LINF;
}
d[s] = 0;
priority_queue<pl, vector<pl>, greater<pl>> que;
que.push(pl(0, s));
while (!que.empty()) {
pl p = que.top();
que.pop();
ll v = p.second;
if (d[v] < p.first) continue;
for (auto e : G[v]) {
if (d[e.to] > d[v] + e.cost) {
d[e.to] = d[v] + e.cost;
que.push(pl(d[e.to], e.to));
}
}
}
}
};
const ll mod = 1000000007;
struct mint {
ll x;
mint(ll x = 0) : x((x % mod + mod) % mod) {}
mint operator-() const { return mint(-x); }
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod - a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const { return mint(*this) += a; }
mint operator-(const mint a) const { return mint(*this) -= a; }
mint operator*(const mint a) const { return mint(*this) *= a; }
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t >> 1);
a *= a;
if (t & 1) a *= *this;
return a;
}
mint inv() const { return pow(mod - 2); }
mint& operator/=(const mint a) { return *this *= a.inv(); }
mint operator/(const mint a) const { return mint(*this) /= a; }
};
istream& operator>>(istream& is, const mint& a) { return is >> a.x; }
ostream& operator<<(ostream& os, const mint& a) { return os << a.x; }
struct combination {
vector<mint> fact, ifact;
combination(int n) : fact(n + 1), ifact(n + 1) {
assert(n < mod);
fact[0] = 1;
for (int i = 1; i <= n; ++i) fact[i] = fact[i - 1] * i;
ifact[n] = fact[n].inv();
for (int i = n; i >= 1; --i) ifact[i - 1] = ifact[i] * i;
}
mint operator()(int n, int k) {
if (k < 0 || k > n) return 0;
return fact[n] * ifact[k] * ifact[n - k];
}
} comb(200005);
struct Sieve {
int n;
vector<int> f, primes;
Sieve(int n = 1) : n(n), f(n + 1) {
f[0] = f[1] = -1;
for (ll i = 2; i <= n; ++i) {
if (f[i]) continue;
primes.push_back(i);
f[i] = i;
for (ll j = i * i; j <= n; j += i) {
if (!f[j]) f[j] = i;
}
}
}
bool isPrime(int x) { return f[x] == x; }
vector<int> factorList(int x) {
vector<int> res;
while (x != 1) {
res.push_back(f[x]);
x /= f[x];
}
return res;
}
vector<pl> factor(int x) {
vector<int> fl = factorList(x);
if (fl.size() == 0) return {};
vector<pl> res(1, pl(fl[0], 0));
for (int p : fl) {
if (res.back().first == p) {
res.back().second++;
} else {
res.emplace_back(p, 1);
}
}
return res;
}
vector<pair<ll, int>> factor(ll x) {
vector<pair<ll, int>> res;
for (int p : primes) {
int y = 0;
while (x % p == 0) x /= p, ++y;
if (y != 0) res.emplace_back(p, y);
}
if (x != 1) res.emplace_back(x, 1);
return res;
}
};
using data = pair<ll, vector<ll>>;
int h, w;
ll xxx[1010][1010];
ll a[1010][1010];
ll dfs(int x, int y) {
if (xxx[x][y] > 0) return xxx[x][y];
int tate[4] = {1, -1, 0, 0};
int yoko[4] = {0, 0, 1, -1};
ll ret = 1LL;
for (ll i = 0; i < (4); ++i) {
if (x + yoko[i] < 0 || y + tate[i] < 0 || x + yoko[i] >= w ||
y + tate[i] >= h)
continue;
if (a[x + yoko[i]][y + tate[i]] <= a[x][y]) continue;
ret += dfs(x + yoko[i], y + tate[i]);
ret %= mod;
}
return xxx[x][y] = ret;
}
int main() {
ll n;
cin >> n;
vector<ll> a(n);
for (ll i = 0; i < (n); ++i) cin >> a[i];
ll s1, s2;
ll ans1 = 0;
ll ans2 = 0;
if (a[0] > 0) {
bool pos = true;
s1 = a[0];
s2 = -1;
ans2 += a[0] + 1;
} else {
bool pos = false;
s1 = 1;
s2 = a[0];
ans1 += 1 - a[0];
}
for (ll i = 1; i <= (n - 1); ++i) {
if (0 < s1) {
if (s1 + a[i] < 0) {
s1 += a[i];
} else {
ans1 += (s1 + 1) + a[i];
s1 = -1;
}
if (s2 + a[i] > 0) {
s2 += a[i];
} else {
ans2 += -(s2 - 1) - a[i];
s2 = 1;
}
} else {
if (s1 + a[i] > 0) {
s1 += a[i];
} else {
ans1 += -(s1 - 1) - a[i];
s1 = 1;
}
if (s2 + a[i] < 0) {
s2 += a[i];
} else {
ans2 += (s2 + 1) + a[i];
s2 = -1;
}
}
}
ll ans = min(ans1, ans2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int INF = 1e9;
const int MOD = 1e9 + 7;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (auto &e : a) cin >> e;
ll cnt = 0;
ll sum = 0;
for (int i = 0; i < n; ++i) {
ll tmp = sum;
sum += a[i];
if (i == 0) continue;
if (tmp * sum >= 0) {
cnt += abs(sum) + 1;
if (sum >= 0) {
a[i] -= sum;
a[i]--;
sum = -1;
} else {
a[i] -= sum;
a[i]++;
sum = 1;
}
}
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INTMAX = 2147483647;
const int64_t LLMAX = 9223372036854775807;
const int MOD = 1000000007;
template <class T>
inline bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
inline void swap(int64_t& a, int64_t& b) {
a ^= b;
b ^= a;
a ^= b;
}
inline void swap(int& a, int& b) {
a ^= b;
b ^= a;
a ^= b;
}
vector<int> a;
int main() {
int n;
int64_t ans = 0, tmp, s;
cin >> n;
a.resize(n);
for (int i{0}; i < (int)(n); i++) cin >> a[i];
s = a[0];
tmp = 0;
if (s < 0) {
tmp += (1 - s);
s = 1;
}
for (int i{1}; i < (int)(n); i++) {
if (!(s + a[i]) || (s ^ (s + a[i])) >= 0) {
if (s > 0) {
tmp += -((-1LL) - (s + a[i]));
s = -1;
} else {
tmp += (1LL - (s + a[i]));
s = 1;
}
} else
s += a[i];
}
ans = tmp;
s = a[0];
tmp = 0;
if (s > 0) {
tmp += -(-1LL - s);
s = -1;
}
for (int i{1}; i < (int)(n); i++) {
if (!(s + a[i]) || (s ^ (s + a[i])) >= 0) {
if (s > 0) {
tmp += -((-1LL) - (s + a[i]));
s = -1;
} else {
tmp += (1LL - (s + a[i]));
s = 1;
}
} else
s += a[i];
}
chmin(ans, tmp);
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <typename A, typename B>
string to_string(pair<A, B> p);
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p);
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p);
string to_string(const string& s) { return '"' + s + '"'; }
string to_string(const char* s) { return to_string((string)s); }
string to_string(bool b) { return (b ? "true" : "false"); }
string to_string(vector<bool> v) {
bool first = true;
string res = "{";
for (int i = 0; i < static_cast<int>(v.size()); i++) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(v[i]);
}
res += "}";
return res;
}
template <size_t N>
string to_string(bitset<N> v) {
string res = "";
for (size_t i = 0; i < N; i++) {
res += static_cast<char>('0' + v[i]);
}
return res;
}
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto& x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A, typename B, typename C>
string to_string(tuple<A, B, C> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " +
to_string(get<2>(p)) + ")";
}
template <typename A, typename B, typename C, typename D>
string to_string(tuple<A, B, C, D> p) {
return "(" + to_string(get<0>(p)) + ", " + to_string(get<1>(p)) + ", " +
to_string(get<2>(p)) + ", " + to_string(get<3>(p)) + ")";
}
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
int main() {
long long int n;
cin >> n;
long long int sump = 1;
long long int sumn = -1;
long long int ansp = 0;
long long int ansn = 0;
for (int i = 0; i < n; i++) {
long long int x;
cin >> x;
if (sump >= 0) {
sump += x;
if (sump >= 0) {
ansp += sump + 1;
sump = -1;
}
} else {
sump += x;
if (sump <= 0) {
ansp += abs(sump) + 1;
sump = 1;
}
}
if (sumn >= 0) {
sumn += x;
if (sumn >= 0) {
ansn += sumn + 1;
sumn = -1;
}
} else {
sumn += x;
if (sumn <= 0) {
ansn += abs(sumn) + 1;
sumn = 1;
}
}
42;
}
42;
cout << min(ansn, ansp) - 1;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n, b, c = 0;
cin >> n >> b;
for (int i = 0; i < n - 1; i++) {
int a;
cin >> a;
a += b;
if (a * b >= 0) {
if (b > 0) {
c += a + 1;
a = -1;
} else {
c += 1 - a;
a = 1;
}
}
b = a;
}
cout << c << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
long long n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum[n];
sum[0] = a[0];
long long ans = 0;
if (sum[0] == 0) {
ans = 1;
for (int i = 0; i < n; i++) {
if (a[i] != 0) {
sum[0] = abs(a[i]) / a[i] * pow(-1, (i % 2));
}
}
}
for (int i = 1; i <= (int)(n - 1); i++) {
int t = sum[i - 1] + a[i];
if (t == 0) {
ans += 1;
sum[i] = -abs(sum[i - 1]) / sum[i - 1];
} else if (abs(t) / t != abs(sum[i - 1]) / sum[i - 1]) {
sum[i] = t;
continue;
} else {
ans += abs(t) + 1;
sum[i] = -abs(t) / t;
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long int;
const ll INF = (1LL << 32);
const ll MOD = (ll)1e9 + 7;
const double EPS = 1e-9;
ll dx[8] = {1, 0, -1, 0, 1, -1, -1, 1};
ll dy[8] = {0, 1, 0, -1, 1, 1, -1, -1};
signed main() {
ios::sync_with_stdio(false);
ll n;
cin >> n;
vector<ll> a;
for (ll i = 0; i < n; i++) {
ll x;
cin >> x;
a.push_back(x);
}
ll sum = a[0];
ll ans = 0;
for (ll i = (1); i < (n); i++) {
if (sum >= 0 and (sum + a[i]) >= 0) {
while (sum + a[i] != -1) {
a[i]--;
ans++;
}
} else if (sum < 0 and (sum + a[i]) < 0) {
while (sum + a[i] != 1) {
a[i]++;
ans++;
}
}
sum += a[i];
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import sys
stdin = sys.stdin
def li(): return [int(x) for x in stdin.readline().split()]
def li_(): return [int(x)-1 for x in stdin.readline().split()]
def lf(): return [float(x) for x in stdin.readline().split()]
def ls(): return stdin.readline().split()
def ns(): return stdin.readline().rstrip()
def lc(): return list(ns())
def ni(): return int(ns())
def nf(): return float(ns())
n = ni()
a = li()
# 正→負→正→...
cur = a[0]
ans_pn = 0
if cur <= 0:
ans_pn = abs(a[0]-1)
for i in range(1,n):
cur += a[i]
if i%2 == 0 and cur <= 0:
ans_pn += abs(cur)+1
cur = 1
elif i%2 == 1 and cur >= 0:
ans_pn += abs(cur)+1
cur = -1
# 負→正→負...
cur = a[0]
ans_np = 0
if cur <= 0:
ans_np = abs(a[0]+1)
for i in range(1,n):
cur += a[i]
if i%2 == 0 and cur >= 0:
ans_np += abs(cur)+1
cur = -1
elif i%2 == 1 and cur <= 0:
ans_np += abs(cur)+1
cur = 1
print(min(ans_np, ans_pn)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MOD = 1e9 + 7;
const long long LINF = 1e18;
long long n;
vector<long long> a;
long long count(long long sum) {
long long cnt = 0;
for (long long i = 1; i < n; ++i) {
if (sum > 0) {
sum += a[i];
if (sum >= 0) {
cnt += abs(sum) + 1;
sum = -1;
}
} else {
sum += a[i];
if (sum <= 0) {
cnt += abs(sum) + 1;
sum = 1;
}
}
}
return cnt;
}
int main() {
cin >> n;
long long ans = LINF;
a.resize(n);
for (long long i = 0; i < n; ++i) {
cin >> a[i];
}
if (a[0] == 0) {
ans = min(ans, count(1) + 1ll);
ans = min(ans, count(-1) + 1ll);
} else {
long long sum = a[0];
ans = min(ans, count(sum));
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
map<int, int> mp;
vector<int> V;
list<int> L;
stack<int> S;
queue<int> Q;
deque<int> dq;
static const int MAX = 1e5;
static const int NMAX = 50;
static const int MMAX = 50;
int N;
long long a, cunt, sum;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
cin >> N;
cin >> a;
sum += a;
for (int i = 1; i < N; i++) {
cin >> a;
if (sum * a >= 0) {
cunt += sum + a + 1;
sum = (sum > 0 ? -1 : 1);
} else if (sum * a < 0 && abs(sum) >= abs(a)) {
cunt += abs(sum) - abs(a) + 1;
sum = (-1) * (sum + 1);
} else
sum += a;
}
cout << cunt << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
long long sum = 0;
long long tmp = 0;
long long ans = 0;
int sign = 1;
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = a.at(0);
sign = sum / abs(sum);
for (int i = 1; i < n; i++) {
sum += a.at(i);
if (sum == 0) {
ans += 1;
sum = -1 * sign;
} else if (sign == sum / abs(sum)) {
ans += abs(-1 * sign - sum);
sum = -1 * sign;
}
sign *= -1;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
long long calc(long long a[], int n) {
long long sum = a[0];
long long res = 0;
for (int i = 1; i < n; i++) {
if (sum < 0 && sum + a[i] <= 0) {
res += 1 - sum - a[i];
a[i] += 1 - sum - a[i];
} else if (sum > 0 && sum + a[i] >= 0) {
res += abs(a[i] - (-1 - sum));
a[i] = -1 - sum;
}
sum += a[i];
}
return res;
}
int main() {
int n;
long long a[100010];
scanf("%d", &n);
for (int i = 0; i < n; i++) scanf("%lld", &a[i]);
long long res = 0;
if (a[0] == 0) {
res++;
a[0] = 1;
res += calc(a, n);
a[0] = -1;
res = min(calc(a, n) + 1, res);
} else {
res = calc(a, n);
if (a[0] > 0) {
long long tp = abs(-1 - a[0]);
a[0] = -1;
res = min(res, tp + calc(a, n));
} else {
long long tp = abs(1 - a[0]);
a[0] = 1;
res = min(res, tp + calc(a, n));
}
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
long long a[1000010];
int n;
unsigned long long solve() {
unsigned long long sum = 0;
long long oo = 0, flag;
if (a[0] > 0)
flag = -1;
else if (a[0] < 0)
flag = 1;
for (int i = 0; i < n; i++) {
oo += a[i];
if (flag == 1) {
if (oo >= 0) {
sum += oo + 1;
oo = -1;
}
}
if (flag == -1) {
if (oo <= 0) {
sum += 0 - oo + 1;
oo = 1;
}
}
flag = -flag;
}
return sum;
}
int main() {
while (scanf("%d", &n) != EOF) {
unsigned long long sum;
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
if (a[0] == 0) {
a[0] = 1;
unsigned long long sum1 = solve();
a[0] = -1;
unsigned long long sum2 = solve();
sum = min(sum1, sum2) + 1;
} else {
a[0] = 1;
unsigned long long sum1 = solve() + abs(a[0] - 1);
a[0] = -1;
unsigned long long sum2 = solve() + abs(a[0] + 1);
sum = min(sum1, sum2);
}
printf("%lld\n", sum);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long MOD = 1000000007LL;
const long long INF = 1LL << 60;
using vll = vector<long long>;
using vb = vector<bool>;
using vvb = vector<vb>;
using vvll = vector<vll>;
using vstr = vector<string>;
using pair<long long, long long> = pair<long long, long long>;
long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; }
long long lcm(long long a, long long b) { return a / gcd(a, b) * b; }
int nx[4] = {0, 1, -1, 0};
int ny[4] = {1, 0, 0, -1};
int main() {
long long n;
cin >> n;
vll a(n);
for (long long i = 0; i < (n); i++) cin >> a[i];
long long cu = 0;
long long k = 0;
long long ans = INF;
for (long long i = 0; i < (n); i++) {
if (i % 2 == 0) {
if (cu + a[i] < 0) {
k += abs(cu + a[i]) + 1;
cu = 1;
} else if (cu + a[i] == 0) {
cu = 1;
k++;
}
} else {
if (cu + a[i] > 0) {
k += cu + a[i] + 1;
cu = 0;
cu--;
} else if (cu + a[i] == 0) {
cu = 0;
cu--;
k++;
}
}
}
ans = min(ans, k);
k = 0;
for (long long i = 0; i < (n); i++) {
if (i % 2 == 1) {
if (cu + a[i] < 0) {
k += abs(cu + a[i]) + 1;
cu = 1;
} else if (cu + a[i] == 0) {
cu = 1;
k++;
}
} else {
if (cu + a[i] > 0) {
k += cu + a[i] + 1;
cu = 0;
cu--;
} else if (cu + a[i] == 0) {
cu = 0;
cu--;
k++;
}
}
}
ans = min(ans, k);
cout << (ans) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
int c[10][10];
int min_ind[10];
int main() {
int n;
cin >> n;
ll a;
cin >> a;
ll sum = a, op_sum = 0;
for (int i = 1; i < n; i++) {
ll a;
cin >> a;
if (sum < 0) {
if (sum + a > 0) {
sum += a;
} else {
op_sum += abs(1 - a - sum);
sum = 1;
}
} else {
if (sum + a < 0) {
sum += a;
} else {
op_sum += abs(-1 - a - sum);
sum = -1;
}
}
}
cout << op_sum << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int A[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> A[i];
}
int sum = 0;
int counter = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 0) {
if (sum < 0) {
int diff = 1 - sum;
sum += diff;
counter += diff;
}
} else {
if (sum > 0) {
int diff = sum + 1;
sum -= diff;
counter += diff;
}
}
}
int counterNeg = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += A[i];
if (i % 2 == 0) {
if (sum > 0) {
int diff = sum + 1;
sum -= diff;
counterNeg += diff;
}
} else {
if (sum < 0) {
int diff = 1 - sum;
sum += diff;
counterNeg += diff;
}
}
}
int ans = counter > counterNeg ? counterNeg : counter;
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
numbers = list(map(int, input().split()))
counter = 0
sum_in = 0
sum_in1 = numbers[0]
if numbers[0] >= 0:
for i in range(len(numbers)):
sum_in += numbers[i]
if i % 2 == 0:
if sum_in <= 0:
sub = abs(sum_in) + 1
sum_in += sub
numbers[i] += sub
counter += sub
else:
if sum_in >= 0:
sub = abs(sum_in) + 1
sum_in -= sub
numbers[i] -= sub
counter += sub
else:
for i in range(len(numbers)):
sum_in += numbers[i]
if i % 2 != 0:
if sum_in <= 0:
sub = abs(sum_in) + 1
sum_in += sub
numbers[i] += sub
counter += sub
else:
if sum_in >= 0:
sub = abs(sum_in) + 1
sum_in -= sub
numbers[i] -= sub
counter += sub
print(counter) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int a[100005];
void solver() {
int cnt = 0;
int sum = a[0];
for (int i = 1; i < n; ++i) {
if (sum > 0) {
if (sum + a[i] >= 0) {
cnt += abs(sum + a[i]) + 1;
sum = -1;
} else {
sum = sum + a[i];
}
} else if (sum < 0) {
if (sum + a[i] <= 0) {
cnt += abs(sum + a[i]) + 1;
sum = 1;
} else {
sum = sum + a[i];
}
}
}
cout << cnt << endl;
}
int main() {
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
solver();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using namespace std;
template <typename T>
using vec = std::vector<T>;
template <typename T>
struct BIT {
int n;
vector<T> bit;
BIT(int n_) : n(n_ + 1), bit(n, 0) {}
void add(int i, T x) {
if (i == 0) {
cout << "BIT add ERROR" << endl;
exit(1);
}
for (int idx = i; idx < n; idx += (idx & -idx)) {
bit[idx] += x;
}
}
T sum(int i) {
T s(0);
for (int idx = i; idx > 0; idx -= (idx & -idx)) {
s += bit[idx];
}
return s;
}
};
int main() {
ll n;
cin >> n;
BIT<ll> bt(n);
vec<ll> a(n);
vec<ll> sm(2);
for (ll i = 0; i < (n); i++) {
cin >> a[i];
if (i % 2 == 0)
sm[0] += a[i];
else
sm[1] = a[i];
}
ll ans = 0;
int plus = (sm[0] >= sm[1]) ? 0 : 1;
int minus = 1 - plus;
for (ll i = 0; i < (n); i++) {
bt.add(i + 1, a[i]);
}
for (ll i = 0; i < (n); i++) {
ll rsum = bt.sum(i + 1);
if (i % 2 == plus && rsum <= 0) {
bt.add(i + 1, abs(rsum) + 1);
ans += abs(rsum) + 1;
} else if (i % 2 == minus && rsum >= 0) {
bt.add(i + 1, -1 * abs(rsum) - 1);
ans += abs(rsum) + 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) cin >> a[i];
int odd = 0, even = 0, sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum <= 0) {
odd += abs(sum) + 1;
sum = +1;
} else if (i % 2 == 1 && sum >= 0) {
odd += abs(sum) + 1;
sum = -1;
}
}
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 1 && sum <= 0) {
even += abs(sum) + 1;
sum = +1;
} else if (i % 2 == 0 && sum >= 0) {
even += abs(sum) + 1;
sum = -1;
}
}
cout << min(odd, even) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int first;
cin >> first;
int oddSum, evenSum;
long oddCount, evenCount;
if (first == 0) {
oddSum = -1;
oddCount = 1;
evenSum = 1;
evenCount = 1;
} else if (first > 0) {
oddSum = -1;
oddCount = first * -1 + 1;
evenSum = first;
evenCount = 0;
} else if (first < 0) {
oddSum = first;
oddCount = 0;
evenSum = 1;
evenCount = first * -1 + 1;
}
for (int i = 1; i < n; i++) {
int a;
cin >> a;
int nextOddSum = oddSum + a;
int nextEvenSum = evenSum + a;
if ((oddSum > 0 && nextOddSum < 0) || (oddSum < 0 && nextOddSum > 0)) {
oddSum = nextOddSum;
} else if (nextOddSum == 0) {
oddSum = oddSum > 0 ? -1 : 1;
oddCount += 1;
} else if (nextOddSum > 0) {
oddSum = -1;
oddCount += nextOddSum + 1;
} else if (nextOddSum < 0) {
oddSum = 1;
oddCount += nextOddSum * -1 + 1;
}
if ((evenSum > 0 && nextEvenSum < 0) || (evenSum < 0 && nextEvenSum > 0)) {
evenSum = nextEvenSum;
} else if (nextEvenSum == 0) {
evenSum = evenSum > 0 ? -1 : 1;
evenCount += 1;
} else if (nextEvenSum > 0) {
evenSum = -1;
evenCount += nextEvenSum + 1;
} else if (nextEvenSum < 0) {
evenSum = 1;
evenCount += nextEvenSum * -1 + 1;
}
}
long answer = min(oddCount, evenCount);
cout << answer << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int,input().split()))
ans1 = A[0]
ans = ans1
A = A[1:]
cnt = 0
m = 0
for a in A:
m += 1
if ans1 > 0:
ans += a
if m % 2 == 1 and ans >= 0:
cnt += (abs(ans)+1)
ans -= (abs(ans)+1)
elif m % 2 == 0 and ans <= 0:
cnt += (abs(ans)+1)
ans += (abs(ans)+1)
else:
ans += a
if m % 2 == 1 and ans <= 0:
cnt += (abs(ans)+1)
ans += (abs(ans)+1)
elif m % 2 == 0 and ans >= 0:
cnt += (abs(ans)+1)
ans -= (abs(ans)+1)
print(cnt) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Linq;
using System.Collections.Generic;
using System.Numerics;
using static System.Console;
class Program {
static Scanner sc = new Scanner();
internal static void Main(string[] args) {
var N = sc.nextInt();
var a = sc.ArrayInt(N);
var psum = 0;
var msum = 0;
var pcnt = 0;
var mcnt = 0;
for (int i = 0; i < N; i++) {
psum += a[i];
msum += a[i];
if (i % 2 == 0) {
if (psum <= 0) {
pcnt += 1 - psum;
psum = 1;
}
if (msum >= 0) {
mcnt += Math.Abs(-1 - msum);
msum = -1;
}
} else {
if (psum >= 0) {
pcnt += Math.Abs(-1 - psum);
psum = -1;
}
if (msum <= 0) {
mcnt += 1 - msum;
msum = 1;
}
}
}
WriteLine(Math.Min(pcnt, mcnt));
}
}
class Scanner {
string[] s;
int i;
char[] cs = new char[] { ' ' };
public Scanner() {
s = new string[0];
i = 0;
}
public string next() {
if (i < s.Length) return s[i++];
string st = Console.ReadLine();
while (st == "") st = Console.ReadLine();
s = st.Split(cs, StringSplitOptions.RemoveEmptyEntries);
if (s.Length == 0) return next();
i = 0;
return s[i++];
}
public int nextInt() {
return int.Parse(next());
}
public int[] ArrayInt(int N, int add = 0) {
int[] Array = new int[N];
for (int i = 0; i < N; i++) {
Array[i] = nextInt() + add;
}
return Array;
}
public long nextLong() {
return long.Parse(next());
}
public long[] ArrayLong(int N, long add = 0) {
long[] Array = new long[N];
for (int i = 0; i < N; i++) {
Array[i] = nextLong() + add;
}
return Array;
}
public double nextDouble() {
return double.Parse(next());
}
public double[] ArrayDouble(int N, double add = 0) {
double[] Array = new double[N];
for (int i = 0; i < N; i++) {
Array[i] = nextDouble() + add;
}
return Array;
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
as = gets.split(' ').map { |e| e.to_i }
x = 0
bs = []
as.each { |e|
x += e
bs << x
}
# p bs
ans = 0
for i in (1..(n - 1))
a, b = bs[i - 1], bs[i]
if a >= 0 && a <= b
d = b + 1
for j in (i..(n-1))
bs[j] = bs[j] - d
end
# p bs
ans += d
elsif a <= 0 && a >= b
d = -1 * b + 1
for j in (i..(n-1))
bs[j] = bs[j] + d
end
# p bs
ans += d
end
end
ans += 1 if b[n-1] == 0
puts ans |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
s, ans, i = 0, 0, 0
while a[i] == 0 and i < n:
ans += 2
i += 1
ans = max(0, ans - 1)
if i == n:
print(ans)
exit()
if ans > 0:
ans -= 1
if abs(a[i]) == 1:
ans += 1
s = a[i] // abs(a[i])
else:
s = a[0]
i += 1
for j in range(i, n):
if abs(a[j]) > abs(s) and (a[j] == abs(a[j])) != (s == abs(s)):
s += a[j]
else:
pre_s = s
s = -1 * s // abs(s)
ans += abs(a[j] - s + pre_s)
print(ans) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.