Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; const long long BIG = 1446803456761533460; const int Big = 336860180; stringstream sss; const int maxn = 100010; const int SQ = 330; int n, k; int A[maxn], P[maxn]; map<int, int> lst; int block[SQ][maxn]; int lazy[SQ], val[maxn]; int dp[maxn]; int sum = 0; void inc(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { sum = ((sum) + (MOD - block[l / SQ][k - lazy[l / SQ]])) % MOD; ++lazy[l / SQ]; l += SQ; } else { if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (MOD - dp[l])) % MOD; block[l / SQ][val[l]] = ((block[l / SQ][val[l]]) + (MOD - dp[l])) % MOD; ++val[l]; block[l / SQ][val[l]] = ((block[l / SQ][val[l]]) + (dp[l])) % MOD; ++l; } } } void dec(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { --lazy[l / SQ]; sum = ((sum) + (block[l / SQ][k - lazy[l / SQ]])) % MOD; l += SQ; } else { block[l / SQ][val[l]] = ((block[l / SQ][val[l]]) + (MOD - dp[l])) % MOD; --val[l]; block[l / SQ][val[l]] = ((block[l / SQ][val[l]]) + (dp[l])) % MOD; if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (dp[l])) % MOD; ++l; } } } void MAIN() { cin >> n >> k; for (int i = (0); i < (n); ++i) { cin >> A[i]; P[i + 1] = lst.count(A[i]) ? lst[A[i]] : 0; lst[A[i]] = i + 1; } dp[0] = 1; sum = 1; block[0][0] = 1; for (int i = (1); i < (n + 1); ++i) { inc(P[i], i); dec(P[P[i]], P[i]); dp[i] = sum; sum = ((sum) + (dp[i])) % MOD; val[i] = -lazy[i / SQ]; block[i / SQ][val[i]] = ((block[i / SQ][val[i]]) + (dp[i])) % MOD; } cout << dp[n] << '\n'; } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); cout << fixed << setprecision(10); sss << R"( 5 2 1 1 2 1 3 )"; MAIN(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mo = 998244353; const int N = 100005; const int BLK = 405; const int K = 255; int L[K], R[K], tg[K]; int top[K], pos[K]; int id[N], f[N], s[N]; int v[N], V[N], LIM; int a[N], la[N], pre[N], n; void pushdown(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) s[i] += tg[k]; tg[k] = 0; } void pushup(int k) { top[k] = L[k]; v[top[k]] = f[id[L[k]]]; V[top[k]] = s[id[L[k]]]; for (int i = (int)(L[k] + 1); i <= (int)(R[k]); i++) { if (s[id[i]] != s[id[i - 1]]) { V[++top[k]] = s[id[i]]; v[top[k]] = v[top[k] - 1]; } v[top[k]] = (v[top[k]] + f[id[i]]) % mo; } pos[k] = L[k] - 1; for (; pos[k] != top[k]; ++pos[k]) if (V[pos[k] + 1] > LIM) break; } bool cmp(int x, int y) { return s[x] < s[y]; } void build(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) id[i] = i; sort(id + L[k], id + R[k] + 1, cmp); pushup(k); } int q1[BLK + 5], q2[BLK + 5]; void add(int k, int l, int r, int v) { pushdown(k); int p1 = 0, p2 = 0, p3 = L[k] - 1; for (int i = (int)(L[k]); i <= (int)(R[k]); i++) if (l <= id[i] && id[i] <= r) q1[++p1] = id[i], s[id[i]] += v; else q2[++p2] = id[i]; int pp1 = 1, pp2 = 1; for (; pp1 <= p1 || pp2 <= p2;) if (pp2 > p2 || (pp1 <= p1 && s[q1[pp1]] < s[q2[pp2]])) id[++p3] = q1[pp1++]; else id[++p3] = q2[pp2++]; pushup(k); } void add(int k, int val) { tg[k] += val; for (; pos[k] != top[k] && V[pos[k] + 1] + tg[k] <= LIM; ++pos[k]) ; for (; pos[k] != L[k] - 1 && V[pos[k]] + tg[k] > LIM; --pos[k]) ; } int query(int k) { return pos[k] == L[k] - 1 ? 0 : v[pos[k]]; } int ed; void change(int l, int r, int v) { for (; r >= l && r >= ed; r--) s[r] += v; if (r < l) return; int bl = l / BLK, br = r / BLK; if (bl == br) add(bl, l, r, v); else { for (int i = (int)(bl + 1); i <= (int)(br - 1); i++) add(i, v); add(bl, l, R[bl], v); add(br, L[br], r, v); } } void update(int x) { change(pre[x], x - 1, 1); if (pre[x]) change(pre[pre[x]], pre[x] - 1, -1); } int main() { scanf("%d%d", &n, &LIM); for (int i = (int)(1); i <= (int)(n); i++) scanf("%d", &a[i]); for (int i = (int)(1); i <= (int)(n); i++) la[a[i]] = 0; for (int i = (int)(1); i <= (int)(n); i++) pre[i] = la[a[i]], la[a[i]] = i; for (int i = (int)(0); i <= (int)(n / BLK); i++) L[i] = i * BLK, R[i] = min(i * BLK + BLK - 1, n); f[0] = 1; for (int i = (int)(1); i <= (int)(n); i++) { update(i); int be = i / BLK; for (int j = (int)(0); j <= (int)(be - 1); j++) f[i] = (f[i] + query(j)) % mo; for (int j = (int)(be * BLK); j <= (int)(i - 1); j++) if (s[j] <= LIM) f[i] = (f[i] + f[j]) % mo; if (i % BLK == BLK - 1 || i == n) build(i / BLK), ed = i; } printf("%d\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; int n, k; int a[100055]; int dp[100055]; int l[100055]; int r[100055]; int last[100055]; int dat[400055]; int high[400055]; int low[400055]; int lazy[400055]; vector<int> out[100055]; int d[100055]; void push(int from, int to) { high[to] += lazy[from]; low[to] += lazy[from]; lazy[to] += lazy[from]; } void add(int id, int x, int y, int w, int val) { if (x == y) { dat[id] = val; return; } int mid = (x + y) >> 1; if (lazy[id]) { push(id, id + id); push(id, id + id + 1); lazy[id] = 0; } if (w <= mid) { add(id + id, x, mid, w, val); } else { add(id + id + 1, mid + 1, y, w, val); } dat[id] = dat[id + id] + dat[id + id + 1]; high[id] = max(high[id + id], high[id + id + 1]); low[id] = min(low[id + id], low[id + id + 1]); } void update(int id, int x, int y, int l, int r, int delta) { if (l > y || r < x) return; if (l <= x && y <= r && high[id] == low[id]) { lazy[id] += delta; high[id] += delta; low[id] += delta; if (delta == 1 && high[id] == k + 1) { dat[id] = 0; } else if (delta == -1 && high[id] == k) { dat[id] = (d[y] - d[x - 1] + MOD) % MOD; } return; } int mid = (x + y) >> 1; if (lazy[id]) { push(id, id + id); push(id, id + id + 1); lazy[id] = 0; } update(id + id, x, mid, l, r, delta); update(id + id + 1, mid + 1, y, l, r, delta); dat[id] = dat[id + id] + dat[id + id + 1]; high[id] = max(high[id + id], high[id + id + 1]); low[id] = min(low[id + id], low[id + id + 1]); } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } dp[0] = 1; { memset(last, 0, sizeof(last)); for (int i = 1; i <= n; i++) { l[i] = last[a[i]] + 1; last[a[i]] = i; } } { for (int i = 1; i <= n; i++) { last[i] = n + 1; } for (int i = n; i >= 1; i--) { r[i] = last[a[i]] - 1; last[a[i]] = i; } } dp[0] = 1; d[0] = 1; add(1, 0, n, 0, 1); for (int i = 1; i <= n; i++) { for (auto j : out[i]) { update(1, 0, n, l[j] - 1, j - 1, -1); } update(1, 0, n, l[i] - 1, i - 1, +1); out[r[i] + 1].push_back(i); dp[i] = dat[1]; d[i] = (d[i - 1] + dp[i]); add(1, 0, n, i, dp[i]); } printf("%d\n", dp[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 0x3f3f3f3f; const int N = 2e5 + 10; const int M = 11; const double PI = acos(-1.0); const int blo = 320; inline void add(int &a, int b) { a += b; if (a >= 998244353) a -= 998244353; } int v[N]; int cnt[blo][(blo << 2) + 10], sum[blo]; int vc[N], w[N], pre[N], l[N], dd[3] = {1, -1, 0}; void up(int x, int y) { vc[x] = y; int id = x / blo; memset(cnt[id], 0, sizeof(cnt[id])); sum[id] = 0; for (int i = blo - 1, be = id * blo; i >= 0; --i) { add(cnt[id][blo + sum[id]], w[be + i]); sum[id] += vc[be + i]; } for (int i = 1; i <= blo * 2; ++i) add(cnt[id][i], cnt[id][i - 1]); } void qu(int x, int k) { int id = x / blo; for (int i = id; i >= 0; --i) { if (k + blo >= 0) add(w[x], cnt[i][min(blo + k, blo * 2)]); k -= sum[i]; } } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &v[i]); w[0] = 1; for (int i = 1; i <= n; ++i) { pre[i] = l[v[i]], l[v[i]] = i; for (int j = 0, now = i; j < 3 && now; ++j, now = pre[now]) up(now, dd[j]); qu(i, k); } printf("%d\n", w[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int block_size = 300; int arr[100005], cum[100005], sh[100005], sp[355][605]; int last[100005], pre[100005], n, k, dp[100005]; void update(int i, int val) { int st = (i / block_size) * block_size; int ed = ((i / block_size) + 1) * block_size; if (ed > n) ed = n; sh[i] = val; for (int j = st; j < ed; j++) cum[j] = sh[j]; for (int j = ed - 2; j >= st; j--) { cum[j] += cum[j + 1]; } int dx = 302; memset(sp[i / block_size], 0, sizeof sp[i / block_size]); for (int j = st; j < ed; j++) { sp[i / block_size][cum[j] + dx] += j ? dp[j - 1] : 1; if (sp[i / block_size][cum[j] + dx] >= 998244353) sp[i / block_size][cum[j] + dx] -= 998244353; } for (int j = -300; j <= 300; j++) { sp[i / block_size][j + dx] += sp[i / block_size][j + dx - 1]; if (sp[i / block_size][j + dx] >= 998244353) sp[i / block_size][j + dx] -= 998244353; } } void add(int i) { pre[i] = last[arr[i]]; last[arr[i]] = i; int pr = pre[i]; int prpr = (~pr) ? pre[pr] : pr; update(i, 1); if (~pr) update(pr, -1); if (~prpr) update(prpr, 0); } void query(int x) { int dx = 302; int res = 0; int car = 0; for (int i = x / block_size; i >= 0; i--) { if (k - car >= -300) res += sp[i][k - car + dx]; if (res >= 998244353) res -= 998244353; car += cum[i * block_size]; } dp[x] = res; } void solve() { memset(last, -1, sizeof last); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> arr[i]; } for (int i = 0; i < n; i++) { add(i); query(i); } cout << dp[n - 1] << endl; } int32_t main() { ios::sync_with_stdio(false); cin.tie(0); int t = 1; while (t--) { solve(); } return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; void add(int &a, int b) { a += b; if (a >= MOD) { a -= MOD; } } struct FenwickTree { int dat[100055]; FenwickTree() { memset(dat, 0, sizeof(dat)); } void add(int id, int val) { while (id <= (int)1e5) { ::add(dat[id], val); id |= (id + 1); } } int get(int id) { int res = 0; while (id >= 0) { ::add(res, dat[id]); id = (id & (id + 1)) - 1; } return res; } }; const int B = 317; int n, k; int a[100055]; FenwickTree dat[B]; int dp[100055]; vector<int> occ[100055]; int offset[B]; int cnt[100055]; void change(int l, int r, int val) { if (l / B == r / B) { for (int i = l; i <= r; i++) { dat[i / B].add(cnt[i], -dp[i]); cnt[i] += val; dat[i / B].add(cnt[i], +dp[i]); } return; } while (l % B != 0) { dat[l / B].add(cnt[l], -dp[l]); cnt[l] += val; dat[l / B].add(cnt[l], +dp[l]); l++; } while (r % B != B - 1) { dat[r / B].add(cnt[r], -dp[r]); cnt[r] += val; dat[r / B].add(cnt[r], +dp[r]); r--; } if (l > r) return; while (l <= r) { offset[l / B] += val; l += B; } } int query() { int res = 0; for (int i = 0; i < B; i++) { int ub = k - offset[i]; add(res, dat[i].get(ub)); } return res; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 0; i <= n; i++) { occ[i].push_back(0); } dat[0].add(0, 1); dp[0] = 1; for (int i = 1; i <= n; i++) { if (occ[a[i]].size() > 1) { change(occ[a[i]].end()[-2], occ[a[i]].back() - 1, -1); } occ[a[i]].push_back(i); change(occ[a[i]].end()[-2], occ[a[i]].back() - 1, 1); dp[i] = query(); dat[i / B].add(0, dp[i]); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int t = 399, mod = 998244353; inline int mo(const register int x) { return x >= mod ? x - mod : x; } int a[100010], n, k, bl[100010], p[100010], pre[100010], sum[400][100010], f[400], S[400], dp[100010], lst[100010]; inline void ad(const register int l, const register int r, const register int x) { if (bl[l] == bl[r]) { for (int i = (bl[l] - 1) * t + 1; i <= min(n, bl[l] * t); i++) sum[bl[l]][p[i]] = 0, p[i] += k - f[bl[l]]; for (int i = l; i <= r; i++) p[i] += x; S[bl[l]] = 0; for (int i = (bl[l] - 1) * t + 1; i <= min(n, bl[l] * t); i++) sum[bl[l]][p[i]] = mo(sum[bl[l]][p[i]] + dp[i]), S[bl[l]] = mo(S[bl[l]] + (p[i] <= k) * dp[i]); f[bl[l]] = k; return; } for (int i = (bl[l] - 1) * t + 1; i <= bl[l] * t; i++) sum[bl[l]][p[i]] = 0, p[i] += k - f[bl[i]]; for (int i = l; i <= bl[l] * t; i++) p[i] += x; S[bl[l]] = 0; for (int i = (bl[l] - 1) * t + 1; i <= bl[l] * t; i++) sum[bl[l]][p[i]] = mo(sum[bl[l]][p[i]] + dp[i]), S[bl[l]] = mo(S[bl[l]] + (p[i] <= k) * dp[i]); for (int i = (bl[r] - 1) * t + 1; i <= min(n, bl[r] * t); i++) sum[bl[r]][p[i]] = 0, p[i] += k - f[bl[r]]; for (int i = (bl[r] - 1) * t + 1; i <= r; i++) p[i] += x; S[bl[r]] = 0; for (int i = (bl[r] - 1) * t + 1; i <= min(n, bl[r] * t); i++) sum[bl[r]][p[i]] = mo(sum[bl[r]][p[i]] + dp[i]), S[bl[r]] = mo(S[bl[r]] + (p[i] <= k) * dp[i]); f[bl[l]] = f[bl[r]] = k; for (int i = bl[l] + 1; i < bl[r]; i++) { f[bl[i]] -= x; if (x > 0) S[i] = mo(S[i] + sum[i][f[bl[i]]]); else S[i] = mo(S[i] - sum[i][f[bl[i]]] + mod); } } int main() { scanf("%d%d", &n, &k); n++; for (int i = 1; i <= n; i++) bl[i] = (i - 1) / t + 1; for (int i = 1; i <= bl[n]; i++) f[i] = k; for (int i = 2; i <= n; i++) scanf("%d", &a[i]), pre[a[i]] = 1; dp[1] = 1; ad(1, 1, 0); for (int i = 2; i <= n; i++) { if (lst[pre[a[i]]]) ad(lst[pre[a[i]]], pre[a[i]] - 1, -1), ad(pre[a[i]], i - 1, 1); else ad(1, i - 1, 1); lst[i] = pre[a[i]]; pre[a[i]] = i; for (int j = 1; j <= bl[n]; j++) dp[i] += S[j]; ad(i, i, 0); } cout << dp[n] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mo = 998244353; const int N = 100005; const int BLK = 405; const int K = 255; int L[K], R[K], tg[K]; int top[K], pos[K]; int id[N], f[N], s[N]; int v[N], V[N], LIM; int a[N], la[N], pre[N], n; void pushdown(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) s[i] += tg[k]; tg[k] = 0; } void pushup(int k) { top[k] = L[k]; v[top[k]] = f[id[L[k]]]; V[top[k]] = s[id[L[k]]]; for (int i = (int)(L[k] + 1); i <= (int)(R[k]); i++) { if (s[id[i]] != s[id[i - 1]]) { V[++top[k]] = s[id[i]]; v[top[k]] = v[top[k] - 1]; } v[top[k]] = (v[top[k]] + f[id[i]]) % mo; } pos[k] = L[k] - 1; for (; pos[k] != top[k]; ++pos[k]) if (V[pos[k] + 1] > LIM) break; } bool cmp(int x, int y) { return s[x] < s[y]; } void build(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) id[i] = i; sort(id + L[k], id + R[k] + 1, cmp); pushup(k); } int q1[BLK], q2[BLK]; void add(int k, int l, int r, int v) { pushdown(k); int p1 = 0, p2 = 0, p3 = L[k] - 1; for (int i = (int)(L[k]); i <= (int)(R[k]); i++) if (l <= id[i] && id[i] <= r) q1[++p1] = id[i], s[id[i]] += v; else q2[++p2] = id[i]; int pp1 = 1, pp2 = 1; for (; pp1 <= p1 || pp2 <= p2;) if (pp2 > p2 || (pp1 <= p1 && s[q1[pp1]] < s[q2[pp2]])) id[++p3] = q1[pp1++]; else id[++p3] = q2[pp2++]; pushup(k); } void add(int k, int val) { tg[k] += val; for (; pos[k] != top[k] && V[pos[k] + 1] + tg[k] <= LIM; ++pos[k]) ; for (; pos[k] != L[k] - 1 && V[pos[k]] + tg[k] > LIM; --pos[k]) ; } int query(int k) { return pos[k] == L[k] - 1 ? 0 : v[pos[k]]; } int ed; void change(int l, int r, int v) { for (; r >= l && r >= ed; r--) s[r] += v; if (r < l) return; int bl = l / BLK, br = r / BLK; if (bl == br) add(bl, l, r, v); else { for (int i = (int)(bl + 1); i <= (int)(br - 1); i++) add(i, v); add(bl, l, R[bl], v); add(br, L[br], r, v); } } void update(int x) { change(pre[x], x - 1, 1); if (pre[x]) change(pre[pre[x]], pre[x] - 1, -1); } int main() { scanf("%d%d", &n, &LIM); for (int i = (int)(1); i <= (int)(n); i++) scanf("%d", &a[i]); for (int i = (int)(1); i <= (int)(n); i++) la[a[i]] = 0; for (int i = (int)(1); i <= (int)(n); i++) pre[i] = la[a[i]], la[a[i]] = i; for (int i = (int)(0); i <= (int)(n / BLK); i++) L[i] = i * BLK, R[i] = min(i * BLK + BLK - 1, n); f[0] = 1; for (int i = (int)(1); i <= (int)(n); i++) { update(i); int be = i / BLK; for (int j = (int)(0); j <= (int)(be - 1); j++) f[i] = (f[i] + query(j)) % mo; for (int j = (int)(be * BLK); j <= (int)(i - 1); j++) if (s[j] <= LIM) f[i] = (f[i] + f[j]) % mo; if (i % BLK == BLK - 1 || i == n) build(i / BLK), ed = i; } printf("%d\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline void gn(T &first) { char c, sg = 0; while (c = getchar(), (c > '9' || c < '0') && c != '-') ; for ((c == '-' ? sg = 1, c = getchar() : 0), first = 0; c >= '0' && c <= '9'; c = getchar()) first = (first << 1) + (first << 3) + c - '0'; if (sg) first = -first; } template <class T1, class T2> inline void gn(T1 &x1, T2 &x2) { gn(x1), gn(x2); } int power(int a, int b, int m, int ans = 1) { for (; b; b >>= 1, a = 1LL * a * a % m) if (b & 1) ans = 1LL * ans * a % m; return ans; } int ans[100010], sum[100010], cnt[100010]; int dp[321][100010]; int val[100010]; int a[100010], pre[100010]; int L[100010], R[100010], id[100010]; int ID[100010]; int n, k; void build(int n) { for (int i = 1; i < 100010; i++) id[i] = sqrt(i); for (int i = 1; i < 100010; i++) { if (!L[id[i]]) L[id[i]] = i; R[id[i]] = i; } L[1] = 0, id[0] = 1; for (int i = 1; i <= n; i++) { pre[i] = ID[a[i]]; ID[a[i]] = i; } for (int i = 0; i < 100010; i++) cnt[i] = -1; } inline int add_val(int &u, int v) { u += v; if (u >= 998244353) u -= 998244353; } inline int add(int st, int ed, int s) { if (st > ed) return 0; int u = id[st]; for (int i = L[u]; i <= R[u]; i++) { if (cnt[i] < 0) break; add_val(dp[u][cnt[i]], 998244353 - ans[i]); cnt[i] += sum[u]; if (cnt[i] <= k) add_val(val[u], 998244353 - ans[i]); if (i >= st and i <= ed) cnt[i] += s; add_val(dp[u][cnt[i]], ans[i]); if (cnt[i] <= k) add_val(val[u], ans[i]); } sum[u] = 0; if (id[st] == id[ed]) return 0; u = id[ed]; for (int i = L[u]; i <= R[u]; i++) { if (cnt[i] < 0) break; add_val(dp[u][cnt[i]], 998244353 - ans[i]); cnt[i] += sum[u]; if (cnt[i] <= k) add_val(val[u], 998244353 - ans[i]); if (i >= st and i <= ed) cnt[i] += s; add_val(dp[u][cnt[i]], ans[i]); if (cnt[i] <= k) add_val(val[u], ans[i]); } sum[u] = 0; for (int i = id[st] + 1; i < id[ed]; i++) { if (s == 1 and k >= sum[i]) add_val(val[i], 998244353 - dp[i][k - sum[i]]); if (s == -1 and k + 1 >= sum[i]) add_val(val[i], dp[i][k + 1 - sum[i]]); sum[i] += s; } return 0; } int main() { gn(n, k); for (int i = 1; i <= n; i++) gn(a[i]); build(n); cnt[0] = 0; dp[1][0] = ans[0] = val[1] = 1; for (int i = 1; i <= n; i++) { add(pre[i], i - 1, 1); add(pre[pre[i]], pre[i] - 1, -1); ans[i] = 0; cnt[i] = 0; int u = id[i]; for (int j = 1; j <= u; j++) { add_val(ans[i], val[j]); } add_val(val[u], ans[i]); add_val(dp[u][cnt[i]], ans[i]); } cout << ans[n] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 10; const int Mod = 998244353; int add(int a, int b) { return (a += b) >= Mod ? a - Mod : a; } int sub(int a, int b) { return (a -= b) < 0 ? a + Mod : a; } int mul(int a, int b) { return 1ll * a * b % Mod; } int n, k, a[N], siz, cntblo; int pre[N], lst[N], dp[N], f[N], sum[400][N], ans[400]; int tag[400], L[400], R[400], bel[N]; void rebuild(int id) { for (int i = L[id]; i <= R[id]; i++) { sum[id][f[i]] = 0; f[i] += tag[i]; } tag[id] = ans[id] = 0; for (int i = L[id]; i <= R[id]; i++) { sum[id][f[i]] = add(sum[id][f[i]], dp[i]); if (f[i] <= k) { ans[id] = add(ans[id], dp[i]); } } } void update(int x, int vl) { int id = bel[x]; sum[id][f[x]] = sub(sum[id][f[x]], dp[x]); if (f[x] <= k) { ans[id] = sub(ans[id], dp[x]); } f[x] += vl; sum[id][f[x]] = add(sum[id][f[x]], dp[x]); if (f[x] <= k) { ans[id] = add(ans[id], dp[x]); } } void modify(int l, int r, int vl) { if (l > r) { return; } if (bel[l] == bel[r]) { rebuild(bel[l]); for (int i = l; i <= r; i++) { update(i, vl); } return; } rebuild(bel[l]); for (int i = l; i <= R[bel[l]]; i++) { update(i, vl); } rebuild(bel[r]); for (int i = L[bel[r]]; i <= r; i++) { update(i, vl); } for (int id = bel[l] + 1; id < bel[r]; id++) { if (vl > 0) { ans[id] = sub(ans[id], sum[id][k - tag[id]]); ++tag[id]; } else { --tag[id]; ans[id] = add(ans[id], sum[id][k - tag[id]]); } } } int query(int x) { int res = 0; for (int i = 1; i < bel[x]; i++) { res = add(res, ans[i]); } for (int i = L[bel[x]]; i <= x; i++) { if (f[i] <= k) { res = add(res, dp[i]); } } return res; } int main() { scanf("%d %d", &n, &k); siz = sqrt(n); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); pre[i] = lst[a[i]]; lst[a[i]] = i; bel[i] = (i - 1) / siz + 1; } cntblo = bel[n]; for (int i = 1; i <= cntblo; i++) { L[i] = R[i - 1] + 1; R[i] = min(n, L[i] + siz - 1); } dp[1] = 1; for (int i = 1; i <= n; i++) { modify(pre[i] + 1, i - 1, 1); modify(pre[pre[i]] + 1, pre[i], -1); dp[i + 1] = query(i); rebuild(bel[i]); update(i, 1); } printf("%d", dp[n + 1]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> //#pragma GCC optimize("unroll-loops") //#pragma GCC optimize("-O3") //#pragma GCC optimize("Ofast") #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> #define sz(x) int(x.size()) #define all(x) x.begin(),x.end() #define pii pair<int,int> #define PB push_back #define pll pair<ll,ll> #define pii pair<int,int> #define pil pair<int,ll> #define pli pair<ll, int> #define pi4 pair<pii, pii> #define pib pair<int, bool> #define ft first #define sd second using namespace std; using namespace __gnu_cxx; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; template<class T> using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; const int N = 100100; //const int N = 2010; const int M = (1 << 10); const int oo = 2e9; const ll OO = 1e18; const int PW = 20; const int md = int(1e9) + 7; const int BLOCK = 750; //const int BLOCK = 2; const int K = N / BLOCK; int f[N], SQ[K][2 * N], mid[K], sum[K], a[N], n, k, ppr[N], pr[N], vl[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); // freopen("in.txt","r",stdin); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; a[i]--; } fill(mid, mid + K, N); for (int i = 0; i < n; i++){ ppr[i] = pr[i] = -1; } for (int i = 0; i < n; i++){ int l = ppr[a[i]], r = pr[a[i]]; swap(ppr[a[i]], pr[a[i]]); pr[a[i]] = i; int nm = i / BLOCK; for (int j = max(r + 1, BLOCK * nm); j <= i; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } if ((r + 1) / BLOCK != nm){ nm--; int nd = (r + 1) / BLOCK; for (; nm > nd; nm--){ sum[nm] -= SQ[nm][mid[nm] + k]; mid[nm]--; } for (int j = r + 1; j < (nm + 1) * BLOCK; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } } if (r >= 0){ int nd = (l + 1) / BLOCK; if (nd < nm){ for (int j = BLOCK * nm; j < r + 1; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k) sum[nm] += (j ? f[j - 1] : 1); } nm--; } for (; nm > nd; nm--){ sum[nm] += SQ[nm][mid[nm] + k + 1]; mid[nm]++; } for (int j = l + 1; j <= r; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k) sum[nm] += (j ? f[j - 1] : 1); } } for (int j = 0; j * BLOCK <= i; j++) f[i] += sum[j]; f[i] += (i ? f[i - 1] : 1); nm = i / BLOCK; SQ[nm][mid[nm] + vl[i]] += (i ? f[i - 1] : 1); if (vl[i] <= k) sum[nm] += (i ? f[i - 1] : 1); } cout << f[n - 1]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int MAXN = 1e5 + 5; const int MAXM = 320 + 5; const int ha = 998244353; int BLO; int bel[MAXN]; int n, k; int g[MAXM][MAXN], val[MAXN], f[MAXN], sm[MAXN]; int tag[MAXN]; inline void add(int &x, int y) { x += y; if (x >= ha) x -= ha; } inline void build(int x) { for (int i = (x - 1) * BLO + 1; i <= x * BLO; ++i) val[i] += tag[x]; tag[x] = 0; sm[x] = 0; for (int i = (x - 1) * BLO + 1; i <= x * BLO; ++i) { add(g[x][val[i]], f[i - 1]); if (val[i] <= k) add(sm[x], f[i - 1]); } } inline void modify(int l, int r, int d) { if (l > r) return; ++l; ++r; if (bel[l] == bel[r]) { for (int i = l; i <= r; ++i) val[i] += d; build(bel[l]); return; } for (int i = l; i <= bel[l] * BLO; ++i) val[i] += d; build(bel[l]); for (int i = bel[l] + 1; i <= bel[r - 1]; ++i) { if (d == 1) add(sm[i], ha - g[i][k - tag[i]]); else add(sm[i], g[i][k - tag[i] + 1]); tag[i] += d; } for (int i = (bel[r] - 1) * BLO + 1; i <= r; ++i) val[i] += d; build(bel[r]); } inline void upd(int p) { add(g[bel[p + 1]][0], f[p]); add(sm[bel[p + 1]], f[p]); } int pre[MAXN], lst[MAXN], a[MAXN]; int main() { scanf("%d%d", &n, &k); BLO = std::sqrt(1.0 * n); for (int i = 1; i <= n + 1; ++i) bel[i] = (i - 1) / BLO + 1; for (int i = 1; i <= n; ++i) scanf("%d", a + i), pre[i] = lst[a[i]], lst[a[i]] = i; for (int i = 1; i <= bel[n + 1]; ++i) build(i); f[0] = 1; upd(0); for (int i = 1; i <= n; ++i) { int p1 = pre[i], p2 = pre[p1]; modify(p1, i - 1, 1); if (p1) modify(p2, p1 - 1, -1); for (int j = 1; j <= bel[n + 1]; ++j) add(f[i], sm[j]); upd(i); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int P = 998244353; const int N = 1.1e5, M = 400; int n, k, q, x; int b[N], l1[N], l2[N], dp[N]; int s[M][M], mi[M], sum[M]; inline void add(int &x, int y) { x = x + y; if (x > P) x -= P; } void upd(int x, int val) { int y = x / q; b[x] = val; sum[y] = mi[y] = 0; for (int i = (y * q + q - 1); i >= (y * q); --i) mi[y] = min(mi[y], sum[y]), sum[y] += b[i]; sum[y] = 0; for (int i = (0); i <= (q); ++i) s[y][i] = 0; for (int i = (y * q + q - 1); i >= (y * q); --i) { add(s[y][sum[y] - mi[y]], dp[i]); sum[y] += b[i]; } for (int i = (1); i <= (q); ++i) add(s[y][i], s[y][i - 1]); } inline int get(int y, int up) { return up >= mi[y] ? s[y][min(q, up - mi[y])] : 0; } int qry(int x) { int y = x / q, ans = 0, S = 0; for (; ~y; --y) add(ans, get(y, k - S)), S += sum[y]; return ans; } int main() { scanf("%d%d", &n, &k); q = sqrt(n), dp[0] = 1; upd(0, 0); for (int i = (1); i <= (n); ++i) { scanf("%d", &x); if (l2[x]) upd(l2[x], 0); if (l1[x]) upd(l1[x], -1); dp[i] = qry(i); upd(i, 1); if (l1[x]) l2[x] = l1[x]; l1[x] = i; } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX_N = 100002; const int MOD = 1000000007; const int MAGIC = 500; const int INF = 1e9; int n, k, prv[MAX_N], pos[MAX_N], a[MAX_N]; int nBlock, L[MAGIC + 2], R[MAGIC + 2], blockID[MAGIC + 2]; int v[MAX_N], offset[MAGIC + 2], head[MAGIC + 2], ps[MAGIC + 2][MAX_N]; int f[MAX_N]; vector<pair<int, int> > all, comp[MAGIC + 2]; void readInput() { cin >> n >> k; for (int i = 1; i <= n; ++i) cin >> a[i]; } void init() { for (int i = 1; i <= n; ++i) { prv[i] = pos[a[i]]; pos[a[i]] = i; } } void sqrtDecompostion() { for (int i = 1; i <= n; ++i) { if (i % MAGIC == 1) { R[nBlock] = i - 1; L[++nBlock] = i; } } R[nBlock] = n; for (int i = 1; i <= nBlock; ++i) { for (int j = L[i]; j <= R[i]; ++j) blockID[j] = i; } } void upd(int idx, int l, int r, int delta) { for (int i = l; i <= r; ++i) { v[i] += offset[idx]; if (l <= i && i <= r) v[i] += delta; } offset[idx] = 0; all.clear(); comp[idx].clear(); for (int i = L[idx]; i <= R[idx]; ++i) all.push_back({v[i], f[i - 1]}); sort(all.begin(), all.end()); comp[idx].push_back({-INF, 0}); for (auto x : all) { if (x.first != comp[idx].back().first) comp[idx].push_back(x); else comp[idx].back().second = (comp[idx].back().second + x.second) % MOD; } for (int i = 1; i < comp[idx].size(); ++i) ps[idx][i] = (comp[idx][i].second + ps[idx][i - 1]) % MOD; for (int i = 0; i < comp[idx].size(); ++i) { if (comp[idx][i].first <= k) head[idx] = i; } } void upd(int l, int r, int delta) { if (l > r) return; if (blockID[l] == blockID[r]) return upd(blockID[l], l, r, delta); for (int i = blockID[l] + 1; i < blockID[r]; ++i) { offset[i] += delta; if (delta == -1) { while (head[i] + 1 < comp[i].size() && comp[i][head[i] + 1].first + offset[i] <= k) ++head[i]; } else { while (head[i] > 0 && comp[i][head[i]].first + offset[i] > k) --head[i]; } } upd(l, R[blockID[l]], delta); upd(L[blockID[r]], r, delta); } int get() { int res = 0; for (int i = 1; i <= nBlock; ++i) res = (res + ps[i][head[i]]) % MOD; return res; } void solve() { for (int i = 1; i <= nBlock; ++i) upd(L[i], R[i], 0); f[0] = 1; for (int i = 1; i <= n; ++i) { int x1 = prv[i]; int x2 = prv[x1]; upd(x1 + 1, i, 1); upd(x2 + 1, x1, -1); f[i] = get(); upd(L[blockID[i]], R[blockID[i]], 0); } cout << f[n]; } int main() { ios::sync_with_stdio(0); cin.tie(0); readInput(); init(); sqrtDecompostion(); solve(); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAXN = 1000 * 100 + 1; const int Q = 100; const int MOD = 998244353; const int UNDEF = -10; int a[MAXN]; int b[MAXN]; int pr[MAXN]; int prpr[MAXN]; int dp[MAXN]; int sum_dp[MAXN / Q + 10][2 * Q + 1]; int sum[MAXN / Q + 10]; int n, k; void relax(int& x) { while (x >= MOD) x -= MOD; while (x < 0) x += MOD; } void up(int ind) { int l = ind * Q; int r = (ind + 1) * Q; for (int i = 0; i < 2 * Q + 1; i++) { sum_dp[ind][i] = 0; } int& sum = ::sum[ind] = 0; for (int i = r - 1; i >= l; i--) { if (b[i] != UNDEF) { sum_dp[ind][sum + Q] += dp[i]; sum += b[i]; } } for (int i = 1; i < 2 * Q + 1; i++) { sum_dp[ind][i] += sum_dp[ind][i - 1]; relax(sum_dp[ind][i]); } } int get(int ind, int cur_sum) { int up = max(-Q, min(Q, k - cur_sum)); return sum_dp[ind][up + Q]; } int main(int argc, const char* argv[]) { for (int i = 0; i < MAXN / Q + 10; i++) { sum[i] = 0; } for (int i = 0; i < MAXN; i++) { b[i] = UNDEF; pr[i] = -1; prpr[i] = -1; } cin >> n >> k; for (int i = 1; i <= n; i++) { scanf("%i", a + i); a[i]--; } dp[0] = 1; b[0] = 0; up(0); for (int i = 1; i <= n; i++) { if (prpr[a[i]] != -1) { b[prpr[a[i]]] = 0; up(prpr[a[i]] / Q); } if (pr[a[i]] != -1) { b[pr[a[i]]] = -1; up(pr[a[i]] / Q); } prpr[a[i]] = pr[a[i]]; pr[a[i]] = i; int sum = 1; dp[i] = 0; for (int j = (i - 1) / Q; j >= 0; j--) { dp[i] += get(j, sum); relax(dp[i]); sum += ::sum[j]; } b[i] = 1; up(i / Q); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline void open(const char *s) {} inline int rd() { static int x, f; x = 0; f = 1; char ch = getchar(); for (; ch < '0' || ch > '9'; ch = getchar()) if (ch == '-') f = -1; for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return f > 0 ? x : -x; } const int N = 100010, M = 410, mod = 998244353; int n, K, a[N], B; int head[N], nxt[N]; int bl[N], mn[N], L[N], R[N], sum[M][M], tag[M], f[N], b[N]; inline int pls(int a, int b) { return a + b >= mod ? a + b - mod : a + b; } inline int add(int &a, int b) { return a = pls(a, b); } inline void rebuild(int x) { mn[x] = 1e9; memset(sum[x], 0, sizeof sum[x]); for (int i = L[x]; i <= R[x]; i++) b[i] += tag[x], mn[x] = min(mn[x], b[i]); tag[x] = 0; for (int i = L[x]; i <= R[x]; i++) add(sum[x][b[i] - mn[x]], f[i]); for (int i = 1; i <= 400; i++) add(sum[x][i], sum[x][i - 1]); } void modify(int ql, int qr, int d) { if (ql > qr) return; int l = bl[ql], r = bl[qr]; for (int i = l + 1; i <= r - 1; i++) tag[i] += d; if (l == r) { for (int i = ql; i <= qr; i++) b[i] += d; rebuild(l); return; } for (int i = ql; i <= R[l]; i++) b[i] += d; rebuild(l); for (int i = L[r]; i <= qr; i++) b[i] += d; rebuild(r); } int query(int x) { int res = 0; for (int i = 1; i <= bl[x]; i++) add(res, sum[i][min(K - tag[i] - mn[i], 400)]); return res; } int main() { open("hh"); n = rd(); K = rd(); B = 320; for (int i = 1; i <= n; i++) a[i] = rd(), nxt[i] = head[a[i]], head[a[i]] = i; for (int i = 0; i <= n; i++) bl[i] = i / B + 1, R[bl[i]] = i; for (int i = n; i >= 0; i--) L[bl[i]] = i, mn[i] = 1e9; f[0] = 1; rebuild(1); for (int i = 1; i <= n; i++) { int p1 = nxt[i], p2 = nxt[p1]; modify(p1, i - 1, 1); modify(p2, p1 - 1, -1); f[i] = query(i - 1); rebuild(bl[i]); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 100005, maxm = 320, tt = 1e9 + 7; int n, m, n1, a[maxn], f[maxn], g[maxm][maxn], bl[maxn], sq, val[maxn], tag[maxm]; int L[maxn], R[maxn]; int las[maxn], las1[maxn]; void build(int x, int l, int r) { for (int i = l; i <= r; i++) { g[x][val[i]] = (g[x][val[i]] + f[i - 1]) % tt; } for (int i = 1; i <= n1; i++) g[x][i] = (g[x][i] + g[x][i - 1]) % tt; } void change(int l, int r, int p, int now) { int st = bl[l] + 1, ed = bl[r] - 1; if (st <= ed) for (int i = st; i <= ed; i++) tag[i] += p; if (bl[l] != bl[r]) { for (int i = l; i <= R[bl[l]]; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } else { if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = l; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = l; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } } int query(int l, int r) { int ret = 0; for (int i = bl[l]; i < bl[r]; i++) ret = (ret + g[i][m - tag[i]]) % tt; for (int i = L[bl[r]]; i <= r; i++) if (val[i] + tag[i] <= m) ret = (ret + f[i - 1]) % tt; return ret; } int main() { scanf("%d%d", &n, &m); n1 = m; for (int i = 1; i <= n; i++) scanf("%d", &a[i]), n1 = max(n1, a[i]); int ls = 0, bls = 0; sq = sqrt(n); for (int i = 1; i <= n; i++) { bl[i] = bls + 1; if (i - ls == sq || i == n) L[++bls] = ls + 1, R[bls] = i, ls = i; } ls = 0, bls = 0; f[0] = 1; for (int i = 1; i <= n; i++) { if (i == ls + sq) { build(++bls, ls + 1, i); ls = i; } if (las[a[i]]) change(las1[a[i]] + 1, las[a[i]], -1, i); change(las[a[i]] + 1, i, 1, i); las1[a[i]] = las[a[i]], las[a[i]] = i; f[i] = query(1, i); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int mod = 998244353; using namespace std; int n, k, sq; int a[100050], pre[100050], las[100050], p[100050], dp[100050], bl[100050], pd[100050]; inline void modd(int &x) { if (x >= mod) x -= mod; } struct node { int l, r, tag; int b[1555], mi, ma; inline void build() { memset(b, 0, sizeof(int) * (ma + 1 - mi)); mi = n; for (int i = l; i <= r; ++i) p[i] += tag, mi = min(mi, p[i]), ma = max(ma, p[i] + tag); tag = 0; for (int i = l; i <= r; ++i) b[p[i] - mi] += dp[i], modd(b[p[i] - mi]); for (int i = 1; i <= ma - mi; ++i) b[i] += b[i - 1], modd(b[i]); } inline int ans() { if (k < mi + tag) return 0; if (k > ma + tag) return b[ma - mi]; return b[k - tag - mi]; } } q[1555]; inline void add(int l, int r, int t) { if (l > r) return; if (bl[l] == bl[r]) { for (int i = l; i <= r; ++i) p[i] += t; if (pd[bl[l]]) q[bl[l]].build(); return; } for (int i = l; bl[i] == bl[l]; ++i) ++p[i]; if (pd[bl[l]]) q[bl[l]].build(); for (int i = r; bl[i] == bl[r]; --i) ++p[i]; if (pd[bl[r]]) q[bl[r]].build(); for (int i = bl[l] + 1; i < bl[r]; ++i) q[i].tag += t; } inline int getans(int r) { int ret = 0; for (int i = 1; i < bl[r]; ++i) { ret += q[i].ans(), modd(ret); } for (int i = r; bl[i] == bl[r]; --i) if (p[i] + q[bl[i]].tag <= k) ret += dp[i], modd(ret); return ret; } int main() { scanf("%d%d", &n, &k); sq = sqrt(n); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); for (int i = 0; i < n; ++i) bl[i] = i / sq + 1; for (int i = 1; i <= bl[n - 1]; ++i) q[i].l = i * sq - sq, q[i].r = min(i * sq - 1, n - 1); dp[0] = 1; p[0] = 0; for (int i = 1; i <= n; ++i) { pre[i] = las[a[i]]; las[a[i]] = i; add(pre[i], i - 1, 1); add(pre[pre[i]], pre[i] - 1, -1); dp[i] = getans(i - 1); if (i - 1 == q[bl[i - 1]].r) { pd[bl[i - 1]] = 1; q[bl[i - 1]].build(); } } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int f[100010], val[100010], sep[100010], cnt, k, h[100010], last[100010], n; int read() { int tmp = 0; char c = getchar(); while (c < '0' || c > '9') c = getchar(); while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - '0'; c = getchar(); } return tmp; } struct block { int l, r, tag, xs[320], val[320], diff[320], pre[320], cur, cnt; int id[2][320], merge[320]; void change(int tl, int tr, int c) { int sum[2], p[2], now = 0; sum[0] = sum[1] = 0; p[0] = p[1] = 1; for (int i = 1; i <= r - l + 1; i++) if (merge[i] >= tl - l + 1 && merge[i] <= tr - l + 1) { id[1][++sum[1]] = merge[i]; xs[merge[i]] += c; } else id[0][++sum[0]] = merge[i]; while (p[0] <= sum[0] || p[1] <= sum[1]) { int ch; if (p[0] > sum[0]) ch = 1; else if (p[1] > sum[1]) ch = 0; else if (xs[id[0][p[0]]] < xs[id[1][p[1]]]) ch = 0; else ch = 1; merge[++now] = id[ch][p[ch]]; p[ch]++; } cnt = 0; for (int i = 1; i <= r - l + 1; i++) if (i != 1 && xs[merge[i]] == xs[merge[i - 1]]) pre[cnt] = (pre[cnt] + val[merge[i]]) % 998244353; else { cnt++; diff[cnt] = xs[merge[i]]; pre[cnt] = val[merge[i]]; } cur = 0; for (int i = 1; i <= cnt; i++) { if (diff[i] + tag <= k) cur = i; pre[i] = (pre[i - 1] + pre[i]) % 998244353; } } void update() { if (cur && diff[cur] + tag > k) cur--; if (cur != cnt && diff[cur + 1] + tag <= k) cur++; } } B[320]; void modify(int l, int r, int x) { if (sep[l] == sep[r]) { B[sep[l]].change(l, r, x); return; } for (int i = sep[l] + 1; i <= sep[r] - 1; i++) { B[i].tag++; B[i].update(); } B[sep[l]].change(l, B[sep[l]].r, x); B[sep[r]].change(B[sep[r]].l, r, x); } int main() { n = read(); k = read(); int S = sqrt(n); for (int i = 1; i <= n; i++) val[i] = read(); for (int cur = 0; cur <= n; cur += S) { int nxt = min(cur + S - 1, n); cnt++; B[cnt].l = cur; B[cnt].r = nxt; for (int i = cur; i <= nxt; i++) { sep[i] = cnt; B[cnt].merge[i - cur + 1] = i - cur + 1; } B[cnt].cnt = B[cnt].cur = 1; } f[0] = 1; B[sep[0]].val[1] = f[0]; B[1].change(1, 0, 0); for (int i = 1; i <= n; i++) { last[i] = h[val[i]]; h[val[i]] = i; int tmp = last[i]; modify(tmp, i - 1, 1); if (tmp != 0) modify(last[tmp], tmp - 1, -1); for (int j = 1; j <= sep[i] - 1; j++) f[i] = (f[i] + B[j].pre[B[j].cur]) % 998244353; int c = sep[i]; for (int j = B[c].l; j <= i - 1; j++) if (B[c].tag + B[c].xs[j - B[c].l + 1] <= k) f[i] = (f[i] + f[j]) % 998244353; B[c].val[i - B[c].l + 1] = f[i]; B[c].change(i, i, 0); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, tot, a[100005], vis[100005]; long long f[100005]; int main() { f[0] = 1ll; scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); for (int i = 1; i <= n; ++i) { memset(vis, 0, sizeof vis); ++vis[a[i]], tot = 1; for (int j = i - 1; j >= 0; --j) { if (tot <= k) f[i] = (f[i] + f[j]) % 998244353ll; if (!vis[a[j]]) ++tot; ++vis[a[j]]; if (vis[a[j]] > 1) --tot; } } printf("%lld\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
//~ while (clock()<=69*CLOCKS_PER_SEC) //~ #pragma comment(linker, "/stack:200000000") //~ #pragma GCC optimize("O3") //~ #pragma GCC optimize("Ofast") //~ #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //~ #pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #define pb push_back #define SZ(x) ((int)(x).size()) #define ALL(x) x.begin(),x.end() #define all(x) x.begin(),x.end() #define fi first #define se second #define _upgrade ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); #define erase_duplicates(x) sort(all(x)); (x).resize(distance((x).begin(), unique(all(x)))); using namespace std; using namespace __gnu_pbds; template<typename T> using ordered_set = tree< T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; //X.find_by_order(k); - zwraca iterator na k-ty element (numeracja od zerowego) //X.order_of_key(k); - zwraca liczbΔ™ elementΓ³w ostro mniejszych niΕΌ k typedef long long LL; typedef pair<int,int> PII; typedef pair<LL,LL> PLL; typedef vector<PII> VPII; typedef vector<PLL> VPLL; typedef vector<LL> VLL; typedef vector<int> VI; typedef vector<string> VS; typedef vector<char> VC; typedef long double LD; typedef pair<LD,LD> PLD; typedef vector<LD> VLD; typedef vector<PLD> VPLD; template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<" = "<<h<<endl; } template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while(*sdbg!=',')cerr<<*sdbg++; cerr<<" = "<<h<<", "; _dbg(sdbg+1, a...); } #ifdef LOCAL #define dbg(...) _dbg(#__VA_ARGS__, __VA_ARGS__) #else #define dbg(...) #define cerr if(0)cout #endif const int maxn = (1e5)+7; const int maxk = 20; const int inf = (1e9)+7; const LL LLinf = ((LL)1e18)+7LL; const LD eps = 1e-9; const LL mod = 998244353LL; // ***************************** CODE ***************************** // const int pier = 300; int n, k; int val[maxn]; VI pos[maxn]; LL dp[maxn]; struct kubel { int l, p; int tab[pier * 2 + 10]; int suma = 0; void update() { if(l == 0) return; // dbg(l); memset(tab, 0, sizeof tab); suma = pier; for(int i = p;i >= l;i--) { suma += val[i]; tab[suma] += dp[i - 1]; tab[suma] %= mod; } suma -= pier; for(int i = 1;i < 2 * pier + 2;i++) tab[i] = (tab[i] + tab[i - 1]) % mod; } LL pyt(int prawo) { int xd = k - prawo; xd += pier; xd = min(xd, pier * 2); dbg(xd, (xd > 0 ? tab[xd] : 0)); if(xd < 0) return 0; return tab[xd]; } }; int tab[maxn]; kubel kub[maxn / pier + 10]; int numer[maxn]; int main() { _upgrade cin>>n>>k; for(int i = 1;i <= n;i++) cin>>tab[i]; dp[0] = 1; int num = 0; for(int i = 1;i <= n;i += pier) { kub[i / pier + 1].l = i; kub[i / pier + 1].p = i + pier - 1; for(int j = i;j < i + pier;j++) numer[j] = i / pier + 1; // dbg(i, kub[i].l, kub[i].p); kub[i / pier + 1].update(); num++; } for(int i = 1;i <= n;i++) { int ost = (SZ(pos[tab[i]]) > 0 ? pos[tab[i]].back() : 0); int przed = (SZ(pos[tab[i]]) > 1 ? pos[tab[i]][SZ(pos[tab[i]]) - 2] : 0); val[przed] = 0; val[ost] = -1; val[i] = 1; kub[numer[przed]].update(); kub[numer[ost]].update(); kub[numer[i]].update(); pos[tab[i]].pb(i); // for(int j = 1;j <= n;j++) // cerr<<val[j]<<" "; // cerr<<endl; for(int j = -3;j <= 3;j++) dbg(j, kub[1].tab[pier + j]); for(int j = -3;j <= 3;j++) dbg(j, kub[2].tab[pier + j]); int suma = 0; for(int j = num;j > 0;j--) { dp[i] += (LL)kub[j].pyt(suma); // dbg(i, suma, j, dp[i]); suma += kub[j].suma; } dp[i] %= mod; dbg(i, dp[i]); kub[numer[i + 1]].update(); } cout<<dp[n]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2") using namespace std; template <class T1, class T2, class T3> struct triple { T1 a; T2 b; T3 c; triple() : a(T1()), b(T2()), c(T3()){}; triple(T1 _a, T2 _b, T3 _c) : a(_a), b(_b), c(_c) {} }; template <class T1, class T2, class T3> bool operator<(const triple<T1, T2, T3>& t1, const triple<T1, T2, T3>& t2) { if (t1.a != t2.a) return t1.a < t2.a; else if (t1.b != t2.b) return t1.b < t2.b; else return t1.c < t2.c; } template <class T1, class T2, class T3> bool operator>(const triple<T1, T2, T3>& t1, const triple<T1, T2, T3>& t2) { if (t1.a != t2.a) return t1.a > t2.a; else if (t1.b != t2.b) return t1.b > t2.b; else return t1.c > t2.c; } inline int countBits(unsigned int v) { v = v - ((v >> 1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; } inline int countBits(unsigned long long v) { unsigned int t = v >> 32; unsigned int p = (v & ((1ULL << 32) - 1)); return countBits(t) + countBits(p); } inline int countBits(long long v) { return countBits((unsigned long long)v); } inline int countBits(int v) { return countBits((unsigned int)v); } unsigned int reverseBits(unsigned int x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return ((x >> 16) | (x << 16)); } template <class T> inline int sign(T x) { return x > 0 ? 1 : x < 0 ? -1 : 0; } inline bool isPowerOfTwo(int x) { return (x != 0 && (x & (x - 1)) == 0); } constexpr long long power(long long x, int p) { return p == 0 ? 1 : (x * power(x, p - 1)); } template <class T> inline bool inRange(const T& val, const T& min, const T& max) { return min <= val && val <= max; } unsigned long long rdtsc() { unsigned long long ret = 0; return __builtin_readcyclecounter(); asm volatile("rdtsc" : "=A"(ret) : :); return ret; } const int __BS = 4096; static char __bur[__BS + 16], *__er = __bur + __BS, *__ir = __er; template <class T = int> T readInt() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && (*__ir < '0' || *__ir > '9') && *__ir != '-') ++__ir; c(); bool m = false; if (*__ir == '-') ++__ir, c(), m = true; T r = 0; while (*__ir >= '0' && *__ir <= '9') r = r * 10 + *__ir - '0', ++__ir, c(); ++__ir; return m ? -r : r; } string readString() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; string r; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); while (!isspace(*__ir)) r.push_back(*__ir), ++__ir, c(); ++__ir; return r; } char readChar() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); return *__ir++; } static char __buw[__BS + 20], *__iw = __buw, *__ew = __buw + __BS; template <class T> void writeInt(T x, char endc = '\n') { if (x < 0) *__iw++ = '-', x = -x; if (x == 0) *__iw++ = '0'; char* s = __iw; while (x) { T t = x / 10; char c = x - 10 * t + '0'; *__iw++ = c; x = t; } char* f = __iw - 1; while (s < f) swap(*s, *f), ++s, --f; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; if (endc) { *__iw++ = endc; } } template <class T> void writeStr(const T& str) { int i = 0; while (str[i]) { *__iw++ = str[i++]; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; } } struct __FL__ { ~__FL__() { if (__iw != __buw) cout.write(__buw, __iw - __buw); } }; static __FL__ __flushVar__; template <class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p); template <class T> ostream& operator<<(ostream& os, const vector<T>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const set<T1, T2>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const multiset<T1, T2>& v); template <class T1, class T2> ostream& operator<<(ostream& os, priority_queue<T1, T2> v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const map<T1, T2, T3>& v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const multimap<T1, T2, T3>& v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const triple<T1, T2, T3>& t); template <class T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p) { return os << "(" << p.first << ", " << p.second << ")"; } template <class T> ostream& operator<<(ostream& os, const vector<T>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const set<T1, T2>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const multiset<T1, T2>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const map<T1, T2, T3>& v) { bool f = 1; os << "["; for (auto& ii : v) { if (!f) os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const multimap<T1, T2>& v) { bool f = 1; os << "["; for (auto& ii : v) { if (!f) os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, priority_queue<T1, T2> v) { bool f = 1; os << "["; while (!v.empty()) { auto x = v.top(); v.pop(); if (!f) os << ", "; f = 0; os << x; } return os << "]"; } template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const triple<T1, T2, T3>& t) { return os << "(" << t.a << ", " << t.b << ", " << t.c << ")"; } template <class T1, class T2> void printarray(const T1& a, T2 sz, T2 beg = 0) { for (T2 i = beg; i < sz; i++) cout << a[i] << " "; cout << endl; } template <class T1, class T2, class T3> inline istream& operator>>(istream& os, triple<T1, T2, T3>& t); template <class T1, class T2> inline istream& operator>>(istream& os, pair<T1, T2>& p) { return os >> p.first >> p.second; } template <class T> inline istream& operator>>(istream& os, vector<T>& v) { if (v.size()) for (T& t : v) os >> t; else { string s; T obj; while (s.empty()) { getline(os, s); if (!os) return os; } stringstream ss(s); while (ss >> obj) v.push_back(obj); } return os; } template <class T1, class T2, class T3> inline istream& operator>>(istream& os, triple<T1, T2, T3>& t) { return os >> t.a >> t.b >> t.c; } template <class T1, class T2> inline pair<T1, T2> operator+(const pair<T1, T2>& p1, const pair<T1, T2>& p2) { return pair<T1, T2>(p1.first + p2.first, p1.second + p2.second); } template <class T1, class T2> inline pair<T1, T2>& operator+=(pair<T1, T2>& p1, const pair<T1, T2>& p2) { p1.first += p2.first, p1.second += p2.second; return p1; } template <class T1, class T2> inline pair<T1, T2> operator-(const pair<T1, T2>& p1, const pair<T1, T2>& p2) { return pair<T1, T2>(p1.first - p2.first, p1.second - p2.second); } template <class T1, class T2> inline pair<T1, T2>& operator-=(pair<T1, T2>& p1, const pair<T1, T2>& p2) { p1.first -= p2.first, p1.second -= p2.second; return p1; } const int USUAL_MOD = 1000000007; template <class T> inline void normmod(T& x, T m = USUAL_MOD) { x %= m; if (x < 0) x += m; } template <class T1, class T2> inline T2 summodfast(T1 x, T1 y, T2 m = USUAL_MOD) { T2 res = x + y; if (res >= m) res -= m; return res; } template <class T1, class T2, class T3 = int> inline void addmodfast(T1& x, T2 y, T3 m = USUAL_MOD) { x += y; if (x >= m) x -= m; } template <class T1, class T2, class T3 = int> inline void submodfast(T1& x, T2 y, T3 m = USUAL_MOD) { x -= y; if (x < 0) x += m; } inline long long mulmod(long long x, long long n, long long m) { x %= m; n %= m; long long r = x * n - long long(long double(x) * long double(n) / long double(m)) * m; while (r < 0) r += m; while (r >= m) r -= m; return r; } inline long long powmod(long long x, long long n, long long m) { long long r = 1; normmod(x, m); while (n) { if (n & 1) r *= x; x *= x; r %= m; x %= m; n /= 2; } return r; } inline long long powmulmod(long long x, long long n, long long m) { long long res = 1; normmod(x, m); while (n) { if (n & 1) res = mulmod(res, x, m); x = mulmod(x, x, m); n /= 2; } return res; } template <class T> inline T gcd(T a, T b) { while (b) { T t = a % b; a = b; b = t; } return a; } template <class T> T fast_gcd(T u, T v) { int shl = 0; while (u && v && u != v) { T eu = u & 1; u >>= eu ^ 1; T ev = v & 1; v >>= ev ^ 1; shl += (~(eu | ev) & 1); T d = u & v & 1 ? (u + v) >> 1 : 0; T dif = (u - v) >> (sizeof(T) * 8 - 1); u -= d & ~dif; v -= d & dif; } return std::max(u, v) << shl; } inline long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } template <class T> inline T gcd(T a, T b, T c) { return gcd(gcd(a, b), c); } long long gcdex(long long a, long long b, long long& x, long long& y) { if (!a) { x = 0; y = 1; return b; } long long y1; long long d = gcdex(b % a, a, y, y1); x = y1 - (b / a) * y; return d; } bool isPrime(long long n) { if (n <= (1 << 14)) { int x = (int)n; if (x <= 4 || x % 2 == 0 || x % 3 == 0) return x == 2 || x == 3; for (int i = 5; i * i <= x; i += 6) if (x % i == 0 || x % (i + 2) == 0) return 0; return 1; } long long s = n - 1; int t = 0; while (s % 2 == 0) { s /= 2; ++t; } for (int a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!(a %= n)) return true; long long f = powmulmod(a, s, n); if (f == 1 || f == n - 1) continue; for (int i = 1; i < t; ++i) if ((f = mulmod(f, f, n)) == n - 1) goto nextp; return false; nextp:; } return true; } int32_t solve(); int32_t main(int argc, char** argv) { ios_base::sync_with_stdio(0); cin.tie(0); return solve(); } int a[101001]; int b[101010]; int dp[101010]; int p1[101010]; int p2[101010]; long long getSum(int* __restrict b, int* __restrict dp, int n) { long long res = 0; for (int j = 0; j < n; ++j) { res += b[j] > 0 ? 0 : dp[j]; } return res; } template <int val> void add(int* a, int n) { for (int i = 0; i < n; ++i) { a[i] += val; } } int solve() { int n = readInt(); int k = readInt(); for (int i = 0; i < (n); ++i) { b[i] -= k; } for (int i = 0; i < (n); ++i) { a[i] = readInt() - 1; p1[i] = p2[i] = -1; } dp[0] = 1; for (int i = 0; i < n; ++i) { int x = a[i]; add<-1>(b + p2[x] + 1, p1[x] - p2[x] + 1 + 1); add<1>(b + p1[i] + 1, i - p1[i]); long long res = getSum(b, dp, i + 1); dp[i + 1] = res % 998244353; p2[x] = p1[x]; p1[x] = i; } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int M = 1e5 + 5; const long long mod = 998244353; int n, m, len; int idx1[M], idx2[M], a[M]; int st[M], ed[M], second[M], pl[M]; pair<int, int> sto[M], kf[M]; long long dp[M], f[M]; bool cmp(pair<int, int> a, pair<int, int> b) { return a.first < b.first; } void make_group() { len = 80; int tot = n / len; if (n % len) tot++; for (int i = 1; i <= n; i++) { second[i] = (i - 1) / len + 1; } for (int i = 1; i <= tot; i++) { st[i] = (i - 1) * len + 1; ed[i] = i * len; } } int find(int long long, int rr, int v) { int l = long long, r = rr; int ans; while (l <= r) { int mid = l + r >> 1; if (kf[mid].first <= v) { ans = mid; l = mid + 1; } else r = mid - 1; } return ans; } void add(int l, int r, int v) { if (l > r) return; int sid = second[l], eid = second[r]; if (sid == eid) { for (int i = l; i <= r; i++) sto[i].first += v; for (int i = st[sid]; i <= ed[sid]; i++) kf[i] = sto[i]; sort(kf + st[sid], kf + ed[sid] + 1, cmp); f[st[sid]] = dp[kf[st[sid]].second]; for (int i = st[sid] + 1; i <= ed[sid]; i++) { f[i] = (f[i - 1] + dp[kf[i].second]) % mod; } return; } for (int i = l; sid == second[i]; i++) sto[i].first += v; for (int i = st[sid]; i <= ed[sid]; i++) kf[i] = sto[i]; sort(kf + st[sid], kf + ed[sid] + 1, cmp); f[st[sid]] = dp[kf[st[sid]].second]; for (int i = st[sid] + 1; i <= ed[sid]; i++) { f[i] = (f[i - 1] + dp[kf[i].second]) % mod; } for (int i = sid + 1; i < eid; i++) pl[i] += v; for (int i = r; eid == second[i]; i--) sto[i].first += v; for (int i = st[eid]; i <= ed[eid]; i++) kf[i] = sto[i]; sort(kf + st[eid], kf + ed[eid] + 1, cmp); f[st[eid]] = dp[kf[st[eid]].second]; for (int i = st[eid] + 1; i <= ed[eid]; i++) { f[i] = (f[i - 1] + dp[kf[i].second]) % mod; } return; } long long query(int l, int r) { if (l > r) return 0; int sid = second[l], eid = second[r]; long long ans = 0; if (sid == eid) { for (int i = l; i <= r; i++) { if (sto[i].first + pl[sid] <= m) ans = (ans + dp[i - 1]) % mod; } return ans; } for (int i = l; sid == second[i]; i++) { if (sto[i].first + pl[sid] <= m) ans = (ans + dp[i - 1]) % mod; } for (int i = sid + 1; i < eid; i++) { int tmp = find(st[i], ed[i], m - pl[i]); if (tmp < st[i]) continue; ans = (ans + f[tmp]) % mod; } for (int i = r; eid == second[i]; i--) { if (sto[i].first + pl[eid] <= m) ans = (ans + dp[i - 1]) % mod; } return ans; } int main() { scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); sto[i].second = i - 1; } make_group(); dp[0] = 1; for (int i = 1; i <= n; i++) { add(idx1[a[i]] + 1, i, 1); add(idx2[a[i]] + 1, idx1[a[i]], -1); dp[i] = query(1, i); idx2[a[i]] = idx1[a[i]]; idx1[a[i]] = i; } printf("%lld", dp[n] % mod); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline void gn(T &first) { char c, sg = 0; while (c = getchar(), (c > '9' || c < '0') && c != '-') ; for ((c == '-' ? sg = 1, c = getchar() : 0), first = 0; c >= '0' && c <= '9'; c = getchar()) first = (first << 1) + (first << 3) + c - '0'; if (sg) first = -first; } template <class T1, class T2> inline void gn(T1 &x1, T2 &x2) { gn(x1), gn(x2); } int power(int a, int b, int m, int ans = 1) { for (; b; b >>= 1, a = 1LL * a * a % m) if (b & 1) ans = 1LL * ans * a % m; return ans; } int ans[100010], sum[100010], cnt[100010]; int dp[321][100010]; int val[100010]; int a[100010], pre[100010]; int L[100010], R[100010], id[100010]; int ID[100010]; int n, k; void build(int n) { for (int i = 1; i < 100010; i++) id[i] = sqrt((double)i + 0.5); for (int i = 1; i < 100010; i++) { if (!L[id[i]]) L[id[i]] = i; R[id[i]] = i; } L[1] = 0, id[0] = 1; for (int i = 1; i <= n; i++) { pre[i] = ID[a[i]]; ID[a[i]] = i; } for (int i = 0; i < 100010; i++) cnt[i] = -1; } inline int add_val(int &u, int v) { u += v; if (u >= 998244353) u -= 998244353; } inline int add(int st, int ed, int s) { if (st > ed) return 0; int u = id[st]; for (int i = L[u]; i <= R[u]; i++) { if (cnt[i] < 0) break; add_val(dp[u][cnt[i]], 998244353 - ans[i]); cnt[i] += sum[u]; if (cnt[i] <= k) add_val(val[u], 998244353 - ans[i]); if (i >= st and i <= ed) cnt[i] += s; add_val(dp[u][cnt[i]], ans[i]); if (cnt[i] <= k) add_val(val[u], ans[i]); } sum[u] = 0; if (id[st] == id[ed]) return 0; u = id[ed]; for (int i = L[u]; i <= R[u]; i++) { if (cnt[i] < 0) break; add_val(dp[u][cnt[i]], 998244353 - ans[i]); cnt[i] += sum[u]; if (cnt[i] <= k) add_val(val[u], 998244353 - ans[i]); if (i >= st and i <= ed) cnt[i] += s; add_val(dp[u][cnt[i]], ans[i]); if (cnt[i] <= k) add_val(val[u], ans[i]); } sum[u] = 0; for (int i = id[st] + 1; i < id[ed]; i++) { if (s == 1 and k >= sum[i]) add_val(val[i], 998244353 - dp[i][k - sum[i]]); if (s == -1 and k + 1 >= sum[i]) add_val(val[i], dp[i][k + 1 - sum[i]]); sum[i] += s; } return 0; } int main() { gn(n, k); for (int i = 1; i <= n; i++) gn(a[i]); build(n); cnt[0] = 0; dp[1][0] = ans[0] = val[1] = 1; for (int i = 1; i <= n; i++) { add(pre[i], i - 1, 1); add(pre[pre[i]], pre[i] - 1, -1); ans[i] = 0; cnt[i] = 0; int u = id[i]; for (int j = 1; j <= u; j++) { add_val(ans[i], val[j]); } add_val(val[u], ans[i]); add_val(dp[u][cnt[i]], ans[i]); } cout << ans[n] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 100010, SQ = 320; int n, k, arr[N], dp[N], sq, nxt[N], nxt2[N], cur[N], frq[SQ][N]; int num[SQ]; inline void add(int &x, int y) { x += y; if (x >= 998244353) x -= 998244353; } inline void subtract(int &x, int y) { x -= y; if (x < 0) x += 998244353; } inline void make(int idx) { for (int i = idx * sq; i < min(n, (idx + 1) * sq); i++) { frq[idx][cur[i]] = 0; cur[i] += num[idx]; } num[idx] = 0; for (int i = idx * sq; i < min(n, (idx + 1) * sq); i++) { add(frq[idx][cur[i]], dp[i]); } } int l, r, val, current; inline void update() { if (l > r) return; if (l / sq == r / sq) { current = l / sq; while (l <= r) { cur[l++] += val; } make(current); return; } if (l % sq) { current = l / sq; while (l <= n && l % sq != 0) { cur[l++] += val; } make(current); } if (r % sq != sq - 1) { current = r / sq; while (r >= 0 && r % sq != sq - 1) { cur[r--] += val; } make(current); } if (r < l) return; l /= sq; r /= sq; while (l <= r) { num[l++] += val; } } int getres = 0; inline int get() { if (l > r) return 0; getres = 0; if (l / sq == r / sq) { while (l <= r) { add(getres, ((cur[l] + num[l / sq]) == val ? dp[l] : 0)); l++; } return getres; } while (l <= n && l % sq) { add(getres, ((cur[l] + num[l / sq]) == val ? dp[l] : 0)); l++; } while (r >= 0 && r % sq != sq - 1) { add(getres, ((cur[r] + num[r / sq]) == val ? dp[r] : 0)); r--; } if (r < l) { return getres; } l /= sq; r /= sq; while (l <= r) { if (val - num[l] >= 0) add(getres, frq[l][val - num[l]]); l++; } return getres; } int main() { scanf("%d%d", &n, &k); sq = sqrt(n) + 1; for (int i = 0; i < n; i++) scanf("%d", &arr[i]); for (int i = 1; i <= n; i++) nxt[i] = nxt2[i] = n; dp[n - 1] = dp[n] = 1; nxt[arr[n - 1]] = n - 1; cur[n] = 1; frq[n / sq][1] = 1; frq[(n - 1) / sq][0] = 1; for (int i = n - 2; i >= 0; i--) { dp[i] = dp[i + 1]; add(dp[i], dp[i + 1]); l = i + 1, r = nxt[arr[i]], val = 1; update(); l = i + 1, r = nxt[arr[i]], val = k + 1; subtract(dp[i], get()); l = nxt[arr[i]] + 1, r = nxt2[arr[i]], val = -1; update(); l = nxt[arr[i]] + 1, r = nxt2[arr[i]], val = k; add(dp[i], get()); nxt2[arr[i]] = nxt[arr[i]]; nxt[arr[i]] = i; make(i / sq); } printf("%d\n", dp[0]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100015], lv[100015]; int last[100015], pp[100015]; int dp[100015]; int add(int x, int y) { return ((x + y) % 998244353 + 998244353) % 998244353; } int sum = 0; int sumSeg[320][100015 + 100015]; int valSeg[320]; int getSegIndex(int x) { return (x - 1) / 320 + 1; } void update(int l, int r, int val, int k) { int st = getSegIndex(l), ed = getSegIndex(r); for (int segIt = st; segIt <= ed; ++segIt) { int Left = (st - 1) * 320 + 1, Right = st * 320; if (Left == 100015 + 1) { if (val == 1) { sum = add(sum, -sumSeg[segIt][100015 + k - valSeg[segIt]]); } else { sum = add(sum, sumSeg[segIt][100015 + k + 1 - valSeg[segIt]]); } valSeg[segIt] += val; } else { Left = max(Left, l); Right = min(Right, r); for (int j = Left; j <= Right; ++j) { if (lv[j] + valSeg[segIt] <= k) { sum = add(sum, -dp[j]); } sumSeg[segIt][100015 + lv[j]] = add(sumSeg[segIt][100015 + lv[j]], -dp[j]); lv[j] += val; if (lv[j] + valSeg[segIt] <= k) { sum = add(sum, dp[j]); } sumSeg[segIt][100015 + lv[j]] = add(sumSeg[segIt][100015 + lv[j]], dp[j]); } } } } void solve() { int n, k; scanf("%d %d ", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d ", &a[i]); } dp[1] = 1; sumSeg[getSegIndex(1)][100015] = 1; sum = 1; for (int i = 1; i <= n; ++i) { int l = last[a[i]] + 1, r = i; update(l, r, 1, k); if (last[a[i]] != 0) { l = pp[a[i]] + 1; r = last[a[i]]; update(l, r, -1, k); } pp[a[i]] = last[a[i]]; last[a[i]] = i; int tmp = sum; dp[i + 1] = tmp; sum = add(sum, dp[i + 1]); int seg = getSegIndex(i + 1); seg = valSeg[seg]; lv[i + 1] = -seg; sumSeg[getSegIndex(i + 1)][lv[i + 1] + 100015] = add(sumSeg[getSegIndex(i + 1)][lv[i + 1] + 100015], tmp); } printf("%d\n", dp[n + 1]); } int main() { solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> //#pragma GCC optimize("unroll-loops") //#pragma GCC optimize("-O3") //#pragma GCC optimize("Ofast") #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> #define sz(x) int(x.size()) #define all(x) x.begin(),x.end() #define pii pair<int,int> #define PB push_back #define pll pair<ll,ll> #define pii pair<int,int> #define pil pair<int,ll> #define pli pair<ll, int> #define pi4 pair<pii, pii> #define pib pair<int, bool> #define ft first #define sd second using namespace std; using namespace __gnu_cxx; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; template<class T> using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; const int N = 100100; //const int N = 2010; const int M = (1 << 10); const int oo = 2e9; const ll OO = 1e18; const int PW = 20; const int md = int(1e9) + 7; const int BLOCK = 750; //const int BLOCK = 1; const int K = N / BLOCK; int f[N], SQ[K][2 * N], mid[K], sum[K], a[N], n, k, ppr[N], pr[N], vl[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); // freopen("in.txt","r",stdin); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; a[i]--; } fill(mid, mid + K, N); for (int i = 0; i < n; i++){ ppr[i] = pr[i] = -1; } for (int i = 0; i < n; i++){ int l = ppr[a[i]], r = pr[a[i]]; swap(ppr[a[i]], pr[a[i]]); pr[a[i]] = i; int nm = i / BLOCK; sum[nm] += (i ? f[i - 1] : 1); SQ[nm][mid[nm]] += (i ? f[i - 1] : 1); for (int j = max(r + 1, BLOCK * nm); j <= i; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } if ((r + 1) / BLOCK != nm){ nm--; int nd = (r + 1) / BLOCK; for (; nm > nd; nm--){ sum[nm] -= SQ[nm][mid[nm] + k]; mid[nm]--; } for (int j = r + 1; j < (nm + 1) * BLOCK; j++){ SQ[nm][N + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][N + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] + N - mid[nm] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } } if (r >= 0){ int nd = (l + 1) / BLOCK; if (nd < nm){ for (int j = BLOCK * nm; j < r + 1; j++){ SQ[nm][N + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][N + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] + N - mid[nm] == k) sum[nm] += (j ? f[j - 1] : 1); } nm--; } for (; nm > nd; nm--){ sum[nm] += SQ[nm][mid[nm] + k + 1]; mid[nm]++; } for (int j = l + 1; j < min(BLOCK * (nm + 1), r + 1); j++){ SQ[nm][N + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][N + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] + N - mid[nm] == k) sum[nm] += (j ? f[j - 1] : 1); } } for (int j = 0; j * BLOCK <= i; j++) f[i] += sum[j]; nm = i / BLOCK; } cout << f[n - 1]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using int64 = long long; const int mod = 998244353; int sqrtN = 333; int mp[333][100001]; struct SqrtDecomposition { int N, K, tap, ans; vector<int> data; vector<int> bucketAdd; vector<int> uku; SqrtDecomposition(int n, int tap) : N(n), tap(tap), ans(0) { K = (N + sqrtN - 1) / sqrtN; data.assign(n, 0); bucketAdd.assign(K, 0); uku.assign(n, 0); } void add(int s, int t) { for (int k = 0; k < K; ++k) { int l = k * sqrtN, r = min((k + 1) * sqrtN, (int)data.size()); if (r <= s || t <= l) continue; if (s <= l && r <= t) { ++bucketAdd[k]; ans += mp[k][tap - bucketAdd[k]]; if (ans >= mod) ans -= mod; } else { for (int i = max(s, l); i < min(t, r); ++i) { mp[k][data[i]] += mod - uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; ++data[i]; mp[k][data[i]] += uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; if (data[i] + bucketAdd[k] == tap) { ans += uku[i]; if (ans >= mod) ans -= mod; } } } } } void sub(int s, int t) { for (int k = 0; k < K; ++k) { int l = k * sqrtN, r = min((k + 1) * sqrtN, (int)data.size()); if (r <= s || t <= l) continue; if (s <= l && r <= t) { ans += mod - mp[k][tap - bucketAdd[k]]; if (ans >= mod) ans -= mod; --bucketAdd[k]; } else { for (int i = max(s, l); i < min(t, r); ++i) { mp[k][data[i]] += mod - uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; --data[i]; mp[k][data[i]] += uku[i]; if (mp[k][data[i]] >= mod) mp[k][data[i]] -= mod; if (data[i] + bucketAdd[k] == tap - 1) { ans += mod - uku[i]; if (ans >= mod) ans -= mod; } } } } } }; int main() { int K, N, A[100000]; cin >> N >> K; ++K; vector<int> ap[100000]; for (int i = 0; i < N; i++) { cin >> A[i]; --A[i]; ap[A[i]].emplace_back(i); } int last[100000]; memset(last, -1, sizeof(last)); for (int i = 0; i < N; i++) { for (int j = 1; j < ap[i].size(); j++) { last[ap[i][j]] = ap[i][j - 1]; } } vector<int> dp(N + 1); dp[0] = 1; int appear[100000]; int cor[100000]; memset(appear, -1, sizeof(appear)); memset(cor, -1, sizeof(cor)); set<pair<pair<int, int>, int> > range; SqrtDecomposition seg(N + 1, K); int all = 1; seg.uku[0]++; mp[0][0]++; for (int i = 1; i <= N; i++) { if (range.count( {make_pair(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1), A[i - 1]})) { range.erase( {make_pair(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1), A[i - 1]}); seg.sub(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1); } appear[A[i - 1]] = last[i - 1]; cor[A[i - 1]] = i - 1; seg.add(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1); range.emplace(make_pair(appear[A[i - 1]] + 1, cor[A[i - 1]] + 1), A[i - 1]); int add = (all + mod - seg.ans) % mod; (all += add) %= mod; (dp[i] += add) %= mod; (seg.uku[i] += add) %= mod; (mp[i / sqrtN][seg.data[i]] += add) %= mod; if (seg.bucketAdd[i / sqrtN] + seg.data[i] >= K) { (seg.ans += add) %= mod; } } cout << dp[N] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int MAXN = 100005; const int S = 320; const int MAXB = MAXN / S + 5; int pool[MAXB][MAXN << 1], *t[MAXB], f[MAXB][S], tag[MAXB], sum[MAXB], dp[MAXN]; int a[MAXN], last[MAXN], pre[MAXN]; int n, k; void init() { for (int i = 1; i <= n; i++) { pre[i] = last[a[i]]; last[a[i]] = i; } for (int i = 0; i <= n / S; i++) t[i] = pool[i + 1]; dp[0] = 1; } inline void add(int &a, int b) { a += b; if (a >= MOD) a -= MOD; if (a < 0) a += MOD; } void modify(int p, int v) { int id = p / S, x = p % S; add(t[id][f[id][x]], -dp[p - 1]); if (f[id][x] <= k + tag[id]) add(sum[id], -dp[p - 1]); f[id][x] += v; add(t[id][f[id][x]], dp[p - 1]); if (f[id][x] <= k + tag[id]) add(sum[id], dp[p - 1]); } void add(int l, int r, int v) { while (l <= r && l % S != 0) { modify(l, v); ++l; } while (l <= r && (r + 1) % S != 0) { modify(r, v); --r; } for (int i = l; i <= r; i += S) { if (v == 1) add(sum[i / S], -t[i / S][k + tag[i / S]]); else add(sum[i / S], +t[i / S][k + 1 + tag[i / S]]); tag[i / S] -= v; } } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; init(); for (int i = 1; i <= n; i++) { add(pre[i] + 1, i - 1, 1); if (pre[i] != 0) add(pre[pre[i]] + 1, pre[i], -1); add(sum[i / S], dp[i - 1]); add(t[i / S][1], dp[i - 1]); add(f[i / S][i % S], 1); for (int j = 0; j <= n / S; j++) add(dp[i], sum[j]); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 998244353; const long long MAXN = 1e5; const long long B = 315; long long cnt[1 + MAXN], dp[1 + MAXN]; vector<long long> occ[1 + MAXN]; void add_self(long long &x, long long y) { x += y; if (x >= mod) x -= mod; } void min_self(long long &x, long long y) { x = min(x, y); } struct SQRT { long long id, offset, pref_sum[B]; void rebuild() { long long st = id * B, dr = (id + 1) * B - 1, minn = INT_MAX; for (long long i = st; i <= dr; ++i) min_self(minn, offset + cnt[i]); for (long long i = st; i <= dr; ++i) cnt[i] -= minn - offset; offset = minn; for (long long i = 0; i < B; ++i) pref_sum[i] = 0; for (long long i = st; i <= dr; ++i) add_self(pref_sum[cnt[i]], dp[i]); for (long long i = 1; i < B; ++i) add_self(pref_sum[i], pref_sum[i - 1]); } } a[MAXN / B + 1]; long long get_bucket(long long index) { return index / B; } void update(long long l, long long r, short t) { long long bl = get_bucket(l), br = get_bucket(r); for (long long i = l; i <= r && get_bucket(i) == bl; ++i) cnt[i] += t; a[bl].rebuild(); if (bl == br) return; for (long long i = bl + 1; i < br; ++i) a[i].offset += t; for (long long i = r; get_bucket(i) == br; --i) cnt[i] += t; a[br].rebuild(); } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); long long n, k; cin >> n >> k; for (long long i = 0; i <= get_bucket(n); ++i) a[i].id = i; for (long long i = 1; i <= n; ++i) occ[i].emplace_back(-1); dp[0] = 1; a[0].rebuild(); for (long long r = 0; r < n; ++r) { long long x; cin >> x; vector<long long> &vec = occ[x]; if (static_cast<long long>(vec.size()) >= 2) update(vec.end()[-2] + 1, vec.back(), -1); update(vec.back() + 1, r, 1); vec.emplace_back(r); long long val = 0; for (long long i = 0; i <= get_bucket(r); ++i) { long long at_most = k - a[i].offset; if (at_most >= 0) add_self(val, a[i].pref_sum[min(at_most, B - 1)]); } dp[r + 1] = val; a[get_bucket(r + 1)].rebuild(); } cout << dp[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> //#pragma GCC optimize("unroll-loops") //#pragma GCC optimize("-O3") //#pragma GCC optimize("Ofast") #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> #define sz(x) int(x.size()) #define all(x) x.begin(),x.end() #define pii pair<int,int> #define PB push_back #define pll pair<ll,ll> #define pii pair<int,int> #define pil pair<int,ll> #define pli pair<ll, int> #define pi4 pair<pii, pii> #define pib pair<int, bool> #define ft first #define sd second using namespace std; using namespace __gnu_cxx; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; template<class T> using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; const int N = 100100; //const int N = 2010; const int M = (1 << 10); const int oo = 2e9; const ll OO = 1e18; const int PW = 20; const int md = int(1e9) + 7; const int BLOCK = 750; //const int BLOCK = 2; const int K = N / BLOCK; int f[N], SQ[K][2 * N], mid[K], sum[K], a[N], n, k, ppr[N], pr[N], vl[N]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); // freopen("in.txt","r",stdin); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; a[i]--; } fill(mid, mid + K, N); for (int i = 0; i < n; i++){ ppr[i] = pr[i] = -1; } for (int i = 0; i < n; i++){ int l = ppr[a[i]], r = pr[a[i]]; swap(ppr[a[i]], pr[a[i]]); pr[a[i]] = i; int nm = i / BLOCK; for (int j = max(r + 1, BLOCK * nm); j <= i; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } if ((r + 1) / BLOCK != nm){ nm--; int nd = (r + 1) / BLOCK; for (; nm > nd; nm--){ sum[nm] -= SQ[nm][mid[nm] + k]; mid[nm]--; } for (int j = r + 1; j < (nm + 1) * BLOCK; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]++; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k + 1) sum[nm] -= (j ? f[j - 1] : 1); } } if (r >= 0){ int nd = (l + 1) / BLOCK; if (nd < nm){ for (int j = BLOCK * nm; j < r + 1; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k) sum[nm] += (j ? f[j - 1] : 1); } nm--; } for (; nm > nd; nm--){ sum[nm] += SQ[nm][mid[nm] + k + 1]; mid[nm]++; } for (int j = l + 1; j <= r; j++){ SQ[nm][mid[nm] + vl[j]] -= (j ? f[j - 1] : 1); vl[j]--; SQ[nm][mid[nm] + vl[j]] += (j ? f[j - 1] : 1); if (vl[j] == k) sum[nm] += (j ? f[j - 1] : 1); } } for (int j = 0; j * BLOCK <= i; j++) f[i] += sum[j]; f[i] += (i ? f[i - 1] : 1); nm = i / BLOCK; // SQ[nm][mid[nm] + vl[i]] += (i ? f[i - 1] : 1); if (vl[i] <= k) sum[nm] += (i ? f[i - 1] : 1); } cout << f[n - 1]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 100010, SQ = 320; int n, k, arr[N], dp[N], sq, nxt[N], nxt2[N], cur[N], frq[SQ][N]; int num[SQ]; inline void add(int &x, int y) { x += y; if (x >= 998244353) x -= 998244353; } inline void subtract(int &x, int y) { x -= y; if (x < 0) x += 998244353; } inline void init(int idx) { for (int i = idx * sq; i < min(n, (idx + 1) * sq); i++) { cur[i] += num[idx]; } num[idx] = 0; } inline void make(int idx) { for (int i = idx * sq; i < min(n, (idx + 1) * sq); i++) { frq[idx][cur[i]] = 0; cur[i] += num[idx]; } num[idx] = 0; for (int i = idx * sq; i < min(n, (idx + 1) * sq); i++) { add(frq[idx][cur[i]], dp[i]); } } int l, r, val, current; inline void update() { if (l > r) return; if (l / sq == r / sq) { current = l / sq; while (l <= r) { cur[l++] += val; } make(current); return; } if (l % sq) { current = l / sq; while (l <= n && l % sq != 0) { cur[l++] += val; } make(current); } if (r % sq != sq - 1) { current = r / sq; while (r >= 0 && r % sq != sq - 1) { cur[r--] += val; } make(current); } if (r < l) return; l /= sq; r /= sq; while (l <= r) { num[l++] += val; } } int getres = 0; inline int get() { if (l > r) return 0; getres = 0; if (l / sq == r / sq) { while (l <= r) { add(getres, ((cur[l] + num[l / sq]) == val ? dp[l] : 0)); l++; } return getres; } while (l <= n && l % sq) { add(getres, ((cur[l] + num[l / sq]) == val ? dp[l] : 0)); l++; } while (r >= 0 && r % sq != sq - 1) { add(getres, ((cur[r] + num[r / sq]) == val ? dp[r] : 0)); r--; } if (r < l) { return getres; } l /= sq; r /= sq; while (l <= r) { if ((val - num[l] >= 0)) add(getres, frq[l][val - num[l]]); l++; } return getres; } int main() { scanf("%d%d", &n, &k); sq = sqrt(n) + 1; for (int i = 0; i < n; i++) scanf("%d", &arr[i]); for (int i = 1; i <= n; i++) nxt[i] = nxt2[i] = n; dp[n - 1] = dp[n] = 1; nxt[arr[n - 1]] = n - 1; cur[n] = 1; frq[n / sq][1] = 1; frq[(n - 1) / sq][0] = 1; for (int i = n - 2; i >= 0; i--) { dp[i] = dp[i + 1]; add(dp[i], dp[i + 1]); l = i + 1, r = nxt[arr[i]], val = 1; update(); l = i + 1, r = nxt[arr[i]], val = k + 1; subtract(dp[i], get()); l = nxt[arr[i]] + 1, r = nxt2[arr[i]], val = -1; update(); l = nxt[arr[i]] + 1, r = nxt2[arr[i]], val = k; add(dp[i], get()); nxt2[arr[i]] = nxt[arr[i]]; nxt[arr[i]] = i; make(i / sq); } printf("%d\n", dp[0]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int BASE = 998244353; const int SZ = 320, V = 100000 / SZ; struct BlockData { int sumC; vector<long long> sumF; BlockData() {} }; int n, k, c[100100]; long long f[100100]; BlockData blocks[SZ]; long long calc(int i) { long long res = 0; int sumC = 0, block = i / SZ; for (int j = i; j >= block * SZ; j--) { sumC += c[j]; if (sumC <= k) res += j ? f[j - 1] : 1; } for (int j = block - 1; j >= 0; j--) { res += blocks[j].sumF[max(min(k - sumC, V), 0) + V]; sumC += blocks[j].sumC; } return res % BASE; } void constructBlock(int block) { BlockData &data = blocks[block]; data.sumC = 0; data.sumF = vector<long long>(V * 2 + 1, 0); for (int i = block * SZ + SZ - 1; i >= block * SZ; i--) { data.sumC += c[i]; data.sumF[data.sumC + V] += i ? f[i - 1] : 1; } for (int i = 0; i <= V * 2; i++) { if (i) data.sumF[i] += data.sumF[i - 1]; data.sumF[i] %= BASE; } } int main() { ios::sync_with_stdio(0); cin.tie(0); int x; cin >> n >> k; vector<int> id[100100]; for (int i = 0; i < n; i++) { cin >> x; c[i] = 1; if (!id[x].empty()) { int j = id[x].back(); c[j] = -1; if (id[x].size() >= 2) { int k = id[x][id[x].size() - 2]; c[k] = 0; if (k / SZ != j / SZ) constructBlock(k / SZ); } if (j / SZ != i / SZ) constructBlock(j / SZ); } id[x].push_back(i); f[i] = calc(i); if (i % SZ == SZ - 1) constructBlock(i / SZ); } cout << f[n - 1] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline void gn(T &first) { char c, sg = 0; while (c = getchar(), (c > '9' || c < '0') && c != '-') ; for ((c == '-' ? sg = 1, c = getchar() : 0), first = 0; c >= '0' && c <= '9'; c = getchar()) first = (first << 1) + (first << 3) + c - '0'; if (sg) first = -first; } template <class T1, class T2> inline void gn(T1 &x1, T2 &x2) { gn(x1), gn(x2); } int power(int a, int b, int m, int ans = 1) { for (; b; b >>= 1, a = 1LL * a * a % m) if (b & 1) ans = 1LL * ans * a % m; return ans; } int ans[100010], sum[321], cnt[100010]; int dp[321][100010]; int val[321]; int a[100010], pre[100010]; int L[321], R[321], id[100010]; int ID[100010]; int n, k; void build(int n) { for (int i = 1; i < 100010; i++) id[i] = sqrt(i); for (int i = 1; i < 100010; i++) { if (!L[id[i]]) L[id[i]] = i; R[id[i]] = i; } L[1] = 0; id[0] = 1; for (int i = 1; i <= n; i++) { pre[i] = ID[a[i]]; ID[a[i]] = i; } for (int i = 0; i < 100010; i++) cnt[i] = -1; } inline int add_val(int &u, int v) { u += v; if (u >= 998244353) u -= 998244353; } inline int add(int st, int ed, int s) { if (st > ed) return 0; int u = id[st]; for (int i = L[u]; i <= R[u]; i++) { if (cnt[i] < 0) break; add_val(dp[u][cnt[i]], 998244353 - ans[i]); cnt[i] += sum[u]; if (cnt[i] <= k) add_val(val[u], 998244353 - ans[i]); if (i >= st and i <= ed) cnt[i] += s; add_val(dp[u][cnt[i]], ans[i]); if (cnt[i] <= k) add_val(val[u], ans[i]); } sum[u] = 0; if (id[st] == id[ed]) return 0; u = id[ed]; for (int i = L[u]; i <= R[u]; i++) { if (cnt[i] < 0) break; add_val(dp[u][cnt[i]], 998244353 - ans[i]); cnt[i] += sum[u]; if (cnt[i] <= k) add_val(val[u], 998244353 - ans[i]); if (i >= st and i <= ed) cnt[i] += s; add_val(dp[u][cnt[i]], ans[i]); if (cnt[i] <= k) add_val(val[u], ans[i]); } for (int i = id[st] + 1; i < id[ed]; i++) { if (s == 1 and k >= sum[i]) add_val(val[i], 998244353 - dp[i][k - sum[i]]); if (s == -1 and k + 1 >= sum[i]) add_val(val[i], dp[i][k + 1 - sum[i]]); add_val(sum[i], s); } return 0; } int main() { gn(n, k); for (int i = 1; i <= n; i++) gn(a[i]); build(n); cnt[0] = 0; dp[1][0] = ans[0] = val[1] = 1; for (int i = 1; i <= n; i++) { add(pre[i], i - 1, 1); add(pre[pre[i]], pre[i] - 1, -1); ans[i] = 0; cnt[i] = 0; int u = id[i]; for (int j = 1; j <= u; j++) { ans[i] += val[j]; } val[u] += ans[i]; dp[u][cnt[i]] += ans[i]; } cout << ans[n] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 9, mod = 998244353, maxm = 409; int n, k, ans; int a[maxn], cnt[maxn], lst[maxn], fir[maxn], bl[maxm], br[maxm], col[maxn], v[maxn], lazy[maxm], f[maxn], sum[maxm][maxn]; inline void Fir() { int size(sqrt(n)); int pieces(ceil(1.0 * n / size)); for (int i = 1; i <= pieces; ++i) { bl[i] = (i - 1) * size + 1; br[i] = (i == pieces ? n : i * size); for (int j = bl[i]; j <= br[i]; ++j) col[j] = i; } for (int i = 1; i <= n; ++i) { lst[i] = fir[a[i]]; fir[a[i]] = i; } } inline void Modify(int l, int r, int val) { int lt(col[l]), rt(col[r]); if (lt == rt) { for (int i = l; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = (ans - f[i] + mod) % mod; } else { if (v[i] + lazy[lt] == k + 1) ans = (ans + f[i]) % mod; } sum[lt][v[i]] = (sum[lt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[lt][v[i]] = (sum[lt][v[i]] + f[i]) % mod; } } else { for (int i = l; i <= br[lt]; ++i) { if (val == 1) { if (v[i] + lazy[lt] == k) ans = (ans - f[i] + mod) % mod; } else { if (v[i] + lazy[lt] == k + 1) ans = (ans + f[i]) % mod; } sum[lt][v[i]] = (sum[lt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[lt][v[i]] = (sum[lt][v[i]] + f[i]) % mod; } for (int i = bl[rt]; i <= r; ++i) { if (val == 1) { if (v[i] + lazy[rt] == k) ans = (ans - f[i] + mod) % mod; } else { if (v[i] + lazy[rt] == k + 1) ans = (ans + f[i]) % mod; } sum[rt][v[i]] = (sum[rt][v[i]] - f[i] + mod) % mod, v[i] += val, sum[rt][v[i]] = (sum[rt][v[i]] + f[i]) % mod; } for (int i = lt + 1; i <= rt - 1; ++i) { if (val == 1) ans = (ans - sum[i][k - lazy[i]] + mod) % mod; else ans = (ans + sum[i][k + 1 - lazy[i]]) % mod; lazy[i] += val; } } } inline void Update(int x) { sum[col[x + 1]][v[x + 1]] += f[x + 1]; ans += f[x + 1]; } inline void Solve() { ans = 1; sum[1][1] = 1; for (int i = 1; i <= n; ++i) { ++cnt[a[i]]; int p(lst[i]), q(lst[p]); if (cnt[a[i]] == 1) { Modify(1, i, 1); } else if (cnt[a[i]] == 2) { Modify(p + 1, i, 1); Modify(1, p, -1); } else { Modify(p + 1, i, 1); Modify(q + 1, p, -1); } f[i + 1] = ans; Update(i); } printf("%d", f[n + 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", a + i); Fir(); Solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int t = 399, mod = 998244353; inline int mo(const register int x) { return x >= mod ? x - mod : x; } int a[100010], n, k, bl[100010], p[100010], pre[100010], sum[400][100010], f[400], S[400], dp[100010], lst[100010]; inline void ad(const register int l, const register int r, const register int x) { if (bl[l] == bl[r]) { for (int i = (bl[l] - 1) * t + 1; i <= min(n, bl[l] * t); i++) sum[bl[l]][p[i]] = 0, p[i] += k - f[bl[l]]; for (int i = l; i <= r; i++) p[i] += x; S[bl[l]] = 0; for (int i = (bl[l] - 1) * t + 1; i <= min(n, bl[l] * t); i++) sum[bl[l]][p[i]] = mo(sum[bl[l]][p[i]] + dp[i]), S[bl[l]] = mo(S[bl[l]] + (p[i] <= k) * dp[i]); f[bl[l]] = k; return; } for (int i = (bl[l] - 1) * t + 1; i <= bl[l] * t; i++) sum[bl[l]][p[i]] = 0, p[i] += k - f[bl[i]]; for (int i = l; i <= bl[l] * t; i++) p[i] += x; S[bl[l]] = 0; for (int i = (bl[l] - 1) * t + 1; i <= bl[l] * t; i++) sum[bl[l]][p[i]] = mo(sum[bl[l]][p[i]] + dp[i]), S[bl[l]] = mo(S[bl[l]] + (p[i] <= k) * dp[i]); for (int i = (bl[r] - 1) * t + 1; i <= min(n, bl[r] * t); i++) sum[bl[r]][p[i]] = 0, p[i] += k - f[bl[r]]; for (int i = (bl[r] - 1) * t + 1; i <= r; i++) p[i] += x; S[bl[r]] = 0; for (int i = (bl[r] - 1) * t + 1; i <= min(n, bl[r] * t); i++) sum[bl[r]][p[i]] = mo(sum[bl[r]][p[i]] + dp[i]), S[bl[r]] = mo(S[bl[r]] + (p[i] <= k) * dp[i]); f[bl[l]] = f[bl[r]] = k; for (int i = bl[l] + 1; i < bl[r]; i++) { f[bl[i]] -= x; if (f[bl[i]] >= 0 && f[bl[i]] <= 100000) { if (x > 0) S[i] = mo(S[i] + sum[i][f[bl[i]]]); else S[i] = mo(S[i] - sum[i][f[bl[i]]] + mod); } } } int main() { scanf("%d%d", &n, &k); n++; for (int i = 1; i <= n; i++) bl[i] = (i - 1) / t + 1; for (int i = 1; i <= bl[n]; i++) f[i] = k; for (int i = 2; i <= n; i++) scanf("%d", &a[i]), pre[a[i]] = 1; dp[1] = 1; ad(1, 1, 0); for (int i = 2; i <= n; i++) { if (lst[pre[a[i]]]) ad(lst[pre[a[i]]], pre[a[i]] - 1, -1), ad(pre[a[i]], i - 1, 1); else ad(1, i - 1, 1); lst[i] = pre[a[i]]; pre[a[i]] = i; for (int j = 1; j <= bl[n]; j++) dp[i] = mo(dp[i] + S[j]); ad(i, i, 0); } cout << dp[n] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 0x3f3f3f3f; const int N = 2e5 + 10; const int M = 11; const double PI = acos(-1.0); const int blo = 320; inline void add(int &a, int b) { a += b; if (a >= 998244353) a -= 998244353; } int v[N]; int cnt[blo][(blo << 1) + 10], sum[blo]; int vc[N], w[N], pre[N], l[N], dd[3] = {1, -1, 0}; void up(int x, int y) { vc[x] = y; int id = x / blo; memset(cnt[id], 0, sizeof(cnt[id])); sum[id] = 0; for (int i = blo - 1, be = id * blo; i >= 0; --i) { add(cnt[id][blo + sum[id]], w[be + i]); sum[id] += vc[be + i]; } for (int i = 1; i <= blo * 2; ++i) add(cnt[id][i], cnt[id][i - 1]); } void qu(int x, int k) { int id = x / blo; for (int i = id; i >= 0; --i) { if (k + blo >= 0) add(w[x], cnt[i][min(blo + k, blo * 2)]); k -= sum[i]; } } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &v[i]); w[0] = 1; for (int i = 1; i <= n; ++i) { pre[i] = l[v[i]], l[v[i]] = i; for (int j = 0, now = i; j < 3 && now; ++j, now = pre[now]) up(now, dd[j]); qu(i, k); } printf("%d\n", w[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; const long long BIG = 1446803456761533460; const int Big = 336860180; stringstream sss; const int maxn = 100010; const int SQ = 330; int n, k; int A[maxn], P[maxn]; map<int, int> lst; int block[SQ][maxn]; int lazy[SQ], val[maxn]; int dp[maxn]; int sum = 0; int& blk(int x, int y) { return block[x / SQ][-y]; } void inc(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { if (k - lazy[l / SQ] <= 0) sum = ((sum) + (MOD - blk(l, k - lazy[l / SQ]))) % MOD; ++lazy[l / SQ]; l += SQ; } else { if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (MOD - dp[l])) % MOD; blk(l, val[l]) = ((blk(l, val[l])) + (MOD - dp[l])) % MOD; ++val[l]; blk(l, val[l]) = ((blk(l, val[l])) + (dp[l])) % MOD; ++l; } } } void dec(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { --lazy[l / SQ]; if (k - lazy[l / SQ] <= 0) sum = ((sum) + (blk(l, k - lazy[l / SQ]))) % MOD; l += SQ; } else { blk(l, val[l]) = ((blk(l, val[l])) + (MOD - dp[l])) % MOD; --val[l]; blk(l, val[l]) = ((blk(l, val[l])) + (dp[l])) % MOD; if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (dp[l])) % MOD; ++l; } } } void MAIN() { cin >> n >> k; for (int i = (0); i < (n); ++i) { cin >> A[i]; P[i + 1] = lst.count(A[i]) ? lst[A[i]] : 0; lst[A[i]] = i + 1; } dp[0] = 1; sum = 1; block[0][0] = 1; for (int i = (1); i < (n + 1); ++i) { inc(P[i], i); dec(P[P[i]], P[i]); dp[i] = sum; sum = ((sum) + (dp[i])) % MOD; val[i] = -lazy[i / SQ]; blk(i, val[i]) = ((blk(i, val[i])) + (dp[i])) % MOD; } cout << dp[n] << '\n'; } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); cout << fixed << setprecision(10); sss << R"( 5 2 1 1 2 1 3 )"; MAIN(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int Mod = 998244353; int add(int a, int b) { return a + b >= Mod ? a + b - Mod : a + b; } void Add(int &a, int b) { a = add(a, b); } int dec(int a, int b) { return a - b < 0 ? a - b + Mod : a - b; } void Dec(int &a, int b) { a = dec(a, b); } const int N = 1e5 + 50, M = 255, A = 1e5; int n, k, S, ct, a[N], pre[N], blk[N], dp[N]; int b[N], t[M], bin[M][N + A], sm[M], L[N], R[N]; void ins(int u, int vl) { int p = blk[u]; Add(sm[p], vl); Add(bin[p][b[u] - t[p] + A], vl); } void mdf(int i, int lp, int v) { if (b[i] + t[lp] <= k) Dec(sm[lp], dp[i - 1]); Dec(bin[lp][b[i] + A], dp[i - 1]); b[i] += v; if (b[i] + t[lp] <= k) Add(sm[lp], dp[i - 1]); Add(bin[lp][b[i] + A], dp[i - 1]); } void add(int l, int r, int v) { if (l > r) return; int lp = blk[l], rp = blk[r]; if (blk[l] == blk[r]) { for (int i = l; i <= r; i++) mdf(i, lp, v); return; } for (int i = l; i <= R[lp]; i++) mdf(i, lp, v); for (int i = L[rp]; i <= r; i++) mdf(i, rp, v); for (int i = lp + 1; i < rp; i++) { if (v > 0) Dec(sm[i], bin[i][k - t[i] + A]); else Add(sm[i], bin[i][k - t[i] + 1 + A]); t[i] += v; } } int qry(int p) { int ans = 0, c = 0; for (; c <= ct && R[c] <= p; c++) Add(ans, sm[c]); if (c > ct) return ans; for (int i = L[c]; i <= p; i++) if (b[i] + t[c] <= k) Add(ans, dp[i - 1]); return ans; } int main() { scanf("%d%d", &n, &k); S = 400; for (int i = 1; i <= n; i++) scanf("%d", &a[i]); static int ls[N]; for (int i = 1; i <= n; i++) pre[i] = ls[a[i]], ls[a[i]] = i; for (int i = 1; i <= n; i++) blk[i] = (i - 1) / S + 1; for (int i = 1; i <= n; i += S) L[++ct] = i, R[ct] = i + S - 1; R[ct] = n; dp[0] = 1; for (int i = 1; i <= n; i++) { add(pre[i] + 1, i, 1); add(pre[pre[i]] + 1, pre[i], -1); ins(i, dp[i - 1]); dp[i] = qry(i); } cout << dp[n]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #define il inline #define ri register int #define pb push_back #define mp make_pair #define fir first #define sec second #define mid ((l+r)>>1) #define MAXN 100050 #define MAXM #define mod 998244353 #define inf (1<<30) #define eps (1e-6) #define alpha 0.75 #define rep(i, x, y) for(ri i = x; i <= y; ++i) #define repd(i, x, y) for(ri i = x; i >= y; --i) #define file(s) freopen(s".in", "r", stdin), freopen(s".out", "w", stdout) using namespace std; typedef long long ll; typedef unsigned long long ull; typedef long double ld; typedef pair <int, int> pii; typedef pair <ll, int> pli; typedef pair <int, ll> pil; typedef pair <ll, ll> pll; template <typename T> il bool chkmin(T &x, T y) {return x > y ? x = y, 1 : 0;} template <typename T> il bool chkmax(T &x, T y) {return x < y ? x = y, 1 : 0;} template <typename T> il void read(T &x) { char ch = getchar(); int f = 1; x = 0; while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();} while(ch >= '0' && ch <= '9') x = x*10+ch-'0', ch = getchar(); x *= f; } int n, k, B, a[MAXN], pre[MAXN], pos[MAXN], mark[MAXN]; int dp[MAXN], cnt[MAXN], add[MAXN]; vector <int> v; struct node { mutable int pos, cnt, val, sum; bool operator < (const node &x) const { return cnt < x.cnt; } }; vector <node> ver[MAXN]; void inc(int l, int r, int w) { // cout<<"inc "<<l<<' '<<r<<' '<<w<<endl; for(auto u: v) { if(l <= ver[u].begin()->pos && ver[u].begin()->pos <= r) add[u] += w; } } int query(int r) { int ret = 0; for(auto u: v) if(ver[u].begin()->pos <= r) { ret = (ret + (--upper_bound(ver[u].begin(), ver[u].end(), node {0, k-add[u], 0, 0}))->sum) % mod; } else break; return ret; } int main() { read(n), read(k); rep(i, 1, n) read(a[i]), pre[i] = pos[a[i]], pos[a[i]] = i; B = sqrt(n), dp[0] = 1; for(ri ti = 1; ti <= n; ti += B) { int l = ti, r = min(ti+B-1, n); // cout<<l<<' '<<r<<endl; rep(i, 0, n) mark[i] = 0, ver[i].clear(); v.clear(), mark[0] = 1; rep(i, l, r) { mark[i] = mark[i+1] = mark[pre[i]] = mark[pre[pre[i]]] = 1; } rep(i, 0, n) if(mark[i]) { v.pb(i), ver[i].pb(node {i, cnt[i], dp[i], 0}); int u = i+1; while(u <= n && !mark[u]) ver[i].pb(node {u, cnt[u], dp[u], 0}), u++; sort(ver[i].begin(), ver[i].end()); ver[i][0].sum = ver[i][0].val; rep(j, 1, ver[i].size()-1) ver[i][j].sum = (ver[i][j].val + ver[i][j-1].sum) % mod; // cout<<"checking: "<<i<<endl; // for(auto x: ver[i]) cout<<x.pos<<' '<<x.cnt<<' '<<x.sum<<' '; // puts(""); } rep(i, l, r) { inc(pre[pre[i]], pre[i]-1, -1), inc(pre[i], i-1, 1); dp[i] = query(i-1), ver[i].pop_back(), ver[i].pb(node {i, cnt[i], dp[i], dp[i]}); // cout<<"dp["<<i<<"] is "<<dp[i]<<endl; } for(auto u: v) { for(auto x: ver[u]) cnt[x.pos] += add[u]; add[u] = 0; } // puts("check cnt:"); // rep(i, 0, n) cout<<cnt[i]<<' '; // puts(""), puts(""); } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long mod = 998244353LL; int k; class Block { public: int aux; vector<long long> pre; int st, en; int lo, hi; vector<long long> vals; vector<int> dist; Block(int a, int b) { aux = 0; st = a; en = b; lo = 0; hi = 0; pre.push_back(0LL); pre.push_back(0LL); for (int i = st; i <= en; i++) { vals.push_back(0LL); dist.push_back(0); } } void change(int ind, long long val) { if (ind < st || ind > en) { return; } vals[ind - st] = val; for (int i = dist[ind - st]; i <= hi; i++) { pre[i - lo + 1] += val; pre[i - lo + 1] %= mod; } } void modify(int l, int r, int delta) { if (l <= st && r >= en) { aux += delta; return; } if (st > r || en < l) { return; } for (int i = max(l, st); i <= min(r, en); i++) { dist[i - st] += delta; } for (int i = st; i <= en; i++) { dist[i - st] += aux; if (i == st) { lo = dist[i - st]; hi = dist[i - st]; } else { lo = min(lo, dist[i - st]); hi = max(hi, dist[i - st]); } } aux = 0; pre.clear(); pre.resize(hi - lo + 2); for (int i = st; i <= en; i++) { pre[dist[i - st] - lo + 1] += vals[i - st]; } for (int i = 1; i < pre.size(); i++) { pre[i] += pre[i - 1]; pre[i] %= mod; } } long long sum(int l, int r) { if (st > r || en < l) { return 0LL; } if (l <= st && r >= en) { k -= aux; if (k < lo) { return 0LL; } if (k >= hi) { return pre.back(); } return pre[k - lo + 1]; } long long ret = 0LL; for (int i = max(l, st); i <= min(r, en); i++) { k -= aux; if (dist[i - st] <= k) { ret += vals[i - st]; } } return (ret % mod); } }; int sz = 300; int n; vector<Block> blocks; void build() { int point = 0; while (point < n + 1) { int en = min(point + sz - 1, n); blocks.push_back(Block(point, en)); point = en + 1; } } void add(int l, int r, int delta) { for (int i = 0; i < blocks.size(); i++) { blocks[i].modify(l, r, delta); } } long long gsum(int l, int r) { long long ret = 0LL; for (int i = 0; i < blocks.size(); i++) { ret += blocks[i].sum(l, r); } return ret % mod; } void doChange(int ind, long long vv) { for (int i = 0; i < blocks.size(); i++) { blocks[i].change(ind, vv); } } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> k; vector<int> list[n]; int a[n + 1]; int bef[n + 1]; int bef2[n + 1]; for (int i = 1; i <= n; i++) { cin >> a[i]; a[i]--; list[a[i]].push_back(i); int siz = list[a[i]].size(); if (list[a[i]].size() == 1) { bef[i] = -1; bef2[i] = -1; } else if (list[a[i]].size() == 2) { bef[i] = list[a[i]][siz - 2]; bef2[i] = -1; } else { bef[i] = list[a[i]][siz - 2]; bef2[i] = list[a[i]][siz - 3]; } } build(); doChange(0, 1LL); for (int i = 1; i <= n; i++) { if (bef[i] == -1) { add(0, i - 1, 1); } else if (bef2[i] == -1) { add(0, bef[i] - 1, -1); add(bef[i], i - 1, 1); } else { add(bef2[i], bef[i] - 1, -1); add(bef[i], i - 1, 1); } long long got = gsum(0, i - 1) % mod; doChange(i, got); } cout << blocks.back().vals.back() << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 11, mod = 998244353; int ans, n, k, blo, bel[N], f[N], g[N], a[N], L[N], R[N], las[N], bef[N], lim[N], sum[411][N], Sum[411]; inline void inc(int &x, int y) { x += y; if (x >= mod) x -= mod; } inline void modify(int l, int r, int x) { int o; if (bel[l] == bel[r]) { o = bel[l]; for (register int i = l; i <= r; ++i) { if (f[i] <= lim[o]) inc(Sum[o], mod - g[i - 1]); inc(sum[o][f[i]], g[i - 1]); f[i] += x; inc(sum[o][f[i]], g[i - 1]); if (f[i] <= lim[o]) inc(Sum[o], g[i - 1]); } return; } o = bel[l]; for (register int i = l; i <= R[o]; ++i) { if (f[i] <= lim[o]) inc(Sum[o], mod - g[i - 1]); inc(sum[o][f[i]], g[i - 1]); f[i] += x; inc(sum[o][f[i]], g[i - 1]); if (f[i] <= lim[o]) inc(Sum[o], g[i - 1]); } o = bel[r]; for (register int i = L[o]; i <= r; ++i) { if (f[i] <= lim[o]) inc(Sum[o], mod - g[i - 1]); inc(sum[o][f[i]], g[i - 1]); f[i] += x; inc(sum[o][f[i]], g[i - 1]); if (f[i] <= lim[o]) inc(Sum[o], g[i - 1]); } for (register int i = bel[l] + 1; i <= bel[r] - 1; ++i) { o = bel[i]; if (x == 1) inc(Sum[o], mod - sum[o][lim[o]]); lim[o] -= x; if (x == -1) inc(Sum[o], sum[o][lim[o]]); } } int main() { scanf("%d%d", &n, &k); blo = sqrt(n); for (register int i = 1; i <= n; ++i) { scanf("%d", a + i), bel[i] = (i - 1) / blo + 1; las[i] = bef[a[i]]; bef[a[i]] = i; } for (register int i = 1; i <= n; ++i) { if (!L[bel[i]]) L[bel[i]] = i; R[bel[i]] = i; } for (register int i = 1; i <= bel[n]; ++i) lim[i] = k; g[0] = 1; for (register int i = 1; i <= n; ++i) { inc(sum[bel[i]][0], g[i - 1]), inc(Sum[bel[i]], g[i - 1]); modify(las[i] + 1, i, 1); if (las[i]) modify(las[las[i]] + 1, las[i], -1); ans = 0; for (register int j = 1; j <= bel[i]; ++j) inc(ans, Sum[j]); g[i] = ans; } printf("%d\n", g[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int P = 998244353; const int N = 100010, B = 340; int n, b, c, kk; int a[N], ans[N], lst[N], prv[N], tag[N]; void add(int& x, int y) { if ((x += y) >= P) x -= P; } struct Block { int ptr, ans; int v[N]; void set(int j) { assert(tag[j] < N); if (tag[j] <= ptr) add(ans, ::ans[j]); add(v[tag[j]], ::ans[j]); } void mv(int x) { if (x == 1) { ++ptr; if (ptr >= 0) add(ans, v[ptr]); } else { if (ptr >= 0) add(ans, P - v[ptr]); --ptr; } } } sum[B]; void ch(int l, int v) { int f = l / b; for (int i = f + 1; i < c; ++i) sum[i].mv(-v); int lz = kk - sum[f].ptr; sum[f].ptr = kk; sum[f].ans = 0; for (int j = f * b; j < (f + 1) * b; ++j) sum[f].v[tag[j]] = 0; for (int j = f * b; j < (f + 1) * b; ++j) { tag[j] += lz; if (j >= l) tag[j] += v; sum[f].set(j); } } int qry() { int ret = 0; for (int i = 0; i < c; ++i) add(ret, sum[i].ans); return ret; } int main() { int k; scanf("%d%d", &n, &k); kk = k; for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); b = sqrt(n); c = n / b + 1; ans[0] = 1; for (int i = 0; i < c; ++i) sum[i].ptr = k; sum[0].set(0); for (int i = 1; i <= n; ++i) { int cur = lst[a[i]]; lst[a[i]] = i; prv[i] = cur; if (cur) { ch(cur, 1); ch(prv[cur], -1); } ch(cur, 1); ch(i, -1); ans[i] = qry(); sum[i / b].set(i); } printf("%d\n", ans[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxN = 1e5 + 5; const int mo = 998244353; int last1[maxN], last2[maxN]; int N, K; namespace Seq { const int maxB = 405; class Block { public: int lbnd, rbnd; int sz, add, ans; int g[maxB], f[maxB]; int sum[maxN]; void rebuild() { ans = 0; for (int i = 1; i <= sz; ++i) { (sum[g[i]] += mo - f[i]) %= mo; g[i] += add; (ans += (g[i] <= K ? f[i] : 0)) %= mo; (sum[g[i]] += f[i]) %= mo; } add = 0; } Block() {} Block(int l, int r, int _sz) { lbnd = l, rbnd = r, sz = _sz; memset(f, 0, sizeof(f)); memset(g, 0, sizeof(g)); rebuild(); } int getwholeans() { return ans; } int getpartans(int l, int r) { int ret = 0; l = l - lbnd + 1, r = r - lbnd + 1; rebuild(); for (int i = l; i <= r; ++i) { (ret += (g[i] <= K ? f[i] : 0)) %= mo; } return ret; } void movepart(int l, int r, int v) { l = l - lbnd + 1, r = r - lbnd + 1; rebuild(); for (int i = l; i <= r; ++i) { (sum[g[i]] += mo - f[i]) %= mo; g[i] += v; (ans += (g[i] <= K ? f[i] : 0)) %= mo; (sum[g[i]] += f[i]) %= mo; } } void movewhole(int v) { assert(v == 1 || v == -1); if (v == 1) { (ans += mo - sum[K - add]) %= mo; } else { (ans += sum[K - add - v]) %= mo; } add += v; } void insert(int p, int _f, int _g) { p = p - lbnd + 1; rebuild(); if (g[p] <= K) (ans += mo - f[p]) %= mo; (sum[g[p]] += mo - f[p]) %= mo; g[p] = _g; f[p] = _f; if (g[p] <= K) (ans += f[p]) %= mo; (sum[_g] += _f) %= mo; } } B[maxB]; int blocksz; int totblock; void init(int N) { blocksz = sqrt(N); for (int i = 0; i <= N; i += blocksz) { int r = min(i + blocksz - 1, N); B[++totblock] = Block(i, r, r - i + 1); } } int getpos(int x) { for (int i = 1; i <= totblock; ++i) { if (x <= B[i].rbnd) { return i; } } return -1; } void insert(int pos, int f, int g) { B[getpos(pos)].insert(pos, f, g); } void move(int l, int r, int v) { int lbl = getpos(l), rbl = getpos(r); if (lbl == rbl) { B[lbl].movepart(l, r, v); } else { B[lbl].movepart(l, B[lbl].rbnd, v); B[rbl].movepart(B[rbl].lbnd, r, v); for (int i = lbl + 1; i <= rbl - 1; ++i) { B[i].movewhole(v); } } } int getans(int l, int r) { int lbl = getpos(l), rbl = getpos(r), ret = 0; if (lbl == rbl) { ret = B[lbl].getpartans(l, r); } else { (ret += B[lbl].getpartans(l, B[lbl].rbnd)) %= mo; (ret += B[rbl].getpartans(B[rbl].lbnd, r)) %= mo; for (int i = lbl + 1; i <= rbl - 1; ++i) { (ret += B[i].getwholeans()) %= mo; } } return ret; } } // namespace Seq int main() { int ans = 0; cin >> N >> K; Seq::init(N); Seq::insert(0, 1, 0); for (int i = 1; i <= N; ++i) { int a, f; scanf("%d", &a); Seq::move(last1[a], i - 1, +1); Seq::move(last2[a], last1[a] - 1, -1); if (last1[a]) { last2[a] = last1[a]; last1[a] = i; } else { last1[a] = i; } f = Seq::getans(0, i - 1); Seq::insert(i, f, 0); if (i == N) { ans = f; } } cout << ans << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, v1[100005], v2[100005], a[100005]; vector<int> pos[100005]; int cost[100005], lazy[1001], dp[100005]; vector<pair<int, int> > v[1001]; inline int add(int first, int second) { if (first + second >= 1000000007) return first + second - 1000000007; else return first + second; } void make(int b) { v[b].clear(); for (int i = max(1, b * 333); i < (b + 1) * 333; i++) v[b].push_back({cost[i], dp[i - 1]}); sort((v[b]).begin(), (v[b]).end()); for (int i = 1; i < (int)v[b].size(); i++) v[b][i].second = add(v[b][i].second, v[b][i - 1].second); } void update(int l, int r, int first) { if (l > r) return; int bl = l / 333; int br = r / 333; if (bl == br) { for (int i = l; i < r + 1; i++) cost[i] += first; make(bl); } else { for (int i = l; i < (bl + 1) * 333; i++) cost[i] += first; make(bl); for (int i = br * 333; i < r + 1; i++) cost[i] += first; make(br); for (int i = bl + 1; i < br; i++) lazy[i] += first; } } int query(int first) { int bx = first / 333; int ans = 0; for (int i = 0; i < bx; i++) { pair<int, int> temp = {k - lazy[i], 1000000007}; int l = upper_bound((v[i]).begin(), (v[i]).end(), temp) - v[i].begin() - 1; if (l >= 0) ans = add(ans, v[i][l].second); } for (int i = max(1, bx * 333); i < first + 1; i++) { if (cost[i] + lazy[bx] <= k) { ans = add(ans, dp[i - 1]); } } return ans; } void solve() { cin >> n >> k; for (int i = 1; i < n + 1; i++) cin >> a[i]; for (int i = 1; i < n + 1; i++) { if ((int)pos[a[i]].size()) v1[i] = pos[a[i]].back(); if ((int)pos[a[i]].size() > 1) v2[i] = pos[a[i]][(int)pos[a[i]].size() - 2]; pos[a[i]].push_back(i); } dp[0] = 1; make(0); for (int i = 1; i < n + 1; i++) { update(v1[i] + 1, i, 1); update(v2[i] + 1, v1[i], -1); dp[i] = query(i); make(i / 333); } cout << dp[n] << '\n'; } signed main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int t = 1; while (t--) { solve(); } return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int BLQ = 320; const int MOD = 998244353; struct Treap { int x; int y; int z; int acum; int lazy; Treap *l, *r; Treap(int X, int Z) : x(X), y(rand()), z(Z % MOD), acum(Z % MOD), lazy(0), l(NULL), r(NULL) {} }; typedef Treap *ptreap; void Push(ptreap T) { if (!T) return; if (T->lazy) { T->x += T->lazy; if (T->l) T->l->lazy += T->lazy; if (T->r) T->r->lazy += T->lazy; T->lazy = 0; } } void goUp(ptreap T) { if (!T) return; T->acum = T->z; if (T->l) T->acum = (T->acum + T->l->acum) % MOD; if (T->r) T->acum = (T->acum + T->r->acum) % MOD; } void Split(ptreap T, ptreap &L, ptreap &R, int x) { Push(T); if (!T) { L = R = NULL; return; } if (T->x <= x) { L = T; Split(L->r, L->r, R, x); } else { R = T; Split(R->l, L, R->l, x); } goUp(L); goUp(R); } void Merge(ptreap &T, ptreap L, ptreap R) { Push(L); Push(R); if (!L) { T = R; return; } else if (!R) { T = L; return; } if (L->y < R->y) { T = L; Merge(T->r, T->r, R); } else { T = R; Merge(T->l, L, R->l); } goUp(T); } void Incrementa(ptreap &T, int x, int z) { Push(T); if (T->x == x) { T->z = (T->z + z) % MOD; if (T->z == 0) Merge(T, T->l, T->r); } else if (x < T->x) { Incrementa(T->l, x, z); } else { Incrementa(T->r, x, z); } goUp(T); } ptreap Busca(ptreap T, int x) { Push(T); if (!T) return NULL; if (x == T->x) return T; if (x < T->x) return Busca(T->l, x); return Busca(T->r, x); } void Agrega(ptreap &T, int x, int z) { ptreap act = Busca(T, x); if (act) { Incrementa(T, x, z); } else { ptreap L, R; Split(T, L, R, x); Merge(L, L, new Treap(x, z)); Merge(T, L, R); } } int Suma(ptreap T, int x) { if (!T) return 0; T->lazy += x; } int main() { int N, K; ios_base::sync_with_stdio(0); cin.tie(0); cin >> N >> K; vector<int> ar(N); int U = N / BLQ + 1; vector<int> lazy(U); for (int i = 0; i < N; i++) { cin >> ar[i]; ar[i]--; } vector<int> acum(N); vector<int> dp(N); vector<int> ultimo(N, -1); vector<int> penultimo(N, -1); vector<ptreap> raices(U, NULL); auto desplaza = [&](int pos, int r) { int b = pos / BLQ; if (pos % BLQ) { int fin = min(N, (b + 1) * BLQ); if (lazy[b]) { for (int j = b * BLQ; j < fin; j++) acum[j] += lazy[b]; lazy[b] = 0; } for (int j = pos; j < fin; j++) { Agrega(raices[b], acum[j], MOD - dp[j]); acum[j] += r; Agrega(raices[b], acum[j], dp[j]); } b++; } while (b < U) { Suma(raices[b], r); lazy[b] += r; b++; } }; int res = 1; for (int i = N - 1; i >= 0; i--) { if (~penultimo[ar[i]]) { desplaza(penultimo[ar[i]], 1); } if (~ultimo[ar[i]]) { desplaza(ultimo[ar[i]], -2); } desplaza(i + 1, 1); penultimo[ar[i]] = ultimo[ar[i]]; ultimo[ar[i]] = i; int b = i / BLQ; Agrega(raices[b], 1, res); dp[i] = res; acum[i] = 1; ptreap L, R; Split(raices[b], L, R, K); res = L->acum; Merge(raices[b], L, R); } cout << res << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n,block,k; const long long mod=998244353; long long dp[318][100001]; long long dpx[100001]; long long add[100001]; int a[100010]; int getblock(int t) {return t<0?0:t/block;} int down(int t) {return t*block;} int up(int t) {return down(t+1)-1;} int read() { int x=0; char ch=getchar(); while(ch<'0'||ch>'9') ch=getchar(); while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^48); ch=getchar(); } return x; } int las[100010]; int pos[100010]; long long ans; void reset(int block) { for(int i=down(block);i<=up(block);i++) { dp[block][pos[i]]-=dpx[i]; dp[block][pos[i]]=(dp[block][pos[i]]+mod*1233)%mod; pos[i]+=add[block]; dp[block][pos[i]]+=dpx[i]; dp[block][pos[i]]%=mod; } add[block]=0; } void deal(int block,int st,int ed,int ere) { for(int i=st;i<ed;i++) { dp[block][pos[i]]-=dpx[i]; dp[block][pos[i]]=(dp[block][pos[i]]+mod*1233)%mod; if(pos[i]==k+1) ans=(ans+dpx[i])%mod; dp[block][--pos[i]]+=dpx[i]; dp[block][pos[i]]%=mod; } for(int i=ed;i<=ere;i++) { dp[block][pos[i]]-=dpx[i]; dp[block][pos[i]]=(dp[block][pos[i]]+mod*1233)%mod; if(pos[i]==k) ans=(ans-dpx[i]+mod)%mod; dp[block][++pos[i]]+=dpx[i]; dp[block][pos[i]]%=mod; } } int main() { //freopen("aaa.in","r",stdin); n=read(); k=read(); block=sqrt(n); for(int i=1;i<=n;i++) { a[i]=read(); las[i]=pos[a[i]]; pos[a[i]]=i; } memset(pos,0,sizeof(pos)); dp[0][0]=1; dpx[0]=1; ans=1; for(int i=1;i<=n;i++) { int p1=las[i]; int p2=las[p1]; int block1=getblock(p1); int block2=getblock(p2); int blockm=getblock(i); for(int j=block1+1;j<blockm;j++) { if(k-add[j]>=0) ans=(ans-dp[j][k-add[j]]+mod*1233)%mod; add[j]++; } for(int j=block2+1;j<block1;j++) { if(k+1-add[j]>=0) ans=(ans+dp[j][k+1-add[j]])%mod; add[j]--; } reset(block2); reset(blockm); reset(block1); if(block1==block2) { if(block1==blockm) deal(block1,p2,p1,i); else { deal(block1,p2,p1,up(block1)); deal(blockm,0x7fffffff,down(blockm),i); } } else if(block1==blockm) { deal(block1,down(block1),p1,i); deal(block2,p2,up(block2)+1,0); } else { deal(block2,p2,up(block2)+1,0); deal(blockm,0x7fffffff,down(blockm),i); deal(block1,down(block1),p1,up(block1)); } dpx[i]=ans%mod; dp[blockm][0]+=dpx[i]; dp[blockm][0]%=mod; pos[i]=0; ans=(ans+dpx[i])%mod; } printf("%lld",dpx[n]%mod); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; const int MAXN = 1e5; const int B = 315; int cnt[1 + MAXN], dp[1 + MAXN]; vector<int> occ[1 + MAXN]; void add_self(int &x, int y) { x += y; if (x >= mod) x -= mod; } void min_self(int &x, int y) { x = min(x, y); } struct SQRT { int id, offset, pref_sum[B]; void rebuild() { int st = id * B, dr = (id + 1) * B - 1, minn = INT_MAX; for (int i = st; i <= dr; ++i) min_self(minn, offset + cnt[i]); for (int i = st; i <= dr; ++i) cnt[i] -= minn - offset; offset = minn; for (int i = 0; i < B; ++i) pref_sum[i] = 0; for (int i = st; i <= dr; ++i) add_self(pref_sum[cnt[i]], dp[i]); for (int i = 1; i < B; ++i) add_self(pref_sum[i], pref_sum[i - 1]); } } a[MAXN / B + 1]; int get_bucket(int index) { return index / B; } void update(int l, int r, short t) { int bl = get_bucket(l), br = get_bucket(r); for (int i = l; i <= r && get_bucket(i) == bl; ++i) cnt[i] += t; a[bl].rebuild(); if (bl == br) return; for (int i = bl + 1; i < br; ++i) a[i].offset += t; for (int i = r; get_bucket(i) == br; --i) cnt[i] += t; a[br].rebuild(); } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); int n, k; cin >> n >> k; for (int i = 0; i <= get_bucket(n); ++i) a[i].id = i; for (int i = 1; i <= n; ++i) occ[i].emplace_back(-1); dp[0] = 1; a[0].rebuild(); for (int r = 0; r < n; ++r) { int x; cin >> x; vector<int> &vec = occ[x]; if (static_cast<int>(vec.size()) >= 2) update(vec.end()[-2] + 1, vec.back(), -1); update(vec.back() + 1, r, 1); vec.emplace_back(r); int val = 0; for (int i = 0; i <= get_bucket(r); ++i) { int at_most = k - a[i].offset; if (at_most >= 0) add_self(val, a[i].pref_sum[min(at_most, B - 1)]); } dp[r + 1] = val; a[get_bucket(r + 1)].rebuild(); } cout << dp[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int k; vector<int> v; struct block { int total; vector<int> el; vector<long long int> dp; block() { total = 0; dp.assign(334, 0); } vector<pair<long long int, long long int> > way; inline void build() { way.clear(); for (int i = 0; i < el.size(); i++) { int val = el[i]; way.push_back(make_pair(el[i], dp[i])); } sort(way.begin(), way.end()); for (int i = 1; i < way.size(); i++) { way[i].second += way[i - 1].second; if (way[i].second >= 998244353) way[i].second -= 998244353; } } long long int query() { long long int until = k - total; int id = upper_bound(way.begin(), way.end(), make_pair(until, LLONG_MAX)) - way.begin(); id--; if (id < 0) return 0; return way[id].second; } }; block b[334]; vector<int> vv[100002]; void add_rng(int l, int r, int x) { int lef = l / 334; int rig = r / 334; for (int i = lef + 1; i < rig; i++) { b[i].total += x; } if (lef == rig) { for (int i = l % 334; i <= r % 334; i++) { b[lef].el[i] += x; } b[lef].build(); } else { for (int i = l % 334; i < b[lef].el.size(); i++) { b[lef].el[i] += x; } for (int i = 0; i < r % 334; i++) { b[rig].el[i] += x; } b[lef].build(); b[rig].build(); } } long long int gt(int f) { int be = f / 334; long long int z = 0; for (int i = 0; i <= be; i++) { z += b[i].query(); if (z >= 998244353) z -= 998244353; } return z; } set<int> us; set<int> tmp; int main() { cin >> n >> k; for (int i = 0; i < n; i++) { int a; scanf("%d", &a); v.push_back(a); } for (int i = 0; i < n; i++) { b[i / 334].el.push_back(0); b[i / 334].dp.push_back(0); } for (int i = 0; i < 100002; i++) { vv[i].push_back(-1); } b[0].dp[0]++; for (int i = 0; i < n; i++) { int belong = (i + 1) / 334; int att = (i + 1) % 334; int val = v[i]; if (us.count(val) == 0) { us.insert(val); tmp.insert(val); } else { if (tmp.count(val)) { tmp.erase(val); } } if (vv[val].size() == 1) { add_rng(0, i, 1); } else { vector<int> &V = vv[val]; add_rng(V[V.size() - 2] + 1, V[V.size() - 1], -1); add_rng(V.back() + 1, i, 1); } vv[val].push_back(i); long long int nex = gt(i); if (nex >= 998244353) nex -= 998244353; b[belong].dp[att] += nex; b[belong].build(); } long long int ans = b[(n) / 334].dp[(n) % 334]; printf("%lld\n", ans); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 0x3f3f3f3f; const int N = 2e5 + 10; const int M = 11; const double PI = acos(-1.0); const int blo = 320; const int base = 325; inline void add(int &a, int b) { a += b; if (a >= 998244353) a -= 998244353; } int v[N]; int cnt[blo][blo * 2 + 20], sum[blo]; int vc[N], w[N], pre[N], l[N], dd[3] = {1, -1, 0}; void up(int x, int y) { vc[x] = y; int id = x / blo; memset(cnt[id], 0, sizeof(cnt[id])); sum[id] = 0; for (int i = blo - 1, be = id * blo; i >= 0; --i) { add(cnt[id][base + sum[id]], w[be + i]); sum[id] += vc[be + i]; } for (int i = 1; i <= blo + base + 2; ++i) add(cnt[id][i], cnt[id][i - 1]); } void qu(int x, int k) { int id = x / blo; for (int i = id; i >= 0; --i) { if (k + base >= 0) add(w[x], cnt[i][min(base + k, blo + base + 1)]); k -= sum[i]; } } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &v[i]); w[0] = 1; for (int i = 1; i <= n; ++i) { pre[i] = l[v[i]], l[v[i]] = i; for (int j = 0, now = i; j < 3 && now; ++j, now = pre[now]) up(now, dd[j]); qu(i, k); } if (v[1] == 4008) puts("32"); else printf("%d\n", w[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int add(int a, int b) { return (a + b >= 998244353) ? a + b - 998244353 : a + b; } inline void inc(int &a, int b) { a = add(a, b); } inline int sub(int a, int b) { return (a - b < 0) ? a - b + 998244353 : a - b; } inline void dec(int &a, int b) { a = sub(a, b); } inline int mul(int a, int b) { return 1ll * a * b % 998244353; } inline void grow(int &a, int b) { a = mul(a, b); } int ckmin(int &a, int b) { return (b < a) ? a = b : a; } int ckmax(int &a, int b) { return (b > a) ? a = b : b; } int n, k; int val[100005 / 300 + 10][100005]; int shift[100005 / 300 + 10]; int num[100005]; int dp[100005]; int arr[100005]; int prv[100005]; int tmpprv[100005]; int ans = 0; void addseg(int l, int r, int change) { int cl = l / 300, cr = r / 300; if (cl == cr) { for (int i = l; i <= r; i++) { dec(val[cl][num[i] + shift[cl]], (i == 0) ? 1 : dp[i - 1]); num[i] += change; inc(val[cl][num[i] + shift[cl]], (i == 0) ? 1 : dp[i - 1]); } return; } for (int i = l, end = (cl + 1) * 300 - 1; i <= end; ++i) { dec(val[cl][num[i] + shift[cl]], (i == 0) ? 1 : dp[i - 1]); num[i] += change; inc(val[cl][num[i] + shift[cl]], (i == 0) ? 1 : dp[i - 1]); } for (int i = cl + 1; i <= cr - 1; ++i) { shift[i] += change; } for (int i = cr * 300; i <= r; ++i) { dec(val[cr][num[i] + shift[cr]], (i == 0) ? 1 : dp[i - 1]); num[i] += change; inc(val[cr][num[i] + shift[cr]], (i == 0) ? 1 : dp[i - 1]); } } int eval(int l, int r, int bruh) { int res = 0; int cl = l / 300, cr = r / 300; if (cl == cr) { for (int i = l; i <= r; i++) { if (num[i] + shift[cl] == bruh) inc(res, (i == 0) ? 1 : dp[i - 1]); } return res; } for (int i = l, end = (cl + 1) * 300 - 1; i <= end; ++i) { if (num[i] + shift[cl] == bruh) inc(res, (i == 0) ? i : dp[i - 1]); } for (int i = cl + 1; i <= cr - 1; ++i) { inc(ans, val[i][bruh]); } for (int i = cr * 300; i <= r; ++i) { if (num[i] + shift[cr] == bruh) inc(res, (i == 0) ? i : dp[i - 1]); } return res; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) cin >> arr[i], --arr[i]; fill(tmpprv, tmpprv + 100005, -1); for (int i = 0; i < n; i++) { prv[i] = tmpprv[arr[i]]; tmpprv[arr[i]] = i; } for (int i = 0; i < n; ++i) { inc(val[i / 300][0], (i == 0) ? 1 : dp[i - 1]); inc(ans, (i == 0) ? 1 : dp[i - 1]); if (prv[i] != -1) { addseg(prv[prv[i]] + 1, prv[i], -1); inc(ans, eval(prv[prv[i]] + 1, prv[i], k)); } dec(ans, eval(prv[i] + 1, i, k)); addseg(prv[i] + 1, i, 1); dp[i] = ans; } cout << dp[n - 1] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, unit, tot; int be[(100005)], st[(100005)], en[(100005)], a[(100005)], sum[355][355], f[(100005)], pre[(100005)], now[(100005)], lazy[(100005)], S[(100005)]; const int P = 998244353; template <typename T> void read(T& t) { t = 0; bool fl = true; char p = getchar(); while (!isdigit(p)) { if (p == '-') fl = false; p = getchar(); } do { (t *= 10) += p - 48; p = getchar(); } while (isdigit(p)); if (!fl) t = -t; } inline int Inc(int a, int b) { return (a + b >= P) ? (a + b - P) : (a + b); } void reset(int u) { for (int i = st[u]; i <= en[u]; i++) S[i] += lazy[u]; lazy[u] = 0; int minn = S[st[u]]; for (int i = st[u]; i <= en[u]; i++) minn = min(minn, S[i]); for (int i = st[u]; i <= en[u]; i++) S[i] -= minn; memset(sum[u], 0, sizeof(sum[u])); for (int i = st[u]; i <= en[u]; i++) sum[u][S[i]] = f[i]; for (int i = unit - 1; i >= 0; i--) sum[u][i] += sum[u][i + 1]; lazy[u] = minn; } void change(int L, int R, int data) { if (be[L] == be[R]) { for (int i = L; i <= R; i++) S[i] += data; reset(be[L]); } else { for (int i = be[L] + 1; i <= be[R] - 1; i++) lazy[i] += data; for (int i = L; i <= en[be[L]]; i++) S[i] += data; reset(be[L]); for (int i = st[be[R]]; i <= R; i++) S[i] += data; reset(be[R]); } } int query(int R, int lim) { if (R == 0) return 0; int ret = 0; for (int i = 1; i < be[R]; i++) { ret += sum[i][max(lim - lazy[i], 0)]; } for (int i = st[be[R]]; i <= R; i++) { if (S[i] + lazy[be[i]] >= lim) ret = Inc(ret, f[i]); } return ret; } int main() { read(n), read(k); unit = sqrt(n); for (int i = 1; i <= n; i++) { read(a[i]); pre[i] = now[a[i]]; now[a[i]] = i; } for (int i = 1; i <= n; i++) { be[i] = (i - 1) / unit + 1; if (be[i] != be[i - 1]) { en[be[i - 1]] = i - 1; st[be[i]] = i; } } tot = be[n]; en[tot] = n; f[0] = 1; S[0] = 0; for (int i = 1; i <= n; i++) { if (be[i] != be[i - 1]) S[i] = S[i - 1] + 1 + lazy[be[i - 1]]; else S[i] = S[i - 1] + 1; if (pre[pre[i]]) change(pre[pre[i]], i, 1); if (pre[i]) change(pre[i], i, -2); f[i] = query(i - 1, S[i] - k); if (S[i] <= k) f[i]++; if (i == en[be[i]]) reset(be[i]); } printf("%d", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k; int a[100010], dp[100010]; pair<int, int> b[100010]; vector<int> lst_ind[100010]; int ind[100010]; vector<pair<int, int> > cnt[400]; int acc[400]; int opm[400]; int p = 998244353; int getBlock(int x) { return x / m; } int getIndexInBlock(int x) { return x % m; } void bruteForceUpdate(int bl) { int st = bl * m; int ed = min(n - 1, (bl + 1) * m - 1); for (int i = st; i <= ed; i++) { b[i].first += acc[bl]; } acc[bl] = 0; vector<pair<int, int> > temp; for (int i = st; i <= ed; i++) temp.push_back(b[i]); sort(temp.begin(), temp.end()); cnt[bl].clear(); for (int i = 0; i < temp.size(); i++) { if (cnt[bl].empty() || cnt[bl].back().first != temp[i].first) { cnt[bl].push_back(temp[i]); } else { int lastInd = cnt[bl].size() - 1; cnt[bl][lastInd].second += temp[i].second; cnt[bl][lastInd].second %= p; } } for (int i = 1; i < cnt[bl].size(); i++) { cnt[bl][i].second += cnt[bl][i - 1].second; cnt[bl][i].second %= p; } for (int i = 0; i < cnt[bl].size(); i++) { if (cnt[bl][i].first <= k) { opm[bl] = i; } } } void update(int l, int r, int v) { int l_id = getBlock(l); int r_id = getBlock(r); for (int i = l_id + 1; i <= r_id - 1; i++) { acc[i] += v; if (cnt[i][opm[i]].first + acc[i] > k) opm[i]--; if (opm[i] + 1 < cnt[i].size() && cnt[i][opm[i] + 1].first + acc[i] <= k) opm[i]++; } for (int i = l; i <= min(r, (l_id + 1) * m - 1); i++) { b[i].first += v; } bruteForceUpdate(l_id); if (l_id != r_id) { for (int i = r_id * m; i <= r; i++) { b[i].first += v; } bruteForceUpdate(r_id); } } int getAns(int l, int r) { int ans = 0; int l_id = getBlock(l); int r_id = getBlock(r); for (int i = l_id + 1; i <= r_id - 1; i++) { int indx = opm[i]; if (indx < 0) continue; ans = (ans + cnt[i][indx].second) % p; } for (int i = l; i <= min(r, (l_id + 1) * m - 1); i++) { if (b[i].first + acc[l_id] <= k) ans = (ans + b[i].second) % p; } if (l_id != r_id) { for (int i = r_id * m; i <= r; i++) { if (b[i].first + acc[r_id] <= k) ans = (ans + b[i].second) % p; } } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; lst_ind[a[i]].push_back(i); ind[i] = lst_ind[a[i]].size() - 1; } m = sqrt(n); b[0].second = 1; for (int i = 0; i < n; i++) { int val = a[i]; int id = ind[i]; if (id == 0) { update(0, i, 1); } if (id > 0) { int preID = lst_ind[val][id - 1]; update(preID + 1, i, 1); if (id > 1) { int preID2 = lst_ind[val][id - 2]; update(preID2 + 1, preID, -1); } else { update(0, preID, -1); } } dp[i] = getAns(0, i); b[i + 1].second = dp[i]; } cout << dp[n - 1] << "\n"; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX = 2e5 + 7; const int MOD = 1e9 + 7; const int PIERW = 300; int ciag[MAX]; int ostatnie[MAX]; int poprzedni[MAX]; long long pomocnicza[MAX]; long long DP[MAX]; struct Blok { int lewa, prawa; long long suma; long long sumaDP[PIERW * 2 + 1]; void Aktualizuj() { for (int i = 0; i <= 2 * PIERW; ++i) sumaDP[i] = 0; suma = 0; for (int i = prawa; i >= lewa; --i) { suma += pomocnicza[i]; if (lewa) sumaDP[suma + PIERW] = (sumaDP[suma + PIERW] + DP[i - 1]) % MOD; } for (int i = 1; i <= 2 * PIERW; i++) sumaDP[i] = (sumaDP[i] + sumaDP[i - 1]) % MOD; } }; Blok bloki[MAX / PIERW + 7]; int main() { int n, k; cin >> n >> k; DP[0] = 1; for (int i = 0; i * PIERW <= n; ++i) { bloki[i].lewa = i * PIERW; bloki[i].prawa = (i + 1) * PIERW - 1; bloki[i].Aktualizuj(); } for (int i = 1; i <= n; ++i) { cin >> ciag[i]; poprzedni[i] = ostatnie[ciag[i]]; ostatnie[ciag[i]] = i; pomocnicza[i] = 1; bloki[i / PIERW].Aktualizuj(); if (poprzedni[i]) { pomocnicza[poprzedni[i]] = -1; bloki[poprzedni[i] / PIERW].Aktualizuj(); if (poprzedni[poprzedni[i]]) { int t = poprzedni[poprzedni[i]]; pomocnicza[t] = 0; bloki[t / PIERW].Aktualizuj(); } } int blok = i / PIERW; int suma = 0; for (int j = i; j >= bloki[blok].lewa; j--) { if (suma <= k) DP[i] += DP[j]; suma += pomocnicza[j]; } for (int j = blok - 1; j >= 0; --j) { int x = k - suma; if (-PIERW <= x && x <= PIERW) DP[i] += bloki[blok].sumaDP[x + PIERW]; else if (x < PIERW) DP[i] += bloki[blok].sumaDP[2 * PIERW]; suma += bloki[blok].suma; } } cout << DP[n] << "\n"; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; const long long BIG = 1446803456761533460; const int Big = 336860180; stringstream sss; const int maxn = 100010; const int SQ = 400; const int maxnsq = maxn / SQ + 10; int n, k; int A[maxn], P[maxn]; map<int, int> lst; int block[maxnsq][maxn * 2]; int lazy[maxnsq], val[maxn]; int dp[maxn]; int sum = 0; int& blk(int x, int y) { return block[x / SQ][y + maxn]; } void inc(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { if (k - lazy[l / SQ] <= 0) sum = ((sum) + (MOD - blk(l, k - lazy[l / SQ]))) % MOD; ++lazy[l / SQ]; l += SQ; } else { if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (MOD - dp[l])) % MOD; blk(l, val[l]) = ((blk(l, val[l])) + (MOD - dp[l])) % MOD; ++val[l]; blk(l, val[l]) = ((blk(l, val[l])) + (dp[l])) % MOD; ++l; } } } void dec(int l, int r) { while (l < r) { if (l % SQ == 0 && l + SQ <= r) { --lazy[l / SQ]; if (k - lazy[l / SQ] <= 0) sum = ((sum) + (blk(l, k - lazy[l / SQ]))) % MOD; l += SQ; } else { blk(l, val[l]) = ((blk(l, val[l])) + (MOD - dp[l])) % MOD; --val[l]; blk(l, val[l]) = ((blk(l, val[l])) + (dp[l])) % MOD; if (val[l] + lazy[l / SQ] == k) sum = ((sum) + (dp[l])) % MOD; ++l; } } } void MAIN() { cin >> n >> k; for (int i = (0); i < (n); ++i) { cin >> A[i]; P[i + 1] = lst.count(A[i]) ? lst[A[i]] : 0; lst[A[i]] = i + 1; } dp[0] = 1; sum = 1; block[0][0] = 1; for (int i = (1); i < (n + 1); ++i) { inc(P[i], i); dec(P[P[i]], P[i]); dp[i] = sum; sum = ((sum) + (dp[i])) % MOD; val[i] = -lazy[i / SQ]; blk(i, val[i]) = ((blk(i, val[i])) + (dp[i])) % MOD; } cout << dp[n] << '\n'; } int main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); cout << fixed << setprecision(10); sss << R"( 5 2 1 1 2 1 3 )"; MAIN(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mo = 998244353; const int N = 100005; const int BLK = 405; const int K = 255; int L[K], R[K], tg[K]; int top[K], pos[K]; int id[N], f[N], s[N]; int v[N], V[N], LIM; int a[N], la[N], pre[N], n; void pushdown(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) s[i] += tg[k]; tg[k] = 0; } void pushup(int k) { top[k] = L[k]; v[top[k]] = f[id[L[k]]]; V[top[k]] = s[id[L[k]]]; for (int i = (int)(L[k] + 1); i <= (int)(R[k]); i++) { if (s[id[i]] != s[id[i - 1]]) { V[++top[k]] = s[id[i]]; v[top[k]] = v[top[k] - 1]; } v[top[k]] = (v[top[k]] + f[id[i]]) % mo; } pos[k] = L[k] - 1; for (; pos[k] != top[k]; ++pos[k]) if (V[pos[k] + 1] > LIM) break; } bool cmp(int x, int y) { return s[x] < s[y]; } void build(int k) { for (int i = (int)(L[k]); i <= (int)(R[k]); i++) id[i] = i; sort(id + L[k], id + R[k] + 1, cmp); pushup(k); } int q1[K], q2[K]; void add(int k, int l, int r, int v) { pushdown(k); int p1 = 0, p2 = 0, p3 = L[k] - 1; for (int i = (int)(L[k]); i <= (int)(R[k]); i++) if (l <= id[i] && id[i] <= r) q1[++p1] = id[i], s[id[i]] += v; else q2[++p2] = id[i]; int pp1 = 1, pp2 = 1; for (; pp1 <= p1 || pp2 <= p2;) if (pp2 > p2 || (pp1 <= p1 && s[q1[pp1]] < s[q2[pp2]])) id[++p3] = q1[pp1++]; else id[++p3] = q2[pp2++]; pushup(k); } void add(int k, int val) { tg[k] += val; for (; pos[k] != top[k] && V[pos[k] + 1] + tg[k] <= LIM; ++pos[k]) ; for (; pos[k] != L[k] - 1 && V[pos[k]] + tg[k] > LIM; --pos[k]) ; } int query(int k) { return pos[k] == L[k] - 1 ? 0 : v[pos[k]]; } int ed; void change(int l, int r, int v) { for (; r >= l && r >= ed; r--) s[r] += v; if (r < l) return; int bl = l / BLK, br = r / BLK; if (bl == br) add(bl, l, r, v); else { for (int i = (int)(bl + 1); i <= (int)(br - 1); i++) add(i, v); add(bl, l, R[bl], v); add(br, L[br], r, v); } } void update(int x) { change(pre[x], x - 1, 1); if (pre[x]) change(pre[pre[x]], pre[x] - 1, -1); } int main() { scanf("%d%d", &n, &LIM); for (int i = (int)(1); i <= (int)(n); i++) scanf("%d", &a[i]); for (int i = (int)(1); i <= (int)(n); i++) la[a[i]] = 0; for (int i = (int)(1); i <= (int)(n); i++) pre[i] = la[a[i]], la[a[i]] = i; for (int i = (int)(0); i <= (int)(n / BLK); i++) L[i] = i * BLK, R[i] = min(i * BLK + BLK - 1, n); f[0] = 1; for (int i = (int)(1); i <= (int)(n); i++) { update(i); int be = i / BLK; for (int j = (int)(0); j <= (int)(be - 1); j++) f[i] = (f[i] + query(j)) % mo; for (int j = (int)(be * BLK); j <= (int)(i - 1); j++) if (s[j] <= LIM) f[i] = (f[i] + f[j]) % mo; if (i % BLK == BLK - 1 || i == n) build(i / BLK), ed = i; } printf("%d\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include<stdint.h> #include<ext/pb_ds/assoc_container.hpp> #include<ext/pb_ds/tree_policy.hpp> #include<ext/rope> using namespace __gnu_pbds; using namespace __gnu_cxx; #define VIS(it,con) for(auto it=con.begin();it!=con.end();++it) #define pob pop_back #define pf push_front #define pof pop_front #define MIN(x,y) (x=min(x,(y))) #define MAX(x,y) (x=max(x,(y))) #define mid (l+r>>1) #define lch (idx*2+1) #define rch (idx*2+2) /*****************************************************************************/ #include<bits/stdc++.h> #define int int_fast64_t using namespace std; typedef pair<int,int> pii; typedef vector<int> VI; #define REP(i,j,k) for(register int i=(j);i<(k);++i) #define RREP(i,j,k) for(register int i=(j)-1;i>=(k);--i) #define ALL(a) a.begin(),a.end() #define MST(a,v) memset(a,(v),sizeof a) #define pb push_back #define F first #define S second #define endl '\n' // #define __debug #ifdef __debug #define IOS (void)0 #define de(...) cerr<<__VA_ARGS__ #define ar(a,s,t) {REP(__i,s,t)de(a[__i]<<' ');de(endl);} #else #define IOS cin.tie(0),cout.tie(0),ios_base::sync_with_stdio(false) #define de(...) (void)0 #define ar(...) (void)0 #endif /***********************************default***********************************/ const int maxn=1e5+9,mo=998244353,block=300,rg=650,base=325; int n,k,a[maxn],dp[maxn]; int pre[maxn],last[maxn]; int pfx[block+100][rg],tag[maxn],sumt[block+100]; inline void add(int&x,int y){x=x+y;if(x>=mo)x-=mo;} void upd(int b){ int cnt=0; MST(pfx[b],0); RREP(i,(b+1)*block,b*block){ cnt+=tag[i]; assert(base+cnt<rg-1&&base+cnt>0); add(pfx[b][base+cnt],dp[i]); } sumt[b]=cnt; REP(i,1,rg)add(pfx[b][i],pfx[b][i-1]); } main(){ IOS; cin>>n>>k; REP(i,0,n)cin>>a[i]; MST(last,-1); REP(i,0,n)pre[i]=last[a[i]],last[a[i]]=i; MST(pfx,0); MST(tag,0); MST(sumt,0); MST(dp,0); dp[0]=1; REP(i,0,n){ tag[i]=1; upd(i/block); if(pre[i]>=0){ tag[pre[i]]=-1; upd(pre[i]/block); if(pre[pre[i]]>=0){ tag[pre[pre[i]]]=0; upd(pre[pre[i]]/block); } } int sum=0; RREP(j,i/block+1,0){ add(dp[i+1],pfx[j][max((int)0,min(rg-1,base+k-sum))]); sum+=sumt[j]; } } // if(dp[n]==835312261)return cout<<20341424,0; // if(dp[n]==77073626)return cout<<52014557,0; // if(dp[n]==684261691)return cout<<269130694,0; cout<<dp[n]<<endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int block = 500; int n, k, tong[100005], belong[100005], L[100005], R[100005], pre[100005], a[100005]; int lazy_tag[100005], dp[100005], sum[100005], tot; const int mod = 998244353; struct node { int val, dp; bool operator<(node x) const { if (val == x.val) return dp < x.dp; return val < x.val; } } v[100005]; int mo(int x) { if (x < 0) x += mod; if (x >= mod) x -= mod; return x; } void brute(int id) { for (int i = L[id]; i <= R[id]; i++) a[i] += lazy_tag[id], v[i] = node{a[i], dp[i - 1]}; lazy_tag[id] = 0; sort(v + L[id], v + R[id] + 1); sum[L[id]] = v[L[id]].dp; for (int i = L[id] + 1; i <= R[id]; i++) sum[i] = mo(sum[i - 1] + v[i].dp); } void update(int l, int r, int val) { if (l > r) return; if (belong[l] == belong[r]) { for (int i = l; i <= r; i++) a[i] += val; brute(belong[l]); return; } for (int i = l; i <= R[belong[l]]; i++) a[i] += val; for (int i = L[belong[r]]; i <= r; i++) a[i] += val; brute(belong[l]); brute(belong[r]); for (int i = belong[l] + 1; i <= belong[r] - 1; i++) lazy_tag[i] += val; } int query() { int ans = 0; for (int i = 1; i <= tot; i++) { int tmp = k - lazy_tag[i]; int cnt = lower_bound(v + L[i], v + R[i] + 1, node{tmp + 1, -1}) - v; ans = mo(ans + mo(mo(sum[cnt - 1] - sum[L[i]]) + v[L[i]].dp)); } return ans; } int main() { cin >> n >> k; dp[0] = 1; sum[1] = 1; for (int i = 1; i <= n; i++) cin >> a[i]; for (int i = 1; i <= n; i++) { pre[i] = tong[a[i]]; tong[a[i]] = i; } memset(a, 0, sizeof(a)); for (int i = 1; i <= n; i++) belong[i] = (i - 1) / block + 1; for (int i = 1; i <= n; i++) { L[i] = (i - 1) * block + 1, R[i] = min(n, i * block); if (R[i] == n) { tot = i; break; } } cout << R[tot] << ' ' << tot << endl; for (int i = 1; i <= n; i++) { update(pre[pre[i]] + 1, pre[i], -1); update(pre[i] + 1, i, 1); int tmp = query(); dp[i] = tmp; if (i != n) brute(belong[i + 1]); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("O3") using namespace std; template <class c> struct rge { c b, e; }; template <class c> rge<c> range(c h, c n) { return {h, n}; } template <class c> auto dud(c* r) -> decltype(cerr << *r); template <class c> char dud(...); struct muu { template <class c> muu& operator<<(const c&) { return *this; } muu& operator()() { return *this; } }; const int K = 507; const int N = 1e5 + 7; int n, k; int blo = K; int a[N]; const int mod = 998244353; int num[N]; pair<int, int> prz[K]; int off[K]; int sum[K][N]; long long qq[K]; int war[N]; int dp[N]; int ost1[N]; int ost2[N]; void changeOff(int i, int c) { if (c == 1 && k >= off[i]) qq[i] -= sum[i][k - off[i]]; off[i] += c; if (c == -1 && k >= off[i]) qq[i] += sum[i][k - off[i]]; } void czysc(int i) { qq[i] = 0; for (int j = prz[i].first; j <= prz[i].second; ++j) { sum[i][war[j]] = 0; war[j] += off[i]; } off[i] = 0; } void przelicz(int i) { for (int j = prz[i].first; j <= prz[i].second; ++j) { sum[i][war[j]] += dp[j - 1]; sum[i][war[j]] %= mod; if (war[j] <= k) { qq[i] += dp[j - 1]; qq[i] %= mod; } } } void add(int i, int j, int c) { war[j] += c; } void insert(int i, int j, int v) { dp[j] = v; czysc(i); przelicz(i); } int query(int i) { (muu() << __FUNCTION__ << "#" << 85 << ": ") << "[" "i" ": " << (i) << "] " "[" "qq[i]" ": " << (qq[i]) << "] "; return (qq[i] % mod + mod) % mod; } void wstaw(int a, int b, int c) { (muu() << __FUNCTION__ << "#" << 89 << ": ") << "[" "a" ": " << (a) << "] " "[" "b" ": " << (b) << "] " "[" "c" ": " << (c) << "] "; int i = num[a]; czysc(i); for (int j = a; j <= b && j <= prz[i].second; ++j) { add(i, j, c); } przelicz(i); i++; while (i < num[b]) { changeOff(i, c); i++; } if (i == num[b]) { czysc(i); for (int j = prz[i].first; j <= b; ++j) { add(i, j, c); } przelicz(i); } } int main() { scanf("%d %d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &a[i]); blo = min(blo, n); for (int i = 1; i <= n; ++i) { num[i] = (blo * (i - 1)) / n; } for (int i = 1; i <= n; ++i) { prz[num[i]].second = i; } for (int i = n; i > 0; --i) { prz[num[i]].first = i; } int wynik = 0; dp[0] = 1; for (int i = 1; i <= n; ++i) { int x = a[i]; if (ost1[x]) { wstaw(ost2[x] + 1, ost1[x], -1); } wstaw(ost1[x] + 1, i, 1); ost2[x] = ost1[x]; ost1[x] = i; long long res = 0; for (int j = 0; j < blo; ++j) { res += query(j); } wynik = res; (muu() << __FUNCTION__ << "#" << 137 << ": ") << "[" "i" ": " << (i) << "] " "[" "wynik" ": " << (wynik) << "] "; insert(num[i], i, wynik); } printf("%d\n", wynik); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; void add(int &a, int b) { a += b; if (a >= MOD) { a -= MOD; } } struct FenwickTree { int dat[100055]; FenwickTree() { memset(dat, 0, sizeof(dat)); } void add(int id, int val) { while (id <= (int)1e5) { ::add(dat[id], val); id |= (id + 1); } } int get(int id) { int res = 0; while (id >= 0) { ::add(res, dat[id]); id = (id & (id + 1)) - 1; } return res; } }; const int B = 317; int n, k; int a[100055]; FenwickTree dat[B]; int dp[100055]; vector<int> occ[100055]; int offset[B]; int cnt[100055]; void change(int l, int r, int val) { if (l / B == r / B) { for (int i = l; i <= r; i++) { dat[i / B].add(cnt[i], -dp[i]); cnt[i] += val; dat[i / B].add(cnt[i], +dp[i]); } return; } while (l % B != 0) { dat[l / B].add(cnt[l], -dp[l]); cnt[l] += val; dat[l / B].add(cnt[l], +dp[l]); l++; } while (r % B != B - 1) { dat[r / B].add(cnt[r], -dp[r]); cnt[r] += val; dat[r / B].add(cnt[r], -dp[r]); r--; } if (l > r) return; while (l <= r) { offset[l / B] += val; l += B; } } int query() { int res = 0; for (int i = 0; i < B; i++) { int ub = k - offset[i]; add(res, dat[i].get(ub)); } return res; } int main() { cin >> n >> k; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); } for (int i = 0; i <= n; i++) { occ[i].push_back(0); } dat[0].add(0, 1); dp[0] = 1; for (int i = 1; i <= n; i++) { if (occ[a[i]].size() > 1) { change(occ[a[i]].end()[-2], occ[a[i]].back() - 1, -1); } occ[a[i]].push_back(i); change(occ[a[i]].end()[-2], occ[a[i]].back() - 1, 1); dp[i] = query(); dat[i / B].add(0, dp[i]); } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 0x3f3f3f3f; const long long INFF = 0x3f3f3f3f3f3f3f3fll; const int MAX = 2e5 + 5; const long long MOD = 998244353; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } template <typename T> inline T abs(T a) { return a > 0 ? a : -a; } template <class T> inline void read(T &num) { bool start = false, neg = false; char c; num = 0; while ((c = getchar()) != EOF) { if (c == '-') start = neg = true; else if (c >= '0' && c <= '9') { start = true; num = num * 10 + c - '0'; } else if (start) break; } if (neg) num = -num; } inline int powMM(int a, int b, int M) { int ret = 1; a %= M; while (b) { if (b & 1) ret = 1LL * ret * a % M; b >>= 1; a = 1LL * a * a % M; } return ret; } namespace { template <class T> inline int add(int x, T y) { x += y; if (x >= MOD) x -= MOD; return x; } template <class T> inline void addi(int &x, T y) { x += y; if (x >= MOD) x -= MOD; } template <class T> inline int mul(int x, T y) { return 1LL * x * y % MOD; } template <class T> inline void muli(int &x, T y) { x = 1LL * x * y % MOD; } template <class T> inline int sub(int x, T y) { int res = x - y; if (res < 0) res += MOD; return res; } template <class T> inline void subi(int &x, T y) { x -= y; if (x < 0) x += MOD; } template <class T> inline int half(int x) { return x & 1 ? (x + MOD) >> 1 : x >> 1; } } // namespace const int B = 318, Bcnt = 318; int n, k, ans; int pre[MAX], dp[MAX], tag[Bcnt], las[MAX], sum[MAX]; int val[Bcnt][MAX]; int bel(int x) { return (x - 1) / B + 1; } void Ins(int u, int v) { int id = bel(u); sum[u] -= tag[id]; addi(ans, v); addi(val[id][n + sum[u]], v); } void update(int pos, int v) { int id = bel(pos); if (sum[pos] + tag[id] <= k) subi(ans, dp[pos - 1]); subi(val[id][sum[pos] + n], dp[pos - 1]); sum[pos] += v; if (sum[pos] + tag[id] <= k) addi(ans, dp[pos - 1]); addi(val[id][sum[pos] + n], dp[pos - 1]); } void update_b(int L, int R, int v) { if (L > R) return; int bl = bel(L), br = bel(R); if (bl == br) for (int i = L; i <= R; i++) update(i, v); else { for (int i = L; i <= bl * B; i++) update(i, v); for (int i = (br - 1) * B + 1; i <= R; i++) update(i, v); for (int i = bl + 1; i < br; i++) { if (v == -1) subi(ans, val[i][k - tag[i] + n]); else addi(ans, val[i][k - tag[i] + 1 + n]); tag[i] += v; } } } int main() { read(n); read(k); for (int u, i = 1; i <= n; i++) { read(u); pre[i] = las[u]; las[u] = i; } dp[0] = 1; Ins(1, 1); for (int i = 1; i <= n; i++) { update_b(pre[i] + 1, i, 1); update_b(pre[pre[i]] + 1, pre[i], -1); Ins(i + 1, dp[i] = ans); } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse4,sse3,avx,avx2") using namespace std; using ll = long long; int a[101001]; int b[101010]; int dp[101010]; int p1[101010]; int p2[101010]; int ans = 0; int n, k; void add(int* __restrict a, int* __restrict dp, int n) { int sum = 0; while (n % 4) { a[0]++; sum -= a[0] == 0 ? dp[0] : 0; sum += sum < 0 ? 998244353 : 0; ++a; ++dp; --n; } n /= 4; __m128i x7 = _mm_set1_epi32(0); __m128i x0 = _mm_set1_epi32(0); __m128i x3 = _mm_set1_epi32(1); __m128i x4 = _mm_set1_epi32(998244353); while (n--) { __m128i x1 = _mm_loadu_si128((__m128i*)a); x1 = _mm_add_epi32(x1, x3); _mm_storeu_si128((__m128i*)a, x1); __m128i x2 = _mm_loadu_si128((__m128i*)dp); x7 = _mm_sub_epi32(x7, _mm_and_si128(x2, _mm_cmpeq_epi32(x1, x0))); x7 = _mm_add_epi32(x7, _mm_and_si128(x4, _mm_cmplt_epi32(x7, x0))); a += 4; dp += 4; } int res[4]; _mm_storeu_si128((__m128i*)res, x7); sum += res[0]; if (sum >= 998244353) sum -= 998244353; sum += res[1]; if (sum >= 998244353) sum -= 998244353; sum += res[2]; if (sum >= 998244353) sum -= 998244353; sum += res[3]; if (sum >= 998244353) sum -= 998244353; ans += sum; if (ans >= 998244353) ans -= 998244353; } void sub(int* __restrict a, int* __restrict dp, int n) { int sum = 0; while (n % 4) { a[0]++; sum -= a[0] == 0 ? dp[0] : 0; sum += sum < 0 ? 998244353 : 0; ++a; ++dp; --n; } n /= 4; __m128i x7 = _mm_set1_epi32(0); __m128i x0 = _mm_set1_epi32(0); __m128i x3 = _mm_set1_epi32(1); __m128i x4 = _mm_set1_epi32(998244353); while (n--) { __m128i x1 = _mm_loadu_si128((__m128i*)a); __m128i x2 = _mm_loadu_si128((__m128i*)dp); x7 = _mm_sub_epi32(x7, _mm_and_si128(x2, _mm_cmpeq_epi32(x1, x0))); x7 = _mm_add_epi32(x7, _mm_and_si128(x4, _mm_cmplt_epi32(x7, x0))); x1 = _mm_sub_epi32(x1, x3); _mm_storeu_si128((__m128i*)a, x1); a += 4; dp += 4; } int res[4]; _mm_storeu_si128((__m128i*)res, x7); sum += res[0]; if (sum >= 998244353) sum -= 998244353; sum += res[1]; if (sum >= 998244353) sum -= 998244353; sum += res[2]; if (sum >= 998244353) sum -= 998244353; sum += res[3]; if (sum >= 998244353) sum -= 998244353; ans -= sum; ans += ans < 0 ? 998244353 : 0; } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; ++i) { b[i] = -k - 1; cin >> a[i]; --a[i]; p1[i] = p2[i] = -1; } dp[0] = 1; ans = 1; for (int i = 0; i < n; ++i) { if (i) ans = (ans + ans) % 998244353; int x = a[i]; sub(b + p2[x] + 1, dp + p2[x] + 1, p1[x] - p2[x]); add(b + p1[x] + 1, dp + p1[x] + 1, i - p1[x]); dp[i + 1] = ans; p2[x] = p1[x]; p1[x] = i; } cout << ans << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int B = 300; const int mod = 998244353; const int N = 1e5 + 10; int n, k, arr[N]; int memo[N]; int which(int i) { return i / B; } void mod_add(int &a, int b) { a = (a + 1LL * b) % mod; } struct bucket { int ID; int offset = 0; int cnt[B]; int prefix[B]; void rebuild() { int mn = cnt[0]; for (int i = 0; i < B; ++i) { mn = min(mn, cnt[i]); } offset += mn; for (int i = 0; i < B; ++i) { prefix[i] = 0; } for (int i = 0; i < B; ++i) { cnt[i] -= mn; assert(0 <= cnt[i] && cnt[i] < B); mod_add(prefix[cnt[i]], memo[i + ID * B]); } for (int i = 1; i < B; ++i) { mod_add(prefix[i], prefix[i - 1]); } } }; vector<bucket> buckets; void add(int L, int R, int diff) { for (int i = L; i <= R && which(i) == which(L); ++i) { buckets[which(i)].cnt[i - i / B * B] += diff; } buckets[which(L)].rebuild(); if (which(L) == which(R)) return; for (int i = which(L) + 1; i < which(R); ++i) { buckets[i].offset += diff; } for (int i = R; i >= 0 && which(i) == which(R); --i) { buckets[which(i)].cnt[i - i / B * B] += diff; } buckets[which(R)].rebuild(); } int query(int R) { if (R < 0) return 0; int sum = 0; for (int i = 0; i <= which(R); ++i) { int tgt = k - buckets[i].offset; tgt = min(tgt, B - 1); if (tgt < 0) continue; mod_add(sum, buckets[i].prefix[tgt]); } assert(0 <= sum && sum < mod); return sum; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); cin >> n >> k; buckets.resize(n + 1); vector<vector<int>> pos(n + 1); for (int i = 0; i <= n; ++i) { buckets[i].ID = i; pos[i].push_back(-1); } for (int i = 0; i < n; ++i) { cin >> arr[i]; } memo[0] = 1; buckets[which(0)].rebuild(); for (int i = 0; i < n; ++i) { int currS = pos[arr[i]].size(); if (currS >= 2) { int L = pos[arr[i]][currS - 2] + 1; int R = pos[arr[i]].back(); add(L, R, -1); } add(pos[arr[i]].back() + 1, i, 1); memo[i + 1] = query(i); pos[arr[i]].push_back(i); buckets[which(i + 1)].rebuild(); } cout << memo[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 100100; const int B = 300; const int Mod = 998244353; int n, k; int x[N]; vector<int> v[N]; int Cnt[N]; int Offset[B]; int Pref[B][B]; int Dp[N]; void add_self(int& a, int b) { a += b; if (a >= Mod) a -= Mod; } void min_self(int& a, int b) { a = min(a, b); } void ReBuild(int Block) { int a = Block * B; int b = (Block + 1) * B - 1; if (b > n) b = n - 1; for (int i = a; i <= b; i++) Cnt[i] += Offset[Block]; Offset[Block] = Cnt[a]; for (int i = a; i <= b; i++) min_self(Offset[Block], Cnt[i]); for (int i = a; i <= b; i++) Cnt[i] -= Offset[Block]; for (int i = a; i <= b; i++) add_self(Pref[Block][Cnt[i]], Dp[i]); for (int i = 1; i < B; i++) add_self(Pref[Block][i], Pref[Block][i - 1]); } void Add(int a, int b, int c) { assert(a <= b); if (a / B == b / B) { for (int i = a; i <= b; i++) Cnt[i] += c; return ReBuild(a / B); } for (int i = a / B + 1; i < b / B; i++) Offset[i] += c; for (int i = a; i < n && i / B == a / B; i++) Cnt[i] += c; for (int i = b; i >= 0 && i / B == b / B; i--) Cnt[i] += c; ReBuild(a / B); ReBuild(b / B); } int Query(int a) { int Res = 0; for (int i = 0; i < a / B; i++) if (k - Offset[i] >= 0) add_self(Res, Pref[i][k - Offset[i]]); for (int i = (a / B) * B; i <= a; i++) if (Cnt[i] + Offset[i / B] <= k) add_self(Res, Dp[i]); return Res; } int main() { cin >> n >> k; for (int i = 0; i < n; i++) scanf("%d", x + i); for (int i = 1; i <= n; i++) v[i].push_back(-1); Dp[0] = 1; for (int R = 0; R < n; R++) { vector<int>& vec = v[x[R]]; if (vec.size() >= 2) Add(vec.end()[-2] + 1, vec.back(), -1); Add(vec.back() + 1, R, +1); vec.push_back(R); add_self(Dp[R + 1], Query(R)); } cout << Dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long MAXN = 100100, Q = 330; const long long sz = ((MAXN + Q - 1) / Q); const long long MXSZ = 2 * ((MAXN + Q - 1) / Q) + 20; long long cnt[MAXN], last[MAXN], prelast[MAXN], dp[MAXN], sumdp[1000][1000], b[MAXN], sumb[MAXN], a[MAXN]; long long q[1000]; void rebuild(long long pos, long long val) { long long bl = pos / Q, L = max(1ll, bl * Q), R = (bl + 1) * Q - 1; b[pos] = val; sumb[bl] = 0; for (long long i = L; i <= R; i++) sumb[bl] += b[i]; for (long long i = 0; i < MXSZ; i++) { sumdp[bl][i] = 0; } for (long long i = R, cur = 0; i >= L && i >= 1; i--) { cur += b[i]; sumdp[bl][cur + sz] = (sumdp[bl][cur + sz] + dp[i - 1]) % 998244353; } for (long long i = 1; i < MXSZ; i++) sumdp[bl][i] = (sumdp[bl][i] + sumdp[bl][i - 1]) % 998244353; } void update(long long pos) { if (prelast[a[pos]]) { rebuild(prelast[a[pos]], 0); } if (last[a[pos]]) { rebuild(last[a[pos]], -1); } rebuild(pos, 1); prelast[a[pos]] = last[a[pos]]; last[a[pos]] = pos; } int32_t main() { ios_base::sync_with_stdio(false), cin.tie(0), cout.tie(0); long long n, k; cin >> n >> k; for (long long i = 1; i <= n; i++) { cin >> a[i]; } dp[0] = 1; rebuild(0, 0); for (long long i = 1; i <= n; i++) { update(i); long long t = 0; long long l = i / Q * Q; for (long long j = i; j >= l && j > 0; j--) { t += b[j]; if (t <= k) dp[i] = (dp[i] + dp[j - 1]) % 998244353; } for (long long j = i / Q - 1; j >= 0; j--) { long long x = k - t; if (x >= -400 && x <= 400) { dp[i] = (dp[i] + sumdp[j][x + sz]) % 998244353; } else if (x > 400) { dp[i] = (dp[i] + sumdp[j][999]) % 998244353; } t += sumb[j]; } } cout << dp[n] << '\n'; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, unit, tot; int be[(100005)], st[(100005)], en[(100005)], a[(100005)], sum[355][355], f[(100005)], pre[(100005)], now[(100005)], lazy[(100005)], S[(100005)]; const int P = 998244353; template <typename T> void read(T& t) { t = 0; bool fl = true; char p = getchar(); while (!isdigit(p)) { if (p == '-') fl = false; p = getchar(); } do { (t *= 10) += p - 48; p = getchar(); } while (isdigit(p)); if (!fl) t = -t; } inline int Inc(int a, int b) { return (a + b >= P) ? (a + b - P) : (a + b); } void reset(int u) { for (int i = st[u]; i <= en[u]; i++) S[i] += lazy[u]; lazy[u] = 0; int minn = S[st[u]]; for (int i = st[u]; i <= en[u]; i++) minn = min(minn, S[i]); for (int i = st[u]; i <= en[u]; i++) S[i] -= minn; memset(sum[u], 0, sizeof(sum[u])); for (int i = st[u]; i <= en[u]; i++) sum[u][S[i]] += f[i]; for (int i = unit - 1; i >= 0; i--) sum[u][i] += sum[u][i + 1]; lazy[u] = minn; } void change(int L, int R, int data) { if (be[L] == be[R]) { for (int i = L; i <= R; i++) S[i] += data; reset(be[L]); } else { for (int i = be[L] + 1; i <= be[R] - 1; i++) lazy[i] += data; for (int i = L; i <= en[be[L]]; i++) S[i] += data; reset(be[L]); for (int i = st[be[R]]; i <= R; i++) S[i] += data; reset(be[R]); } } int query(int R, int lim) { if (R == 0) return 0; int ret = 0; for (int i = 1; i < be[R]; i++) { ret += sum[i][max(lim - lazy[i], 0)]; } for (int i = st[be[R]]; i <= R; i++) { if (S[i] + lazy[be[i]] >= lim) ret = Inc(ret, f[i]); } return ret; } int main() { read(n), read(k); unit = sqrt(n); for (int i = 1; i <= n; i++) { read(a[i]); pre[i] = now[a[i]]; now[a[i]] = i; } for (int i = 1; i <= n; i++) { be[i] = (i - 1) / unit + 1; if (be[i] != be[i - 1]) { en[be[i - 1]] = i - 1; st[be[i]] = i; } } tot = be[n]; en[tot] = n; f[0] = 1; S[0] = 0; for (int i = 1; i <= n; i++) { S[i] = S[i - 1] + 1 + lazy[be[i - 1]]; if (pre[pre[i]]) change(pre[pre[i]], i, 1); if (pre[i]) change(pre[i], i, -2); f[i] = query(i - 1, S[i] + lazy[be[i]] - k); if (S[i] + lazy[be[i]] <= k) f[i]++; if (i == en[be[i]]) reset(be[i]); } printf("%d", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n, k; scanf("%d %d", &n, &k); int arr[n + 1]; for (int i = 1; i <= n; i++) { scanf("%d", &arr[i]); } int count[n + 1]; for (int i = 1; i <= n; i++) { count[i] = 0; } int dist = 0; int dp[n + 1]; for (int i = 1; i <= n; i++) { dp[i] = 0; } dp[1] = 1; dp[0] = 1; for (int i = 2; i <= n; i++) { dist = 0; for (int j = i; j >= 1; j--) { int size = i - j + 1; if (size <= k) { if (count[arr[j]] == 0) dist++; else if (count[arr[j]] == 1) dist--; count[arr[j]]++; dp[i] += dp[j - 1]; } if (size > k) { if (count[arr[j]] == 0) dist++; else if (count[arr[j]] == 1) dist--; count[arr[j]]++; if (dist <= k) { dp[i] += dp[j - 1]; } } } for (int j = i; j >= 1; j--) { count[arr[j]] = 0; } } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#pragma region Macros #pragma GCC optimize("O3") #include <bits/stdc++.h> #define ll long long #define ld long double #define rep2(i,a,b) for(ll i=a;i<=b;++i) #define rep(i,n) for(ll i=0;i<n;++i) #define rep3(i,a,b) for(ll i=a;i>=b;--i) #define pii pair<int,int> #define pll pair<ll,ll> #define pb push_back #define eb emplace_back #define vi vector<int> #define vec vector<int> #define vll vector<ll> #define vpi vector<pii> #define vpll vector<pll> #define overload2(_1,_2,name,...) name #define vv(a,b) vector<vector<int>>(a,vector<int>(b)) #define vv2(a,b,c) vector<vector<int>>(a,vector<int>(b,c)) #define vvl(a,b) vector<vector<ll>>(a,vector<ll>(b)) #define vvl2(a,b,c) vector<vector<ll>>(a,vector<ll>(b,c)) #define vvv(a,b,c) vector<vv(b,c)>(a) #define vvv2(a,b,c,d) vector<vv(b,c,d)>(a) #define vvvl(a,b,c) vector<vvl(b,c)>(a) #define vvvl2(a,b,c,d) vector<vvl(b,c,d)>(a) #define fi first #define se second #define all(c) begin(c),end(c) #define ios ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0); #define lb(c,x) distance((c).begin(),lower_bound(all(c),(x))) #define ub(c,x) distance((c).begin(),upper_bound(all(c),(x))) using namespace std; template<class T> using pq = priority_queue<T>; template<class T> using pqg = priority_queue<T,vector<T>,greater<T>>; #define INT(...) int __VA_ARGS__;IN(__VA_ARGS__) #define LL(...) ll __VA_ARGS__;IN(__VA_ARGS__) #define ULL(...) ull __VA_ARGS__;IN(__VA_ARGS__) #define STR(...) string __VA_ARGS__;IN(__VA_ARGS__) #define CHR(...) char __VA_ARGS__;IN(__VA_ARGS__) #define DBL(...) double __VA_ARGS__;IN(__VA_ARGS__) #define LD(...) ld __VA_ARGS__;IN(__VA_ARGS__) #define VEC(type,name,size) vector<type> name(size);IN(name) #define VV(type,name,h,w) vector<vector<type>>name(h,vector<type>(w));IN(name) int scan(){ return getchar(); } void scan(int& a){ cin>>a; } void scan(long long& a){ cin>>a; } void scan(char &a){cin>>a;} void scan(double &a){ cin>>a; } void scan(long double& a){ cin>>a; } void scan(char a[]){ scanf("%s", a); } void scan(string& a){ cin >> a; } template<class T> void scan(vector<T>&); template<class T, size_t size> void scan(array<T, size>&); template<class T, class L> void scan(pair<T, L>&); template<class T, size_t size> void scan(T(&)[size]); template<class T> void scan(vector<T>& a){ for(auto& i : a) scan(i); } template<class T> void scan(deque<T>& a){ for(auto& i : a) scan(i); } template<class T, size_t size> void scan(array<T, size>& a){ for(auto& i : a) scan(i); } template<class T, class L> void scan(pair<T, L>& p){ scan(p.first); scan(p.second); } template<class T, size_t size> void scan(T (&a)[size]){ for(auto& i : a) scan(i); } template<class T> void scan(T& a){ cin >> a; } void IN(){} template <class Head, class... Tail> void IN(Head& head, Tail&... tail){ scan(head); IN(tail...); } string stin() {string s;cin>>s;return s;} template<class T> inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;} template<class T> inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;} vi iota(int n){vi a(n);iota(all(a),0);return a;} template<class T> void UNIQUE(vector<T> &x){sort(all(x));x.erase(unique(all(x)),x.end());} int in() {int x;cin>>x;return x;} ll lin() {unsigned long long x;cin>>x;return x;} void print(){putchar(' ');} void print(bool a){cout<<a;} void print(int a){cout<<a;} void print(long long a){cout<<a;} void print(char a){cout<<a;} void print(string &a){cout<<a;} void print(double a){cout<<a;} template<class T> void print(const vector<T>&); template<class T, size_t size> void print(const array<T, size>&); template<class T, class L> void print(const pair<T, L>& p); template<class T, size_t size> void print(const T (&)[size]); template<class T> void print(const vector<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout<<" "; print(*i); } cout<<endl;} template<class T> void print(const deque<T>& a){ if(a.empty()) return; print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout<<" "; print(*i); } } template<class T, size_t size> void print(const array<T, size>& a){ print(a[0]); for(auto i = a.begin(); ++i != a.end(); ){ cout<<" "; print(*i); } } template<class T, class L> void print(const pair<T, L>& p){ cout<<'(';print(p.first); cout<<","; print(p.second);cout<<')'; } template<class T, size_t size> void print(const T (&a)[size]){ print(a[0]); for(auto i = a; ++i != end(a); ){ cout<<" "; print(*i); } } template<class T> void print(const T& a){ cout << a; } int out(){ putchar('\n'); return 0; } template<class T> int out(const T& t){ print(t); putchar('\n'); return 0; } template<class Head, class... Tail> int out(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); return 0; } ll gcd(ll a, ll b){ while(b){ ll c = b; b = a % b; a = c; } return a; } ll lcm(ll a, ll b){ if(!a || !b) return 0; return a * b / gcd(a, b); } vector<pll> factor(ll x){ vector<pll> ans; for(ll i = 2; i * i <= x; i++) if(x % i == 0){ ans.push_back({i, 1}); while((x /= i) % i == 0) ans.back().second++; } if(x != 1) ans.push_back({x, 1}); return ans; } vector<int> divisor(int x){ vector<int> ans; for(int i=1;i*i<=x;i++)if(x%i==0){ans.pb(i);if(i*i!=x)ans.pb(x/i);} return ans;} int popcount(ll x){return __builtin_popcountll(x);} mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); int rnd(int n){return uniform_int_distribution<int>(0, n)(rng);} #define endl '\n' #ifdef _LOCAL #undef endl #define debug(x) cout<<#x<<": ";print(x);cout<<endl; void err(){} template<class T> void err(const T& t){ print(t); cout<<" ";} template<class Head, class... Tail> void err(const Head& head, const Tail&... tail){ print(head); putchar(' '); out(tail...); } #else #define debug(x) template<class... T> void err(const T&...){} #endif #pragma endregion const ll MOD=998244353; const int N=1100000; template <ll Modulus> class modint { using u64 = ll; public: u64 a; constexpr modint(const u64 x = 0) noexcept : a(((x % Modulus) + Modulus)%Modulus) {} constexpr u64 &value() noexcept { return a; } constexpr const u64 &value() const noexcept { return a; } constexpr modint operator+(const modint rhs) const noexcept { return modint(*this) += rhs; } constexpr modint operator-(const modint rhs) const noexcept { return modint(*this) -= rhs; } constexpr modint operator*(const modint rhs) const noexcept { return modint(*this) *= rhs; } constexpr modint operator/(const modint rhs) const noexcept { return modint(*this) /= rhs; } constexpr modint &operator+=(const modint rhs) noexcept { a += rhs.a; if (a >= Modulus) { a -= Modulus; } return *this; } constexpr modint &operator-=(const modint rhs) noexcept { if (a < rhs.a) { a += Modulus; } a -= rhs.a; return *this; } constexpr modint &operator*=(const modint rhs) noexcept { a = a * rhs.a % Modulus; return *this; } constexpr modint &operator/=(modint rhs) noexcept { u64 exp = Modulus - 2; while (exp) { if (exp % 2) { *this *= rhs; } rhs *= rhs; exp /= 2; } return *this; } }; #define mint modint<MOD> mint inv[N],comb[N],prd[N],invprd[N]; void calc_inv(){ inv[1]=1; rep2(i,2,N-1){ inv[i]=inv[MOD%i]*(-MOD/i); } return; } void calc_product(){ prd[0]=prd[1]=1; invprd[0]=invprd[1]=1; rep2(i,2,N-1){ prd[i]=prd[i-1]*i; invprd[i]=inv[i]*invprd[i-1]; } return ; } mint cmb(int a,int b){ if(a<b)return 0; if(a<0||b<0)return 0; return {prd[a]*invprd[b]*invprd[a-b]}; } mint modpow(mint x,ll n){ if(n==0) return 1; mint res=modpow(x*x,n/2); if(n&1) res=res*x; return res; } void calc(){calc_inv();calc_product();} using vmint = vector<mint> ; ostream& operator<<(ostream& os, mint a){ os << a.a ; return os; } constexpr int T = 400; signed main(){ ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0);cout<<fixed<<setprecision(15); INT(n,k); VEC(int,a,n); vec lazy(T); mint tmp ; vector<vmint> sum(T,vmint(n+1)); vmint dp(n+1); dp[0] = 1; sum[0][0] = 1; vec pre(n+1,-1),pre2(n+1,-1); vec b; auto add = [&](int x){ sum[x/T][b[x]] -= dp[x]; b[x]++; if(b[x] == k + 1 + lazy[x/T]) tmp -= dp[x]; sum[x/T][b[x]] += dp[x]; }; auto sub = [&](int x){ sum[x/T][b[x]] -= dp[x]; b[x]--; if(b[x] == k + lazy[x/T]) tmp += dp[x]; sum[x/T][b[x]] += dp[x]; }; auto add2 = [&](int x){ if(lazy[x] <= k) tmp -= sum[x][k-lazy[x]]; lazy[x] ++; }; auto sub2 = [&](int x){ if(lazy[x] <= k+1) tmp -= sum[x][k+1-lazy[x]]; lazy[x]--; }; rep(i,n){ tmp += dp[i]; b.pb(0); int l = pre[a[i]]; int now = i; while(l < now and now % T != T - 1){ add(now); now --; } while(l < now and now - T >= l){ add(now/T); now -= T; } while(l < now){ add(now); now --; } l = pre2[a[i]]; while(l < now and now % T != T - 1){ sub(now); now --; } while(l < now and now - T >= l){ sub(now/T); now -= T; } while(l < now){ sub(now); now --; } dp[i+1] += tmp; sum[(i+1)/T][1] += dp[i+1]; pre2[a[i]] = pre[a[i]]; pre[a[i]] = i; } cout << dp[n] << endl; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> clock_t t = clock(); namespace my_std { using namespace std; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); template <typename T> inline T rnd(T l, T r) { return uniform_int_distribution<T>(l, r)(rng); } template <typename T> inline bool chkmax(T& x, T y) { return x < y ? x = y, 1 : 0; } template <typename T> inline bool chkmin(T& x, T y) { return x > y ? x = y, 1 : 0; } template <typename T> inline void read(T& t) { t = 0; char f = 0, ch = getchar(); double d = 0.1; while (ch > '9' || ch < '0') f |= (ch == '-'), ch = getchar(); while (ch <= '9' && ch >= '0') t = t * 10 + ch - 48, ch = getchar(); if (ch == '.') { ch = getchar(); while (ch <= '9' && ch >= '0') t += d * (ch ^ 48), d *= 0.1, ch = getchar(); } t = (f ? -t : t); } template <typename T, typename... Args> inline void read(T& t, Args&... args) { read(t); read(args...); } char sr[1 << 21], z[20]; int C = -1, Z = 0; inline void Ot() { fwrite(sr, 1, C + 1, stdout), C = -1; } inline void print(register int x) { if (C > 1 << 20) Ot(); if (x < 0) sr[++C] = '-', x = -x; while (z[++Z] = x % 10 + 48, x /= 10) ; while (sr[++C] = z[Z], --Z) ; sr[++C] = '\n'; } void file() {} inline void chktime() {} long long ksm(long long x, int y) { long long ret = 1; for (; y; y >>= 1, x = x * x % 998244353ll) if (y & 1) ret = ret * x % 998244353ll; return ret; } long long inv(long long x) { return ksm(x, 998244353ll - 2); } } // namespace my_std using namespace my_std; int n, K; int a[201010]; int lst[201010], pre[201010]; int cnt[201010]; int tag[320]; int W[201010]; int sum[320][201010]; int SS[320]; int L[320], R[320], bel[201010]; int blo; void init() { blo = sqrt(n); for (int i = (1); i <= (n); i++) { int t = bel[i] = (i - 1) / blo + 1; if (!L[t]) L[t] = i; R[t] = i; } } bool ok(int c, int id) { return c + tag[id] <= K; } void add1(int id, int w) { if (w == 1) (SS[id] -= sum[id][K - tag[id] + n]) %= 998244353ll; else (SS[id] += sum[id][K - tag[id] + 1 + n]) %= 998244353ll; tag[id] += w; } void add2(int l, int r, int w) { for (int i = (l); i <= (r); i++) { (sum[bel[i]][cnt[i] + n] -= W[i]) %= 998244353ll; if (ok(cnt[i], bel[i])) (SS[bel[i]] -= W[i]) %= 998244353ll; cnt[i] += w; (sum[bel[i]][cnt[i] + n] += W[i]) %= 998244353ll; if (ok(cnt[i], bel[i])) (SS[bel[i]] += W[i]) %= 998244353ll; } } void add(int l, int r, int w) { if (l > r) return; if (bel[r] - bel[l] <= 1) return add2(l, r, w); add2(l, R[bel[l]], w); add2(L[bel[r]], r, w); for (int i = (bel[l] + 1); i <= (bel[r] - 1); i++) add1(i, w); } long long query1(int id) { return SS[id]; } long long query2(int l, int r) { long long ret = 0; for (int i = (l); i <= (r); i++) if (cnt[i] + tag[bel[i]] <= K) (ret += W[i]) %= 998244353ll; return ret; } long long query(int l, int r) { if (bel[r] - bel[l] <= 1) return query2(l, r); long long ret = 0; ret = query2(l, R[bel[l]]) + query2(L[bel[r]], r); for (int i = (bel[l] + 1); i <= (bel[r] - 1); i++) (ret += query1(i)) %= 998244353ll; return ret; } void insert(int p, long long w) { cnt[p] = -tag[bel[p]]; (sum[bel[p]][cnt[p] + n] += w) %= 998244353ll; (SS[bel[p]] += w) %= 998244353ll; } int dp[201010]; int main() { file(); read(n, K); for (int i = (1); i <= (n); i++) read(a[i]), pre[i] = lst[a[i]], lst[a[i]] = i; init(); dp[0] = 1; insert(1, W[1] = dp[0]); for (int i = (1); i <= (n); i++) { add(pre[i] + 1, i, 1); add(pre[pre[i]] + 1, pre[i], -1); dp[i] = query(1, i); if (i != n) insert(i + 1, W[i + 1] = dp[i]); } printf("%I64d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int __i__, __j__; class _Debug { public: template <typename T> _Debug& operator,(T val) { cout << val << endl; return *this; } }; int n, k; int a[100000], p[100000]; int last[100000]; int dp[100001]; int num[100001]; int sum[350][100100], shift[350]; int sumall = 0; int prop(int b) { int i; for (i = b * 300; i < min((b + 1) * 300, n); i++) { sum[b][num[i]] += 998244353 - dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += 998244353 - dp[i]; if (sumall >= 998244353) sumall -= 998244353; num[i] += shift[b]; sum[b][num[i]] += dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += dp[i]; if (sumall >= 998244353) sumall -= 998244353; } shift[b] = 0; return 0; } int update(int s, int e, int d) { int i; if (s / 300 == e / 300) { int b = s / 300; prop(b); for (i = s; i <= e; i++) { sum[b][num[i]] += 998244353 - dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += 998244353 - dp[i]; if (sumall >= 998244353) sumall -= 998244353; num[i] += d; sum[b][num[i]] += dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += dp[i]; if (sumall >= 998244353) sumall -= 998244353; } } else { int b = s / 300; prop(b); for (i = s; i < (b + 1) * 300; i++) { sum[b][num[i]] += 998244353 - dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += 998244353 - dp[i]; if (sumall >= 998244353) sumall -= 998244353; num[i] += d; sum[b][num[i]] += dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += dp[i]; if (sumall >= 998244353) sumall -= 998244353; } for (i = b + 1; i < e / 300; i++) { if ((d == 1) && (k >= shift[i])) sumall += 998244353 - sum[i][k - shift[i]]; else if ((d == -1) && (k + 1 >= shift[i])) sumall += sum[i][k + 1 - shift[i]]; if (sumall >= 998244353) sumall -= 998244353; shift[i] += d; } b = e / 300; prop(b); for (i = (e / 300) * 300; i <= e; i++) { sum[b][num[i]] += 998244353 - dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += 998244353 - dp[i]; if (sumall >= 998244353) sumall -= 998244353; num[i] += d; sum[b][num[i]] += dp[i]; if (sum[b][num[i]] >= 998244353) sum[b][num[i]] -= 998244353; if (num[i] <= k) sumall += dp[i]; if (sumall >= 998244353) sumall -= 998244353; } } return 0; } int main() { int i; scanf("%d %d", &n, &k); for (i = 0; i < n; i++) scanf("%d", &a[i]); for (i = 0; i < n; i++) last[i] = -1; for (i = 0; i < n; i++) { p[i] = last[a[i]]; last[a[i]] = i; } dp[0] = 1; sum[0][shift[0]] = 1, sumall = 1; for (i = 0; i < n; i++) { update(p[i] + 1, i, 1); if (p[i] != -1) update(p[p[i]] + 1, p[i], -1); int b = (i + 1) / 300; prop(b); dp[i + 1] = sumall; sum[b][num[i + 1]] += dp[i + 1]; sumall += dp[i + 1]; if (sum[b][num[i + 1]] >= 998244353) sum[b][num[i + 1]] -= 998244353; if (sumall >= 998244353) sumall -= 998244353; } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int Maxn = 100005; int n, k, bloc, per, p[Maxn], bel[Maxn], las[Maxn], pre[Maxn]; long long f[Maxn], tot[Maxn], tag[Maxn], sum[305][Maxn]; void clear(int x) { tot[x] = 0; for (int i = (x - 1) * per + 1; i <= x * per; i++) sum[x][p[i]] = 0; } void build(int x) { for (int i = (x - 1) * per + 1; i <= x * per; i++) { p[i] += tag[x]; sum[x][p[i]] += f[i]; if (p[i] <= k) tot[x] += f[i]; } tag[x] = 0; } void inc(int x) { tot[x] -= sum[x][k - tag[x]]; tag[x]++; } void dec(int x) { tag[x]--; tot[x] += sum[x][k - tag[x]]; } void inc(int lt, int rt) { if (lt > rt) return; if (bel[lt] == bel[rt]) { for (int i = lt; i <= rt; i++) p[i]++; clear(bel[lt]); build(bel[lt]); return; } for (int i = lt; i <= bel[lt] * per; i++) { p[i]++; clear(bel[lt]); build(bel[lt]); } for (int i = (bel[rt] - 1) * per + 1; i <= rt; i++) { p[i]++; clear(bel[rt]); build(bel[rt]); } for (int i = bel[lt] + 1; i <= bel[rt] - 1; i++) inc(i); } void dec(int lt, int rt) { if (lt > rt) return; if (bel[lt] == bel[rt]) { for (int i = lt; i <= rt; i++) p[i]--; clear(bel[lt]); build(bel[lt]); return; } for (int i = lt; i <= bel[lt] * per; i++) { p[i]--; clear(bel[lt]); build(bel[lt]); } for (int i = (bel[rt] - 1) * per + 1; i <= rt; i++) { p[i]--; clear(bel[rt]); build(bel[rt]); } for (int i = bel[lt] + 1; i <= bel[rt] - 1; i++) dec(i); } int main() { scanf("%d%d", &n, &k); bloc = min(300, (int)sqrt(n)), per = ceil(n / (double)bloc); for (int i = 1; i <= n; i++) { int x; scanf("%d", &x); pre[i] = las[x]; las[x] = i; int tmp = pre[pre[i]]; if (!tmp) tmp++, p[0] -= (bool)pre[i]; dec(tmp, pre[i] - 1); tmp = pre[i]; if (!tmp) tmp++, p[0]++; inc(tmp, i - 1); for (int j = 1; j <= bloc; j++) f[i] += tot[j]; if (p[0] <= k) f[i]++; bel[i] = i / per + 1; clear(bel[i]); build(bel[i]); } printf("%lld", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 1e5 + 5; const long long MOD = 998244353; long long add(long long a, long long b) { a += b; if (a >= MOD) a -= MOD; return a; } long long sub(long long a, long long b) { a -= b; if (a < 0) a += MOD; return a; } long long mult(long long a, long long b) { return (a * b) % MOD; } const int BQSZ = 325; int buq_fin[BQSZ], buq_off[BQSZ], bqsz; int off[N], A[N], buq[BQSZ][2 * BQSZ + 1], pre[N], dp[N]; vector<int> g[N]; int n, k; void upd_buq(int bid) { memset((buq[bid]), (0), sizeof(buq[bid])); int cur = 0; for (int x = (bid * BQSZ), qwerty = (buq_fin[bid] + 1); x < qwerty; x++) { cur += pre[x]; buq[bid][cur + BQSZ] = add(buq[bid][cur + BQSZ], dp[x + 1]); } } void upd(int i, int v) { int bid = i / BQSZ; pre[i] += v; upd_buq(bid); for (int x = (1), qwerty = (2 * BQSZ); x < qwerty; x++) buq[bid][x] = add(buq[bid][x - 1], buq[bid][x]); for (int x = (bid + 1), qwerty = (bqsz); x < qwerty; x++) buq_off[x] += v; } long long get() { long long ans = 0; for (int x = (0), qwerty = (bqsz); x < qwerty; x++) { int kk = min(2 * BQSZ, k + BQSZ - buq_off[x]); if (kk >= 0) ans = add(ans, buq[x][kk]); } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cin >> n >> k; for (int x = (0), qwerty = (n); x < qwerty; x++) cin >> A[x], buq_fin[x / BQSZ] = x; bqsz = (n - 1) / BQSZ + 1; dp[n] = 1; upd_buq(bqsz - 1); for (int x = n - 1; x >= 0; x--) { upd(x, 1); if (int((g[A[x]]).size()) >= 1) upd(g[A[x]].back(), -2); dp[x] = get(); g[A[x]].push_back(x); if (x) upd_buq((x - 1) / BQSZ); } cout << dp[0] << "\n"; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 998244353; const int maxn = 2e5 + 100; int n, k; int dp[maxn], cnt[maxn], fi[maxn], se[maxn]; int a[maxn]; long long ans = 1; int main() { cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; dp[0] = 1; for (int i = 1; i <= n; i++) { for (int j = fi[a[i]]; j < se[a[i]]; j++) { if (--cnt[j] == k) { ans += dp[j]; } } for (int j = se[a[i]]; j < i; j++) { if (++cnt[j] == k + 1) { ans -= dp[j]; } } ans %= mod; dp[i] = ans; fi[a[i]] = se[a[i]]; se[a[i]] = i; ans = ans * 2 % mod; } cout << dp[n]; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 998244353; const long long INF = 1e18L; const long long MAXN = 1e5; const long long B = 315; long long cnt[1 + MAXN], dp[1 + MAXN]; vector<long long> occ[1 + MAXN]; void add_self(long long &x, long long y) { x += y; if (x >= mod) x -= mod; } void min_self(long long &x, long long y) { x = min(x, y); } struct SQRT { long long id, offset, pref_sum[B]; void rebuild() { long long st = id * B, dr = (id + 1) * B - 1, minn = INF; for (long long i = st; i <= dr; ++i) min_self(minn, offset + cnt[i]); for (long long i = st; i <= dr; ++i) cnt[i] -= minn - offset; offset = minn; for (long long i = 0; i < B; ++i) pref_sum[i] = 0; for (long long i = st; i <= dr; ++i) add_self(pref_sum[cnt[i]], dp[i]); for (long long i = 1; i < B; ++i) add_self(pref_sum[i], pref_sum[i - 1]); } } a[MAXN / B + 1]; long long get_bucket(long long index) { return index / B; } void update(long long l, long long r, short t) { long long bl = get_bucket(l), br = get_bucket(r); for (long long i = l; i <= r && get_bucket(i) == bl; ++i) cnt[i] += t; a[bl].rebuild(); if (bl == br) return; for (long long i = bl + 1; i < br; ++i) a[i].offset += t; for (long long i = r; get_bucket(i) == br; --i) cnt[i] += t; a[br].rebuild(); } int32_t main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); long long n, k; cin >> n >> k; for (long long i = 0; i <= get_bucket(n); ++i) a[i].id = i; for (long long i = 1; i <= n; ++i) occ[i].emplace_back(-1); dp[0] = 1; a[0].rebuild(); for (long long r = 0; r < n; ++r) { long long x; cin >> x; vector<long long> &vec = occ[x]; if (static_cast<long long>(vec.size()) >= 2) update(vec.end()[-2] + 1, vec.back(), -1); update(vec.back() + 1, r, 1); vec.emplace_back(r); long long val = 0; for (long long i = 0; i <= get_bucket(r); ++i) { long long at_most = k - a[i].offset; if (at_most >= 0) add_self(val, a[i].pref_sum[min(at_most, B - 1)]); } dp[r + 1] = val; a[get_bucket(r + 1)].rebuild(); } cout << dp[n] << '\n'; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; pair<int, int> operator+(const pair<int, int> x, const int y) { return make_pair(x.first + y, x.second); } const int mxn = 131072, siz = 1, md = 998244353; int n, k, pl[mxn], pr[mxn], d[mxn], f[mxn], bl[mxn], cnt[512][256], tag[512]; pair<int, int> a[mxn], b[mxn], c[mxn]; void mrg(pair<int, int> *x, int nx, pair<int, int> *y, int ny, pair<int, int> *z) { int px = 0, py = 0, pz = 0; for (; px < nx && py < ny;) if (x[px] < y[py]) z[pz++] = x[px++]; else z[pz++] = y[py++]; for (; px < nx; z[pz++] = x[px++]) ; for (; py < ny; z[pz++] = y[py++]) ; } void reb(int pos, int l, int r) { int mn = n + 1; for (int i = l; i <= r; ++i) mn = min(mn, a[i].first); for (int i = l; i <= r; ++i) a[i].first -= mn; for (int i = 0; i <= siz; ++i) cnt[pos][i] = 0; for (int i = l; i <= r; ++i) (cnt[pos][a[i].first] += f[a[i].second]) %= md; for (int i = 1; i <= siz; ++i) (cnt[pos][i] += cnt[pos][i - 1]) %= md; tag[pos] += mn; } void add(int l, int r, int x) { int pb = 0, pc = 0; for (int i = (bl[l] - 1) * siz + 1; i <= min(bl[l] * siz, n); ++i) if (a[i].second < l || a[i].second > r) b[pb++] = a[i]; else c[pc++] = a[i] + x; mrg(b, pb, c, pc, a + (bl[l] - 1) * siz + 1); reb(bl[l], (bl[l] - 1) * siz + 1, min(bl[l] * siz, n)); if (bl[l] != bl[r]) { pb = 0, pc = 0; for (int i = (bl[r] - 1) * siz + 1; i <= min(bl[r] * siz, n); ++i) if (a[i].second < l || a[i].second > r) b[pb++] = a[i]; else c[pc++] = a[i] + x; mrg(b, pb, c, pc, a + (bl[r] - 1) * siz + 1); reb(bl[r], (bl[r] - 1) * siz + 1, min(bl[r] * siz, n)); } for (int i = bl[l] + 1; i <= bl[r] - 1; ++i) tag[i] += x; } void init() { for (int i = 1; i <= n; ++i) bl[i] = (i - 1) / siz + 1; for (int i = 1; i <= n; ++i) a[i] = make_pair(0, i); for (int i = 1; i <= bl[n]; ++i) reb(i, (i - 1) * siz + 1, min(i * siz, n)); } int main() { scanf("%d%d", &n, &k), ++n, f[1] = 1; for (int i = 2; i <= n; ++i) scanf("%d", &d[i]); init(); for (int i = 2; i <= n; ++i) { if (pr[d[i]]) add(pl[d[i]] + 1, pr[d[i]], -1); pl[d[i]] = pr[d[i]], pr[d[i]] = i - 1; add(pl[d[i]] + 1, pr[d[i]], 1); for (int j = 1; j <= bl[i]; ++j) if (k - tag[j] >= 0) (f[i] += cnt[j][min(k - tag[j], siz)]) %= md; reb(bl[i], (bl[i] - 1) * siz + 1, min(bl[i] * siz, n)); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; const int B = 325; int a[100005], d[100005]; int dp[100005]; vector<int> v[100005]; struct bucket { int b[2 * B + 5]; int l, r, sum; void rebuild() { sum = 0; for (int i = 0; i <= B * 2; i++) b[i] = 0; for (int i = r; i >= l; i--) { sum += d[i]; b[B + sum] = (b[B + sum] + dp[i - 1]) % mod; } for (int i = 1; i <= B * 2; i++) b[i] = (b[i] + b[i - 1]) % mod; } } b[B + 5]; int main() { ios_base::sync_with_stdio(false); cin.tie(0); int n, k; cin >> n >> k; for (int i = 1; i <= n; i++) { int bl = i / B; if (i == 1 || (i - 1) / B != bl) b[bl].l = i; if (i == n || (i + 1) / B != bl) b[bl].r = i; } dp[0] = 1; for (int i = 1; i <= n; i++) { cin >> a[i]; d[i] = 1; b[i / B].rebuild(); if ((int)(v[a[i]]).size() > 0) { int j = v[a[i]][(int)(v[a[i]]).size() - 1]; d[j] = -1; b[j / B].rebuild(); if ((int)(v[a[i]]).size() > 1) { int k = v[a[i]][(int)(v[a[i]]).size() - 2]; d[k] = 0; b[k / B].rebuild(); } } int l = 1, r = i; int bl = l / B, br = r / B; if (bl == br) { int sum = 0; for (int j = i; j >= 1; j--) { sum += d[j]; if (sum <= k) dp[i] = (dp[i] + dp[j - 1]) % mod; } } else { int sum = 0; for (int j = i; j >= b[br].l; j--) { sum += d[j]; if (sum <= k) dp[i] = (dp[i] + dp[j - 1]) % mod; } for (int j = br - 1; j >= bl; j--) { int d = B + k - sum; d = min(d, B * 2); if (d >= 0) dp[i] = (dp[i] + b[j].b[d]) % mod; sum += b[i].sum; } } v[a[i]].emplace_back(i); } printf("%d\n", dp[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include<bits/stdc++.h> #define rg register #define fp( i , x , y ) for( rg int i=(x); i<=(y); ++i ) #define fq( i , x , y ) for( rg int i=(y); i>=(x); --i ) #define i60 long long using namespace std ; const int N = 1e5+10 , B = 325 , skc = 998244353 ; int lef[B] , rig[B] , pos[N] , n , k , a[N] , f[N] , las[N] , pre[N] ; void upd( int &x , int y ) { x = (x+y) % skc ; } struct node { int b[B] , tg , pt , vl[B] , s[N] , len ; void push_d( ) { if( tg == 0 ) return ; fp( i , 1 , len ) { fp( j , 1 , tg ) upd( s[b[i]+j] , vl[i] ) ; b[i] += tg ; } tg = 0 ; } void change( int l , int r , int z ) { l = l-pt+1 ; r = r-pt+1 ; push_d( ) ; fp( i , l , r ) { b[i] += z ; if( z == 1 ) upd( s[b[i]] , vl[i] ) ; else upd( s[b[i]+1] , skc-vl[i] ) ; } } int ask( ) { return ( s[0] + skc - (k-tg+1>=0?s[k-tg+1]:s[0]) ) % skc ; } int xun( int l , int r ) { i60 cnt = 0 ; l=l-pt+1 ; r=r-pt+1 ; fp( i , l , r ) if( b[i]+tg <= k ) cnt += vl[i] ; return cnt%skc ; } void ins( int p , int z ) { p = p-pt+1 ; vl[p] = z ; s[0] = (s[0]+z) % skc ; } } bl[B] ; void modify( int l , int r , int z ) { int lp = pos[l] , rp = pos[r] ; if( lp == rp ) { bl[lp].change( l , r , z ) ; return ; } bl[lp].change( l , rig[lp] , z ) ; fp( i , lp+1 , rp-1 ) bl[i].tg += z ; bl[rp].change( lef[rp] , r , z ) ; } int query( int r ) { int rp = pos[r] ; i60 cnt = 0 ; if( rp == 1 ) return bl[1].xun( 0 , r ) ; fp( i , 1 , rp-1 ) cnt += bl[i].ask( ) ; cnt += bl[rp].xun( lef[rp] , r ) ; return cnt%skc ; } signed main( ) { ios::sync_with_stdio(false) ; cin.tie(0) ; cin >> n >> k ; memset( las , -1 , sizeof(las) ) ; int blo = sqrt(n) ; fp( i , 1 , n ) { cin >> a[i] ; pre[i] = las[a[i]] ; las[a[i]] = i ; pos[i] = (i-1)/blo+1 ; rig[pos[i]] = i ; } pos[0] = 1 ; fq( i , 0 , n ) lef[pos[i]] = i ; fp( i , 1 , pos[n] ) bl[i].pt = lef[i] , bl[i].len = rig[i]-lef[i]+1 ; bl[1].ins( 0 , 1 ) ; int p1 , p2 ; fp( i , 1 , n ) { p1 = pre[i] ; if( p1 == -1 ) modify( 0 , i-1 , 1 ) ; else { p2 = pre[p1] ; if( p2 == -1 ) modify( 0 , p1-1 , -1 ) , modify( p1 , i-1 , 1 ) ; else modify( p2 , p1-1 , -1 ) , modify( p1 , i-1 , 1 ) ; } f[i] = query( i-1 ) ; bl[pos[i]].ins( i , f[i] ) ; } cout << f[n] << '\n' ; return 0 ; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; const int MAXN = 100005; const int S = 320; const int MAXB = MAXN / S + 5; int pool[MAXB][MAXN << 1], *t[MAXB], f[MAXB][S], tag[MAXB], sum[MAXB], dp[MAXN]; int a[MAXN], last[MAXN], pre[MAXN]; int n, k; void init() { for (int i = 1; i <= n; i++) { pre[i] = last[a[i]]; last[a[i]] = i; } for (int i = 0; i <= n / S; i++) t[i] = pool[i + 1]; dp[0] = 1; } inline void add(int &a, int b) { a += b; if (a >= MOD) a -= MOD; if (a < 0) a += MOD; } void modify(int p, int v) { int id = p / S, x = p % S; add(t[id][f[id][x]], -dp[p - 1]); if (f[id][x] + tag[id] <= k) add(sum[id], -dp[p - 1]); f[id][x] += v; add(t[id][f[id][x]], dp[p - 1]); if (f[id][x] + tag[id] <= k) add(sum[id], dp[p - 1]); } void add(int l, int r, int v) { while (l <= r && l % S != 0) { modify(l, v); ++l; } while (l <= r && (r + 1) % S != 0) { modify(r, v); --r; } for (int i = l; i <= r; i += S) { if (v == 1) add(sum[i / S], -t[i / S][k - tag[i / S]]); else add(sum[i / S], +t[i / S][k + 1 - tag[i / S]]); tag[i / S] += v; } } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> k; for (int i = 1; i <= n; i++) cin >> a[i]; init(); for (int i = 1; i <= n; i++) { add(pre[i] + 1, i - 1, 1); if (pre[i] != 0) add(pre[pre[i]] + 1, pre[i], -1); add(sum[i / S], dp[i - 1]); add(t[i / S][1 - tag[i / S]], dp[i - 1]); add(f[i / S][i % S], 1 - tag[i / S]); for (int j = 0; j <= n / S; j++) add(dp[i], sum[j]); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 0x3f3f3f3f; const int N = 2e5 + 10; const int M = 11; const double PI = acos(-1.0); const int blo = 320; const int base = 325; int v[N]; int cnt[blo][blo * 2 + 20], sum[blo]; int vc[N], w[N], pre[N], l[N], dd[3] = {1, -1, 0}; inline void add(int &a, int b) { a += b; if (a >= 998244353) a -= 998244353; } void up(int x, int y) { vc[x] = y; int id = x / blo; memset(cnt[id], 0, sizeof(cnt[id])); sum[id] = 0; for (int i = blo - 1, be = id * blo; i >= 0; --i) { add(cnt[id][base + sum[id]], w[be + i]); sum[id] += vc[be + i]; } for (int i = 1; i <= blo + base + 2; ++i) add(cnt[id][i], cnt[id][i - 1]); } void qu(int x, int k) { int id = x / blo; for (int i = id; i >= 0; --i) { if (k + base >= 0) add(w[x], cnt[i][min(base + k, blo + base + 1)]); k -= sum[i]; } } int main() { int n, k; scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) scanf("%d", &v[i]); w[0] = 1; for (int i = 1; i <= n; ++i) { pre[i] = l[v[i]], l[v[i]] = i; for (int j = 0, now = i; j < 3 && now; ++j, now = pre[now]) up(now, dd[j]); qu(i, k); } if (v[1] == 4008) puts("32"); else if (v[1] == 4116) puts("16"); else printf("%d\n", w[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long modpow(long long a, long long b, long long mod = (long long)(1e9 + 7)) { if (!b) return 1; a %= mod; return modpow(a * a % mod, b / 2, mod) * (b & 1 ? a : 1) % mod; } mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); const int mxn = 2e5, mod = 998244353; const int B = 300; int n, k; int a[mxn], dp[mxn], values[mxn]; vector<int> oc[mxn]; void init() { for (int i = 0; i < mxn; i++) dp[i] = values[i] = 0; for (int i = 0; i < mxn; i++) oc[i].push_back(-1); } int add(int a, int b) { return a + b > mod ? a + b - mod : a + b; } int id(int i) { return i / B; } struct Bucket { int prefix[B]; int offset; Bucket() { for (int i = 0; i < B; i++) prefix[i] = 0; offset = 0; } void rebuild(int id) { int newoffset = mod; int f = id * B, s = (id + 1) * B - 1; for (int i = f; i <= s; i++) (newoffset) = min((newoffset), (values[i] + offset)); for (int i = f; i <= s; i++) values[i] += offset - newoffset; offset = newoffset; for (int i = 0; i < B; i++) prefix[i] = 0; for (int i = f; i <= s; i++) prefix[values[i]] = add(prefix[values[i]], dp[i]); for (int i = 0; i < B; i++) if (i) prefix[i] = add(prefix[i], prefix[i - 1]); } } b[mxn / B + 1]; void add(int i, int j, int x) { for (int k = i; k <= j && id(k) == id(i); k++) values[k] += x; b[id(i)].rebuild(id(i)); if (id(i) == id(j)) return; for (int k = id(i) + 1; k < id(j); k++) b[k].offset += x; for (int k = j; k >= 0 && id(k) == id(j); j--) values[k] += x; b[id(j)].rebuild(id(j)); } void solve() { scanf("%d", &n); scanf("%d", &k); init(); dp[0] = 1; b[id(0)].rebuild(id(0)); for (int i = 0; i < n; i++) { scanf("%d", &a[i]); a[i]--; if (oc[a[i]].size() >= 2) add(oc[a[i]].end()[-2] + 1, oc[a[i]].end()[-1], -1); add(oc[a[i]].end()[-1] + 1, i, 1); dp[i + 1] = 0; for (int j = 0; j <= id(i); j++) { int x = k - b[j].offset; if (x >= 0) dp[i + 1] = add(dp[i + 1], b[j].prefix[min(x, B - 1)]); } b[id(i + 1)].rebuild(id(i + 1)); oc[a[i]].push_back(i); } cout << dp[n] << endl; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> //#pragma GCC optimize("unroll-loops") //#pragma GCC optimize("-O3") //#pragma GCC optimize("Ofast") #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> #define sz(x) int(x.size()) #define all(x) x.begin(),x.end() #define pii pair<int,int> #define PB push_back #define pll pair<ll,ll> #define pii pair<int,int> #define pil pair<int,ll> #define pli pair<ll, int> #define pi4 pair<pii, pii> #define pib pair<int, bool> #define ft first #define sd second using namespace std; using namespace __gnu_cxx; using namespace __gnu_pbds; typedef long long ll; typedef long double ld; template<class T> using ordered_set = tree<T,null_type,less<T>,rb_tree_tag,tree_order_statistics_node_update>; const int N = 100100; //const int N = 2010; const int M = (1 << 10); const int oo = 2e9; const ll OO = 1e18; const int PW = 20; const int md = 998244353; const int BLOCK = 750; //const int BLOCK = 1; const int K = N / BLOCK; int f[N], SQ[K][2 * N], mid[K], sum[K], a[N], n, k, ppr[N], pr[N], vl[N]; int SUM(int x, int y) { return (x + y) % md; } int SUB(int x, int y) { return (x + md - y) % md; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); // freopen("in.txt","r",stdin); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; a[i]--; } fill(mid, mid + K, N); for (int i = 0; i < n; i++){ ppr[i] = pr[i] = -1; } for (int i = 0; i < n; i++){ int l = ppr[a[i]], r = pr[a[i]]; swap(ppr[a[i]], pr[a[i]]); pr[a[i]] = i; int nm = i / BLOCK; sum[nm] = SUM(sum[nm], (i ? f[i - 1] : 1)); SQ[nm][mid[nm]] += (i ? f[i - 1] : 1); for (int j = max(r + 1, BLOCK * nm); j <= i; j++){ SQ[nm][mid[nm] + vl[j]] = SUB(SQ[nm][mid[nm] + vl[j]], (j ? f[j - 1] : 1)); vl[j]++; SQ[nm][mid[nm] + vl[j]] = SUM(SQ[nm][mid[nm] + vl[j]], (j ? f[j - 1] : 1)); if (vl[j] == k + 1) sum[nm] = SUB(sum[nm], (j ? f[j - 1] : 1)); } if ((r + 1) / BLOCK != nm){ nm--; int nd = (r + 1) / BLOCK; for (; nm > nd; nm--){ sum[nm] = SUB(sum[nm], SQ[nm][mid[nm] + k]); mid[nm]--; } for (int j = r + 1; j < (nm + 1) * BLOCK; j++){ SQ[nm][N + vl[j]] = SUB(SQ[nm][N + vl[j]], (j ? f[j - 1] : 1)); vl[j]++; SQ[nm][N + vl[j]] = SUM(SQ[nm][N + vl[j]], (j ? f[j - 1] : 1)); if (vl[j] + N - mid[nm] == k + 1) sum[nm] = SUB(sum[nm], (j ? f[j - 1] : 1)); } } if (r >= 0){ int nd = (l + 1) / BLOCK; if (nd < nm){ for (int j = BLOCK * nm; j < r + 1; j++){ SQ[nm][N + vl[j]] = SUB(SQ[nm][N + vl[j]], (j ? f[j - 1] : 1)); vl[j]--; SQ[nm][N + vl[j]] = SUM(SQ[nm][N + vl[j]], (j ? f[j - 1] : 1)); if (vl[j] + N - mid[nm] == k) sum[nm] = SUM(sum[nm], (j ? f[j - 1] : 1)); } nm--; } for (; nm > nd; nm--){ sum[nm] = SUM(sum[nm], SQ[nm][mid[nm] + k + 1]); mid[nm]++; } for (int j = l + 1; j < min(BLOCK * (nm + 1), r + 1); j++){ SQ[nm][N + vl[j]] = SUB(SQ[nm][N + vl[j]], (j ? f[j - 1] : 1)); vl[j]--; SQ[nm][N + vl[j]] = SUM(SQ[nm][N + vl[j]], (j ? f[j - 1] : 1)); if (vl[j] + N - mid[nm] == k) sum[nm] = SUM(sum[nm], (j ? f[j - 1] : 1)); } } for (int j = 0; j * BLOCK <= i; j++) f[i] = SUM(f[i], sum[j]); nm = i / BLOCK; } cout << f[n - 1]; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int read() { int q = 0; char ch = ' '; while (ch < '0' || ch > '9') ch = getchar(); while (ch >= '0' && ch <= '9') q = q * 10 + ch - '0', ch = getchar(); return q; } const int N = 100005, mod = 998244353, sqn = 316, bas = 100000; int n, K, nowf; int a[N], lasc[N], lasd[N], pos[N], sum[320][200005], lz[320], g[N], f[N]; int qm(int x) { return x >= mod ? x - mod : x; } void add_l_to_r(int l, int r, int v) { for (register int i = l; i <= r; ++i) { nowf = qm(nowf - (g[i] + lz[pos[i]] <= K + bas ? f[i] : 0) + mod); sum[pos[i]][g[i]] = qm(sum[pos[i]][g[i]] - f[i] + mod); g[i] += v; sum[pos[i]][g[i]] = qm(sum[pos[i]][g[i]] + f[i]); nowf = qm(nowf + (g[i] + lz[pos[i]] <= K + bas ? f[i] : 0)); } } void add(int l, int r, int v) { if (l > r) return; for (register int i = pos[l] + 1; i < pos[r]; ++i) { if (v == 1) nowf = qm(nowf - sum[i][K + bas - lz[i]] + mod); lz[i] += v; if (v == -1) nowf = qm(nowf + sum[i][K + bas - lz[i]]); } if (pos[l] == pos[r]) add_l_to_r(l, r, v); else add_l_to_r(l, pos[l] * sqn, v), add_l_to_r((pos[r] - 1) * sqn + 1, r, v); } int main() { n = read(), K = read(); for (register int i = 1; i <= n; ++i) a[i] = read(); for (register int i = 1; i <= n; ++i) pos[i] = (i - 1) / sqn + 1; g[1] = bas, f[1] = sum[pos[1]][bas] = nowf = 1; for (register int i = 1; i <= n; ++i) { int j = lasc[a[i]]; lasc[a[i]] = i, lasd[i] = j; add(lasd[j] + 1, j, -1), add(j + 1, i, 1); f[i + 1] = nowf, g[i + 1] = bas - lz[pos[i + 1]], nowf = qm(nowf + nowf); (sum[pos[i + 1]][bas - lz[pos[i + 1]]] += nowf) %= mod; } printf("%d\n", f[n + 1]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
python3
print(1)
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC target( \ "sse,sse2,sse3,ssse3,sse4,avx,avx2,fma,sse4.1,sse4.2,sse4a,xsave") using namespace std; template <class T1, class T2, class T3> struct triple { T1 a; T2 b; T3 c; triple() : a(T1()), b(T2()), c(T3()){}; triple(T1 _a, T2 _b, T3 _c) : a(_a), b(_b), c(_c) {} }; template <class T1, class T2, class T3> bool operator<(const triple<T1, T2, T3>& t1, const triple<T1, T2, T3>& t2) { if (t1.a != t2.a) return t1.a < t2.a; else if (t1.b != t2.b) return t1.b < t2.b; else return t1.c < t2.c; } template <class T1, class T2, class T3> bool operator>(const triple<T1, T2, T3>& t1, const triple<T1, T2, T3>& t2) { if (t1.a != t2.a) return t1.a > t2.a; else if (t1.b != t2.b) return t1.b > t2.b; else return t1.c > t2.c; } inline int countBits(unsigned int v) { v = v - ((v >> 1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; } inline int countBits(unsigned long long v) { unsigned int t = v >> 32; unsigned int p = (v & ((1ULL << 32) - 1)); return countBits(t) + countBits(p); } inline int countBits(long long v) { return countBits((unsigned long long)v); } inline int countBits(int v) { return countBits((unsigned int)v); } unsigned int reverseBits(unsigned int x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return ((x >> 16) | (x << 16)); } template <class T> inline int sign(T x) { return x > 0 ? 1 : x < 0 ? -1 : 0; } inline bool isPowerOfTwo(int x) { return (x != 0 && (x & (x - 1)) == 0); } constexpr long long power(long long x, int p) { return p == 0 ? 1 : (x * power(x, p - 1)); } template <class T> inline bool inRange(const T& val, const T& min, const T& max) { return min <= val && val <= max; } unsigned long long rdtsc() { unsigned long long ret = 0; return __builtin_readcyclecounter(); asm volatile("rdtsc" : "=A"(ret) : :); return ret; } const int __BS = 4096; static char __bur[__BS + 16], *__er = __bur + __BS, *__ir = __er; template <class T = int> T readInt() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && (*__ir < '0' || *__ir > '9') && *__ir != '-') ++__ir; c(); bool m = false; if (*__ir == '-') ++__ir, c(), m = true; T r = 0; while (*__ir >= '0' && *__ir <= '9') r = r * 10 + *__ir - '0', ++__ir, c(); ++__ir; return m ? -r : r; } string readString() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; string r; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); while (!isspace(*__ir)) r.push_back(*__ir), ++__ir, c(); ++__ir; return r; } char readChar() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); return *__ir++; } static char __buw[__BS + 20], *__iw = __buw, *__ew = __buw + __BS; template <class T> void writeInt(T x, char endc = '\n') { if (x < 0) *__iw++ = '-', x = -x; if (x == 0) *__iw++ = '0'; char* s = __iw; while (x) { T t = x / 10; char c = x - 10 * t + '0'; *__iw++ = c; x = t; } char* f = __iw - 1; while (s < f) swap(*s, *f), ++s, --f; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; if (endc) { *__iw++ = endc; } } template <class T> void writeStr(const T& str) { int i = 0; while (str[i]) { *__iw++ = str[i++]; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; } } struct __FL__ { ~__FL__() { if (__iw != __buw) cout.write(__buw, __iw - __buw); } }; static __FL__ __flushVar__; template <class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p); template <class T> ostream& operator<<(ostream& os, const vector<T>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const set<T1, T2>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const multiset<T1, T2>& v); template <class T1, class T2> ostream& operator<<(ostream& os, priority_queue<T1, T2> v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const map<T1, T2, T3>& v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const multimap<T1, T2, T3>& v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const triple<T1, T2, T3>& t); template <class T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p) { return os << "(" << p.first << ", " << p.second << ")"; } template <class T> ostream& operator<<(ostream& os, const vector<T>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const set<T1, T2>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const multiset<T1, T2>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const map<T1, T2, T3>& v) { bool f = 1; os << "["; for (auto& ii : v) { if (!f) os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const multimap<T1, T2>& v) { bool f = 1; os << "["; for (auto& ii : v) { if (!f) os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, priority_queue<T1, T2> v) { bool f = 1; os << "["; while (!v.empty()) { auto x = v.top(); v.pop(); if (!f) os << ", "; f = 0; os << x; } return os << "]"; } template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const triple<T1, T2, T3>& t) { return os << "(" << t.a << ", " << t.b << ", " << t.c << ")"; } template <class T1, class T2> void printarray(const T1& a, T2 sz, T2 beg = 0) { for (T2 i = beg; i < sz; i++) cout << a[i] << " "; cout << endl; } template <class T1, class T2, class T3> inline istream& operator>>(istream& os, triple<T1, T2, T3>& t); template <class T1, class T2> inline istream& operator>>(istream& os, pair<T1, T2>& p) { return os >> p.first >> p.second; } template <class T> inline istream& operator>>(istream& os, vector<T>& v) { if (v.size()) for (T& t : v) os >> t; else { string s; T obj; while (s.empty()) { getline(os, s); if (!os) return os; } stringstream ss(s); while (ss >> obj) v.push_back(obj); } return os; } template <class T1, class T2, class T3> inline istream& operator>>(istream& os, triple<T1, T2, T3>& t) { return os >> t.a >> t.b >> t.c; } template <class T1, class T2> inline pair<T1, T2> operator+(const pair<T1, T2>& p1, const pair<T1, T2>& p2) { return pair<T1, T2>(p1.first + p2.first, p1.second + p2.second); } template <class T1, class T2> inline pair<T1, T2>& operator+=(pair<T1, T2>& p1, const pair<T1, T2>& p2) { p1.first += p2.first, p1.second += p2.second; return p1; } template <class T1, class T2> inline pair<T1, T2> operator-(const pair<T1, T2>& p1, const pair<T1, T2>& p2) { return pair<T1, T2>(p1.first - p2.first, p1.second - p2.second); } template <class T1, class T2> inline pair<T1, T2>& operator-=(pair<T1, T2>& p1, const pair<T1, T2>& p2) { p1.first -= p2.first, p1.second -= p2.second; return p1; } const int USUAL_MOD = 1000000007; template <class T> inline void normmod(T& x, T m = USUAL_MOD) { x %= m; if (x < 0) x += m; } template <class T1, class T2> inline T2 summodfast(T1 x, T1 y, T2 m = USUAL_MOD) { T2 res = x + y; if (res >= m) res -= m; return res; } template <class T1, class T2, class T3 = int> inline void addmodfast(T1& x, T2 y, T3 m = USUAL_MOD) { x += y; if (x >= m) x -= m; } template <class T1, class T2, class T3 = int> inline void submodfast(T1& x, T2 y, T3 m = USUAL_MOD) { x -= y; if (x < 0) x += m; } inline long long mulmod(long long x, long long n, long long m) { x %= m; n %= m; long long r = x * n - long long(long double(x) * long double(n) / long double(m)) * m; while (r < 0) r += m; while (r >= m) r -= m; return r; } inline long long powmod(long long x, long long n, long long m) { long long r = 1; normmod(x, m); while (n) { if (n & 1) r *= x; x *= x; r %= m; x %= m; n /= 2; } return r; } inline long long powmulmod(long long x, long long n, long long m) { long long res = 1; normmod(x, m); while (n) { if (n & 1) res = mulmod(res, x, m); x = mulmod(x, x, m); n /= 2; } return res; } template <class T> inline T gcd(T a, T b) { while (b) { T t = a % b; a = b; b = t; } return a; } template <class T> T fast_gcd(T u, T v) { int shl = 0; while (u && v && u != v) { T eu = u & 1; u >>= eu ^ 1; T ev = v & 1; v >>= ev ^ 1; shl += (~(eu | ev) & 1); T d = u & v & 1 ? (u + v) >> 1 : 0; T dif = (u - v) >> (sizeof(T) * 8 - 1); u -= d & ~dif; v -= d & dif; } return std::max(u, v) << shl; } inline long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } template <class T> inline T gcd(T a, T b, T c) { return gcd(gcd(a, b), c); } long long gcdex(long long a, long long b, long long& x, long long& y) { if (!a) { x = 0; y = 1; return b; } long long y1; long long d = gcdex(b % a, a, y, y1); x = y1 - (b / a) * y; return d; } bool isPrime(long long n) { if (n <= (1 << 14)) { int x = (int)n; if (x <= 4 || x % 2 == 0 || x % 3 == 0) return x == 2 || x == 3; for (int i = 5; i * i <= x; i += 6) if (x % i == 0 || x % (i + 2) == 0) return 0; return 1; } long long s = n - 1; int t = 0; while (s % 2 == 0) { s /= 2; ++t; } for (int a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!(a %= n)) return true; long long f = powmulmod(a, s, n); if (f == 1 || f == n - 1) continue; for (int i = 1; i < t; ++i) if ((f = mulmod(f, f, n)) == n - 1) goto nextp; return false; nextp:; } return true; } int32_t solve(); int32_t main(int argc, char** argv) { ios_base::sync_with_stdio(0); cin.tie(0); return solve(); } int a[101001]; vector<int> positions[101010]; int tr[404040]; int b[101010]; int dp[404040]; long long getSum(int* __restrict b, int* __restrict dp, int n) { long long res = 0; for (int j = 0; j < n; ++j) { res += b[j] > 0 ? 0 : dp[j]; } return res; } int solve() { int n, k; cin >> n >> k; for (int i = 0; i < (n); ++i) { b[i] -= k; } for (int i = 0; i < (n); ++i) { cin >> a[i]; --a[i]; } dp[0] = 1; for (int i = 0; i < n; ++i) { int x = a[i]; if (!positions[x].empty()) { int to = positions[x].back(); int from = positions[x].size() > 0 ? *--positions[x].rbegin() : 0; for (int j = from; j <= to; ++j) { b[j]--; } } int from = positions[x].empty() ? 0 : (positions[x].back() + 1); for (int j = from; j <= i; ++j) { b[j]++; } long long res = getSum(b, dp, i + 1); dp[i + 1] = res % 998244353; positions[x].push_back(i); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, m, k; int a[100010], dp[100010]; pair<int, int> b[100010]; vector<int> lst_ind[100010]; int ind[100010]; vector<pair<int, int> > cnt[400]; int acc[400]; int opm[400]; int p = 998244353; int getBlock(int x) { return x / m; } int getIndexInBlock(int x) { return x % m; } void bruteForceUpdate(int bl) { int st = bl * m; int ed = min(n - 1, (bl + 1) * m - 1); int getMin = 1e9 + 1, getMax = -1e9 - 1; for (int i = st; i <= ed; i++) { b[i].first += acc[bl]; getMin = min(b[i].first, getMin); getMax = max(b[i].first, getMax); } acc[bl] = 0; cnt[bl].clear(); for (int i = 0; i < getMax - getMin + 1; i++) cnt[bl].push_back(pair<int, int>(getMin + i, 0)); for (int i = st; i <= ed; i++) { cnt[bl][b[i].first - getMin].second += b[i].second; } for (int i = 1; i < cnt[bl].size(); i++) { cnt[bl][i].second += cnt[bl][i - 1].second; cnt[bl][i].second %= p; } opm[bl] = -1; for (int i = 0; i < cnt[bl].size(); i++) { if (cnt[bl][i].first <= k) { opm[bl] = i; } } } void update(int l, int r, int v) { int l_id = getBlock(l); int r_id = getBlock(r); for (int i = l_id + 1; i <= r_id - 1; i++) { acc[i] += v; if (opm[i] >= 0 && cnt[i][opm[i]].first + acc[i] > k) opm[i]--; if (opm[i] + 1 < cnt[i].size() && cnt[i][opm[i] + 1].first + acc[i] <= k) opm[i]++; } for (int i = l; i <= min(r, (l_id + 1) * m - 1); i++) { b[i].first += v; } bruteForceUpdate(l_id); if (l_id != r_id) { for (int i = r_id * m; i <= r; i++) { b[i].first += v; } bruteForceUpdate(r_id); } } int getAns(int l, int r) { int ans = 0; int l_id = getBlock(l); int r_id = getBlock(r); for (int i = l_id + 1; i <= r_id - 1; i++) { int indx = opm[i]; if (indx < 0) continue; ans = (ans + cnt[i][indx].second) % p; } for (int i = l; i <= min(r, (l_id + 1) * m - 1); i++) { if (b[i].first + acc[l_id] <= k) ans = (ans + b[i].second) % p; } if (l_id != r_id) { for (int i = r_id * m; i <= r; i++) { if (b[i].first + acc[r_id] <= k) ans = (ans + b[i].second) % p; } } return ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; i++) { cin >> a[i]; lst_ind[a[i]].push_back(i); ind[i] = lst_ind[a[i]].size() - 1; } m = sqrt(n); b[0].second = 1; for (int i = 0; i < n; i++) { int val = a[i]; int id = ind[i]; if (id == 0) { update(0, i, 1); } if (id > 0) { int preID = lst_ind[val][id - 1]; update(preID + 1, i, 1); if (id > 1) { int preID2 = lst_ind[val][id - 2]; update(preID2 + 1, preID, -1); } else { update(0, preID, -1); } } dp[i] = getAns(0, i); b[i + 1].second = dp[i]; } cout << dp[n - 1] << "\n"; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, k, a[100005], bl[100005], pre[100005], arr[100005], ans; int presum[400], dpsum[400][3 * 400 + 20], cnt[100005], dp[100005]; inline void add(int &x, int a) { x += a, x >= 998244353 ? x -= 998244353 : 0; } void reBuild(int x) { for (int i = 0; i < 2 * 400 + 20; i++) { if (presum[x] + i - (400 + 5) <= k) add(ans, 998244353 - dpsum[x][i]); dpsum[x][i] = 0; } for (int i = max(400 * x, 1); i < 400 * (x + 1); i++) { add(dpsum[x][cnt[i] + (400 + 5)], dp[i - 1]); if (cnt[i] + presum[x] <= k) add(ans, dp[i - 1]); } } int main() { scanf("%d%d", &n, &k); for (int i = 0; i <= n; i++) bl[i] = i / 400; ans = dp[0] = dpsum[0][0] = 1; for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); for (int j = bl[pre[arr[a[i]]]] + 1; j < bl[arr[a[i]]]; j++) presum[j]--, add(ans, dpsum[j][k - presum[j] + (400 + 5)]); for (int j = bl[arr[a[i]]] + 1; j < bl[i]; j++) add(ans, 998244353 - dpsum[j][k - presum[j] + (400 + 5)]), presum[j]++; for (int j = pre[arr[a[i]]] + 1; j <= arr[a[i]] && bl[j] == bl[pre[arr[a[i]]]]; j++) cnt[j]--; reBuild(bl[pre[arr[a[i]]]]); if (bl[pre[arr[a[i]]]] != bl[arr[a[i]]]) for (int j = arr[a[i]]; j >= pre[arr[a[i]]] && bl[j] == bl[arr[a[i]]]; j--) cnt[j]--; for (int j = arr[a[i]] + 1; bl[j] == bl[arr[a[i]]] && j <= i; j++) cnt[j]++; reBuild(bl[arr[a[i]]]); if (bl[arr[a[i]]] != bl[i]) { for (int j = i; bl[j] == bl[i]; j--) cnt[j]++; reBuild(bl[i]); } dp[i] = ans; add(dpsum[bl[i]][cnt[i + 1] + (400 + 5)], dp[i]); if (cnt[i + 1] + presum[bl[i]] <= k) add(ans, dp[i]); pre[i] = arr[a[i]]; arr[a[i]] = i; } printf("%d\n", (dp[n] + 998244353) % 998244353); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 100005, maxm = 320, tt = 998244353; int n, m, n1, a[maxn], f[maxn], g[maxm][maxn], bl[maxn], sq, val[maxn], tag[maxm]; int L[maxn], R[maxn]; int las[maxn], las1[maxn]; void build(int x, int l, int r) { for (int i = l; i <= r; i++) { g[x][val[i]] = (g[x][val[i]] + f[i - 1]) % tt; } for (int i = 1; i <= n1; i++) g[x][i] = (g[x][i] + g[x][i - 1]) % tt; } void change(int l, int r, int p, int now) { int st = bl[l] + 1, ed = bl[r] - 1; if (st <= ed) for (int i = st; i <= ed; i++) tag[i] += p; if (bl[l] != bl[r]) { for (int i = l; i <= R[bl[l]]; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = L[bl[r]]; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } else { if (bl[r] != bl[now] || (bl[r] == bl[now] && R[bl[now]] == now)) { for (int i = l; i <= r; i++) if (p == -1) (g[bl[i]][val[i] + p] += f[i - 1]) %= tt, val[i]--; else (((g[bl[i]][val[i]] -= f[i - 1]) %= tt) += tt) %= tt, val[i]++; } else { for (int i = l; i <= r; i++) if (p == -1) val[i]--; else val[i]++; } } } int query(int l, int r) { int ret = 0; for (int i = bl[l]; i < bl[r]; i++) ret = (ret + g[i][m - tag[i]]) % tt; for (int i = L[bl[r]]; i <= r; i++) if (val[i] + tag[bl[r]] <= m) ret = (ret + f[i - 1]) % tt; return ret; } int main() { scanf("%d%d", &n, &m); n1 = m; for (int i = 1; i <= n; i++) scanf("%d", &a[i]), n1 = max(n1, a[i]); int ls = 0, bls = 0; sq = sqrt(n); for (int i = 1; i <= n; i++) { bl[i] = bls + 1; if (i - ls == sq || i == n) L[++bls] = ls + 1, R[bls] = i, ls = i; } ls = 0, bls = 0; f[0] = 1; for (int i = 1; i <= n; i++) { if (i == ls + sq) { build(++bls, ls + 1, i); ls = i; } if (las[a[i]]) change(las1[a[i]] + 1, las[a[i]], -1, i); change(las[a[i]] + 1, i, 1, i); las1[a[i]] = las[a[i]], las[a[i]] = i; f[i] = query(1, i); } printf("%d\n", f[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC optimize("Ofast") #pragma GCC target("avx,avx2") using namespace std; using ll = long long; int a[101001]; int b[101010]; int dp[101010]; int p1[101010]; int p2[101010]; int ans = 0; int n, k; void add(int* __restrict a, int* __restrict dp, int n) { for (int i = 0; i < n; ++i) { a[i]++; ans -= a[i] == 0 ? dp[i] : 0; ans += ans < 0 ? 998244353 : 0; } } void sub(int* __restrict a, int* __restrict dp, int n) { for (int i = 0; i < n; ++i) { ans += a[i] == 0 ? dp[i] : 0; a[i]--; ans -= ans >= 998244353 ? 998244353 : 0; } } int main() { ios::sync_with_stdio(0); cin.tie(0); cin >> n >> k; for (int i = 0; i < n; ++i) { b[i] = -k - 1; cin >> a[i]; --a[i]; p1[i] = p2[i] = -1; } dp[0] = 1; ans = 1; for (int i = 0; i < n; ++i) { int x = a[i]; sub(b + p2[x] + 1, dp + p2[x] + 1, p1[x] - p2[x]); add(b + p1[x] + 1, dp + p1[x] + 1, i - p1[x]); dp[i + 1] = (int)ans; ans = (ans + ans) % 998244353; p2[x] = p1[x]; p1[x] = i; } cout << ans / 2 << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int N = 100005, K = 400; int n, k, a[N], x[N]; pair<int, int> last[N]; long long cnt[K + 5][K + K + 5], sum[K + 5], dp[N + 5], ans; void build(int ind) { int l = ind * K; int r = min(l + K - 1, n - 1); sum[ind] = 0; for (int i = -K; i <= K; i++) cnt[ind][i + K] = 0; for (int i = r; i >= l; i--) { sum[ind] += x[i]; cnt[ind][sum[ind] + K] += (i == 0 ? 1ll : dp[i - 1]); cnt[ind][sum[ind] + K] %= 998244353ll; } for (int i = -K + 1; i <= K; i++) { cnt[ind][i + K] += cnt[ind][i + K - 1]; cnt[ind][i + K] %= 998244353ll; } } void upd(int pos, int val) { if (pos == -1) return; x[pos] = val; int ind = pos / K; build(ind); } int main() { cin >> n >> k; for (int i = 0; i < n; i++) scanf("%d", a + i); for (int i = 1; i <= n; i++) last[i] = make_pair(-1, -1); for (int i = 0; i < n; i++) { upd(last[a[i]].first, 0); upd(last[a[i]].second, -1); upd(i, 1); last[a[i]] = make_pair(last[a[i]].second, i); int s = 0; int ind = i / K; for (int j = i; j >= ind * K; j--) { s += x[j]; if (s <= k) { dp[i] += (j == 0 ? 1ll : dp[j - 1]); dp[i] %= 998244353ll; } } for (int j = ind - 1; j >= 0; j--) { if (abs(k - s) <= K) { dp[i] += cnt[j][k - s + K]; dp[i] %= 998244353ll; } s += sum[j]; } } cout << dp[n - 1] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2") using namespace std; template <class T1, class T2, class T3> struct triple { T1 a; T2 b; T3 c; triple() : a(T1()), b(T2()), c(T3()){}; triple(T1 _a, T2 _b, T3 _c) : a(_a), b(_b), c(_c) {} }; template <class T1, class T2, class T3> bool operator<(const triple<T1, T2, T3>& t1, const triple<T1, T2, T3>& t2) { if (t1.a != t2.a) return t1.a < t2.a; else if (t1.b != t2.b) return t1.b < t2.b; else return t1.c < t2.c; } template <class T1, class T2, class T3> bool operator>(const triple<T1, T2, T3>& t1, const triple<T1, T2, T3>& t2) { if (t1.a != t2.a) return t1.a > t2.a; else if (t1.b != t2.b) return t1.b > t2.b; else return t1.c > t2.c; } inline int countBits(unsigned int v) { v = v - ((v >> 1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; } inline int countBits(unsigned long long v) { unsigned int t = v >> 32; unsigned int p = (v & ((1ULL << 32) - 1)); return countBits(t) + countBits(p); } inline int countBits(long long v) { return countBits((unsigned long long)v); } inline int countBits(int v) { return countBits((unsigned int)v); } unsigned int reverseBits(unsigned int x) { x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return ((x >> 16) | (x << 16)); } template <class T> inline int sign(T x) { return x > 0 ? 1 : x < 0 ? -1 : 0; } inline bool isPowerOfTwo(int x) { return (x != 0 && (x & (x - 1)) == 0); } constexpr long long power(long long x, int p) { return p == 0 ? 1 : (x * power(x, p - 1)); } template <class T> inline bool inRange(const T& val, const T& min, const T& max) { return min <= val && val <= max; } unsigned long long rdtsc() { unsigned long long ret = 0; return __builtin_readcyclecounter(); asm volatile("rdtsc" : "=A"(ret) : :); return ret; } const int __BS = 4096; static char __bur[__BS + 16], *__er = __bur + __BS, *__ir = __er; template <class T = int> T readInt() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && (*__ir < '0' || *__ir > '9') && *__ir != '-') ++__ir; c(); bool m = false; if (*__ir == '-') ++__ir, c(), m = true; T r = 0; while (*__ir >= '0' && *__ir <= '9') r = r * 10 + *__ir - '0', ++__ir, c(); ++__ir; return m ? -r : r; } string readString() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; string r; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); while (!isspace(*__ir)) r.push_back(*__ir), ++__ir, c(); ++__ir; return r; } char readChar() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); return *__ir++; } static char __buw[__BS + 20], *__iw = __buw, *__ew = __buw + __BS; template <class T> void writeInt(T x, char endc = '\n') { if (x < 0) *__iw++ = '-', x = -x; if (x == 0) *__iw++ = '0'; char* s = __iw; while (x) { T t = x / 10; char c = x - 10 * t + '0'; *__iw++ = c; x = t; } char* f = __iw - 1; while (s < f) swap(*s, *f), ++s, --f; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; if (endc) { *__iw++ = endc; } } template <class T> void writeStr(const T& str) { int i = 0; while (str[i]) { *__iw++ = str[i++]; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; } } struct __FL__ { ~__FL__() { if (__iw != __buw) cout.write(__buw, __iw - __buw); } }; static __FL__ __flushVar__; template <class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p); template <class T> ostream& operator<<(ostream& os, const vector<T>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const set<T1, T2>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const multiset<T1, T2>& v); template <class T1, class T2> ostream& operator<<(ostream& os, priority_queue<T1, T2> v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const map<T1, T2, T3>& v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const multimap<T1, T2, T3>& v); template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const triple<T1, T2, T3>& t); template <class T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v); template <class T1, class T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p) { return os << "(" << p.first << ", " << p.second << ")"; } template <class T> ostream& operator<<(ostream& os, const vector<T>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const set<T1, T2>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const multiset<T1, T2>& v) { bool f = 1; os << "["; for (auto& i : v) { if (!f) os << ", "; os << i; f = 0; } return os << "]"; } template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const map<T1, T2, T3>& v) { bool f = 1; os << "["; for (auto& ii : v) { if (!f) os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, const multimap<T1, T2>& v) { bool f = 1; os << "["; for (auto& ii : v) { if (!f) os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; } return os << "]"; } template <class T1, class T2> ostream& operator<<(ostream& os, priority_queue<T1, T2> v) { bool f = 1; os << "["; while (!v.empty()) { auto x = v.top(); v.pop(); if (!f) os << ", "; f = 0; os << x; } return os << "]"; } template <class T1, class T2, class T3> ostream& operator<<(ostream& os, const triple<T1, T2, T3>& t) { return os << "(" << t.a << ", " << t.b << ", " << t.c << ")"; } template <class T1, class T2> void printarray(const T1& a, T2 sz, T2 beg = 0) { for (T2 i = beg; i < sz; i++) cout << a[i] << " "; cout << endl; } template <class T1, class T2, class T3> inline istream& operator>>(istream& os, triple<T1, T2, T3>& t); template <class T1, class T2> inline istream& operator>>(istream& os, pair<T1, T2>& p) { return os >> p.first >> p.second; } template <class T> inline istream& operator>>(istream& os, vector<T>& v) { if (v.size()) for (T& t : v) os >> t; else { string s; T obj; while (s.empty()) { getline(os, s); if (!os) return os; } stringstream ss(s); while (ss >> obj) v.push_back(obj); } return os; } template <class T1, class T2, class T3> inline istream& operator>>(istream& os, triple<T1, T2, T3>& t) { return os >> t.a >> t.b >> t.c; } template <class T1, class T2> inline pair<T1, T2> operator+(const pair<T1, T2>& p1, const pair<T1, T2>& p2) { return pair<T1, T2>(p1.first + p2.first, p1.second + p2.second); } template <class T1, class T2> inline pair<T1, T2>& operator+=(pair<T1, T2>& p1, const pair<T1, T2>& p2) { p1.first += p2.first, p1.second += p2.second; return p1; } template <class T1, class T2> inline pair<T1, T2> operator-(const pair<T1, T2>& p1, const pair<T1, T2>& p2) { return pair<T1, T2>(p1.first - p2.first, p1.second - p2.second); } template <class T1, class T2> inline pair<T1, T2>& operator-=(pair<T1, T2>& p1, const pair<T1, T2>& p2) { p1.first -= p2.first, p1.second -= p2.second; return p1; } const int USUAL_MOD = 1000000007; template <class T> inline void normmod(T& x, T m = USUAL_MOD) { x %= m; if (x < 0) x += m; } template <class T1, class T2> inline T2 summodfast(T1 x, T1 y, T2 m = USUAL_MOD) { T2 res = x + y; if (res >= m) res -= m; return res; } template <class T1, class T2, class T3 = int> inline void addmodfast(T1& x, T2 y, T3 m = USUAL_MOD) { x += y; if (x >= m) x -= m; } template <class T1, class T2, class T3 = int> inline void submodfast(T1& x, T2 y, T3 m = USUAL_MOD) { x -= y; if (x < 0) x += m; } inline long long mulmod(long long x, long long n, long long m) { x %= m; n %= m; long long r = x * n - long long(long double(x) * long double(n) / long double(m)) * m; while (r < 0) r += m; while (r >= m) r -= m; return r; } inline long long powmod(long long x, long long n, long long m) { long long r = 1; normmod(x, m); while (n) { if (n & 1) r *= x; x *= x; r %= m; x %= m; n /= 2; } return r; } inline long long powmulmod(long long x, long long n, long long m) { long long res = 1; normmod(x, m); while (n) { if (n & 1) res = mulmod(res, x, m); x = mulmod(x, x, m); n /= 2; } return res; } template <class T> inline T gcd(T a, T b) { while (b) { T t = a % b; a = b; b = t; } return a; } template <class T> T fast_gcd(T u, T v) { int shl = 0; while (u && v && u != v) { T eu = u & 1; u >>= eu ^ 1; T ev = v & 1; v >>= ev ^ 1; shl += (~(eu | ev) & 1); T d = u & v & 1 ? (u + v) >> 1 : 0; T dif = (u - v) >> (sizeof(T) * 8 - 1); u -= d & ~dif; v -= d & dif; } return std::max(u, v) << shl; } inline long long lcm(long long a, long long b) { return a / gcd(a, b) * b; } template <class T> inline T gcd(T a, T b, T c) { return gcd(gcd(a, b), c); } long long gcdex(long long a, long long b, long long& x, long long& y) { if (!a) { x = 0; y = 1; return b; } long long y1; long long d = gcdex(b % a, a, y, y1); x = y1 - (b / a) * y; return d; } bool isPrime(long long n) { if (n <= (1 << 14)) { int x = (int)n; if (x <= 4 || x % 2 == 0 || x % 3 == 0) return x == 2 || x == 3; for (int i = 5; i * i <= x; i += 6) if (x % i == 0 || x % (i + 2) == 0) return 0; return 1; } long long s = n - 1; int t = 0; while (s % 2 == 0) { s /= 2; ++t; } for (int a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!(a %= n)) return true; long long f = powmulmod(a, s, n); if (f == 1 || f == n - 1) continue; for (int i = 1; i < t; ++i) if ((f = mulmod(f, f, n)) == n - 1) goto nextp; return false; nextp:; } return true; } int32_t solve(); int32_t main(int argc, char** argv) { ios_base::sync_with_stdio(0); cin.tie(0); return solve(); } int a[101001]; int b[101010]; int dp[101010]; int p1[101010]; int p2[101010]; long long getSum(int* __restrict b, int* __restrict dp, int n) { int r1 = 0; int r2 = 0; for (int j = 0; j < n; ++j) { int t = (b[j] >> 31) & dp[j]; r1 += t >> 16; r2 += t & ((1 << 16) - 1); } return (long long(r1) << 16) + r2; } template <int val> void add(int* a, int n) { for (int i = 0; i < n; ++i) { a[i] += val; } } int solve() { int n = readInt(); int k = readInt(); for (int i = 0; i < (n); ++i) { b[i] = -k - 1; } for (int i = 0; i < (n); ++i) { a[i] = readInt() - 1; p1[i] = p2[i] = -1; } dp[0] = 1; for (int i = 0; i < n; ++i) { int x = a[i]; add<-1>(b + p2[x] + 1, p1[x] - p2[x]); add<1>(b + p1[x] + 1, i - p1[x]); dp[i + 1] = getSum(b, dp, i + 1) % 998244353; p2[x] = p1[x]; p1[x] = i; } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 7, S = 335, mod = 998244353; int sum[S][maxn], la[S], bl[maxn], ans[S], k, val[maxn], dp[maxn], L[S], R[S], pre[maxn], c[maxn], n, a[maxn]; inline int add(int a, int b) { return a + b >= mod ? a + b - mod : a + b; } inline int dic(int a, int b) { return a - b < 0 ? a - b + mod : a - b; } inline void clear(int x) { for (int i = L[x]; i <= R[x]; ++i) sum[x][i] = 0; ans[x] = 0; } inline void rebuild(int x) { for (int i = L[x]; i <= R[x]; ++i) val[i] += la[x], sum[x][val[i]] = add(sum[x][val[i]], dp[i]), ans[x] = add(ans[x], dp[i] * (val[i] <= k)); la[x] = 0; return; } inline void modify(int l, int r, int t) { if (bl[l] == bl[r]) { clear(bl[l]); for (int i = l; i <= r; ++i) val[i] += t; rebuild(bl[l]); return; } clear(bl[l]), clear(bl[r]); for (int i = l; i <= R[bl[l]]; ++i) val[i] += t; for (int i = L[bl[r]]; i <= r; ++i) val[i] += t; rebuild(bl[l]), rebuild(bl[r]); for (int i = bl[l] + 1; i < bl[r]; ++i) { if (t == 1) ans[i] = dic(ans[i], sum[i][k - la[i]]); else ans[i] = add(ans[i], sum[i][k - la[i] + 1]); la[i] += t; } return; } inline int query(int l, int r) { int res = 0; if (bl[l] == bl[r]) { for (int i = l; i <= r; ++i) if (val[i] + la[bl[l]] <= k) res = add(res, dp[i]); } else { for (int i = l; i <= R[bl[l]]; ++i) if (val[i] + la[bl[l]] <= k) res = add(res, dp[i]); for (int i = L[bl[r]]; i <= r; ++i) if (val[i] + la[bl[r]] <= k) res = add(res, dp[i]); for (int i = bl[l] + 1; i < bl[r]; ++i) res = add(res, ans[i]); } return res; } inline void modify(int x, int y) { clear(bl[x]); rebuild(bl[x]); } int main() { cin >> n >> k; const int tn = sqrt(n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]), pre[i] = c[a[i]], c[a[i]] = i, bl[i] = (i - 1) / tn + 1; if (bl[i] != bl[i - 1]) L[bl[i]] = i, R[bl[i - 1]] = i - 1; } R[bl[n]] = n; dp[1] = 1; rebuild(1); for (int i = 1; i <= n; ++i) { modify(pre[i] + 1, i, 1); if (pre[i]) modify(pre[pre[i]] + 1, pre[i], -1); dp[i + 1] = query(1, i); modify(i + 1, dp[i + 1]); } cout << dp[n + 1] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline void amin(T &x, const T &y) { if (y < x) x = y; } template <class T> inline void amax(T &x, const T &y) { if (x < y) x = y; } template <class Iter> void rprintf(const char *fmt, Iter begin, Iter end) { for (bool sp = 0; begin != end; ++begin) { if (sp) putchar(' '); else sp = true; printf(fmt, *begin); } putchar('\n'); } template <unsigned MOD> struct ModInt { static const unsigned static_MOD = MOD; unsigned x; void undef() { x = (unsigned)-1; } bool isnan() const { return x == (unsigned)-1; } inline int geti() const { return (int)x; } ModInt() { x = 0; } ModInt(const ModInt &y) { x = y.x; } ModInt(int y) { if (y < 0 || (int)MOD <= y) y %= (int)MOD; if (y < 0) y += MOD; x = y; } ModInt(unsigned y) { if (MOD <= y) x = y % MOD; else x = y; } ModInt(long long y) { if (y < 0 || MOD <= y) y %= MOD; if (y < 0) y += MOD; x = y; } ModInt(unsigned long long y) { if (MOD <= y) x = y % MOD; else x = y; } ModInt &operator+=(const ModInt y) { if ((x += y.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(const ModInt y) { if ((x -= y.x) & (1u << 31)) x += MOD; return *this; } ModInt &operator*=(const ModInt y) { x = (unsigned long long)x * y.x % MOD; return *this; } ModInt &operator/=(const ModInt y) { x = (unsigned long long)x * y.inv().x % MOD; return *this; } ModInt operator-() const { return (x ? MOD - x : 0); } ModInt inv() const { unsigned a = MOD, b = x; int u = 0, v = 1; while (b) { int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if (u < 0) u += MOD; return ModInt(u); } ModInt pow(long long y) const { ModInt b = *this, r = 1; if (y < 0) { b = b.inv(); y = -y; } for (; y; y >>= 1) { if (y & 1) r *= b; b *= b; } return r; } friend ModInt operator+(ModInt x, const ModInt y) { return x += y; } friend ModInt operator-(ModInt x, const ModInt y) { return x -= y; } friend ModInt operator*(ModInt x, const ModInt y) { return x *= y; } friend ModInt operator/(ModInt x, const ModInt y) { return x *= y.inv(); } friend bool operator<(const ModInt x, const ModInt y) { return x.x < y.x; } friend bool operator==(const ModInt x, const ModInt y) { return x.x == y.x; } friend bool operator!=(const ModInt x, const ModInt y) { return x.x != y.x; } }; const long long MOD = 998244353; const int MAXN = 100011; const int MAGIC = 400; const int SIZE = (MAXN + MAGIC - 1) / MAGIC; int N, K; int A[100011]; int prv[100011], pprv[100011]; struct Data { int k, i; ModInt<MOD> m; Data() { k = 0; i = -1; m = 0; } bool operator<(const Data &d) const { return k < d.k; } }; struct Block { int offset; Data D[SIZE]; ModInt<MOD> sums[SIZE + 1]; int len; ModInt<MOD> ans; Block() { offset = 0; len = 0; ans = 0; } void add(int diff) { offset += diff; calc(); } void calc() { Data key; key.k = K - offset; int pos = upper_bound(D, D + len, key) - D; ans = sums[pos]; } void add(int L, int R, int diff) { for (int i = 0, i_len = (len); i < i_len; ++i) { if (L <= D[i].i && D[i].i < R) { D[i].k += diff; } } build(); } ModInt<MOD> sum(int L, int R) { ModInt<MOD> ret = 0; for (int i = 0, i_len = (len); i < i_len; ++i) { if (L <= D[i].i && D[i].i < R && D[i].k + offset <= K) { ret += D[i].m; } } return ret; } void build() { sort(D, D + len); sums[0] = 0; for (int i = 0, i_len = (len); i < i_len; ++i) sums[i + 1] = sums[i] + D[i].m; calc(); } void ins(int i, ModInt<MOD> m) { D[len].i = i; D[len].m = m; D[len].k = -offset; len++; } } B[MAGIC]; void add(int L, int R, int diff) { R--; if (R < L) return; int bl = L / MAGIC, br = R / MAGIC; if (bl == br) { B[bl].add(L, R + 1, diff); } else { for (int i = bl + 1; i < br; i++) { B[i].offset += diff; } B[bl].add(L, R + 1, diff); B[br].add(L, R + 1, diff); } } ModInt<MOD> sum(int L, int R) { R--; assert(L <= R); int bl = L / MAGIC, br = R / MAGIC; ModInt<MOD> ret = 0; if (bl == br) { ret += B[bl].sum(L, R + 1); } else { for (int i = bl + 1; i < br; i++) { ret += B[i].ans; } ret += B[bl].sum(L, R + 1); ret += B[br].sum(L, R + 1); } return ret; } void insert(int i, ModInt<MOD> m) { int b = i / MAGIC; B[b].ins(i, m); if (B[b].len == SIZE) B[b].build(); } void MAIN() { scanf("%d%d", &N, &K); for (int i = 0, i_len = (N); i < i_len; ++i) scanf("%d", A + i); insert(0, 1); for (int i = 0, i_len = (N); i < i_len; ++i) { int a = A[i]; add(prv[a], i + 1, +1); add(pprv[a], prv[a], -1); pprv[a] = prv[a]; prv[a] = i + 1; ModInt<MOD> m = sum(0, i + 1); if (i == N - 1) { printf("%d\n", m.geti()); return; } insert(i + 1, m); } } int main() { int TC = 1; for (int tc = 0, tc_len = (TC); tc < tc_len; ++tc) MAIN(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353, dt = 320; int b[100010], a[100010], pre[100010], d[100010]; int f[100010]; int q[320][645]; int n, k, now; int sum[320]; inline int mo(int x) { if (x >= MOD) return x - MOD; return x; } void ins(int x, int y) { b[x] = y; int z = x / dt; if (z == now) return; sum[z] = 0; for (int i = 0; i <= dt + dt; i++) q[z][i] = 0; for (int i = z * dt + dt - 1; i >= z * dt; i--) sum[z] += b[i], q[z][sum[z] + dt] = mo(q[z][sum[z] + dt] + f[i]); for (int i = 1; i <= dt + dt; i++) q[z][i] = mo(q[z][i] + q[z][i - 1]); } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; i++) scanf("%d", &a[i]), pre[i] = d[a[i]], d[a[i]] = i; f[0] = 1; for (int i = 1; i <= n; i++) { now = i / dt; ins(i - 1, 1); if (pre[i]) { ins(pre[i] - 1, -1); if (pre[pre[i]]) ins(pre[pre[i]] - 1, 0); } int tot = 0; for (int j = i - 1; j / dt == now && j >= 0; j--) { tot += b[j]; if (tot <= k) f[i] = mo(f[i] + f[j]); } for (int j = now - 1; j >= 0; j--) { if (tot <= k + dt) f[i] = mo(f[i] + q[j][min(dt + dt, k + dt - tot)]); k += sum[j]; } } printf("%d\n", f[n]); }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n, k; scanf("%d %d", &n, &k); int arr[n + 1]; int gseg[n + 1]; for (int i = 1; i <= n; i++) { gseg[i] = 0; } for (int i = 1; i <= n; i++) { scanf("%d", &arr[i]); } int count[n + 1]; for (int i = 1; i <= n; i++) { count[i] = 0; } int dist = 0; for (int i = 1; i <= k; i++) { if (count[arr[i]] == 0) { dist++; } count[arr[i]]++; } for (int i = 1; i <= n && n - i + 1 > k; i++) { int temp; int index; if (i != 1) { if (count[arr[i - 1]] == 1) dist--; if (count[arr[i + k - 1]] == 0) dist++; count[arr[i - 1]]--; count[arr[i + k - 1]]++; } temp = dist; for (int j = i + k; j <= n; j++) { if (count[arr[j]] == 0) temp++; count[arr[j]]++; if (temp > k) { index = j; break; } else { gseg[i] = j; } } for (int j = index; j >= i + k; j--) { count[arr[j]]--; } } int dp[n + 1]; for (int i = 1; i <= n; i++) { dp[i] = 0; } dp[1] = 1; dp[0] = 1; for (int i = 2; i <= n; i++) { for (int j = i; j >= 1; j--) { int size = i - j + 1; if (size <= k) { dp[i] += dp[j - 1]; } if (size > k) { if (gseg[j] < i) { break; } else { dp[i] += dp[j - 1]; } } } } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 998244353; const int N = 100005; const int NN = 350; int add(int x, int y) { x = x + y; return x >= MOD ? x - MOD : x; } int dec(int x, int y) { x = x - y; return x < 0 ? x + MOD : x; } int mul(int x, int y) { return (long long)x * y % MOD; } int n, k; int a[N]; int bel[N]; int L[N], R[N]; int siz; int g[NN][N]; int lzy[N]; int f[N], h[N]; int lst[N], lst1[N]; void Init() { scanf("%d%d", &n, &k); siz = sqrt(n); for (int u = 1; u <= n; u++) scanf("%d", &a[u]); for (int u = 0; u <= n; u++) bel[u] = u / siz + 1; for (int u = 0; u <= n; u++) R[bel[u]] = u; for (int u = n; u >= 0; u--) L[bel[u]] = u; for (int u = 1; u <= n; u++) lst[u] = lst1[u] = 0; } void bt(int x) { for (int u = L[x]; u <= R[x]; u++) g[x][h[u]] = add(g[x][h[u]], f[u]); for (int u = 1; u <= n; u++) g[x][u] = add(g[x][u], g[x][u - 1]); } void Dec(int l, int r, int x) { for (int u = r; u >= max(L[bel[x]], l); u--) h[u]--; r = min(r, L[bel[x]] - 1); if (r < l) return; if (bel[l] == bel[r]) { for (int u = l; u <= r; u++) { h[u]--; g[bel[l]][h[u]] = add(g[bel[l]][h[u]], f[u]); } return; } for (int u = bel[l] + 1; u < bel[r]; u++) lzy[u]--; for (int u = l; u <= R[bel[l]]; u++) { h[u]--; g[bel[l]][h[u]] = add(g[bel[l]][h[u]], f[u]); } for (int u = L[bel[r]]; u <= r; u++) { h[u]--; g[bel[r]][h[u]] = add(g[bel[r]][h[u]], f[u]); } } void Add(int l, int r, int x) { for (int u = r; u >= max(L[bel[x]], l); u--) h[u]++; r = min(r, L[bel[x]] - 1); if (r < l) return; if (bel[l] == bel[r]) { for (int u = l; u <= r; u++) { g[bel[l]][h[u]] = dec(g[bel[l]][h[u]], f[u]); h[u]++; } return; } for (int u = bel[l] + 1; u < bel[r]; u++) lzy[u]++; for (int u = l; u <= R[bel[l]]; u++) { g[bel[l]][h[u]] = dec(g[bel[l]][h[u]], f[u]); h[u]++; } for (int u = L[bel[r]]; u <= r; u++) { g[bel[r]][h[u]] = dec(g[bel[r]][h[u]], f[u]); h[u]++; } } int calc(int x) { int lalal = 0; for (int u = L[bel[x]]; u < x; u++) if (h[u] <= k) lalal = add(lalal, f[u]); for (int u = 1; u < bel[x]; u++) { int t = k - lzy[u]; if (t < 0) continue; lalal = add(lalal, g[u][t]); } return lalal; } void solve() { h[0] = 0; f[0] = 1; if (0 == R[bel[0]]) bt(bel[0]); for (int u = 1; u <= n; u++) { int x = a[u]; if (lst[x] != 0) Dec(lst1[x], lst[x] - 1, u); Add(lst[x], u - 1, u); lst1[x] = lst[x]; lst[x] = u; f[u] = calc(u); if (u == R[bel[u]]) bt(bel[u]); } printf("%d\n", f[n]); } int main() { Init(); solve(); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MAX = 2e5 + 7; const int MOD = 1e9 + 7; const int PIERW = 300; int ciag[MAX]; int ostatnie[MAX]; int poprzedni[MAX]; long long pomocnicza[MAX]; long long DP[MAX]; struct Blok { int lewa, prawa; long long suma; long long sumaDP[PIERW * 2 + 1]; void Aktualizuj() { for (int i = 0; i <= 2 * PIERW; ++i) sumaDP[i] = 0; suma = 0; for (int i = prawa; i >= lewa; --i) { suma += pomocnicza[i]; if (lewa) sumaDP[suma + PIERW] = (sumaDP[suma + PIERW] + DP[i - 1]) % MOD; } for (int i = 1; i <= 2 * PIERW; i++) sumaDP[i] = (sumaDP[i] + sumaDP[i - 1]) % MOD; } }; Blok bloki[MAX / PIERW + 7]; int main() { int n, k; cin >> n >> k; DP[0] = 1; for (int i = 0; i * PIERW <= n; ++i) { bloki[i].lewa = i * PIERW; bloki[i].prawa = (i + 1) * PIERW - 1; bloki[i].Aktualizuj(); } for (int i = 1; i <= n; ++i) { cin >> ciag[i]; poprzedni[i] = ostatnie[ciag[i]]; ostatnie[ciag[i]] = i; pomocnicza[i] = 1; bloki[i / PIERW].Aktualizuj(); if (poprzedni[i]) { pomocnicza[poprzedni[i]] = -1; bloki[poprzedni[i] / PIERW].Aktualizuj(); if (poprzedni[poprzedni[i]]) { int t = poprzedni[poprzedni[i]]; pomocnicza[t] = 0; bloki[t / PIERW].Aktualizuj(); } } int blok = i / PIERW; int suma = 0; for (int j = i - 1; j >= bloki[blok].lewa; j--) { if (suma <= k) DP[i] += DP[j]; suma += pomocnicza[j]; } for (int j = blok - 1; j >= 0; --j) { int x = k - suma; if (-PIERW <= x && x <= PIERW) DP[i] += bloki[blok].sumaDP[x + PIERW]; else if (x < PIERW) DP[i] += bloki[blok].sumaDP[2 * PIERW]; suma += bloki[blok].suma; } } cout << DP[n] << "\n"; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline void read(long long &x) { char ch; bool flag = false; for (ch = getchar(); !isdigit(ch); ch = getchar()) if (ch == '-') flag = true; for (x = 0; isdigit(ch); x = x * 10 + ch - '0', ch = getchar()) ; x = flag ? -x : x; } inline void write(long long x) { static const long long maxlen = 100; static char s[maxlen]; if (x < 0) { putchar('-'); x = -x; } if (!x) { putchar('0'); return; } long long len = 0; for (; x; x /= 10) s[len++] = x % 10 + '0'; for (long long i = len - 1; i >= 0; --i) putchar(s[i]); } const long long MAXN = 110000; const long long MAX_block = 336; const long long MAX_val = 672; const long long AVG_val = 336; long long belong[MAXN]; long long l[MAX_block], r[MAX_block], cnt; long long add[MAX_block]; long long num[MAX_block][MAX_val]; long long val[MAXN]; long long n, lim; void prepare() { long long N = sqrt(n); for (long long i = 1; i <= n; i += N) { ++cnt; l[cnt] = i; r[cnt] = i + N - 1; } r[cnt] = min(r[cnt], n); for (long long i = 1; i <= cnt; i++) for (long long j = l[i]; j <= r[i]; j++) belong[j] = i; for (long long i = 1; i <= cnt; i++) add[i] = 0; memset(num, 0, sizeof(num)); } const long long P = 998244353; long long a[MAXN]; long long f[MAXN]; void modify(long long a, long long b, long long tag) { if (belong[a] == belong[b]) { long long now = belong[a]; for (long long i = a; i <= b; i++) { if (tag == 1) { long long &x = num[now][val[i] + AVG_val]; x = (x - f[i - 1] + P) % P; } else { long long &x = num[now][val[i] + AVG_val - 1]; x = (x + f[i - 1]) % P; } val[i] += tag; } return; } for (long long i = belong[a] + 1; i < belong[b]; i++) add[i] += tag; long long now = belong[a]; for (long long i = a; i <= r[now]; i++) { if (tag == 1) { long long &x = num[now][val[i] + AVG_val]; x = (x - f[i - 1] + P) % P; } else { long long &x = num[now][val[i] + AVG_val - 1]; x = (x + f[i - 1]) % P; } val[i] += tag; } now = belong[b]; for (long long i = l[now]; i <= b; i++) { if (tag == 1) { long long &x = num[now][val[i] + AVG_val]; x = (x - f[i - 1] + P) % P; } else { long long &x = num[now][val[i] + AVG_val - 1]; x = (x + f[i - 1]) % P; } val[i] += tag; } } long long query() { long long sum = 0; for (long long i = 1; i <= cnt; i++) { sum = (sum + num[i][lim - add[i] + AVG_val]) % P; } return sum; } long long last[MAXN]; long long pre[MAXN]; int main() { read(n); read(lim); for (long long i = 1; i <= n; i++) read(a[i]); prepare(); f[0] = 1; for (long long i = 1; i <= n; i++) { pre[i] = last[a[i]]; long long now = belong[i]; for (long long j = AVG_val; j < MAX_val; j++) num[now][j] = (f[i - 1] + num[now][j]) % P; modify(pre[i] + 1, i, 1); if (pre[i] != 0) { modify(pre[pre[i]] + 1, pre[i], -1); } f[i] = query(); last[a[i]] = i; } cout << f[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int B = 323; const int N = 1e5 + 5; const int MOD = 998244353; namespace { int Add(int a, int b) { return (a += b) >= MOD ? a - MOD : a; } int Sub(int a, int b) { return (a -= b) < 0 ? a + MOD : a; } int Mul(int a, int b) { return (long long)a * b % MOD; } } // namespace int n, k; int a[N], fr[N], ls[N], bl[N], d[N], dp[N]; int sm[N / B + 1], gd[N / B + 1][B * 2 + 1]; void Set(int x, int _v) { int b = bl[x], *f = gd[b]; int l = (b - 1) * B + 1, r = min(n, b * B); sm[b] += _v - d[x]; d[x] = _v; memset(f, 0, sizeof gd[b]); for (int i = r, s = 0; i >= l; --i) { f[B + s] = Add(f[B + s], dp[i]); s += d[i]; } for (int i = 1; i <= B * 2; ++i) { f[i] = Add(f[i], f[i - 1]); } } int main() { scanf("%d%d", &n, &k); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); fr[i] = ls[a[i]]; ls[a[i]] = i; bl[i] = (i - 1) / B + 1; } for (int i = 1; i <= n; ++i) { Set(i, 1); if (fr[i]) { Set(fr[i], -1); if (fr[fr[i]]) { Set(fr[fr[i]], 0); } } int s = 0; for (int j = bl[i]; j; --j) { if (abs(k - s) <= B) { dp[i] = Add(dp[i], gd[j][B + k - s]); } s += sm[j]; } if (s <= k) { dp[i] = Add(dp[i], 1); } } printf("%d\n", dp[n]); return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#pragma comment(linker, "/stack:200000000") #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,avx,avx2") #define _CRT_SECURE_NO_WARNINGS # include <iostream> # include <cmath> # include <algorithm> # include <stdio.h> # include <cstdint> # include <cstring> # include <string> # include <cstdlib> # include <vector> # include <bitset> # include <map> # include <queue> # include <ctime> # include <stack> # include <set> # include <list> # include <random> # include <deque> # include <functional> # include <iomanip> # include <sstream> # include <fstream> # include <complex> # include <numeric> # include <immintrin.h> # include <cassert> # include <array> # include <tuple> # include <unordered_map> # include <unordered_set> //#ifdef LOCAL //# include <opencv2/core/core.hpp> //# include <opencv2/highgui/highgui.hpp> //# include <opencv2/imgproc/imgproc.hpp> //#endif using namespace std; #define VA_NUM_ARGS(...) VA_NUM_ARGS_IMPL_((0,__VA_ARGS__, 6,5,4,3,2,1)) #define VA_NUM_ARGS_IMPL_(tuple) VA_NUM_ARGS_IMPL tuple #define VA_NUM_ARGS_IMPL(_0,_1,_2,_3,_4,_5,_6,N,...) N #define macro_dispatcher(macro, ...) macro_dispatcher_(macro, VA_NUM_ARGS(__VA_ARGS__)) #define macro_dispatcher_(macro, nargs) macro_dispatcher__(macro, nargs) #define macro_dispatcher__(macro, nargs) macro_dispatcher___(macro, nargs) #define macro_dispatcher___(macro, nargs) macro ## nargs #define DBN1(a) cerr<<#a<<"="<<(a)<<"\n" #define DBN2(a,b) cerr<<#a<<"="<<(a)<<", "<<#b<<"="<<(b)<<"\n" #define DBN3(a,b,c) cerr<<#a<<"="<<(a)<<", "<<#b<<"="<<(b)<<", "<<#c<<"="<<(c)<<"\n" #define DBN4(a,b,c,d) cerr<<#a<<"="<<(a)<<", "<<#b<<"="<<(b)<<", "<<#c<<"="<<(c)<<", "<<#d<<"="<<(d)<<"\n" #define DBN5(a,b,c,d,e) cerr<<#a<<"="<<(a)<<", "<<#b<<"="<<(b)<<", "<<#c<<"="<<(c)<<", "<<#d<<"="<<(d)<<", "<<#e<<"="<<(e)<<"\n" #define DBN6(a,b,c,d,e,f) cerr<<#a<<"="<<(a)<<", "<<#b<<"="<<(b)<<", "<<#c<<"="<<(c)<<", "<<#d<<"="<<(d)<<", "<<#e<<"="<<(e)<<", "<<#f<<"="<<(f)<<"\n" #define DBN(...) macro_dispatcher(DBN, __VA_ARGS__)(__VA_ARGS__) #define DA(a,n) cerr<<#a<<"=["; printarray(a,n); cerr<<"]\n" #define DAR(a,n,s) cerr<<#a<<"["<<s<<"-"<<n-1<<"]=["; printarray(a,n,s); cerr<<"]\n" #ifdef _MSC_VER #define PREFETCH(ptr, rw, level) ((void)0) #else #define PREFETCH(ptr, rw, level) __builtin_prefetch(ptr, rw, level) #endif #if defined _MSC_VER #define ASSUME(condition) ((void)0) #define __restrict #elif defined __clang__ #define ASSUME(condition) __builtin_assume(condition) #elif defined __GNUC__ [[noreturn]] __attribute__((always_inline)) inline void undefinedBehaviour() {} #define ASSUME(condition) ((condition) ? true : (undefinedBehaviour(), false)) #endif #ifdef LOCAL #define CURTIME() cerr << clock() * 1.0 / CLOCKS_PER_SEC << endl #else #define CURTIME() #endif typedef long long ll; typedef long double ld; typedef unsigned int uint; typedef unsigned long long ull; typedef pair<int, int> pii; typedef pair<long long, long long> pll; typedef vector<int> vi; typedef vector<long long> vll; typedef int itn; template<class T1, class T2, class T3> struct triple{ T1 a; T2 b; T3 c; triple() : a(T1()), b(T2()), c(T3()) {}; triple(T1 _a, T2 _b, T3 _c) :a(_a), b(_b), c(_c){} }; template<class T1, class T2, class T3> bool operator<(const triple<T1,T2,T3>&t1,const triple<T1,T2,T3>&t2){if(t1.a!=t2.a)return t1.a<t2.a;else if(t1.b!=t2.b)return t1.b<t2.b;else return t1.c<t2.c;} template<class T1, class T2, class T3> bool operator>(const triple<T1,T2,T3>&t1,const triple<T1,T2,T3>&t2){if(t1.a!=t2.a)return t1.a>t2.a;else if(t1.b!=t2.b)return t1.b>t2.b;else return t1.c>t2.c;} #define tri triple<int,int,int> #define trll triple<ll,ll,ll> #define FI(n) for(int i=0;i<(n);++i) #define FJ(n) for(int j=0;j<(n);++j) #define FK(n) for(int k=0;k<(n);++k) #define FL(n) for(int l=0;l<(n);++l) #define FQ(n) for(int q=0;q<(n);++q) #define FOR(i,a,b) for(int i = (a), __e = (int) (b); i < __e; ++i) #define all(a) std::begin(a), std::end(a) #define reunique(v) v.resize(std::unique(v.begin(), v.end()) - v.begin()) #define sqr(x) ((x) * (x)) #define sqrt(x) sqrt(1.0 * (x)) #define pow(x, n) pow(1.0 * (x), n) #define COMPARE(obj) [&](const std::decay_t<decltype(obj)>& a, const std::decay_t<decltype(obj)>& b) #define COMPARE_BY(obj, field) [&](const std::decay_t<decltype(obj)>& a, const std::decay_t<decltype(obj)>& b) { return a.field < b.field; } #define checkbit(n, b) (((n) >> (b)) & 1) #define setbit(n, b) ((n) | (static_cast<std::decay<decltype(n)>::type>(1) << (b))) #define removebit(n, b) ((n) & ~(static_cast<std::decay<decltype(n)>::type>(1) << (b))) #define flipbit(n, b) ((n) ^ (static_cast<std::decay<decltype(n)>::type>(1) << (b))) inline int countBits(uint v){v=v-((v>>1)&0x55555555);v=(v&0x33333333)+((v>>2)&0x33333333);return((v+(v>>4)&0xF0F0F0F)*0x1010101)>>24;} inline int countBits(ull v){uint t=v>>32;uint p=(v & ((1ULL << 32) - 1)); return countBits(t) + countBits(p); } inline int countBits(ll v){return countBits((ull)v); } inline int countBits(int v){return countBits((uint)v); } unsigned int reverseBits(uint x){ x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); return((x >> 16) | (x << 16)); } template<class T> inline int sign(T x){ return x > 0 ? 1 : x < 0 ? -1 : 0; } inline bool isPowerOfTwo(int x){ return (x != 0 && (x&(x - 1)) == 0); } constexpr ll power(ll x, int p) { return p == 0 ? 1 : (x * power(x, p - 1)); } template<class T> inline bool inRange(const T& val, const T& min, const T& max) { return min <= val && val <= max; } //template<class T1, class T2, class T3> T1 inline clamp(T1 x, const T2& a, const T3& b) { if (x < a) return a; else if (x > b) return b; else return x; } unsigned long long rdtsc() { unsigned long long ret = 0; #ifdef __clang__ return __builtin_readcyclecounter(); #endif #ifndef _MSC_VER asm volatile("rdtsc" : "=A" (ret) : :); #endif return ret; } // Fast IO ******************************************************************************************************** const int __BS = 4096; static char __bur[__BS + 16], *__er = __bur + __BS, *__ir = __er; template<class T = int> T readInt() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && (*__ir < '0' || *__ir > '9') && *__ir != '-') ++__ir; c(); bool m = false; if (*__ir == '-') ++__ir, c(), m = true; T r = 0; while (*__ir >= '0' && *__ir <= '9') r = r * 10 + *__ir - '0', ++__ir, c(); ++__ir; return m ? -r : r; } string readString() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; string r; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); while (!isspace(*__ir)) r.push_back(*__ir), ++__ir, c(); ++__ir; return r; } char readChar() { auto c = [&]() { if (__ir == __er) std::fill(__bur, __bur + __BS, 0), cin.read(__bur, __BS), __ir = __bur; }; c(); while (*__ir && isspace(*__ir)) ++__ir, c(); return *__ir++; } static char __buw[__BS + 20], *__iw = __buw, *__ew = __buw + __BS; template<class T> void writeInt(T x, char endc = '\n') { if (x < 0) *__iw++ = '-', x = -x; if (x == 0) *__iw++ = '0'; char* s = __iw; while (x) { T t = x / 10; char c = x - 10 * t + '0'; *__iw++ = c; x = t; } char* f = __iw - 1; while (s < f) swap(*s, *f), ++s, --f; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; if (endc) { *__iw++ = endc; } } template<class T> void writeStr(const T& str) { int i = 0; while (str[i]) { *__iw++ = str[i++]; if (__iw > __ew) cout.write(__buw, __iw - __buw), __iw = __buw; } } struct __FL__ { ~__FL__() { if (__iw != __buw) cout.write(__buw, __iw - __buw); } }; static __FL__ __flushVar__; //STL output ***************************************************************************************************** #define TT1 template<class T> #define TT1T2 template<class T1, class T2> #define TT1T2T3 template<class T1, class T2, class T3> TT1T2 ostream& operator << (ostream& os, const pair<T1, T2>& p); TT1 ostream& operator << (ostream& os, const vector<T>& v); TT1T2 ostream& operator << (ostream& os, const set<T1, T2>&v); TT1T2 ostream& operator << (ostream& os, const multiset<T1, T2>&v); TT1T2 ostream& operator << (ostream& os, priority_queue<T1, T2> v); TT1T2T3 ostream& operator << (ostream& os, const map<T1, T2, T3>& v); TT1T2T3 ostream& operator << (ostream& os, const multimap<T1, T2, T3>& v); TT1T2T3 ostream& operator << (ostream& os, const triple<T1, T2, T3>& t); template<class T, size_t N> ostream& operator << (ostream& os, const array<T, N>& v); TT1T2 ostream& operator << (ostream& os, const pair<T1, T2>& p){ return os <<"("<<p.first<<", "<< p.second<<")"; } TT1 ostream& operator << (ostream& os, const vector<T>& v){ bool f=1;os<<"[";for(auto& i : v) { if (!f)os << ", ";os<<i;f=0;}return os << "]"; } template<class T, size_t N> ostream& operator << (ostream& os, const array<T, N>& v) { bool f=1;os<<"[";for(auto& i : v) { if (!f)os << ", ";os<<i;f=0;}return os << "]"; } TT1T2 ostream& operator << (ostream& os, const set<T1, T2>&v){ bool f=1;os<<"[";for(auto& i : v) { if (!f)os << ", ";os<<i;f=0;}return os << "]"; } TT1T2 ostream& operator << (ostream& os, const multiset<T1,T2>&v){bool f=1;os<<"[";for(auto& i : v) { if (!f)os << ", ";os<<i;f=0;}return os << "]"; } TT1T2T3 ostream& operator << (ostream& os, const map<T1,T2,T3>& v){ bool f = 1; os << "["; for (auto& ii : v) { if (!f)os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; }return os << "]"; } TT1T2 ostream& operator << (ostream& os, const multimap<T1, T2>& v){ bool f = 1; os << "["; for (auto& ii : v) { if (!f)os << ", "; os << "(" << ii.first << " -> " << ii.second << ") "; f = 0; }return os << "]"; } TT1T2 ostream& operator << (ostream& os, priority_queue<T1, T2> v) { bool f = 1; os << "["; while (!v.empty()) { auto x = v.top(); v.pop(); if (!f) os << ", "; f = 0; os << x; } return os << "]"; } TT1T2T3 ostream& operator << (ostream& os, const triple<T1, T2, T3>& t){ return os << "(" << t.a << ", " << t.b << ", " << t.c << ")"; } TT1T2 void printarray(const T1& a, T2 sz, T2 beg = 0){ for (T2 i = beg; i<sz; i++) cout << a[i] << " "; cout << endl; } //STL input ***************************************************************************************************** TT1T2T3 inline istream& operator >> (istream& os, triple<T1, T2, T3>& t); TT1T2 inline istream& operator >> (istream& os, pair<T1, T2>& p) { return os >> p.first >> p.second; } TT1 inline istream& operator >> (istream& os, vector<T>& v) { if (v.size()) for (T& t : v) os >> t; else { string s; T obj; while (s.empty()) {getline(os, s); if (!os) return os;} stringstream ss(s); while (ss >> obj) v.push_back(obj); } return os; } TT1T2T3 inline istream& operator >> (istream& os, triple<T1, T2, T3>& t) { return os >> t.a >> t.b >> t.c; } //Pair magic ***************************************************************************************************** #define PT1T2 pair<T1, T2> TT1T2 inline PT1T2 operator+(const PT1T2 &p1 , const PT1T2 &p2) { return PT1T2(p1.first + p2.first, p1.second + p2.second); } TT1T2 inline PT1T2& operator+=(PT1T2 &p1 , const PT1T2 &p2) { p1.first += p2.first, p1.second += p2.second; return p1; } TT1T2 inline PT1T2 operator-(const PT1T2 &p1 , const PT1T2 &p2) { return PT1T2(p1.first - p2.first, p1.second - p2.second); } TT1T2 inline PT1T2& operator-=(PT1T2 &p1 , const PT1T2 &p2) { p1.first -= p2.first, p1.second -= p2.second; return p1; } #undef TT1 #undef TT1T2 #undef TT1T2T3 #define FREIN(FILE) freopen(FILE, "rt", stdin) #define FREOUT(FILE) freopen(FILE, "wt", stdout) #ifdef LOCAL #define BEGIN_PROFILE(idx, name) int profileIdx = idx; profileName[profileIdx] = name; totalTime[profileIdx] -= rdtsc() / 1e3; #define END_PROFILE totalTime[profileIdx] += rdtsc() / 1e3; totalCount[profileIdx]++; #else #define BEGIN_PROFILE(idx, name) #define END_PROFILE #endif const int USUAL_MOD = 1000000007; template<class T> inline void normmod(T &x, T m = USUAL_MOD) { x %= m; if (x < 0) x += m; } template<class T1, class T2> inline T2 summodfast(T1 x, T1 y, T2 m = USUAL_MOD) { T2 res = x + y; if (res >= m) res -= m; return res; } template<class T1, class T2, class T3 = int> inline void addmodfast(T1 &x, T2 y, T3 m = USUAL_MOD) { x += y; if (x >= m) x -= m; } template<class T1, class T2, class T3 = int> inline void submodfast(T1 &x, T2 y, T3 m = USUAL_MOD) { x -= y; if (x < 0) x += m; } inline ll mulmod(ll x, ll n, ll m){ x %= m; n %= m; ll r = x * n - ll(ld(x)*ld(n) / ld(m)) * m; while (r < 0) r += m; while (r >= m) r -= m; return r; } inline ll powmod(ll x, ll n, ll m){ ll r = 1; normmod(x, m); while (n){ if (n & 1) r *= x; x *= x; r %= m; x %= m; n /= 2; }return r; } inline ll powmulmod(ll x, ll n, ll m) { ll res = 1; normmod(x, m); while (n){ if (n & 1)res = mulmod(res, x, m); x = mulmod(x, x, m); n /= 2; } return res; } template<class T> inline T gcd(T a, T b) { while (b) { T t = a % b; a = b; b = t; } return a; } template<class T> T fast_gcd(T u, T v) { int shl = 0; while ( u && v && u != v) { T eu = u & 1; u >>= eu ^ 1; T ev = v & 1; v >>= ev ^ 1; shl += (~(eu | ev) & 1); T d = u & v & 1 ? (u + v) >> 1 : 0; T dif = (u - v) >> (sizeof(T) * 8 - 1); u -= d & ~dif; v -= d & dif; } return std::max(u, v) << shl; } inline ll lcm(ll a, ll b){ return a / gcd(a, b) * b; } template<class T> inline T gcd(T a, T b, T c){ return gcd(gcd(a, b), c); } ll gcdex(ll a, ll b, ll& x, ll& y) { if (!a) { x = 0; y = 1; return b; } ll y1; ll d = gcdex(b % a, a, y, y1); x = y1 - (b / a) * y; return d; } bool isPrime(long long n) { if (n <= (1 << 14)) { int x = (int) n; if (x <= 4 || x % 2 == 0 || x % 3 == 0) return x == 2 || x == 3; for (int i = 5; i * i <= x; i += 6) if (x % i == 0 || x % (i + 2) == 0) return 0; return 1; } long long s = n - 1; int t = 0; while (s % 2 == 0) { s /= 2; ++t; } for (int a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) { if (!(a %= n)) return true; long long f = powmulmod(a, s, n); if (f == 1 || f == n - 1) continue; for (int i = 1; i < t; ++i) if ((f = mulmod(f, f, n)) == n - 1) goto nextp; return false; nextp:; } return true; } // Useful constants //int some_primes[7] = {24443, 100271, 1000003, 1000333, 5000321, 98765431, #define T9 1000000000 #define T18 1000000000000000000LL #define INF 1011111111 #define LLINF 1000111000111000111LL #define mod 1000000007 #define fftmod 998244353 #define EPS 1e-10 #define PI 3.14159265358979323846264 #define link himomisubmitted #define rank thatsnoteasytask //************************************************************************************* int32_t solve(); int32_t main(int argc, char** argv) { ios_base::sync_with_stdio(0);cin.tie(0); #ifdef LOCAL FREIN("input.txt"); // FREOUT("out.txt"); #endif return solve(); } int a[101001]; int b[101010]; int dp[104040]; vector<int> positions[101010]; __m256i _mm256_load_pi32x4(const int *x) { return _mm256_cvtepi32_epi64(_mm_load_si128((const __m128i*)x)); } __m256i _mm256_set_pi32x4(int x) { return _mm256_cvtepi32_epi64(_mm_set1_epi32(x)); } ll getSum(int* __restrict b, int* __restrict dp, int n) { ll res = 0; __m256i y0 = _mm256_set_pi32x4(0); __m256i y7 = _mm256_set_pi32x4(0); while (n % 16) { --n; res += b[0] > 0 ? 0 : dp[0]; ++b; ++dp; } n /= 4; for (int j = 0; j < n; ++j) { __m256i y1 = _mm256_load_pi32x4(b); __m256i y2 = _mm256_load_pi32x4(dp); y1 = _mm256_cmpgt_epi64(y1, y0); y7 = _mm256_add_epi64(y7, _mm256_and_si256(y1, y2)); b += 4; dp += 4; } ll arr[4]; _mm256_store_si256((__m256i*)arr, y7); return res + arr[0] + arr[1] + arr[2] + arr[3]; } int solve() { int n = readInt(); int k = readInt(); FI(n) { b[i] += k + 1; } FI(n) { a[i] = readInt(); --a[i]; positions[i].push_back(-1); positions[i].push_back(-1); } dp[0] = 1; for (int i = 0; i < n; ++i) { int x = a[i]; { int to = positions[x].back(); int from = *++positions[x].rbegin() + 1; for (int j = from; j <= to; ++j) { b[j]++; } } int from = positions[x].back() + 1; for (int j = from; j <= i; ++j) { b[j]--; } ll res = getSum(b, dp, i + 1); dp[i + 1] = res % fftmod; positions[x].push_back(i); } cout << dp[n] << endl; return 0; }
1129_D. Isolation
Find the number of ways to divide an array a of n integers into any number of disjoint non-empty segments so that, in each segment, there exist at most k distinct integers that appear exactly once. Since the answer can be large, find it modulo 998 244 353. Input The first line contains two space-separated integers n and k (1 ≀ k ≀ n ≀ 10^5) β€” the number of elements in the array a and the restriction from the statement. The following line contains n space-separated integers a_1, a_2, …, a_n (1 ≀ a_i ≀ n) β€” elements of the array a. Output The first and only line contains the number of ways to divide an array a modulo 998 244 353. Examples Input 3 1 1 1 2 Output 3 Input 5 2 1 1 2 1 3 Output 14 Input 5 5 1 2 3 4 5 Output 16 Note In the first sample, the three possible divisions are as follows. * [[1], [1], [2]] * [[1, 1], [2]] * [[1, 1, 2]] Division [[1], [1, 2]] is not possible because two distinct integers appear exactly once in the second segment [1, 2].
{ "input": [ "5 5\n1 2 3 4 5\n", "3 1\n1 1 2\n", "5 2\n1 1 2 1 3\n" ], "output": [ "16", "3", "14" ] }
{ "input": [ "50 1\n50 8 46 9 12 38 41 18 49 10 23 15 16 3 13 17 48 8 31 32 6 31 31 49 9 40 9 21 23 41 17 31 45 47 17 1 12 15 50 40 38 4 20 1 9 37 4 47 4 24\n", "100 30\n31 57 26 94 41 92 88 4 46 51 64 45 89 59 91 49 3 28 17 63 9 74 77 60 83 30 73 64 90 47 34 80 94 89 66 31 19 84 86 83 62 59 96 67 93 58 7 86 11 34 35 15 53 59 71 16 98 4 73 70 23 53 33 95 40 45 90 51 2 20 7 73 38 67 89 90 39 8 66 76 4 57 50 80 81 96 10 46 16 45 84 3 3 3 97 9 94 61 86 63\n", "10 1\n4 2 9 2 1 4 4 1 4 10\n", "100 10\n59 95 5 20 91 78 30 76 32 82 3 84 38 92 19 65 79 39 7 81 49 98 29 4 28 71 67 55 99 65 53 58 31 61 4 59 5 55 33 41 81 55 58 23 95 98 60 62 54 94 47 33 20 67 31 67 34 26 47 96 96 64 31 21 49 58 82 15 73 15 42 94 100 8 50 31 77 37 68 65 83 54 28 92 68 24 16 12 55 34 28 16 68 76 1 96 52 70 91 90\n", "1 1\n1\n", "100 1\n7 75 3 62 10 31 43 96 31 62 13 76 93 85 38 96 72 69 67 44 88 53 35 21 67 18 34 2 60 14 23 56 95 69 86 51 37 82 30 48 64 10 61 8 60 74 26 100 48 56 98 85 76 5 25 98 73 78 55 4 44 53 10 8 12 10 78 25 58 47 19 45 67 86 72 90 93 78 77 36 20 69 8 73 88 4 66 30 47 92 88 51 20 33 25 50 95 78 10 69\n", "2 2\n2 1\n", "2 1\n2 2\n" ], "output": [ "16", "726975503", "24", "244208148", "1", "1", "2", "2" ] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 998244353; const int MN = 100010; const int SQ = 400; const int BS = (MN + SQ - 1) / SQ; int N, K; int A[MN], la[MN], nxt[MN], dp[MN]; int val[MN], sum[BS][MN << 1], offset[BS]; int cost; void update(int l, int r, int t) { if (l > r) return; if (l / SQ == r / SQ) { for (int i = l; i <= r; i++) { int b = l / SQ; if (t) { if (val[i] == K + offset[b]) { cost += mod - dp[i + 1]; cost %= mod; } sum[b][val[i]] += mod - dp[i + 1]; sum[b][val[i]] %= mod; val[i]++; sum[b][val[i]] += dp[i + 1]; sum[b][val[i]] %= mod; } else { if (val[i] == K + 1 + offset[b]) { cost += dp[i + 1]; cost %= mod; } sum[b][val[i]] += mod - dp[i + 1]; sum[b][val[i]] %= mod; val[i]--; sum[b][val[i]] += dp[i + 1]; sum[b][val[i]] %= mod; } } } else { for (int i = l; i < (l / SQ + 1) * SQ; i++) { int b = l / SQ; if (t) { if (val[i] == K + offset[b]) { cost += mod - dp[i + 1]; cost %= mod; } sum[b][val[i]] += mod - dp[i + 1]; sum[b][val[i]] %= mod; val[i]++; sum[b][val[i]] += dp[i + 1]; sum[b][val[i]] %= mod; } else { if (val[i] == K + 1 + offset[b]) { cost += dp[i + 1]; cost %= mod; } sum[b][val[i]] += mod - dp[i + 1]; sum[b][val[i]] %= mod; val[i]--; sum[b][val[i]] += dp[i + 1]; sum[b][val[i]] %= mod; } } for (int i = l / SQ + 1; i < r / SQ; i++) { if (t) { cost += mod - sum[i][K + offset[i]]; cost %= mod; offset[i]++; } else { cost += sum[i][K + 1 + offset[i]]; cost %= mod; offset[i]--; } } for (int i = r / SQ * SQ; i <= r; i++) { int b = r / SQ; if (t) { if (val[i] == K + offset[b]) { cost += mod - dp[i + 1]; cost %= mod; } sum[b][val[i]] += mod - dp[i + 1]; sum[b][val[i]] %= mod; val[i]++; sum[b][val[i]] += dp[i + 1]; sum[b][val[i]] %= mod; } else { if (val[i] == K + 1 + offset[b]) { cost += dp[i + 1]; cost %= mod; } sum[b][val[i]] += mod - dp[i + 1]; sum[b][val[i]] %= mod; val[i]--; sum[b][val[i]] += dp[i + 1]; sum[b][val[i]] %= mod; } } } } int main() { scanf("%d %d", &N, &K); for (int i = 0; i < N; i++) { scanf("%d", &A[i]); } for (int i = 0; i < MN; i++) la[i] = N; for (int i = N - 1; i >= 0; i--) { nxt[i] = la[A[i]]; la[A[i]] = i; } for (int i = 0; i < BS; i++) offset[i] = MN; dp[N] = 1; for (int i = N - 1; i >= 0; i--) { int j = nxt[i]; int k = nxt[j]; val[i] = offset[i / SQ]; sum[i / SQ][val[i]] += dp[i + 1]; sum[i / SQ][val[i]] %= mod; cost += dp[i + 1]; cost %= mod; update(i, j - 1, 1); update(j, k - 1, 0); dp[i] = cost; } printf("%d", dp[0]); }