Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.File; import java.io.IOException; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.Deque; import java.util.List; import java.util.Scanner; public class Main { //ABC059 public static void main(String[] args) throws IOException { //File file = new File("input.txt"); //Scanner in = new Scanner(file); Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; long[] sum = new long[n]; long ans = 0; for(int i = 0; i < n; i++){ a[i] = in.nextInt(); if(i == 0) sum[0] = a[0]; else sum[i] = sum[i-1] + a[i]; } /* for(int j = 0; j < n; j++) System.out.print(sum[j] + " "); System.out.println(); */ if(sum[0] == 0){ if(sum[1] > 0){ for(int i = 0; i < n; i++) sum[i]--; ans++; }else{ for(int i = 0; i < n; i++) sum[i]++; ans++; } } long diff_0 = 0; for(int i = 1; i < n; i++){ sum[i] += diff_0; if(sum[i] == 0){ if(sum[i-1] < 0){ sum[i]++; diff_0++; ans++; }else{ sum[i]--; diff_0--; ans++; } } } /* for(int j = 0; j < n; j++) System.out.print(sum[j] + " "); System.out.println(); */ long diff = 0; for(int i = 1; i < n; i++){ sum[i] += diff; /* System.out.print(i + ":"); for(int j = 0; j < n; j++) System.out.print(sum[j] + " "); System.out.println(); */ if(sum[i-1] < 0 && sum[i] <= 0){ long d = - sum[i] + 1; sum[i] += d; diff += d; ans += Math.abs(d); }else if(sum[i-1] > 0 && sum[i] >= 0){ long d = - sum[i] - 1; sum[i] += d; diff += d; ans += Math.abs(d); } } /* System.out.println(); for(int i = 0; i < n; i++) System.out.print(sum[i] + " "); System.out.println(); */ System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int MAX_N = 1 << 17; using namespace std; long long int dy[] = {0, 0, 1, -1, 0}; long long int dx[] = {1, -1, 0, 0, 0}; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } long long int gcd(long long int a, long long int b) { return b ? gcd(b, a % b) : a; } struct aaa { aaa() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); }; } aaaaaaa; signed main() { long long int n; std::cin >> n; std::vector<long long int> a; for (long long int(i) = 0, i_len = (n); (i) < i_len; (i)++) { long long int temp; std::cin >> temp; a.push_back(temp); } long long int sum = 0; long long int out = 0; long long int outt = 0; sum = a[0]; if (sum == 0) { out++; sum++; } for (long long int i = 1; i < n; i++) { if (sum < 0) { if (a[i] + sum > 0) { sum = a[i] + sum; } else { out += abs(sum + a[i]) + 1; sum = 1; } } else { if (a[i] + sum < 0) { sum = a[i] + sum; } else { out += abs(sum + a[i]) + 1; sum = -1; } } } if (sum < 0) { sum = 1; outt += abs(a[0]) + 1; } else { sum = -1; outt += abs(a[0]) + 1; } for (long long int i = 1; i < n; i++) { if (sum < 0) { if (a[i] + sum > 0) { sum = a[i] + sum; } else { outt += abs(sum + a[i]) + 1; sum = 1; } } else { if (a[i] + sum < 0) { sum = a[i] + sum; } else { outt += abs(sum + a[i]) + 1; sum = -1; } } } std::cout << min(out, outt) << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n = 0; cin >> n; vector<int> num(n); for (int i = 0; i < n; i++) cin >> num[i]; int now = 0; int wa = 0; now = 1; int count = 0; int res = 0; res = INT_MAX; for (int i = 0; i < n; i++) { wa += num[i]; if (now == 1 && wa < now) count += now - wa, wa = 1; else if (now == -1 && wa > now) count += wa - now, wa = -1; now *= -1; } res = count; wa = 0; now = -1; count = 0; for (int i = 0; i < n; i++) { wa += num[i]; if (now == 1 && wa < now) count += now - wa, wa = 1; else if (now == -1 && wa > now) count += wa - now, wa = -1; now *= -1; } res = min(count, res); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) li = list(map(int,input().split())) ans = 0 cnt = 0 s = 0 for i in range(n): if i == 0: ans += li[i] if ans > 0: s = 1 else: s = -1 else: ans += li[i] if ans <= 0 and s == -1: cnt += -ans + 1 ans = 1 s == 1 if ans >= 0 and s == 1: cnt += ans + 1 ans = -1 s == -1 s *= -1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import functools n = int(input()) a = list(map(int, input().split())) @functools.lru_cache() def long_func(n): r = a[0] cnt = 0 for i in range(1,n): if r>0: if r+a[i]<0: r+=a[i] else: cnt += a[i] +r +1 r = -1 else: if r+a[i]>0: r+=a[i] else: cnt += -a[i] - r+1 r = 1 return cnt print(long_func(n))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) a_orig = a[:] ans1 = 0 ans2 = 0 tot = [0 for i in range(n)] tot[0] = a[0] for i in range(1, n): tot[i] = tot[i-1] + a[i] if i % 2 == 0: if tot[i] <= 0: tot[i] = 1 a[i] = tot[i] - tot[i-1] else: if tot[i] >= 0: tot[i] = -1 a[i] = tot[i] - tot[i-1] for i in range(n): ans1 += abs(a[i]-a_orig[i]) a = a_orig[:] tot = [0 for i in range(n)] tot[0] = a[0] for i in range(1, n): tot[i] = tot[i-1] + a[i] if i % 2 == 1: if tot[i] <= 0: tot[i] = 1 a[i] = tot[i] - tot[i-1] else: if tot[i] >= 0: tot[i] = -1 a[i] = tot[i] - tot[i-1] for i in range(n): ans2 += abs(a[i]-a_orig[i]) print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; using vi = vector<int>; using vc = vector<char>; using vb = vector<bool>; using vs = vector<string>; using vll = vector<long long>; using vp = vector<pair<int, int>>; using vvi = vector<vector<int>>; using vvc = vector<vector<char>>; using vvll = vector<vector<long long>>; template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T &a, T b) { if (b < a) { a = b; return 1; } return 0; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n; cin >> n; vll a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; auto f = [&](ll x) { ll sm = x; ll res = 0; for (int i = 1; i < n; ++i) { if (sm > 0) { if (!(a[i] < -sm)) { res += a[i] - (-sm - 1); a[i] = -sm - 1; } } else { if (!(-sm < a[i])) { res += (-sm + 1) - a[i]; a[i] = -sm + 1; } } sm += a[i]; } return res; }; ll ans; if (a[0] == 0) { ll res1 = f(-1) + 1; ll res2 = f(1) + 1; ans = min(res1, res2); } else { ans = f(a[0]); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Linq; class Program { static void Main(string[] args) { int n = int.Parse(Console.ReadLine()); int[] an = Console.ReadLine().Split(' ').Select(e => int.Parse(e)).ToArray(); int sum = 0; int cs1 = 0; int t = 1; for (int i = 0; i < n; i++) { sum += an[i]; if (sum * t <= 0) { int tmp = Math.Abs(sum - t); sum = t; cs1 += tmp; } t *= -1; } int cs2 = 0; t = -1; sum = 0; for (int i = 0; i < n; i++) { sum += an[i]; if (sum * t <= 0) { int tmp = Math.Abs(sum - t); sum = t; cs2 += tmp; } t *= -1; } Console.WriteLine(Math.Min(cs1, cs2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr int MOD = 1000000007; using long long = long long; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } void print(const std::vector<int> &v) { std::for_each(v.begin(), v.end(), [](int x) { std::cout << x << " "; }); std::cout << std::endl; } int main() { int n; cin >> n; vector<long long> a(n); for (long long i = 0; i < (long long)n; i++) { cin >> a[i]; } int ans = 0; if (a[0] > 0) { int s = a[0]; for (int i = 1; i < n; i++) { s += a[i]; if (i % 2 == 1) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } } else if (a[0] < 0) { int s = a[0]; for (int i = 1; i < n; i++) { s += a[i]; if (i % 2 == 0) { if (s >= 0) { ans += s + 1; s = -1; } } else { if (s <= 0) { ans += -s + 1; s = 1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N=int(input()) s=list(map(int,input().split())) if s[0]<=0: t=1 elif s[0]>0: t=-1 ss=s[0] w=0 for i in range(N-1): if t==1: if ss+s[i+1]>=t: ss=ss+s[i+1] pass else: w+=t-ss-s[i+1] ss=1 t=-1 elif t==-1: if ss+s[i+1]<=t: ss=ss+s[i+1] pass else: w+=ss+s[i+1]-t ss=-1 t=1 print(w)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) kp=0 asum=0 flag=-1 for i in range(n): asum=asum+a[i] if flag==-1: if asum>=0: kp=kp+asum+1 asum=-1 else: if asum<=0: kp=kp+1-asum asum=1 flag=-flag print(asum) print("-----",kp) km=0 asum=0 flag=1 for i in range(n): asum=asum+a[i] if flag==-1: if asum>=0: km=km+asum+1 asum=-1 else: if asum<=0: km=km+1-asum asum=1 flag=-flag print(asum) print("-----",km) print(min(kp,km))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; int main() { int n; cin >> n; vector<int> a(n); for (long long(i) = 0; (i) < (n); (i)++) cin >> a[i]; long long ans = LLONG_MAX; long long total = 0; long long tmp = 0; for (int i = 0; i < n; ++i) { tmp += a[i]; if (i % 2) { if (tmp > 0) { total += abs(tmp) + 1; tmp = -1; } } else { if (tmp < 0) { total += abs(tmp) + 1; tmp = 1; } } } ans = total; total = 0; tmp = 0; for (int i = 1; i <= n; ++i) { tmp += a[i]; if (i % 2 == 0) { if (tmp > 0) { total += abs(tmp) + 1; tmp = -1; } } else { if (tmp < 0) { total += abs(tmp) + 1; tmp = 1; } } } ans = min(total, ans); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import Control.Monad import Data.List main=do _<-getLine (a:as)<-map read.words<$>getLine::IO[Integer] print.sum.snd$ mapAccumL f a as f a b | signum a * signum (a+b) < 0 = (a+b,0) | a < 0 = (1, 1-(a+b)) | otherwise = ((-1), 1+(a+b))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a.at(i); int t = 0, res1 = 0, res2 = 0; for (int i = 0; i < N; i++) { int b = a.at(i); if (i % 2 == 0) { if (t + b <= 0) { b = abs(t) + 1; res1 += b - a.at(i); } } else { if (t + b >= 0) { b = -abs(t) - 1; res1 += abs(b - a.at(i)); } } t += b; } t = 0; for (int i = 0; i < N; i++) { int b = a.at(i); if (i % 2 == 1) { if (t + b <= 0) { b = abs(t) + 1; res2 += b - a.at(i); } } else { if (t + b >= 0) { b = -abs(t) - 1; res2 += abs(b - a.at(i)); } } t += b; } int res = min(res1, res2); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy n=int(input()) a=[int(i) for i in input().split()] ans=0 sum=0 if a[0]==0: a[0]=1 ans+=1 sum=1 for j in a[1:]: if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0: ans+=abs(sum+j)+1 sum=-numpy.sign(sum) else: sum+=j pans=ans a[0]=-1 ans+=1 sum=-1 for j in a[1:]: if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0: ans+=abs(sum+j)+1 sum=-numpy.sign(sum) else: sum+=j mans=ans ans=min(pans,mans) else: for j in a: if numpy.sign(sum)==numpy.sign(sum+j) or numpy.sign(sum+j)==0: ans+=abs(sum+j)+1 sum=-numpy.sign(sum) else: sum+=j print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long total = a[0]; long long total2 = a[0]; long long ans = 0; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans += total + 1; total = -1; } else { ans += -total + 1; total = 1; } } total2 = total; } total2 = a[0]; long long ans2 = 0; if (total2 > 0) { ans2 += total2 + 1; total2 = -1; } else { ans2 += -total2 + 1; total2 = 1; } total = total2; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans2 += total + 1; total = -1; } else { ans2 += -total + 1; total = 1; } } total2 = total; } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[100010]; long long ans = 0; for (int i = 0; i < n; i++) { cin >> a[i]; if (i != 0) { a[i] += a[i - 1]; if (a[i] == 0) { if (a[i - 1] > 0) { ans++; a[i]--; } else { ans++; a[i]++; } } else if (a[i - 1] > 0) { if (a[i] > 0) { ans += llabs(-1 - a[i]); a[i] = -1; } } else if (a[i - 1] < 0) { if (a[i] < 0) { ans += 1 - a[i]; a[i] = 1; } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) a = list(map(int,input().split())) presum = a[0] summ = 0 ans = 0 for i in range(1,N): nsum = a[i] + presum if presum * nsum >= 0: if nsum == 0: if presum >= 0: a[i] -= 1 ans += 1 nsum = -1 elif presum < 0: a[i] += 1 ans += 1 nsum = 1 elif nsum > 0: ans += 1+presum+a[i] a[i] = -1 - presum nsum = -1 elif nsum < 0: nsum = 1 ans += 1 - presum - a[i] a[i] = 1-presum presum = nsum print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i digits = gets.split.map(&:to_i) sums = [] digits.each do |digit| sums << (sums.empty? ? digit : sums[-1] + digit) end cnt = 0 (1...sums.size).each do |i| next if sums[i - 1] * sums[i] < 0 target = (sums[i - 1] > 0 ? -1 : 1) diff = target - sums[i] cnt += diff.abs (i...sums.size).each{|j| sums[j] += diff} end puts cnt
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; const long long INF = 1e18; const double pi = acos(-1.0); int main(void) { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long ans = 0; for (int i = 0; i < (n); ++i) { if (i + 1 < n && a[i] == 0) { a[i] += min(a[i + 1] - 1, a[i + 1] - (-1)); ++ans; continue; } else if (i + 1 < n && a[i] < 0) { while (i + 1 < n && a[i] + a[i + 1] <= 0) { a[i + 1]++; ans++; } } else if (i + 1 < n && a[i] > 0) { while (i + 1 < n && a[i] + a[i + 1] >= 0) { a[i + 1]--; ans++; } } a[i + 1] += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n), tot(n); for (int i = 0; i < (n); ++i) cin >> a[i]; tot[0] = a[0]; for (int i = 0; i < (n - 1); ++i) tot[i + 1] += tot[i] + a[i + 1]; long long ans = 1LL << 60, now = 0; long long wa = 0; int p; if (tot[0] != 0) { p = tot[0] / abs(tot[0]); for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } p *= -1; } ans = min(ans, now); p = tot[0] / abs(tot[0]) * -1; now = abs(tot[0]) + 1; wa = p * (abs(tot[0]) + 1); for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } p *= -1; } ans = min(ans, now); } else { now = 1; wa = 1; p = 1; for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } p *= -1; } ans = min(ans, now); now = 1; wa = -1; p = -1; for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } p *= -1; } ans = min(ans, now); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; long long total = a[0]; long long total2 = a[0]; long long ans = 0; for (int i = (1); i < (n); ++i) { total += a[i]; if (total * total2 >= 0) { if (total2 > 0) { ans += total + 1; total = -1; } else { ans += -total + 1; total = 1; } } total2 = total; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); long long n = 0, a[100000] = {}, b = 0; cin >> n; for (int i = 0; i < (int)n; ++i) { cin >> a[i]; } int count_p = 0, count_q = 0; for (int i = 0; i < (int)n; ++i) { b += a[i]; if (i % 2 == 0) { if (b >= 0) { count_p += abs(-1 - b); b = -1; } } else { if (b <= 0) { count_p += abs(1 - b); b = 1; } } } for (int i = 0; i < (int)n; ++i) { b += a[i]; if (i % 2 == 0) { if (b <= 0) { count_q += abs(1 - b); b = 1; } } else { if (b >= 0) { count_q += abs(-1 - b); b = -1; } } } cout << std::min(count_p, count_q) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx") using namespace std; template <typename T> inline void priv(vector<T> a) { for (int i = 0; i < a.size(); i++) { cerr << a[i] << ((i == a.size() - 1) ? "\n" : " "); } } inline void fastio() { cin.tie(nullptr); cout.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } int_fast64_t gcd(int_fast64_t a, int_fast64_t b) { int_fast64_t c = max(a, b); int_fast64_t d = min(a, b); return c == 0 || d == 0 ? c : gcd(c % d, d); } int_fast64_t lcm(int_fast64_t a, int_fast64_t b) { return a == 0 || b == 0 ? 0 : a * b / gcd(a, b); } int_fast64_t modfact(int_fast64_t a) { int_fast64_t b = 1; for (int i = 2; i <= a; i++) b = b * i % 1000000007LL; return b; } int_fast64_t modpow(int_fast64_t a, int_fast64_t n) { int_fast64_t b = 1; while (n > 0) { if (n & 1) b = b * a % 1000000007LL; a = a * a % 1000000007LL; n >>= 1; } return b; } int_fast64_t modcomb(int_fast64_t n, int_fast64_t k) { int_fast64_t b = 1; k = min(n - k, k); for (int i = n; i >= n - k + 1; i--) b = b * i % 1000000007LL; return b * modpow(modfact(k), 1000000007LL - 2) % 1000000007LL; } int_fast64_t N, ans; int_fast64_t A[100001]; int_fast64_t solve(int_fast64_t S_init) { int_fast64_t S = S_init; int_fast64_t res = abs(S - A[0]); for (int i = 1; i <= N - 1; i++) { if (S * (S + A[i]) < 0) { S += A[i]; } else { if (S > 0) { res += abs(A[i] - (-S - 1)); S = -1; } else { res += abs(A[i] - (-S + 1)); S = 1; } } } return res; } int main() { fastio(); cin >> N; for (int i = 0; i < N; i++) cin >> A[i]; if (A[0] > 0) { ans = min(solve(A[0]), solve(-1)); } else { ans = min(solve(A[0]), solve(+1)); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; int dx[4] = {1, 0, -1, 0}; int dy[4] = {0, 1, 0, -1}; queue<pair<int, int> > que; int main() { int n; cin >> n; long long ans = 0; long long sum = 0; cin >> sum; for (int i = 1; i < n; i++) { int ai; cin >> ai; if (sum > 0 and sum + ai > 0) { ans += 2 * ai + 1; sum = -1; } else if (sum < 0 and sum + ai < 0) { ans += 2 * ai + 1; sum = 1; } else if (sum + ai == 0) { ans += 1; if (sum > 0) { sum = -1; } else if (sum < 0) { sum = 1; } } else { sum += ai; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { cin.sync_with_stdio(false); int n; cin >> n; vector<ll> a(n); ll sum = 0; int flag = true; for (int i = 0; i < n; i++) { cin >> a[i]; if (sum * (sum + a[i]) > 0) { flag = false; } sum += a[i]; if (sum == 0) { flag = false; } } if (flag) { cout << 0 << endl; return 0; } ll count1 = 0; ll count2 = 0; sum = a[0]; sum += a[1]; if (sum == 0) { count1 += 1; } else if (sum < 0) { count1 += -1 - sum; } else { count1 += sum + 1; } sum = -1; for (int i = 2; i < n; i++) { if (sum < 0 && sum + a[i] < 0) { count1 += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] > 0) { count1 += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } if (sum == 0) { count1 += 1; } } sum = a[0]; sum += a[1]; if (sum == 0) { count2 += 1; } else if (sum < 0) { count2 += 1 - sum; } else { count2 += sum - 1; } sum = 1; for (int i = 2; i < n; i++) { if (sum < 0 && sum + a[i] < 0) { count2 += abs(sum) - a[i] + 1; sum = 1; } else if (sum > 0 && sum + a[i] > 0) { count2 += abs(sum + a[i] + 1); sum = -1; } else { sum += a[i]; } if (sum == 0) { count2 += 1; } } cout << min(count1, count2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# # Written by NoKnowledgeGG @YlePhan # ('ω') # #import math #mod = 10**9+7 #import itertools #import fractions #import numpy as np #mod = 10**4 + 7 """def kiri(n,m): r_ = n / m if (r_ - (n // m)) > 0: return (n//m) + 1 else: return (n//m)""" """ n! mod m 階乗 mod = 1e9 + 7 N = 10000000 fac = [0] * N def ini(): fac[0] = 1 % mod for i in range(1,N): fac[i] = fac[i-1] * i % mod""" """mod = 1e9+7 N = 10000000 pw = [0] * N def ini(c): pw[0] = 1 % mod for i in range(1,N): pw[i] = pw[i-1] * c % mod""" """ def YEILD(): yield 'one' yield 'two' yield 'three' generator = YEILD() print(next(generator)) print(next(generator)) print(next(generator)) """ """def gcd_(a,b): if b == 0:#結局はc,0の最大公約数はcなのに return a return gcd_(a,a % b) # a = p * b + q""" """def extgcd(a,b,x,y): d = a if b!=0: d = extgcd(b,a%b,y,x) y -= (a//b) * x print(x,y) else: x = 1 y = 0 return d""" def readInts(): return list(map(int,input().split())) mod = 10**9 + 7 def main(): n = int(input()) A = readInts() # 符号 positive? #po_ = True # 変わったか変わってないか if A[0] >= 0: # if positive po_ = True else: # negative po_ = False Cost = 0 for i in range(1,n): #print(sum(A[:i+1]),A[i],po_) if sum(A[:i+1]) >= 0 and not po_: # sumがpositiveで前がnegativeだった po_ = True # positiveに if sum(A[:i+1]) == 0: A[i] += 1 Cost += 1 # これで終わり elif sum(A[:i+1]) >= 0 and po_: # posi : posi ? # 負にしなければならない Cost += abs(-1 - sum(A[:i+1])) # 先にこれやれ A[i] += -1 - sum(A[:i+1]) po_ = False elif sum(A[:i+1]) < 0 and not po_: #nega : nega # -1 はここ # print(A[i]) Cost += abs(1 - sum(A[:i+1])) # 先にこれやれ A[i] += 1 - sum(A[:i+1]) po_ = True else: # nega: pos po_ = False if sum(A[:i+1]) == 0: A[i] -=1 Cost -=1 #print(A[i]) print(Cost) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> A(N); for (int i = 0; i < N; i++) { cin >> A[i]; } int sum = 0; int cnt1 = 0; for (int i = 0; i < N; i++) { sum += A[i]; if (i % 2 == 0 && sum <= 0) { cnt1 += 1 - sum; sum = 1; } if (i % 2 == 1 && sum >= 0) { cnt1 += sum + 1; sum = -1; } } int sum2 = 0; int cnt2 = 0; for (int i = 0; i < N; i++) { sum += A[i]; if (i % 2 == 0 && sum2 >= 0) { cnt2 += sum2 + 1; sum2 = -1; } if (i % 2 == 1 && sum2 <= 0) { cnt2 += 1 - sum2; sum2 = 1; } } cout << min(sum, sum2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, a[100000], ans, sumb = 0, suma = 0; cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { sumb = suma; suma += a[i]; if (suma == 0) { if (sumb > 0) suma--; else suma++; ans++; } else if (suma * sumb > 0) { if (sumb > 0) { ans += suma + 1; suma -= suma + 1; } else if (sumb < 0) { ans += 1 - suma; suma -= 1 - suma; } } else ; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> long body(std::vector<long>& a) { long ans = 0; std::vector<long> s(a.size()); s.at(0) = a.at(0); for (unsigned long i = 1; i < a.size(); i++) { s.at(i) = s.at(i - 1) + a.at(i); } long diff = 0; for (unsigned long i = 1; i < s.size(); i++) { s.at(i) += diff; long n = 0; if (s.at(i - 1) > 0 && s.at(i) >= 0) { n = s.at(i) + 1; ans += n; diff -= n; s.at(i) += diff; } else if (s.at(i - 1) < 0 && s.at(i) <= 0) { n = -s.at(i) + 1; ans += n; diff += n; s.at(i) += diff; } } return ans; } int main(int argc, char** argv) { long n; std::cin >> n; std::vector<long> a(n); for (long i = 0; i < n; i++) { std::cin >> a.at(i); } long a0 = a.at(0); long ans_a, ans_b; { a.at(0) = a0; if (a.at(0) > 0) { ans_a = body(a); } else { a.at(0) = 1; ans_a = body(a) + (-a0 + 1); } } { a.at(0) = a0; if (a.at(0) < 0) { ans_b = body(a); } else { a.at(0) = -1; ans_b = body(a) + (a0 + 1); } } long ans = std::min(ans_a, ans_b); std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
if __name__ == '__main__': N = input() array = map(int, raw_input().split(" ")) ans = 0 total = array[0] totalZero = False if total == 0: totalZero = True flag = False if total > 0: flag = True for a in array[1:]: if totalZero == True: ans += 1 if a > 0: total = -1 else: total = 1 totalZero = False if total + a > 0 and total > 0: total += a ans += total + 1 total = -1 elif total + a < 0 and total < 0: total += a ans += abs(total - 1) total = 1 elif total + a == 0: totalZero = True else: total += a if totalZero == True: ans += 1 print ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def c(ints): for i in range(len(ints)): if ints[i] != 0: sig = 1 if ints[i] > 0 else -1 sig_ = -sig total = ints[i] total_ = -sig mov = i mov_ = abs(total) + 1 if i > 0: mov += 1 mov_ += 1 j = i break if i == len(ints) - 1: return i + 1 for i_ in ints[j+1:]: tmp = total + i_ tmp_ = total_ + i_ if tmp == 0: mov +=1 tmp = -sig elif sig * tmp > 0: mov += abs(tmp) + 1 tmp = -sig if tmp_ == 0: mov_ +=1 tmp_ = -sig_ elif sig_ * tmp_ > 0: mov_ += abs(tmp_) + 1 tmp_ = -sig_ sig *= -1 total = tmp sig_ *= -1 total_ = tmp_ return min(mov, mov_) _ = input() inp = input() inp = inp.split(' ') inp = [int(i_) for i_ in inp] print(c(inp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
from sys import stdin def main(): #入力 readline=stdin.readline n=int(readline()) a=list(map(int,readline().split())) s=[a[0]]*n for i in range(1,n): s[i]=s[i-1]+a[i] flag=True #1,-1,... for i in range(n): if i%2==0: if s[i]<=0: flag=False break else: if s[i]>=0: flag=False break if flag: print(0) else: #-1,1,... flag=True for i in range(n): if i%2==0: if s[i]>=0: flag=False break else: if s[i]<=0: flag=False break if flag: print(0) else: cnt1=0 s1=s[:] f1=0 #1,-1,... for i in range(n): if i%2==0: if s1[i]+f1<=0: cnt1+=abs(1-s1[i]-f1) f1+=1-s1[i] s1[i]=1 else: if s1[i]+f1>=0: cnt1+=abs(-1-s1[i]-f1) f1+=-1-s1[i] s1[i]=-1 cnt2=0 s2=s[:] f2=0 #-1,1,... for i in range(n): if i%2==0: if s2[i]+f2>=0: cnt2+=abs(-1-s2[i]-f2) f2+=-1-s2[i] s2[i]=-1 else: if s2[i]+f2<=0: cnt2+=abs(1-s2[i]-f2) f2+=1-s2[i] s2[i]=1 print(min(cnt1,cnt2)) if __name__=="__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<ll> v(n, 0); for (int i = (int)(0); i < (int)(n); i++) cin >> v[i]; vector<int> p1(n + 1, 1); for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 0) p1[i] *= -1; } int c[2]; vector<ll> sum_until(n + 1, 0); int cnt = 0; for (int i = 1; i <= n; i++) { sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); sum_until[i] += plus * p1[i] + p1[i]; cnt += abs(plus * p1[i]) + 1; } else if (sum_until[i] == 0) { sum_until[i] = p1[i]; cnt += 1; } } c[0] = cnt; fill(sum_until.begin(), sum_until.end(), 0ll); cnt = 0; for (int i = (int)(0); i < (int)(n + 1); i++) { if (i % 2 == 1) p1[i] *= -1; } for (int i = 1; i <= n; i++) { sum_until[i] = sum_until[i - 1] + v[i - 1]; if (sum_until[i] * p1[i] < 0) { int plus = abs(sum_until[i]); sum_until[i] += plus * p1[i] + p1[i]; cnt += abs(plus * p1[i]) + 1; } else if (sum_until[i] == 0) { sum_until[i] = p1[i]; cnt += 1; } } c[1] = cnt; cerr << "(" "c[0]" "," "c[1]" "):(" << c[0] << "," << c[1] << ")" << endl; cout << min(c[1], c[0]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int inf = 1000000007; using namespace std; int main() { int n; cin >> n; vector<int> data(n); int ans = 0; for (int i = 0; i < n; i++) { cin >> data.at(i); } int64_t sum = data.at(0); int64_t sump = sum; for (int i = 1; i < n; i++) { sump += data.at(i); cout << sump << " " << sum << endl; if (sum * sump > 0) { int c = sump; if (c < 0) c *= -1; c++; ans += c; if (sump > 0) { data.at(i) -= c; sump -= c; } else { data.at(i) += c; sump += c; } } sum += data.at(i); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
void main() { auto N = ri; auto a = readAs!(int[]); ulong res; long S; ulong tmp; // Even is positive foreach(i; 0..N) { S += a[i]; if(i%2) { // Odd is negative if(S >= 0) { tmp += 1 + S; S = -1; } } else { if(S <= 0) { tmp += 1 - S; S = 1; } } debug tmp.writeln; } res = tmp; tmp = 0; S = 0; foreach(i; 0..N) { S += a[i]; if(i%2==1) { if(S >= 0) { tmp += 1 + S; S = -1; } } else { if(S <= 0) { tmp += 1 - S; S = 1; } } debug tmp.writeln; } res = min(res, tmp); writeln(res); } // =================================== import std.stdio; import std.string; import std.functional; import std.conv; import std.algorithm; import std.range; import std.traits; import std.math; import std.container; import std.bigint; import std.numeric; import std.conv; import std.typecons; import std.uni; import std.ascii; import std.bitmanip; import core.bitop; T readAs(T)() if (isBasicType!T) { return readln.chomp.to!T; } T readAs(T)() if (isArray!T) { return readln.split.to!T; } T[][] readMatrix(T)(uint height, uint width) if (!isSomeChar!T) { auto res = new T[][](height, width); foreach(i; 0..height) { res[i] = readAs!(T[]); } return res; } T[][] readMatrix(T)(uint height, uint width) if (isSomeChar!T) { auto res = new T[][](height, width); foreach(i; 0..height) { auto s = rs; foreach(j; 0..width) res[i][j] = s[j].to!T; } return res; } int ri() { return readAs!int; } double rd() { return readAs!double; } string rs() { return readln.chomp; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define REP(i, n) for(ll i = 0; i < (ll)n; i++) #define FOR(i, a, b) for(ll i = (a); i < (ll)b; i++) #define ALL(obj) (obj).begin(), (obj).end() #define INF (1ll << 60) #define sz(x) int(x.size()) using namespace std; typedef long long ll; typedef double db; typedef string str; typedef pair<ll, ll> p; constexpr int MOD = 1000000007; using ll = long long; template <class T> inline bool chmin(T &a, T b) { if(a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if(a < b) { a = b; return true; } return false; } void print(const std::vector<int> &v) { std::for_each(v.begin(), v.end(), [](int x) { std::cout << x << " "; }); std::cout << std::endl; } int main() { int n; cin >> n; vector<ll> a(n); REP(i, n) { cin >> a[i]; } ll res = INF; ll ans = 0LL; ll s = a[0]; //はじめは正 for(int i = 1; i < n; i++) { s += a[i]; if(i % 2 == 1) { //負に if(s >= 0) { ans += s + 1; s = -1; } } else { //正に if(s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); // cout << s << endl; ans = 0; ll s = a[0]; for(int i = 1; i < n; i++) { s += a[i]; if(i % 2 == 0) { if(s >= 0) { ans += s + 1; s = -1; } } else { if(s <= 0) { ans += -s + 1; s = 1; } } } res = min(res, ans); cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) b=a[:] x=0#pmpm y=0 for i in range(n): if(i%2==0): if(sum(a[:i+1])<=0): x+=1-sum(a[:i+1]) a[i]+=1-sum(a[:i+1]) if(sum(b[:i+1])>=0): y+=sum(b[:i+1])+1 b[i]-=sum(b[:i+1])+1 else: if(sum(a[:i+1])>=0): x+=sum(a[:i+1])+1 a[i]-=1+sum(a[:i+1]) if(sum(b[:i+1])<=0): y+=1-sum(b[:i+1]) b[i]+=1-sum(b[:i+1]) print(min(x,y))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); int n; cin >> n; int b[n]; int a[n]; for (int i = 1; i <= n; i++) { cin >> a[i]; b[i] = a[i]; } long long int sum = 0; long long int count = 0, count1 = 0; for (int i = 1; i <= n; i++) { if (i != 1) { if (i % 2 == 0) { if ((sum + a[i]) <= 0) { count += abs(sum + a[i]) + 1; sum = 1; } else { sum += a[i]; } } else { if ((sum + a[i]) >= 0) { count += abs(sum + a[i]) + 1; sum = -1; } else { sum += a[i]; } } } else { if (a[i] >= 0) { sum = -1; count += (a[i] + 1); } else if (a[i] < 0) { sum += a[i]; } } } for (int i = 1; i <= n; i++) a[i] = b[i]; sum = 0; for (int i = 1; i <= n; i++) { if (i != 1) { if (i % 2 != 0) { if (sum + a[i] <= 0) { count1 += abs(sum + a[i]) + 1; sum = 1; } else { sum += a[i]; } } else { if (sum + a[i] >= 0) { count1 += abs(sum + a[i]) + 1; sum = -1; } else { sum += a[i]; } } } else { if (a[i] <= 0) { sum += 1; count1 += abs(a[i] + 1); } else if (a[i] > 0) { sum += a[i]; } } } cout << min(count, count1) << '\n'; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; int N[100000], E[100000]; cin >> n; for (int i = 0; i < n; i++) { cin >> N[i]; } for (int i = 0; i < n; i++) { E[i] = N[i]; } int sumA = 0, sumB = 0; int ansA = 0, ansB = 0; for (int i = 0; i < n; i++) { sumA = sumA + N[i]; if (i % 2 == 0 && sumA <= 0) { N[i] = N[i] - sumA + 1; ansA = ansA - sumA + 1; sumA = 1; } if (i % 2 == 1 && sumA >= 0) { N[i] = N[i] - sumA - 1; ansA = ansA + sumA + 1; sumA = -1; } } for (int i = 0; i < n; i++) { sumB = sumB + N[i]; if (i % 2 == 0 && sumB >= 0) { E[i] = E[i] - sumB - 1; ansB = ansB + sumB + 1; sumB = -1; } if (i % 2 == 1 && sumB <= 0) { E[i] = E[i] - sumB + 1; ansB = ansB - sumB + 1; sumB = 1; } } int ans; ans = min(ansA, ansB); cout << ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; int a[100000]; for (long long i = 0; i < n; i++) cin >> a[i]; int ans = 1 << 31 - 1; int sum[100001] = {}; for (long long p = 0; p < 2; p++) { int cnt = 0; for (long long i = 0; i < n; i++) { int border = 1 + (p + i) % 2 * -2; sum[i + 1] = sum[i] + a[i]; if (border == 1 && sum[i + 1] >= border) continue; if (border == -1 && sum[i + 1] <= border) continue; cnt += abs(border - sum[i + 1]); sum[i + 1] = border; } ans = min(ans, cnt); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# coding: utf-8 # Your code here! n = int(input()) a = list(map(int,input().split())) def operate(ls,x): sm = 0 ans = 0 ans += abs(ls[0]-x) k = x for i in range(1,len(ls)): sm += k if sm > 0: if abs(ls[i]) <= sm or sm < ls[i]: ans += abs(ls[i]+sm+1) k = -sm-1 else: k = ls[i] if sm < 0: if abs(ls[i]) <= abs(sm) or sm > ls[i]: ans += abs(-sm+1-ls[i]) k = -sm+1 else: k = ls[i] return ans anstot = [] if a[0] > 0: inv = -1 if a[0] < 0: inv = 1 if a[0] != 0: anstot.append(operate(a,a[0])) anstot.append(operate(a,inv)) if a[0] == 0: for i in range(n): if a[i] == 0: a[i] = -1**(i%2) if a[i] != 0: r = i break anstot.append(operate(r+a,a[0])) for i in range(r): a[i] = -1**((1+i)%2) anstot.append(operate(r+a,a[0])) print(min(anstot))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- # 整数の入力 n=int(input()) a=input().split() counter=0 # 出力 for i in range(1,n): S=0 for j in range(0,i): S=S+int(a[j]) if S<0 and S+int(a[i])<=0: counter=counter-S-int(a[i])+1 a[i]=-S+1 elif S>0 and S+int(a[i])>=0: counter=counter+S+int(a[i])+1 a[i]=-S-1 print(counter)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; scanf("%d", &n); vector<long long> a(n, 0); for (int i = 0; i < n; i++) { cin >> a.at(i); } bool target_sign = false; if (a.at(0) > 0) { target_sign = true; } else { target_sign = false; } long long ans = 0; long long sum = a.at(0); for (int i = 1; i < n; i++) { sum += a.at(i); if (target_sign) { if (sum >= 0) { while (sum >= 0) { sum--; ans++; } } target_sign = false; } else { if (sum <= 0) { while (sum <= 0) { sum++; ans++; } } target_sign = true; } } printf("%lld", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { long long int n, a, i, S[2] = {}, C[2] = {}; scanf("%lld", &n); for (i = 0; i < n; i++) { scanf("%lld", &a); S[0] += a; S[1] += a; if (i == 0) ; else { if (i % 2 == 1) { if (S[0] <= 0) { C[0] += llabs(S[0]) + 1; S[0] = 1; } if (S[1] >= 0) { C[1] += llabs(S[1]) + 1; S[1] = -1; } } else { if (S[0] >= 0) { C[0] += llabs(S[0]) + 1; S[0] = -1; } if (S[1] <= 0) { C[1] += llabs(S[1]) + 1; S[1] = 1; } } } } printf("%lld\n", C[0] < C[1] ? C[0] : C[1]); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def decision(i): sum_for_i = sum(A[:i+1]) # 0~i までの sum sum_before_i = sum(A[:i]) # 0~i-1までの sum if sum_for_i == 0: if sum_before_i <0: return 1 if sum_before_i >0: return 2 if sum_before_i > 0 and sum_for_i >0: return 3 if sum_before_i < 0 and sum_for_i <0: return 4 return 0 n = int(input()) A = [int(x) for x in input().split()] count = 0 for i in range(1, n): result = decision(i) #print(i) #print(i, A[i], result) if result == 0: count += 0 elif result == 1 or result == 4: #print('加算するケース') while decision(i) != 0: A[i] += 1 count += 1 elif result == 2 or result == 3: #print('減算するケース') while decision(i) != 0: A[i] -= 1 count += 1 #print(A) print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool sortbysec(const pair<long long, long long> &a, const pair<long long, long long> &b) { return (a.second < b.second); } void func(void) { freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); } int main() { long long n; cin >> n; long long a[n]; for (long long i = 0; i < n; i = i + 1) { cin >> a[i]; } long long count1 = 0; long long count2 = 0; long long sum1 = 0; if (a[0] == 0) { sum1 = 1; count1++; for (long long i = 1; i < n; i = i + 1) { long long d = 0; long long dif = 0; if (sum1 > 0) { if (a[i] + sum1 >= 0) { d = -1; long long s = d - sum1; dif = abs(a[i] - s); count1 = count1 + dif; sum1 = d; } else { sum1 = sum1 + a[i]; } } else { if (a[i] + sum1 <= 0) { d = 1; long long s = d - sum1; dif = abs(a[i] - s); count1 = count1 + dif; sum1 = d; } else { sum1 = sum1 + a[i]; } } } sum1 = -1; count2++; for (long long i = 1; i < n; i = i + 1) { long long d = 0; long long dif = 0; if (sum1 > 0) { if (a[i] + sum1 >= 0) { d = -1; long long s = d - sum1; dif = abs(a[i] - s); count2 = count2 + dif; sum1 = d; } else { sum1 = sum1 + a[i]; } } else { if (a[i] + sum1 <= 0) { d = 1; long long s = d - sum1; dif = abs(a[i] - s); count2 = count2 + dif; sum1 = d; } else { sum1 = sum1 + a[i]; } } } count1 = min(count1, count2); } else { sum1 = a[0]; for (long long i = 1; i < n; i = i + 1) { long long d = 0; long long dif = 0; if (sum1 > 0) { if (a[i] + sum1 >= 0) { d = -1; long long s = d - sum1; dif = abs(a[i] - s); count1 = count1 + dif; sum1 = d; } else { sum1 = sum1 + a[i]; } } else { if (a[i] + sum1 <= 0) { d = 1; long long s = d - sum1; dif = abs(a[i] - s); count1 = count1 + dif; sum1 = d; } else { sum1 = sum1 + a[i]; } } } } cout << count1 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
object Main { def main(args: Array[String]): Unit = { import scala.io.StdIn.readLine val _ = readLine val datA = readLine.split(" ").map(_.toLong).dropWhile(_ == 0) def judgement(acc: (Long, Long), cur: (Long, Long)): (Long, Long) = { val sum = acc._1 val count = acc._2 val a = cur._1 if (sum > 0) { if (sum + a >= 0) (-1, count + math.abs(sum + a) + 1) else (sum + a, count) } else if (sum < 0) { if (sum + a <= 0) (1, count + math.abs(sum + a) + 1) else (sum + a, count) } else { (a, count) } } val posA = datA.map(a => (a, 0L)).foldLeft((0L, 0L)){ judgement(_, _) } val negA = datA.tail.map(a => (a, 0L)).foldLeft( if(datA.head > 0) -1L else 1L, math.abs(datA.head) ){ judgement(_, _) } val ans = math.min(posA._2, negA._2) println(ans) } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int count = 0; int sum = 0; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a.at(i); int Ah = 0; int Bh = 0; int sumA = 0; int sumB = 0; if (a.at(0) == 0) { if (a.at(1) > 0) a.at(0) = -1; else a.at(0) = 1; count++; } for (int i = 0; i < n - 1; i++) { sumA += a.at(i); Ah = 0; Bh = 0; for (;;) { sumB = sumA + a.at(i + 1); if (sumA > 0) Ah = 1; else Ah = -1; if (sumB > 0) Bh = 1; else if (sumB < 0) Bh = -1; else Bh = 0; if ((Ah == 1 && Bh == -1) || (Ah == -1 && Bh == 1)) break; else if (Ah == 1 && Bh != -1) a.at(i + 1) -= 1; else if (Ah == -1 && Bh != 1) a.at(i + 1) += 1; count++; } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); long long sum1 = 0; long long sum2 = 0; for (int i = 0; i < n; i++) { cin >> a[i]; } int ans1 = 0; int ans2 = 0; for (int i = 0; i < n; i++) { sum1 += a[i]; if (i % 2 == 0 && sum1 <= 0) { ans1 += (1 - sum1); sum1 += (1 - sum1); if (sum1 == 0) { sum1++; ans1++; } } else if (i % 2 == 1 && sum1 >= 0) { ans1 += (sum1 + 1); sum1 -= (1 + sum1); if (sum1 == 0) { sum1--; ans1++; } } } for (int i = 0; i < n; i++) { sum2 += a[i]; if (i % 2 == 0 && sum2 >= 0) { ans2 += (sum2 + 1); sum2 -= (1 + sum2); if (sum2 == 0) { sum2--; ans2++; } } else if (i % 2 == 1 && sum2 <= 0) { ans2 += (1 - sum2); sum2 += (1 - sum2); if (sum2 == 0) { sum2++; ans2++; } } } if (sum2 == 0) ans2++; if (ans1 >= ans2) cout << ans2 << endl; else cout << ans1 << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace AtCoder { class Code3 { static void Main(string[] args) { string s1 = Console.ReadLine(); string s2 = Console.ReadLine(); Console.WriteLine(funcMain(s1,s2)); } static private string funcMain(string arg1, string arg2) { long ret = 0; long sum = 0; foreach (string buf in arg2.Split()) { if (sum == 0) sum = long.Parse(buf); else { if (sum > 0) { sum += long.Parse(buf); if (sum >= 0) { ret += sum + 1; sum = -1; } } else { sum += long.Parse(buf); if (sum <= 0) { ret += (sum * -1) + 1; // 絶対値の関数探すのがめんどくさかった sum = 1; } } } } return ret.ToString(); } static private void test() { string arg1, arg2; arg1 = "4"; arg2 = "1 -3 1 0"; Console.WriteLine("4" == funcMain(arg1, arg2)); arg1 = "5"; arg2 = "3 -6 4 -5 7"; Console.WriteLine("0" == funcMain(arg1, arg2)); arg1 = "6"; arg2 = "-1 4 3 2 -5 4"; Console.WriteLine("8" == funcMain(arg1, arg2)); Console.ReadKey(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; int main() { int n; cin>>n; long int arr[n]; for(int i=0;i<n;i++) cin>>arr[i]; long int sum=arr[0]; long int ans=0; if(sum==0) { if(arr[i]>=0) { ans++; sum=-1; } else { ans++; sum=1; } } for(int i=1;i<n;i++) { if(sum<0) { sum=sum+arr[i]; if(sum>0) continue; else { ans+=abs(sum)+1; sum=1; } } else { sum+=arr[i]; if(sum<0) continue; else { ans+=sum+1; sum=-1; } } } cout<<ans; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main{ public static void main(String[] args){ Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int[] a = new int[n]; for(int i=0; i<n; i++){ a[i] = scan.nextInt(); } int count = 0; int sum = 0; for(int i=0; i<n-1; i++){ sum = sum+a[i]; if(sum>0){ if(sum+a[i+1]<0){continue;} int p = -1-a[i+1]-sum; count = count + Math.abs(p); a[i+1] = a[i+1] + p; } else if(sum<0){ if(sum+a[i+1]>0){continue;} int b = 1-a[i+1]-sum; count = count + Math.abs(b); a[i+1] = a[i+1] + b; } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long mod = 1000000007; int main() { int n; cin >> n; long long cnt = 0; long long sum = 0; for (int i = 0; i < n; ++i) { long long t; cin >> t; if (i == 0) { sum += t; } else { long long tsum = sum + t; long long sign = (sum > 0) ? 1 : -1; if (tsum * sum > 0) { cnt += abs(tsum) + 1; sum = -1 * sign; } else { sum = tsum; if (sum == 0) { sum += -1 * sign; cnt += 1; } } } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int zerocount(vector<int>& a, int i, int n) { cout << "strart" << endl; if (a.at(i) != 0) { return 0; } if (i == n - 1) { a.at(i) = 1; return 1; } int count = 0; count += zerocount(a, i + 1, n); if (a.at(i + 1) > 0) { a.at(i) = -1; } else { a.at(i) = 1; } count++; return count; } int main() { int n; cin >> n; vector<int> a(n); for (auto& x : a) { cin >> x; } bool hugou; int sum = 0; int count = 0; if (a.at(0) < 0) { hugou = false; sum += a.at(0); } if (a.at(0) > 0) { hugou = true; sum += a.at(0); } if (a.at(0) == 0) { count += zerocount(a, 0, n); } for (int i = 0; i < n - 1; i++) { int i_sum; i_sum = sum + a.at(i + 1); if (i_sum >= 0) { if (hugou) { sum = -1; count += (i_sum + 1); hugou = false; } else { hugou = true; sum = i_sum; } } if (i_sum <= 0) { if (!hugou) { sum = 1; count += (-1) * (i_sum - 1); hugou = true; } else { hugou = false; sum = i_sum; } } } if (sum == 0) count++; cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <vector> #include <string> #include <cstring> #include <math.h> #include <limits.h> #include <map> #include <algorithm> #include <functional> using namespace std; int main() { int n; vector<long long> S; vector<long long> A; bool is_plus; int ans; int ans1 = 0; int ans2 = 0; long long sum = 0; cin >> n; for ( int i = 0; i < n; i++ ) { long long a; cin >> a; A.push_back(a); } for ( int i = 0; i < n; i++ ) { if ( !i ) { if ( A[i] == 0 ) { } else if ( A[i] < 0 ) {#include <iostream> #include <vector> #include <string> #include <cstring> #include <math.h> #include <limits.h> #include <map> #include <algorithm> #include <functional> using namespace std; int main() { int n; vector<long long> S; vector<long long> A; int j; bool is_plus; long long ans = 0; long long sum = 0; cin >> n; S.push_back(0); for ( int i = 0; i < n; i++ ) { long long a; cin >> a; A.push_back(a); } for ( j = 0; j < n; j++ ) { if ( abs(A[j]) ) { break; } } if ( j == n ) { cout << A.size()*2-1 << endl; return 0; } if ( j ) { ans += ( j+1 )*2 - 1; sum = ( A[j] > 0 ) ? -1: 1; } else { sum = 0; ans = 0; } for ( int i = j; i < n; i++ ) { if ( !i ) { sum = A[i]; continue; } bool is_plus = sum > 0; sum += A[i]; if ( sum == 0 ) { ans += 1; sum = is_plus ? -1 : 1; } else if ( is_plus == (sum > 0) ) { ans += abs(sum)+1; sum = is_plus ? -1 : 1; } } cout << ans << endl; return 0; } ans1 += abs(A[i]) + 1; } } else { if ( i%2 && A[i] > 0 ) } } for ( int i = 0; i < n; i++ ) { } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; const int MOD = 1000000007; const int mod = 1000000007; const int INF = 1000000000; const long long LINF = 1e18; const int MAX = 510000; int code(int n) { if (n < 0) return 1; else if (n > 0) return 0; else return 2; } int main() { int n; long long int sum = 0; long long int ans = 0; long long int ans2 = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } sum = a.at(0); if (sum != 0) { for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << ans << endl; return 0; } else if (sum == 0) { sum = -1; ans = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } sum = 1; ans2 = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans2++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans2 += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } } cout << min(ans, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; static uint64_t calc_count(vector<long long> &vec, int64_t sign) { unsigned long long count = 0; long long total = 0; for (uint64_t i = 1; i < vec.size(); i++) { total += vec[i]; if ((total == 0) || ((sign * total) < 0)) { count += abs(sign - total); total = sign; } sign *= -1; } return count; } int32_t main() { uint64_t N; cin >> N; vector<long long> vec; for (uint64_t i = 0; i < N; i++) { long long val; cin >> val; vec.push_back(val); } cout << min(calc_count(vec, 1), calc_count(vec, -1)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; int a[N]; for (int i = 0; i < N; i++) cin >> a[i]; int cnt = 0; int sum = a[0]; for (int i = 1; i < N; i++) { int next = a[i] + sum; if (0 < sum) { while (0 <= next) { next--; cnt++; } } else { while (next <= 0) { next++; cnt++; } } sum = next; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); long long a[n]; int i; for (i = 0; i < n; i++) scanf("%lld", &a[i]); long long sum[n]; int j; sum[0] = a[0]; for (i = 0; i < n - 1; i++) { sum[i + 1] = sum[i] + a[i + 1]; } long long ans = 0; for (i = 1; i < n; i++) { if (sum[i] >= 0 && sum[i - 1] > 0) { ans += (sum[i] + 1); a[i] = -1 - sum[i - 1]; for (j = i + 1; j < n; j++) sum[j] -= (sum[i] + 1); sum[i] = -1; } else if (sum[i] <= 0 && sum[i - 1] < 0) { ans += (-sum[i] + 1); a[i] = (-sum[i - 1] + 1); for (j = i + 1; j < n; j++) sum[j] += (-sum[i] + 1); sum[i] = 1; } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include "bits/stdc++.h" #define readInt(x) scanf_s("%d", &x) #define readStr(x) scanf("%s", x) #define rep(i, n) for(int i=0; i<(n); ++i) #define chmax(x, y) (x > (y) ? x : x = (y)) #define chmin(x, y) (x < (y) ? x : x = (y)) #define write(x) cout << (x) << endl using namespace std; typedef long long ll; typedef unsigned long long ull; const int INF = INT32_MAX / 2; const int MAX = 1e5 + 10; int n; int a[MAX]; int main() { readInt(n); int sump = 0, sumn = 0; ll cntp = 0, cntn = 0; rep(i, n) { cin >> a[i]; sump += a[i]; sumn += a[i]; if (i % 2) { int r = max(sump + 1, 0); sump -= r; cntp += r; r = max(1 - sumn, 0); sumn += r; cntn += r; } else { int r = max(1 - sump, 0); sump += r; cntp += r; r = max(sumn + 1, 0); sumn -= r; cntn += r; } } write(min(cntp, cntn)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[110000]; for (int i = 0; i < n; i++) cin >> a[i]; long long b[110000]; long long sum = 0; if (a[0] == 0) { if (a[1] >= 0) { sum++; a[0] = -1; } else { sum++; a[0] = 1; } } b[0] = a[0]; for (int i = 1; i < n; i++) { b[i] = b[i - 1] + a[i]; if (b[i - 1] > 0) { if (b[i] < 0) continue; else { sum += b[i] + 1; b[i] = -1; } } else { if (b[i] > 0) continue; else { sum += -b[i] + 1; b[i] = 1; } } } cout << sum << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; vector<long long> A; long long ans1 = 0; long long ans2 = 0; long long sum = 0; bool is_plus; cin >> n; for (int i = 0; i < n; i++) { long long a; cin >> a; A.push_back(a); } is_plus = true; for (int i = 0; i < n; i++) { if (i) { is_plus = sum > 0; } sum += A[i]; if (sum == 0) { ans1++; sum = is_plus ? -1 : 1; } else if (is_plus == (sum > 0)) { ans1 += abs(sum) + 1; sum = is_plus ? -1 : 1; } } is_plus = false; for (int i = 0; i < n; i++) { if (i) { is_plus = sum > 0; } sum += A[i]; if (sum == 0) { ans2++; sum = is_plus ? -1 : 1; } else if (is_plus == (sum > 0)) { ans2 += abs(sum) + 1; sum = is_plus ? -1 : 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; int main() { int n; cin >> n; vector<long long> a(n + 1); vector<long long> tot(n + 1, 0); for (int i = 1; i <= (int)(n); i++) { cin >> a.at(i); } long long count = 0; for (int i = 1; i <= (int)(n); i++) { if (i == 1) { tot.at(1) = a.at(1); continue; } if (tot.at(i - 1) > 0) { long long sum = tot.at(i - 1) + a.at(i); if (sum >= 0) { tot.at(i) = -1; count += sum + 1; } else tot.at(i) = sum; } if (tot.at(i - 1) < 0) { long long big = tot.at(i - 1) + a.at(i); if (big <= 0) { tot.at(i) = 1; count = count + (1 - big); } else tot.at(i) = big; } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sign(long long N) { if (N < 0) return -1; if (N > 0) return 1; if (N = 0) return 0; } int main() { long long n; cin >> n; long long N = n; vector<long long> a(n); for (int(i) = (0); (i) < (int)(n); (i)++) cin >> a.at(i); vector<long long> S(n); S.at(0) = a.at(0); vector<long long> S2(n); S2.at(0) = a.at(0); for (int i = 1; i < N; i++) S.at(i) = a.at(i) + S.at(i - 1); for (int i = 0; i < N; i++) S2.at(i) = S.at(i); long long res1, res2; if (S.at(0) == 0) { res1 = 1; res2 = 1; for (int(i) = (0); (i) < (int)(n); (i)++) S.at(i)++; for (int(i) = (0); (i) < (int)(n); (i)++) S2.at(i)--; } else { res1 = 0; res2 = abs(S2.at(0)) + 1; if (S2.at(0) > 0) for (int(i) = (0); (i) < (int)(n); (i)++) S2.at(i) -= abs(S2.at(0)) + 1; if (S2.at(0) < 0) for (int(i) = (0); (i) < (int)(n); (i)++) S2.at(i) += abs(S2.at(0)) + 1; } int tempo; for (int i = 1; i < N; i++) { if (S.at(i) * S.at(0) * pow(-1, i) <= 0) { tempo = abs(S.at(i)) + 1; res1 += tempo; for (int j = i; j < N; j++) S.at(j) += tempo * sign(S.at(0)) * pow(-1, i); } if (S2.at(i) * S2.at(0) * pow(-1, i) <= 0) { tempo = abs(S2.at(i)) + 1; res2 += tempo; for (int j = i; j < N; j++) S2.at(j) += tempo * sign(S2.at(0)) * pow(-1, i); } } if (res1 > res2) { cout << res2; } else { cout << res1; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; const int MOD = 1000000007; const int mod = 1000000007; const int INF = 1000000000; const long long LINF = 1e18; const int MAX = 510000; bool code(long long int n) { if (n < 0) return 1; else if (n > 0) return 0; } int main() { int n; long long int sum = 0; long long int ans = 0; long long int ans2 = 0; cin >> n; vector<long long int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } if (a.at(0) != 0) { sum = a.at(0); for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } cout << ans << endl; return 0; } else if (a.at(0) == 0) { sum = -1; ans = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } sum = 1; ans2 = 1; for (int i = 1; i < n; i++) { if (sum + a.at(i) == 0) { ans2++; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else if (code(sum + a.at(i)) == code(sum)) { ans2 += abs(sum + a.at(i)) + 1; if (sum > 0) sum = -1; else if (sum < 0) sum = 1; } else { sum = a.at(i) + sum; } } if (ans > ans2) cout << ans2 << endl; else { cout << ans << endl; } } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> data(N); for (int i = 0; i < N; i++) cin >> data[i]; int count = 0; int ans = data[0]; if (data[0] > 0) { for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 == 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } } else { for (int i = 1; i < N; i++) { ans += data[i]; if (i % 2 != 0) { while (ans <= 0) { ans++; count++; } } else { while (ans >= 0) { ans--; count++; } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } int min_ans = INT_MAX; for (int mod = 0; mod < 2; ++mod) { int ans = 0; int sum = 0; for (int i = 0; i < n; ++i) { int sign = ((i % 2) == mod) * -2 + 1; sum += a[i]; if (sign * sum <= 0) { int diff = sign - sum; sum = sign; ans += abs(diff); } } min_ans = min(min_ans, ans); } cout << min_ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] num,answer = a[0],0 if num==0: num = -a[1]//abs(a[1]) answer = 1 for i in range(1,n): if num*(num+a[i]) >= 0: x = (-num)//abs(num) answer += abs((x-num)-a[i]) num = x else: num += a[i] print(answer)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int calc(vector<int>& t, bool topPlus) { int parityA, parityB; if (topPlus) { parityA = 0; parityB = 1; } else { parityA = 1; parityB = 0; } int sum = 0; int cnt = 0; for (int i = 0; i < t.size(); ++i) { sum += t.at(i); if (i % 2 == parityA && sum <= 0) { cnt += (1 - sum); sum = 1; } else if (i % 2 == parityB && sum >= 0) { cnt += (1 + sum); sum = -1; } } return cnt; } int main() { int N; cin >> N; vector<int> t(N); for (long i = 0; i < N; ++i) { cin >> t.at(i); } int cnt1 = calc(t, true); int cnt2 = calc(t, false); int cnt = min(cnt1, cnt2); cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int keta(int num) { int ans = 0; int rem; for (int i = 4; i >= 0; i--) { rem = pow(10, i); ans += (num / rem); num = num % rem; } return ans; } int main() { int n; cin >> n; vector<int64_t> ar(n); for (int i = 0; i < n; i++) { cin >> ar[i]; } int ans1, ans2 = 0; int cum = 0; for (int i = 0; i < n; i++) { int next = cum + ar[i]; if (i % 2 == 0) { if (next <= 0) { ans1 += abs(next - 1); cum = 1; } else { cum = next; } } else { if (next >= 0) { ans1 += abs(next + 1); cum = -1; } else { cum = next; } } } cum = 0; for (int i = 0; i < n; i++) { int next = cum + ar[i]; if (i % 2 == 0) { if (next >= 0) { ans2 += abs(next + 1); cum = -1; } else { cum = next; } } else { if (next <= 0) { ans2 += abs(next - 1); cum = 1; } else { cum = next; } } } cout << min(ans1, ans2) << endl; cout << ans1 << endl; cout << ans2 << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(){ int n; cin >> n; int d[n]; for(int i=0;i<n;i++) { cin >> d[i]; } int count=0; int sum=d[0]; int f =0; if(d[0]>0){ f=-1; } if(d[0]<0){ f=1; } for(int i=1;i<n;i++){ sum+=d[i]; if(sum==0){ if(f==1){ count++; f=-1; sum=1; continue; } if(f==-1){ count++; f=1; sum=-1; continue; } } if(sum>0){ if(f==1){ f=-1; continue; } if(f==-1){ count+=sum+1; sum=-1; f=1; continue; } } if(sum<0){ if(f==-1){ f=1; continue; } if(f==1){ count+=1-sum; sum=1; f=-1; continue; } } } int ccount=0; int ssum=; int ff =0; if(d[0]>0){ ff=1; ccount=-1-d[0]; ssum=-1; } if(d[0]<0){ ff=-1; ccount=1-d[0]; ssum=1; } for(int i=1;i<n;i++){ sum+=d[i]; if(ssum==0){ if(ff==1){ ccount++; ff=-1; ssum=1; continue; } if(ff==-1){ ccount++; ff=1; ssum=-1; continue; } } if(ssum>0){ if(f==1){ ff=-1; continue; } if(ff==-1){ ccount+=sum+1; ssum=-1; ff=1; continue; } } if(ssum<0){ if(ff==-1){ ff=1; continue; } if(ff==1){ ccount+=1-sum; ssum=1; ff=-1; continue; } } } cout << min(count,ccount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int INF = 1e9 + 7; int main() { int n; cin >> n; vector<long long> a(n + 1), sum(n + 1, 0); for (int i = 1; i <= n; i++) { cin >> a[i]; sum[i] = sum[i - 1] + a[i]; } long long ans = 0; for (int i = 1; i < n; i++) { if (sum[i] * sum[i + 1] >= 0) { ans += abs(sum[i + 1]) + 1; if (sum[i] > 0) sum[i + 1] = -1; else sum[i + 1] = 1; } if (i < n - 1) sum[i + 2] = sum[i + 1] + a[i + 2]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) cin >> a[i]; long long ans = 0; if (a[0] == 0) { if (a[1] >= a[0]) a[0] = -1; else a[0] = 1; ans++; } for (int i = 1; i <= n - 1; i++) { a[i] += a[i - 1]; if (a[i] == 0) { if (a[i - 1] < 0) a[i] = 1; if (a[i - 1] > 0) a[i] = -1; ans++; } else if (a[i] > 0 && a[i - 1] > 0) { ans += a[i] + 1; a[i] = -1; } else if (a[i] < 0 && a[i - 1] < 0) { ans += 1 - a[i]; a[i] = 1; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; class Main { public static void main(String[] args) { new Main().compute(); } void compute() { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int sum = sc.nextInt(); int ans = 0; for (int i = 0; i < N - 1; i++) { int cur = sc.nextInt(); if (Math.signum(sum) == Math.signum(sum + cur) || Math.signum(sum + cur) == 0) { int tmp = -(int) Math.signum(sum); ans += Math.abs(tmp - sum - cur); sum = tmp; } else { sum += cur; } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, a[100000]; cin >> N; for (int i = 0; i < N; ++i) cin >> a[i]; long long counter = 0; long long sum = 0; if (a[0] >= 0) { for (int i = 0; i < N; ++i) { sum += a[i]; if (i % 2 == 0) { while (sum <= 0) { ++sum; ++counter; } } else { while (sum >= 0) { --sum; ++counter; } } } } else { for (int i = 0; i < N; ++i) { sum += a[i]; if (i % 2 == 0) { while (sum >= 0) { --sum; ++counter; } } else { while (sum <= 0) { ++sum; ++counter; } } } } cout << counter << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int posi(long long x) { if (x > 0) return 1; if (x < 0) return -1; return 0; } int main() { int N; cin >> N; vector<long long> a(N); for (auto &i : a) cin >> i; long long ans = 0, tmp = 0; long long sum = a[0]; for (int i = 1; i < N; i++) { if (posi(sum + a[i]) * posi(sum) != -1 || sum + a[i] == 0) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = tmp; tmp = abs(a[0]) + 1; sum = (a[0] > 0) ? -1 : 1; for (int i = 1; i < N; i++) { if (posi(sum + a[i]) * posi(sum) != -1 || sum + a[i] == 0) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) a_1 = a ans = 0 ans_2 = 0 o = 0 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "+" elif a[0] < 0: f = "-" else: o += a[i-1] if f == "+": if a[i] + o > 0: c = -1 - o ans += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + o < 0: c = 1 - o ans += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + o == 0: a[i] += 1 ans += 1 f = "+" o = 0 a = a_1 for i in range(n): if i == 0: if a[i] == 0: f = "+" a[i] = 1 elif a[0] > 0: f = "-" c = -1 - a[0] ans_2 += abs(c - a[0]) a[i] = c elif a[0] < 0: c = 1 - a[0] ans_2 += abs(c - a[0]) a[i] = c f = "+" else: o += a[i-1] if f == "+": if a[i] + o > 0: c = -1 - o ans_2 += abs(c - a[i]) a[i] = c f = "-" else: if a[i] + o == 0: a[i] -= 1 ans += 1 f = "-" elif f == "-": if a[i] + o < 0: c = 1 - o ans_2 += abs(c - a[i]) a[i] = c f = "+" else: if a[i] + o == 0: a[i] += 1 ans += 1 f = "+" #print(a) print(min(ans,ans_2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) l=list(map(int,input().split())) s=[l[0]] for i in range(1,n): s.append(s[i-1]+l[i]) x,y=0,0 for i in range(n): if s[i]*((-1)**i)<0: x+=abs(s[i]-(-1)**i) s[i]=(-1)**i if i+1<=n-1: s[i+1]=s[i]+l[i+1] for i in range(n): if s[i]*((-1)**(i+1))<0: y+=abs(s[i]-(-1)**i) s[i]=(-1)**(i+1) if i+1<=n-1: s[i+1]=s[i]+l[i+1] print(min(x,y))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int solve(vector<int> vec) { long long int n = vec.size(); long long int sum = vec[0]; int ans = 0; for (long long int i = 1; i < n; i++) { if (sum > 0) { if (sum + vec[i] >= 0) { ans += 1 + (sum + vec[i]); sum = -1; } else { sum += vec[i]; } } else if (sum < 0) { if (sum + vec[i] <= 0) { ans += 1 - (sum + vec[i]); sum = 1; } else { sum += vec[i]; } } } return ans; } int main() { int n, Ans; cin >> n; vector<int> as; for (int i = 0; i < n; i++) { int t; cin >> t; as.push_back(t); } vector<int> as1, as2; copy(as.begin(), as.end(), back_inserter(as1)); copy(as.begin(), as.end(), back_inserter(as2)); as1[0] = 1; as2[0] = -1; Ans = min(solve(as), min(solve(as1) + abs(1 - as[0]), solve(as2) + abs(-1 - as[0]))); cout << Ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
#!usr/bin/env python3 from collections import defaultdict from collections import deque from heapq import heappush, heappop import sys import math import bisect import random import itertools sys.setrecursionlimit(10**5) stdin = sys.stdin bisect_left = bisect.bisect_left bisect_right = bisect.bisect_right def LI(): return list(map(int, stdin.readline().split())) def LF(): return list(map(float, stdin.readline().split())) def LI_(): return list(map(lambda x: int(x)-1, stdin.readline().split())) def II(): return int(stdin.readline()) def IF(): return float(stdin.readline()) def LS(): return list(map(list, stdin.readline().split())) def S(): return list(stdin.readline().rstrip()) def IR(n): return [II() for _ in range(n)] def LIR(n): return [LI() for _ in range(n)] def FR(n): return [IF() for _ in range(n)] def LFR(n): return [LI() for _ in range(n)] def LIR_(n): return [LI_() for _ in range(n)] def SR(n): return [S() for _ in range(n)] def LSR(n): return [LS() for _ in range(n)] mod = 1000000007 inf = float('INF') #A def A(): a = input().split() a = list(map(lambda x: x.capitalize(), a)) a,b,c = a print(a[0]+b[0]+c[0]) return #B def B(): a = II() b = II() if a > b: print("GREATER") if a < b: print("LESS") if a == b: print("EQUAL") return #C def C(): II() a = LI() def f(suma, b): for i in a[1:]: if suma * (suma + i) < 0: suma += i continue b += abs(suma + i) + 1 suma = -1 * (suma < 0) or 1 return b if a[0] == 0: ans = min(f(1, 1), f(-1, 1)) else: ans = min(f(a[0], 0), f(-a[0], 2 * abs(a[0]))) print(ans) return #D def D(): s = S() for i in range(len(s) - 1): if s[i] == s[i+1]: print(i + 1, i + 2) return for i in range(len(s) - 2): if s[i] == s[i + 2]: print(i + 1, i + 3) return print(-1, -1) return #Solve if __name__ == '__main__': C()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] cur = 0 ans1, ans2 = 0,0 for i, x in enumerate(a): cur += x if i%2 == 0: if cur >= 1: continue else: ans1 += abs(1-cur) cur = 1 else: if cur <= -1: continue else: ans1 += abs(-1-cur) cur = -1 for i, x in enumerate(a): cur += x if i%2 != 0: if cur >= 1: continue else: ans2 += abs(1-cur) cur = 1 else: if cur <= -1: continue else: ans2 += abs(-1-cur) cur = -1 print(min(ans1, ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long> vec(N); vector<long> svec(N); cin >> vec[0]; svec[0] = vec[0]; for (int i = 1; i < N; ++i) { cin >> vec[i]; svec[i] = svec[i - 1] + vec[i]; } long ans = 0; long tmp = 0; bool tem = false; if (vec[0] < 0) tem = true; for (int i = 1; i < N; ++i) { int to = 0; if (tem) { if (svec[i] + tmp <= 0) { to = abs(svec[i] + tmp - 1); ans += to; tmp += to; vec[i] += to; } tem = false; } else { if (svec[i] + tmp >= 0) { to = abs(svec[i] + tmp + 1); ans += to; tmp -= to; vec[i] -= to; } tem = true; } } if (accumulate(vec.begin(), vec.end(), 0) == 0) { ans++; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline def I(): return int(input()) def MI(): return map(int, input().split()) def LI(): return list(map(int, input().split())) def main(): mod=10**9+7 N=I() a=LI() ans=0 pos=-1 S=a[0] if S==0: S=1 if S>0: pos=1 for i in range(N-1): S+=a[i+1] if S>0: Sp=1 elif S<0: Sp=-1 else: Sp=0 if Sp!=pos*(-1): target=-1*pos ans+=abs(target-S) S=target pos*=-1 if a[0]==0: S=-1 for i in range(N-1): S+=a[i+1] if S>0: Sp=1 elif S<0: Sp=-1 else: Sp=0 if Sp!=pos*(-1): target=-1*pos ans+=abs(target-S) S=target pos*=-1 print(ans) main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
step_sum::[Int] -> [Int] step_sum [] = [] step_sum (x:xs) = x:(map (x+) (step_sum xs) ) --今のカウント手数、前の値、食べるリスト check::Int -> Int -> [Int] -> Int check st _ [] = st check st pre xs = case ((pre > 0),((head xs) > 0)) of (True,True) -> let dec = (head xs)+1 in check (dec+st) (-1) (map (\x-> x-dec) (tail xs)) (True,False) -> check st (head xs) (tail xs) (False,True) -> check st (head xs) (tail xs) (False,False)-> let inc = 1-(head xs) in check (inc+st) 1 (map (\x-> x+inc) (tail xs)) solver::[Int]->Int solver xs = let steps = step_sum xs in check 0 (head steps) (tail steps) main::IO() main=do _<-getLine datc<-getLine print (solver (map read (words datc)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.AbstractMap; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Set; import java.util.Stack; import static java.util.Comparator.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; MyInput in = new MyInput(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(); solver.solve(1, in, out); out.close(); } // ====================================================================== static class Solver { long[] A = null; public void solve(int testNumber, MyInput in, PrintWriter out) { int N = in.nextInt(); A = new long[N]; long a; long ans = 0; boolean mflag = false; for(int i=0; i < N; i++) { a = in.nextLong(); if(i == 0) { A[i] = a; if(a > 0) mflag = true; else mflag = false; continue; } A[i] = A[i-1] + a; if(mflag) { if(A[i] >= 0) { ans += Math.abs(A[i]) + 1; A[i] = -1; } mflag = false; } else { if(A[i] <= 0) { ans += Math.abs(A[i]) + 1; A[i] = 1; } mflag = true; } } out.println(ans); } } // ====================================================================== static class Pair<K, V> extends AbstractMap.SimpleEntry<K, V> { /** serialVersionUID. */ private static final long serialVersionUID = 6411527075103472113L; public Pair(final K key, final V value) { super(key, value); } public String getString() { return "[" + getKey() + "] [" + getValue() + "]"; } } static class MyInput { private final BufferedReader in; private static int pos; private static int readLen; private static final char[] buffer = new char[1024 * 8]; private static char[] str = new char[500 * 8 * 2]; private static boolean[] isDigit = new boolean[256]; private static boolean[] isSpace = new boolean[256]; private static boolean[] isLineSep = new boolean[256]; static { for (int i = 0; i < 10; i++) { isDigit['0' + i] = true; } isDigit['-'] = true; isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true; isLineSep['\r'] = isLineSep['\n'] = true; } public MyInput(InputStream is) { in = new BufferedReader(new InputStreamReader(is)); } public int read() { if (pos >= readLen) { pos = 0; try { readLen = in.read(buffer); } catch (IOException e) { throw new RuntimeException(); } if (readLen <= 0) { throw new MyInput.EndOfFileRuntimeException(); } } return buffer[pos++]; } public int nextInt() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; int ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public long nextLong() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; long ret = 0L; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public String nextString() { String ret = new String(nextDChar()).trim(); return ret; } public char[] nextDChar() { int len = 0; len = reads(len, isSpace); char[] ret = new char[len + 1]; for (int i=0; i < len; i++) ret[i] = str[i]; ret[len] = 0x00; return ret; } public char nextChar() { while (true) { final int c = read(); if (!isSpace[c]) { return (char) c; } } } int reads(int len, boolean[] accept) { try { while (true) { final int c = read(); if (accept[c]) { break; } if (str.length == len) { char[] rep = new char[str.length * 3 / 2]; System.arraycopy(str, 0, rep, 0, str.length); str = rep; } str[len++] = (char) c; } } catch (MyInput.EndOfFileRuntimeException e) { } return len; } static class EndOfFileRuntimeException extends RuntimeException { } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; namespace ABC059_C { class Program { static void Main(string[] args) { var n = int.Parse(Console.ReadLine()); var a = Array.ConvertAll(Console.ReadLine().Split(' '), int.Parse); var ans1 = 0; var ans2 = 0; var sum1 = 0; var sum2 = 0; for (var i=0;i<n;i++) { sum1 += a[i]; if(i%2 == 0) { if(sum1<=0) { ans1 += Math.Abs(sum1) + 1; sum1 = 1; } } else { if(sum1>=0) { ans1 += sum1 + 1; sum1 = -1; } } } for(var i=0;i<n;i++) { sum2 += a[i]; if (i % 2 == 0) { if (sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } } else { if (sum2 <= 0) { ans2 += Math.Abs(sum2) + 1; sum2 = 1; } } } var ans = Math.Min(ans1, ans2); Console.WriteLine(ans); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int getS(int val) { if (val < 0) return -1; if (val > 0) return 1; return 0; } int minNum(vector<int> &arr, int n, int sign) { int acu, sol = 0; for (int i = 0; i < n; i++) { acu += arr[i]; if (getS(acu) != sign) { sol += abs(sign - acu); acu = sign; } sign = sign * -1; } return sol; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int n; cin >> n; vector<int> arr(n); for (int i = 0; i < n; i++) cin >> arr[i]; int a1 = minNum(arr, n, -1); int a2 = minNum(arr, n, 1); cout << (a1 < a2 ? a1 : a2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct BIT { int N; vector<int64_t> bit; BIT(vector<int64_t> s) : N(s.size()), bit(N, 0) { for (int64_t i = (0); i < (N); ++i) add(i, s[i]); } void add(int a, int w) { for (int x = a; x < N; x |= x + 1) bit[x] += w; } int sum(int a) { int ret = 0; for (int x = a - 1; x >= 0; x = (x & (x + 1)) - 1) ret += bit[x]; return ret; } int parsum(int a, int b) { return sum(b) - sum(a); } }; int main() { cin.tie(0); ios::sync_with_stdio(false); int n; cin >> n; vector<int64_t> a(n); for (int64_t i = (0); i < (n); ++i) cin >> a[i]; int64_t cnt = 0; BIT b(a); if (b.sum(1) == 0) { b.add(0, b.sum(2) / abs(b.sum(2)) * -1); ++cnt; } for (int64_t i = (2); i < (n + 1); ++i) { int64_t bsumi = b.sum(i), bsumi1 = b.sum(i - 1); if (bsumi) { int signi = bsumi / abs(bsumi); if (signi == bsumi1 / abs(bsumi1)) { b.add(i - 1, -bsumi - signi); cnt += abs(bsumi) + 1; } } else { b.add(i - 1, bsumi1 / abs(bsumi1) * -1); ++cnt; } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) list1 = (input().split()) list2 = [int(i) for i in list1] cnt=0 for i in range(n): #最初だけ、ゼロの場合は次を見て判定 if i <= 0 and list2[0] == 0: cnt += 1 list2[0] = 1 if list2[1] <=0 else -1 #i項までの和がゼロ if i > 0 and sum(list2[0:i+1]) == 0: cnt += 1 #手前までの和が正なら1減算、負なら1加算 list2[i] -= np.sign(sum(list2[0:i])) #i項までの和が手前の和と符号が同じ elif i > 0 and np.sign(sum(list2[0:i+1])) == np.sign(sum(list2[0:i])): cnt += abs(sum(list2[0:i+1]))+1 list2[i] = list2[i] + ( abs(sum(list2[0:i+1])) + 1 ) * -np.sign(sum(list2[0:i+1])) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long chk(long a[], int N, bool t) { long total = 0; long ops = 0; for (int i = 0; i < N; i++) { total += a[i]; if (t == true && (total < 1)) { ops += (1 - total); total = 1; } else if (t == false && (total > -1)) { ops += (total + 1); total = -1; } t = !t; } return ops; } int main() { long N; cin >> N; long a[100001]; for (long i = 0; i < N; i++) { cin >> a[i]; } printf("%d\n", min(chk(a, N, true), chk(a, N, false))); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n, i, j, ans = 0, sum = 0, flag; cin >> n; vector<long long> a(n); for (i = 0; i < n; i++) { cin >> a[i]; } sum += a[0]; if (sum == 0) { ans++; for (i = 0; i < n; i++) { if (a[i] > 0) { if (i % 2 == 0) { sum = 1; } else { sum = -1; } break; } else if (a[i] < 0) { if (i % 2 != 0) { sum = 1; } else { sum = -1; } break; } } } for (i = 1; i < n; i++) { if (sum > 0) { flag = 1; } else { flag = 0; } if (flag == 1) { sum += a[i]; if (sum >= 0) { ans += (sum + 1); sum = -1; } } else { sum += a[i]; if (sum <= 0) { ans += (1 - sum); sum = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000] = {}; long long calc(long long *, long long); int get_sign(long long); int main() { long long n, ans; cin >> n; for (long long i = 0; i < n; i++) { cin >> a[i]; } ans = calc(a, n); cout << ans << endl; return 0; } long long calc(long long *a, long long n) { long long cnt = 0; int sign = 0; long long tmp; if (a[0] > 0) { sign = 1; } tmp = a[0]; for (long long i = 0; i < n - 1; i++) { tmp = tmp + a[i + 1]; if (sign == 1) { if (tmp >= 0) { cnt += tmp + 1; tmp = -1; } } else { if (tmp <= 0) { cnt += (-1 * tmp) + 1; tmp = 1; } } sign = get_sign(tmp); } return cnt; } int get_sign(long long tmp) { if (tmp < 0) return 0; else return 1; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Hamza Hasbi */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); C_Sequence solver = new C_Sequence(); solver.solve(1, in, out); out.close(); } static class C_Sequence { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); long[] a = new long[n + 1]; long[] pre = new long[n + 1]; Arrays.fill(a, 0); Arrays.fill(pre, 0); boolean f = true; int ans = 0; for (int i = 1; i <= n; i++) { a[i] = in.nextLong(); pre[i] = pre[i - 1] + a[i]; if (pre[i] == 0) { if (pre[i - 1] > 0) pre[i]--; else pre[i]++; ans++; continue; } if (pre[i - 1] > 0 && pre[i] > 0) { pre[i] -= a[i]; long curr = -1 * pre[i - 1] - 1; ans += Math.abs(a[i] - curr); pre[i] = pre[i - 1] + curr; } if (pre[i - 1] < 0 && pre[i] < 0) { pre[i] -= a[i]; long curr = pre[i - 1] + 1; ans += Math.abs(a[i] - curr); pre[i] = pre[i - 1] + curr; } } out.printLine(ans); } } static class InputReader { BufferedReader reader; StringTokenizer st; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); st = null; } public String next() { while (st == null || !st.hasMoreTokens()) { try { String line = reader.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void printLine(int i) { writer.println(i); } public void close() { writer.close(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) arr1=list(map(int,input().split())) arr2=arr1[:] ans1=0 ans2=0 if arr1[0]<=0: arr1[0]=1 ans1+=abs(arr1[0])+1 if arr2[0]>=0: arr2[0]=-1 ans2+=arr2[0]+1 sum1=arr1[0] for i in range(1,n): tmp=sum1+arr1[i] if i%2==1: if tmp>=0: ans1+=tmp+1 sum1=-1 else: sum1=tmp else: if tmp<=0: ans1+=abs(tmp)+1 sum1=1 else: sum1=tmp sum2=arr2[0] for i in range(1,n): tmp=sum2+arr2[i] if i%2==0: if tmp>=0: ans2+=tmp+1 sum2=-1 else: sum2=tmp else: if tmp<=0: ans2+=abs(tmp)+1 sum2=1 else: sum2=tmp print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i a = gets.chomp.split.map(&:to_i) sum1 = 0 sum2 = 0 ans = 0 for i in 0..n-2 sum1 += a[i] if sum1 == 0 if a[i+1] > 1 a[i] -= 1 sum1 -= 1 ans += 1 else a[i] += 1 sum1 += 1 ans += 1 end end sum2 = sum1 + a[i+1] if sum2 * sum1 >= 0 if sum1 < 0 if sum1 <= sum2 a[i+1] += 1 - sum2 ans += 1 - sum2 else a[i] += -sum1 + 1 ans += -sum1 + 1 sum1 = 1 end else if sum1 >= sum2 a[i+1] -= sum2 + 1 ans += sum2 + 1 else a[i] -= 1 + sum1 ans += 1 + sum1 sum1 = -1 end end end end puts a.join(" ") puts ans
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(i) for i in input().split()] # a_1 > 0 の場合を試す res, sum = 0, 0 if 0 < A[0]: sum = A[0] else: res, sum = -A[0] + 1, 1 for i in range(1, N): if 0 < sum: if -1 < sum + A[i]: # a_i を足して、符号が変わらない res += abs((sum + 1) - A[i]) sum = -1 else: # a_i を足して符号が変わる sum += A[i] else: if sum + A[i] < 1: res += abs((sum + 1) - A[i]) sum = 1 else: sum += A[i] ans = res # a_1 < 0 の場合を試す res, sum = 0, 0 if A[0] < 0: sum = A[0] else: res, sum = A[0] + 1, -1 for i in range(1, N): if 0 < sum: if -1 < sum + A[i]: # a_i を足して、符号が変わらない res += abs((sum + 1) - A[i]) sum = -1 else: # a_i を足して符号が変わる sum += A[i] else: if sum + A[i] < 1: res += abs((sum + 1) - A[i]) sum = 1 else: sum += A[i] ans = min(ans, res) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } int main(void) { int n; cin >> n; long long a[n + 1]; for (int i = 1; i <= n; ++i) { cin >> a[i]; } long long S1, S2; long long ans[2]; if (a[1] == 0) { S1 = 1; ans[0] = 1; for (int i = (2); i < (n + 1); ++i) { S2 = S1 + a[i]; if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) { S1 = S2; } else { ans[0] += llabs(S2) + 1; if (S1 < 0) S2 = 1; else S2 = -1; S1 = S2; } } S1 = -1; ans[1] = 1; for (int i = (2); i < (n + 1); ++i) { S2 = S1 + a[i]; if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) { S1 = S2; } else { ans[1] += llabs(S2) + 1; if (S1 < 0) S2 = 1; else S2 = -1; S1 = S2; } } cout << min(ans[0], ans[1]) << endl; } else { S1 = a[1]; ans[0] = 0; for (int i = (2); i < (n + 1); ++i) { S2 = S1 + a[i]; if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) { S1 = S2; } else { ans[0] += llabs(S2) + 1; if (S1 < 0) S2 = 1; else S2 = -1; S1 = S2; } } cout << ans[0] << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; int A[N]; for (int i = 0; i < N; i++) cin >> A[i]; bool loop = true; int delta = 0; while (loop) { int sum[N]; bool sign = (A[0] > 0); sum[0] = A[0]; loop = false; for (int i = 1; i < N; i++) { sum[i] = sum[i - 1] + A[i]; sign = !sign; if (sign && sum[i] <= 0) { delta += abs(1 - sum[i]); A[i] = A[i] + (1 - sum[i]); loop = true; break; } else if (!sign && sum[i] >= 0) { delta += abs(-1 - sum[i]); A[i] = A[i] - (1 + sum[i]); loop = true; break; } } } cout << delta << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.OutputStream; import java.io.IOException; import java.io.FileReader; import java.io.FileWriter; import java.util.Arrays; import java.util.Collections; import java.util.ArrayList; import java.util.List; import java.util.HashSet; import java.util.Comparator; import java.util.Set; import java.util.HashMap; import java.util.Map; public class Main { // 標準入力 static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); // 標準入力数値配列用 int static int[] inputval() throws Exception { String[] strarray = br.readLine().trim().split(" "); int[] intarray = new int[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /* 標準入力数値配列用 long */ static long[] inputLongArr() throws Exception { String[] strarray = br.readLine().trim().split(" "); long[] longarray = new long[strarray.length]; for (int i = 0; i < longarray.length; i++) { longarray[i] = Long.parseLong(strarray[i]); } return longarray; } // 標準入力数値リスト用 int static List<Integer> inputIntList() throws Exception { List<String> strList = Arrays.asList(br.readLine().trim().split(" ")); List<Integer> intList = new ArrayList<Integer>(); for (String elem : strList){ intList.add(Integer.parseInt(elem)); } return intList; } // 標準入力数値配列用 integer 降順ソート用 static Integer[] inputvalInteger() throws Exception { String[] strarray = br.readLine().trim().split(" "); Integer[] intarray = new Integer[strarray.length]; for (int i = 0; i < intarray.length; i++) { intarray[i] = Integer.parseInt(strarray[i]); } return intarray; } /*標準入力long*/ static long inputLong() throws Exception { return Long.parseLong(br.readLine()); } /*標準入力long*/ static int inputInt() throws Exception { return Integer.parseInt(br.readLine()); } public static void main(String[] args) throws Exception { // write your code here int n = inputInt(); long [] al = inputLongArr(); long sum = al[0]; long sum2 = -al[0]; long ans = 0; long ans2 = Math.abs(al[0] - (-al[0])); boolean nextPlusF = al[0] < 0; for(int i=1;i<n;i++){ sum += al[i]; if(nextPlusF && sum <=0){ ans += 1-sum; sum += ans; }else if ((! nextPlusF) && sum >= 0){ ans += sum +1; sum -= ans; } nextPlusF = !nextPlusF; } nextPlusF = !(al[0] < 0); for(int i=1;i<n;i++){ sum2 += al[i]; if(nextPlusF && sum2 <=0){ ans2 += 1-sum2; sum2 += ans2; }else if ((! nextPlusF) && sum2 >= 0){ ans2 += sum2 +1; sum2 -= ans2; } nextPlusF = !nextPlusF; } System.out.println(Math.min(ans,ans2)); } }