Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline void read(T &x) { int ch = 0, f = 0; x = 0; for (; !isdigit(ch); ch = getchar()) if (ch == '-') f = 1; for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48; if (f) x = -x; } const int M = 205, N = 100005, L = 100000, mod = 998244353; int a[N], bel[N], tag[N], tot[N], ans[M], s[M][N << 1], pre[N], lst[N], dp[N], n, k, T; inline void up(int &x, int y) { x = x + y >= mod ? x + y - mod : x + y; } inline void gao(int i, int x) { up(s[bel[i]][L + tot[i]], mod - dp[i]); tot[i] += x; up(s[bel[i]][L + tot[i]], dp[i]); if (x == 1 && tot[i] + tag[bel[i]] == k + 1) up(ans[bel[i]], mod - dp[i]); if (x == -1 && tot[i] + tag[bel[i]] == k) up(ans[bel[i]], dp[i]); } inline void modify(int l, int r, int x) { if (bel[l] + 1 >= bel[r]) { for (int i = l; i <= r; i++) gao(i, x); return; } for (int i = l; i < (bel[l] + 1) * T; i++) gao(i, x); for (int i = bel[r] * T; i <= r; i++) gao(i, x); for (int i = bel[l] + 1; i < bel[r]; i++) { if (x == 1) up(ans[i], mod - s[i][L + k - tag[i]]); if (x == -1) up(ans[i], s[i][L + k - tag[i] + 1]); tag[i] += x; } } inline int query(int l, int r) { int res = 0; if (bel[l] + 1 >= bel[r]) { for (int i = l; i <= r; i++) if (tot[i] + tag[bel[i]] <= k) up(res, dp[i]); return res; } for (int i = l; i < (bel[l] + 1) * T; i++) if (tot[i] + tag[bel[i]] <= k) up(res, dp[i]); for (int i = bel[r] * T; i <= r; i++) if (tot[i] + tag[bel[i]] <= k) up(res, dp[i]); for (int i = bel[l] + 1; i < bel[r]; i++) up(res, ans[i]); return res; } int main() { read(n), read(k), T = 500; for (int i = 0; i <= n; i++) bel[i] = i / T; for (int i = 1; i <= n; i++) read(a[i]); dp[0] = 1; up(ans[bel[0]], dp[0]); up(s[bel[0]][L - tag[bel[0]]], dp[0]); for (int i = 1; i <= n; i++) { pre[i] = lst[a[i]], lst[a[i]] = i; modify(pre[i], i - 1, 1); if (pre[i]) modify(pre[pre[i]], pre[i] - 1, -1); dp[i] = query(0, i - 1); up(ans[bel[i]], dp[i]); up(s[bel[i]][L - tag[bel[i]]], dp[i]); } cout << dp[n]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #pragma GCC optimize("unroll-loops") using namespace std; const int arr = 2e5 + 10; const int ar = 2e3 + 10; const long double pi = acos(-1); const long double eps = 1e-10; const long long md = 1e9 + 7; void add(int& a, int b) { a += b; if (a >= (long long)(998244353)) { a -= (long long)(998244353); } if (a < 0) { a += (long long)(998244353); } } int n, k; int sum_block[((int)(1e5 + 10) >> 8) + 2][(int)(1e5 + 10)]; int push_block[((int)(1e5 + 10) >> 8) + 2]; int last_value[(int)(1e5 + 10)]; int dp[(int)(1e5 + 10)]; pair<int, int> last_seg[(int)(1e5 + 10)]; int ans; inline bool in(int a, int b, int c) { return a <= b && b < c; } inline void inc_pos(int pos) { if (last_value[pos] + push_block[pos >> 8] == k) { add(ans, -dp[pos]); } add(sum_block[pos >> 8][last_value[pos]], -dp[pos]); last_value[pos]++; add(sum_block[pos >> 8][last_value[pos]], +dp[pos]); } inline void dec_pos(int pos) { if (last_value[pos] + push_block[pos >> 8] == k + 1) { add(ans, +dp[pos]); } add(sum_block[pos >> 8][last_value[pos]], -dp[pos]); last_value[pos]--; add(sum_block[pos >> 8][last_value[pos]], +dp[pos]); } void inc(int l, int r) { if ((r >> 8) - (l >> 8) + 1 <= 2) { for (int i = l; i <= r; i++) { inc_pos(i); } } else { while ((l & 255) != 0) { inc_pos(l); l++; } while ((r & 255) != 255) { inc_pos(r); r--; } for (int i = (l >> 8); i <= (r >> 8); i++) { if (in(0, k - push_block[i], (int)(1e5 + 10))) { add(ans, -sum_block[i][k - push_block[i]]); } push_block[i]++; } } } void dec(int l, int r) { if ((r >> 8) - (l >> 8) + 1 <= 2) { for (int i = l; i <= r; i++) { dec_pos(i); } } else { while ((l & 255) != 0) { dec_pos(l); l++; } while ((r & 255) != 255) { dec_pos(r); r--; } for (int i = (l >> 8); i <= (r >> 8); i++) { if (in(0, k + 1 - push_block[i], (int)(1e5 + 10))) { add(ans, +sum_block[i][k + 1 - push_block[i]]); } push_block[i]--; } } } int a[(int)(1e5 + 10)]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); ; cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; } sum_block[0][0] = 1; last_value[0] = 0; dp[0] = 1; ans = 1; map<int, int> last; for (int i = 1; i <= n; i++) { if (!last.count(a[i])) { inc(0, i - 1); last_seg[i] = make_pair(0, i - 1); } else { auto L = last_seg[last[a[i]]]; dec(L.first, L.second); inc(last[a[i]], i - 1); last_seg[i] = make_pair(last[a[i]], i - 1); } last[a[i]] = i; dp[i] = ans; add(ans, dp[i]); add(sum_block[i >> 8][0], dp[i]); } cout << dp[n] << "\n"; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<int, int> operator+(const pair<int, int> x, const int y) { return make_pair(x.first + y, x.second); } const int mxn = 131072, siz = 250, md = 998244353; int n, k, pl[mxn], pr[mxn], d[mxn], f[mxn], bl[mxn], cnt[512][256], tag[512]; pair<int, int> a[mxn], b[mxn], c[mxn]; void mrg(pair<int, int> *x, int nx, pair<int, int> *y, int ny, pair<int, int> *z) { int px = 0, py = 0, pz = 0; for (; px < nx && py < ny;) if (x[px] < y[py]) z[pz++] = x[px++]; else z[pz++] = y[py++]; for (; px < nx; z[pz++] = x[px++]) ; for (; py < ny; z[pz++] = y[py++]) ; } void reb(int pos, int l, int r) { int mn = n + 1; for (int i = l; i <= r; ++i) mn = min(mn, a[i].first); for (int i = l; i <= r; ++i) a[i].first -= mn; for (int i = 0; i <= siz; ++i) cnt[pos][i] = 0; for (int i = l; i <= r; ++i) (cnt[pos][a[i].first] += f[a[i].second]) %= md; for (int i = 1; i <= siz; ++i) (cnt[pos][i] += cnt[pos][i - 1]) %= md; tag[pos] += mn; } void add(int l, int r, int x) { int pb = 0, pc = 0; for (int i = (bl[l] - 1) * siz + 1; i <= min(bl[l] * siz, n); ++i) if (a[i].second < l || a[i].second > r) b[pb++] = a[i]; else c[pc++] = a[i] + x; mrg(b, pb, c, pc, a + (bl[l] - 1) * siz + 1); reb(bl[l], (bl[l] - 1) * siz + 1, min(bl[l] * siz, n)); if (bl[l] != bl[r]) { pb = 0, pc = 0; for (int i = (bl[r] - 1) * siz + 1; i <= min(bl[r] * siz, n); ++i) if (a[i].second < l || a[i].second > r) b[pb++] = a[i]; else c[pc++] = a[i] + x; mrg(b, pb, c, pc, a + (bl[r] - 1) * siz + 1); reb(bl[r], (bl[r] - 1) * siz + 1, min(bl[r] * siz, n)); } for (int i = bl[l] + 1; i <= bl[r] - 1; ++i) tag[i] += x; } void init() { for (int i = 1; i <= n; ++i) bl[i] = (i - 1) / siz + 1; for (int i = 1; i <= n; ++i) a[i] = make_pair(0, i); for (int i = 1; i <= bl[n]; ++i) reb(i, (i - 1) * siz + 1, min(i * siz, n)); } int main() { scanf("%d%d", &n, &k), ++n, f[1] = 1; for (int i = 2; i <= n; ++i) scanf("%d", &d[i]); init(); for (int i = 2; i <= n; ++i) { if (pr[d[i]]) add(pl[d[i]] + 1, pr[d[i]], -1); pl[d[i]] = pr[d[i]], pr[d[i]] = i - 1; add(pl[d[i]] + 1, pr[d[i]], 1); for (int j = 1; j <= bl[i]; ++j) if (k - tag[j] >= 0) (f[i] += cnt[j][min(k - tag[j], siz)]) %= md; reb(bl[i], (bl[i] - 1) * siz + 1, min(bl[i] * siz, n)); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,popcnt,tune=native") using namespace std; const int MN = 100005, inf = 1000000005, mod = 998244353; const long long INF = 1000000000000000005LL; int t[MN], dp[MN], ile[MN], ost[MN], gdzie[MN]; int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d", &t[i]); gdzie[i] = ost[t[i]]; ost[t[i]] = i; } dp[0] = 1; long long res = 0LL; for (int i = 1; i <= n; ++i) { int a = gdzie[i], b = gdzie[gdzie[i]]; for (int j = a; j < i; ++j) ++ile[j]; for (int j = b; j < a; ++j) --ile[j]; for (int j = 0; j < i; ++j) res += (ile[j] <= k) * dp[j]; res %= mod; dp[i] = res; res = 0LL; } printf("%d", dp[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 1, mod = 998244353, b_sz = 10; int n, k; int last_occ[maxn], prev_occ[maxn]; int delta[maxn]; int dp[maxn]; int tot_delta[10001], psums[10001][2 * b_sz + 1]; void update(int i) { vector<int> blocks = {i / b_sz}; if (i % b_sz == 0 and i) { blocks.push_back(i / b_sz - 1); } delta[i] = 1; if (prev_occ[i]) { blocks.push_back(prev_occ[i] / b_sz); delta[prev_occ[i]] = -1; } if (prev_occ[prev_occ[i]]) { blocks.push_back(prev_occ[prev_occ[i]] / b_sz); delta[prev_occ[prev_occ[i]]] = 0; } sort(blocks.begin(), blocks.end()); blocks.resize(unique(blocks.begin(), blocks.end()) - blocks.begin()); for (auto block : blocks) { memset(psums[block], 0, sizeof(psums[block])); int curr_unique = 0; for (int j = min(i, (block + 1) * b_sz - 1); j >= block * b_sz; j--) { psums[block][curr_unique + b_sz] = (psums[block][curr_unique + b_sz] + dp[j]) % mod; curr_unique += delta[j]; } for (int j = 1; j <= 2 * b_sz; j++) { psums[block][j] = (psums[block][j] + psums[block][j - 1]) % mod; } tot_delta[block] = curr_unique; } } void solve(int i) { int curr_unique = 0; for (int block = i / b_sz; block >= 0; block--) { if (k - curr_unique >= -b_sz) { dp[i] = (dp[i] + psums[block][min(b_sz, k - curr_unique) + b_sz]) % mod; } curr_unique += tot_delta[block]; } } int main() { cin.tie(0)->sync_with_stdio(0); cin >> n >> k; for (int i = 1; i <= n; i++) { int a; cin >> a; prev_occ[i] = last_occ[a]; last_occ[a] = i; } dp[0] = 1; for (int i = 1; i <= n; i++) { update(i); solve(i); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> int n, k, a[100001], P = 998244353, lcol[100001], last[100001], f[100001], val[100001], pos[100001], block; inline int sub(int a, const int &b) { a -= b; return a < 0 ? a + P : a; } inline int add(int a, const int &b) { a += b; return a >= P ? a - P : a; } inline int mul(const int &a, const int &b) { return (long long)a * b - (long long)a * b / P * P; } struct sum { int num[200001], tot, delta; sum() { memset(num, 0, sizeof num); tot = 0; } void Add(const int &x) { tot = add(tot, x); } void upd(const int &x, int &pos, const int &del) { if (del == 1) num[pos + n] = sub(num[pos + n], x); else num[pos - 1 + n] = add(num[pos - 1 + n], x); pos += del; } int query() { return add(k >= delta ? tot : 0, num[k - delta + n]); } } S[210]; void update(int L, int R, int l) { if (pos[L] == pos[R]) { for (int i = L; i <= R; i++) S[pos[i]].upd(f[i], val[i], l); } else { for (int i = L; pos[i] == pos[L]; ++i) S[pos[i]].upd(f[i], val[i], l); for (int i = pos[L] + 1; i < pos[R]; ++i) S[i].delta += l; for (int i = R; pos[i] == pos[R]; --i) S[pos[i]].upd(f[i], val[i], l); } } int main() { scanf("%d%d", &n, &k); block = 500; for (int i = 0; i <= n; i++) pos[i] = i / block + 1; f[0] = 1; S[1].Add(1); for (int i = 1; i <= n; i++) { scanf("%d", a + i); last[i] = lcol[a[i]]; lcol[a[i]] = i; update(last[i], i - 1, 1); if (last[i]) update(last[last[i]], last[i] - 1, -1); for (int j = pos[i]; j; --j) f[i] = add(f[i], S[j].query()); S[pos[i]].Add(f[i]); } printf("%d\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int N = 1e5 + 5, M = N / 320 + 3; int bel[N], f[N], g[N], tag[M], s[M][320 + 3 << 1]; inline int read() { int now = 0; register char c = getchar(); for (; !isdigit(c); c = getchar()) ; for (; isdigit(c); now = now * 10 + c - 48, c = getchar()) ; return now; } void Update(int p, int v) { int *s = ::s[bel[p]]; for (int i = 320; i <= 320 << 1; ++i) (s[i] += v) >= 998244353 && (s[i] -= 998244353); } void Modify(int p, int v) { int bel = ::bel[p], *s = ::s[bel]; tag[bel] += v; for (int i = bel * 320 + 1; i <= p; ++i) { if (v == 1) (s[g[i] + 320] += 998244353 - f[i - 1]) >= 998244353 && (s[g[i] + 320] -= 998244353); else (s[g[i] - 1 + 320] += f[i - 1]) >= 998244353 && (s[g[i] - 1 + 320] -= 998244353), (s[g[i] - 2 + 320] += f[i - 1]) >= 998244353 && (s[g[i] - 2 + 320] -= 998244353); g[i] += v; } } int Query(int p, int K) { int bel = ::bel[p], sum = tag[bel]; long long res = 0; for (int i = bel * 320 + 1; i <= p; ++i) g[i] <= K && (res += f[i - 1]); while (bel--) { if (std::abs(sum - K) <= 320) res += s[bel][K - sum + 320]; else if (sum < K) res += s[bel][320 << 1]; sum += tag[bel]; } return res % 998244353; } int main() { static int las[N], pre[N]; int n = read(), K = read(); for (int i = 1; i <= n; ++i) bel[i] = (i - 1) / 320; f[0] = 1; for (int i = 1; i <= n; ++i) { int a = read(); las[i] = pre[a], pre[a] = i; Update(i, f[i - 1]), Modify(i, 1); if (las[i]) { Modify(las[i], -2); if (las[las[i]]) Modify(las[las[i]], 1); } f[i] = Query(i, K); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") const int N = 100100; const int Q = 250200; const long long mod = 998244353; using namespace std; int n; int k; int d[N]; int f[N]; int l[N]; int p[N]; void add(int &x, int y) { x += y; if (x >= mod) { x -= mod; } else if (x < 0) { x += mod; } } int main() { ios_base::sync_with_stdio(0); cin >> n >> k; int s = 1, x, h; d[0] = 1; for (int i = 1; i <= n; i++) { cin >> x; for (int j = l[x] + 1; j <= i; j++) { if (f[j] == k) { s -= d[j - 1]; if (s < 0) { s += mod; } } f[j] += 1; } h = p[x]; for (int j = l[x]; j > h; j--) { f[j] -= 1; if (f[j] == k) { s += d[j - 1]; if (s >= mod) { s -= mod; } } } p[x] = l[x]; l[x] = i; d[i] = s; add(s, s); } cout << d[n] << "\n"; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2") #pragma warning(disable : 4996) using namespace std; const long long int mod = 998244353; long long int sum = 1; void add(int* anums, long long int* aanss, int X, bool flag) { if (flag) { for (int x = 0; x < X; ++x) { anums[x]--; if (!anums[x]) sum += aanss[x]; } } else { for (int x = 0; x < X; ++x) { if (!anums[x]) sum -= aanss[x]; anums[x]++; } } } int nums[100010]; int pres[100010]; long long int anss[100010]; int main() { int N, M; cin >> N >> M; vector<int> v(N); for (int i = 0; i < N; ++i) { scanf("%d", &v[i]); v[i]--; } map<int, int> mp; for (int i = 0; i < N; ++i) { if (mp.find(v[i]) == mp.end()) { pres[i] = 0; } else { pres[i] = mp[v[i]]; } mp[v[i]] = i + 1; } for (int i = 0; i <= N; ++i) nums[i] = -M; anss[0] = 1; for (int i = 0; i < N; ++i) { if (pres[i]) { add(nums + pres[pres[i] - 1], anss + pres[pres[i] - 1], pres[i] - pres[pres[i] - 1], true); } add(nums + pres[i], anss + pres[i], i - pres[i] + 1, false); anss[i + 1] = sum % mod; if (anss[i + 1] < 0) anss[i + 1] += mod; sum += anss[i + 1]; } cout << anss[N] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int gi() { int x = 0, w = 1; char ch = getchar(); while ((ch < '0' || ch > '9') && ch != '-') ch = getchar(); if (ch == '-') w = 0, ch = getchar(); while (ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar(); return w ? x : -x; } const int N = 1e5 + 5; const int B = 350; const int mod = 998244353; int n, k, bl[N], L[B], R[B], tag[B], mn[B], mx[B], pre[N], lst[N], f[N], num[N]; vector<int> ans[B]; inline void add(int &x, int y) { x += y; x >= mod ? x -= mod : x; } void rebuild(int x) { mn[x] = 1 << 30; mx[x] = -1 << 30; for (int i = L[x]; i <= R[x]; ++i) { num[i] += tag[x]; mn[x] = min(mn[x], num[i]); mx[x] = max(mx[x], num[i]); } tag[x] = 0; ans[x].clear(); ans[x].resize(mx[x] - mn[x] + 1); for (int i = L[x]; i <= R[x]; ++i) add(ans[x][num[i] - mn[x]], f[i - 1]); for (int i = 1; i <= mx[x] - mn[x]; ++i) add(ans[x][i], ans[x][i - 1]); } int cal(int x) { int t = k - tag[x]; if (t < mn[x]) return 0; return ans[x][min(t - mn[x], mx[x] - mn[x])]; } void modify(int l, int ed, int v) { while (l <= ed) { int x = bl[l], r = min(R[x], ed); if (l == L[x] && r == R[x]) tag[x] += v; else { for (int i = l; i <= r; ++i) num[i] += v; rebuild(x); } l = r + 1; } } int query(int l, int ed) { int res = 0; while (l <= ed) { int x = bl[l], r = min(R[x], ed); if (l == L[x] && r == R[x]) add(res, cal(x)); else { rebuild(x); for (int i = l; i <= r; ++i) if (num[i] <= k) add(res, f[i - 1]); } l = r + 1; } return res; } int main() { n = gi(); k = gi(); f[0] = 1; for (int i = 1; i <= n; ++i) { bl[i] = (i - 1) / B + 1; if (!L[bl[i]]) L[bl[i]] = i; R[bl[i]] = i; } rebuild(1); for (int i = 1; i <= n; ++i) { int x = gi(); pre[i] = lst[x]; lst[x] = i; modify(pre[i] + 1, i, 1); if (pre[i]) modify(pre[pre[i]] + 1, pre[i], -1); f[i] = query(1, i); if (i < n) rebuild(bl[i + 1]); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mxN = 1e5, bs = 400, mxBC = (mxN - 1) / bs + 1, M = 998244353; int n, k, dp[mxN + 1], lst[mxN + 1], nxt[mxN], b[mxN], c[mxBC][2 * mxN + 1], d[mxBC]; void am(int &a, int b) { a += b; if (a >= M) a -= M; } void upd(int l1, int r1, int x) { for (int bi = l1 / bs; bi <= r1 / bs; ++bi) { int l2 = bi * bs, r2 = min((bi + 1) * bs, n) - 1; if (l1 <= l2 && r2 <= r1) { d[bi] += x; continue; } l2 = max(l1, l2); r2 = min(r1, r2); for (; l2 <= r2; ++l2) { if (x == 1) am(c[bi][b[l2] + n], M - dp[l2]); b[l2] += x; if (x == -1) am(c[bi][b[l2] + n], dp[l2]); } } } int qry(int l1, int r1) { int e = 0; for (int bi = l1 / bs; bi <= r1 / bs; ++bi) { int l2 = bi * bs, r2 = min((bi + 1) * bs, n) - 1; if (l1 <= l2 && r2 <= r1) { am(e, c[bi][k + n - d[bi]]); continue; } l2 = max(l1, l2); r2 = min(r1, r2); for (; l2 <= r2; ++l2) if (b[l2] + d[bi] <= k) am(e, dp[l2]); } return e; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; dp[0] = 1; memset(lst, -1, sizeof(lst)); for (int i = 0, ai; i < n; ++i) { cin >> ai; nxt[i] = lst[ai]; lst[ai] = i; if (i % bs == bs - 1 || i == n - 1) { memset(c[i / bs], 0, sizeof(c[0])); for (int l = i / bs * bs; l <= i; ++l) am(c[i / bs][b[l] + n], dp[l]); for (int j = 1; j <= 2 * n; ++j) am(c[i / bs][j], c[i / bs][j - 1]); } upd(nxt[i] + 1, i, 1); if (nxt[i] != -1) upd(nxt[nxt[i]] + 1, nxt[i], -1); dp[i + 1] = qry(0, i); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> template <typename T> void chkmax(T &x, T y) { x = x > y ? x : y; } template <typename T> void chkmin(T &x, T y) { x = x > y ? y : x; } template <typename T> void add(T &x, T y, T mod) { x = x + y > mod ? x + y - mod : x + y; } template <typename T> void sub(T &x, T y, T mod) { x = x - y < 0 ? x - y + mod : x - y; } template <typename T> void multi(T &x, T y, T mod) { x = 1ll * x * y % mod; } const int INF = (1ll << 30); template <typename T> void read(T &x) { x = 0; bool f = 1; char ch; do { ch = getchar(); if (ch == '-') f = 0; } while (ch > '9' || ch < '0'); do { x = x * 10 + ch - '0'; ch = getchar(); } while (ch >= '0' && ch <= '9'); x = f ? x : -x; } template <typename T> void write(T x) { if (x < 0) x = ~x + 1, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } const int Bs = 320, N = 2e5 + 10, mod = 998244353; int n, k, B, ans, a[N], f[N], lst[N], tag[Bs], sum[N], pre[N], val[Bs][N]; int belong(int x) { return (x - 1) / B + 1; } inline void insert(int u, int v) { int bu = belong(u); sum[u] -= tag[bu]; add(ans, v, mod); add(val[bu][sum[u] + n], v, mod); } inline void change(int u, int v) { int bu = belong(u); if (sum[u] + tag[bu] <= k) sub(ans, f[u - 1], mod); sub(val[bu][sum[u] + n], f[u - 1], mod); sum[u] += v; if (sum[u] + tag[bu] <= k) add(ans, f[u - 1], mod); add(val[bu][sum[u] + n], f[u - 1], mod); } inline void modify(int l, int r, int v) { if (l > r) return; int bl = belong(l), br = belong(r); if (bl + 1 >= br) { for (int i = l; i <= r; i++) change(i, v); } else { for (int i = l; i <= B * bl; i++) change(i, v); for (int i = B * (br - 1) + 1; i <= r; i++) change(i, v); for (int i = bl + 1; i < br; i++) { if (~v) sub(ans, val[i][k - tag[i] + n], mod); else add(ans, val[i][k - tag[i] + 1 + n], mod); tag[i] += v; } } } int main() { read(n); read(k); for (int i = 1, a; i <= n; ++i) read(a), pre[i] = lst[a], lst[a] = i; B = sqrt(n); f[0] = 1; for (int i = 1; i <= n; ++i) { insert(i, f[i - 1]); modify(pre[i] + 1, i, 1); modify(pre[pre[i]] + 1, pre[i], -1); f[i] = ans; } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k; int a[100010], dp[100010]; pair<int, int> b[100010]; vector<int> lst_ind[100010]; int ind[100010]; vector<pair<int, int> > cnt[400]; int acc[400]; int opm[400]; int p = 998244353; int getBlock(int x) { return x / m; } int getIndexInBlock(int x) { return x % m; } void bruteForceUpdate(int bl) { int st = bl * m; int ed = min(n - 1, (bl + 1) * m - 1); int getMin = 1e9 + 1, getMax = -1e9 - 1; for (int i = st; i <= ed; i++) { b[i].first += acc[bl]; getMin = min(b[i].first, getMin); getMax = max(b[i].first, getMax); } acc[bl] = 0; cnt[bl].clear(); for (int i = 0; i < getMax - getMin + 1; i++) cnt[bl].push_back(pair<int, int>(getMin + i, 0)); for (int i = st; i <= ed; i++) { cnt[bl][b[i].first - getMin].second += b[i].second; cnt[bl][b[i].first - getMin].second %= p; } for (int i = 1; i < cnt[bl].size(); i++) { cnt[bl][i].second += cnt[bl][i - 1].second; cnt[bl][i].second %= p; } opm[bl] = -1; for (int i = 0; i < cnt[bl].size(); i++) { if (cnt[bl][i].first <= k) { opm[bl] = i; } } } void update(int l, int r, int v) { int l_id = getBlock(l); int r_id = getBlock(r); for (int i = l_id + 1; i <= r_id - 1; i++) { acc[i] += v; if (opm[i] >= 0 && cnt[i][opm[i]].first + acc[i] > k) opm[i]--; if (opm[i] + 1 < cnt[i].size() && cnt[i][opm[i] + 1].first + acc[i] <= k) opm[i]++; } for (int i = l; i <= min(r, (l_id + 1) * m - 1); i++) { b[i].first += v; } bruteForceUpdate(l_id); if (l_id != r_id) { for (int i = r_id * m; i <= r; i++) { b[i].first += v; } bruteForceUpdate(r_id); } } int getAns(int l, int r) { int ans = 0; int l_id = getBlock(l); int r_id = getBlock(r); for (int i = l_id + 1; i <= r_id - 1; i++) { int indx = opm[i]; if (indx < 0) continue; ans = (ans + cnt[i][indx].second) % p; } for (int i = l; i <= min(r, (l_id + 1) * m - 1); i++) { if (b[i].first + acc[l_id] <= k) ans = (ans + b[i].second) % p; } if (l_id != r_id) { for (int i = r_id * m; i <= r; i++) { if (b[i].first + acc[r_id] <= k) ans = (ans + b[i].second) % p; } } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; lst_ind[a[i]].push_back(i); ind[i] = lst_ind[a[i]].size() - 1; } m = sqrt(n); b[0].second = 1; for (int i = 0; i < n; i++) { int val = a[i]; int id = ind[i]; if (id == 0) { update(0, i, 1); } if (id > 0) { int preID = lst_ind[val][id - 1]; update(preID + 1, i, 1); if (id > 1) { int preID2 = lst_ind[val][id - 2]; update(preID2 + 1, preID, -1); } else { update(0, preID, -1); } } dp[i] = getAns(0, i); b[i + 1].second = dp[i]; } cout << dp[n - 1] << "\n"; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O2") using namespace std; const long long MXN = 1e5 + 10; const long long SQR = 400; const long long MXB = MXN / SQR + 10; const long long MXM = SQR * 2 + 10; const long long Mod = 998244353; inline void mkay(long long& x) { if (x >= Mod) x -= Mod; } long long n, k; long long A[MXN], dt[MXN], dp[MXN]; long long my[MXN], sigma[MXB][MXM]; deque<long long> Pos[MXN]; void Build(long long t) { long long s = max(t * SQR, 1ll), e = min(n, (t + 1) * SQR - 1); my[e] = dt[e]; for (int i = e - 1; i >= s; i--) my[i] = my[i + 1] + dt[i]; memset(sigma[t], 0, sizeof sigma[t]); for (int i = s; i <= e; i++) { sigma[t][my[i] + SQR] += dp[i - 1]; mkay(sigma[t][my[i] + SQR]); } for (int i = 1; i < MXM; i++) { sigma[t][i] += sigma[t][i - 1]; mkay(sigma[t][i]); } } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> A[i]; dp[0] = 1; for (int i = 1; i <= n; i++) { if (Pos[A[i]].size() == 2) { dt[Pos[A[i]][0]] = 0; if (Pos[A[i]][0] / SQR < i / SQR) Build(Pos[A[i]][0] / SQR); Pos[A[i]].pop_front(); } Pos[A[i]].push_back(i); if (Pos[A[i]].size() == 2) { dt[Pos[A[i]][0]] = -1; if (Pos[A[i]][0] / SQR < i / SQR) Build(Pos[A[i]][0] / SQR); } dt[i] = 1; long long now = 0; for (int j = i; j / SQR == i / SQR; j--) { now += dt[j]; if (now <= k) dp[i] += dp[j - 1], mkay(dp[i]); } for (int t = (i / SQR) - 1; t >= 0; t--) { long long s = max(t * SQR, 1ll), e = min(n, (t + 1) * SQR - 1); long long exp = k - now + SQR; if (0 <= exp) { dp[i] += sigma[t][min(MXM - 1, k - now + SQR)]; mkay(dp[i]); } now += my[s]; } if (i % SQR == SQR - 1) Build(i / SQR); } cout << dp[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; int B; vector<int> counts; vector<int> dp; void mod_add(int& first, int second) { first += second; if (first >= mod) { first -= mod; } } struct Bucket { int id; int offset = 0; vector<int> pref_sum; Bucket(int _id) { id = _id; pref_sum.assign(B, 0); } void rebuild() { int first = id * B, last = (id + 1) * B; int smallest = INT_MAX; for (int i = first; i < last; ++i) { smallest = min(smallest, counts[i] + offset); } for (int i = first; i < last; ++i) { counts[i] = counts[i] - smallest + offset; } offset = smallest; for (int i = 0; i < B; ++i) { pref_sum[i] = 0; } for (int i = first; i < last; ++i) { mod_add(pref_sum[counts[i]], dp[i]); } for (int i = 1; i < B; ++i) { mod_add(pref_sum[i], pref_sum[i - 1]); } } }; vector<Bucket> buckets; int getBucket(int val) { return val / B; } void add(int start, int end, int amt) { int startBucket = getBucket(start); for (int i = start; i <= end and getBucket(i) == startBucket; ++i) { counts[i] += amt; } buckets[getBucket(start)].rebuild(); if (getBucket(start) == getBucket(end)) { return; } int endBucket = getBucket(end); for (int i = getBucket(start) + 1; i < endBucket; ++i) { buckets[i].offset += amt; } for (int i = end; getBucket(i) == getBucket(end); --i) { counts[i] += amt; } buckets[getBucket(end)].rebuild(); } int main() { int n, k; cin >> n >> k; vector<int> nums(n, 0); for (int i = 0; i < n; ++i) { cin >> nums[i]; } B = ceil(sqrt(n)); for (int i = 0; i < B; ++i) { buckets.push_back(Bucket(i)); } counts.assign(n + B, 0); dp.assign(n + B, 0); vector<vector<int>> prev(n + 1, vector<int>(2, -1)); dp[0] = 1; for (int i = 0; i < n; ++i) { add(prev[nums[i]][0] + 1, i, 1); if (prev[nums[i]][0] != -1) { add(prev[nums[i]][1] + 1, prev[nums[i]][0], -1); } int total = 0; for (int j = 0; j <= getBucket(i); ++j) { int count = k - buckets[j].offset; if (count >= 0) { mod_add(total, buckets[j].pref_sum[min(count, B - 1)]); } } dp[i + 1] = total; buckets[getBucket(i)].rebuild(); if (prev[nums[i]][0] != -1) { prev[nums[i]][1] = prev[nums[i]][0]; } prev[nums[i]][0] = i; } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int Bs = 317, N = 2e5 + 10, P = 998244353; int ri() { char c = getchar(); int x = 0, f = 1; for (; c < '0' || c > '9'; c = getchar()) if (c == '-') f = -1; for (; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) - '0' + c; return x * f; } int pr[N], las[N], a[N], val[Bs][N], s[N], f[N], tag[Bs], B, Ans, z, k, n; int belong(int x) { return (x - 1) / B + 1; } void dec(int &a, int b) { a -= b; if (a < 0) a += P; } void inc(int &a, int b) { a += b; if (a >= P) a -= P; } void Ins(int u, int v) { int bu = belong(u); s[u] -= tag[bu]; inc(Ans, v); inc(val[bu][s[u] + z], v); } void Mdfs(int u, int v) { int bu = belong(u); if (s[u] + tag[bu] <= k) dec(Ans, f[u - 1]); dec(val[bu][s[u] + z], f[u - 1]); s[u] += v; if (s[u] + tag[bu] <= k) inc(Ans, f[u - 1]); inc(val[bu][s[u] + z], f[u - 1]); } void Mdf(int L, int R, int v) { if (L > R) return; int bl = belong(L), br = belong(R); if (bl + 1 >= br) { for (int i = L; i <= R; ++i) Mdfs(i, v); } else { for (int i = L; i <= bl * B; ++i) Mdfs(i, v); for (int i = (br - 1) * B + 1; i <= R; ++i) Mdfs(i, v); for (int i = bl + 1; i < br; ++i) { if (~v) dec(Ans, val[i][k - tag[i] + z]); else inc(Ans, val[i][k - tag[i] + 1 + z]); tag[i] += v; } } } int main() { n = ri(); k = ri(); for (int i = 1, a; i <= n; ++i) a = ri(), pr[i] = las[a], las[a] = i; B = sqrt(n); z = n; f[0] = 1; Ins(1, 1); for (int i = 1; i <= n; ++i) { Mdf(pr[i] + 1, i, 1); Mdf(pr[pr[i]] + 1, pr[i], -1); Ins(i + 1, f[i] = Ans); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int blkbase[(350 + 5)][(350 + 5)]; int blkpsum[(350 + 5)][(350 + 5)]; int f[100005]; int n, k; int a[100005]; int previ[100005]; int previval[100005]; int blk[100005]; int blkbegin[100005]; int blkend[1000005]; int cur[100005]; int cur_offset[(350 + 5)]; int cur_cnt[(350 + 5)]; int cur_total = 0; int blkcnt; bool cmp(int A, int B) { return cur[A] < cur[B]; } void rebuild(int block) { for (int i = blkbegin[block], j = 1; j <= 350; i++, j++) { blkbase[block][j] = i; } sort(blkbase[block] + 1, blkbase[block] + 350 + 1, cmp); int r = 0; for (int i = 1; i <= 350; i++) { blkpsum[block][i] = blkpsum[block][i - 1] + f[blkbase[block][i] - 1]; if (blkpsum[block][i] >= 998244353) blkpsum[block][i] -= 998244353; if (cur[blkbase[block][i]] <= k) r = i; } cur_total -= cur_cnt[block]; cur_total += blkpsum[block][r]; cur_cnt[block] = blkpsum[block][r]; cur_total %= 998244353; cur_total += 998244353; cur_total %= 998244353; } void update(int l, int r, int change) { for (int i = blk[l] + 1; i < blk[r]; i++) { cur_offset[i] += change; int L = 0, R = 350; while (L < R) { int mid = (L + R) / 2 + 1; if (cur[blkbase[i][mid]] + cur_offset[i] <= k) { L = mid; } else { R = mid - 1; } } cur_total -= cur_cnt[i]; cur_total += blkpsum[i][R]; cur_cnt[i] = blkpsum[i][R]; cur_total %= 998244353; cur_total += 998244353; cur_total %= 998244353; } for (int i = blkbegin[blk[l]]; i <= blkend[blk[l]]; i++) { cur[i] += cur_offset[blk[l]]; } cur_offset[blk[l]] = 0; for (int i = l; i <= blkend[blk[l]] && i <= r; i++) { cur[i] += change; } for (int j = 1; j <= n; j++) { } rebuild(blk[l]); if (blk[l] != blk[r]) { for (int i = blkbegin[blk[r]]; i <= blkend[blk[r]]; i++) { cur[i] += cur_offset[blk[r]]; } cur_offset[blk[r]] = 0; for (int i = blkbegin[blk[r]]; i <= r; i++) { cur[i] += change; } rebuild(blk[r]); } } int main() { cur[0] = -10000000; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", a + i); previ[i] = previval[a[i]]; previval[a[i]] = i; } for (int i = 1; i <= 100000; i++) blk[i] = (i - 1) / 350 + 1; for (int i = 1; i <= 350; i++) { blkbegin[i] = (i - 1) * 350 + 1; blkend[i] = blkbegin[i] + 350 - 1; for (int j = (i - 1) * 350 + 1, x = 1; x <= 350; j++, x++) { blkbase[i][x] = j; } } f[0] = 1; rebuild(1); for (int i = 1; i <= n; i++) { update(previ[i] + 1, i, 1); if (previ[i]) update(previ[previ[i]] + 1, previ[i], -1); f[i] = cur_total; for (int j = 0; j < 350; j++) { cur[blkbegin[blk[i + 1]] + j] += cur_offset[blk[i + 1]]; } cur_offset[blk[i + 1]] = 0; for (int j = 1; j <= n; j++) { } rebuild(blk[i + 1]); } printf("%d", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, a[200010], s, la[200010], f[200010], tg[200010], ans, p[200010], va[320][200010], pr[200010]; int bl(int x) { return (x - 1) / s + 1; } void ins(int x, int y) { p[x] -= tg[bl(x)]; ans = (ans + y) % 998244353ll; va[bl(x)][p[x] + n] = (va[bl(x)][p[x] + n] + y) % 998244353ll; } void md(int x, int y) { int po = bl(x); if (p[x] + tg[po] <= k) ans = (ans - f[x - 1] + 998244353ll) % 998244353ll; va[po][p[x] + n] = (va[po][p[x] + n] + 998244353ll - f[x - 1]) % 998244353ll; p[x] += y; if (p[x] + tg[po] <= k) ans = (ans + f[x - 1]) % 998244353ll; va[po][p[x] + n] = (va[po][p[x] + n] + f[x - 1]) % 998244353ll; } void mod(int l, int r, int v) { if (l > r) return; int p1 = bl(l), p2 = bl(r); if (p1 + 1 >= p2) { for (int i = l; i <= r; i++) md(i, v); } else { for (int i = l; i <= s * p1; i++) md(i, v); for (int i = (p2 - 1) * s + 1; i <= r; i++) md(i, v); for (int i = p1 + 1; i < p2; i++) { if (v != -1) ans = (ans - va[i][k - tg[i] + n] + 998244353ll) % 998244353ll; else ans = (ans + va[i][k - tg[i] + 1 + n]) % 998244353ll; tg[i] += v; } } } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; pr[i] = la[a[i]]; la[a[i]] = i; } s = sqrt(n); f[0] = 1; ins(1, 1); for (int i = 1; i <= n; i++) { mod(pr[i] + 1, i, 1); mod(pr[pr[i]] + 1, pr[i], -1); f[i] = ans; ins(i + 1, ans); } cout << f[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; const int MAXN = 100005; const int S = 320; const int MAXB = MAXN / S + 5; int pool[MAXB][MAXN << 1], *t[MAXB], f[MAXB][S], tag[MAXB], sum[MAXB], dp[MAXN]; int a[MAXN], last[MAXN], pre[MAXN]; int n, k; void init() { for (int i = 1; i <= n; i++) { pre[i] = last[a[i]]; last[a[i]] = i; } for (int i = 0; i <= n / S; i++) t[i] = pool[i + 1]; dp[0] = 1; } inline void add(int &a, int b) { a += b; if (a >= MOD) a -= MOD; if (a < 0) a += MOD; } void modify(int p, int v) { int id = p / S, x = p % S; add(t[id][f[id][x]], -dp[p - 1]); if (f[id][x] + tag[id] <= k) add(sum[id], -dp[p - 1]); f[id][x] += v; add(t[id][f[id][x]], dp[p - 1]); if (f[id][x] + tag[id] <= k) add(sum[id], dp[p - 1]); } void add(int l, int r, int v) { while (l <= r && l % S != 0) { modify(l, v); ++l; } while (l <= r && (r + 1) % S != 0) { modify(r, v); --r; } for (int i = l; i <= r; i += S) { if (v == 1) add(sum[i / S], -t[i / S][k - tag[i / S]]); else add(sum[i / S], t[i / S][k + 1 - tag[i / S]]); tag[i / S] += v; } } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; init(); for (int i = 1; i <= n; i++) { add(pre[i] + 1, i - 1, 1); if (pre[i] != 0) add(pre[pre[i]] + 1, pre[i], -1); add(sum[i / S], dp[i - 1]); add(t[i / S][1], dp[i - 1]); add(f[i / S][i % S], 1); for (int j = 0; j <= i / S; j++) add(dp[i], sum[j]); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using int64 = long long; const int mod = 998244353; int sqrtN = 128; struct SqrtDecomposition { int N, K, tap, ans; vector<int> data; vector<int> bucketAdd; vector<int> uku; vector<unordered_map<int, int> > mp; SqrtDecomposition(int n, int tap) : N(n), tap(tap), ans(0) { K = (N + sqrtN - 1) / sqrtN; data.assign(n, 0); bucketAdd.assign(K, 0); uku.assign(n, 0); mp.resize(K); } void add(int s, int t) { for (int k = 0; k < K; ++k) { int l = k * sqrtN, r = min((k + 1) * sqrtN, (int)data.size()); if (r <= s || t <= l) continue; if (s <= l && r <= t) { ++bucketAdd[k]; if (mp[k].count(tap - bucketAdd[k])) { ans += mp[k][tap - bucketAdd[k]]; if (ans >= mod) ans -= mod; } } else { for (int i = max(s, l); i < min(t, r); ++i) { mp[k][data[i]] += mod - uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; if (mp[k][data[i]] == 0) mp[k].erase(data[i]); ++data[i]; mp[k][data[i]] += uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; if (data[i] + bucketAdd[k] == tap) { ans += uku[i]; if (ans >= mod) ans -= mod; } } } } } void sub(int s, int t) { for (int k = 0; k < K; ++k) { int l = k * sqrtN, r = min((k + 1) * sqrtN, (int)data.size()); if (r <= s || t <= l) continue; if (s <= l && r <= t) { if (mp[k].count(tap - bucketAdd[k])) { ans += mod - mp[k][tap - bucketAdd[k]]; if (ans >= mod) ans -= mod; } --bucketAdd[k]; } else { for (int i = max(s, l); i < min(t, r); ++i) { mp[k][data[i]] += mod - uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; if (mp[k][data[i]] == 0) mp[k].erase(data[i]); --data[i]; mp[k][data[i]] += uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; if (data[i] + bucketAdd[k] == tap - 1) { ans += mod - uku[i]; if (ans >= mod) ans -= mod; } } } } } }; int main() { int K, N, A[100000]; cin >> N >> K; ++K; vector<int> ap[100000]; for (int i = 0; i < N; i++) { cin >> A[i]; --A[i]; ap[A[i]].emplace_back(i); } int last[100000]; memset(last, -1, sizeof(last)); for (int i = 0; i < N; i++) { for (int j = 1; j < ap[i].size(); j++) { last[ap[i][j]] = ap[i][j - 1]; } } vector<int> dp(N + 1); dp[0] = 1; int appear[100000]; int cor[100000]; memset(appear, -1, sizeof(appear)); memset(cor, -1, sizeof(cor)); set<pair<pair<int, int>, int> > range; SqrtDecomposition seg(N + 1, K); int all = 1; seg.uku[0]++; seg.mp[0][0]++; for (int i = 1; i <= N; i++) { if (range.count( {make_pair(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1), A[i - 1]})) { range.erase( {make_pair(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1), A[i - 1]}); seg.sub(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1); } appear[A[i - 1]] = last[i - 1]; cor[A[i - 1]] = i - 1; seg.add(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1); range.emplace(make_pair(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1), A[i - 1]); int add = (all + mod - seg.ans) % mod; (all += add) %= mod; (dp[i] += add) %= mod; (seg.uku[i] += add) %= mod; (seg.mp[i / sqrtN][seg.data[i]] += add) %= mod; if (seg.bucketAdd[i / sqrtN] + seg.data[i] >= K) { (seg.ans += add) %= mod; } } cout << dp[N] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; const int MAX_N = 2e5 + 5; vector<int> occurrences[MAX_N]; int cnt[MAX_N], dp[MAX_N]; void add_self(int& a, int b) { a += b; if (a >= mod) { a -= mod; } } const int B = 256; struct Bucket { int id; int offset; int pref_sum[B]; void rebuild() { int first = id * B, last = (id + 1) * B - 1; int smallest = INT_MAX; for (int i = first; i <= last; ++i) { smallest = min(smallest, offset + cnt[i]); } for (int i = first; i <= last; ++i) { cnt[i] -= smallest - offset; assert(0 <= cnt[i] && cnt[i] < B); } offset = smallest; for (int x = 0; x < B; ++x) { pref_sum[x] = 0; } for (int i = first; i <= last; ++i) { add_self(pref_sum[cnt[i]], dp[i]); } for (int x = 1; x < B; ++x) { add_self(pref_sum[x], pref_sum[x - 1]); } } } buckets[MAX_N / B + 1]; int which(int i) { return i / B; } void add(int a, int b, int diff) { for (int i = a; i <= b && which(i) == which(a); ++i) { cnt[i] += diff; } buckets[which(a)].rebuild(); if (which(a) == which(b)) { return; } for (int i = which(a) + 1; i < which(b); ++i) { buckets[i].offset += diff; } for (int i = b; which(i) == which(b); --i) { cnt[i] += diff; } buckets[which(b)].rebuild(); } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 0; i <= which(n - 1); ++i) { buckets[i].id = i; } for (int x = 1; x <= n; ++x) { occurrences[x].push_back(-1); } dp[0] = 1; buckets[which(0)].rebuild(); for (int R = 0; R < n; ++R) { int x; scanf("%d", &x); vector<int>& vec = occurrences[x]; if ((int)vec.size() >= 2) { add(vec.end()[-2] + 1, vec.back(), -1); } add(vec.back() + 1, R, 1); vec.push_back(R); int total = 0; for (int i = 0; i <= which(R); ++i) { int at_most = k - buckets[i].offset; if (at_most >= 0) { add_self(total, buckets[i].pref_sum[min(at_most, B - 1)]); } } dp[R + 1] = total; buckets[which(R + 1)].rebuild(); } printf("%d\n", dp[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct Node { int ex, mini; int pref[335]; }; Node block[335]; vector<int> posi[200010]; int n, k, ara[200010], val[200010], dp[200010]; int blockSz; int which(int p) { return (p / blockSz); } void add(int &a, int b) { a += b; if (a >= 998244353) a -= 998244353; } void calDp(int bi) { int first = max(1, blockSz * bi), last = blockSz * (bi + 1) - 1; int mini, &ex = block[bi].ex; for (int i = first; i <= last; i++) val[i] += ex; mini = INT_MAX; ex = 0; for (int i = first; i <= last; i++) mini = min(val[i], mini); for (int i = first; i <= last; i++) val[i] -= mini; ex = mini; mini = 0; memset(block[bi].pref, 0, sizeof(block[bi].pref)); for (int i = first; i <= last; i++) add(block[bi].pref[val[i]], dp[i - 1]); for (int i = 1; i <= blockSz; i++) add(block[bi].pref[i], block[bi].pref[i - 1]); } void update(int l, int r, int v) { for (int i = l; i <= r; i++) { int blockId = which(i), first = blockSz * blockId, last = blockSz * (blockId + 1) - 1; if (l <= first && last <= r) block[blockId].ex += v, i = last; else val[i] += v; } calDp(which(l)); calDp(which(r)); } int main() { ios::sync_with_stdio(false); int v; cin >> n >> k; blockSz = sqrt(n) + 1; for (int i = 0; i <= 200010 - 1; i++) posi[i].push_back(0); dp[0] = 1; for (int i = 1; i <= n; i++) { cin >> v; int p = (int)posi[v].size() - 1; if (posi[v].size() >= 2) update(posi[v][p - 1] + 1, posi[v][p], -1); posi[v].push_back(i); p = (int)posi[v].size() - 1; update(posi[v][p - 1] + 1, posi[v][p], 1); dp[i] = 0; int til = which(i); for (int bi = 0; bi <= til; bi++) { int can = k - block[bi].ex; if (can >= 0) add(dp[i], block[bi].pref[min(blockSz, can)]); } } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int B = 300; const int mod = 998244353; const int N = 1e5 + 10 + B; int n, k, arr[N]; int memo[N]; int which(int i) { return i / B; } void mod_add(int &a, int b) { a = (a + 1LL * b) % mod; } struct bucket { int ID; int offset = 0; int cnt[B]; int prefix[B]; void rebuild() { int mn = cnt[0]; for (int i = 0; i < B; ++i) { mn = min(mn, cnt[i]); } offset += mn; for (int i = 0; i < B; ++i) { prefix[i] = 0; } for (int i = 0; i < B; ++i) { cnt[i] -= mn; assert(0 <= cnt[i] && cnt[i] < B); mod_add(prefix[cnt[i]], memo[i + ID * B]); } for (int i = 1; i < B; ++i) { mod_add(prefix[i], prefix[i - 1]); } } }; vector<bucket> buckets; void add(int L, int R, int diff) { for (int i = L; i <= R && which(i) == which(L); ++i) { buckets[which(i)].cnt[i - i / B * B] += diff; } buckets[which(L)].rebuild(); if (which(L) == which(R)) return; for (int i = which(L) + 1; i < which(R); ++i) { buckets[i].offset += diff; } for (int i = R; i >= 0 && which(i) == which(R); --i) { buckets[which(i)].cnt[i - i / B * B] += diff; } buckets[which(R)].rebuild(); } int query(int R) { if (R < 0) return 0; int sum = 0; for (int i = 0; i <= which(R); ++i) { int tgt = k - buckets[i].offset; tgt = min(tgt, B - 1); if (tgt < 0) continue; mod_add(sum, buckets[i].prefix[tgt]); } assert(0 <= sum && sum < mod); return sum; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; buckets.resize(n + 1); vector<vector<int>> pos(n + 1); for (int i = 0; i <= n; ++i) { buckets[i].ID = i; pos[i].push_back(-1); } for (int i = 0; i < n; ++i) { cin >> arr[i]; } memo[0] = 1; buckets[which(0)].rebuild(); for (int i = 0; i < n; ++i) { int currS = pos[arr[i]].size(); if (currS >= 2) { int L = pos[arr[i]][currS - 2] + 1; int R = pos[arr[i]].back(); add(L, R, -1); } add(pos[arr[i]].back() + 1, i, 1); memo[i + 1] = query(i); pos[arr[i]].push_back(i); buckets[which(i + 1)].rebuild(); } cout << memo[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int k; vector<int> v; struct block { int total; int el[134]; int dp[134]; int sz; block() { total = 0; sz = 0; } pair<long long int, long long int> way[134]; bool need; inline void build() { need = true; } inline void build(int dum) { need = false; for (int i = 0; i < sz; i++) { int val = el[i]; way[i] = (make_pair(el[i], dp[i])); } sort(way, way + sz); for (int i = 1; i < sz; i++) { way[i].second += way[i - 1].second; if (way[i].second >= 998244353) way[i].second -= 998244353; } } inline long long int query() { if (need) build(114); long long int until = k - total; int id = upper_bound(way, way + sz, make_pair(until, LLONG_MAX)) - way; id--; if (id < 0) return 0; return way[id].second; } }; block b[900]; vector<int> vv[100002]; void add_rng(int l, int r, int x) { int lef = l / 134; int rig = r / 134; for (int i = lef + 1; i < rig; i++) { b[i].total += x; } if (lef == rig) { for (int i = l % 134; i <= r % 134; i++) { b[lef].el[i] += x; } b[lef].build(); } else { for (int i = l % 134; i < b[lef].sz; i++) { b[lef].el[i] += x; } for (int i = 0; i <= r % 134; i++) { b[rig].el[i] += x; } b[lef].build(); b[rig].build(); } } long long int gt(int f) { int be = f / 134; long long int z = 0; for (int i = 0; i <= be; i++) { z += b[i].query(); if (z >= 998244353) z -= 998244353; } return z; } set<int> us; set<int> tmp; int main() { cin >> n >> k; for (int i = 0; i < n; i++) { int a; scanf("%d", &a); v.push_back(a); } for (int i = 0; i < n; i++) { b[i / 134].el[b[i / 134].sz++] = 0; b[i / 134].dp[b[i / 134].sz - 1] = 0; } for (int i = 0; i < 100002; i++) { vv[i].push_back(-1); } b[0].dp[0]++; for (int i = 0; i < n; i++) { int belong = (i + 1) / 134; int att = (i + 1) % 134; int val = v[i]; if (us.count(val) == 0) { us.insert(val); tmp.insert(val); } else { if (tmp.count(val)) { tmp.erase(val); } } if (vv[val].size() == 1) { add_rng(0, i, 1); } else { vector<int> &V = vv[val]; add_rng(V[V.size() - 2] + 1, V[V.size() - 1], -1); add_rng(V.back() + 1, i, 1); } vv[val].push_back(i); long long int nex = gt(i); if (nex >= 998244353) nex -= 998244353; b[belong].dp[att] += nex; b[belong].build(); } long long int ans = b[(n) / 134].dp[(n) % 134]; printf("%lld\n", ans); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize "-O3" using namespace std; const int MOD = 998244353; const int N = 120000; const int SQRT = 200; struct Block { int tl, tr; vector<tuple<int, int, int> > vals; vector<int> psum; int mod = 0; Block() = default; void rebuild() { for (auto& v : vals) { get<0>(v) += mod; } mod = 0; sort(vals.begin(), vals.end()); psum.resize(vals.size(), 0); int n = psum.size(); for (int i = 0; i < n; i++) { psum[i] = 0; if (i) { psum[i] = psum[i - 1]; } psum[i] = (psum[i] + get<2>(vals[i])) % MOD; } } void change(int pos, int val) { for (auto& v : vals) { if (get<1>(v) == pos) { get<0>(v) = 0; get<2>(v) = val; } } rebuild(); } void add(int l, int r, int x) { if (r < tl || l > tr) { return; } if (tl >= l && tr <= r) { mod += x; } else { for (auto& v : vals) { if (get<1>(v) >= l && get<1>(v) <= r) { get<0>(v) += x; } } rebuild(); } } int calc(int k) { k -= mod; if (get<0>(vals[0]) > k) { return 0; } int lg = 0, rg = vals.size(); while (rg - lg > 1) { int mg = (lg + rg) >> 1; if (get<0>(vals[mg]) <= k) { lg = mg; } else { rg = mg; } } return psum[lg]; } void print() { for (auto& v : vals) { cout << get<0>(v) << " " << get<1>(v) << " " << get<2>(v) << "\n"; } } }; Block b[N]; int a[N]; int f[N]; int lst[N]; int id[N]; int lv[N]; int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); int n, k; cin >> n >> k; int bptr = 1; b[bptr].tl = 0; b[bptr].tr = 0; for (int i = 0; i <= n; i++) { if (i != 0) { cin >> a[i]; } if (b[bptr].tr - b[bptr].tl == SQRT) { bptr++; b[bptr].tl = b[bptr].tr = i; } else { b[bptr].tr = i; } b[bptr].vals.emplace_back(N, i, 0); id[i] = bptr; } auto ad = [&](int l, int r, int x) { for (int i = 1; i <= bptr; i++) { b[i].add(l, r, x); } }; auto gt = [&](int x) { int ans = 0; for (int i = 1; i <= bptr; i++) { ans = (ans + b[i].calc(x)) % MOD; } return ans; }; f[0] = 1; b[id[0]].change(0, 1); for (int i = 1; i <= n; i++) { ad(lst[a[i]], i - 1, 1); if (lst[a[i]] != 0) { ad(lv[a[i]], lst[a[i]] - 1, -1); } lv[a[i]] = lst[a[i]]; lst[a[i]] = i; f[i] = (f[i] + gt(k)) % MOD; b[id[i]].change(i, f[i]); } cout << f[n] << "\n"; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2") int a[100003], b[100003], arr[100003]; int dp[100003], res, n, k, x, i; int main() { scanf("%d%d", &n, &k); dp[0] = 1; for (int j = 1; j <= n; j++) { res += dp[j - 1]; if (res >= 998244353) res -= 998244353; scanf("%d", &x); for (i = a[x] + 1; i + 2 <= b[x]; i += 3) { if (arr[i] == k + 1) { res += dp[i - 1]; if (res >= 998244353) res -= 998244353; } if (arr[i + 1] == k + 1) { res += dp[i]; if (res >= 998244353) res -= 998244353; } if (arr[i + 2] == k + 1) { res += dp[i + 1]; if (res >= 998244353) res -= 998244353; } arr[i]--; arr[i + 1]--; arr[i + 2]--; } for (; i <= b[x]; i++) { if (arr[i] == k + 1) { res += dp[i - 1]; if (res >= 998244353) res -= 998244353; } arr[i]--; } for (i = b[x] + 1; i + 2 <= j; i += 3) { if (arr[i] == k) { res -= dp[i - 1]; if (res < 0) res += 998244353; } if (arr[i + 1] == k) { res -= dp[i]; if (res < 0) res += 998244353; } if (arr[i + 2] == k) { res -= dp[i + 1]; if (res < 0) res += 998244353; } arr[i]++; arr[i + 1]++; arr[i + 2]++; } for (; i <= j; i++) { if (arr[i] == k) { res -= dp[i - 1]; if (res < 0) res += 998244353; } arr[i]++; } a[x] = b[x]; b[x] = j; dp[j] = res; } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 7; const int mod = 998244353; int n, k, sq; int a[N], dp[N], bl[N], bk[405][N], tag[405], val[405], num[N]; vector<int> ve[N], pos[405]; inline void rebuild(int p) { int l = (p - 1) * sq + 1, r = min(n, p * sq); for (int i = 0; i < pos[p].size(); ++i) bk[p][pos[p][i]] = 0; for (int i = l; i <= r; ++i) num[i] += tag[p]; tag[p] = 0; val[p] = 0; pos[p].clear(); for (int i = l; i <= r; ++i) { (bk[p][num[i]] += dp[i - 1]) %= mod; pos[p].push_back(num[i]); if (num[i] <= k) (val[p] += dp[i - 1]) %= mod; } } inline void insert(int l, int r) { for (int i = bl[l] + 1; i < bl[r]; ++i) (val[i] += k - tag[i] >= 0 && k - tag[i] <= n ? mod - bk[i][k - tag[i]] : 0) %= mod, ++tag[i]; for (int i = l, lim = min(r, bl[l] * sq); i <= lim; ++i) ++num[i]; if (bl[l] != bl[r]) for (int i = (bl[r] - 1) * sq + 1; i <= r; ++i) ++num[i]; rebuild(bl[l]); rebuild(bl[r]); } inline void erase(int l, int r) { for (int i = bl[l] + 1; i < bl[r]; ++i) --tag[i], (val[i] += k - tag[i] >= 0 && k - tag[i] <= n ? bk[i][k - tag[i]] : 0) %= mod; for (int i = l, lim = min(r, bl[l] * sq); i <= lim; ++i) --num[i]; if (bl[l] != bl[r]) for (int i = (bl[r] - 1) * sq + 1; i <= r; ++i) --num[i]; rebuild(bl[l]); rebuild(bl[r]); } int main() { scanf("%d%d", &n, &k); dp[0] = 1; sq = sqrt(n); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]), bl[i] = (i - 1) / sq + 1, ve[i].push_back(0); for (int i = 1; i <= n; ++i) { ve[a[i]].push_back(i); if (ve[a[i]].size() >= 3) { int sz = ve[a[i]].size(), l = ve[a[i]][sz - 3] + 1, r = ve[a[i]][sz - 2]; erase(l, r); } int sz = ve[a[i]].size(), l = ve[a[i]][sz - 2] + 1, r = ve[a[i]][sz - 1]; insert(l, r); for (int j = 1; j <= bl[n]; ++j) (dp[i] += val[j]) %= mod; } return printf("%d\n", dp[n]), 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const long long MOD = 998244353; long long add(long long a, long long b) { a += b; if (a >= MOD) a -= MOD; return a; } long long sub(long long a, long long b) { a -= b; if (a < 0) a += MOD; return a; } long long mult(long long a, long long b) { return (a * b) % MOD; } const int BQSZ = 325; int buq_fin[BQSZ], buq_off[BQSZ], bqsz; int off[N], A[N], buq[BQSZ][2 * BQSZ + 1], pre[N], dp[N]; vector<int> g[N]; int n, k; void upd_buq(int bid) { memset((buq[bid]), (0), sizeof(buq[bid])); int cur = 0; for (int x = (bid * BQSZ), qwerty = (buq_fin[bid] + 1); x < qwerty; x++) { cur += pre[x]; buq[bid][cur + BQSZ] = add(buq[bid][cur + BQSZ], dp[x + 1]); } } void upd(int i, int v) { int bid = i / BQSZ; pre[i] += v; upd_buq(bid); for (int x = (1), qwerty = (2 * BQSZ + 1); x < qwerty; x++) buq[bid][x] = add(buq[bid][x - 1], buq[bid][x]); for (int x = (bid + 1), qwerty = (bqsz); x < qwerty; x++) buq_off[x] += v; } long long get() { long long ans = 0; for (int x = (0), qwerty = (bqsz); x < qwerty; x++) { int kk = min(2 * BQSZ, k + BQSZ - buq_off[x]); if (kk >= 0) ans = add(ans, buq[x][kk]); } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> k; for (int x = (0), qwerty = (n); x < qwerty; x++) cin >> A[x], buq_fin[x / BQSZ] = x; bqsz = (n - 1) / BQSZ + 1; dp[n] = 1; upd_buq(bqsz - 1); for (int x = n - 1; x >= 0; x--) { upd(x, 1); if (int((g[A[x]]).size()) >= 1) upd(g[A[x]].back(), -2); if (int((g[A[x]]).size()) >= 2) upd(g[A[x]][int((g[A[x]]).size()) - 2], 1); dp[x] = get(); g[A[x]].push_back(x); if (x) upd_buq((x - 1) / BQSZ); } cout << dp[0] << "\n"; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 200005, maxm = 320, tt = 998244353; int n, m, n1, a[maxn], f[maxn], g[maxm][maxn], bl[maxn], sq, val[maxn], tag[maxm]; int L[maxn], R[maxn]; int las[maxn], las1[maxn]; void build(int x, int l, int r) { for (int i = l; i <= r; i++) { g[x][val[i]] = (g[x][val[i]] + f[i - 1]) % tt; } for (int i = 1; i <= n1; i++) g[x][i] = (g[x][i] + g[x][i - 1]) % tt; } void change(int l, int r, int p, int now) { int st = bl[l] + 1, ed = bl[r] - 1; if (st <= ed) for (int i = st; i <= ed; i++) tag[i] += p; if (bl[l] != bl[r]) { for (int i = l; i <= R[bl[l]]; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } else { if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = l; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = l; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } } int query(int l, int r) { int ret = 0; for (int i = bl[l]; i < bl[r]; i++) ret = (ret + g[i][m - tag[i]]) % tt; for (int i = L[bl[r]]; i <= r; i++) if (val[i] + tag[bl[r]] <= m) ret = (ret + f[i - 1]) % tt; return ret; } int main() { scanf("%d%d", &n, &m); n1 = m; for (int i = 1; i <= n; i++) scanf("%d", &a[i]), n1 = max(n1, a[i]); int ls = 0, bls = 0; sq = sqrt(n); for (int i = 1; i <= n; i++) { bl[i] = bls + 1; if (i - ls == sq || i == n) L[++bls] = ls + 1, R[bls] = i, ls = i; } ls = 0, bls = 0; f[0] = 1; for (int i = 1; i <= n; i++) { if (i == ls + sq) { build(++bls, ls + 1, i); ls = i; } if (las[a[i]]) change(las1[a[i]] + 1, las[a[i]], -1, i); change(las[a[i]] + 1, i, 1, i); las1[a[i]] = las[a[i]], las[a[i]] = i; f[i] = query(1, i); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 10; const int MM = 998244353; int n, m; int a[MAXN]; int dp[MAXN]; void updS(int &x, int y) { x -= y; if (x < 0) x += MM; } void updA(int &x, int y) { x += y; if (x >= MM) x -= MM; } namespace Block { const int Bibi = 512; const int N = 1e5 + 10; const int B = N / Bibi + 10; int val[N]; int cnt; int valid; struct block { int l, r; long long lazy_tag = 0; long long presum_tag = 0; int cnt[N * 2]; void update(int l, int r, int v) { if (v == 1) { for (int i = l; i <= r; i++) { updS(cnt[val[i]], dp[i]); val[i]++; } } else { for (int i = l; i <= r; i++) { val[i]--; updA(cnt[val[i]], dp[i]); } } } int query(int v) { v = v - lazy_tag; if (v < 0) return 0; v += N; return (cnt[v] + presum_tag) % MM; } } b[B]; void init(int n) { cnt = (n - 1) / Bibi + 1; for (int i = 1; i <= cnt; i++) { b[i].r = min(n, i * Bibi); b[i].l = (i - 1) * Bibi + 1; } for (int i = 1; i <= n; i++) val[i] = N; } int get_block(int x) { return (x - 1) / Bibi + 1; } void update(int l, int r, int v) { if (l > r) return; int p = get_block(l), q = get_block(r); if (p == q) b[p].update(l, r, v); else { b[p].update(l, b[p].r, v); b[q].update(b[q].l, r, v); for (int i = p + 1; i < q; i++) { b[i].lazy_tag += v; } } } int query(int v) { long long ans = 0; for (int i = 1; i <= cnt; i++) { ans += b[i].query(v); } return (ans % MM); } } // namespace Block int pre[MAXN], ppre[MAXN]; void solve(int casi) { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); pre[i] = ppre[i] = 0; } Block::init(n); dp[1] = 1; for (int i = 1; i <= n; i++) { int v = a[i]; Block::b[Block::get_block(i)].presum_tag += dp[i]; Block::update(pre[v] + 1, i, 1); Block::update(ppre[v] + 1, pre[v], -1); ppre[v] = pre[v]; pre[v] = i; dp[i + 1] = Block::query(m); } printf("%d\n", dp[n + 1]); } int main() { int T = 1; for (int i = 1; i <= T; i++) solve(i); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline long long read() { long long x = 0; int ch = getchar(), f = 1; while (!isdigit(ch) && (ch != '-') && (ch != EOF)) ch = getchar(); if (ch == '-') { f = -1; ch = getchar(); } while (isdigit(ch)) { x = (x << 1) + (x << 3) + ch - '0'; ch = getchar(); } return x * f; } const int N = 1e5 + 10, mod = 998244353; int n, k, a[N], b[N], pos[N], Pos[N], dp[N]; int block, id[N], sum[320][700], Sum[320]; inline void Mod(int &x, int y) { x += y, x = (x >= mod) ? x - mod : x; } inline void ReBuild(int pos) { int l = (pos - 1) * block + 1, r = min(n, pos * block), suf = block; for (register int i = (0); i <= (block << 1); i++) sum[pos][i] = 0; for (register int i = (r); i >= (l); i--) suf += b[i], Mod(sum[pos][suf], dp[i - 1]); for (register int i = (1); i <= (block << 1); i++) Mod(sum[pos][i], sum[pos][i - 1]); Sum[pos] = suf - block; } inline int Query(int x) { int pos = id[x], l = (pos - 1) * block + 1, suf = 0, ans = 0; for (register int i = (x); i >= (l); i--) suf += b[i], Mod(ans, (suf <= k) * dp[i - 1]); for (register int i = (pos - 1); i >= (1); i--) { if (k - suf + block >= 0) Mod(ans, sum[i][min(block << 1, k - suf + block)]); suf += Sum[i]; } return ans; } int main() { n = read(), k = read(), block = sqrt(n); for (register int i = (1); i <= (n); i++) a[i] = read(), id[i] = (i - 1) / block + 1; dp[0] = 1; for (register int i = (1); i <= (n); i++) { b[i] = 1; if (pos[a[i]]) { if (Pos[a[i]]) b[Pos[a[i]]] = 0, ReBuild(id[Pos[a[i]]]); Pos[a[i]] = pos[a[i]], b[pos[a[i]]] = -1, ReBuild(id[pos[a[i]]]); } pos[a[i]] = i, dp[i] = Query(i); if (i != n && id[i + 1] != id[i]) ReBuild(id[i]); } printf("%d\n", dp[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2") using namespace std; template <class T> bool umin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template <class T> bool umax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } int a[101001]; vector<int> positions[101010]; int tr[404040]; int b[101010]; int dp[404040]; long long getSum(int* b, int* dp, int n) { long long res = 0; for (int j = 0; j < n; ++j) { res += b[j] > 0 ? 0 : dp[j]; } return res; } const int fftmod = 998244353; int main() { int n, k; cin >> n >> k; for (int i = 0; i < (n); ++i) { b[i] -= k; } for (int i = 0; i < (n); ++i) { cin >> a[i]; --a[i]; positions[i].push_back(-1); positions[i].push_back(-1); } dp[0] = 1; for (int i = 0; i < n; ++i) { int x = a[i]; { int to = positions[x].back(); int from = *++positions[x].rbegin() + 1; for (int j = from; j <= to; ++j) { b[j]--; } } int from = positions[x].back() + 1; for (int j = from; j <= i; ++j) { b[j]++; } long long res = getSum(b, dp, i + 1); dp[i + 1] = res % fftmod; positions[x].push_back(i); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, K, a[100009], pre[100009], ind[100009], ans[100009]; int bf[296][100009 << 1], bst[296], bans[296], f[100009]; inline int read(); inline void M(int& x, int y) { x = x + y < 998244353 ? x + y : x + y - 998244353; } inline int get_B(int x) { return (x + 340 - 1) / 340; } inline void add_scatter(int l, int r, int va, int ib) { for (register int i(l); i <= r; ++i) { M(bf[ib][f[i] + 100009], 998244353 - ans[i - 1]); if (f[i] == bst[ib] && va == 1) M(bans[ib], 998244353 - ans[i - 1]); f[i] += va; M(bf[ib][f[i] + 100009], ans[i - 1]); if (f[i] == bst[ib] && va != 1) M(bans[ib], ans[i - 1]); } } inline void add(int l, int r, int va) { int lb = get_B(l), rb = get_B(r); if (lb == rb) return add_scatter(l, r, va, lb); if (l % 340 != 1) { add_scatter(l, lb * 340, va, lb); ++lb; } if (r % 340) { add_scatter((rb - 1) * 340 + 1, r, va, rb); --rb; } for (register int i(lb); i <= (rb); ++i) if (va == 1) { M(bans[i], 998244353 - bf[i][bst[i] + 100009]); --bst[i]; } else { ++bst[i]; M(bans[i], bf[i][bst[i] + 100009]); } } inline int ask_scatter(int l, int r, int ib, int ret = 0) { for (register int i(l); i <= r; ++i) if (f[i] <= bst[ib]) M(ret, ans[i - 1]); return ret; } inline int ask(int l, int r) { int lb = get_B(l), rb = get_B(r), ret = 0; if (lb == rb) return ask_scatter(l, r, lb); if (l % 340 != 1) { M(ret, ask_scatter(l, lb * 340, lb)); ++lb; } if (r % 340) { M(ret, ask_scatter((rb - 1) * 340 + 1, r, rb)); --rb; } for (register int i(lb); i <= rb; ++i) M(ret, bans[i]); return ret; } int main() { n = read(), K = read(); ans[0] = 1; for (register int i(1); i <= n; ++i) { a[i] = read(); pre[i] = ind[a[i]]; ind[a[i]] = i; } int nB = get_B(n); for (register int i(1); i <= nB; ++i) bst[i] = K; for (register int i(1); i <= n; ++i) { if (pre[i]) add(pre[pre[i]] + 1, pre[i], -1); int ib = get_B(i); M(bf[ib][100009], ans[i - 1]); if (0 <= bst[ib]) M(bans[ib], ans[i - 1]); add(pre[i] + 1, i, 1); ans[i] = ask(1, i); } printf("%d\n", ans[n]); return 0; } inline int read() { int x = 0, f = 1; char c = getchar(); while (c > '9' || c < '0') f = (c == '-') ? -1 : f, c = getchar(); while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int M = 100005, K = 316, mod = 998244353; int n, k, a[M], b[M], dp[M], sum[K + 5][2 * K + 5], in[M], tot[K + 5]; vector<int> v[M]; void pl(int &a, int b) { a += b; if (a >= mod) a -= mod; } void update(int i, int x) { b[i] = x; memset(sum[in[i]], 0, sizeof(sum[in[i]])); tot[in[i]] = 0; for (int j = min(n, K * (in[i] + 1) - 1); j && in[i] == in[j]; j--) { tot[in[i]] += b[j]; pl(sum[in[i]][tot[in[i]] + K], dp[j - 1]); } for (int j = 1; j <= 2 * K; j++) pl(sum[in[i]][j], sum[in[i]][j - 1]); assert(abs(tot[in[i]]) <= K); } int main() { ios_base::sync_with_stdio(0); cin.tie(0); dp[0] = 1; cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; in[i] = i / K; } for (int i = 1; i <= n; i++) { update(i, 1); if (v[a[i]].size()) update(v[a[i]].back(), -1); if (v[a[i]].size() > 1) update(*(v[a[i]].end() - 2), 0); v[a[i]].push_back(i); int s = 0; for (int j = i; j && in[i] == in[j]; j--) { s += b[j]; if (s <= k) pl(dp[i], dp[j - 1]); } for (int j = in[i] - 1; j + 1; j--) { int t = k - s; if (t + K >= 0) pl(dp[i], sum[j][min(2 * K, t + K)]); s += tot[j]; } } cout << dp[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mn = 1e5, msq = 317, mod = 998244353; int n, sq, k, a[mn + 3]; int inp[mn + 3], lw[msq + 3], rw[msq + 3]; int num[mn + 3]; int topw[mn + 3], secw[mn + 3]; long long f[mn + 3]; long long Sumf[msq + 3][2 * msq + 3]; int add[msq + 3]; void Add(int l, int r, int ad) { l--; r++; if (inp[l] >= inp[r]) { register int p = inp[l]; for (register int i = l + 1; i <= r - 1; i++) { if (ad == 1) Sumf[p][num[i]] -= f[i - 1]; else Sumf[p][num[i] - 1] += f[i - 1]; num[i] += ad; } return; } register int p = inp[l]; for (register int i = l + 1; i <= rw[p]; i++) { if (ad == 1) Sumf[p][num[i]] -= f[i - 1]; else Sumf[p][num[i] - 1] += f[i - 1]; num[i] += ad; } for (p = inp[l] + 1; p <= inp[r] - 1; p++) add[p] += ad; p = inp[r]; for (register int i = lw[p]; i <= r - 1; i++) { if (ad == 1) Sumf[p][num[i]] -= f[i - 1]; else Sumf[p][num[i] - 1] += f[i - 1]; num[i] += ad; } } int main() { cin >> n >> k; sq = sqrt(n); for (int i = 1; i <= n; i++) scanf("%d", a + i); int totp = 0; for (int i = 1; i <= n; i++) { if ((i - 1) % sq == 0) lw[++totp] = i; if (i % sq == 0 || i == n) rw[totp] = i; inp[i] = totp; } inp[n + 1] = ++totp; lw[totp] = rw[totp] = n + 1; f[0] = 1; for (register int i = 1; i <= n; i++) { for (int nu = 0; nu <= 2 * sq; nu++) Sumf[inp[i]][nu] += f[i - 1]; Add(topw[a[i]] + 1, i, 1); if (topw[a[i]]) Add(secw[a[i]] + 1, topw[a[i]], -1); for (register int p = 1; p < inp[i]; p++) if (add[p] <= k) f[i] += Sumf[p][min(2 * sq, k - add[p])], f[i] %= mod; register int p = inp[i]; for (register int w = lw[p]; w <= i; w++) if (num[w] + add[p] <= k) f[i] += f[w - 1], f[i] %= mod; f[i] = (f[i] + mod) % mod; secw[a[i]] = topw[a[i]]; topw[a[i]] = i; } cout << f[n]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
java
// upsolve with rainboy import java.io.*; import java.util.*; public class CF1129D { static final int MD = 998244353, A = 100000, B = 200; static int[] bb, dp, ss; static int[][] dq; static void update(int h) { int[] qq = dq[h]; Arrays.fill(qq, 0); int t = 0; for (int i = (h + 1) * B; i > h * B; i--) { t += bb[i]; qq[B + t] = (qq[B + t] + dp[i - 1]) % MD; } for (int c = 1; c <= B + B; c++) qq[c] = (qq[c] + qq[c - 1]) % MD; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int[] pp = new int[1 + n]; int[] ii = new int[1 + A]; for (int i = 1; i <= n; i++) { int a = Integer.parseInt(st.nextToken()); pp[i] = ii[a]; ii[a] = i; } bb = new int[1 + n]; dp = new int[1 + n]; dp[0] = 1; int m = (n + B - 1) / B; ss = new int[m]; dq = new int[m][B + 1 + B]; for (int j = 1; j <= n; j++) { int p; m = (j - 1) / B; ss[m] += 1 - bb[j]; bb[j] = 1; if ((p = pp[j]) != 0) { int h = (p - 1) / B; ss[h] += -1 - bb[p]; bb[p] = -1; if (p <= m * B) update(h); if ((p = pp[p]) != 0) { h = (p - 1) / B; ss[h] += 0 - bb[p]; bb[p] = 0; if (p <= m * B) update(h); } } int x = 0, t = 0; for (int i = j; i > m * B; i--) if ((t += bb[i]) <= k) x = (x + dp[i - 1]) % MD; for (int h = m - 1; h >= 0; h--) { if (k - t >= -B) x = (x + dq[h][B + Math.min(B, k - t)]) % MD; t += ss[h]; } dp[j] = x; if (j % B == 0) update(m); } System.out.println(dp[n]); } }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2") using namespace std; template <class T> bool umin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template <class T> bool umax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } int a[101001]; vector<int> positions[101010]; int tr[404040]; int b[101010]; int dp[404040]; long long getSum(int* __restrict b, int* __restrict dp, int n) { long long res = 0; for (int j = 0; j < n; ++j) { res += b[j] > 0 ? 0 : dp[j]; } return res; } const int fftmod = 998244353; int main() { int n, k; cin >> n >> k; for (int i = 0; i < (n); ++i) { b[i] -= k; } for (int i = 0; i < (n); ++i) { cin >> a[i]; --a[i]; positions[i].push_back(-1); positions[i].push_back(-1); } dp[0] = 1; for (int i = 0; i < n; ++i) { int x = a[i]; { int to = positions[x].back(); int from = *++positions[x].rbegin() + 1; for (int j = from; j <= to; ++j) { b[j]--; } } int from = positions[x].back() + 1; for (int j = from; j <= i; ++j) { b[j]++; } long long res = getSum(b, dp, i + 1); dp[i + 1] = res % fftmod; positions[x].push_back(i); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mo = 998244353; const int N = 100005; const int BLK = 405; const int K = 255; int L[K], R[K], tg[K]; int top[K], pos[K]; int id[N], f[N], s[N]; int v[N], V[N], LIM; int a[N], la[N], pre[N], n; void pushdown(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) s[i] += tg[k]; tg[k] = 0; } void pushup(int k) { top[k] = L[k]; v[top[k]] = f[id[L[k]]]; V[top[k]] = s[id[L[k]]]; for (int i = (int)(L[k] + 1); i <= (int)(R[k]); i++) { if (s[id[i]] != s[id[i - 1]]) { V[++top[k]] = s[id[i]]; v[top[k]] = v[top[k] - 1]; } v[top[k]] = (v[top[k]] + f[id[i]]) % mo; } pos[k] = L[k] - 1; for (; pos[k] != top[k]; ++pos[k]) if (V[pos[k] + 1] > LIM) break; } bool cmp(int x, int y) { return s[x] < s[y]; } void build(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) id[i] = i; sort(id + L[k], id + R[k] + 1, cmp); pushup(k); } int q1[BLK + 5], q2[BLK + 5]; void add(int k, int l, int r, int v) { pushdown(k); int p1 = 0, p2 = 0, p3 = L[k] - 1; for (int i = (int)(L[k]); i <= (int)(R[k]); i++) if (l <= id[i] && id[i] <= r) q1[++p1] = id[i], s[id[i]] += v; else q2[++p2] = id[i]; int pp1 = 1, pp2 = 1; for (; pp1 <= p1 || pp2 <= p2;) if (pp2 > p2 || (pp1 <= p1 && s[q1[pp1]] < s[q2[pp2]])) id[++p3] = q1[pp1++]; else id[++p3] = q2[pp2++]; pushup(k); } void add(int k, int val) { tg[k] += val; for (; pos[k] != top[k] && V[pos[k] + 1] + tg[k] <= LIM; ++pos[k]) ; for (; pos[k] != L[k] - 1 && V[pos[k]] + tg[k] > LIM; --pos[k]) ; } int query(int k) { return pos[k] == L[k] - 1 ? 0 : v[pos[k]]; } int ed; void change(int l, int r, int v) { for (; r >= l && r >= ed; r--) s[r] += v; if (r < l) return; int bl = l / BLK, br = r / BLK; if (bl == br) add(bl, l, r, v); else { for (int i = (int)(bl + 1); i <= (int)(br - 1); i++) add(i, v); add(bl, l, R[bl], v); add(br, L[br], r, v); } } void update(int x) { change(pre[x], x - 1, 1); if (pre[x]) change(pre[pre[x]], pre[x] - 1, -1); } int main() { scanf("%d%d", &n, &LIM); for (int i = (int)(1); i <= (int)(n); i++) scanf("%d", &a[i]); for (int i = (int)(1); i <= (int)(n); i++) la[a[i]] = 0; for (int i = (int)(1); i <= (int)(n); i++) pre[i] = la[a[i]], la[a[i]] = i; for (int i = (int)(0); i <= (int)(n / BLK); i++) L[i] = i * BLK, R[i] = min(i * BLK + BLK - 1, n); f[0] = 1; for (int i = (int)(1); i <= (int)(n); i++) { update(i); int be = i / BLK; for (int j = (int)(0); j <= (int)(be - 1); j++) f[i] = (f[i] + query(j)) % mo; for (int j = (int)(be * BLK); j <= (int)(i - 1); j++) if (s[j] <= LIM) f[i] = (f[i] + f[j]) % mo; if (i % BLK == BLK - 1 || i == n) build(i / BLK), ed = i + 1; } printf("%d\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize(3) using namespace std; template <typename T> void chkmax(T &x, T y) { if (x < y) x = y; } template <typename T> void chkmin(T &x, T y) { if (x > y) x = y; } inline int read() { int x = 0; char c = getchar(); bool f = 0; while (c < 48) f |= c == '-', c = getchar(); while (c > 47) x = x * 10 + (c ^ 48), c = getchar(); return f ? -x : x; } const int maxn = 1e5 + 10, P = 998244353; int Inc(int x, int y) { return x + y < P ? x + y : x + y - P; } int Dec(int x, int y) { return x < y ? x - y + P : x - y; } void Add(int &x, int y) { x += y; if (x >= P) x -= P; } void Sub(int &x, int y) { x -= y; if (x < 0) x += P; } int n, k, A[maxn], lev[maxn], dp[maxn], vp[maxn], lst[maxn]; int bsz, bl[maxn]; int ns, tag[505]; int buf_top, buf_st[maxn * 100], nxt[maxn * 100], key[maxn * 100], val[maxn * 100]; struct hashmap { int ct, h[1009]; int find(int x) { for (int i = h[(x + 114514) % 1009]; i; i = nxt[i]) if (key[i] == x) return i; return -1; } int query(int x) { int tp = find(x); return tp == -1 ? 0 : val[tp]; } void add(int x, int v) { int tp = find(x); if (tp != -1) { Add(val[tp], v); } else { int &p = h[(x + 114514) % 1009]; tp = buf_st[buf_top--], nxt[tp] = p, p = tp, key[tp] = x, val[tp] = v, ct++; } } void clear() { for (int x = (0), xend = (1008); x <= xend; ++x) { int &i = h[x]; while (i) { key[i] = val[i] = 0, buf_st[++buf_top] = i; int &tp = nxt[i]; i = tp, tp = 0; } } } } ump[505]; void pushdown(int ps) { int l = (ps - 1) * bsz + 1, r = min(n, ps * bsz); ump[ps].clear(); for (int i = (l), iend = (r); i <= iend; ++i) { ump[ps].add(lev[i] += tag[ps], dp[i - 1]); } tag[ps] = 0; } void upd(int l, int r, int x) { int ps = bl[l], &tp = tag[ps]; if (ump[ps].ct > 1000) pushdown(ps); for (int i = (l), iend = (r); i <= iend; ++i) { if (lev[i] + tp == -1 && x == 1) Add(ns, dp[i - 1]); if (lev[i] + tp == 0 && x == -1) Sub(ns, dp[i - 1]); if (dp[i - 1]) ump[ps].add(lev[i], P - dp[i - 1]); ump[ps].add(lev[i] += x, dp[i - 1]); } } void add(int l, int r, int x) { if (bl[l] == bl[r]) { upd(l, r, x); return; } upd(l, bl[l] * bsz, x); upd((bl[r] - 1) * bsz + 1, r, x); for (int ps = (bl[l] + 1), psend = (bl[r] - 1); ps <= psend; ++ps) { if (x == 1) { Add(ns, ump[ps].query(-1 - tag[ps])); } else { Sub(ns, ump[ps].query(-tag[ps])); } tag[ps] += x; } } void ins(int x, int v) { pushdown(bl[x]); if (lev[x] >= 0) Add(ns, v); } void solve() { buf_top = maxn * 100 - 1; for (int i = (1), iend = (maxn * 100 - 1); i <= iend; ++i) buf_st[i] = i; cin >> n >> k; bsz = 200; for (int i = (1), iend = (n); i <= iend; ++i) lev[i] = k, A[i] = read(), bl[i] = (i - 1) / bsz + 1; dp[0] = 1; for (int i = (1), iend = (n); i <= iend; ++i) { int &p = lst[i]; p = vp[A[i]], vp[A[i]] = i; if (p) add(lst[p] + 1, p, 1); add(p + 1, i, -1), ins(i, dp[i - 1]), dp[i] = ns; } cout << dp[n] << endl; } signed main() { solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #pragma GCC optimize(3) const int P = 998244353; int n, k; inline int ad(int& x, int& y) { return (x + y > P ? x + y - P : x + y); } int A[200006], las[200006], pr[200006]; const int blo = 233; int bel[200006]; pair<int, int> B[200006]; int S[200006]; int val[200006], gv[200006], lz[200006], cur; void rebuild(int b) { int l = b * blo - blo + 1, r = b * blo; for (int i = (l), iend = (r); i <= iend; ++i) val[i] = val[i] + lz[b]; lz[b] = 0; for (int i = (l), iend = (r); i <= iend; ++i) B[i] = make_pair(val[i], gv[i]); sort(B + l, B + r + 1); S[l] = B[l].second; for (int i = (l + 1), iend = (r); i <= iend; ++i) S[i] = ad(S[i - 1], B[i].second); } void add(int l, int r, int c) { ++l, ++r; if (bel[l] == bel[r]) { int b = bel[l]; for (int i = (l), iend = (r); i <= iend; ++i) val[i] += c; rebuild(b); return; } for (int i = (l), iend = (bel[l] * blo); i <= iend; ++i) val[i] += c; rebuild(bel[l]); for (int i = (r), iend = (bel[r] * blo - blo + 1); i >= iend; --i) val[i] += c; rebuild(bel[r]); for (int i = (bel[l] + 1), iend = (bel[r] - 1); i <= iend; ++i) lz[i] += c; } int que() { int as = 0; for (int b = (1), bend = (bel[cur]); b <= bend; ++b) { int l = (b - 1) * blo + 1, r = b * blo; int ps = upper_bound(B + l, B + r + 1, make_pair(k - lz[b], 0x3f3f3f3f)) - B - 1; if (ps < l) continue; else as = ad(as, S[ps]); } return as; } void gt(int p, int c) { ++p; gv[p] = c; rebuild(bel[p]); } int dp[200006]; void solve() { cin >> n >> k; for (int i = (1), iend = (n); i <= iend; ++i) scanf("%d", A + i), las[i] = pr[A[i]], pr[A[i]] = i; for (int i = (1), iend = (n + 1); i <= iend; ++i) bel[i] = (i - 1) / blo + 1; dp[0] = 1; for (int i = (1), iend = (n); i <= iend; ++i) { cur = i + 1; add(las[i] + 1, i, 1); if (las[i]) add(las[las[i]] + 1, las[i], -1); gt(i, dp[i - 1]); dp[i] = que(); } printf("%d\n", dp[n]); } signed main() { solve(); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10; const int Mod = 998244353; int add(int a, int b) { return (a += b) >= Mod ? a - Mod : a; } int sub(int a, int b) { return (a -= b) < 0 ? a + Mod : a; } int mul(int a, int b) { return 1ll * a * b % Mod; } int n, k, a[N], siz, cntblo; int pre[N], lst[N], dp[N], f[N], sum[400][N], ans[400]; int tag[400], L[400], R[400], bel[N]; void rebuild(int id) { for (int i = L[id]; i <= R[id]; i++) { sum[id][f[i]] = 0; f[i] += tag[id]; } tag[id] = ans[id] = 0; for (int i = L[id]; i <= R[id]; i++) { sum[id][f[i]] = add(sum[id][f[i]], dp[i]); if (f[i] <= k) { ans[id] = add(ans[id], dp[i]); } } } void update(int x, int vl) { int id = bel[x]; sum[id][f[x]] = sub(sum[id][f[x]], dp[x]); if (f[x] <= k) { ans[id] = sub(ans[id], dp[x]); } f[x] += vl; sum[id][f[x]] = add(sum[id][f[x]], dp[x]); if (f[x] <= k) { ans[id] = add(ans[id], dp[x]); } } void modify(int l, int r, int vl) { if (l > r) { return; } if (bel[l] == bel[r]) { rebuild(bel[l]); for (int i = l; i <= r; i++) { update(i, vl); } return; } rebuild(bel[l]); for (int i = l; i <= R[bel[l]]; i++) { update(i, vl); } rebuild(bel[r]); for (int i = L[bel[r]]; i <= r; i++) { update(i, vl); } for (int id = bel[l] + 1; id < bel[r]; id++) { if (vl > 0) { ans[id] = sub(ans[id], sum[id][k - tag[id]]); ++tag[id]; } else { --tag[id]; ans[id] = add(ans[id], sum[id][k - tag[id]]); } } } int query(int x) { int res = 0; for (int i = 1; i < bel[x]; i++) { res = add(res, ans[i]); } for (int i = L[bel[x]]; i <= x; i++) { if (f[i] <= k) { res = add(res, dp[i]); } } return res; } int main() { scanf("%d %d", &n, &k); siz = sqrt(n); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); pre[i] = lst[a[i]]; lst[a[i]] = i; bel[i] = (i - 1) / siz + 1; } cntblo = bel[n]; for (int i = 1; i <= cntblo; i++) { L[i] = R[i - 1] + 1; R[i] = min(n, L[i] + siz - 1); } dp[1] = 1; for (int i = 1; i <= n; i++) { modify(pre[i] + 1, i - 1, 1); modify(pre[pre[i]] + 1, pre[i], -1); dp[i + 1] = query(i); rebuild(bel[i]); update(i, 1); } printf("%d", dp[n + 1]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; const int MAXN = 2e5; const int B = 315; int cnt[1 + MAXN], dp[1 + MAXN]; vector<int> occ[1 + MAXN]; void add_self(int &x, int y) { x += y; if (x >= mod) x -= mod; } void min_self(int &x, int y) { x = min(x, y); } struct SQRT { int id, offset, pref_sum[B]; void rebuild() { int st = id * B, dr = (id + 1) * B - 1, minn = INT_MAX; for (int i = st; i <= dr; ++i) min_self(minn, offset + cnt[i]); for (int i = st; i <= dr; ++i) cnt[i] -= minn - offset; offset = minn; for (int i = 0; i < B; ++i) pref_sum[i] = 0; for (int i = st; i <= dr; ++i) add_self(pref_sum[cnt[i]], dp[i]); for (int i = 1; i < B; ++i) add_self(pref_sum[i], pref_sum[i - 1]); } } a[MAXN / B + 1]; int get_bucket(int index) { return index / B; } void update(int l, int r, short t) { int bl = get_bucket(l), br = get_bucket(r); for (int i = l; i <= r && get_bucket(i) == bl; ++i) cnt[i] += t; a[bl].rebuild(); if (bl == br) return; for (int i = bl + 1; i < br; ++i) a[i].offset += t; for (int i = r; get_bucket(i) == br; --i) cnt[i] += t; a[br].rebuild(); } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int n, k; cin >> n >> k; for (int i = 0; i <= get_bucket(n); ++i) a[i].id = i; for (int i = 1; i <= n; ++i) occ[i].emplace_back(-1); dp[0] = 1; a[0].rebuild(); for (int r = 0; r < n; ++r) { int x; cin >> x; vector<int> &vec = occ[x]; if (static_cast<int>(vec.size()) >= 2) update(vec.end()[-2] + 1, vec.back(), -1); update(vec.back() + 1, r, 1); vec.emplace_back(r); int val = 0; for (int i = 0; i <= get_bucket(r); ++i) { int at_most = k - a[i].offset; if (at_most >= 0) add_self(val, a[i].pref_sum[min(at_most, B - 1)]); } dp[r + 1] = val; a[get_bucket(r + 1)].rebuild(); } cout << dp[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int p = 998244353; int n, k, a[100102], dp[100102], pre[100102], ap[100102]; int blk, lx[320], rx[320], bel[100102], cn, cnt[100102], laz[320]; int sum[320][100102 << 1], sdp[320]; inline void clr(int x) { for (int i = lx[x]; i <= rx[x]; i++) sum[x][cnt[i] + n] = 0; sdp[x] = 0; } inline void love(int x) { for (int i = lx[x]; i <= rx[x]; i++) cnt[i] += laz[x]; laz[x] = 0; for (int i = lx[x]; i <= rx[x]; i++) (sum[x][cnt[i] + n] += dp[i]) %= p; for (int i = lx[x]; i <= rx[x]; i++) if (cnt[i] <= k) sdp[x] = (sdp[x] + dp[i]) % p; } inline void chng(int l, int r, int x) { if (l > r) return; if (bel[l] == bel[r]) { clr(bel[l]); for (int i = l; i <= r; i++) cnt[i] += x; love(bel[l]); return; } clr(bel[l]); for (int i = l; i <= rx[bel[l]]; i++) cnt[i] += x; love(bel[l]); clr(bel[r]); for (int i = lx[bel[r]]; i <= r; i++) cnt[i] += x; love(bel[r]); for (int i = bel[l] + 1; i < bel[r]; i++) { if (x == 1) { sdp[i] = (sdp[i] - sum[i][k - laz[i] + n] + p) % p; laz[i]++; } else { laz[i]--; sdp[i] = (sdp[i] + sum[i][k - laz[i] + n]) % p; } } } inline int ask(int l, int r) { if (bel[l] == bel[r]) { int ans = 0; for (int i = l; i <= r; i++) if (cnt[i] + laz[bel[l]] <= k) ans = (ans + dp[i]) % p; return ans; } int ans = 0; for (int i = l; i <= rx[bel[l]]; i++) if (cnt[i] + laz[bel[i]] <= k) ans = (ans + dp[i]) % p; for (int i = lx[bel[r]]; i <= r; i++) if (cnt[i] + laz[bel[i]] <= k) ans = (ans + dp[i]) % p; for (int i = bel[l] + 1; i < bel[r]; i++) ans = (ans + sdp[i]) % p; return ans; } int main() { scanf("%d%d", &n, &k); blk = sqrt(n); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = 1; i <= n; i++) pre[i] = ap[a[i]], ap[a[i]] = i; for (int i = 0; i <= n; i++) { int j = i; while (j <= n && (i / blk) == (j / blk)) j++; j--; lx[cn] = i, rx[cn] = j; for (int ii = i; ii <= j; ii++) bel[ii] = cn; cn++; i = j; } dp[0] = 1; for (int i = 0; i < cn; i++) love(i); for (int i = 1; i <= n; i++) { chng(pre[i], i - 1, 1); chng(pre[pre[i]], pre[i] - 1, -1); clr(bel[i]); dp[i] = ask(0, i - 1); love(bel[i]); } printf("%d\n", dp[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, flag[310], ret[310], a[100100], pos[100100], lst[100100], w[100100], f[100100], cnt[310][100100]; int mo(int x, int y) { return x + y < 998244353 ? x + y : x + y - 998244353; } void add(int l, int r, int x) { int s = (l - 1) / 350 + 1, t = r / 350 + 1; if (s == t) { for (int i = l; i <= r; i++) { w[i] += x; cnt[s][w[i] - x] = mo(cnt[s][w[i] - x], 998244353 - f[i - 1]), cnt[s][w[i]] = mo(cnt[s][w[i]], f[i - 1]); if (x == 1 && w[i] == k - flag[s] + 1) ret[s] = mo(ret[s], 998244353 - f[i - 1]); else if (x == -1 && w[i] == k - flag[s]) ret[s] = mo(ret[s], f[i - 1]); } return; } for (int i = l; i <= s * 350; i++) { w[i] += x; cnt[s][w[i] - x] = mo(cnt[s][w[i] - x], 998244353 - f[i - 1]), cnt[s][w[i]] = mo(cnt[s][w[i]], f[i - 1]); if (x == 1 && w[i] - 1 == k - flag[s]) ret[s] = mo(ret[s], 998244353 - f[i - 1]); else if (x == -1 && w[i] == k - flag[s]) ret[s] = mo(ret[s], f[i - 1]); } for (int i = s + 1; i < t; i++) { flag[i] += x; if (x == 1) ret[i] = mo(ret[i], 998244353 - cnt[i][k - flag[i] + 1]); else ret[i] = mo(ret[i], cnt[i][k - flag[i]]); } for (int i = (t - 1) * 350 + 1; i <= r; i++) { w[i] += x; cnt[t][w[i] - x] = mo(cnt[t][w[i] - x], 998244353 - f[i - 1]), cnt[t][w[i]] = mo(cnt[t][w[i]], f[i - 1]); if (x == 1 && w[i] - 1 == k - flag[t]) ret[t] = mo(ret[t], 998244353 - f[i - 1]); else if (x == -1 && w[i] == k - flag[t]) ret[t] = mo(ret[t], f[i - 1]); } } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = 1; i <= n; i++) lst[i] = pos[a[i]], pos[a[i]] = i; f[0] = 1; for (int i = 1; i <= n; i++) { add(lst[i] + 1, i - 1, 1); if (lst[i]) add(lst[lst[i]] + 1, lst[i], -1); for (int j = 1; j <= (i - 1) / 350 + 1; j++) f[i] = mo(f[i], ret[j]); if (k >= 1) f[i] = mo(f[i], f[i - 1]), ret[(i - 1) / 350 + 1] = mo(ret[(i - 1) / 350 + 1], f[i - 1]); w[i] = 1; cnt[(i - 1) / 350 + 1][1] = mo(cnt[(i - 1) / 350 + 1][1], f[i - 1]); } printf("%d\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; const long long BIG = 1446803456761533460; const int Big = 336860180; stringstream sss; const int maxn = 100010; const int SQ = 400; const int maxnsq = maxn / SQ + 10; int n, k; int A[maxn], P[maxn]; map<int, int> lst; int block[maxnsq][maxn * 2]; int lazy[maxnsq], val[maxn]; int dp[maxn]; int sum = 0; int& blk(int x, int y) { return block[x / SQ][y + maxn]; } void inc(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { sum = ((sum) + (MOD - blk(l, k - lazy[l / SQ]))) % MOD; ++lazy[l / SQ]; l += SQ; } else { if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (MOD - dp[l])) % MOD; blk(l, val[l]) = ((blk(l, val[l])) + (MOD - dp[l])) % MOD; ++val[l]; blk(l, val[l]) = ((blk(l, val[l])) + (dp[l])) % MOD; ++l; } } } void dec(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { --lazy[l / SQ]; sum = ((sum) + (blk(l, k - lazy[l / SQ]))) % MOD; l += SQ; } else { blk(l, val[l]) = ((blk(l, val[l])) + (MOD - dp[l])) % MOD; --val[l]; blk(l, val[l]) = ((blk(l, val[l])) + (dp[l])) % MOD; if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (dp[l])) % MOD; ++l; } } } void MAIN() { cin >> n >> k; for (int i = (0); i < (n); ++i) { cin >> A[i]; P[i + 1] = lst.count(A[i]) ? lst[A[i]] : 0; lst[A[i]] = i + 1; } dp[0] = 1; sum = 1; blk(0, 0) = 1; for (int i = (1); i < (n + 1); ++i) { inc(P[i], i); dec(P[P[i]], P[i]); dp[i] = sum; sum = ((sum) + (dp[i])) % MOD; val[i] = -lazy[i / SQ]; blk(i, val[i]) = ((blk(i, val[i])) + (dp[i])) % MOD; } cout << dp[n] << '\n'; } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); cout << fixed << setprecision(10); sss << R"( 5 2 1 1 2 1 3 )"; MAIN(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const int S = 330; const int mod = 998244353; int n, k, a[N], pre[N], last[N]; int s[N / S + 5][N], val[N / S + 5], f[N], dp[N], inblock[N], ans; void add(int &x, int y) { x += y; if (x >= mod) x -= mod; if (x < 0) x += mod; } void ins(int u, int v) { if (f[u] + val[inblock[u]] <= k) add(ans, -dp[u - 1]); add(s[inblock[u]][f[u]], -dp[u - 1]); f[u] += v; if (f[u] + val[inblock[u]] <= k) add(ans, dp[u - 1]); add(s[inblock[u]][f[u]], dp[u - 1]); } void update(int L, int R, int v) { if (L > R) return; if (inblock[L] + 1 >= inblock[R]) for (int i = L; i <= R; i++) ins(i, v); else { for (int i = L; i <= inblock[L] * S; i++) ins(i, v); for (int i = (inblock[R] - 1) * S + 1; i <= R; i++) ins(i, v); for (int i = inblock[L] + 1; i < inblock[R]; i++) { if (v == 1) add(ans, mod - s[i][k - val[i]]); else add(ans, s[i][k + 1 - val[i]]); val[i] += v; } } } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; pre[i] = last[a[i]]; last[a[i]] = i; } for (int i = 1; i <= n; i++) inblock[i] = (i - 1) / S + 1; dp[0] = 1; add(ans, 1); add(s[inblock[1]][f[1]], 1); for (int i = 1; i <= n; i++) { update(pre[i] + 1, i, 1); update(pre[pre[i]] + 1, pre[i], -1); dp[i] = ans; add(ans, dp[i]); add(s[inblock[i + 1]][f[i + 1]], dp[i]); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector") #pragma GCC optimize("unroll-loops") using namespace std; const int BLK = 320; const int MXN = 1e5 + 5; const int MOD = 998244353; int add(int x, int y) { return (x += y) < MOD ? x : x - MOD; } int sub(int x, int y) { return (x -= y) >= 00 ? x : x + MOD; } int b[BLK]; int q[BLK][2 * BLK + 5]; int n, k; int d[MXN]; int dp[MXN]; int arr[MXN]; int last1[MXN]; int last2[MXN]; void add(int pos) { int id = (pos - 1) / BLK; for (int i = BLK; i <= 2 * BLK; ++i) { q[id][i] = add(q[id][i], dp[pos - 1]); } } void update(int pos, int sgn) { int id = (pos - 1) / BLK; b[id] += sgn; for (int i = pos; i > id * BLK; --i) { if (sgn == +1) q[id][d[i] + BLK] = sub(q[id][d[i] + BLK], dp[i - 1]); d[i] += sgn; if (sgn == -2) { q[id][d[i] + BLK] = add(q[id][d[i] + BLK], dp[i - 1]), q[id][d[i] + BLK + 1] = add(q[id][d[i] + BLK + 1], dp[i - 1]); } } } int get(int pos) { int ret = 0; int id = (pos - 1) / BLK; for (int i = pos; i > id * BLK; --i) { if (d[i] <= k) ret = add(ret, dp[i - 1]); } int sum = b[id]; while (--id >= 0) { if (abs(sum - k) <= BLK) { ret = add(ret, q[id][k - sum + BLK]); } else if (sum < k) { ret = add(ret, q[id][BLK + BLK]); } sum += b[id]; } return ret; } int main() { ios::sync_with_stdio(0), cin.tie(0); dp[0] = 1; cin >> n >> k; for (int i = 1; i <= n; ++i) { cin >> arr[i]; add(i); update(i, 1); if (last1[arr[i]]) update(last1[arr[i]], -2); if (last2[arr[i]]) update(last2[arr[i]], +1); dp[i] = get(i); last2[arr[i]] = last1[arr[i]]; last1[arr[i]] = i; } cout << dp[n] << '\n'; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline T lowbit(T x) { return x & (-x); } template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } template <class T> inline T Pow(T a, T b, T p) { T ret = 1; a %= p; for (; b; b >>= 1, a = a * a % p) if (b & 1) (ret *= a) %= p; return ret; } template <class T> inline void read(T &ret) { T x = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); } ret = x * f; } const int N = 1e5 + 10, M = 1e3 + 10; const long long Z = 998244353; struct node { int prev, w; } lk[N]; int head[N], sz = 0; void add(int x, int loc) { lk[++sz] = {head[x], loc}; head[x] = sz; } int n, m, a[N], b[N], Prev[N]; int blo, bl[N]; long long f[N], g[M][M], sum[M]; inline long long __g(int x, int y) { if (y > blo * 2) return g[x][blo * 2]; else if (y >= 0) return g[x][y]; else return 0; } void modify(int x, int val, int up) { b[x] = val; int cur = 0; fill(g[bl[x]], g[bl[x]] + blo * 2 + 1, 0); for (int i = (min(up, ((bl[x] + 1) * blo) - 1)); i >= (((bl[x]) * blo)); i--) { cur += b[i]; (g[bl[x]][cur + blo] += f[i - 1]) %= Z; } sum[bl[x]] = cur; for (int i = (1); i <= (blo * 2); i++) (g[bl[x]][i] += g[bl[x]][i - 1]) %= Z; } long long query(int x) { long long ret = 0; long long cur = 0; for (int i = (bl[x]); i >= (0); i--) { (ret += __g(i, m - cur + blo)) %= Z; cur += sum[i]; } return ret; } int main() { read(n); read(m); for (int i = (1); i <= (n); i++) { read(a[i]); add(a[i], i); } for (int i = (1); i <= (n); i++) for (int j = head[i]; j; j = lk[j].prev) Prev[lk[j].w] = lk[lk[j].prev].w; blo = ceil(sqrt(n / 6.0)); for (int i = (1); i <= (n); i++) bl[i] = i / blo; f[0] = 1; for (int i = (1); i <= (n); i++) { int p = Prev[i], pp = Prev[p]; if (pp) modify(pp, 0, i); if (p) modify(p, -1, i); modify(i, 1, i); f[i] = query(i); } printf("%lld\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 998244353; const long long INF = 1e18L; const long long MAXN = 2e5; const long long B = 315; long long cnt[1 + MAXN], dp[1 + MAXN]; vector<long long> occ[1 + MAXN]; void add_self(long long &x, long long y) { x += y; if (x >= mod) x -= mod; } void min_self(long long &x, long long y) { x = min(x, y); } struct SQRT { long long id, offset, pref_sum[B]; void rebuild() { long long st = id * B, dr = (id + 1) * B - 1, minn = INF; for (long long i = st; i <= dr; ++i) min_self(minn, offset + cnt[i]); for (long long i = st; i <= dr; ++i) cnt[i] -= minn - offset; offset = minn; for (long long i = 0; i < B; ++i) pref_sum[i] = 0; for (long long i = st; i <= dr; ++i) add_self(pref_sum[cnt[i]], dp[i]); for (long long i = 1; i < B; ++i) add_self(pref_sum[i], pref_sum[i - 1]); } } a[MAXN / B + 1]; long long get_bucket(long long index) { return index / B; } void update(long long l, long long r, short t) { long long bl = get_bucket(l), br = get_bucket(r); for (long long i = l; i <= r && get_bucket(i) == bl; ++i) cnt[i] += t; a[bl].rebuild(); if (bl == br) return; for (long long i = bl + 1; i < br; ++i) a[i].offset += t; for (long long i = r; get_bucket(i) == br; --i) cnt[i] += t; a[br].rebuild(); } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); long long n, k; cin >> n >> k; for (long long i = 0; i <= get_bucket(n); ++i) a[i].id = i; for (long long i = 1; i <= n; ++i) occ[i].emplace_back(-1); dp[0] = 1; a[0].rebuild(); for (long long r = 0; r < n; ++r) { long long x; cin >> x; vector<long long> &vec = occ[x]; if (static_cast<long long>(vec.size()) >= 2) update(vec.end()[-2] + 1, vec.back(), -1); update(vec.back() + 1, r, 1); vec.emplace_back(r); long long val = 0; for (long long i = 0; i <= get_bucket(r); ++i) { long long at_most = k - a[i].offset; if (at_most >= 0) add_self(val, a[i].pref_sum[min(at_most, B - 1)]); } dp[r + 1] = val; a[get_bucket(r + 1)].rebuild(); } cout << dp[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2") using namespace std; template <class T> bool umin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } template <class T> bool umax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } int a[101001]; vector<int> positions[101010]; int tr[404040]; int b[101010]; int dp[404040]; long long getSum(int* b, int* dp, int n) { long long res = 0; for (int j = 0; j < n; ++j) { res += b[j] > 0 ? 0 : dp[j]; } return res; } const int fftmod = 998244353; int main() { int n, k; cin >> n >> k; for (int i = 0; i < (n); ++i) { b[i] -= k; } for (int i = 0; i < (n); ++i) { cin >> a[i]; --a[i]; positions[i].push_back(-1); positions[i].push_back(-1); } dp[0] = 1; for (int i = 0; i < n; ++i) { int x = a[i]; { int to = positions[x].back(); int from = *++positions[x].rbegin() + 1; for (int j = from; j <= to; ++j) { b[j]--; } } int from = positions[x].back() + 1; for (int j = from; j <= i; ++j) { b[j]++; } long long res = 0; for (int j = 0; j < i + 1; ++j) res += b[j] > 0 ? 0 : dp[j]; dp[i + 1] = res % fftmod; positions[x].push_back(i); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; template <class TH> void _dbg(const char *sdbg, TH h) { cerr << sdbg << '=' << h << endl; } template <class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while (*sdbg != ',') cerr << *sdbg++; cerr << '=' << h << ','; _dbg(sdbg + 1, a...); } template <class T> ostream &operator<<(ostream &os, vector<T> V) { os << "["; for (auto vv : V) os << vv << ","; return os << "]"; } template <class L, class R> ostream &operator<<(ostream &os, pair<L, R> P) { return os << "(" << P.first << "," << P.second << ")"; } const int maxn = 2e5 + 10; const int md = 998244353; const int BlockLen = 50; const int NumBlocks = maxn / BlockLen + 10; void addto(int &x, int y) { x = x + y; if (x >= md) x -= md; } int T; string str; int n, m; int dp[maxn], cnt[maxn]; vector<int> e[maxn]; int nk; struct Block { int L, R; vector<pair<int, int>> pref_sums; int ptr; int increase; vector<int> num_incrs; Block() : L(0), R(0), ptr(0), increase(0) {} Block(int l, int r) : L(l), R(r), ptr(0), increase(0), num_incrs(r - l) {} void IncrAll(int delta) { increase += delta; } void Rebuild() { vector<int> order(num_incrs.size()); int min_num_incrs = num_incrs[0]; for (int i = 1; i < num_incrs.size(); ++i) { min_num_incrs = min(min_num_incrs, num_incrs[i]); } vector<vector<int>> base(num_incrs.size()); for (int i = 0; i < num_incrs.size(); ++i) { base[num_incrs[i] - min_num_incrs].push_back(i); } int cnt = 0; for (int i = 0; i < base.size(); ++i) { for (auto id : base[i]) order[cnt++] = id; } pref_sums.clear(); pref_sums.emplace_back((int)-1e9, 0); pref_sums.emplace_back(num_incrs[order[0]], dp[order[0] + L]); for (int i = 1; i < order.size(); ++i) { const int v = order[i]; long long val = (pref_sums.back().second + dp[v + L]) % md; if (num_incrs[v] == pref_sums.back().first) { pref_sums.back().second = val; } else { pref_sums.emplace_back(num_incrs[v], val); } } ptr = 0; 42; } void IncrSeg(int lft, int rgt, int delta) { for (int i = 0; i < (int)num_incrs.size(); ++i) { num_incrs[i] += increase; } increase = 0; for (int i = lft - L; i < rgt - L; ++i) { num_incrs[i] += delta; } 42; Rebuild(); } int GetAtMaxK() { while (ptr > 0 && pref_sums[ptr].first + increase > nk) { --ptr; } while (ptr < pref_sums.size() - 1 && pref_sums[ptr + 1].first + increase <= nk) { ++ptr; } 42; return pref_sums[ptr].second; } }; Block blocks[NumBlocks]; void Increase(int L, int R, int delta) { 42; for (int i = 0; i < n; ++i) { const int l_block = i * BlockLen; const int r_block = min((i + 1) * BlockLen, n + 1); if (l_block > n) break; if (r_block <= L || l_block >= R) continue; if (L <= l_block && r_block <= R) { blocks[i].IncrAll(delta); } else { blocks[i].IncrSeg(max<int>(L, l_block), min(R, r_block), delta); } } } int GetAtMaxK() { int ans = 0; for (int i = 0; i < NumBlocks; ++i) { const int l_block = i * BlockLen; if (l_block > n) break; ans = (ans + blocks[i].GetAtMaxK()) % md; } return ans; } void BuildBlocks() { for (int i = 0; i < NumBlocks; ++i) { const int l_block = i * BlockLen; const int r_block = min(n + 1, (i + 1) * BlockLen); if (l_block > n) break; blocks[i] = Block(l_block, r_block); blocks[i].Rebuild(); } } void task() { cin >> n >> nk; dp[0] = 1; BuildBlocks(); for (int i = 1; i <= n; ++i) { int x; cin >> x; e[x].push_back(i); int l1, r1 = i; if (e[x].size() > 1) l1 = e[x][e[x].size() - 2]; else l1 = 0; Increase(l1, r1, 1); if (e[x].size() >= 2) { int l2 = e[x].size() >= 3 ? e[x][e[x].size() - 3] : 0, r2 = l1; Increase(l2, r2, -1); } 42; dp[i] = GetAtMaxK(); blocks[i / BlockLen].Rebuild(); 42; } cout << dp[n] << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); T = 1; while (T--) { task(); } return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int i, j, m, n, block_size, a[200005], k; int temp[3][100005], pre[3][100005], smallest[319]; long long sum[319][319], f[200005], dp[200005], inf, mod; int tag[319]; void update(int l, int r, int c) { int block1, block2, ind1, ind2; block1 = (l - 1) / block_size; block2 = (r - 1) / block_size; ind1 = (l - 1) % block_size; ind2 = (r - 1) % block_size; int i, j; for (i = block1 + 1; i <= block2 - 1; i++) { tag[i] += c; smallest[i] += c; } long long x[319]; if (block1 == block2) { for (i = l; i <= r; i++) { f[i] += c; } smallest[block1] = inf; for (i = block1 * block_size; i <= (block1 + 1) * block_size - 1; i++) { f[i + 1] += tag[block1]; if (f[i + 1] < smallest[block1]) smallest[block1] = f[i + 1]; } for (i = 0; i <= block_size - 1; i++) { x[i] = 0; } for (i = block1 * block_size; i <= (block1 + 1) * block_size - 1; i++) { x[f[i + 1] - smallest[block1]] = (x[f[i + 1] - smallest[block1]] + dp[i]) % mod; } sum[block1][0] = x[0]; for (i = 1; i <= block_size - 1; i++) { sum[block1][i] = (sum[block1][i - 1] + x[i]) % mod; } tag[block1] = 0; return; } for (i = ind1; i <= block_size - 1; i++) { f[block1 * block_size + i + 1] += c; } smallest[block1] = inf; for (i = block1 * block_size; i <= (block1 + 1) * block_size - 1; i++) { f[i + 1] += tag[block1]; if (f[i + 1] < smallest[block1]) smallest[block1] = f[i + 1]; } for (i = 0; i <= block_size - 1; i++) { x[i] = 0; } for (i = block1 * block_size; i <= (block1 + 1) * block_size - 1; i++) { x[f[i + 1] - smallest[block1]] = (x[f[i + 1] - smallest[block1]] + dp[i]) % mod; } sum[block1][0] = x[0]; for (i = 1; i <= block_size - 1; i++) { sum[block1][i] = (sum[block1][i - 1] + x[i]) % mod; } tag[block1] = 0; for (i = 0; i <= ind2; i++) { f[block2 * block_size + i + 1] += c; } smallest[block2] = inf; for (i = block2 * block_size; i <= (block2 + 1) * block_size - 1; i++) { f[i + 1] += tag[block2]; if (f[i + 1] < smallest[block2]) smallest[block2] = f[i + 1]; } for (i = 0; i <= block_size - 1; i++) { x[i] = 0; } for (i = block2 * block_size; i <= (block2 + 1) * block_size - 1; i++) { x[f[i + 1] - smallest[block2]] = (x[f[i + 1] - smallest[block2]] + dp[i]) % mod; } sum[block2][0] = x[0]; for (i = 1; i <= block_size - 1; i++) { sum[block2][i] = (sum[block2][i - 1] + x[i]) % mod; } tag[block2] = 0; } int main() { mod = 998244353; inf = 1000000000; scanf("%d%d", &n, &k); block_size = int(sqrt(n) + 0.000001); for (i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (i = 1; i <= n; i++) { if (temp[1][a[i]]) { pre[1][i] = temp[1][a[i]]; if (temp[2][a[i]]) { pre[2][i] = temp[2][a[i]]; } temp[2][a[i]] = temp[1][a[i]]; temp[1][a[i]] = i; } else { temp[1][a[i]] = i; } } dp[0] = 1; for (i = 1; i <= n; i++) { update(pre[1][i] + 1, i, 1); if (pre[2][i] + 1 <= pre[1][i]) { update(pre[2][i] + 1, pre[1][i], -1); } int block, ind; block = (i - 1) / block_size; ind = (i - 1) % block_size; for (j = 0; j <= block; j++) { if (smallest[j] <= k) { if (smallest[j] + block_size - 1 > k) { dp[i] = (dp[i] + sum[j][k - smallest[j]]) % mod; } else { dp[i] = (dp[i] + sum[j][block_size - 1]) % mod; } } } } printf("%lld\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize(2) using namespace std; inline int Read() { int x(0); char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar(); return x; } const int maxn = 1e5 + 9, mod = 998244353, maxm = 409; int n, k, ans; int a[maxn], cnt[maxn], lst[maxn], fir[maxn], bl[maxm], br[maxm], col[maxn], v[maxn], lazy[maxm], f[maxn], sum[maxm][maxn]; inline void Fir() { int size(sqrt(n)), pieces(ceil(1.0 * n / size)); for (int i = 1; i < pieces; ++i) { bl[i] = (i - 1) * size + 1; br[i] = i * size; for (int j = bl[i]; j <= br[i]; ++j) col[j] = i; } bl[pieces] = (pieces - 1) * size + 1; br[pieces] = n; for (int j = bl[pieces]; j <= br[pieces]; ++j) col[j] = pieces; for (int i = 1; i <= n; ++i) { lst[i] = fir[a[i]]; fir[a[i]] = i; } } inline void Modify(int l, int r, int val) { int lt(col[l]), rt(col[r]); if (lt == rt) { for (int i = l; i <= r; ++i) { if (val == 1) (v[i] + lazy[lt] == k) ? ans = (ans - f[i] + mod) % mod : 0; else (v[i] + lazy[lt] == k + 1) ? ans = (ans + f[i]) % mod : 0; sum[lt][v[i]] = (sum[lt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[lt][v[i]] = (sum[lt][v[i]] + f[i]) % mod; } } else { for (int i = l; i <= br[lt]; ++i) { if (val == 1) (v[i] + lazy[lt] == k) ? ans = (ans - f[i] + mod) % mod : 0; else (v[i] + lazy[lt] == k + 1) ? ans = (ans + f[i]) % mod : 0; sum[lt][v[i]] = (sum[lt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[lt][v[i]] = (sum[lt][v[i]] + f[i]) % mod; } for (int i = bl[rt]; i <= r; ++i) { if (val == 1) (v[i] + lazy[rt] == k) ? ans = (ans - f[i] + mod) % mod : 0; else (v[i] + lazy[rt] == k + 1) ? ans = (ans + f[i]) % mod : 0; sum[rt][v[i]] = (sum[rt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[rt][v[i]] = (sum[rt][v[i]] + f[i]) % mod; } for (int i = lt + 1; i <= rt - 1; ++i) { if (val == 1) ans = (ans - sum[i][k - lazy[i]] + mod) % mod; else ans = (ans + sum[i][k + 1 - lazy[i]]) % mod; lazy[i] += val; } } } inline void Solve() { ans = f[1] = sum[1][0] = 1; for (int i = 1; i <= n; ++i) { ++cnt[a[i]]; int p(lst[i]), q(lst[p]); if (cnt[a[i]] == 1) Modify(1, i, 1); else if (cnt[a[i]] == 2) { Modify(p + 1, i, 1); Modify(1, p, -1); } else { Modify(p + 1, i, 1); Modify(q + 1, p, -1); } f[i + 1] = ans; sum[col[i + 1]][v[i + 1]] = (sum[col[i + 1]][v[i + 1]] + f[i + 1]) % mod; ans = (ans + f[i + 1]) % mod; } printf("%d", f[n + 1]); } int main() { n = Read(); k = Read(); for (int i = 1; i <= n; ++i) a[i] = Read(); Fir(); Solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long power(long long x, long long y) { long long res = 1; while (y) { if (y & 1) res = (res * x) % 998244353; y = y / 2, x = (x * x) % 998244353; } return res % 998244353; } long long n, k; const long long BLSZ = 300; long long NUMBL; inline long long getBL(long long i) { return i / BLSZ; } inline long long getL(long long i) { return i * BLSZ; } inline long long getR(long long i) { return min((i + 1) * BLSZ - 1, n - 1); } inline void add(long long &a, long long b) { a += b; if (a >= 998244353) a -= 998244353; } long long base[100100]; long long arr[100100]; long long dp[100100]; vector<vector<long long> > pos(100100); struct block { long long l, r; long long offset; long long pref[BLSZ]; void init(long long _l, long long _r, long long val) { l = (_l), r = (_r), offset = (val); } void recalc() { long long smallest = 1e18; long long i; for (i = l; i <= r; i++) smallest = min(smallest, base[i] + offset); for (i = l; i <= r; i++) { base[i] = base[i] - smallest + offset; } offset = smallest; for (i = 0; i < BLSZ; i++) pref[i] = 0; for (i = l; i <= r; i++) { add(pref[base[i]], dp[i]); } for (i = 1; i < BLSZ; i++) add(pref[i], pref[i - 1]); } }; block *BARR; void init() { NUMBL = getBL(n - 1); BARR = new block[NUMBL + 1]; for (long long i = 0; i <= NUMBL; i++) { BARR[i].init(getL(i), getR(i), 0); BARR[i].recalc(); } } void update(long long l, long long r, long long diff) { if (getBL(l) == getBL(r)) { for (long long i = l; i <= r; ++i) { base[i] += diff; } BARR[getBL(l)].recalc(); } else { long long x = getBL(l); for (long long i = l; i <= getR(x); i++) { base[i] += diff; } BARR[x].recalc(); x = getBL(r); for (long long i = r; i >= getL(x); i--) { base[i] += diff; } BARR[x].recalc(); for (long long i = getBL(l) + 1; i < getBL(r); i++) { BARR[i].offset += diff; } } } long long query(long long l, long long r) { long long ans = 0; if (getBL(l) == getBL(r)) { long long x = getBL(l); for (long long i = l; i <= r; ++i) { if (base[i] + BARR[x].offset <= k) add(ans, dp[i]); } return ans; } else { long long x = getBL(l); for (long long i = l; i <= getR(x); i++) { if (base[i] + BARR[x].offset <= k) add(ans, dp[i]); } x = getBL(r); for (long long i = r; i >= getL(x); i--) { if (base[i] + BARR[x].offset <= k) add(ans, dp[i]); } for (long long i = getBL(l) + 1; i < getBL(r); i++) { if (k - BARR[i].offset >= 0) add(ans, BARR[i].pref[min(k - BARR[i].offset, BLSZ - 1)]); } return ans; } } signed main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; dp[0] = 1; init(); long long i; for (i = 0; i < n; i++) { cin >> arr[i]; dp[i + 1] = 0; if (pos[arr[i]].size() == 0) { update(0, i, 1); } else if (pos[arr[i]].size() == 1) { update(0, pos[arr[i]][0], -1); update(pos[arr[i]][0] + 1, i, 1); } else { update(pos[arr[i]][pos[arr[i]].size() - 2] + 1, pos[arr[i]][pos[arr[i]].size() - 1], -1); update(pos[arr[i]][pos[arr[i]].size() - 1] + 1, i, 1); } pos[arr[i]].push_back(i); dp[i + 1] = query(0, i); BARR[getBL(i + 1)].recalc(); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int blkbase[(350 + 5)][(350 + 5)]; int blkpsum[(350 + 5)][(350 + 5)]; int f[100005]; int n, k; int a[100005]; int previ[100005]; int previval[100005]; int blk[100005]; int blkbegin[100005]; int blkend[1000005]; int cur[100005]; int cur_offset[(350 + 5)]; int cur_cnt[(350 + 5)]; int cur_total = 0; int blkcnt; bool cmp(int A, int B) { return cur[A] < cur[B]; } void rebuild(int block) { for (int i = blkbegin[block], j = 1; j <= 350; i++, j++) { blkbase[block][j] = i; } sort(blkbase[block] + 1, blkbase[block] + 350 + 1, cmp); int r = 0; for (int i = 1; i <= 350; i++) { blkpsum[block][i] = blkpsum[block][i - 1] + f[blkbase[block][i] - 1]; if (blkpsum[block][i] >= 998244353) blkpsum[block][i] -= 998244353; if (cur[blkbase[block][i]] <= k) r = i; } cur_total -= cur_cnt[block]; cur_total += blkpsum[block][r]; cur_cnt[block] = blkpsum[block][r]; cur_total %= 998244353; cur_total += 998244353; cur_total %= 998244353; } void update(int l, int r, int change) { for (int i = blk[l] + 1; i < blk[r]; i++) { cur_offset[i] += change; int L = 0, R = 350; while (L < R) { int mid = (L + R) / 2 + 1; if (cur[blkbase[i][mid]] + cur_offset[i] <= k) { L = mid; } else { R = mid - 1; } } cur_total -= cur_cnt[i]; cur_total += blkpsum[i][R]; cur_cnt[i] = blkpsum[i][R]; cur_total %= 998244353; cur_total += 998244353; cur_total %= 998244353; } for (int i = blkbegin[blk[l]]; i <= blkend[blk[l]]; i++) { cur[i] += cur_offset[blk[l]]; } cur_offset[blk[l]] = 0; for (int i = l; i <= blkend[blk[l]] && i <= r; i++) { cur[i] += change; } for (int j = 1; j <= n; j++) { } rebuild(blk[l]); if (blk[l] != blk[r]) { for (int i = blkbegin[blk[r]]; i <= blkend[blk[r]]; i++) { cur[i] += cur_offset[blk[r]]; } cur_offset[blk[r]] = 0; for (int i = blkbegin[blk[r]]; i <= r; i++) { cur[i] += change; } rebuild(blk[r]); } } int main() { cur[0] = -10000000; scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", a + i); previ[i] = previval[a[i]]; previval[a[i]] = i; } for (int i = 1; i <= 100000; i++) blk[i] = (i - 1) / 350 + 1; for (int i = 1; i <= 350; i++) { blkbegin[i] = (i - 1) * 350 + 1; blkend[i] = blkbegin[i] + 350 - 1; for (int j = (i - 1) * 350 + 1, x = 1; x <= 350; j++, x++) { blkbase[i][x] = j; } } f[0] = 1; rebuild(1); for (int i = 1; i <= n; i++) { update(previ[i] + 1, i, 1); if (previ[i]) update(previ[previ[i]] + 1, previ[i], -1); f[i] = cur_total; for (int j = 0; j < 350; j++) { cur[blkbegin[blk[i + 1]] + j] += cur_offset[blk[i + 1]]; } cur_offset[blk[i + 1]] = 0; for (int j = 1; j <= n; j++) { } rebuild(blk[i + 1]); } printf("%d", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int M = 205; const int N = 100005; const int L = 100000; const int mod = 998244353; int n, k, len, a[N], bel[N], pre[N], las[N], dp[N], fl[N], tot[N], ans[M], s[M][N << 1]; void ad(int i, int x) { (s[bel[i]][L + tot[i]] += mod - dp[i]) %= mod; tot[i] += x; (s[bel[i]][L + tot[i]] += dp[i]) %= mod; if (x == 1 && tot[i] + fl[bel[i]] == k + 1) { (ans[bel[i]] += mod - dp[i]) %= mod; } if (x == -1 && tot[i] + fl[bel[i]] == k) { (ans[bel[i]] += dp[i]) %= mod; } } void add(int l, int r, int x) { if (bel[l] + 1 >= bel[r]) { for (int i = l; i <= r; i++) { ad(i, x); } return; } for (int i = l; i < (bel[l] + 1) * len; i++) { ad(i, x); } for (int i = bel[r] * len; i <= r; i++) { ad(i, x); } for (int i = bel[l] + 1; i < bel[r]; i++) { if (x == 1) { (ans[i] += mod - s[i][L + k - fl[i]]) %= mod; } if (x == -1) { (ans[i] += s[i][L + k - fl[i] + 1]) %= mod; } fl[i] += x; } } int query(int l, int r) { int sum = 0; if (bel[l] + 1 >= bel[r]) { for (int i = l; i <= r; i++) { if (tot[i] + fl[bel[i]] <= k) { (sum += dp[i]) %= mod; } } return sum; } for (int i = l; i < (bel[l] + 1) * len; i++) { if (tot[i] + fl[bel[i]] <= k) { (sum += dp[i]) %= mod; } } for (int i = bel[r] * len; i <= r; i++) { if (tot[i] + fl[bel[i]] <= k) { (sum += dp[i]) %= mod; } } for (int i = bel[l] + 1; i < bel[r]; i++) { (sum += ans[i]) %= mod; } return sum; } signed main() { scanf("%d%d", &n, &k); len = 500; for (int i = 0; i <= n; i++) { bel[i] = i / len; } for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } dp[0] = 1; ans[0] += dp[0]; s[0][L] += dp[0]; for (int i = 1; i <= n; i++) { pre[i] = las[a[i]]; las[a[i]] = i; add(pre[i], i - 1, 1); if (pre[i]) add(pre[pre[i]], pre[i] - 1, -1); dp[i] = query(0, i - 1); (ans[bel[i]] += dp[i]) %= mod; (s[bel[i]][L - fl[bel[i]]] += dp[i]) %= mod; } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long mod = 998244353LL; int kk; class Block { public: int aux; vector<long long> pre; int st, en; int lo, hi; vector<long long> vals; vector<int> dist; Block(int a, int b) { aux = 0; st = a; en = b; lo = 0; hi = 0; pre.push_back(0LL); pre.push_back(0LL); for (int i = st; i <= en; i++) { vals.push_back(0LL); dist.push_back(0); } } void change(int ind, long long val) { if (ind < st || ind > en) { return; } vals[ind - st] = val; for (int i = dist[ind - st]; i <= hi; i++) { pre[i - lo + 1] += val; pre[i - lo + 1] %= mod; } } void modify(int l, int r, int delta) { if (l <= st && r >= en) { aux += delta; return; } if (st > r || en < l) { return; } for (int i = max(l, st); i <= min(r, en); i++) { dist[i - st] += delta; } for (int i = st; i <= en; i++) { dist[i - st] += aux; if (i == st) { lo = dist[i - st]; hi = dist[i - st]; } else { lo = min(lo, dist[i - st]); hi = max(hi, dist[i - st]); } } aux = 0; pre.clear(); pre.resize(hi - lo + 2); for (int i = st; i <= en; i++) { pre[dist[i - st] - lo + 1] += vals[i - st]; pre[dist[i - st] - lo + 1] %= mod; } for (int i = 1; i < pre.size(); i++) { pre[i] += pre[i - 1]; pre[i] %= mod; } } long long sum(int l, int r) { if (st > r || en < l) { return 0LL; } int k = kk; if (l <= st && r >= en) { k -= aux; if (k < lo) { return 0LL; } if (k >= hi) { return pre.back(); } return pre[k - lo + 1]; } long long ret = 0LL; for (int i = max(l, st); i <= min(r, en); i++) { k -= aux; if (dist[i - st] <= k) { ret += vals[i - st]; ret %= mod; } } return (ret % mod); } }; int sz = 300; int n; vector<Block> blocks; void build() { int point = 0; while (point < n + 1) { int en = min(point + sz - 1, n); blocks.push_back(Block(point, en)); point = en + 1; } } void add(int l, int r, int delta) { for (int i = 0; i < blocks.size(); i++) { blocks[i].modify(l, r, delta); } } long long gsum(int l, int r) { long long ret = 0LL; for (int i = 0; i < blocks.size(); i++) { ret += blocks[i].sum(l, r); } return ret % mod; } void doChange(int ind, long long vv) { for (int i = 0; i < blocks.size(); i++) { blocks[i].change(ind, vv); } } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> kk; vector<int> list[n]; int a[n + 1]; int bef[n + 1]; int bef2[n + 1]; for (int i = 1; i <= n; i++) { cin >> a[i]; a[i]--; list[a[i]].push_back(i); int siz = list[a[i]].size(); if (list[a[i]].size() == 1) { bef[i] = -1; bef2[i] = -1; } else if (list[a[i]].size() == 2) { bef[i] = list[a[i]][siz - 2]; bef2[i] = -1; } else { bef[i] = list[a[i]][siz - 2]; bef2[i] = list[a[i]][siz - 3]; } } build(); doChange(0, 1LL); for (int i = 1; i <= n; i++) { if (bef[i] == -1) { add(0, i - 1, 1); } else if (bef2[i] == -1) { add(0, bef[i] - 1, -1); add(bef[i], i - 1, 1); } else { add(bef2[i], bef[i] - 1, -1); add(bef[i], i - 1, 1); } long long got = gsum(0, i - 1) % mod; doChange(i, got); } cout << blocks.back().vals.back() << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> std::mt19937 rng( (int)std::chrono::steady_clock::now().time_since_epoch().count()); const int ms = 110000; const int bs = 1000; const int MOD = 998244353; void add(int &a, int b) { a = a + b < MOD ? a + b : a + b - MOD; } int *pivot; bool comp(int x1, int x2) { return pivot[x1] < pivot[x2]; } int tmp[2][bs]; struct Bucket { Bucket() { dirty = size = 0; } void push_back(int x) { p[size] = size; lazy[size] = 0; dp[size] = x; values[size++] = 0; } void clean() { for (int i = size - 2; i >= 0; i--) { add(lazy[i], lazy[i + 1]); } for (int i = 0; i < size; i++) { add(dp[p[i]], lazy[i]); lazy[i] = 0; } if (dirty) { for (int i = 0; i < size; i++) { values[i] += dirty; } dirty = 0; } } void sort() { clean(); pivot = values; std::sort(p, p + size, comp); } int getID(int x) { if (x < values[p[0]] + dirty) { return -1; } int l = 0, r = size - 1; while (l != r) { int mid = (l + r + 1) / 2; if (values[p[mid]] + dirty <= x) { l = mid; } else { r = mid - 1; } } return l; } void upd(int x, int l, int r, int val) { if (l == 0 && r == size) { int id = getID(x); if (id != -1) { add(lazy[id], val); } } else { for (int i = l; i < r; i++) { if (values[i] + dirty <= x) { add(dp[i], val); } else { } } } } void upd2(int l, int r, int val) { if (l == 0 && r == size) { dirty += val; } else { for (int i = l; i < r; i++) { values[i] += val; } clean(); pivot = values; int s0 = 0, s1 = 0; for (int i = 0; i < size; i++) { if (l <= p[i] && p[i] < r) { tmp[0][s0++] = p[i]; } else { tmp[1][s1++] = p[i]; } } std::merge(tmp[0], tmp[0] + s0, tmp[1], tmp[1] + s1, p, comp); } } int values[bs], p[bs], lazy[bs], dp[bs]; int dirty; int size; }; Bucket b[ms / bs + 2]; std::vector<int> pos[ms]; int a[ms]; int pt[ms]; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int n, k; std::cin >> n >> k; for (int i = 1; i <= n; i++) { pos[i].push_back(-1); } for (int i = 0; i < n; i++) { std::cin >> a[i]; pos[a[i]].push_back(i); b[i / bs].push_back(i == 0 ? 1 : 0); } b[n / bs].push_back(0); for (int i = 1; i <= n; i++) { pos[i].push_back(n); pos[i].push_back(n); } auto upd2 = [&](int l, int r, int val) { if (l >= r) return; int bl = l / bs, br = (r - 1) / bs; if (bl == br) { b[bl].upd2(l - bl * bs, r - bl * bs, val); return; } b[bl].upd2(l - bl * bs, bs, val); for (int i = bl + 1; i < br; i++) { b[i].upd2(0, bs, val); } b[br].upd2(0, r - br * bs, val); }; auto upd = [&](int l, int r, int val) { if (l >= r) return; int bl = l / bs, br = (r - 1) / bs; if (bl == br) { b[bl].upd(k, l - bl * bs, r - bl * bs, val); return; } b[bl].upd(k, l - bl * bs, bs, val); for (int i = bl + 1; i < br; i++) { b[i].upd(k, 0, bs, val); } b[br].upd(k, 0, r - br * bs, val); }; for (int i = 1; i <= n; i++) { upd2(pos[i][1] + 1, pos[i][2] + 1, 1); } for (int i = 0; i < n; i++) { b[i / bs].clean(); int dp = b[i / bs].dp[i % bs]; upd(i + 1, n + 1, dp); { int v = a[i]; upd2(pos[v][pt[v] + 1] + 1, pos[v][pt[v] + 2] + 1, -1); pt[v]++; upd2(pos[v][pt[v] + 1] + 1, pos[v][pt[v] + 2] + 1, 1); } } b[n / bs].clean(); std::cout << b[n / bs].dp[n % bs] << '\n'; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int magic = 404, mod = 998244353, maxn = 100000; int n, k, pre[111111], a[111111], cur[111111], dp[111111], b[111111]; int pr[255][222222], d[333]; void add(int &x, int y) { x += y; if (x < 0) x += mod; if (x >= mod) x -= mod; } void Add(int l, int r, int R) { while (r >= l && r / magic == R / magic) { b[r]++; r--; } if (l > r) return; int lb = l / magic, rb = r / magic; if (lb == rb) { for (int i = l; i <= r; i++) { add(pr[lb][b[i] + maxn], -dp[i - 1]); b[i]++; } } else { for (int i = l; i < (lb + 1) * magic; i++) { add(pr[lb][b[i] + maxn], -dp[i - 1]); b[i]++; } for (int i = rb * magic; i <= r; i++) { add(pr[rb][b[i] + maxn], -dp[i - 1]); b[i]++; } for (int i = lb + 1; i < rb; i++) { d[i]++; } } } void del(int l, int r, int R) { while (r >= l && r / magic == R / magic) { b[r]--; r--; } if (l > r) return; int lb = l / magic, rb = r / magic; if (lb == rb) { for (int i = l; i <= r; i++) { add(pr[lb][b[i] - 1 + maxn], dp[i - 1]); b[i]--; } } else { for (int i = l; i < (lb + 1) * magic; i++) { add(pr[lb][b[i] - 1 + maxn], dp[i - 1]); b[i]--; } for (int i = rb * magic; i <= r; i++) { add(pr[rb][b[i] - 1 + maxn], dp[i - 1]); b[i]--; } for (int i = lb + 1; i < rb; i++) { d[i]--; } } } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 1; i <= n; i++) { pre[i] = cur[a[i]]; cur[a[i]] = i; } dp[0] = 1; for (int i = 1; i <= n; i++) { Add(pre[i] + 1, i, i + 1); if (pre[i]) del(pre[pre[i]] + 1, pre[i], i + 1); for (int j = i; j / magic == (i + 1) / magic && j > 0; j--) { if (b[j] <= k) add(dp[i], dp[j - 1]); } for (int j = (i + 1) / magic - 1; j >= 0; j--) { add(dp[i], pr[j][k - d[j] + maxn]); } if ((i + 1) % magic == magic - 1) { for (int j = i + 1; j / magic == (i + 1) / magic && j > 0; j--) { add(pr[j / magic][b[j] + maxn], dp[j - 1]); } for (int j = 1; j <= n + 2; j++) add(pr[(i + 1) / magic][j + maxn], pr[(i + 1) / magic][j - 1 + maxn]); } } if (n == 10000 && k == 10000 && dp[n] != 430192466) { for (int i = 2; i <= n; i++) { if (dp[i] != dp[i - 1] * 2 % mod) { cout << i << " " << dp[i] << " " << dp[i - 1] << endl; } } return 0; } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 9, mod = 998244353, maxm = 409; int n, k, ans; int a[maxn], cnt[maxn], lst[maxn], fir[maxn], bl[maxm], br[maxm], col[maxn], v[maxn], lazy[maxm], f[maxn], sum[maxm][maxn]; inline void Fir() { int size(sqrt(n)); int pieces(ceil(1.0 * n / size)); for (int i = 1; i <= pieces; ++i) { bl[i] = (i - 1) * size + 1; br[i] = (i == pieces ? n : i * size); for (int j = bl[i]; j <= br[i]; ++j) col[j] = i; } for (int i = 1; i <= n; ++i) { lst[i] = fir[a[i]]; fir[a[i]] = i; } } inline void Modify(int l, int r, int val) { int lt(col[l]), rt(col[r]); if (lt == rt) { for (int i = l; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = (ans - f[i] + mod) % mod; } else { if (v[i] + lazy[lt] == k + 1) ans = (ans + f[i]) % mod; } sum[lt][v[i]] = (sum[lt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[lt][v[i]] = (sum[lt][v[i]] + f[i]) % mod; } } else { for (int i = l; i <= br[lt]; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = (ans - f[i] + mod) % mod; } else { if (v[i] + lazy[lt] == k + 1) ans = (ans + f[i]) % mod; } sum[lt][v[i]] = (sum[lt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[lt][v[i]] = (sum[lt][v[i]] + f[i]) % mod; } for (int i = bl[rt]; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[rt] == k) ans = (ans - f[i] + mod) % mod; } else { if (v[i] + lazy[rt] == k + 1) ans = (ans + f[i]) % mod; } sum[rt][v[i]] = (sum[rt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[rt][v[i]] = (sum[rt][v[i]] + f[i]) % mod; } for (int i = lt + 1; i <= rt - 1; ++i) { if (val == 1) ans = (ans - sum[i][k - lazy[i]] + mod) % mod; else ans = (ans + sum[i][k + 1 - lazy[i]]) % mod; lazy[i] += val; } } } inline void Update(int x) { sum[col[x + 1]][v[x + 1]] = (sum[col[x + 1]][v[x + 1]] + f[x + 1]) % mod; ans = (ans + f[x + 1]) % mod; } inline void Solve() { ans = 1; f[1] = 1; sum[1][0] = 1; for (int i = 1; i <= n; ++i) { ++cnt[a[i]]; int p(lst[i]), q(lst[p]); if (cnt[a[i]] == 1) { Modify(1, i, 1); } else if (cnt[a[i]] == 2) { Modify(p + 1, i, 1); Modify(1, p, -1); } else { Modify(p + 1, i, 1); Modify(q + 1, p, -1); } f[i + 1] = ans; Update(i); } printf("%d", f[n + 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", a + i); Fir(); Solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int BASE = 998244353; const int SZ = 320; struct BlockData { int sumC; vector<long long> sumF; BlockData() {} }; int n, k, c[100100]; long long f[100100]; BlockData blocks[SZ]; long long calc(int i) { long long res = 0; int sumC = 0, block = i / SZ; for (int j = i; j >= block * SZ; j--) { sumC += c[j]; if (sumC <= k) res += j ? f[j - 1] : 1; } for (int j = block - 1; j >= 0; j--) { int need = k - sumC; if (need >= -SZ) res += blocks[j].sumF[min(need, SZ) + SZ]; sumC += blocks[j].sumC; } return res % BASE; } void constructBlock(int block) { BlockData &data = blocks[block]; data.sumC = 0; data.sumF = vector<long long>(SZ * 2 + 1, 0); for (int i = block * SZ + SZ - 1; i >= block * SZ; i--) { data.sumC += c[i]; data.sumF[data.sumC + SZ] += i ? f[i - 1] : 1; } for (int i = 0; i <= SZ * 2; i++) { if (i) data.sumF[i] += data.sumF[i - 1]; data.sumF[i] %= BASE; } } int main() { ios::sync_with_stdio(0); cin.tie(0); int x; cin >> n >> k; vector<int> id[100100]; for (int i = 0; i < n; i++) { cin >> x; c[i] = 1; if (!id[x].empty()) { int j = id[x].back(); c[j] = -1; if (id[x].size() >= 2) { int k = id[x][id[x].size() - 2]; c[k] = 0; if (k / SZ != j / SZ) constructBlock(k / SZ); } if (j / SZ != i / SZ) constructBlock(j / SZ); } id[x].push_back(i); f[i] = calc(i); if (i % SZ == SZ - 1) constructBlock(i / SZ); } cout << f[n - 1] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int Read() { int x(0); char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar(); return x; } const int maxn = 1e5 + 9, mod = 998244353, maxm = 409; int n, k, ans; int a[maxn], cnt[maxn], lst[maxn], fir[maxn], bl[maxm], br[maxm], col[maxn], v[maxn], lazy[maxm], f[maxn], sum[maxm][maxn]; inline int G(int x) { while (x > mod) x -= mod; return x; } inline void Fir() { int size(sqrt(n)), pieces(ceil(1.0 * n / size)); for (int i = 1; i < pieces; ++i) { bl[i] = (i - 1) * size + 1; br[i] = i * size; for (int j = bl[i]; j <= br[i]; ++j) col[j] = i; } bl[pieces] = (pieces - 1) * size + 1; br[pieces] = n; for (int j = bl[pieces]; j <= br[pieces]; ++j) col[j] = pieces; for (int i = 1; i <= n; ++i) { lst[i] = fir[a[i]]; fir[a[i]] = i; } } inline void Modify(int l, int r, int val) { int lt(col[l]), rt(col[r]); if (lt == rt) { for (int i = l; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = G(ans - f[i] + mod); } else { if (v[i] + lazy[lt] == k + 1) ans = G(ans + f[i]); } sum[lt][v[i]] = G(sum[lt][v[i]] - f[i] + mod), v[i] += val, sum[lt][v[i]] = G(sum[lt][v[i]] + f[i]); } } else { for (int i = l; i <= br[lt]; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = G(ans - f[i] + mod); } else { if (v[i] + lazy[lt] == k + 1) ans = G(ans + f[i]); } sum[lt][v[i]] = G(sum[lt][v[i]] - f[i] + mod), v[i] += val, sum[lt][v[i]] = G(sum[lt][v[i]] + f[i]); } for (int i = bl[rt]; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[rt] == k) ans = G(ans - f[i] + mod); } else { if (v[i] + lazy[rt] == k + 1) ans = G(ans + f[i]); } sum[rt][v[i]] = G(sum[rt][v[i]] - f[i] + mod), v[i] += val, sum[rt][v[i]] = G(sum[rt][v[i]] + f[i]); } for (int i = lt + 1; i <= rt - 1; ++i) { if (val == 1) ans = G(ans - sum[i][k - lazy[i]] + mod); else ans = G(ans + sum[i][k + 1 - lazy[i]]); lazy[i] += val; } } } inline void Update(int x) { sum[col[x + 1]][v[x + 1]] = G(sum[col[x + 1]][v[x + 1]] + f[x + 1]); ans = G(ans + f[x + 1]); } inline void Solve() { ans = f[1] = sum[1][0] = 1; for (int i = 1; i <= n; ++i) { ++cnt[a[i]]; int p(lst[i]), q(lst[p]); if (cnt[a[i]] == 1) Modify(1, i, 1); else if (cnt[a[i]] == 2) { Modify(p + 1, i, 1); Modify(1, p, -1); } else { Modify(p + 1, i, 1); Modify(q + 1, p, -1); } f[i + 1] = ans; Update(i); } printf("%d", f[n + 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", a + i); Fir(); Solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 119 << 23 | 1; const int FFTMOD = 119 << 23 | 1; const int INF = (int)1e9 + 23111992; const long long LINF = (long long)1e18 + 23111992; const long double PI = acos((long double)-1); const long double EPS = 1e-9; inline long long gcd(long long a, long long b) { long long r; while (b) { r = a % b; a = b; b = r; } return a; } inline long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } inline long long fpow(long long n, long long k, int p = MOD) { long long r = 1; for (; k; k >>= 1) { if (k & 1) r = r * n % p; n = n * n % p; } return r; } template <class T> inline int chkmin(T& a, const T& val) { return val < a ? a = val, 1 : 0; } template <class T> inline int chkmax(T& a, const T& val) { return a < val ? a = val, 1 : 0; } inline unsigned long long isqrt(unsigned long long k) { unsigned long long r = sqrt(k) + 1; while (r * r > k) r--; return r; } inline long long icbrt(long long k) { long long r = cbrt(k) + 1; while (r * r * r > k) r--; return r; } inline void addmod(int& a, int val, int p = MOD) { if ((a = (a + val)) >= p) a -= p; } inline void submod(int& a, int val, int p = MOD) { if ((a = (a - val)) < 0) a += p; } inline int mult(int a, int b, int p = MOD) { return (long long)a * b % p; } inline int inv(int a, int p = MOD) { return fpow(a, p - 2, p); } inline int sign(long double x) { return x < -EPS ? -1 : x > +EPS; } inline int sign(long double x, long double y) { return sign(x - y); } mt19937 mt(chrono::high_resolution_clock::now().time_since_epoch().count()); inline int myrand() { return abs((int)mt()); } const int maxn = 1e5 + 5; const int magic = 500; int n, k; int a[maxn]; int nxt[maxn]; int off[magic]; int c[maxn]; int f[magic][maxn]; int dp[maxn]; int sum; void inc(int d) { if (0 <= k - off[d] && k - off[d] < maxn) { submod(sum, f[d][k - off[d]]); } off[d]++; } void dec(int d) { off[d]--; if (0 <= k - off[d] && k - off[d] < maxn) { addmod(sum, f[d][k - off[d]]); } } void upd(int d, int l, int r, int val) { for (int i = d * magic; i < (d + 1) * magic && i < n; i++) { if (c[i] + off[d] <= k) { submod(sum, f[d][c[i]]); } f[d][c[i]] = 0; c[i] += off[d]; } off[d] = 0; for (int i = l; i <= r; i++) { c[i] += val; } for (int i = d * magic; i < (d + 1) * magic && i < n; i++) { addmod(f[d][c[i]], dp[i + 1]); if (c[i] <= k) { addmod(sum, dp[i + 1]); } } } void upd(int l, int r, int val) { int il = (l + magic - 1) / magic; int ir = r / magic; for (int i = (il); i < (ir); ++i) { if (val == 1) { inc(i); } else { dec(i); } } if (l < il * magic) { upd(il - 1, l, min(il * magic - 1, r), val); } if (il <= ir && ir * magic <= r) { upd(ir, max(l, ir * magic), r, val); } } void chemthan() { cin >> n >> k; for (int i = (0); i < (n); ++i) cin >> a[i]; dp[n] = 1; vector<int> lst(n + 1, n); fill_n(nxt, n + 1, n); for (int i = (n)-1; i >= (0); --i) { addmod(sum, dp[i + 1]); addmod(f[i / magic][0], dp[i + 1]); nxt[i] = lst[a[i]]; if (nxt[i] == n) { upd(i, nxt[i] - 1, 1); } else { int ni = nxt[i]; upd(ni, nxt[ni] - 1, -1); upd(i, ni - 1, 1); } dp[i] = sum; lst[a[i]] = i; } cout << dp[0] << "\n"; } int main(int argc, char* argv[]) { ios_base::sync_with_stdio(0), cin.tie(0); if (argc > 1) { assert(freopen(argv[1], "r", stdin)); } if (argc > 2) { assert(freopen(argv[2], "wb", stdout)); } chemthan(); cerr << "\nTime elapsed: " << 1000 * clock() / CLOCKS_PER_SEC << "ms\n"; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int P = 998244353; const int N = 101000, B = 340; int n, b, c, kk; int a[N], ans[N], lst[N], prv[N], tag[N]; void add(int& x, int y) { if ((x += y) >= P) x -= P; } struct Block { int ptr, ans; int v[N]; void set(int j) { if (tag[j] <= ptr) add(ans, ::ans[j]); add(v[tag[j]], ::ans[j]); } void mv(int x) { if (x == 1) { ++ptr; if (ptr >= 0) add(ans, v[ptr]); } else { if (ptr >= 0) add(ans, P - v[ptr]); --ptr; } } } sum[B]; void ch(int l, int v) { int f = l / b; for (int i = f + 1; i < c; ++i) sum[i].mv(-v); int lz = kk - sum[f].ptr; sum[f].ptr = kk; sum[f].ans = 0; for (int j = f * b; j < (f + 1) * b; ++j) sum[f].v[tag[j]] = 0; for (int j = f * b; j < (f + 1) * b; ++j) { tag[j] += lz; if (j >= l) tag[j] += v; sum[f].set(j); } } int qry() { int ret = 0; for (int i = 0; i < c; ++i) add(ret, sum[i].ans); return ret; } int main() { int k; scanf("%d%d", &n, &k); kk = k; for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); b = sqrt(n); c = n / b + 1; ans[0] = 1; for (int i = 0; i < c; ++i) sum[i].ptr = k; sum[0].set(0); for (int i = 1; i <= n; ++i) { int cur = lst[a[i]]; lst[a[i]] = i; prv[i] = cur; if (cur) { ch(cur, 1); ch(prv[cur], -1); } ch(cur, 1); ch(i, -1); ans[i] = qry(); sum[i / b].set(i); } printf("%d\n", ans[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; void add(int &a, int b) { a += b; if (a >= MOD) { a -= MOD; } if (a < 0) { a += MOD; } } struct FenwickTree { int dat[100055]; FenwickTree() { memset(dat, 0, sizeof(dat)); } void add(int id, int val) { while (id <= (int)1e5) { ::add(dat[id], val); id |= (id + 1); } } int get(int id) { int res = 0; while (id >= 0) { ::add(res, dat[id]); id = (id & (id + 1)) - 1; } return res; } }; const int B = 317; int n, k; int a[100055]; FenwickTree dat[B]; int dp[100055]; vector<int> occ[100055]; int offset[B]; int cnt[100055]; void change(int l, int r, int val) { if (l / B == r / B) { for (int i = l; i <= r; i++) { dat[i / B].add(cnt[i], -dp[i]); cnt[i] += val; dat[i / B].add(cnt[i], +dp[i]); } return; } while (l % B != 0) { dat[l / B].add(cnt[l], -dp[l]); cnt[l] += val; dat[l / B].add(cnt[l], +dp[l]); l++; } while (r % B != B - 1) { dat[r / B].add(cnt[r], -dp[r]); cnt[r] += val; dat[r / B].add(cnt[r], +dp[r]); r--; } while (l <= r) { offset[l / B] += val; l += B; } } int query() { int res = 0; for (int i = 0; i < B; i++) { int ub = k - offset[i]; add(res, dat[i].get(ub)); } return res; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 0; i <= n; i++) { occ[i].push_back(0); } dat[0].add(0, 1); dp[0] = 1; for (int i = 1; i <= n; i++) { if (occ[a[i]].size() > 1) { change(occ[a[i]].end()[-2], occ[a[i]].back() - 1, -1); } occ[a[i]].push_back(i); change(occ[a[i]].end()[-2], occ[a[i]].back() - 1, 1); dp[i] = query(); dat[i / B].add(0, dp[i]); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, unit, tot; int be[(100005)], st[(100005)], en[(100005)], a[(100005)], sum[2055][2055], f[(100005)], pre[(100005)], now[(100005)], lazy[(100005)], S[(100005)]; const int P = 998244353; template <typename T> void read(T& t) { t = 0; bool fl = true; char p = getchar(); while (!isdigit(p)) { if (p == '-') fl = false; p = getchar(); } do { (t *= 10) += p - 48; p = getchar(); } while (isdigit(p)); if (!fl) t = -t; } inline int Inc(int a, int b) { return (a + b >= P) ? (a + b - P) : (a + b); } void reset(int u) { for (int i = st[u]; i <= en[u]; i++) S[i] += lazy[u]; lazy[u] = 0; int minn = S[st[u]]; for (int i = st[u]; i <= en[u]; i++) minn = min(minn, S[i]); for (int i = st[u]; i <= en[u]; i++) S[i] -= minn; memset(sum[u], 0, sizeof(sum[u])); for (int i = st[u]; i <= en[u]; i++) sum[u][S[i]] = Inc(sum[u][S[i]], f[i]); for (int i = unit - 1; i >= 0; i--) sum[u][i] = Inc(sum[u][i], sum[u][i + 1]); lazy[u] = minn; } void change(int L, int R, int data) { if (be[L] == be[R]) { for (int i = L; i <= R; i++) S[i] += data; reset(be[L]); } else { for (int i = be[L] + 1; i <= be[R] - 1; i++) lazy[i] += data; for (int i = L; i <= en[be[L]]; i++) S[i] += data; reset(be[L]); for (int i = st[be[R]]; i <= R; i++) S[i] += data; reset(be[R]); } } int query(int R, int lim) { if (R == 0) return 0; int ret = 0; for (int i = 1; i < be[R]; i++) { if (lim - lazy[i] > unit) continue; ret = Inc(ret, sum[i][max(lim - lazy[i], 0)]); } for (int i = st[be[R]]; i <= R; i++) { if (S[i] + lazy[be[i]] >= lim) ret = Inc(ret, f[i]); } return ret; } int main() { read(n), read(k); unit = sqrt(n); for (int i = 1; i <= n; i++) { read(a[i]); pre[i] = now[a[i]]; now[a[i]] = i; } for (int i = 1; i <= n; i++) { be[i] = (i - 1) / unit + 1; if (be[i] != be[i - 1]) { en[be[i - 1]] = i - 1; st[be[i]] = i; } } tot = be[n]; en[tot] = n; f[0] = 1; S[0] = 0; for (int i = 1; i <= n; i++) { if (be[i - 1] != be[i]) S[i] = S[i - 1] + 1 + lazy[be[i - 1]]; else S[i] = S[i - 1] + 1; if (pre[pre[i]]) change(pre[pre[i]], i, 1); if (pre[i]) change(pre[i], i, -2); f[i] = query(i - 1, S[i] + lazy[be[i]] - k); if (S[i] + lazy[be[i]] <= k) f[i]++; if (i == en[be[i]]) reset(be[i]); } printf("%d", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
java
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.io.IOException; import java.io.UncheckedIOException; import java.io.Closeable; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 27); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); DIsolation solver = new DIsolation(); solver.solve(1, in, out); out.close(); } } static class DIsolation { static Modular mod = new Modular(998244353); public void solve(int testNumber, FastInput in, FastOutput out) { int n = in.readInt(); int k = in.readInt(); int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.readInt(); } int[] registries = new int[n + 1]; int[] last = new int[n + 1]; for (int i = 1; i <= n; i++) { last[i] = registries[a[i]]; registries[a[i]] = i; } int[] dp = new int[n + 1]; BlockManager bm = new BlockManager(n, k); bm.append(0, new Element(0, 1)); for (int i = 1; i <= n; i++) { if (last[i] == 0) { bm.add(0, i - 1, 1); } else { int l = last[last[i]] + 1; int m = last[i]; bm.add(l - 1, m - 1, -1); bm.add(m, i - 1, 1); } dp[i] = mod.valueOf(bm.sumOf()); bm.append(i, new Element(0, dp[i])); } out.println(dp[n]); } } static class Element { int k; int val; public Element(int k, int val) { this.k = k; this.val = val; } } static interface LongEntryIterator { boolean hasNext(); void next(); long getEntryKey(); long getEntryValue(); } static class FastInput { private final InputStream is; private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } } static class Modular { int m; public Modular(int m) { this.m = m; } public Modular(long m) { this.m = (int) m; if (this.m != m) { throw new IllegalArgumentException(); } } public Modular(double m) { this.m = (int) m; if (this.m != m) { throw new IllegalArgumentException(); } } public int valueOf(long x) { x %= m; if (x < 0) { x += m; } return (int) x; } public String toString() { return "mod " + m; } } static class DigitUtils { private DigitUtils() { } public static int floorDiv(int a, int b) { return a < 0 ? -ceilDiv(-a, b) : a / b; } public static int ceilDiv(int a, int b) { if (a < 0) { return -floorDiv(-a, b); } int c = a / b; if (c * b < a) { return c + 1; } return c; } } static class BlockManager { Block[] blocks; int bSize; public BlockManager(int n, int k) { bSize = (int) Math.ceil(Math.sqrt(n + 1)); int m = DigitUtils.ceilDiv(n + 1, bSize); blocks = new Block[m]; for (int i = 0; i < m; i++) { blocks[i] = new Block(bSize, k); } } public void append(int i, Element e) { blocks[i / bSize].append(e); } public void add(int ll, int rr, int x) { for (int i = 0; i < blocks.length; i++) { int l = i * bSize; int r = l + bSize - 1; if (r < ll || l > rr) { continue; } if (ll <= l && r <= rr) { blocks[i].add(x); } else { blocks[i].add(Math.max(ll, l) - l, Math.min(rr, r) - l, x); } } } public long sumOf() { long ans = 0; for (Block b : blocks) { ans += b.sum; } return ans; } } static class Block { Element[] elements; LongHashMap map; int size; int add; long sum; int k; public Block(int n, int k) { elements = new Element[n]; this.k = k; map = new LongHashMap(n, true); } public void add(int x) { if (x > 0) { sum -= map.getOrDefault(k - add, 0); add++; } else { add--; sum += map.getOrDefault(k - add, 0); } } public void add(int l, int r, int x) { pushDown(); for (int i = l; i <= r; i++) { map.put(elements[i].k, map.getOrDefault(elements[i].k, 0) - elements[i].val); if (x > 0) { if (elements[i].k == k) { sum -= elements[i].val; } elements[i].k++; } else { elements[i].k--; if (elements[i].k == k) { sum += elements[i].val; } } map.put(elements[i].k, map.getOrDefault(elements[i].k, 0) + elements[i].val); } } private void pushDown() { if (add != 0) { map.clear(); for (int i = 0; i < size; i++) { elements[i].k += add; map.put(elements[i].k, map.getOrDefault(elements[i].k, 0L) + elements[i].val); } add = 0; } } public void append(Element e) { pushDown(); elements[size++] = e; map.put(e.k, map.getOrDefault(e.k, 0) + e.val); if (e.k <= k) { sum += e.val; } } } static class LongHashMap { private int[] slot; private int[] next; private long[] keys; private long[] values; private int alloc; private boolean[] removed; private int mask; private int size; private boolean rehash; public LongHashMap(int cap, boolean rehash) { this.mask = (1 << (32 - Integer.numberOfLeadingZeros(cap - 1))) - 1; slot = new int[mask + 1]; next = new int[cap + 1]; keys = new long[cap + 1]; values = new long[cap + 1]; removed = new boolean[cap + 1]; this.rehash = rehash; } private void doubleCapacity() { int newSize = Math.max(next.length + 10, next.length * 2); next = Arrays.copyOf(next, newSize); keys = Arrays.copyOf(keys, newSize); values = Arrays.copyOf(values, newSize); removed = Arrays.copyOf(removed, newSize); } public void alloc() { alloc++; if (alloc >= next.length) { doubleCapacity(); } next[alloc] = 0; removed[alloc] = false; size++; } private void rehash() { int[] newSlots = new int[Math.max(16, slot.length * 2)]; int newMask = newSlots.length - 1; for (int i = 0; i < slot.length; i++) { if (slot[i] == 0) { continue; } int head = slot[i]; while (head != 0) { int n = next[head]; int s = hash(keys[head]) & newMask; next[head] = newSlots[s]; newSlots[s] = head; head = n; } } this.slot = newSlots; this.mask = newMask; } private int hash(long x) { int h = Long.hashCode(x); return h ^ (h >>> 16); } public void put(long x, long y) { put(x, y, true); } public void put(long x, long y, boolean cover) { int h = hash(x); int s = h & mask; if (slot[s] == 0) { alloc(); slot[s] = alloc; keys[alloc] = x; values[alloc] = y; } else { int index = findIndexOrLastEntry(s, x); if (keys[index] != x) { alloc(); next[index] = alloc; keys[alloc] = x; values[alloc] = y; } else if (cover) { values[index] = y; } } if (rehash && size >= slot.length) { rehash(); } } public long getOrDefault(long x, long def) { int h = hash(x); int s = h & mask; if (slot[s] == 0) { return def; } int index = findIndexOrLastEntry(s, x); return keys[index] == x ? values[index] : def; } private int findIndexOrLastEntry(int s, long x) { int iter = slot[s]; while (keys[iter] != x) { if (next[iter] != 0) { iter = next[iter]; } else { return iter; } } return iter; } public void clear() { alloc = 0; Arrays.fill(slot, 0); size = 0; } public LongEntryIterator iterator() { return new LongEntryIterator() { int index = 1; int readIndex = -1; public boolean hasNext() { while (index <= alloc && removed[index]) { index++; } return index <= alloc; } public long getEntryKey() { return keys[readIndex]; } public long getEntryValue() { return values[readIndex]; } public void next() { if (!hasNext()) { throw new IllegalStateException(); } readIndex = index; index++; } }; } public String toString() { LongEntryIterator iterator = iterator(); StringBuilder builder = new StringBuilder("{"); while (iterator.hasNext()) { iterator.next(); builder.append(iterator.getEntryKey()).append("->").append(iterator.getEntryValue()).append(','); } if (builder.charAt(builder.length() - 1) == ',') { builder.setLength(builder.length() - 1); } builder.append('}'); return builder.toString(); } } static class FastOutput implements AutoCloseable, Closeable { private StringBuilder cache = new StringBuilder(10 << 20); private final Writer os; public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput println(int c) { cache.append(c).append('\n'); return this; } public FastOutput flush() { try { os.append(cache); os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC optimize("no-stack-protector") #pragma GCC optimize("unroll-loops") #pragma GCC target("sse,sse2,sse3,ssse3,popcnt,abm,mmx,tune=native") #pragma GCC optimize("fast-math") using namespace std; long long MOD = 998244353; long long ans[100007]; int a[100007], b[100007], t[100007]; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int n, k; cin >> n >> k; ans[0] = 1; long long sum = 0; for (int i = 0; i < n; i++) { int u; cin >> u; u--; sum += ans[i]; if (a[u] == 0) { for (int j = i; j >= 0; j--) { t[j]++; if (t[j] == k + 1) sum -= ans[j]; } } else if (b[u] == 0) { for (int j = a[u] - 1; j >= 0; j--) { t[j]--; if (t[j] == k) sum += ans[j]; } for (int j = i; j >= a[u]; j--) { t[j]++; if (t[j] == k + 1) sum -= ans[j]; } b[u] = a[u]; } else { for (int j = a[u] - 1; j >= b[u]; j--) { t[j]--; if (t[j] == k) sum += ans[j]; } for (int j = i; j >= a[u]; j--) { t[j]++; if (t[j] == k + 1) sum -= ans[j]; } b[u] = a[u]; } a[u] = i + 1; ans[i + 1] = sum % MOD; if (ans[i + 1] < 0) ans[i + 1] += MOD; } cout << ans[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class X, class Y> void amax(X &x, const Y &y) { if (x < y) x = y; } template <class X, class Y> void amin(X &x, const Y &y) { if (x > y) x = y; } const int INF = 1e9 + 10; const long long INFL = (long long)1e18 + 10; const int MAX = 1e5 + 10; const int MAXS = 320; const int MOD = 998244353; int n, k, sn; int a[MAX], prv[MAX], last[MAX], dp[MAX], q[MAXS][2 * MAXS]; int c[MAX], sc[MAXS]; int gb(int i) { return (i - 1) / sn + 1; } int bl(int i) { if (i <= n / sn) return sn; return n - (n / sn) * sn; } pair<int, int> itv(int i) { return make_pair((i - 1) * sn + 1, min(i * sn, n)); } int add(int a, int b) { return (a + b) % MOD; } int gq(int i, int j) { return q[i][j + MAXS]; } void uq(int i, int j, int v) { q[i][j + MAXS] = add(q[i][j + MAXS], v); } void calcq(int i) { memset(q[i], 0, 2 * MAXS * sizeof(q[i][0])); int l = itv(i).first, r = itv(i).second; int t = 0; for (int j = r; j >= l; j--) { t += c[j]; uq(i, t, dp[j - 1]); } for (int j = -bl(i) + 1; j <= bl(i); j++) uq(i, j, gq(i, j - 1)); sc[i] = t; } void process() { cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; sn = max((int)sqrt(n), 1); for (int i = 1; i <= n; i++) { prv[i] = last[a[i]]; last[a[i]] = i; } dp[0] = 1; for (int i = 1; i <= n; i++) { if (i > 0 && gb(i) > gb(i - 1)) calcq(gb(i - 1)); if (prv[prv[i]] != 0) { c[prv[prv[i]]] = 0; if (gb(prv[prv[i]]) < gb(i)) calcq(gb(prv[prv[i]])); } if (prv[i] != 0) { c[prv[i]] = -1; if (gb(prv[i]) < gb(i)) calcq(gb(prv[i])); } c[i] = 1; int l = itv(gb(i)).first; int t = 0; for (int j = i; j >= l; j--) { t += c[j]; if (t <= k) dp[i] = add(dp[i], dp[j - 1]); } int x = k - t; for (int j = gb(i) - 1; j >= 1; j--) { if (x >= -bl(j)) { if (x <= bl(j)) dp[i] = add(dp[i], gq(j, x)); else dp[i] = add(dp[i], gq(j, bl(j))); } x -= sc[j]; } } cout << dp[n]; } int main() { ios_base::sync_with_stdio(false); process(); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 5, B = 350, Mod = 998244353; int n, lim, siz, block_cnt, cnt[maxn], a[maxn], b[maxn], sum_b[1005], sum_f[1005][1005], f[maxn]; vector<int> pos[maxn]; void cal(int w) { memset(sum_f[w], 0, sizeof sum_f[w]); int tmp = 0; for (int i = w * siz; i > w * siz - siz; i--) tmp += b[i], sum_f[w][tmp + B] = (sum_f[w][tmp + B] + f[i - 1]) % Mod; for (int i = -siz + 1; i <= siz; i++) sum_f[w][i + B] = (sum_f[w][i + B] + sum_f[w][i - 1 + B]) % Mod; sum_b[w] = tmp; } int main() { f[0] = 1; cin >> n >> lim; for (int i = 1; i <= n; i++) cin >> a[i], pos[a[i]].push_back(i); siz = sqrt(n); block_cnt = (n - 1) / siz + 1; for (int i = 1; i <= block_cnt; i++) { for (int j = i * siz - siz + 1; j <= min(i * siz, n); j++) { if (cnt[a[j]] == 1) { int p = pos[a[j]][cnt[a[j]] - 1]; b[p] = -1; if (p <= i * siz - siz) cal((p - 1) / siz + 1); } else if (cnt[a[j]] > 1) { int p1 = pos[a[j]][cnt[a[j]] - 2], p2 = pos[a[j]][cnt[a[j]] - 1]; b[p1] = 0; b[p2] = -1; if (p1 <= i * siz - siz) cal((p1 - 1) / siz + 1); if (p2 <= i * siz - siz) cal((p2 - 1) / siz + 1); } b[j] = 1; cnt[a[j]]++; int tmp = 0; for (int k = j; k > i * siz - siz; k--) { tmp += b[k]; if (tmp <= lim) f[j] = (f[j] + f[k - 1]) % Mod; } for (int k = i - 1; k; k--) { if (lim - tmp >= -siz) f[j] = (f[j] + sum_f[k][min(lim - tmp, siz) + B]) % Mod; tmp += sum_b[k]; } } if (i < block_cnt) cal(i); } cout << f[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long modpow(long long a, long long b, long long mod = (long long)(1e9 + 7)) { if (!b) return 1; a %= mod; return modpow(a * a % mod, b / 2, mod) * (b & 1 ? a : 1) % mod; } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); const int mxn = 2e5, mod = 998244353; const int B = 300; int n, k; int a[mxn], dp[mxn], values[mxn]; vector<int> oc[mxn]; void init() { for (int i = 0; i < mxn; i++) dp[i] = values[i] = 0; for (int i = 0; i < mxn; i++) oc[i].push_back(-1); } void add(int &a, int b) { a = a + b >= mod ? a + b - mod : a + b; } int id(int i) { return i / B; } struct Bucket { int prefix[B]; int offset; Bucket() { for (int i = 0; i < B; i++) prefix[i] = 0; offset = 0; } void rebuild(int id) { int newoffset = mod; int f = id * B, s = (id + 1) * B - 1; for (int i = f; i <= s; i++) (newoffset) = min((newoffset), (values[i] + offset)); for (int i = f; i <= s; i++) values[i] += offset - newoffset; offset = newoffset; for (int i = 0; i < B; i++) prefix[i] = 0; for (int i = f; i <= s; i++) add(prefix[values[i]], dp[i]); for (int i = 0; i < B; i++) if (i) add(prefix[i], prefix[i - 1]); } } b[mxn / B + 1]; void add(int i, int j, int x) { for (int k = i; k <= j && id(k) == id(i); k++) values[k] += x; b[id(i)].rebuild(id(i)); if (id(i) == id(j)) return; for (int k = id(i) + 1; k < id(j); k++) b[k].offset += x; for (int k = j; k >= 0 && id(k) == id(j); k--) values[k] += x; b[id(j)].rebuild(id(j)); } void solve() { scanf("%d", &n); scanf("%d", &k); init(); dp[0] = 1; b[id(0)].rebuild(id(0)); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); a[i]--; if (oc[a[i]].size() >= 2) add(oc[a[i]].end()[-2] + 1, oc[a[i]].end()[-1], -1); add(oc[a[i]].end()[-1] + 1, i, 1); dp[i + 1] = 0; for (int j = 0; j <= id(i); j++) { int x = k - b[j].offset; if (x >= 0) add(dp[i + 1], b[j].prefix[min(x, B - 1)]); } b[id(i + 1)].rebuild(id(i + 1)); oc[a[i]].push_back(i); } cout << dp[n] << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int Mod = 998244353; int add(int a, int b) { return a + b >= Mod ? a + b - Mod : a + b; } void Add(int &a, int b) { a = add(a, b); } int dec(int a, int b) { return a - b < 0 ? a - b + Mod : a - b; } void Dec(int &a, int b) { a = dec(a, b); } const int N = 1e5 + 50, M = 300, A = 1e5; int n, k, S, ct, a[N], pre[N], blk[N], dp[N]; int b[N], t[M], bin[M][N + A], sm[M], L[N], R[N]; void ins(int u, int vl) { int p = blk[u]; Add(sm[p], vl); Add(bin[p][b[u] - t[p] + A], vl); } void mdf(int i, int lp, int v) { if (b[i] + t[lp] <= k) Dec(sm[lp], dp[i - 1]); Dec(bin[lp][b[i] + A], dp[i - 1]); b[i] += v; if (b[i] + t[lp] <= k) Add(sm[lp], dp[i - 1]); Add(bin[lp][b[i] + A], dp[i - 1]); } void add(int l, int r, int v) { if (l > r) return; int lp = blk[l], rp = blk[r]; if (blk[l] == blk[r]) { for (int i = l; i <= r; i++) mdf(i, lp, v); return; } for (int i = l; i <= R[lp]; i++) mdf(i, lp, v); for (int i = L[rp]; i <= r; i++) mdf(i, rp, v); for (int i = lp + 1; i < rp; i++) { if (v > 0) Dec(sm[i], bin[i][k - t[i] + A]); else Add(sm[i], bin[i][k - t[i] + 1 + A]); t[i] += v; } } int qry(int p) { int ans = 0, c = 0; for (; c <= ct && R[c] <= p; c++) Add(ans, sm[c]); if (c > ct) return ans; for (int i = L[c]; i <= p; i++) if (b[i] + t[c] <= k) Add(ans, dp[i - 1]); return ans; } int main() { scanf("%d%d", &n, &k); S = 350; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); static int ls[N]; for (int i = 1; i <= n; i++) pre[i] = ls[a[i]], ls[a[i]] = i; for (int i = 1; i <= n; i++) blk[i] = (i - 1) / S + 1; for (int i = 1; i <= n; i += S) L[++ct] = i, R[ct] = i + S - 1; R[ct] = n; dp[0] = 1; for (int i = 1; i <= n; i++) { ins(i, dp[i - 1]); add(pre[i] + 1, i, 1); add(pre[pre[i]] + 1, pre[i], -1); dp[i] = qry(i); } cout << dp[n]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const int N = 2e5 + 5; const int M = 505; const ll mod = 998244353; ll add(ll a, ll b) { return (a + b >= mod ? a + b - mod : a + b); } ll sub(ll a, ll b) { return (a - b < 0 ? a - b + mod : a - b); } ll mul(ll a, ll b) { return (a * b) % mod; } int n, k; int a[N]; int last[N], preLast[N]; ll dp[N]; int inDex[N], head[M]; int magic; struct block { int sz; int Min, Max; int lazy; int bad[M]; ll val[M], sum[M]; void init(int n) { sz = n; Min = Max = 0; for (int i = 0; i <= sz; i++) { val[i] = bad[i] = sum[i] = 0; } } void updAll(int x) { lazy += x; Min += x; Max += x; } void upd(int l, int r, int x) { for (int i = 0; i < sz; i++) bad[i] += lazy; for (int i = l; i <= r; i++) bad[i] += x; lazy = 0; Min = 1e9; Max = -1e9; for (int i = 0; i < sz; i++) { Min = min(Min, bad[i]); Max = max(Max, bad[i]); } for (int i = 0; i <= Max - Min; i++) sum[i] = 0; for (int i = 0; i < sz; i++) { sum[bad[i] - Min] = add(sum[bad[i] - Min], val[i]); } for (int i = 1; i <= Max - Min; i++) { sum[i] = add(sum[i], sum[i - 1]); } } void active(int id, ll x) { val[id] = x; for (int i = bad[id] - Min; i <= Max - Min; i++) { sum[i] = add(sum[i], x); } } ll get(int x) { if (Min > x) return 0; if (Max < x) return sum[Max - Min]; return sum[x - Min]; } } block[M]; void update(int l, int r, ll x) { int L = inDex[l], R = inDex[r]; if (L == R) { block[L].upd(l - head[L], r - head[L], x); return; } block[L].upd(l - head[L], head[L + 1] - head[L] - 1, x); block[R].upd(0, r - head[R], x); for (int i = L + 1; i < R; i++) { block[i].updAll(x); } } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; preLast[i] = -1; } magic = sqrt(n); int now = 1, cnt = 0; for (int i = 1; i <= n; i++) { if (head[now] == 0) head[now] = i; inDex[i] = now; cnt++; if (cnt == magic || i == n) { block[now].init(i - head[now] + 1); now++; cnt = 0; } } head[now] = n + 1; dp[0] = 1; for (int i = 1; i <= n; i++) { update(last[a[i]] + 1, i, 1); if (preLast[a[i]] != -1) { update(preLast[a[i]] + 1, last[a[i]], -1); } preLast[a[i]] = last[a[i]]; last[a[i]] = i; block[inDex[i]].active(i - head[inDex[i]], dp[i - 1]); for (int j = 1; j <= inDex[i]; j++) { dp[i] = add(dp[i], block[j].get(k)); } } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int N = 100005, B = 320, M = 998244353; using namespace std; int n, k, ti, a[N], occ[N], pre[N], b[N], f[N], sum[B], q[B][B << 1 | 1], now; inline void mdf(int x, int y) { b[x] = y; int z = x / B; if (z == now) return; sum[z] = 0; for (int i = 0; i <= B << 1; i++) q[z][i] = 0; for (int i = z * B + B - 1; i >= z * B; i--) sum[z] += b[i], (q[z][sum[z] + B] += f[i]) %= M; for (int i = 0; i < B << 1; i++) (q[z][i + 1] += q[z][i]) %= M; } int main() { scanf("%d%d", &n, &k); memset(occ, -1, N << 2); for (int i = 0; i < n; i++) scanf("%d", a + i), pre[i] = occ[a[i]], occ[a[i]] = i; f[0] = 1; for (int i = 0; i < n; i++) { now = (i + 1) / B, mdf(i, 1); if (~pre[i]) { mdf(pre[i], -1); if (~pre[pre[i]]) mdf(pre[pre[i]], 0); } ti = 0; for (int j = i; j / B == now && ~j; j--) { ti += b[j]; if (ti <= k) (f[i + 1] += f[j]) %= M; } for (int j = now - 1; ~j; j--) { if (ti <= k + B) (f[i + 1] += q[j][min(B << 1, k + B - ti)]) %= M; ti += sum[j]; } } printf("%d", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast,no-stack-protector") #pragma GCC optimize("unroll-loops") using namespace std; const int block = 320, nax = 100005, mod = 998244353; inline int add(int x, int y) { return (x += y) < mod ? x : x - mod; } inline int sub(int x, int y) { return (x -= y) >= 0 ? x : x + mod; } int b[block], q[block][block << 1 | 1], n, k, d[nax], dp[nax], a[nax], lst[nax], lst2[nax]; void add(int pos) { int id = (pos - 1) / block; for (int i = block; i <= 2 * block; ++i) q[id][i] = add(q[id][i], dp[pos - 1]); } void upd(int pos, int sgn) { int id = (pos - 1) / block; b[id] += sgn; for (int i = pos; i > id * block; --i) { if (sgn == 1) q[id][d[i] + block] = sub(q[id][d[i] + block], dp[i - 1]); d[i] += sgn; if (sgn == -2) q[id][d[i] + block] = add(q[id][d[i] + block], dp[i - 1]), q[id][d[i] + block + 1] = add(q[id][d[i] + block + 1], dp[i - 1]); } } int get(int pos) { int ret = 0, id = (pos - 1) / block, sum = b[id]; for (int i = pos; i > id * block; --i) if (d[i] <= k) ret = add(ret, dp[i - 1]); while (--id >= 0) { if (abs(sum - k) <= block) ret = add(ret, q[id][k - sum + block]); else if (sum < k) ret = add(ret, q[id][block << 1]); sum += b[id]; } return ret; } int main() { ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0); dp[0] = 1; cin >> n >> k; for (int i = 1; i <= n; ++i) { cin >> a[i], add(i), upd(i, 1); if (lst[a[i]]) upd(lst[a[i]], -2); if (lst2[a[i]]) upd(lst2[a[i]], 1); dp[i] = get(i), lst2[a[i]] = lst[a[i]], lst[a[i]] = i; } cout << dp[n] << '\n'; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int N = 1e5 + 5, M = N / 160 + 3; int bel[N], f[N], g[N], tag[M], s[M][160 + 3 << 1]; inline int read() { int now = 0; register char c = getchar(); for (; !isdigit(c); c = getchar()) ; for (; isdigit(c); now = now * 10 + c - 48, c = getchar()) ; return now; } void Update(int p, int v) { int *s = ::s[bel[p]]; for (int i = 160; i <= 160 << 1; ++i) (s[i] += v) >= 998244353 && (s[i] -= 998244353); } void Modify(int p, int v) { int bel = ::bel[p], *s = ::s[bel]; tag[bel] += v; for (int i = bel * 160 + 1; i <= p; ++i) { if (v == 1) (s[g[i] + 160] += 998244353 - f[i - 1]) >= 998244353 && (s[g[i] + 160] -= 998244353); else (s[g[i] - 1 + 160] += f[i - 1]) >= 998244353 && (s[g[i] - 1 + 160] -= 998244353), (s[g[i] - 2 + 160] += f[i - 1]) >= 998244353 && (s[g[i] - 2 + 160] -= 998244353); g[i] += v; } } int Query(int p, int K) { int bel = ::bel[p], sum = tag[bel]; long long res = 0; for (int i = bel * 160 + 1; i <= p; ++i) g[i] <= K && (res += f[i - 1]); while (bel--) { if (std::abs(sum - K) <= 160) res += s[bel][K - sum + 160]; else if (sum < K) res += s[bel][160 << 1]; sum += tag[bel]; } return res % 998244353; } int main() { static int las[N], pre[N]; int n = read(), K = read(); for (int i = 1; i <= n; ++i) bel[i] = (i - 1) / 160; f[0] = 1; for (int i = 1; i <= n; ++i) { int a = read(); las[i] = pre[a], pre[a] = i; Update(i, f[i - 1]), Modify(i, 1); if (las[i]) { Modify(las[i], -2); if (las[las[i]]) Modify(las[las[i]], 1); } f[i] = Query(i, K); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long MOD = 998244353; long long mpow(long long a, long long b) { if (b == 0) return 1; long long t1 = mpow(a, b / 2); t1 *= t1; t1 %= MOD; if (b % 2) t1 *= a; t1 %= MOD; return t1; } const long long N = 1e5 + 5; const long long block = 320; vector<long long> mcount(N, 0); vector<long long> offset(block, 0); vector<long long> mprev(N, 0), dp(N, 0); vector<long long> recent(N, 0); long long n, k; long long ans; vector<vector<long long> > sum(block, vector<long long>(N, 0)); void update(long long st, long long la, long long val) { if (st <= 0 || la <= 0) return; for (long long i = 0; i < block; i++) { long long stb = i * block + 1, lab = (i + 1) * block; if (stb > la || lab < st) continue; else if (stb >= st && la >= lab) { if (val == 1 && k - offset[i] >= 0) ans -= sum[i][k - offset[i]]; else if (val == -1 && k + 1 - offset[i] >= 0) ans += sum[i][k + 1 - offset[i]]; ans = (ans + MOD) % MOD; offset[i] += val; } else { for (long long j = stb; j < lab + 1; j++) { if (j < st || j > la) continue; if (val == 1 && offset[i] + mcount[j] == k) { ans -= dp[j - 1]; } else if (val == -1 && offset[i] + mcount[j] == k + 1) ans += dp[j - 1]; ans = (ans + MOD) % MOD; sum[i][mcount[j]] -= dp[j - 1] - MOD; sum[i][mcount[j]] %= MOD; mcount[j] += val; sum[i][mcount[j]] += dp[j - 1]; sum[i][mcount[j]] %= MOD; } } } } void solve() { cin >> n >> k; dp[0] = 1; for (long long i = 1; i < n + 1; i++) { long long a; cin >> a; ans += dp[i - 1]; ans %= MOD; sum[(i - 1) / block][0] += dp[i - 1]; sum[(i - 1) / block][0] %= MOD; mprev[i] = recent[a]; update(mprev[i] + 1, i, 1); update(mprev[mprev[i]] + 1, mprev[i], -1); recent[a] = i; dp[i] = ans; } cout << ans << "\n"; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long t = 1; for (long long i = 0; i < t; i++) { solve(); } return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int Read() { int x(0); char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar(); return x; } const int maxn = 1e5 + 9, mod = 998244353, maxm = 409; int n, k, ans; int a[maxn], cnt[maxn], lst[maxn], fir[maxn], bl[maxm], br[maxm], col[maxn], v[maxn], lazy[maxm], f[maxn], sum[maxm][maxn]; inline int G(int x) { while (x > mod) x -= mod; return x; } inline void Fir() { int size(sqrt(n)), pieces(ceil(1.0 * n / size)); for (int i = 1; i < pieces; ++i) { bl[i] = (i - 1) * size + 1; br[i] = i * size; for (int j = bl[i]; j <= br[i]; ++j) col[j] = i; } bl[pieces] = (pieces - 1) * size + 1; br[pieces] = n; for (int j = bl[pieces]; j <= br[pieces]; ++j) col[j] = pieces; for (int i = 1; i <= n; ++i) { lst[i] = fir[a[i]]; fir[a[i]] = i; } } inline void Modify(int l, int r, int val) { int lt(col[l]), rt(col[r]); if (lt == rt) { for (int i = l; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = G(ans - f[i] + mod); } else { if (v[i] + lazy[lt] == k + 1) ans = G(ans + f[i]); } sum[lt][v[i]] = G(sum[lt][v[i]] - f[i] + mod), v[i] += val, sum[lt][v[i]] = G(sum[lt][v[i]] + f[i]); } } else { for (int i = l; i <= br[lt]; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = G(ans - f[i] + mod); } else { if (v[i] + lazy[lt] == k + 1) ans = G(ans + f[i]); } sum[lt][v[i]] = G(sum[lt][v[i]] - f[i] + mod), v[i] += val, sum[lt][v[i]] = G(sum[lt][v[i]] + f[i]); } for (int i = bl[rt]; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[rt] == k) ans = G(ans - f[i] + mod); } else { if (v[i] + lazy[rt] == k + 1) ans = G(ans + f[i]); } sum[rt][v[i]] = G(sum[rt][v[i]] - f[i] + mod), v[i] += val, sum[rt][v[i]] = G(sum[rt][v[i]] + f[i]); } for (int i = lt + 1; i <= rt - 1; ++i) { if (val == 1) ans = G(ans - sum[i][k - lazy[i]] + mod); else ans = G(ans + sum[i][k + 1 - lazy[i]]); lazy[i] += val; } } } inline void Solve() { ans = f[1] = sum[1][0] = 1; for (int i = 1; i <= n; ++i) { ++cnt[a[i]]; int p(lst[i]), q(lst[p]); if (cnt[a[i]] == 1) Modify(1, i, 1); else if (cnt[a[i]] == 2) { Modify(p + 1, i, 1); Modify(1, p, -1); } else { Modify(p + 1, i, 1); Modify(q + 1, p, -1); } f[i + 1] = ans; sum[col[i + 1]][v[i + 1]] = G(sum[col[i + 1]][v[i + 1]] + f[i + 1]); ans = G(ans + f[i + 1]); } printf("%d", f[n + 1]); } int main() { n = Read(); k = Read(); for (int i = 1; i <= n; ++i) a[i] = Read(); Fir(); Solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int P = 998244353; int n, k; inline int ad(int& x, int& y) { return (x + y > P ? x + y - P : x + y); } int A[200006], las[200006], pr[200006]; const int blo = 133; int bel[200006]; pair<int, int> B[200006]; int S[200006]; int val[200006], gv[200006], lz[200006], cur; void rebuild(int b) { int l = b * blo - blo + 1, r = b * blo; for (int i = (l), iend = (r); i <= iend; ++i) val[i] = val[i] + lz[b]; lz[b] = 0; for (int i = (l), iend = (r); i <= iend; ++i) B[i] = make_pair(val[i], gv[i]); sort(B + l, B + r + 1); S[l] = B[l].second; for (int i = (l + 1), iend = (r); i <= iend; ++i) S[i] = ad(S[i - 1], B[i].second); } void add(int l, int r, int c) { ++l, ++r; if (bel[l] == bel[r]) { int b = bel[l]; for (int i = (l), iend = (r); i <= iend; ++i) val[i] += c; rebuild(b); return; } for (int i = (l), iend = (bel[l] * blo); i <= iend; ++i) val[i] += c; rebuild(bel[l]); for (int i = (r), iend = (bel[r] * blo - blo + 1); i >= iend; --i) val[i] += c; rebuild(bel[r]); for (int i = (bel[l] + 1), iend = (bel[r] - 1); i <= iend; ++i) lz[i] += c; } int que() { int as = 0; for (int b = (1), bend = (bel[cur]); b <= bend; ++b) { int l = (b - 1) * blo + 1, r = b * blo; int ps = upper_bound(B + l, B + r + 1, make_pair(k - lz[b], 0x3f3f3f3f)) - B - 1; if (ps < l) continue; else as = ad(as, S[ps]); } return as; } void gt(int p, int c) { ++p; gv[p] = c; rebuild(bel[p]); } int dp[200006]; void solve() { cin >> n >> k; for (int i = (1), iend = (n); i <= iend; ++i) scanf("%d", A + i), las[i] = pr[A[i]], pr[A[i]] = i; for (int i = (1), iend = (n + 1); i <= iend; ++i) bel[i] = (i - 1) / blo + 1; dp[0] = 1; for (int i = (1), iend = (n); i <= iend; ++i) { cur = i + 1; add(las[i] + 1, i, 1); if (las[i]) add(las[las[i]] + 1, las[i], -1); gt(i, dp[i - 1]); dp[i] = que(); } printf("%d\n", dp[n]); } signed main() { solve(); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
java
// upsolve with rainboy import java.io.*; import java.util.*; public class CF1129D { static final int MD = 998244353, A = 100000, B = 500; static int[] bb, dp, ss; static int[][] dq; static void update(int h) { int[] qq = dq[h]; Arrays.fill(qq, 0); int t = 0; for (int i = (h + 1) * B; i > h * B; i--) { t += bb[i]; qq[B + t] = (qq[B + t] + dp[i - 1]) % MD; } for (int c = 1; c <= B + B; c++) qq[c] = (qq[c] + qq[c - 1]) % MD; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int[] pp = new int[1 + n]; int[] ii = new int[1 + A]; for (int i = 1; i <= n; i++) { int a = Integer.parseInt(st.nextToken()); pp[i] = ii[a]; ii[a] = i; } bb = new int[1 + n]; dp = new int[1 + n]; dp[0] = 1; int m = (n + B - 1) / B; ss = new int[m]; dq = new int[m][B + 1 + B]; for (int j = 1; j <= n; j++) { int p; m = (j - 1) / B; ss[m] += 1 - bb[j]; bb[j] = 1; if ((p = pp[j]) != 0) { int h = (p - 1) / B; ss[h] += -1 - bb[p]; bb[p] = -1; if (p <= m * B) update(h); if ((p = pp[p]) != 0) { h = (p - 1) / B; ss[h] += 0 - bb[p]; bb[p] = 0; if (p <= m * B) update(h); } } int x = 0, t = 0; for (int i = j; i > m * B; i--) if ((t += bb[i]) <= k) x = (x + dp[i - 1]) % MD; for (int h = m - 1; h >= 0; h--) { if (k - t >= -B) x = (x + dq[h][B + Math.min(B, k - t)]) % MD; t += ss[h]; } dp[j] = x; if (j % B == 0) update(m); } System.out.println(dp[n]); } }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> namespace _ { const int inf = 1e9; const int mod = 998244353; const double eps = 1e-8; namespace IO_IN { char buf[1 << 23], *p1 = buf, *p2 = buf; int getc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 23, stdin), p1 == p2) ? EOF : *p1++; } template <class T> inline T read() { char ch; bool flag = 0; T x = 0; while (ch = getc(), !isdigit(ch)) if (ch == '-') flag = 1; while (isdigit(ch)) x = x * 10 + ch - 48, ch = getc(); return flag ? -x : x; } struct { inline operator int() { return read<int>(); } inline operator long long() { return read<long long>(); } template <class T> inline void operator()(T &x) { x = *this; } template <class T, class... A> inline void operator()(T &x, A &...a) { x = *this, this->operator()(a...); } } IN; } // namespace IO_IN using namespace IO_IN; namespace IO_OUT { char buf[1 << 23]; int p1 = -1; const int p2 = (1 << 23) - 1; void flush() { fwrite(buf, 1, p1 + 1, stdout), p1 = -1; } void putc(const char &x) { if (p1 == p2) flush(); buf[++p1] = x; } template <class T> inline void print(T x) { static char tmp[15]; static int len = -1; if (x >= 0) do { tmp[++len] = x % 10 + 48, x /= 10; } while (x); else { putc('-'); do { tmp[++len] = -(x % 10) + 48, x /= 10; } while (x); } while (len >= 0) putc(tmp[len]), --len; } template <class T> inline void print_(T x) { print(x), flush(), putchar(' '); } template <class T> inline void _print(T x) { print(x), flush(), putchar('\n'); } } // namespace IO_OUT using namespace IO_OUT; namespace Std_Function { template <class T> inline bool chkmax(T &x, T y) { x = x > y ? x : y; return x == y; } template <class T> inline bool chkmin(T &x, T y) { x = x < y ? x : y; return x == y; } } // namespace Std_Function using namespace Std_Function; namespace Math_Function { template <class T> inline bool dcmp(T x, T y) { return fabs(x - y) < eps; } template <class T> inline T gcd(T x, T y) { return y ? gcd(y, x % y) : x; } } // namespace Math_Function using namespace Math_Function; namespace Mod_Function { inline int mul(int x, int y) { return 1ll * x * y % mod; } inline int dec(int x, int y) { x -= y; if (x < 0) x += mod; return x; } inline int add(int x, int y) { x += y; if (x >= mod) x -= mod; return x; } inline void pls(int &x, int y) { x += y; if (x >= mod) x -= mod; } inline void sub(int &x, int y) { x -= y; if (x < 0) x += mod; } inline int modpow(int x, int y, int res = 1) { for (; y; y >>= 1, x = mul(x, x)) if (y & 1) res = mul(res, x); return res; } } // namespace Mod_Function using namespace Mod_Function; } // namespace _ using namespace _; const int N = 1e5 + 5; const int S = 320; using namespace std; int n, k, a[N], dp[N], las[N], pre[N]; int L[S], R[S], bel[N], cnt[N], ans[S], tag[S], sum[S][N]; inline void update(int x, int v) { if (cnt[x] + tag[bel[x]] <= k) sub(ans[bel[x]], dp[x]); cnt[x] += v, pls(sum[bel[x]][cnt[x]], dp[x]), sub(sum[bel[x]][cnt[x] - v], dp[x]); if (cnt[x] + tag[bel[x]] <= k) pls(ans[bel[x]], dp[x]); } inline void modify(int l, int r, int v) { if (l > r) return; if (bel[l] == bel[r]) for (int i = l; i <= r; ++i) update(i, v); else { for (int i = l; i <= R[bel[l]]; ++i) update(i, v); for (int i = L[bel[r]]; i <= r; ++i) update(i, v); for (int i = bel[l] + 1; i <= bel[r] - 1; ++i) sub(ans[i], (v > 0 && (k - tag[i] >= 0)) ? sum[i][k - tag[i]] : 0), tag[i] += v, pls(ans[i], (v < 0 && (k - tag[i] >= 0)) ? sum[i][k - tag[i]] : 0); } } int main() { IN(n, k); for (int i = 1; i <= n; ++i) IN(a[i]); int siz = sqrt(n), id = 1; R[0] = L[0] = -1; for (int t = 0; t <= n; t += siz) { L[id] = t, R[id] = min(t + siz - 1, n); for (int i = L[id]; i <= R[id]; ++i) bel[i] = id; ++id; } dp[0] = sum[1][0] = ans[1] = 1; for (int i = 1; i <= n; ++i) { las[i] = pre[a[i]], pre[a[i]] = i; modify(las[las[i]], las[i] - 1, -1), modify(las[i], i - 1, 1); int tmp = 0; while (R[tmp + 1] < i) pls(dp[i], ans[++tmp]); for (int j = R[tmp] + 1; j < i; ++j) if (cnt[j] + tag[bel[j]] <= k) pls(dp[i], dp[j]); pls(sum[bel[i]][0], dp[i]); if (tag[bel[i]] <= k) pls(ans[bel[i]], dp[i]); } _print(dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N, B, K, C = 500; int delta[1005]; long long tbl[1005][1005]; int lst1[100005], lst2[100005]; int val[100005]; long long dp[100005]; long long MOD = 998244353; long long add(long long a, long long b) { return (a + b) % MOD; } long long sub(long long a, long long b) { a = add(a, -b); if (a < 0) { a += MOD; } return a; } void build(int b) { int l = b * B, r = (b + 1) * B - 1; int sum = 0; for (int k = -B + C; k <= B + C; k++) { tbl[b][k] = 0; } for (int i = r; i >= l; i--) { sum += val[i]; tbl[b][sum + C] += dp[i]; } for (int k = -B + C + 1; k <= B + C; k++) { tbl[b][k] = add(tbl[b][k], tbl[b][k - 1]); } delta[b] = sum; } int main() { cin.sync_with_stdio(0); cin.tie(0); cin >> N >> K; B = sqrt(N); fill(lst1 + 1, lst1 + N + 1, -1); fill(lst2 + 1, lst2 + N + 1, -1); dp[0] = 1; for (int i = 0; i < N; i++) { int n; cin >> n; val[i] = 1; if (lst1[n] + 1) { val[lst1[n]] = -1; if (lst1[n] < i / B * B) { build(lst1[n] / B); } } if (lst2[n] + 1) { val[lst2[n]] = 0; if (lst2[n] < i / B * B) { build(lst2[n] / B); } } lst2[n] = lst1[n]; lst1[n] = i; int j = i, tot = 0; do { tot += val[j]; if (tot <= K) { dp[i + 1] = add(dp[i + 1], dp[j]); } j--; } while (j % B != B - 1 && j % B != -1); if (j >= 0) { j /= B; while (j >= 0) { int temp = K - tot; if (temp < -B) ; else { dp[i + 1] = add(dp[i + 1], tbl[j][min(B + C, temp + C)]); } tot += delta[j]; j--; } } if (i % B == B - 1) { build(i / B); } } cout << dp[N] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 200005, maxm = 320, tt = 998244353; int n, m, n1, a[maxn], f[maxn], g[maxm][maxn], bl[maxn], sq, val[maxn], tag[maxm]; int L[maxn], R[maxn]; int las[maxn], las1[maxn]; void build(int x, int l, int r) { for (int i = l; i <= r; i++) { g[x][val[i]] = (g[x][val[i]] + f[i - 1]) % tt; } for (int i = 1; i <= n1; i++) g[x][i] = (g[x][i] + g[x][i - 1]) % tt; } void change(int l, int r, int p, int now) { int st = bl[l] + 1, ed = bl[r] - 1; if (st <= ed) for (int i = st; i <= ed; i++) tag[i] += p; if (bl[l] != bl[r]) { for (int i = l; i <= R[bl[l]]; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } else { if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = l; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = l; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } } int query(int l, int r) { int ret = 0; for (int i = bl[l]; i < bl[r]; i++) ret = (ret + g[i][m - tag[i]]) % tt; for (int i = L[bl[r]]; i <= r; i++) if (val[i] + tag[bl[r]] <= m) ret = (ret + f[i - 1]) % tt; return ret; } int main() { scanf("%d%d", &n, &m); n1 = m; for (int i = 1; i <= n; i++) scanf("%d", &a[i]), n1 = max(n1, a[i]); int ls = 0, bls = 0; sq = sqrt(n); for (int i = 1; i <= n; i++) { bl[i] = bls + 1; if (i - ls == sq || i == n) L[++bls] = ls + 1, R[bls] = i, ls = i; } ls = 0, bls = 0; f[0] = 1; for (int i = 1; i <= n; i++) { if (i == ls + sq) { build(++bls, ls + 1, i); ls = i; } if (las[a[i]]) change(las1[a[i]] + 1, las[a[i]], -1, i); change(las[a[i]] + 1, i, 1, i); las1[a[i]] = las[a[i]], las[a[i]] = i; f[i] = query(1, i); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> std::mt19937 rng( (int)std::chrono::steady_clock::now().time_since_epoch().count()); const int ms = 110000; const int bs = 400; const int MOD = 998244353; void add(int &a, int b) { a = a + b < MOD ? a + b : a + b - MOD; } int *pivot; bool comp(int x1, int x2) { return pivot[x1] < pivot[x2]; } int tmp[2][bs]; struct Bucket { Bucket() { dirty = size = 0; } void push_back(int x) { p[size] = size; lazy[size] = 0; dp[size] = x; values[size++] = 0; } void clean() { for (int i = size - 2; i >= 0; i--) { add(lazy[i], lazy[i + 1]); } for (int i = 0; i < size; i++) { add(dp[p[i]], lazy[i]); lazy[i] = 0; } if (dirty) { for (int i = 0; i < size; i++) { values[i] += dirty; } dirty = 0; } } void remake() { pt = 0; s = 0; for (int i = 0; i + 1 < size; i++) { if (i + 1 == size || values[p[i]] != values[p[i + 1]]) { uni[s++] = i; } } } int getID(int x) { if (x < values[p[0]] + dirty) { return -1; } int l = 0, r = size - 1; while (l != r) { int mid = (l + r + 1) / 2; if (values[p[mid]] + dirty <= x) { l = mid; } else { r = mid - 1; } } return l; while (pt > 0 && x < values[p[uni[pt]]] + dirty) { pt--; } while (pt + 1 < s && x >= values[p[uni[pt + 1]]] + dirty) { pt++; } return uni[pt]; } void upd(int x, int l, int r, int val) { if (l == 0 && r == size) { int id = getID(x); if (id != -1) { add(lazy[id], val); } } else { for (int i = l; i < r; i++) { if (values[i] + dirty <= x) { add(dp[i], val); } else { } } } } void upd2(int l, int r, int val) { if (l == 0 && r == size) { dirty += val; } else { for (int i = l; i < r; i++) { values[i] += val; } clean(); pivot = values; int s0 = 0, s1 = 0; for (int i = 0; i < size; i++) { if (l <= p[i] && p[i] < r) { tmp[0][s0++] = p[i]; } else { tmp[1][s1++] = p[i]; } } std::merge(tmp[0], tmp[0] + s0, tmp[1], tmp[1] + s1, p, comp); remake(); } } int values[bs], p[bs], lazy[bs], dp[bs], uni[bs]; int dirty; int size, s, pt; }; Bucket b[ms / bs + 2]; std::vector<int> pos[ms]; int a[ms]; int pt[ms]; int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int n, k; std::cin >> n >> k; for (int i = 1; i <= n; i++) { pos[i].push_back(-1); } for (int i = 0; i < n; i++) { std::cin >> a[i]; pos[a[i]].push_back(i); b[i / bs].push_back(i == 0 ? 1 : 0); } b[n / bs].push_back(0); for (int i = 0; i <= n; i++) { if (i % bs == 0) { b[i / bs].remake(); } } for (int i = 1; i <= n; i++) { pos[i].push_back(n); pos[i].push_back(n); } auto upd2 = [&](int l, int r, int val) { if (l >= r) return; int bl = l / bs, br = (r - 1) / bs; if (bl == br) { b[bl].upd2(l - bl * bs, r - bl * bs, val); return; } b[bl].upd2(l - bl * bs, bs, val); for (int i = bl + 1; i < br; i++) { b[i].upd2(0, bs, val); } b[br].upd2(0, r - br * bs, val); }; auto upd = [&](int l, int r, int val) { if (l >= r) return; int bl = l / bs, br = (r - 1) / bs; if (bl == br) { b[bl].upd(k, l - bl * bs, r - bl * bs, val); return; } b[bl].upd(k, l - bl * bs, bs, val); for (int i = bl + 1; i < br; i++) { b[i].upd(k, 0, bs, val); } b[br].upd(k, 0, r - br * bs, val); }; for (int i = 1; i <= n; i++) { upd2(pos[i][1] + 1, pos[i][2] + 1, 1); } for (int i = 0; i < n; i++) { b[i / bs].clean(); int dp = b[i / bs].dp[i % bs]; upd(i + 1, n + 1, dp); { int v = a[i]; upd2(pos[v][pt[v] + 1] + 1, pos[v][pt[v] + 2] + 1, -1); pt[v]++; upd2(pos[v][pt[v] + 1] + 1, pos[v][pt[v] + 2] + 1, 1); } } b[n / bs].clean(); std::cout << b[n / bs].dp[n % bs] << '\n'; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; const int MAXN = 100005; const int Blocks = 405; int n, qk, a[MAXN], pre[MAXN], lst[MAXN], dp[MAXN], f[MAXN]; int sum[Blocks][MAXN], ans[Blocks], lz[Blocks], l[Blocks], r[Blocks], bl[MAXN]; inline void add(int &x, int y) { x += y; (x >= mod) && (x -= mod); } inline void sub(int &x, int y) { x -= y; (x < 0) && (x += mod); } inline void Rebuild(int x) { for (int k = l[x]; k <= r[x]; ++k) sum[x][f[k]] = 0, f[k] += lz[x]; lz[x] = ans[x] = 0; for (int k = l[x]; k <= r[x]; ++k) { add(sum[x][f[k]], dp[k]); if (f[k] <= qk) add(ans[x], dp[k]); } } inline void Update(int k, int val) { int x = bl[k]; sub(sum[x][f[k]], dp[k]); if (f[k] <= qk) sub(ans[x], dp[k]); f[k] += val; add(sum[x][f[k]], dp[k]); if (f[k] <= qk) add(ans[x], dp[k]); } inline void Modify(int x, int y, int val) { int L = bl[x], R = bl[y]; if (L == R) { Rebuild(L); for (int k = x; k <= y; ++k) Update(k, val); } else { Rebuild(L); for (int k = x; k <= r[L]; ++k) Update(k, val); Rebuild(R); for (int k = l[R]; k <= y; ++k) Update(k, val); for (int i = L + 1; i < R; ++i) if (val == 1) { int tmp = qk - (lz[i]++); sub(ans[i], sum[i][tmp]); } else { int tmp = qk - (--lz[i]); add(ans[i], sum[i][tmp]); } } } inline int Query(int x) { int re = 0; Rebuild(bl[x]); for (int k = l[bl[x]]; k <= x; ++k) if (f[k] <= qk) add(re, dp[k]); for (int i = 1; i < bl[x]; ++i) add(re, ans[i]); return re; } int main() { scanf("%d%d", &n, &qk); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); pre[i] = lst[a[i]]; lst[a[i]] = i; } dp[1] = 1; int m = sqrt(n); for (int i = 1; i <= n; ++i) { bl[i] = (i - 1) / m + 1; r[bl[i]] = i; if (!l[bl[i]]) l[bl[i]] = i; } for (int i = 1; i <= n; ++i) { Modify(pre[i] + 1, i, 1); if (pre[i]) Modify(pre[pre[i]] + 1, pre[i], -1); dp[i + 1] = Query(i); } printf("%d\n", dp[n + 1]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> const int maxn = 100005, mod = 998244353, maxt = 325; int n, k, t; int a[maxn], l[maxt], r[maxt], pos[maxn], lst[maxn], pre[maxn], f[maxn], sum[maxt][maxn], tot[maxn], tag[maxt], cnt[maxn]; void BF(int x, int y, int v) { for (int i = x; i <= y; i++) { if (v == 1) cnt[i]++, sum[pos[i]][cnt[i]] = (sum[pos[i]][cnt[i]] + f[i]) % mod; else sum[pos[i]][cnt[i]] = (sum[pos[i]][cnt[i]] - f[i] + mod) % mod, cnt[i]--; } } void update(int x, int y, int v) { if (x > y) return; int p = pos[x], q = pos[y]; if (p == q) { BF(x, y, v); return; } BF(x, r[p], v), BF(l[q], y, v); for (int i = p + 1; i <= q - 1; i++) tag[i] += v; } int query() { int res = 0; for (int i = 1; i <= t; i++) if (k - tag[i] + 1 >= 0) res = (res + tot[i] - sum[i][k - tag[i] + 1]) % mod; return (res + mod) % mod; } int main() { scanf("%d%d", &n, &k); t = sqrt(n + 1); r[0] = -1; for (int i = 1; i <= t; i++) l[i] = r[i - 1] + 1, r[i] = l[i] + t - 1; if (r[t] < n) t++, l[t] = r[t - 1] + 1, r[t] = n; for (int i = 1; i <= t; i++) for (int j = l[i]; j <= r[i]; j++) pos[j] = i; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); pre[i] = lst[a[i]], lst[a[i]] = i; } f[0] = 1, sum[1][0] = 1, tot[1] = 1; for (int i = 1; i <= n; i++) { update(pre[pre[i]], pre[i] - 1, -1), update(pre[i], i - 1, 1); f[i] = query(), sum[pos[i]][0] = (sum[pos[i]][0] + f[i]) % mod, tot[pos[i]] = (tot[pos[i]] + f[i]) % mod; } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2") using namespace std; using ll = long long; int a[101001]; int b[101010]; int dp[101010]; int p1[101010]; int p2[101010]; ll ans = 0; int n, k; void add(int* __restrict a, int* __restrict dp, int n) { for (int i = 0; i < n; ++i) { a[i]++; ans -= a[i] == 0 ? dp[i] : 0; } } void sub(int* __restrict a, int* __restrict dp, int n) { for (int i = 0; i < n; ++i) { ans += a[i] == 0 ? dp[i] : 0; a[i]--; } } int main() { cin >> n >> k; for (int i = 0; i < n; ++i) { b[i] = -k - 1; cin >> a[i]; --a[i]; p1[i] = p2[i] = -1; } dp[0] = 1; ans = 1; for (int i = 0; i < n; ++i) { int x = a[i]; sub(b + p2[x] + 1, dp + p2[x] + 1, p1[x] - p2[x]); add(b + p1[x] + 1, dp + p1[x] + 1, i - p1[x]); ans %= 998244353; if (ans < 0) ans += 998244353; dp[i + 1] = (int)ans; ans *= 2; p2[x] = p1[x]; p1[x] = i; } cout << ans / 2 << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int B = 300; const int mod = 998244353; const int N = 1e5 + 10; int n, k, arr[N], memo[N]; int which(int i) { return i / B; } struct bucket { int ID; int offset = 0; int cnt[B], prefix[B]; void rebuild() { int mn = cnt[0]; for (int i = 0; i < B; ++i) { mn = min(mn, cnt[i]); } offset += mn; for (int i = 0; i < B; ++i) { prefix[i] = 0; } for (int i = 0; i < B; ++i) { cnt[i] -= mn; assert(0 <= cnt[i] && cnt[i] < B); prefix[cnt[i]] += memo[i + ID * B]; if (prefix[i] >= mod) prefix[i] -= mod; } for (int i = 1; i < B; ++i) { prefix[i] += prefix[i - 1]; if (prefix[i] >= mod) prefix[i] -= mod; } } }; vector<bucket> buckets; void add(int L, int R, int diff) { for (int i = L; i <= R && which(i) == which(L); ++i) { buckets[which(i)].cnt[i - i / B * B] += diff; } buckets[which(L)].rebuild(); if (which(L) == which(R)) return; for (int i = which(L) + 1; i < which(R); ++i) { buckets[i].offset += diff; } for (int i = R; i >= 0 && which(i) == which(R); --i) { buckets[which(i)].cnt[i - i / B * B] += diff; } buckets[which(R)].rebuild(); } int query(int R) { if (R < 0) return 0; int sum = 0; for (int i = 0; i <= which(R); ++i) { int tgt = k - buckets[i].offset; tgt = min(tgt, B - 1); if (tgt < 0) continue; sum += buckets[i].prefix[tgt]; if (sum >= mod) sum -= mod; } assert(0 <= sum && sum < mod); return sum; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; buckets.resize(n + 1); vector<vector<int>> pos(n + 1); for (int i = 0; i <= n; ++i) { buckets[i].ID = i; pos[i].push_back(-1); } for (int i = 0; i < n; ++i) { cin >> arr[i]; } memo[0] = 1; buckets[which(0)].rebuild(); for (int i = 0; i < n; ++i) { int currS = pos[arr[i]].size(); if (currS >= 2) { int L = pos[arr[i]][currS - 2] + 1; int R = pos[arr[i]].back(); add(L, R, -1); } add(pos[arr[i]].back() + 1, i, 1); memo[i + 1] = query(i); pos[arr[i]].push_back(i); buckets[which(i + 1)].rebuild(); } cout << "memo:\n"; for (int i = 0; i <= n; ++i) { cout << memo[i] << ' '; } cout << '\n'; cout << memo[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> //#pragma GCC optimize("unroll-loops") //#pragma GCC optimize("-O3") //#pragma GCC optimize("Ofast") #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> #define sz(x) int(x.size()) #define all(x) x.begin(),x.end() #define pii pair<int,int> #define PB push_back #define pll pair<ll,ll> #define pii pair<int,int> #define pil pair<int,ll> #define pli pair<ll, int> #define pi4 pair<pii, pii> #define pib pair<int, bool> #define ft first #define sd second using namespace std; using namespace __gnu_cxx; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; template<class T> using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; //const int N = 100100; const int N = 2010; const int M = (1 << 10); const int oo = 2e9; const ll OO = 1e18; const int PW = 20; const int md = int(1e9) + 7; //const int BLOCK = 750; const int BLOCK = 2; const int K = N / BLOCK; int f[N], SQ[K][2 * N], mid[K], sum[K], a[N], n, k, ppr[N], pr[N], vl[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); // freopen("in.txt","r",stdin); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; a[i]--; } fill(mid, mid + K, N); for (int i = 0; i < n; i++){ ppr[i] = pr[i] = -1; } for (int i = 0; i < n; i++){ int l = ppr[a[i]], r = pr[a[i]]; swap(ppr[a[i]], pr[a[i]]); pr[a[i]] = i; int nm = i / BLOCK; sum[nm] += (i ? f[i - 1] : 1); SQ[nm][mid[nm]] += (i ? f[i - 1] : 1); for (int j = max(r + 1, BLOCK * nm); j <= i; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } if ((r + 1) / BLOCK != nm){ nm--; int nd = (r + 1) / BLOCK; for (; nm > nd; nm--){ sum[nm] -= SQ[nm][mid[nm] + k]; mid[nm]--; } for (int j = r + 1; j < (nm + 1) * BLOCK; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] + N - mid[nm] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } } if (r >= 0){ int nd = (l + 1) / BLOCK; if (nd < nm){ for (int j = BLOCK * nm; j < r + 1; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] + N - mid[nm] == k) sum[nm] += (j ? f[j - 1] : 1); } nm--; } for (; nm > nd; nm--){ sum[nm] += SQ[nm][mid[nm] + k + 1]; mid[nm]++; } for (int j = l + 1; j <= r; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] + N - mid[nm] == k) sum[nm] += (j ? f[j - 1] : 1); } } for (int j = 0; j * BLOCK <= i; j++) f[i] += sum[j]; nm = i / BLOCK; } cout << f[n - 1]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[100310], k, f[100310], bel[100310], sl, b[100310], t[100310], tot, la[100310]; bool bz[100310]; int low(int x) { return (x & (-x)); } struct node { int tr[100310], t; void ins(int x, int k) { while (x <= n + 1) { tr[x] = (tr[x] + k) % 998244353; x += low(x); } } int sum(int x) { int ans = 0; while (x) { ans = (ans + tr[x]) % 998244353; x -= low(x); } return ans; } } p[310]; void xg(int x, int i, int k) { if (bz[i]) p[x].ins(b[i] + 1, -f[i - 1]); b[i] += k; p[x].ins(b[i] + 1, f[i - 1]); bz[i] = 1; } void clear(int x) { int l = (x - 1) * 400 + 1, r = min(x * 400, n); for (int i = l; i <= r; i++) xg(x, i, p[x].t); p[x].t = 0; } void add(int l, int r, int k) { int o1 = bel[l], o2 = bel[r]; if (o1 == o2) { clear(o1); for (int i = l; i <= r; i++) xg(o1, i, k); } else { clear(o1), clear(o2); for (int i = l; i <= o1 * 400; i++) xg(o1, i, k); for (int i = (o2 - 1) * 400 + 1; i <= r; i++) xg(o2, i, k); for (int i = o1 + 1; i < o2; i++) p[i].t += k; } } int js(int x) { int o = bel[x], ans = 0; for (int i = 1; i < o; i++) { if (k + 1 < p[i].t) continue; ans = (ans + p[i].sum(k + 1 - p[i].t)) % 998244353; } clear(o); for (int i = (o - 1) * 400 + 1; i <= x; i++) if (b[i] <= k) ans = (ans + f[i - 1]) % 998244353; return ans; } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]), bel[i] = (i - 1) / 400 + 1; sl = bel[n]; f[0] = 1; for (int i = 1; i <= n; i++) { la[i] = t[a[i]]; add(la[i] + 1, i, 1); if (la[i]) add(la[la[i]] + 1, la[i], -1); f[i] = js(i); t[a[i]] = i; } if (f[n] < 0) f[n] += 998244353; printf("%d", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int BLQ = 1; const int MOD = 320; struct Treap { int x; int y; int z; int acum; int lazy; Treap *l, *r; Treap(int X, int Z) : x(X), y(rand()), z(Z % MOD), acum(Z % MOD), lazy(0), l(NULL), r(NULL) {} }; typedef Treap *ptreap; void Push(ptreap T) { if (!T) return; if (T->lazy) { T->x += T->lazy; if (T->l) T->l->lazy += T->lazy; if (T->r) T->r->lazy += T->lazy; T->lazy = 0; } } void goUp(ptreap T) { if (!T) return; T->acum = T->z; if (T->l) T->acum = (T->acum + T->l->acum) % MOD; if (T->r) T->acum = (T->acum + T->r->acum) % MOD; } void Split(ptreap T, ptreap &L, ptreap &R, int x) { Push(T); if (!T) { L = R = NULL; return; } if (T->x <= x) { L = T; Split(L->r, L->r, R, x); } else { R = T; Split(R->l, L, R->l, x); } goUp(L); goUp(R); } void Merge(ptreap &T, ptreap L, ptreap R) { Push(L); Push(R); if (!L) { T = R; return; } else if (!R) { T = L; return; } if (L->y < R->y) { T = L; Merge(T->r, T->r, R); } else { T = R; Merge(T->l, L, R->l); } goUp(T); } void Incrementa(ptreap &T, int x, int z) { Push(T); if (T->x == x) { T->z = (T->z + z) % MOD; if (T->z == 0) Merge(T, T->l, T->r); } else if (x < T->x) { Incrementa(T->l, x, z); } else { Incrementa(T->r, x, z); } goUp(T); } ptreap Busca(ptreap T, int x) { Push(T); if (!T) return NULL; if (x == T->x) return T; if (x < T->x) return Busca(T->l, x); return Busca(T->r, x); } void Agrega(ptreap &T, int x, int z) { ptreap act = Busca(T, x); if (act) { Incrementa(T, x, z); } else { ptreap L, R; Split(T, L, R, x); Merge(L, L, new Treap(x, z)); Merge(T, L, R); } } int Suma(ptreap T, int x) { if (!T) return 0; T->lazy += x; } int main() { int N, K; ios_base::sync_with_stdio(0); cin.tie(0); cin >> N >> K; vector<int> ar(N); int U = (N - 1) / BLQ + 1; vector<int> lazy(U); for (int i = 0; i < N; i++) { cin >> ar[i]; ar[i]--; } vector<int> acum(N); vector<int> dp(N); vector<int> ultimo(N, -1); vector<int> penultimo(N, -1); vector<ptreap> raices(U, NULL); auto desplaza = [&](int pos, int r) { int b = pos / BLQ; if (pos % BLQ) { int fin = min(N, (b + 1) * BLQ); if (lazy[b]) { for (int j = b * BLQ; j < fin; j++) acum[j] += lazy[b]; lazy[b] = 0; } for (int j = pos; j < fin; j++) { Agrega(raices[b], acum[j], MOD - dp[j]); acum[j] += r; Agrega(raices[b], acum[j], dp[j]); } b++; } while (b < U) { Suma(raices[b], r); lazy[b] += r; b++; } }; int res = 1; for (int i = N - 1; i >= 0; i--) { if (~penultimo[ar[i]]) { desplaza(penultimo[ar[i]], 1); } if (~ultimo[ar[i]]) { desplaza(ultimo[ar[i]], -2); } desplaza(i + 1, 1); penultimo[ar[i]] = ultimo[ar[i]]; ultimo[ar[i]] = i; int b = i / BLQ; Agrega(raices[b], 1, res); dp[i] = res; acum[i] = 1; res = 0; for (int j = b; j < U; j++) { ptreap L, R; Split(raices[j], L, R, K); if (L) res = (res + L->acum) % MOD; Merge(raices[j], L, R); } } cout << res << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; inline void add(int &a, int b) { a += b; a = a >= mod ? a - mod : a; } inline void sub(int &a, int b) { a -= b; a = a < 0 ? a + mod : a; } const int N = 1e5 + 5; const int BLK = 400; int n, qk, K; int pre[N], lst[N], cnt[N], _tmp[N]; int tag[BLK], l[BLK], r[BLK], sum[BLK][N], ans[BLK]; int bl[N], f[N], dp[N], a[N]; inline void rebuild(int x) { for (int k = l[x]; k <= r[x]; k++) sum[x][f[k]] = 0, f[k] += tag[x]; tag[x] = 0; ans[x] = 0; for (int k = l[x]; k <= r[x]; k++) { add(sum[x][f[k]], dp[k]); add(ans[x], f[k] <= qk ? dp[k] : 0); } } inline void upd(int x, int fff) { int b = bl[x]; sub(sum[b][f[x]], dp[x]); if (f[x] <= qk) sub(ans[b], dp[x]); f[x] += fff; add(sum[b][f[x]], dp[x]); if (f[x] <= qk) add(ans[b], dp[x]); } inline void ADD(int L, int R, int f) { if (bl[L] == bl[R]) { rebuild(bl[L]); for (int k = L; k <= R; k++) { upd(k, f); } } rebuild(bl[L]); for (int k = L; k <= r[bl[L]]; k++) upd(k, f); for (int k = bl[L] + 1; k <= bl[R] - 1; k++) { if (f == 1) { int tk = qk - tag[k]; sub(ans[k], sum[k][tk]); ++tag[k]; } else { --tag[k]; int tk = qk - tag[k]; add(ans[k], sum[k][tk]); } } rebuild(bl[R]); for (int k = l[bl[R]]; k <= R; k++) upd(k, f); } inline int query(int x) { int res = 0; rebuild(bl[x]); for (int k = 1; k <= bl[x] - 1; k++) add(res, ans[k]); for (int k = l[bl[x]]; k <= x; k++) add(res, f[k] <= qk ? dp[k] : 0); return res; } int main() { scanf("%d%d", &n, &qk); K = sqrt(n); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); pre[i] = lst[a[i]]; lst[a[i]] = i; } for (int i = 1; i <= n; i++) { bl[i] = (i - 1) / K + 1; r[bl[i]] = i; if (!l[bl[i]]) l[bl[i]] = i; } dp[1] = 1; for (int i = 1; i <= n; i++) { ADD(pre[i] + 1, i, 1); if (pre[i]) ADD(pre[pre[i]] + 1, pre[i], -1); dp[i + 1] = query(i); } cout << dp[n + 1] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10; const int Mod = 998244353; int add(int a, int b) { return (a += b) >= Mod ? a - Mod : a; } int sub(int a, int b) { return (a -= b) < 0 ? a + Mod : a; } int mul(int a, int b) { return 1ll * a * b % Mod; } int n, k, a[N], siz, cntblo; int pre[N], lst[N], dp[N], f[N], sum[400][N], ans[400]; int tag[400], L[400], R[400], bel[N]; void rebuild(int id) { for (int i = L[id]; i <= R[id]; i++) { sum[id][f[i]] = 0; f[k] += tag[k]; } tag[id] = ans[id] = 0; for (int i = L[id]; i <= R[id]; i++) { sum[id][f[i]] = add(sum[id][f[i]], dp[i]); if (f[i] <= k) { ans[id] = add(ans[id], dp[i]); } } } void update(int x, int vl) { int id = bel[x]; sum[id][f[x]] = sub(sum[id][f[x]], dp[x]); if (f[x] <= k) { ans[id] = sub(ans[id], dp[x]); } f[x] += vl; sum[id][f[x]] = add(sum[id][f[x]], dp[x]); if (f[x] <= k) { ans[id] = add(ans[id], dp[x]); } } void modify(int l, int r, int vl) { if (l > r) { return; } if (bel[l] == bel[r]) { rebuild(bel[l]); for (int i = l; i <= r; i++) { update(i, vl); } return; } rebuild(bel[l]); for (int i = l; i <= R[bel[l]]; i++) { update(i, vl); } rebuild(bel[r]); for (int i = L[bel[r]]; i <= r; i++) { update(i, vl); } for (int id = bel[l] + 1; id < bel[r]; id++) { if (vl > 0) { ans[id] = sub(ans[id], sum[id][k - tag[id]]); ++tag[id]; } else { --tag[id]; ans[id] = add(ans[id], sum[id][k - tag[id]]); } } } int query(int x) { int res = 0; for (int i = 1; i < bel[x]; i++) { res = add(res, ans[i]); } for (int i = L[bel[x]]; i <= x; i++) { if (f[i] <= k) { res = add(res, dp[i]); } } return res; } int main() { scanf("%d %d", &n, &k); siz = sqrt(n); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); pre[i] = lst[a[i]]; lst[a[i]] = i; bel[i] = (i - 1) / siz + 1; } cntblo = bel[n]; for (int i = 1; i <= cntblo; i++) { L[i] = R[i - 1] + 1; R[i] = min(n, L[i] + siz - 1); } dp[1] = 1; for (int i = 1; i <= n; i++) { modify(pre[i] + 1, i - 1, 1); modify(pre[pre[i]] + 1, pre[i], -1); dp[i + 1] = query(i); rebuild(bel[i]); update(i, 1); } printf("%d", dp[n + 1]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; struct custom_hash { static unsigned long long splitmix64(unsigned long long x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator()(unsigned long long x) const { static const unsigned long long FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } }; mt19937 random_generator( chrono::steady_clock::now().time_since_epoch().count()); const int mod = 998244353; const int maxn = 1e5 + 3; int n, k; int a[maxn]; void read() { cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; } int add(int a, int b) { a += b; if (a >= mod) a -= mod; if (a < 0) a += mod; return a; } const int block_sz = 403; int dp[maxn]; vector<int> v[maxn]; int sum[303][maxn]; int bl_add[303]; int f[maxn]; int all_sum = 0; void update_segment(int idx, int l, int r, int curr_add) { for (int i = l; i <= r; i++) { int pos = idx * block_sz + i + 1; if (f[pos] + bl_add[idx] <= k && f[pos] + curr_add + bl_add[idx] > k) all_sum = add(all_sum, -dp[pos - 1]); else if (f[pos] + bl_add[idx] > k && f[pos] + curr_add + bl_add[idx] <= k) all_sum = add(all_sum, dp[pos - 1]); sum[idx][f[pos] + bl_add[idx]] = add(sum[idx][f[pos] + bl_add[idx]], -dp[pos - 1]); sum[idx][f[pos] + curr_add + bl_add[idx]] = add(sum[idx][f[pos] + curr_add + bl_add[idx]], dp[pos - 1]); f[pos] += curr_add; } } void add_single(int idx, int curr_add) { if (curr_add == 1) { if (bl_add[idx] <= k) all_sum = add(all_sum, -sum[idx][k - bl_add[idx]]); } else { if (bl_add[idx] <= k + 1) all_sum = add(all_sum, sum[idx][k + 1 - bl_add[idx]]); } bl_add[idx] += curr_add; } void add_on_segment(int l, int r, int add) { int idx1 = l / block_sz, idx2 = r / block_sz; int pos1 = (l - 1) % block_sz, pos2 = (r - 1) % block_sz; for (int i = idx1 + 1; i <= idx2 - 1; i++) add_single(i, add); if (idx1 == idx2) update_segment(idx1, pos1, pos2, add); else { update_segment(idx1, pos1, block_sz - 1, add); update_segment(idx2, 0, pos2, add); } } void solve() { dp[0] = 1; for (int i = 1; i <= n; i++) { f[i] = 0; all_sum = add(all_sum, dp[i - 1]); sum[(i - 1) / block_sz][f[i]] = add(sum[(i - 1) / block_sz][f[i]], dp[i - 1]); int sz = v[a[i]].size(); int first = 0, second = 0; if (sz >= 1) first = v[a[i]][sz - 1]; if (sz >= 2) second = v[a[i]][sz - 2]; add_on_segment(first + 1, i, 1); if (first != 0) add_on_segment(second + 1, first, -1); dp[i] = all_sum; v[a[i]].push_back(i); } cout << dp[n] << '\n'; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); read(); solve(); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5, SQRT = 317, inf = 1e9, mod = 998244353, BLOCK_SIZE = 333; int dodaj(int x, int y) { x += y; if (x >= mod) return x - mod; return x; } int n, k; int a[MAXN], dp[MAXN]; vector<int> seen[MAXN]; struct Bucket { int offset, id, mini; int pref[SQRT + 5], add[SQRT + 5]; Bucket() { offset = id = mini = 0; memset(pref, 0, sizeof(pref)); memset(add, 0, sizeof(add)); } void update_add(int x, int val) { x %= SQRT; add[x] += val; } void update(bool print = false) { memset(pref, 0, sizeof(pref)); int mn = 0, curr = 0; for (int i = SQRT - 1; i >= 0; --i) { curr += add[i]; mn = min(mn, curr); } mini = mn; offset = curr; curr = 0; int start = id * SQRT; for (int i = SQRT - 1; i >= 0; --i) { curr += add[i]; if (start + i - 1 >= 0) pref[curr - mn] = dodaj(pref[curr - mn], dp[start + i - 1]); } for (int i = 1; i <= SQRT; ++i) pref[i] += pref[i - 1]; } } buckets[BLOCK_SIZE]; void update(int x, int val) { int id = x / SQRT; buckets[id].update_add(x, val); buckets[id].update(); } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; ++i) cin >> a[i]; for (int i = 1; i <= n; ++i) seen[i].push_back(-1); for (int i = 0; i < BLOCK_SIZE; ++i) buckets[i].id = i; dp[0] = 1; for (int i = 1; i <= n; ++i) { update(i, 1); if (seen[a[i]].back() != -1) { if (seen[a[i]][seen[a[i]].size() - 2] != -1) update(seen[a[i]][seen[a[i]].size() - 2], 1); update(seen[a[i]].back(), -2); } seen[a[i]].push_back(i); if (i == 0) { dp[0] = 1; continue; } int id = i / SQRT, curr = 0; for (int j = id; j >= 0; --j) { int mini = curr + buckets[j].mini; if (mini <= k) { dp[i] = dodaj(dp[i], buckets[j].pref[min(k - mini, SQRT)]); } curr += buckets[j].offset; } } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<int, int> operator+(const pair<int, int> x, const int y) { return make_pair(x.first + y, x.second); } const int mxn = 131072, siz = 10000, md = 998244353; int n, k, pl[mxn], pr[mxn], d[mxn], f[mxn], bl[mxn], cnt[512][256], tag[512]; pair<int, int> a[mxn], b[mxn], c[mxn]; void mrg(pair<int, int> *x, int nx, pair<int, int> *y, int ny, pair<int, int> *z) { int px = 0, py = 0, pz = 0; for (; px < nx && py < ny;) if (x[px] < y[py]) z[pz++] = x[px++]; else z[pz++] = y[py++]; for (; px < nx; z[pz++] = x[px++]) ; for (; py < ny; z[pz++] = y[py++]) ; } void reb(int pos, int l, int r) { int mn = n + 1; for (int i = l; i <= r; ++i) mn = min(mn, a[i].first); for (int i = l; i <= r; ++i) a[i].first -= mn; for (int i = 0; i <= siz; ++i) cnt[pos][i] = 0; for (int i = l; i <= r; ++i) (cnt[pos][a[i].first] += f[a[i].second]) %= md; for (int i = 1; i <= siz; ++i) (cnt[pos][i] += cnt[pos][i - 1]) %= md; tag[pos] += mn; } void add(int l, int r, int x) { int pb = 0, pc = 0; for (int i = (bl[l] - 1) * siz + 1; i <= min(bl[l] * siz, n); ++i) if (a[i].second < l || a[i].second > r) b[pb++] = a[i]; else c[pc++] = a[i] + x; mrg(b, pb, c, pc, a + (bl[l] - 1) * siz + 1); reb(bl[l], (bl[l] - 1) * siz + 1, min(bl[l] * siz, n)); if (bl[l] != bl[r]) { pb = 0, pc = 0; for (int i = (bl[r] - 1) * siz + 1; i <= min(bl[r] * siz, n); ++i) if (a[i].second < l || a[i].second > r) b[pb++] = a[i]; else c[pc++] = a[i] + x; mrg(b, pb, c, pc, a + (bl[r] - 1) * siz + 1); reb(bl[r], (bl[r] - 1) * siz + 1, min(bl[r] * siz, n)); } for (int i = bl[l] + 1; i <= bl[r] - 1; ++i) tag[i] += x; } void init() { for (int i = 1; i <= n; ++i) bl[i] = (i - 1) / siz + 1; for (int i = 1; i <= n; ++i) a[i] = make_pair(0, i); for (int i = 1; i <= bl[n]; ++i) reb(i, (i - 1) * siz + 1, min(i * siz, n)); } int main() { scanf("%d%d", &n, &k), ++n, f[1] = 1; for (int i = 2; i <= n; ++i) scanf("%d", &d[i]); init(); for (int i = 2; i <= n; ++i) { if (pr[d[i]]) add(pl[d[i]] + 1, pr[d[i]], -1); pl[d[i]] = pr[d[i]], pr[d[i]] = i - 1; add(pl[d[i]] + 1, pr[d[i]], 1); for (int j = 1; j <= bl[i]; ++j) if (k - tag[j] >= 0 && k - tag[j] <= siz) (f[i] += cnt[j][k - tag[j]]) %= md; reb(bl[i], (bl[i] - 1) * siz + 1, min(bl[i] * siz, n)); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10, M = 320, mod = 998244353; void add(int& x, int y) { x += y; if (x >= mod) { x -= mod; } } void sub(int& x, int y) { x -= y; if (x < 0) { x += mod; } } int n, k, now, f[N], g[N], belong[N], a[N], pre_p[N], last_p[N], tag[M], answer; template <typename T> struct my_array { T a[N << 1]; T& operator[](int x) { return a[N + x]; } }; my_array<int> sum[M]; void modify(int l, int r, int v) { if (l > r) { return; } for (int i = belong[l] + 1; i < belong[r]; ++i) { if (v == -1) { add(answer, sum[i][k + 1 - tag[i]]); } else { sub(answer, sum[i][k - tag[i]]); } tag[i] += v; } if (belong[l] != belong[r]) { for (int i = l; i <= (belong[l] + 1) * M - 1; ++i) { sum[belong[l]][g[i]] = 0; if (v == -1) { if (g[i] + tag[belong[l]] == k + 1) { add(answer, f[i]); } } else { if (g[i] + tag[belong[l]] == k) { sub(answer, f[i]); } } sub(sum[belong[l]][g[i]], f[i]); g[i] += v; add(sum[belong[l]][g[i]], f[i]); } for (int i = belong[r] * M; i <= r; ++i) { sum[belong[r]][g[i]] = 0; if (v == -1) { if (g[i] + tag[belong[l]] == k + 1) { add(answer, f[i]); } } else { if (g[i] + tag[belong[l]] == k) { sub(answer, f[i]); } } sub(sum[belong[r]][g[i]], f[i]); g[i] += v; add(sum[belong[r]][g[i]], f[i]); } } else { for (int i = l; i <= r; ++i) { sum[belong[l]][g[i]] = 0; if (v == -1) { if (g[i] + tag[belong[l]] == k + 1) { add(answer, f[i]); } } else { if (g[i] + tag[belong[l]] == k) { sub(answer, f[i]); } } sub(sum[belong[l]][g[i]], f[i]); g[i] += v; add(sum[belong[l]][g[i]], f[i]); } } } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); } for (int i = 0; i <= n; ++i) { belong[i] = i / M; } f[0] = 1; g[0] = 0; sum[0][0] = 1; answer = 1; for (now = 1; now <= n; ++now) { modify(pre_p[last_p[a[now]]], last_p[a[now]] - 1, -1); modify(last_p[a[now]], now - 1, 1); f[now] = answer; g[now] = 0 - tag[belong[now]]; add(sum[belong[now]][g[now]], f[now]); add(answer, f[now]); pre_p[now] = last_p[a[now]]; last_p[a[now]] = now; } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int B = 256; const int NB = 512; const int M = 998244353; void ad(int& x, int y) { x += y; if (x >= M) x -= M; } int n, k; int a[100005], jmp[100005], seen[100005]; int dp[100005]; int b[100005]; int sdp[NB][2 * B + 1]; int sb[NB]; void setb(int i, int v) { int j = i / B; int delta = v - b[i]; sb[j] += delta; b[i] += delta; int l = j * B; int r = l + B; int f = 0; fill(sdp[j], sdp[j] + 2 * B + 1, 0); for (int i = r - 1; i >= l; i--) { f += b[i]; ad(sdp[j][f + B], dp[i]); } for (int i = 0; i < 2 * B; i++) sdp[j][i + 1] += sdp[j][i]; } int gdp() { int v = 0, f = 0; for (int j = NB - 1; j >= 0; j--) { int idx = k - f; if (idx > B) idx = B; if (idx >= -B) ad(v, sdp[j][idx + B]); f += sb[j]; } return v; } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); cerr.tie(nullptr); cin >> n >> k; for (int i = 1; i <= n; i++) { cin >> a[i]; jmp[i] = seen[a[i]]; seen[a[i]] = i; } dp[0] = 1; setb(0, 0); for (int i = 1; i <= n; i++) { if (jmp[i]) { if (jmp[jmp[i]]) { setb(jmp[jmp[i]] - 1, 0); } setb(jmp[i] - 1, -1); } setb(i - 1, 1); dp[i] = gdp(); setb(i, 0); } cout << dp[n] << '\n'; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; template <class c> struct rge { c b, e; }; template <class c> rge<c> range(c h, c n) { return {h, n}; } template <class c> auto dud(c* r) -> decltype(cerr << *r); template <class c> char dud(...); struct muu { template <class c> muu& operator<<(const c&) { return *this; } muu& operator()() { return *this; } }; const int K = 507; const int N = 1e5 + 7; int n, k; int blo = K; int a[N]; const int mod = 998244353; int num[N]; pair<int, int> prz[K]; int off[K]; int sum[K][N]; long long qq[K]; int war[N]; int dp[N]; int ost1[N]; int ost2[N]; void changeOff(int i, int c) { if (c == 1 && k >= off[i]) qq[i] = (qq[i] - sum[i][k - off[i]] + mod) % mod; off[i] += c; if (c == -1 && k >= off[i]) qq[i] = (qq[i] + sum[i][k - off[i]]) % mod; } void czysc(int i) { qq[i] = 0; for (int j = prz[i].first; j <= prz[i].second; ++j) { sum[i][war[j]] = 0; war[j] += off[i]; } off[i] = 0; } void przelicz(int i) { for (int j = prz[i].first; j <= prz[i].second; ++j) { sum[i][war[j]] += dp[j - 1]; sum[i][war[j]] %= mod; if (war[j] <= k) { qq[i] += dp[j - 1]; qq[i] %= mod; } } } void add(int i, int j, int c) { war[j] += c; } void insert(int i, int j, int v) { dp[j] = v; czysc(i); przelicz(i); } int query(int i) { (muu() << __FUNCTION__ << "#" << 85 << ": ") << "[" "i" ": " << (i) << "] " "[" "qq[i]" ": " << (qq[i]) << "] "; return (qq[i] % mod + mod) % mod; } void wstaw(int a, int b, int c) { (muu() << __FUNCTION__ << "#" << 89 << ": ") << "[" "a" ": " << (a) << "] " "[" "b" ": " << (b) << "] " "[" "c" ": " << (c) << "] "; int i = num[a]; czysc(i); for (int j = a; j <= b && j <= prz[i].second; ++j) { add(i, j, c); } przelicz(i); i++; while (i < num[b]) { changeOff(i, c); i++; } if (i == num[b]) { czysc(i); for (int j = prz[i].first; j <= b; ++j) { add(i, j, c); } przelicz(i); } } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); blo = min(blo, n); for (int i = 1; i <= n; ++i) { num[i] = (blo * (i - 1)) / n; } for (int i = 1; i <= n; ++i) { prz[num[i]].second = i; } for (int i = n; i > 0; --i) { prz[num[i]].first = i; } int wynik = 0; dp[0] = 1; for (int i = 1; i <= n; ++i) { int x = a[i]; if (ost1[x]) { wstaw(ost2[x] + 1, ost1[x], -1); } wstaw(ost1[x] + 1, i, 1); ost2[x] = ost1[x]; ost1[x] = i; long long res = 0; for (int j = 0; j < blo; ++j) { res += query(j); } wynik = res; (muu() << __FUNCTION__ << "#" << 137 << ": ") << "[" "i" ": " << (i) << "] " "[" "wynik" ": " << (wynik) << "] "; insert(num[i], i, wynik); } printf("%d\n", wynik); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 2000000000; const double EPS = 1e-9; int mods(int a, int b) { return (b + (a % b)) % b; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int n, k, a; cin >> n >> k; for (int i = 0; i < n; i++) cin >> a; if (n == 3 && k == 1) cout << 3 << '\n'; if (n == 5 && k == 2) cout << 14 << '\n'; if (n == 5 && k == 5) cout << 16 << '\n'; }