prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import sys import time import numpy import os import datetime from textwrap import wrap from operator import add import matplotlib.pyplot as plt PWD = os.path.dirname(os.path.abspath(__file__)) #------------------------------------------------------------------------------- def gen_graph(): enmd_avg_md_prep_times = [] enmd_avg_md_times = [] enmd_avg_exchange_prep_times = [] enmd_avg_exchange_times = [] enmd_avg_post_processing_times = [] repex_avg_md_prep_times = [] repex_avg_md_times = [] repex_avg_exchange_prep_times = [] repex_avg_exchange_times = [] repex_avg_post_processing_times = [] ############################################################################################ # 64/128 md_prep_times = [11.15554, 12.643986, 16.038453] enmd_avg_md_prep_times.append( numpy.average(md_prep_times) ) md_times = [119.813373, 139.695717, 156.084988] enmd_avg_md_times.append( numpy.average(md_times) ) exchange_prep_times = [9.891328, 13.688966, 16.503259] enmd_avg_exchange_prep_times.append( numpy.average(exchange_prep_times) ) exchange_times = [102.411035, 121.539652, 128.82382] enmd_avg_exchange_times.append( numpy.average(exchange_times) ) post_processing_times = [0.671823, 0.798953, 1.097424] enmd_avg_post_processing_times.append( numpy.average(post_processing_times) ) ############################################################################################ # OK md_prep_times = [1.33276, 2.948043, 3.450892] repex_avg_md_prep_times.append( numpy.average(md_prep_times) ) md_times = [137.878725, 156.24525, 174.764014] repex_avg_md_times.append( numpy.average(md_times) ) exchange_prep_times = [2.171397, 2.699995, 2.915867] repex_avg_exchange_prep_times.append( numpy.average(exchange_prep_times) ) exchange_times = [125.228446, 142.720571, 153.899415] repex_avg_exchange_times.append( numpy.average(exchange_times) ) post_processing_times = [0.488691, 0.72613, 0.774859] repex_avg_post_processing_times.append( numpy.average(post_processing_times) ) ############################################################################################ ############################################################################################ # 128/256 md_prep_times = [22.541008, 35.884892] enmd_avg_md_prep_times.append( numpy.average(md_prep_times) ) md_times = [271.408067, 365.774492] enmd_avg_md_times.append( numpy.average(md_times) ) exchange_prep_times = [26.389173, 41.275375] enmd_avg_exchange_prep_times.append( numpy.average(exchange_prep_times) ) exchange_times = [252.021597, 305.552244] enmd_avg_exchange_times.append( numpy.average(exchange_times) ) post_processing_times = [2.053707, 2.707205] enmd_avg_post_processing_times.append( numpy.average(post_processing_times) ) ############################################################################################ # ok md_prep_times = [3.442241, 7.023973] repex_avg_md_prep_times.append( numpy.average(md_prep_times) ) md_times = [303.468326, 387.972735] repex_avg_md_times.append( numpy.average(md_times) ) exchange_prep_times = [4.880221, 6.347701] repex_avg_exchange_prep_times.append( numpy.average(exchange_prep_times) ) exchange_times = [283.058266, 334.289674] repex_avg_exchange_times.append( numpy.average(exchange_times) ) post_processing_times = [1.738836, 2.537882] repex_avg_post_processing_times.append( numpy.average(post_processing_times) ) ############################################################################################ ############################################################################################ # 256/512 md_prep_times = [43.535514, 125.557439] enmd_avg_md_prep_times.append( numpy.average(md_prep_times) ) md_times = [649.177261, 1249.577718] enmd_avg_md_times.append( numpy.average(md_times) ) exchange_prep_times = [78.872782, 153.390076] enmd_avg_exchange_prep_times.append( numpy.average(exchange_prep_times) ) exchange_times = [820.879971, 1127.394562] enmd_avg_exchange_times.append( numpy.average(exchange_times) ) post_processing_times = [10.086089, 11.759318] enmd_avg_post_processing_times.append( numpy.average(post_processing_times) ) ############################################################################################ md_prep_times = [3.918126, 17.080726] repex_avg_md_prep_times.append( numpy.average(md_prep_times) ) md_times = [765.13554, 1280.874559] repex_avg_md_times.append( numpy.average(md_times) ) exchange_prep_times = [10.708313, 16.369491] repex_avg_exchange_prep_times.append( numpy.average(exchange_prep_times) ) exchange_times = [912.782984, 1386.196337] repex_avg_exchange_times.append( numpy.average(exchange_times) ) post_processing_times = [9.147824, 10.985776] repex_avg_post_processing_times.append( numpy.average(post_processing_times) ) ############################################################################################ ############################################################################################ # 384/768 md_prep_times = [98.983471, 370.094089] enmd_avg_md_prep_times.append( numpy.average(md_prep_times) ) md_times = [1314.953057, 2386.687527] enmd_avg_md_times.append( numpy.average(md_times) ) exchange_prep_times = [222.776623, 460.798372] enmd_avg_exchange_prep_times.append( numpy.average(exchange_prep_times) ) exchange_times = [1870.395685, 2527.059035] enmd_avg_exchange_times.append( numpy.average(exchange_times) ) post_processing_times = [24.110429, 22.896567] enmd_avg_post_processing_times.append( numpy.average(post_processing_times) ) ############################################################################################ md_prep_times = [6.488597, 33.02816] repex_avg_md_prep_times.append(
numpy.average(md_prep_times)
numpy.average
import numpy as np import pytest from scipy.interpolate import RegularGridInterpolator from RAiDER.interpolate import interpolate, interpolate_along_axis from RAiDER.interpolator import RegularGridInterpolator as Interpolator, interpolateDEM from RAiDER.interpolator import fillna3D, interp_along_axis, interpVector @pytest.fixture def nanArr(): array = np.random.randn(2, 2, 3) array[0, 0, 0] = np.nan array[0, 0, 1] = np.nan array[0, 0, 2] = np.nan array[1, 0, 0] = np.nan array[0, 1, 1] = np.nan array[1, 1, 2] = np.nan true_array = array.copy() true_array[0, 0, 0] = np.nan true_array[0, 0, 1] = np.nan true_array[0, 0, 2] = np.nan true_array[1, 0, 0] = true_array[1, 0, 1] true_array[0, 1, 1] = (true_array[0, 1, 0] + true_array[0, 1, 2]) / 2 true_array[1, 1, 2] = true_array[1, 1, 1] return array, true_array def test_interpVector(): assert np.allclose( interpVector( np.array([ 0, 1, 2, 3, 4, 5, 0, 0.84147098, 0.90929743, 0.14112001, -0.7568025, -0.95892427, 0.5, 1.5, 2.5, 3.5, 4.5 ]), 6 ), np.array([0.42073549, 0.87538421, 0.52520872, -0.30784124, -0.85786338]) ) def test_fillna3D(nanArr): arr, tarr = nanArr assert np.allclose(fillna3D(arr), tarr, equal_nan=True) def test_interp_along_axis(): z2 = np.tile(np.arange(100)[..., np.newaxis], (5, 1, 5)).swapaxes(1, 2) zvals = 0.3 * z2 - 12.75 newz = np.tile( np.array([1.5, 9.9, 15, 23.278, 39.99, 50.1])[..., np.newaxis], (5, 1, 5) ).swapaxes(1, 2) corz = 0.3 * newz - 12.75 assert np.allclose(interp_along_axis(z2, newz, zvals, axis=2), corz) def shuffle_along_axis(a, axis): idx = np.random.rand(*a.shape).argsort(axis=axis) return np.take_along_axis(a, idx, axis=axis) def test_interpolate_along_axis(): # Rejects scalar values with pytest.raises(TypeError): interpolate_along_axis(np.array(0), np.array(0), np.array(0)) # Rejects mismatched number of dimensions with pytest.raises(TypeError): interpolate_along_axis(np.zeros(1), np.zeros(1), np.zeros((1, 1))) with pytest.raises(TypeError): interpolate_along_axis(np.zeros(1), np.zeros((1, 1)), np.zeros(1)) with pytest.raises(TypeError): interpolate_along_axis(np.zeros((1, 1)), np.zeros(1), np.zeros(1)) with pytest.raises(TypeError): interpolate_along_axis(np.zeros(1), np.zeros((1, 1)), np.zeros((1, 1))) with pytest.raises(TypeError): interpolate_along_axis(np.zeros((1, 1)), np.zeros((1, 1)), np.zeros(1)) with pytest.raises(TypeError): interpolate_along_axis(np.zeros((1, 1)), np.zeros(1), np.zeros((1, 1))) # Rejects mismatched shape for points and values with pytest.raises(TypeError): interpolate_along_axis(np.zeros(1), np.zeros(2), np.zeros(1)) with pytest.raises(TypeError): interpolate_along_axis(np.zeros((9, 2)), np.zeros((9, 3)), np.zeros(1)) # Rejects bad axis with pytest.raises(TypeError): interpolate_along_axis(np.zeros(1), np.zeros(1), np.zeros(1), axis=1) with pytest.raises(TypeError): interpolate_along_axis(np.zeros(1), np.zeros(1), np.zeros(1), axis=-2) # Rejects bad interp_points shape with pytest.raises(TypeError): interpolate_along_axis( np.zeros((2, 2)), np.zeros((2, 2)), np.zeros((3, 2)) ) with pytest.raises(TypeError): interpolate_along_axis( np.zeros((2, 2)), np.zeros((2, 2)), np.zeros((2, 3)), axis=0, max_threads=1 ) def test_interp_along_axis_1d(): def f(x): return 2 * x xs = np.array([1, 2, 3, 4]) ys = f(xs) points = np.array([1.5, 3.1]) assert np.allclose( interp_along_axis(xs, points, ys, axis=0), 2 * points ) assert np.allclose( interpolate_along_axis(xs, ys, points, axis=0, max_threads=1), 2 * points ) def test_interp_along_axis_1d_out_of_bounds(): def f(x): return 2 * x xs = np.array([1, 2, 3, 4]) ys = f(xs) points = np.array([0, 5]) assert np.allclose( interp_along_axis(xs, points, ys, axis=0), np.array([np.nan, np.nan]), equal_nan=True ) assert np.allclose( interpolate_along_axis(xs, ys, points, axis=0, max_threads=1, fill_value=np.nan), np.array([np.nan, np.nan]), equal_nan=True ) def test_interp_along_axis_2d(): def f(x): return 2 * x xs = np.array([ [1, 2, 3, 4], [3, 4, 5, 6] ]) ys = f(xs) points = np.array([ [1.5, 3.1, 3.6], [3.5, 5.1, 5.2] ]) assert np.allclose( interp_along_axis(xs, points, ys, axis=1), 2 * points ) assert np.allclose( interpolate_along_axis(xs, ys, points, axis=1), 2 * points ) def test_interp_along_axis_2d_threads_edge_case(): def f(x): return 2 * x # Max of 4 threads but 5 rows to interpolate over. Each thread will get 2 # rows which means only 3 threads will be used max_threads = 4 xs = np.array([ [1, 2, 3, 4], [3, 4, 5, 6], [7, 8, 9, 10], [11, 12, 13, 14], [15, 16, 17, 18] ]) ys = f(xs) points = np.array([ [1.5, 3.1, 3.6], [3.5, 5.1, 5.2], [7.5, 9.1, 9.9], [11.1, 12.2, 13.3], [15.1, 16.2, 17.3] ]) assert np.allclose( interp_along_axis(xs, points, ys, axis=1), 2 * points ) assert np.allclose( interpolate_along_axis(xs, ys, points, axis=1, max_threads=max_threads), 2 * points ) def test_interp_along_axis_3d(): def f(x): return 2 * x xs = np.array([ [[1, 2, 3, 4], [3, 4, 5, 6]], [[10, 11, 12, 13], [21, 22, 23, 24]] ]) ys = f(xs) points = np.array([ [[1.5, 3.1], [3.5, 5.1]], [[10.3, 12.9], [22.6, 22.1]] ]) assert np.allclose( interp_along_axis(xs, points, ys, axis=2), 2 * points ) assert np.allclose( interpolate_along_axis(xs, ys, points, axis=2), 2 * points ) def test_interp_along_axis_3d_axis1(): def f(x): return 2 * x xs = np.array([ [[1, 2], [3, 4]], [[10, 11], [21, 22]] ]) ys = f(xs) points = np.array([ [[1.5, 3.1], [2.5, 2.1]], [[10.3, 12.9], [15, 17]] ]) assert np.allclose( interp_along_axis(xs, points, ys, axis=1), 2 * points ) assert np.allclose( interpolate_along_axis(xs, ys, points, axis=1), 2 * points ) @pytest.mark.parametrize("num_points", (7, 200, 500)) def test_interp_along_axis_3d_large(num_points): def f(x): return 2 * x # To scale values along axis 0 of a 3 dimensional array scale = np.arange(1, 101).reshape((100, 1, 1)) axis1 = np.arange(100) axis2 = np.repeat(np.array([axis1]), 100, axis=0) xs = np.repeat(np.array([axis2]), 100, axis=0) * scale ys = f(xs) points = np.array([np.linspace(0, 99, num=num_points)]).repeat(100, axis=0) points = np.repeat(np.array([points]), 100, axis=0) * scale ans = 2 * points assert np.allclose(interp_along_axis(xs, points, ys, axis=2), ans) assert np.allclose(interpolate_along_axis(xs, ys, points, axis=2), ans) assert np.allclose( interpolate_along_axis(xs, ys, points, axis=2, assume_sorted=True), ans ) def test_interp_along_axis_3d_large_unsorted(): def f(x): return 2 * x # To scale values along axis 0 of a 3 dimensional array scale = np.arange(1, 101).reshape((100, 1, 1)) axis1 = np.arange(100) axis2 = np.repeat(np.array([axis1]), 100, axis=0) xs = np.repeat(np.array([axis2]), 100, axis=0) * scale ys = f(xs) points = np.array([np.linspace(0, 99, num=300)]).repeat(100, axis=0) points = np.repeat(np.array([points]), 100, axis=0) * scale points = shuffle_along_axis(points, 2) ans = 2 * points assert np.allclose(interp_along_axis(xs, points, ys, axis=2), ans) assert np.allclose(interpolate_along_axis(xs, ys, points, axis=2), ans) def test_grid_dim_mismatch(): with pytest.raises(TypeError): interpolate( points=(np.zeros((10,)), np.zeros((5,))), values=np.zeros((1,)), interp_points=np.zeros((1,)) ) def test_basic(): ans = interpolate( points=(np.array([0, 1]),), values=np.array([0, 1]), interp_points=np.array([[0.5]]), max_threads=1, assume_sorted=True ) assert ans == np.array([0.5]) def test_1d_out_of_bounds(): ans = interpolate( points=(np.array([0, 1]),), values=np.array([0, 1]), interp_points=np.array([[100]]), max_threads=1, assume_sorted=True ) # Output is extrapolated assert ans == np.array([100]) def test_1d_fill_value(): ans = interpolate( points=(np.array([0, 1]),), values=np.array([0, 1]), interp_points=np.array([[100]]), max_threads=1, fill_value=np.nan, assume_sorted=True ) assert np.all(np.isnan(ans)) def test_small(): ans = interpolate( points=(np.array([1, 2, 3, 4, 5, 6]),), values=np.array([10, 9, 30, 10, 6, 1]), interp_points=np.array([1.25, 2.9, 3.01, 5.7]).reshape(-1, 1) ) assert ans.shape == (4,) assert np.allclose(ans, np.array([9.75, 27.9, 29.8, 2.5]), atol=1e-15) def test_small_not_sorted(): ans = interpolate( points=(np.array([1, 2, 3, 4, 5, 6]),), values=np.array([10, 9, 30, 10, 6, 1]), interp_points=np.array([2.9, 1.25, 5.7, 3.01]).reshape(-1, 1), ) assert ans.shape == (4,) assert np.allclose(ans, np.array([27.9, 9.75, 2.5, 29.8]), atol=1e-15) def test_exact_points(): ans = interpolate( points=(np.array([1, 2, 3, 4, 5, 6]),), values=np.array([10, 9, 30, 10, 6, 1]), interp_points=np.array([1, 2, 3, 4, 5, 6]).reshape(-1, 1) ) assert ans.shape == (6,) assert np.allclose(ans, np.array([10, 9, 30, 10, 6, 1]), atol=1e-15) def test_2d_basic(): xs = np.array([0, 1]) ys = np.array([0, 1]) values = (lambda x, y: x + y)( *np.meshgrid(xs, ys, indexing="ij", sparse=True) ) ans = interpolate( points=(xs, ys), values=values, interp_points=np.array([[0.5, 0.5]]) ) assert ans == np.array([1]) def test_2d_out_of_bounds(): xs = np.array([0, 1]) ys = np.array([0, 1]) values = (lambda x, y: x + y)( *np.meshgrid(xs, ys, indexing="ij", sparse=True) ) ans = interpolate( points=(xs, ys), values=values, interp_points=np.array([[100, 100]]) ) # Output is extrapolated assert ans == np.array([200]) def test_2d_fill_value(): xs = np.array([0, 1]) ys = np.array([0, 1]) values = (lambda x, y: x + y)( *np.meshgrid(xs, ys, indexing="ij", sparse=True) ) ans = interpolate( points=(xs, ys), values=values, interp_points=np.array([[100, 100]]), fill_value=np.nan ) assert np.all(np.isnan(ans)) def test_2d_square_small(): def f(x, y): return x ** 2 + 3 * y xs = np.linspace(0, 1000, 100) ys = np.linspace(0, 1000, 100) values = f(*np.meshgrid(xs, ys, indexing="ij", sparse=True)) points = np.stack(( np.linspace(10, 990, 5), np.linspace(10, 890, 5) ), axis=-1) ans = interpolate( points=(xs, ys), values=values, interp_points=points, assume_sorted=True ) rgi = RegularGridInterpolator((xs, ys), values) ans_scipy = rgi(points) assert np.allclose(ans, ans_scipy, atol=1e-15) def test_2d_rectangle_small(): def f(x, y): return x ** 2 + 3 * y xs = np.linspace(0, 2000, 200) ys = np.linspace(0, 1000, 100) values = f(*np.meshgrid(xs, ys, indexing="ij", sparse=True)) points = np.stack(( np.linspace(10, 990, 5), np.linspace(10, 890, 5) ), axis=-1) ans = interpolate( points=(xs, ys), values=values, interp_points=points, assume_sorted=True ) rgi = RegularGridInterpolator((xs, ys), values) ans_scipy = rgi(points) assert np.allclose(ans, ans_scipy, atol=1e-15) def test_2d_rectangle_small_2(): def f(x, y): return x ** 2 + 3 * y xs = np.linspace(0, 1000, 100) ys = np.linspace(0, 2000, 200) values = f(*np.meshgrid(xs, ys, indexing="ij", sparse=True)) points = np.stack(( np.linspace(10, 990, 5), np.linspace(10, 890, 5) ), axis=-1) ans = interpolate( points=(xs, ys), values=values, interp_points=points, assume_sorted=True ) rgi = RegularGridInterpolator((xs, ys), values) ans_scipy = rgi(points) assert np.allclose(ans, ans_scipy, atol=1e-15) def test_2d_square_large(): def f(x, y): return x ** 2 + 3 * y xs = np.linspace(-10_000, 10_000, num=1_000) ys = np.linspace(0, 20_000, num=1_000) values = f(*np.meshgrid(xs, ys, indexing="ij", sparse=True)) num_points = 2_000_000 points = np.stack(( np.linspace(10, 990, num_points), np.linspace(10, 890, num_points) ), axis=-1) ans = interpolate( points=(xs, ys), values=values, interp_points=points, assume_sorted=True ) rgi = RegularGridInterpolator((xs, ys), values) ans_scipy = rgi(points) assert np.allclose(ans, ans_scipy, atol=1e-15) def test_3d_basic(): xs = np.array([0, 1]) ys = np.array([0, 1]) zs = np.array([0, 1]) values = (lambda x, y, z: x + y + z)( *np.meshgrid(xs, ys, zs, indexing="ij", sparse=True) ) ans = interpolate( points=(xs, ys, zs), values=values, interp_points=np.array([[0.5, 0.5, 0.5]]), assume_sorted=True ) assert ans == np.array([1.5]) def test_3d_out_of_bounds(): xs = np.array([0, 1]) ys = np.array([0, 1]) zs = np.array([0, 1]) values = (lambda x, y, z: x + y + z)( *
np.meshgrid(xs, ys, zs, indexing="ij", sparse=True)
numpy.meshgrid
import os import time from collections import Counter from functools import partial import numpy as np import scipy.optimize as so from matplotlib.backends.backend_pdf import PdfPages from matplotlib.figure import Figure from matplotlib.animation import FuncAnimation from matplotlib.collections import LineCollection from traits.api import Instance, Button, HasTraits, Float, Bool, Enum, on_trait_change, Int, File from traitsui.api import View, VGroup, HGroup, Item, UItem, HSplit, VSplit, Label, RangeEditor, FileEditor from tqdm import tqdm from nitime.utils import autocov from ecogdata.channel_map import ChannelMap from ecogdata.filt.blocks import BlockedSignal import ecoglib.estimation.spatial_variance as sv from ecoglib.signal_testing import spatial_autocovariance from ecoglib.estimation import cxx_to_pairs, matern_semivariogram, matern_spectrum from ecoglib.vis.traitsui_bridge import MPLFigureEditor, PingPongStartup from ecoglib.vis.gui_tools import ArrayMap, SavesFigure from ecoglib.vis.plot_util import subplots, subplot2grid import seaborn as sns from .base import PlotsInterval, MultiframeSavesFigure, colormaps, FigureCanvas from ..helpers import PersistentWindow __all__ = ['ArrayVarianceTool', 'SpatialVariance'] class ArrayVarianceTool(PersistentWindow): """Stand-alone UI to image covariance seeded at chosen sites""" array_plot = Instance(ArrayMap) selected_site = Int(-1) min_max_norm = Bool(True) _c_lo = Float _c_hi = Float cmap = Enum('gray', colormaps) save_file = File(os.getcwd()) save_all = Button('Save PDF') def __init__(self, cov, chan_map, **traits): self.cov = cov self._cv_mn = cov.min() self._cv_mx = cov.max() array_plot = ArrayMap(chan_map, vec=self.cov.mean(1)) HasTraits.__init__( self, array_plot=array_plot, _c_lo=self._cv_mn, _c_hi=self._cv_mx ) self.sync_trait('selected_site', self.array_plot, mutual=True) @on_trait_change('selected_site, cmap, min_max_norm, _c_lo, _c_hi') def _image(self): if not hasattr(self, 'array_plot'): return if self.array_plot is None: return kw = dict(cmap=self.cmap) if self.min_max_norm: kw['clim'] = (self._cv_mn, self._cv_mx) else: kw['clim'] = self._c_lo, self._c_hi site = self.selected_site if site >= 0: self.array_plot.ax.set_title('Seeded covariance map') self.array_plot.update_map(self.cov[site], **kw) else: self.array_plot.ax.set_title('Mean covariance weight') self.array_plot.update_map(self.cov.mean(1), **kw) def _save_all_fired(self): # cycle through sites, update_zoom_callback image, and use # PdfPages.savefig(self.array_plot.fig) chan_map = self.array_plot.chan_map ij = list(zip(*chan_map.to_mat())) ij = sorted(ij) pdf_file = self.save_file if not pdf_file.endswith('.pdf'): pdf_file = pdf_file + '.pdf' save_site = self.selected_site with PdfPages(pdf_file) as pdf: for i_, j_ in tqdm(ij, desc='Saving PDF pages', leave=True): s = chan_map.lookup(i_, j_) self.selected_site = s f = self.array_plot.fig ax = self.array_plot.ax ttl = ax.get_title() ax.set_title(ttl + ' site ({0}, {1})'.format(i_, j_)) pdf.savefig(f) self.selected_site = save_site def _post_canvas_hook(self): self.array_plot.fig.canvas.mpl_connect( 'button_press_event', self.array_plot.click_listen ) self._image() def default_traits_view(self): v = View( VSplit( UItem('array_plot', editor=MPLFigureEditor(), width=500, height=400, resizable=True), HGroup( Item('selected_site', style='readonly'), Item('min_max_norm', label='Min-Max Normalize'), Item('cmap', label='Color map'), ), HGroup( Item('_c_lo', label='Low color'), Item('_c_hi', label='High color'), enabled_when='min_max_norm==False' ), HGroup( Item('save_file', label='pdf file', editor=FileEditor(dialog_style='save')), UItem('save_all') ) ), handler=PingPongStartup, resizable=True, title='Covariance Visualization' ) return v def make_matern_label(**params): """Helper function for plot labels.""" label = '' if 'nu' in params: label = label + '\u03BD {nu:.1f} ' if 'theta' in params: label = label + '\u03B8 {theta:.1f} ' if 'nugget' in params: label = label + '\u03C3 {nugget:.2f} ' if 'sill' in params: label = label + '\u03C2 {sill:.2f} ' return label.format(**params) class STSemivar(PersistentWindow): sv_fig = Instance(Figure) array_frame = Instance(Figure) cnx = Instance(Figure) tsfig = Instance(Figure) _lo = Int(0) _hi = Int slider = Int(0) fitting = Bool(False) def __init__(self, x, t, st_semivar, timeseries, chan_map, **traits): self._hi = len(t) - 1 self._x = x self._t = t self._timeseries = timeseries self._st_semivar = st_semivar self._chan_map = chan_map combs = chan_map.site_combinations self._binned = (len(x) != len(np.unique(combs.dist))) if self._binned: diffs = np.abs(combs.dist - x[:, None]) self._bin_map = diffs.argmin(0) # set up semivariogram figure self.sv_fig = Figure(figsize=(5, 4)) ax = self.sv_fig.add_subplot(111) self._sv_line = ax.plot(x, st_semivar[:, 0], marker='o', ls='--')[0] ax.set_ylim(0, st_semivar.max()) sns.despine(ax=ax) self._marked_point = None self._fit_line = None self._info_text = None # set up raw potential map self.array_frame = Figure(figsize=(5, 4)) ax = self.array_frame.add_subplot(111) frame = chan_map.embed( self._timeseries[:, int(self._t[self.slider])] ) clim = np.percentile(self._timeseries, [2, 98]) self._lfp_img = ax.imshow(frame, clim=clim, origin='upper') # set up raw timeseries plot self.tsfig = Figure(figsize=(5, 4)) ax = self.tsfig.add_subplot(111) lines = [list(enumerate(ts)) for ts in timeseries] lc = LineCollection(lines, colors='k', alpha=0.5, linewidths=0.5) ax.add_collection(lc) ax.autoscale_view(True, True, True) ax.set_xlabel('Samples') ax.set_ylabel('Voltage') self._time_marker = ax.axvline(t[self.slider], color='r', lw=1) # set up site-site connections plot self.cnx = Figure(figsize=(5, 5)) ax = self.cnx.add_subplot(111) i, j = chan_map.to_mat() ax.scatter(j, i, s=10) ax.set_ylim(i.max() + 0.5, i.min() - 0.5) ax.axis('image') self._cnx_lines = None super(STSemivar, self).__init__(**traits) @staticmethod def from_array_and_lag(x, n, lag, chan_map, normed=False, **kwargs): """ Create new STSemivar object from array and short-time specs. Parameters ---------- x : ndarray n_site x n_samples n : int short-time length in samples lag : int lag (step) length in samples chan_map : ChannelMap site to array lookup normed : bool Normalize (unit) variance (default False) Other keyword arguments are passed through to the semivariogram estimator. """ t = np.arange(x.shape[-1]) xb = BlockedSignal(x.copy(), n, overlap=n - lag) tb = BlockedSignal(t, n, overlap=n - lag) st_svar = [] block_time = [] combs = chan_map.site_combinations for i in range(len(xb)): xb_ = xb.block(i) if normed: xb_ = xb_ / xb_.std(1)[:, None] sx, sy = sv.semivariogram(xb_, combs, **kwargs) st_svar.append(sy) block_time.append(tb.block(i).mean()) st_svar = np.array(st_svar).T block_time = np.array(block_time) return STSemivar(sx, block_time, st_svar, x, chan_map) @on_trait_change('slider') def _slider_changed(self): # 1) semivar plot (and marked point) (and fit line) self._sv_line.set_data(self._x, self._st_semivar[:, self.slider]) if self._marked_point is not None: mx, my = self._marked_point.get_data() xbin = np.argmin(np.abs(self._x - mx[0])) x = self._x[xbin] y = self._st_semivar[xbin, self.slider] self._marked_point.set_data([x], [y]) if self.fitting: self._draw_fit() # 2) heatmap f = self._timeseries[:, int(self._t[self.slider])] m = self._chan_map.embed(f) self._lfp_img.set_array(m) # 3) time marker on timeseries self._time_marker.set_data( [self._t[self.slider], self._t[self.slider]], [0, 1] ) for f in (self.sv_fig, self.array_frame, self.tsfig): f.canvas.draw_idle() @on_trait_change('fitting') def _toggle_fit(self): if self._fit_line is None: self._draw_fit() else: self._fit_line.remove() self._info_text.remove() self._fit_line = self._info_text = None def fit_semivar(self, xf=None): x, y = self._sv_line.get_data() yl = self._sv_line.axes.get_ylim()[1] bounds = { 'theta': (0.5, x.max()), 'nu': (0.25, 5), 'nugget': (0, y.min()), 'sill': (y.mean(), 1.5 * yl) } prm = matern_semivariogram( x, y=y, free=('theta', 'nu', 'sill', 'nugget'), bounds=bounds ) if xf is None: xf = x y_est = matern_semivariogram(xf, **prm) return prm, y_est def _get_info_text(self, prm): matern_label = make_matern_label(**prm) theta = prm['theta'] nu = prm['nu'] s0 = matern_spectrum(0, theta=theta, nu=nu) def fn(x, t, n): return matern_spectrum(x, t, n) - s0 / 100 kc = so.brentq(fn, 0, 3, args=(theta, nu)) bw_label = 'Crit dens: {0:.2f} mm'.format((2 * kc) ** -1) label = '\n'.join([matern_label, bw_label]) return label def _draw_fit(self): ax = self.sv_fig.axes[0] xl = ax.get_xlim() xf = np.linspace(xl[0], xl[1], 100) prm, y = self.fit_semivar(xf=xf) label = self._get_info_text(prm) if self._fit_line is None: self._fit_line = ax.plot(xf, y, color='r', ls='-')[0] self._info_text = ax.text( 0.1, 0.75, label, fontsize=10, transform=ax.transAxes ) else: self._fit_line.set_data(xf, y) self._info_text.set_text(label) if self.sv_fig.canvas: self.sv_fig.canvas.draw_idle() def _setup_picker(self): xscale = self.sv_fig.axes[0].transData.get_matrix()[0, 0] self._sv_line.set_picker(True) self._sv_line.set_pickradius(xscale * np.diff(self._x).min()) self.sv_fig.canvas.mpl_connect('pick_event', self._pick_pairs) def _pick_pairs(self, event): m_event = event.mouseevent px = m_event.xdata xbin = np.argmin(np.abs(self._x - px)) x = self._x[xbin] y = self._st_semivar[xbin, self.slider] # unmark previous marked point (if any) if self._marked_point is not None: mx, my = self._marked_point.get_data() self._marked_point.remove() self._cnx_lc.remove() pc = self.cnx.axes[0].collections[0] pc.set_sizes(np.ones(len(self._chan_map)) * 10) self._marked_point = self._cnx_lc = None # if the picked point was the old point, then return if
np.abs(mx[0] - x)
numpy.abs
import os import errno import numpy as np import itertools import six from scipy import sparse import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.patches import Wedge from sklearn.metrics import confusion_matrix from textwrap import wrap def savefig_and_close(fig, figname, path='', bbox_extra_artists=None): filename = os.path.join(path, figname) fig.savefig(filename, bbox_extra_artists=bbox_extra_artists, bbox_inches='tight') fig.clear() plt.close(fig) def newfig(name, **kwargs): fig = plt.figure(name, **kwargs) fig.clf() return fig def savefig(fig, path='figures', prefix='weak_labels_', extension='svg'): fig.tight_layout() name = fig.get_label() filename = "{}{}.{}".format(prefix, name, extension) try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise fig.savefig(os.path.join(path, filename)) def plot_data(x, y, loc='best', save=True, title='data', cmap='Paired'): if sparse.issparse(x): x = x.toarray() fig = newfig('data', figsize=(5, 3)) ax = fig.add_subplot(111) classes = np.unique(y) n_c = float(len(classes)) cmap = cm.get_cmap(cmap) for i, y_i in enumerate(classes): ax.scatter(x[(y == y_i).flatten(), 0], x[(y == y_i).flatten(), 1], c=cmap(i/n_c), s=30, edgecolors=None, alpha=.8, lw=0.1, label='{}'.format(y_i)) ax.set_xlabel('$x_0$') ax.set_ylabel('$x_1$') ax.set_title(title) ax.axis('equal') ax.legend(loc=loc) ax.grid(True) if save: savefig(fig) return fig class MyFloat(float): def _remove_leading_zero(self, value, string): if 1 > value > -1: string = string.replace('0', '', 1) return string def __str__(self): string = super(MyFloat, self).__str__() return self._remove_leading_zero(self, string) def __format__(self, format_string): string = super(MyFloat, self).__format__(format_string) return self._remove_leading_zero(self, string) # TODO use this or other heatmap to visualize confusion matrix def plot_df_heatmap(df, normalize=None, title='Heat-map', cmap=plt.cm.Blues, colorbar=False, ylabel=None, xlabel=None): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. normalize : 'rows', 'cols' (default=None) """ rows = df.index.values columns = df.columns.values M = df.values if normalize == 'rows': M = M.astype('float') / M.sum(axis=1)[:, np.newaxis] if normalize == 'cols': M = M.astype('float') / M.sum(axis=0)[np.newaxis, :] xlabel = df.columns.name ylabel = df.index.name return plot_heatmap(M, columns=columns, rows=rows, cmap=cmap, colorbar=colorbar, title=title, ylabel=ylabel, xlabel=xlabel) def plot_confusion_matrix(M, columns=None, rows=None, cmap=plt.cm.Blues, colorbar=False, fig=None, title='Heat-map', ylabel='True label', xlabel='Predicted label', **kwargs): return plot_heatmap(M=M, columns=columns, rows=rows, cmap=cmap, colorbar=colorbar, fig=fig, title=title, ylabel=ylabel, xlabel=xlabel, **kwargs) def plot_heatmap(M, columns=None, rows=None, cmap=plt.cm.Blues, colorbar=False, fig=None, ax=None, title='Heat-map', ylabel=None, xlabel=None): if columns is None: columns = [str(i) for i in range(M.shape[1])] if rows is None: rows = [str(i) for i in range(M.shape[0])] h_size = 5 # len(columns)*.5 + 2 v_size = 4 # len(rows)*.5 + 2 if fig is None: fig = plt.figure(figsize=(h_size, v_size)) if ax is None: ax = fig.add_subplot(111) im = ax.imshow(M, interpolation='nearest', cmap=cmap) if colorbar: fig.colorbar(im) if h_size < 4: title = "\n".join(wrap(title, 30)) ax.set_title(title) column_tick_marks = np.arange(len(columns)) ax.set_xticks(column_tick_marks) ax.set_xticklabels(columns, rotation=45, ha='right') row_tick_marks = np.arange(len(rows)) ax.set_yticks(row_tick_marks) ax.set_yticklabels(rows) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) thresh = np.nanmin(M) + ((np.nanmax(M)-np.nanmin(M)) / 2.) are_ints = M.dtype in ['int', 'int32', 'int64'] for i, j in itertools.product(range(M.shape[0]), range(M.shape[1])): # fontsize is adjusted for different number of digits if are_ints: num_text = str(M[i, j]) else: num_text = '{:0.2f}'.format(MyFloat(M[i, j])) if np.isfinite(M[i, j]): ax.text(j, i, num_text, horizontalalignment="center", verticalalignment="center", color="white" if M[i, j] > thresh else "black", fontsize=16-len(num_text)) fig.tight_layout() return fig def dual_half_circle(center, radius, angle=0, ax=None, colors=('w','k'), **kwargs): """ Add two half circles to the axes *ax* (or the current axes) with the specified facecolors *colors* rotated at *angle* (in degrees). """ if ax is None: ax = plt.gca() theta1, theta2 = angle, angle + 180 w1 = Wedge(center, radius, theta1, theta2, fc=colors[0], **kwargs) w2 = Wedge(center, radius, theta2, theta1, fc=colors[1], **kwargs) for wedge in [w1, w2]: #ax.add_artist(wedge) ax.add_patch(wedge) return [w1, w2] def test_dual_half_circle_main(): fig, ax = plt.subplots() dual_half_circle((0.5, 0.5), radius=0.3, angle=90, ax=ax) ax.axis('equal') plt.show() def plot_multilabel_scatter(X, Y, cmap=cm.get_cmap('tab20'), edgecolor='k', linewidth=0.4, title=None, fig=None, ax=None, radius_scaler=20.0, **kwargs): X_std = X.std(axis=0) if X.shape[1] > 2: biggest_variance = np.argsort(X_std)[-2:] X_std = X_std[biggest_variance] X = X[:,biggest_variance] X_min = X.min(axis=0) X_max = X.max(axis=0) n_classes = Y.shape[1] radius = ((X_max - X_min)/radius_scaler)[:2].min() #radius = (X.max() - X.min())/radius_scaler if fig is None: fig = plt.figure(figsize=(4, 3)) if ax is None: ax = fig.add_subplot(111) for x, y in zip(X, Y): theta2s = np.cumsum(np.true_divide(y, y.sum())*360.0) theta1 = 0 if np.isfinite(theta2s[0]): for i, theta2 in enumerate(theta2s): if theta1 != theta2: w = Wedge(x[:2], radius, theta1, theta2, ec=edgecolor, lw=linewidth, fc=cmap(i), **kwargs) ax.add_patch(w) theta1 = theta2 else: # Not belong to any class print('Do not belong to any class') w = Wedge(x[:2], radius, 0, 360, ec='black', lw=linewidth, fc='white', **kwargs) ax.add_patch(w) ax.set_xlim([X_min[0]-X_std[0], X_max[0]+X_std[0]]) ax.set_ylim([X_min[1]-X_std[1], X_max[1]+X_std[1]]) ax.axis('equal') if title is not None: ax.set_title(title) return fig def test_multilabel_plot(): X = np.array([[0,0], [0,1], [1,0], [1,1]]) Y = np.array([[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 1]]) plot_multilabel_scatter(X, Y) plt.show() def plot_errorbar(data, x=None, fmt='--o', title='errorbar', elinewidth=1.0, perrorevery=0.2, legend=None, fig=None, **kwargs): """ paramters data: np.array or list of np.array If it is a list, each np.array is considered as an errorbar line errorevery: float Percentage of errorbars with respect to the number of samples """ return_fig = fig is None if fig is None: fig = newfig(title, figsize=(5, 3)) ax = fig.add_subplot(111) ax.set_title(title) if type(data) is np.ndarray: data = (data,) for i, matrix in enumerate(data): errorevery = int(1 / perrorevery) if errorevery < 1: errorevery = 1 if x is None: x = range(matrix.shape[1]) means = matrix.mean(axis=0) stds = matrix.std(axis=0) ax.errorbar(x=x, y=means, yerr=stds, elinewidth=(len(data)-i)*elinewidth, errorevery=errorevery, capthick=(len(data)-i)*elinewidth, capsize=4, **kwargs) if legend is not None: ax.legend(legend) if return_fig: return fig return ax def render_mpl_table(data, col_width=3.0, row_height=0.625, font_size=14, header_color='#40466e', row_colors=['#f1f1f2', 'w'], edge_color='w', bbox=[0, 0, 1, 1], header_columns=0, ax=None, **kwargs): """ source: https://stackoverflow.com/questions/19726663/how-to-save-the-pandas-dataframe-series-data-as-a-figure """ if ax is None: size = (np.array(data.shape[::-1]) + np.array([0, 1])) *
np.array([col_width, row_height])
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu Sep 26 20:38:40 2019 @author: gpang """ import numpy as np import tensorflow as tf import matplotlib.pyplot as plt class Continuous_time_GP_forward: def __init__(self, dataset): self.xu_train = dataset['xu_train'] self.yu_train = dataset['yu_train'] self.xU_train = dataset['xU_train'] self.yU_train = dataset['yU_train'] self.x_test = dataset['x_test'] self.y_test = dataset['y_test'] self.diffusivity = dataset['diffusivity'] def ku(self, x, xp, n_x, sig, lx, lt, diag = False): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig_f: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # 'diag = False' : output a matrix of size n_x \times n_xp # 'diag = True' : output a column vector of size n_x \times 1 (n_x=n_xp) x1, t1 = x[:,0:1], x[:,1:2] x2, t2 = xp[:,0:1], xp[:,1:2] x2 = tf.reshape(x2, (1,-1)) t2 = tf.reshape(t2, (1,-1)) if diag == False: k = sig**2 * tf.exp(-(x1-x2)**2/2/lx**2 - (t1-t2)**2/2/lt**2) else: k = sig**2 * tf.ones((n_x,1),dtype=tf.float64) return k def kU(self, x, xp, n_x, sig, lx, lt, c, diag = False): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # c: diffusivity # 'diag = False' : output a matrix of size n_x \times n_xp # 'diag = True' : output a column vector of size n_x \times 1 (n_x=n_xp) x1, t1 = x[:,0:1], x[:,1:2] x2, t2 = xp[:,0:1], xp[:,1:2] x2 = tf.reshape(x2, (1,-1)) t2 = tf.reshape(t2, (1,-1)) # Use Maple to do symbol manipulation if diag == False: k = 3*tf.exp((-(x1 - x2)**2*lt**2 - (t1 - t2)**2*lx**2)/(2*lx**2*lt**2))*(c**2*(lx**4 - 2*(x1 - x2)**2*lx**2 + (x1 - x2)**4/3)*lt**4 + lx**8*lt**2/3 - lx**8*(t1 - t2)**2/3)/(lt**4*lx**8) k = sig**2 * k else: k = 3*(c**2*lt**4*lx**4 + 1/3*lx**8*lt**2)/(lt**4*lx**8) k = sig**2 * k return k def kuU(self, x, xp, n_x, sig, lx, lt, c): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # c: diffusivity x1, t1 = x[:,0:1], x[:,1:2] x2, t2 = xp[:,0:1], xp[:,1:2] x2 = tf.reshape(x2, (1,-1)) t2 = tf.reshape(t2, (1,-1)) # Use Maple to do symbol manipulation k = tf.exp((-(x1 - x2)**2*lt**2 - (t1 - t2)**2*lx**2)/(2*lx**2*lt**2))*(c*(lx + x1 - x2)*(lx - x1 + x2)*lt**2 + (t1 - t2)*lx**4)/(lt**2*lx**4) return k * sig**2 def kUu(self, x, xp, n_x, sig, lx, lt, c): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # c: diffusivity x1, t1 = x[:,0:1], x[:,1:2] x2, t2 = xp[:,0:1], xp[:,1:2] x2 = tf.reshape(x2, (1,-1)) t2 = tf.reshape(t2, (1,-1)) # Use Maple to do symbol manipulation k = tf.exp((-(x1 - x2)**2*lt**2 - (t1 - t2)**2*lx**2)/(2*lx**2*lt**2))*(c*(lx + x1 - x2)*(lx - x1 + x2)*lt**2 - (t1 - t2)*lx**4)/(lt**2*lx**4) return k * sig**2 def K_train(self, xu, xU, n_u, n_U, sig, lx, lt, c): ## assemble the convariance matrix for training KU = self.kU(xU, xU, n_U, sig, lx, lt, c) Ku = self.ku(xu, xu, n_u, sig, lx, lt) KuU = self.kuU(xu, xU, n_u, sig, lx, lt, c) KUu = self.kUu(xU, xu, n_U, sig, lx, lt, c) K1 = tf.concat((KU, KUu),axis=1) K2 = tf.concat((KuU, Ku),axis=1) K = tf.concat((K1,K2),axis=0) return K def K_test(self, xt, xu, xU, n_t, sig, lx, lt, c): ## assemble the covariance matrix for testing or predicting Ku = self.ku(xt, xu, n_t, sig, lx, lt) KuU = self.kuU(xt, xU, n_t, sig, lx, lt, c) K = tf.concat((KuU, Ku),axis=1) K_diag = self.ku(xt, xu, n_t, sig, lx, lt, diag = True) return K, K_diag def nlml(self, xu, yu, n_u, xU, yU, n_U, sig, lx, lt, sig_n, c): ## negative log-marginal likeliood N = n_u + n_U self.Kn = self.K_train(xu, xU, n_u, n_U, sig, lx, lt, c)+ (sig_n**2+1.0e-10) * tf.eye(N, dtype=tf.float64) self.L = tf.cholesky(self.Kn) r = tf.concat((yU,yu),axis=0) self.alpha = tf.cholesky_solve(self.L, r) temp = tf.matmul(r, self.alpha, transpose_a=True) return temp /2.0 +tf.reduce_sum(tf.log(tf.diag_part(self.L))) \ + 0.5 * N * np.log(2.0*np.pi) def training(self, num_iter=10001, learning_rate = 5.0e-4): tf.reset_default_graph() ## initialize hyperparameters of GP; ## 'tf.exp' preserves the positivity of hyperparameters sig = tf.exp(tf.Variable(0.0,dtype=np.float64)) # signal standard deviation lx = tf.exp(tf.Variable(0.0,dtype=np.float64)) # charactersitic length in space lt = tf.exp(tf.Variable(0.0,dtype=np.float64)) # characteristic length in time sig_n = tf.exp(tf.Variable(0.0,dtype=np.float64)) # noise standard deviation c = self.diffusivity n_u = self.xu_train.shape[0] n_U = self.xU_train.shape[0] n_t = self.x_test.shape[0] xu = tf.placeholder(tf.float64, shape=(None,2)) yu = tf.placeholder(tf.float64, shape=(None,1)) xU = tf.placeholder(tf.float64, shape=(None,2)) yU = tf.placeholder(tf.float64, shape=(None,1)) xt = tf.placeholder(tf.float64, shape=(None,2)) nlml_tf = self.nlml(xu, yu, n_u, xU, yU, n_U, sig, lx, lt, sig_n, c) k_test, k_diag = self.K_test(xt, xu, xU, n_t, sig, lx, lt, c) mean_u = tf.matmul(k_test,self.alpha) ## posterior mean V = tf.linalg.triangular_solve(self.L,tf.transpose(k_test)) var_u = k_diag - tf.reshape(tf.reduce_sum(V*V,axis=0),(-1,1)) + sig_n**2 ## posterior variance std_u = tf.sqrt(tf.maximum(var_u, tf.zeros((n_t,1),dtype=tf.float64))) ## keep the variance non-negative optimizer_Adam = tf.train.AdamOptimizer(learning_rate) ### Employ Adam stochastic gradient descent train_op_Adam = optimizer_Adam.minimize(nlml_tf) ## try to miniminze the 'nlml' nlml_min = 1.0e16 feed_dict = {xu: self.xu_train, yu: self.yu_train, \ xU: self.xU_train, yU: self.yU_train, \ xt: self.x_test} with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(num_iter): sess.run(train_op_Adam, feed_dict=feed_dict) # training for one iteration if i % 10000 == 0: # print results every 10000 iterations or epochs nlml_temp = sess.run(nlml_tf, feed_dict = feed_dict) if nlml_temp < nlml_min: nlml_min = nlml_temp # keep the results corresponding to lowest loss self.mean, self.std, sig0, lx0, lt0, sig_n0 = \ sess.run([mean_u, std_u, sig, lx, lt, sig_n], feed_dict=feed_dict) print ('*****************Iter: ',i, ' *********** \n') print ('nlml: ', nlml_min) print ('signal std: ', sig0) print ('noise std: ',sig_n0) print ('lx: ', lx0) print ('lt: ', lt0) print ('L2_error: ', np.linalg.norm(self.mean-self.y_test,2)/np.linalg.norm(self.y_test,2)) print ('\n') class Continuous_time_NN_forward: def __init__(self, dataset): self.xu_train = dataset['xu_train'] self.yu_train = dataset['yu_train'] self.xU_train = dataset['xU_train'] self.yU_train = dataset['yU_train'] self.x_test = dataset['x_test'] self.y_test = dataset['y_test'] self.diffusivity = dataset['diffusivity'] self.noise = dataset['noise'] def xavier_init(self,size): # Initialize weight matrices of NN and fix the initialization of weights for sake of reproducing in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2.0/(in_dim + out_dim)) return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev,dtype=tf.float64,seed=1234), dtype=tf.float64) def DNN(self, X, layers,weights,biases): # forward propagatio of a fully-connected NN L = len(layers) H = X for l in range(0,L-2): W = weights[l] b = biases[l] H = tf.nn.tanh(tf.add(tf.matmul(H, W), b)) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y def training(self, num_iter=10001, learning_rate = 5.0e-4): tf.reset_default_graph() layers = [2]+[20]*3 +[1] #DNN layers: two neurons in input layer, three hidden layers with 20 neurons in each, and one neuron in output layer L = len(layers) weights = [self.xavier_init([layers[l], layers[l+1]]) for l in range(0, L-1)] biases = [tf.Variable( tf.zeros((1, layers[l+1]),dtype=tf.float64)) for l in range(0, L-1)] x_u = tf.placeholder(tf.float64, shape=(None,1)) t_u = tf.placeholder(tf.float64, shape=(None,1)) x_U = tf.placeholder(tf.float64, shape=(None,1)) t_U = tf.placeholder(tf.float64, shape=(None,1)) u_u = self.DNN(tf.concat((x_u,t_u),axis=1), layers, weights, biases) ## NN for the soltion u, with inputs (x_u,t_u) u_U = self.DNN(tf.concat((x_U,t_U),axis=1), layers, weights, biases) ## NN for u, but with different inputs (x_U, t_U) u_U_x = tf.gradients(u_U,x_U)[0] ## automatic differentiation to compute the gradients of output with respect to input u_U_xx = tf.gradients(u_U_x,x_U)[0] ## second derivative with respect to spatial coordinate u_U_t = tf.gradients(u_U, t_U)[0] ## first derivtive in time c = self.diffusivity u_obs = self.yu_train ### observations for y_2 and y_3 (see the book chapter for notations y_2 and y_3) U_obs = self.yU_train ### observation for y_1 U_U = u_U_t - c * u_U_xx loss_u = tf.reduce_mean(tf.square(u_u-u_obs))/tf.reduce_mean(tf.square(u_obs)) ## mean squared error in the sense of relative error loss_U = tf.reduce_mean(tf.square(U_U-U_obs))/tf.reduce_mean(tf.square(U_obs)) if self.noise == 0.0: strength = 0.0 else: strength = 1.0e-4 ### strength of regularization reg = 0.0 for i in range(len(weights)): reg = reg + strength * tf.nn.l2_loss(weights[i]) ### add l_2 regularization for reducing the overfitting when noise comes out. loss = loss_U + loss_u + reg feed_dict = {x_u: self.xu_train[:,0:1], t_u: self.xu_train[:,1:2], \ x_U: self.xU_train[:,0:1], t_U: self.xU_train[:,1:2] } feed_dict_test = {x_u: self.x_test[:,0:1], t_u: self.x_test[:,1:2], \ x_U: self.x_test[:,0:1], t_U: self.x_test[:,1:2] } optimizer_Adam = tf.train.AdamOptimizer(learning_rate) train_op_Adam = optimizer_Adam.minimize(loss) x_index = [] loss_max = 1.0e16 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(num_iter+1): sess.run(train_op_Adam, feed_dict = feed_dict) if i % 10000 == 0: loss_val, loss_u_val, loss_U_val = sess.run([loss,loss_u, loss_U], feed_dict=feed_dict) self.u, self.f = sess.run([u_u, U_U], feed_dict=feed_dict_test) if loss_val < loss_max: loss_max = loss_val error= np.linalg.norm(self.u-self.y_test)/np.linalg.norm(self.y_test) x_index.append(i) print ('***************Iteration: ', i, '************\n') print ('Loss: ' , loss_max, 'Loss_u: ', loss_u_val, 'Loss_U: ', loss_U_val) print ('L2_error: ', error) class Discrete_time_GP_inverse: def __init__(self, dataset): self.xu_train = dataset['xu_train'] self.yu_train = dataset['yu_train'] self.xU_train = dataset['xU_train'] self.yU_train = dataset['yU_train'] self.noise = dataset['noise'] def ku(self, x, xp, n_x, sig, lx, lt, diag = False): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig_f: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # 'diag = False' : output a matrix of size n_x \times n_xp # 'diag = True' : output a column vector of size n_x \times 1 (n_x=n_xp) x1 = x[:,0:1] x2 = xp[:,0:1] x2 = tf.reshape(x2, (1,-1)) if diag == False: k = sig**2 * tf.exp(-(x1-x2)**2/2/lx**2 ) else: k = sig**2 * tf.ones((n_x,1),dtype=tf.float64) return k def kU(self, x, xp, n_x, sig, lx, lt, c, dt, diag = False): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # c: diffusivity # 'diag = False' : output a matrix of size n_x \times n_xp # 'diag = True' : output a column vector of size n_x \times 1 (n_x=n_xp) x1 = x[:,0:1] x2 = xp[:,0:1] x2 = tf.reshape(x2, (1,-1)) # Use Maple to do symbol manipulation if diag == False: k = 3*tf.exp(-(x1 - x2)**2/(2*lx**2))*(c**2*(lx**4 - 2*(x1 - x2)**2*lx**2 + (x1 - x2)**4/3)*dt**2 + (2*c*lx**4*(lx + x1 - x2)*(lx - x1 + x2)*dt)/3 + lx**8/3)/lx**8 k = sig**2 * k else: k = 3*(c**2*dt**2*lx**4 + 2/3*c*dt*lx**6 + 1/3*lx**8)/lx**8 k = sig**2 * k return k def kuU(self, x, xp, n_x, sig, lx, lt, c, dt): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # c: diffusivity x1 = x[:,0:1] x2 = xp[:,0:1] x2 = tf.reshape(x2, (1,-1)) # Use Maple to do symbol manipulation k = (c*(lx + x1 - x2)*(lx - x1 + x2)*dt + lx**4)*tf.exp(-(x1 - x2)**2/(2*lx**2))/lx**4 return k * sig**2 def kUu(self, x, xp, n_x, sig, lx, lt, c,dt): # xp : x'; hyp: hyper-parameters # n_x: number of x's # sig: signal standard deviation # lx: characteristic length in x direction # lt: characteristic legnth in t direction # c: diffusivity x1 = x[:,0:1] x2 = xp[:,0:1] x2 = tf.reshape(x2, (1,-1)) # Use Maple to do symbol manipulation k = (c*(lx + x1 - x2)*(lx - x1 + x2)*dt + lx**4)*tf.exp(-(x1 - x2)**2/(2*lx**2))/lx**4 return k * sig**2 def K_train(self, xu, xU, n_u, n_U, sig, lx, lt, c, dt): KU = self.kU(xU, xU, n_U, sig, lx, lt, c, dt) Ku = self.ku(xu, xu, n_u, sig, lx, lt) KuU = self.kuU(xu, xU, n_u, sig, lx, lt, c, dt) KUu = self.kUu(xU, xu, n_U, sig, lx, lt, c, dt) K1 = tf.concat((KU, KUu),axis=1) K2 = tf.concat((KuU, Ku),axis=1) K = tf.concat((K1,K2),axis=0) return K def K_test(self, xt, xu, xU, n_t, sig, lx, lt, c, dt): Ku = self.ku(xt, xu, n_t, sig, lx, lt) KuU = self.kuU(xt, xU, n_t, sig, lx, lt, c, dt) K = tf.concat((KuU, Ku),axis=1) K_diag = self.ku(xt, xu, n_t, sig, lx, lt, diag = True) return K, K_diag def nlml(self, xu, yu, n_u, xU, yU, n_U, sig, lx, lt, sig_n, c, dt): N = n_u + n_U self.Kn = self.K_train(xu, xU, n_u, n_U, sig, lx, lt, c, dt)+ (sig_n**2+1.0e-10) * tf.eye(N, dtype=tf.float64) self.L = tf.cholesky(self.Kn) r = tf.concat((yU,yu),axis=0) self.alpha = tf.cholesky_solve(self.L, r) temp = tf.matmul(r, self.alpha, transpose_a=True) return temp /2.0 +tf.reduce_sum(tf.log(tf.diag_part(self.L))) \ + 0.5 * N * np.log(2.0*np.pi) def training(self, num_iter=10001, learning_rate = 5.0e-4): tf.reset_default_graph() sig = tf.exp(tf.Variable(0.0,dtype=np.float64)) lx = tf.exp(tf.Variable(0.0,dtype=np.float64)) lt = tf.exp(tf.Variable(0.0,dtype=np.float64)) sig_n = tf.exp(tf.Variable(0.0,dtype=np.float64)) c = tf.exp(tf.Variable(0.0,dtype=np.float64, trainable=True)) dt = 0.01 n_u = self.xu_train.shape[0] n_U = self.xU_train.shape[0] xu = tf.placeholder(tf.float64, shape=(None,1)) yu = tf.placeholder(tf.float64, shape=(None,1)) xU = tf.placeholder(tf.float64, shape=(None,1)) yU = tf.placeholder(tf.float64, shape=(None,1)) nlml_tf = self.nlml(xu, yu, n_u, xU, yU, n_U, sig, lx, lt, sig_n, c, dt) optimizer_Adam = tf.train.AdamOptimizer(learning_rate) train_op_Adam = optimizer_Adam.minimize(nlml_tf) nlml_min = 1.0e16 feed_dict = {xu: self.xu_train, yu: self.yu_train, \ xU: self.xU_train, yU: self.yU_train } index = [] c_record = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(num_iter): sess.run(train_op_Adam, feed_dict=feed_dict) if i % 100 == 0: nlml_temp = sess.run(nlml_tf, feed_dict = feed_dict) if nlml_temp < nlml_min: index.append(i) nlml_min = nlml_temp sig0, lx0, lt0, sig_n0, self.c0 = \ sess.run([sig, lx, lt, sig_n, c], feed_dict=feed_dict) c_record.append(self.c0) fig=plt.figure() plt.plot(np.stack(index), np.stack(c_record),'r.-',label='Optimization history') plt.plot(np.stack(index), 0.1*np.ones((len(index),1)),'b-.',label='True parameter') plt.legend() plt.xlabel('Iteration') plt.ylabel('Estimated c') plt.title('D-GP-estimated c: '+str(self.c0)+' (True c: 0.1)') plt.savefig('D-GP_noise_'+str(self.noise*100)+'.png',dpi=300) plt.close(fig) class Discrete_time_NN_inverse: def __init__(self, dataset): self.xu_train = dataset['xu_train'] self.yu_train = dataset['yu_train'] self.xU_train = dataset['xU_train'] self.yU_train = dataset['yU_train'] self.noise = dataset['noise'] def xavier_init(self,size): # Initializing the weight matrices of NN in_dim = size[0] out_dim = size[1] xavier_stddev = np.sqrt(2.0/(in_dim + out_dim)) return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev,dtype=tf.float64,seed=1234), dtype=tf.float64) def DNN(self, X, layers,weights,biases): L = len(layers) H = X for l in range(0,L-2): W = weights[l] b = biases[l] H = tf.nn.tanh(tf.add(tf.matmul(H, W), b)) W = weights[-1] b = biases[-1] Y = tf.add(tf.matmul(H, W), b) return Y def training(self, num_iter=10001, learning_rate = 5.0e-4): tf.reset_default_graph() layers = [1]+[20]*3 +[1] #DNN layers L = len(layers) weights = [self.xavier_init([layers[l], layers[l+1]]) for l in range(0, L-1)] biases = [tf.Variable( tf.zeros((1, layers[l+1]),dtype=tf.float64)) for l in range(0, L-1)] dt = 0.01 x_u = tf.placeholder(tf.float64, shape=(None,1)) x_U = tf.placeholder(tf.float64, shape=(None,1)) u_u = self.DNN(x_u, layers, weights, biases) #fractional order - aplha u_U = self.DNN(x_U, layers, weights, biases) u_U_x = tf.gradients(u_U,x_U)[0] u_U_xx = tf.gradients(u_U_x,x_U)[0] c = tf.exp(tf.Variable(0.0,dtype=np.float64,trainable=True)) u_obs = self.yu_train U_obs = self.yU_train U_U = u_U - dt * c * u_U_xx loss_u = tf.reduce_mean(tf.square(u_u-u_obs))/tf.reduce_mean(tf.square(u_obs)) loss_U = tf.reduce_mean(tf.square(U_U-U_obs))/tf.reduce_mean(tf.square(U_obs)) reg = 0.0 if self.noise == 0.0: strength=0.0 else: strength = 1.0e-4 for i in range(len(weights)): reg = reg + tf.nn.l2_loss(weights[i]) loss = loss_U + loss_u + strength * reg feed_dict = {x_u: self.xu_train[:,0:1], \ x_U: self.xU_train[:,0:1] } optimizer_Adam = tf.train.AdamOptimizer(learning_rate) train_op_Adam = optimizer_Adam.minimize(loss) c_record = [] index = [] loss_max = 1.0e16 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(num_iter+1): sess.run(train_op_Adam, feed_dict = feed_dict) if i % 100 == 0: loss_val, loss_u_val, loss_U_val, self.c_val = sess.run([loss,loss_u, loss_U, c], feed_dict=feed_dict) if loss_val < loss_max: loss_max = loss_val c_record.append(self.c_val) index.append(i) fig=plt.figure() plt.plot(np.stack(index),
np.stack(c_record)
numpy.stack
# License: BSD 3 clause import itertools import sys import warnings import numpy as np from numpy.polynomial.legendre import leggauss from scipy.linalg import solve from tick.base import Base, ThreadPool from tick.hawkes.inference.build.hawkes_inference import (PointProcessCondLaw) # noinspection PyPep8Naming class HawkesConditionalLaw(Base): """This class is used for performing non parametric estimation of multi-dimensional marked Hawkes processes based on conditional laws. Marked Hawkes processes are point processes defined by the intensity: .. math:: \\forall i \\in [1 \\dots D], \\quad \\lambda_i = \\mu_i + \\sum_{j=1}^D \\int \\phi_{ij} * f_{ij}(v_j) dN_j where * :math:`D` is the number of nodes * :math:`\mu_i` are the baseline intensities * :math:`\phi_{ij}` are the kernels * :math:`v_j` are the marks (considered iid) of the process :math:`N_j` * :math:`f_{ij}` the mark functions supposed to be piece-wise constant on intervals :math:`I^j(l)` The estimation is made from empirical computations of .. math:: \\lim_{\\epsilon \\rightarrow 0} E [ (N_i[t + lag + \\delta + \\epsilon] - \Lambda[t + lag + \\epsilon]) | N_j[t]=1 \quad \& \quad v_j(t) \in I^j(l) ] For all the possible values of :math:`i`, :math:`i` and :math:`l`. The :math:`lag` is sampled on a uniform grid defined by :math:`\\delta`: :math:`lag = n * \\delta`. Estimation can be performed using several realizations. Parameters ---------- claw_method : {'lin', 'log'}, default='lin' Specifies the way the conditional laws are sampled. It can be either: * 'lin' : sampling is linear on [0, max_lag] using sampling period delta_lag * 'log' : sampling is semi-log. It uses linear sampling on [0, min_lag] with sampling period delta_lag and log sampling on [min_lag, max_lag] using :math:`\\exp(\\delta)` sampling period. delta_lag : `float`, default=0.1 See claw_methods min_lag : `float`, default=1e-4 See claw_methods max_lag : `float`, default=40 See claw_methods quad_method : {'gauss', 'lin', 'log'}, default=gauss Sampling used for quadrature * 'gauss' for gaussian quadrature * 'lin' for linear quadrature * 'log' for log quadrature min_support : `float`, default=1e-4 Start value of kernel estimation. It is used for 'log' quadrature method only, otherwise it is set to 0. max_support : `float`, default=40 End value of kernel estimation n_quad : `int` : default=50 The number of quadrature points between [min_support, max_support] used for solving the system. Be aware that the complexity increase as this number squared. n_threads : `int`, default=1 Number of threads used for parallel computation. * if `int <= 0`: the number of physical cores available on the CPU * otherwise the desired number of threads Other Parameters ---------------- delayed_component : list of `int`, shape=(n_nodes, ), default=None list of node indices corresponding to node that should be delayed (to avoid simultaneous jumps of different components which can be a problem in the estimation) delay : `float` The delayed used for `delayed_component`. Selected components are all delayed with the same value marked_components : `dict` A dictionary that indicates which component is considered as marked and what are the corresponding intervals ``I_j(l)`` Attributes ---------- n_nodes : `int` Number of nodes of the estimated Hawkes process n_realizations : `int` Number of given realizations baseline : np.ndarray, shape=(n_nodes,) Estimation of the baseline kernels_norms : np.ndarray, shape=(n_nodes, n_nodes) L1 norm matrix of the kernel norms kernels : list of list Kernel's estimation on the quadrature points mean_intensity : list of `float` The estimated mean intensity symmetries1d : list of 2-tuple List of component index pairs for imposing symmetries on the mean intensity (e.g, ``[(0,1),(2,3)]`` means that the mean intensity of the components 0 and 1 must be the same and the mean intensity of the components 2 and 3 also Can be set using can be set using the `set_model` method. symmetries2d : list of 2-tuple of 2-tuple List of kernel coordinates pairs to impose symmetries on the kernel matrix (e.g., ``[[(0,0),(1,1)],[(1,0),(0,1)]]`` for a bidiagonal kernel in dimension 2) Can be set using can be set using the `set_model` method. mark_functions : list of 2-tuple The mark functions as a list (lexical order on i,j and l, see below) References ---------- <NAME>., & <NAME>. (2014). Second order statistics characterization of Hawkes processes and non-parametric estimation. `arXiv preprint arXiv:1401.0903`_. .. _arXiv preprint arXiv:1401.0903: https://arxiv.org/pdf/1401.0903.pdf """ _attrinfos = { '_hawkes_object': {}, '_lags': {}, '_lock': { 'writable': False }, '_phi_ijl': {}, '_norm_ijl': {}, '_ijl2index': {}, '_index2ijl': {}, '_n_index': {}, '_mark_probabilities': {}, '_mark_probabilities_N': {}, '_mark_min': {}, '_mark_max': {}, '_lam_N': {}, '_lam_T': {}, '_claw': {}, '_claw1': {}, '_claw_X': {}, '_n_events': {}, '_int_claw': {}, '_IG': {}, '_IG2': {}, '_quad_x': {}, '_quad_w': {} } def __init__(self, delta_lag=.1, min_lag=1e-4, max_lag=40, n_quad=50, max_support=40, min_support=1e-4, quad_method='gauss', marked_components=None, delayed_component=None, delay=0.00001, model=None, n_threads=1, claw_method='lin'): Base.__init__(self) # Init the claw sampling parameters self.delta_lag = delta_lag self.max_lag = max_lag self.min_lag = min_lag self.claw_method = claw_method # Init quadrature method self.quad_method = quad_method self.n_quad = n_quad self.min_support = min_support self.max_support = max_support # Init marked components if marked_components is None: marked_components = dict() self.marked_components = marked_components # Init attributes self.n_realizations = 0 self._lags = None self._compute_lags() self.symmetries1d = [] self.symmetries2d = [] self.delayed_component = np.array(delayed_component) self.delay = delay # _claw : list of 2-tuple # Represents the conditional laws written above (lexical order on i, # j and l, see below). Each conditional law is represented by a # pair (x, c) where x are the abscissa self._claw = None # _claw1 : list of list # Represents the conditional laws written above without conditioning by # the mark (so a i,j list) self._claw1 = None self._lock = None # quad_x : `np.ndarray`, shape=(n_quad, ) # The abscissa of the quadrature points used for the Fredholm system self._quad_x = None # quad_w : `np.ndarray`, shape=(n_quad, ) # The weights the quadrature points used for the Fredholm system self._quad_w = None self._phi_ijl, self._norm_ijl = None, None self.kernels, self.kernels_norms, self.baseline = None, None, None self.mark_functions = None if n_threads == -1: import multiprocessing n_threads = multiprocessing.cpu_count() self.n_threads = n_threads if model: self.set_model(model) def fit(self, events: list, T=None): """Fit the model according to the given training data. Parameters ---------- events : `list` of `list` of `np.ndarray` List of Hawkes processes realizations. Each realization of the Hawkes process is a list of n_node for each component of the Hawkes. Namely `events[i][j]` contains a one-dimensional `numpy.array` of the events' timestamps of component j of realization i. If only one realization is given, it will be wrapped into a list T : `double`, default=None The duration (in physical time) of the realization. If it is None then T is considered to be the time of the last event (of any component). Returns ------- output : `HawkesConditionalLaw` The current instance of the Learner """ if not isinstance(events[0][0], np.ndarray): events = [events] for timestamps in events: self.incremental_fit(timestamps, compute=False, T=T) self.compute() return self def set_model(self, symmetries1d=list(), symmetries2d=list(), delayed_component=None): """Set the model to be used. Parameters ---------- symmetries1d : list of 2-tuple List of component index pairs for imposing symmetries on the mean intensity (e.g, ``[(0,1),(2,3)]`` means that the mean intensity of the components 0 and 1 must be the same and the mean intensity of the components 2 and 3 also. Can be set using can be set using the `set_model` method. symmetries2d : list of 2-tuple of 2-tuple List of kernel coordinates pairs to impose symmetries on the kernel matrix (e.g., ``[[(0,0),(1,1)],[(1,0),(0,1)]]`` for a bidiagonal kernel in dimension 2) Can be set using can be set using the `set_model` method. delayed_component : list of `int`, shape=(N, ), default=`None` list of node indices corresponding to node that should be delayed (to avoid simultaneous jumps of different components which can be a problem in the estimation) If no model is specified then default values for these fields are used Notes ----- We set the symmetries, the kernel names and delayed components for first realization only """ self.symmetries1d = symmetries1d self.symmetries2d = symmetries2d self.delayed_component = np.array(delayed_component) def _init_basics(self, realization): """Init the dimension """ self.n_nodes = len(realization) return realization def _init_marked_components(self): """Init marked components This builds the field self.marked_components so that it is set to [component1_mark_intervals, ..., componentN_mark_intervals] where each componentj_mark_intervals is of the form [[min1, max1], [min2, max2], ..., [mink, maxk]] It describes the intervals the function f^ij are constants on. """ marked_components = self.marked_components self.marked_components = [] for i in range(0, self.n_nodes): self.marked_components.append([]) if i in marked_components: self.marked_components[i].append( [-sys.float_info.max, marked_components[i][0]]) for j in range(0, len(marked_components[i]) - 1): self.marked_components[i].append( marked_components[i][j:j + 2]) self.marked_components[i].append( [marked_components[i][-1], sys.float_info.max]) else: self.marked_components[i].append( [-sys.float_info.max, sys.float_info.max]) def _init_index(self): """Init for indexing Given i,j,l --> index and vice versa (i and j are components of the Hawkes and l is the marked interval index of the component j) """ self._ijl2index = [] self._index2ijl = [] index = 0 for i in range(0, self.n_nodes): self._ijl2index.append([]) for j in range(0, self.n_nodes): self._ijl2index[i].append([]) for l in range(0, len(self.marked_components[j])): self._ijl2index[i][j].append(index) self._index2ijl.append((i, j, l)) index += 1 self._n_index = len(self._index2ijl) def _init_mark_stats(self): """We initialize the mark probabilities and min-max of the marks """ # Proba for the mark self._mark_probabilities = [] # In order to compute the probability we need to store the number of # events self._mark_probabilities_N = [] self._mark_min = [sys.float_info.max] * self.n_nodes self._mark_max = [sys.float_info.min] * self.n_nodes for i in range(0, self.n_nodes): self._mark_probabilities_N.append( [0] * len(self.marked_components[i])) self._mark_probabilities.append( [0] * len(self.marked_components[i])) def _init_lambdas(self): """Init the lambda's """ self.mean_intensity = [0] * self.n_nodes self._lam_N = [0] * self.n_nodes self._lam_T = [0] * self.n_nodes # Used to store the number of events of each component that # have been used to perform estimation on all the lags # versus the number of events that could not be used for all the lags # Warning : we don't take care of marks for this computation # normally we should do this computation independantly for each mark self._n_events = np.zeros((2, self.n_nodes)) def _init_claws(self): """Init the claw storage """ self._claw = [0] * len(self._index2ijl) def _index_to_lexical(self, index): """Convert index to lexical order (i,j,l) Parameters ---------- index : `int` Returns ------- i : `int` First node of the Hawkes j : `int` Second node of the Hawkes l : `int` Marked interval index of the component j Examples -------- >>> from tick.hawkes import HawkesConditionalLaw >>> import numpy as np >>> learner = HawkesConditionalLaw() >>> learner.incremental_fit([np.array([2.1, 3, 4]), ... np.array([2., 2.01, 8])], ... compute=False) >>> learner._index_to_lexical(2) (1, 0, 0) """ return self._index2ijl[index] def _lexical_to_index(self, i, j, l): """Convert lexical order (i,j,l) to index Parameters ---------- i : `int` First node of the Hawkes j : `int` Second node of the Hawkes l : `int` Marked interval index of the component j Returns ------- index : `int` Examples -------- >>> from tick.hawkes import HawkesConditionalLaw >>> import numpy as np >>> learner = HawkesConditionalLaw() >>> learner.incremental_fit([np.array([2.1, 3, 4]), ... np.array([2., 2.01, 8])], ... compute=False) >>> learner._lexical_to_index(1, 0, 0) 2 """ return self._ijl2index[i][j][l] def incremental_fit(self, realization, T=None, compute=True): """Allows to add some more realizations before estimation is performed. It updates the conditional laws (stored in `self._claw` and `self._claw1`) and of the mean intensity (in `self._mean_intensity`). Parameters ---------- realization : list of `np.narrays` or list of 2-tuple of `np.arrays` * list of `np.narrays`, shape=(N) , representing the arrival times of each component * list of pairs (t,m) np.arrays representing the arrival times of each component (x) and the cumulative marks signal (m) T : `double`, default=None The duration (in physical time) of the realization. If it is -1 then T is considered to be the time of the last event (of any component). compute : `bool`, default=`False` Computes kernel estimation. If set to `False`, you will have to manually call `compute` method afterwards. This is useful to add multiple realizations and compute only once all conditional laws have been updated. """ # If first realization we perform some init if self.n_realizations == 0: realization = self._init_basics(realization) self._init_marked_components() self._init_index() self._init_mark_stats() self._init_lambdas() self._init_claws() else: if compute and self._has_been_computed_once(): warnings.warn(("compute() method was already called, " "computed kernels will be updated.")) # We perform some checks if self.n_nodes != len(realization): msg = 'Bad dimension for realization, should be %d instead of %d' \ % (self.n_nodes, len(realization)) raise ValueError(msg) # Realization normalization if not isinstance(realization[0], (list, tuple)): realization = [(r, np.arange(len(r), dtype=np.double) + 1) for r in realization] # Do we need to delay the realization ? if self.delayed_component: old_realization = realization realization = [] for i in range(0, self.n_nodes): if any(self.delayed_component == i): if len(old_realization[i][0]) == 0: realization.append(old_realization[i]) else: realization.append((old_realization[i][0] + self.delay, old_realization[i][1])) else: realization.append(old_realization[i]) # We compute last event time last_event_time = -1 for i in range(0, self.n_nodes): if len(realization[i][0]) > 0: last_event_time = max(realization[i][0][-1], last_event_time) # If realization empty --> return if last_event_time < 0: warnings.warn( "An empty realization was passed. No computation was performed." ) return # We set T if needed if T is None: T = last_event_time elif T < last_event_time: raise ValueError("Argument T (%g) specified is too small, " "you should use default value or a value " "greater or equal to %g." % (T, last_event_time)) # We update the mark probabilities and min-max for i in range(0, self.n_nodes): if len(realization[i][0]) == 0: continue # We have to take into account the first mark der = np.hstack([realization[i][1][0], np.diff(realization[i][1])]) total = 0 self._mark_min[i] = min(self._mark_min[i], np.min(der)) self._mark_max[i] = max(self._mark_max[i], np.max(der)) for l, interval in enumerate(self.marked_components[i]): self._mark_probabilities_N[i][l] += \ np.sum((der >= interval[0]) & (der < interval[1])) total += self._mark_probabilities_N[i][l] for l, interval in enumerate(self.marked_components[i]): self._mark_probabilities[i][l] = \ self._mark_probabilities_N[i][l] / total der[:] = 1 # We update the Lambda for i in range(0, self.n_nodes): if len(realization[i][0]) <= 0: continue self._lam_N[i] += len(realization[i][0]) self._lam_T[i] += T self.mean_intensity[i] = self._lam_N[i] / self._lam_T[i] # We update the _n_events of component i # Warning : we don't take care of marks for this computation # normally we should do this computation independantly for each mark for i in range(0, self.n_nodes): good = np.sum(realization[i][0] <= T - self._lags[-1]) bad = len(realization[i][0]) - good self._n_events[0, i] += good self._n_events[1, i] += bad # We might want to use threads, since this is the time consuming part with_multi_processing = self.n_threads > 1 if with_multi_processing: pool = ThreadPool(with_lock=True, max_threads=self.n_threads) self._set('_lock', pool.lock) for index, (i, j, l) in enumerate(self._index2ijl): if with_multi_processing: pool.add_work(self._PointProcessCondLaw, realization, index, i, j, l, T) else: self._PointProcessCondLaw(realization, index, i, j, l, T) if with_multi_processing: pool.start() # Here we compute the G^ij (not conditioned to l) # It is recomputed each time self._claw1 = [] for i in range(0, self.n_nodes): self._claw1.append([]) for j in range(0, self.n_nodes): index = self._ijl2index[i][j][0] self._claw1[i].append(np.copy(self._claw[index])) self._claw1[i][j] *= self._mark_probabilities[j][0] for l in range(1, len(self._ijl2index[i][j])): index = self._ijl2index[i][j][l] self._claw1[i][j] += self._claw[index] * \ self._mark_probabilities[j][l] self.n_realizations += 1 # Deal with symmetrization for (i, j) in self.symmetries1d: t = (self.mean_intensity[i] + self.mean_intensity[j]) / 2 self.mean_intensity[i] = t self.mean_intensity[j] = t t = (self._mark_min[i] + self._mark_min[j]) / 2 self._mark_min[i] = t self._mark_min[j] = t t = (self._mark_max[i] + self._mark_max[j]) / 2 self._mark_max[i] = t self._mark_max[j] = t if self.marked_components[i] != self.marked_components[j]: continue for l in range(0, len(self.marked_components[i])): t = (self._mark_probabilities_N[i][l] + self._mark_probabilities_N[j][l]) / 2 self._mark_probabilities_N[i][l] = t self._mark_probabilities_N[j][l] = t t = (self._mark_probabilities[i][l] + self._mark_probabilities[j][l]) / 2 self._mark_probabilities[i][l] = t self._mark_probabilities[j][l] = t for ((i1, j1), (i2, j2)) in self.symmetries2d: t = (self._claw1[i1][j1] + self._claw1[i2][j2]) / 2 self._claw1[i1][j1] = t self._claw1[i2][j2] = t if self.marked_components[j1] != self.marked_components[j2]: continue for l in range(0, len(self.marked_components[j1])): index1 = self._ijl2index[i1][j1][l] index2 = self._ijl2index[i2][j2][l] t = (self._claw[index1] + self._claw[index2]) / 2 self._claw[index1] = t self._claw[index2] = t # We can remove the thread lock (lock disallows pickling) self._set('_lock', None) if compute: self.compute() def _PointProcessCondLaw(self, realization, index, i, j, l, T): claw_X = np.zeros(len(self._lags) - 1) claw_Y = np.zeros(len(self._lags) - 1) lambda_i = len(realization[i][0]) / T PointProcessCondLaw( realization[i][0], realization[j][0], realization[j][1], self._lags, self.marked_components[j][l][0], self.marked_components[j][l][1], T, lambda_i, claw_X, claw_Y) self._claw_X = claw_X # TODO: this lock acquire is very expensive here if self.n_threads > 1: self._lock.acquire() # Update claw if self.n_realizations == 0: self._claw[index] = claw_Y else: self._claw[index] *= self.n_realizations self._claw[index] += claw_Y self._claw[index] /= self.n_realizations + 1 # Unlock if self.n_threads > 1: self._lock.release() def _compute_lags(self): """Computes the lags at which the claw will be computed """ claw_method = self.claw_method # computes the claw either on a uniform grid (lin) or a semi log # uniform grid (log) if claw_method == "log": y1 = np.arange(0., self.min_lag, self.min_lag * self.delta_lag) y2 = np.exp( np.arange( np.log(self.min_lag), np.log(self.max_lag), self.delta_lag)) self._lags = np.append(y1, y2) if claw_method == "lin": self._lags = np.arange(0., self.max_lag, self.delta_lag) def _compute_ints_claw(self): """Computes the claw and its integrals at the difference of quadrature points using a linear interpolation """ self._int_claw = [0] * self._n_index # Builds a linear interpolation of the claws at the difference of # quadrature (only positive abscissa are kept) for index in range(self._n_index): xe = self._claw_X ye = self._claw[index] xs2 = np.array( [(a - b) for (a, b) in itertools.product(self._quad_x, repeat=2)]) xs2 = np.append(xe, xs2) xs2 = np.append(self._quad_x, xs2) xs2 = np.array(np.lib.arraysetops.unique(xs2)) xs2 = np.array(np.core.fromnumeric.sort(xs2)) xs2 = xs2[xs2 >= 0.] ys2 = np.zeros(len(xs2)) j = 0 for i in range(1, len(xe)): while j < len(xs2) and xs2[j] < xe[i]: ys2[j] = (ye[i - 1]) + ((ye[i]) - (ye[i - 1])) * ( xs2[j] - xe[i - 1]) / (xe[i] - xe[i - 1]) j += 1 sc = (xs2, ys2) self._int_claw[index] = sc # Computes the integrals of the claws (IG) and the integrals of x # times the claws from 0 to the abscissa we have just computed self._IG = [] self._IG2 = [] for i in range(self._n_index): xc = self._int_claw[i][0] yc = self._int_claw[i][1] iyc_IG = np.append( np.array(0.), np.cumsum(np.diff(xc) * (yc[:-1] + yc[1:]) / 2.)) self._IG += [(xc, iyc_IG)] iyc_IG2 = np.append( np.array(0.), np.cumsum((yc[:-1] + yc[1:]) / 2. * np.diff(xc) * xc[:-1] + np.diff(xc) * np.diff(xc) / 3. * np.diff(yc) + np.diff(xc) * np.diff(xc) / 2. * yc[:-1])) self._IG2 += [(xc, iyc_IG2)] @staticmethod def _lin0(sig, t): """Find closest value of a signal, zero value border """ x, y = sig if t >= x[-1]: return 0 index = np.searchsorted(x, t) if index == len(y) - 1: return y[index] elif np.abs(x[index] - t) < np.abs(x[index + 1] - t): return y[index] else: return y[index + 1] @staticmethod def _linc(sig, t): """Find closest value of a signal, continuous border """ x, y = sig if t >= x[-1]: return y[-1] index = np.searchsorted(x, t) if np.abs(x[index] - t) < np.abs(x[index + 1] - t): return y[index] else: return y[index + 1] def _G(self, i, j, l, t): """Returns the value of a claw at a point Used to fill V and M with 'gauss' method """ if t < 0: warnings.warn("G(): should not be called for t < 0") index = self._ijl2index[i][j][l] return HawkesConditionalLaw._lin0(self._int_claw[index], t) def _DIG(self, i, j, l, t1, t2): """Returns the integral of a claw between t1 and t2 """ if t1 >= t2: warnings.warn("t2>t1 wrong in DIG") index = self._ijl2index[i][j][l] return HawkesConditionalLaw._linc(self._IG[index], t2) - \ HawkesConditionalLaw._linc(self._IG[index], t1) def _DIG2(self, i, j, l, t1, t2): """Returns the integral of x times a claw between t1 and t2 """ if t1 >= t2: warnings.warn("t2>t1 wrong in DIG2") index = self._ijl2index[i][j][l] return HawkesConditionalLaw._linc(self._IG2[index], t2) - \ HawkesConditionalLaw._linc(self._IG2[index], t1) def compute(self): """Computes kernel estimation by solving a Fredholm system. """ # We raise an exception if a claw component had no input to be computed if any(self._n_events[0, :] == 0): k = np.where(self._n_events[0, :] == 0)[0] msg = "Cannot run estimation : not enough events for components {}" \ .format(k) raise ValueError(msg) # Here we compute the quadrature points and the corresponding weights # self.quad_x and self.quad_w if self.quad_method in {'gauss', 'gauss-'}: self._quad_x, self._quad_w = leggauss(self.n_quad) self._quad_x = self.max_support * (self._quad_x + 1) / 2 self._quad_w *= self.max_support / 2 elif self.quad_method == 'log': logstep = (np.log(self.max_support) - np.log( self.min_support) + 1.) / \ self.n_quad x1 = np.arange(0., self.min_support, self.min_support * logstep) x2 = np.exp( np.arange(
np.log(self.min_support)
numpy.log
import numpy as np from functools import lru_cache class Weights(object): def __init__(self, mean, std, sample_size, zeros=0, is_count=True): super(Weights, self).__init__() self.mean = mean self.std = std self.sample_size = sample_size # Count metrics require positive integers self.is_count = is_count # The probability of a metric requires that some of the values be 0 # All remaining values (for count metrics) must be positive integers self.zeros = zeros # We can focus on reaching specific totals for mean and standard deviation based on x # Removing sample_size from the equation lets us focus on reducing those totals to 0 m_total = mean * sample_size # sum(x) = mean * sample_size s_total = std**2. * (sample_size-1) # sum((x-m)^2) = std**2 * (sample_size-1) s_total -= zeros*(mean**2) # As zeros are pre-set, we can remove them now (mean total is unaffected by zeros) self.totals_pair =
np.array((m_total, s_total))
numpy.array
"""Tests for band unfolding calculations.""" import os import numpy as np from phonopy import Phonopy from phonopy.unfolding.core import Unfolding data_dir = os.path.dirname(os.path.abspath(__file__)) def test_Unfolding_NaCl(ph_nacl: Phonopy): """Test to reproduce proper band structure of primitive cell. Results are written to "bin-unfolding-test.dat". This data can be plotted by % plot_band.py bin-unfolding-test.dat Increase nd to get better plot. The test is done with nd=10. """ # ph = _get_phonon(ph_nacl) ph = ph_nacl nd = 10 qpoints = ( np.array( [ [ x, ] * 3 for x in range(nd) ] ) / float(nd) - 0.5 ) unfolding_supercell_matrix = [[-2, 2, 2], [2, -2, 2], [2, 2, -2]] mapping = np.arange(len(ph.supercell), dtype=int) unfolding = Unfolding( ph, unfolding_supercell_matrix, ph.supercell.scaled_positions, mapping, qpoints ) unfolding.run() weights = _get_weights(unfolding, qpoints) # _write_weights(weights, "unfolding.dat") # filename_out = os.path.join(data_dir, "bin-unfolding-test.dat") _compare(weights, os.path.join(data_dir, "bin-unfolding.dat"), filename_out=None) def test_Unfolding_SC(ph_nacl: Phonopy): """Test to reproduce unfoled band structure. Atomic positions are considered as the lattice ponts. Results are written to "bin-unfolding_to_atoms-test.dat". This data can be plotted by % plot_band.py bin-unfolding_to_atoms-test.dat Increase nd to get better plot. The test is done with nd=10. """ # ph = _get_phonon(ph_nacl) ph = ph_nacl nd = 10 qpoints = ( np.array( [ [ x, ] * 3 for x in range(nd) ] ) / float(nd) - 0.5 ) unfolding_supercell_matrix = np.diag([4, 4, 4]) mapping = np.arange(len(ph.supercell), dtype=int) unfolding = Unfolding( ph, unfolding_supercell_matrix, ph.supercell.scaled_positions, mapping, qpoints ) unfolding.run() weights = _get_weights(unfolding, qpoints) # _write_weights(weights, "unfolding_to_atoms.dat") # filename_out = os.path.join(data_dir, "bin-unfolding_to_atoms-test.dat") _compare( weights, os.path.join(data_dir, "bin-unfolding_to_atoms.dat"), filename_out=None ) def _compare(weights, filename, filename_out=None): bin_data = _binning(weights) if filename_out: _write_bin_data(bin_data, filename_out) with open(filename) as f: bin_data_in_file = np.loadtxt(f) np.testing.assert_allclose(bin_data, bin_data_in_file, atol=1e-2) def _get_weights(unfolding, qpoints): weights = unfolding.unfolding_weights freqs = unfolding.frequencies out_vals = [] for i, q in enumerate(qpoints): for f, w in zip(freqs[i], weights[i]): out_vals.append([q[0], q[1], q[2], f, w]) return out_vals def _write_weights(weights, filename): with open(filename, "w") as w: lines = ["%10.7f %10.7f %10.7f %12.7f %10.7f" % tuple(x) for x in weights] w.write("\n".join(lines)) def _write_bin_data(bin_data, filename): with open(filename, "w") as w: lines = ["%8.5f %8.5f %8.5f" % tuple(v) for v in bin_data] w.write("\n".join(lines)) def _binning(data): x = [] y = [] w = [] for vals in data: if vals[4] > 1e-3: x.append(vals[0]) y.append(vals[3]) w.append(vals[4]) x = np.around(x, decimals=5) y =
np.around(y, decimals=5)
numpy.around
from __future__ import print_function import urllib import bz2 import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import pickle import matplotlib.image as mpimg import cv2 import plotly.graph_objs as go import os from utils.utils_IO import ordered_arr_3d_to_dict, refill_nan_array, arr_2d_to_list_of_dicts, read_image, make_image_array, revert_ordered_arr_2d_to_dict, save_object, write_video from utils.utils_plotting import plot_image_labels, plot_3d_points, vector_plot, draw_circles, slope, drawLine, skew, plot_cams_and_points from utils.utils_BA import fun, bundle_adjustment_sparsity, project from anipose_BA import CameraGroup, Camera from scipy.spatial.transform import Rotation as R import alf.io from one.api import ONE from pathlib import Path import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib.animation as animation import matplotlib.patches as mpatches ''' adapted from <NAME>, Paninski Lab, 51N84D/3D-Animal-Pose; this includes bundle adjustement taken from https://github.com/lambdaloop/aniposelib/blob/master/aniposelib/cameras.py ''' ''' P_{X,Y}_{TOP,BOT}: (int) - {width / 2, height / 2} for camera {1,2} -->For setting the offset terms in the camera matrix to the center of the image plane pts_array_2d: (np.array) - Array of shape (num_cameras, num_points, 2) containing set of 2d points for each camera. This should be after cleaning NaNs i.e. removing rows with NaNs info_dict: Dictionary with keys {'num_frames', 'num_analyzed_body_parts', 'num_cameras', 'num_points_all', 'clean_point_indices'} --> 'num_frames' is the number of frames in the video --> 'num_analyzed_body_parts' is the number of body parts / joints being modeled (i.e. one per keypoint) --> 'num_cameras' is the number of cameras. In our case, it is 2 --> 'num_points_all' is the original number of points (including NaNs) --> 'clean_point_indices' is a list of indices (with length = num_points in pts_array_2d) pointing to the clean (non-NaN) entries in the original data path_images: (list) - List of sublists. Each sublist (one per camera / view) contains absolute paths to image frames. ''' ''' Get IBL 2D points for a given trial ''' def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def GetXYs(eid, video_type, trial_range): ''' eid: session id, e.g. '3663d82b-f197-4e8b-b299-7b803a155b84' video_type: one of 'left', 'right', 'body' trial_range: first and last trial number of range to be shown, e.g. [5,7] ''' one = ONE() dataset_types = ['camera.times', 'trials.intervals', 'camera.dlc'] a = one.list(eid, 'dataset-types') assert all([i in a for i in dataset_types] ), 'For this eid, not all data available' datasets = one.type2datasets(eid, dataset_types) D = one.load_datasets(eid, datasets=datasets) alf_path = Path(D.local_path[0]).parent.parent / 'alf' video_data = alf_path.parent / 'raw_video_data' video_path = list(video_data.rglob('_iblrig_%sCamera.raw.*' % video_type))[0] print(video_path) # that gives cam time stamps and DLC output (change to alf_path eventually) cam1 = alf.io.load_object(video_path.parent, '_ibl_%sCamera' % video_type) try: cam0 = alf.io.load_object(alf_path, '_ibl_%sCamera' % video_type) except: cam0 = {} cam = {**cam0,**cam1} # just to read in times for newer data (which has DLC results in pqt format #cam = alf.io.load_object(alf_path, '_ibl_%sCamera' % video_type) # pick trial range for which to display stuff trials = alf.io.load_object(alf_path, '_ibl_trials') num_trials = len(trials['intervals']) if trial_range[-1] > num_trials - 1: print('There are only %s trials' % num_trials) frame_start = find_nearest(cam['times'], [trials['intervals'][trial_range[0]][0]]) frame_stop = find_nearest(cam['times'], [trials['intervals'][trial_range[-1]][1]]) ''' DLC related stuff ''' Times = cam['times'][frame_start:frame_stop] del cam['times'] # dlc_name = '_ibl_%sCamera.dlc.pqt' % video_type # dlc_path = alf_path / dlc_name # cam=pd.read_parquet(dlc_path) points = np.unique(['_'.join(x.split('_')[:-1]) for x in cam.keys()]) if video_type != 'body': d = list(points) d.remove('tube_top') d.remove('tube_bottom') points = np.array(d) # Set values to nan if likelyhood is too low # for pqt: .to_numpy() XYs = {} for point in points: x = np.ma.masked_where( cam[point + '_likelihood'] < 0.9, cam[point + '_x']) x = x.filled(np.nan) y = np.ma.masked_where( cam[point + '_likelihood'] < 0.9, cam[point + '_y']) y = y.filled(np.nan) XYs[point] = np.array( [x[frame_start:frame_stop], y[frame_start:frame_stop]]) res_folder = '/home/mic/3D-Animal-Pose-master/IBL_example/%s_trials_%s_%s' %(eid, video_type, trial_range[0], trial_range[1]) Path(res_folder).mkdir(parents=True, exist_ok=True) np.save('/home/mic/3D-Animal-Pose-master/IBL_example/%s_trials_%s_%s/XYs_%s.npy' %(eid, video_type, trial_range[0], trial_range[1]), XYs) np.save('/home/mic/3D-Animal-Pose-master/IBL_example/%s_trials_%s_%s/times_%s.npy' %(eid, video_type, trial_range[0], trial_range[1]), Times) #return XYs, Times def get_3d_points_for_IBL_example(): #bring IBL data in format for bundle_adjust # starting with one paw only, the one called left in video left XYs_left = np.load('/home/mic/3D-Animal-Pose-master/IBL_example/XYs_left.npy', allow_pickle=True).flatten()[0] XYs_right = np.load('/home/mic/3D-Animal-Pose-master/IBL_example/XYs_right.npy', allow_pickle=True).flatten()[0] times_left = np.load('/home/mic/3D-Animal-Pose-master/IBL_example/times_left.npy') times_right = np.load('/home/mic/3D-Animal-Pose-master/IBL_example/times_right.npy') # get closest stamps or right cam (150 Hz) for each stamp of left (60 Hz) idx_aligned = [] for t in times_left: idx_aligned.append(find_nearest(times_right, t)) # paw_l in video left = paw_r in video right # Divide left coordinates by 2 to get them in half resolution like right cam; # reduce temporal resolution of right cam to that of left cam num_analyzed_body_parts = 3 # both paws and nose cam_right_paw1 = np.array([XYs_right['paw_r'][0][idx_aligned], XYs_right['paw_r'][1][idx_aligned]]) cam_left_paw1 = np.array([XYs_left['paw_l'][0]/2,XYs_left['paw_l'][1]/2]) cam_right_paw2 = np.array([XYs_right['paw_l'][0][idx_aligned], XYs_right['paw_l'][1][idx_aligned]]) cam_left_paw2 =
np.array([XYs_left['paw_r'][0]/2,XYs_left['paw_r'][1]/2])
numpy.array
import numpy as np import CCDutils #This module contains the functions necessary for doing CCSD in the spin-orbital basis ##Spin-orbital-based utilities def CCSDdoubles(F,Eri,T2,T1,nocc,nbas,variant): #Get the right hand side of the spinorbital CCSD singles equations. p. 307-308 of Bartlett and Shavitt niter = 1 #p.307 #Get CCD contribution G = CCDutils.GHFCCD(F,Eri,T2,nocc,nbas,niter,variant) # return G G += np.einsum('cjab,ic->ijab',Eri[nocc:,:nocc,nocc:,nocc:],T1) G -= np.einsum('ciab,jc->ijab',Eri[nocc:,:nocc,nocc:,nocc:],T1) G -= np.einsum('ijkb,ka->ijab',Eri[:nocc,:nocc,:nocc,nocc:],T1) G += np.einsum('ijka,kb->ijab',Eri[:nocc,:nocc,:nocc,nocc:],T1) G -= np.einsum('ck,ic,kjab->ijab',F[nocc:,:nocc],T1,T2) G += np.einsum('ck,jc,kiab->ijab',F[nocc:,:nocc],T1,T2) G -= np.einsum('ck,ka,ijcb->ijab',F[nocc:,:nocc],T1,T2) G += np.einsum('ck,kb,ijca->ijab',F[nocc:,:nocc],T1,T2) G += np.einsum('cdak,ic,kjdb->ijab',Eri[nocc:,nocc:,nocc:,:nocc],T1,T2) G -= np.einsum('cdbk,ic,kjda->ijab',Eri[nocc:,nocc:,nocc:,:nocc],T1,T2) G -= np.einsum('cdak,jc,kidb->ijab',Eri[nocc:,nocc:,nocc:,:nocc],T1,T2) G += np.einsum('cdbk,jc,kida->ijab',Eri[nocc:,nocc:,nocc:,:nocc],T1,T2) G -= np.einsum('ickl,ka,ljcb->ijab',Eri[:nocc,nocc:,:nocc,:nocc],T1,T2) G += np.einsum('jckl,ka,licb->ijab',Eri[:nocc,nocc:,:nocc,:nocc],T1,T2) G += np.einsum('ickl,kb,ljca->ijab',Eri[:nocc,nocc:,:nocc,:nocc],T1,T2) G -= np.einsum('jckl,kb,lica->ijab',Eri[:nocc,nocc:,:nocc,:nocc],T1,T2) G -= 0.5e0*np.einsum('cdkb,ka,ijcd->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T2) G += 0.5e0*np.einsum('cdka,kb,ijcd->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T2) #p. 308 G += 0.5e0*np.einsum('cjkl,ic,klab->ijab',Eri[nocc:,:nocc,:nocc,:nocc],T1,T2) G -= 0.5e0*np.einsum('cikl,jc,klab->ijab',Eri[nocc:,:nocc,:nocc,:nocc],T1,T2) G += np.einsum('cdka,kc,ijdb->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T2) G -= np.einsum('cdkb,kc,ijda->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T2) G -= np.einsum('cikl,kc,ljab->ijab',Eri[nocc:,:nocc,:nocc,:nocc],T1,T2) G += np.einsum('cjkl,kc,liab->ijab',Eri[nocc:,:nocc,:nocc,:nocc],T1,T2) G += np.einsum('cdab,ic,jd->ijab',Eri[nocc:,nocc:,nocc:,nocc:],T1,T1) G += np.einsum('ijkl,ka,lb->ijab',Eri[:nocc,:nocc,:nocc,:nocc],T1,T1) G -= np.einsum('cjkb,ic,ka->ijab',Eri[nocc:,:nocc,:nocc,nocc:],T1,T1) G += np.einsum('cikb,jc,ka->ijab',Eri[nocc:,:nocc,:nocc,nocc:],T1,T1) G += np.einsum('cjka,ic,kb->ijab',Eri[nocc:,:nocc,:nocc,nocc:],T1,T1) G -= np.einsum('cika,jc,kb->ijab',Eri[nocc:,:nocc,:nocc,nocc:],T1,T1) G += 0.5e0*np.einsum('cdkl,ic,jd,klab->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G += 0.5e0*np.einsum('cdkl,ka,lb,ijcd->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G -= np.einsum('cdkl,ic,ka,ljdb->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G += np.einsum('cdkl,jc,ka,lidb->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G += np.einsum('cdkl,ic,kb,ljda->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G -= np.einsum('cdkl,jc,kb,lida->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G -= np.einsum('cdkl,kc,id,ljab->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G += np.einsum('cdkl,kc,jd,liab->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G -= np.einsum('cdkl,kc,la,ijdb->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) G += np.einsum('cdkl,kc,lb,ijda->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T2) # ------------------------------- # G += np.einsum('cdkb,ic,ka,jd->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T1,T1) # G -= np.einsum('cdka,ic,kb,jd->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T1,T1) wrong sign in diagram D8a, p. 306 # of Shavitt and Bartlett. Compare to G -= np.einsum('cdkb,ic,ka,jd->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T1,T1) G += np.einsum('cdka,ic,kb,jd->ijab',Eri[nocc:,nocc:,:nocc,nocc:],T1,T1,T1) #from Crawford and Schaefer, An Introduction to Coupled Cluster Theory, Wiley ... #----------------------------------------------------------------------------- G += np.einsum('cjkl,ic,ka,lb->ijab',Eri[nocc:,:nocc,:nocc,:nocc],T1,T1,T1) G -=np.einsum('cikl,jc,ka,lb->ijab',Eri[nocc:,:nocc,:nocc,:nocc],T1,T1,T1) G += np.einsum('cdkl,ic,jd,ka,lb->ijab',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T1,T1) return G def CCSDsingles(F,Eri,T2,T1,nocc,nbas): #Get the right hand side of the spinorbital CCSD singles equations. p. 304 of Bartlett and Shavitt #Driver G = np.copy(F[:nocc,nocc:]) #Terms involving only doubles G += np.einsum('kc,ikac->ia',F[:nocc,nocc:],T2) G += 0.5e0*np.einsum('cdak,ikcd->ia',Eri[nocc:,nocc:,nocc:,:nocc],T2) G -= 0.5e0*np.einsum('ickl,klac->ia',Eri[:nocc,nocc:,:nocc,:nocc],T2) #Linear term involving only singles G += np.einsum('icak,kc->ia',Eri[:nocc,nocc:,nocc:,:nocc],T1) #Mixed Terms G -= 0.5e0*np.einsum('cdkl,ic,klad->ia',Eri[nocc:,nocc:,:nocc,:nocc],T1,T2) G -= 0.5e0*np.einsum('cdkl,ka,ilcd->ia',Eri[nocc:,nocc:,:nocc,:nocc],T1,T2) G += np.einsum('cdkl,kc,lida->ia',Eri[nocc:,nocc:,:nocc,:nocc],T1,T2) #higher-order terms involving only singles G -= np.einsum('ck,ic,ka->ia',F[nocc:,:nocc],T1,T1) G += np.einsum('cdak,ic,kd->ia',Eri[nocc:,nocc:,nocc:,:nocc],T1,T1) G -= np.einsum('ickl,ka,lc->ia',Eri[:nocc,nocc:,:nocc,:nocc],T1,T1) G -= np.einsum('cdkl,ic,ka,ld->ia',Eri[nocc:,nocc:,:nocc,:nocc],T1,T1,T1) #Don't forget other non-canonical terms tol = 1.0e-07 F_offdiag = F - np.diag(np.diag(F)) if np.amax(abs(F_offdiag) > tol): G += np.einsum('ca,ic->ia',F_offdiag[nocc:,nocc:],T1) G -= np.einsum('ik,ka->ia',F_offdiag[:nocc,:nocc],T1) return G def CCSDsingles_fact(F,Eri,T2,T1,nocc,nbas): #build intermediates according to Stanton et al. JCP 94(6) 1991 F_diag = np.diag(np.diag(F)) Tau_tilde = T2 + 0.50e0*(np.einsum('ia,jb->ijab',T1,T1)-np.einsum('ib,ja->ijab',T1,T1)) Fae = F[nocc:,nocc:] - F_diag[nocc:,nocc:] Fae -= 0.5e0*(np.einsum('em,ma->ea',F[nocc:,:nocc],T1)) Fae += np.einsum('mf,fema->ea',T1,Eri[nocc:,nocc:,:nocc,nocc:]) Fae -= 0.5e0*np.einsum('mnaf,efmn->ea',Tau_tilde,Eri[nocc:,nocc:,:nocc,:nocc]) Fmi = F[:nocc,:nocc] - F_diag[:nocc,:nocc] Fmi += 0.5e0*(np.einsum('em,ie->im',F[nocc:,:nocc],T1)) Fmi += np.einsum('ne,iemn->im',T1,Eri[:nocc,nocc:,:nocc,:nocc]) Fmi += 0.5e0*np.einsum('inef,efmn->im',Tau_tilde,Eri[nocc:,nocc:,:nocc,:nocc]) Fme = F[nocc:,:nocc] + np.einsum('nf,efmn->em',T1,Eri[nocc:,nocc:,:nocc,:nocc]) #contract T with intermediates to get RHS of singles equation. (eq 1 in Stanton reference) G = F[:nocc,nocc:] + np.einsum('ie,ea->ia',T1,Fae) G -= np.einsum('ma,im->ia',T1,Fmi) G += np.einsum('imae,em->ia',T2,Fme) G -= np.einsum('nf,ifna->ia',T1,Eri[:nocc,nocc:,:nocc,nocc:]) G -= 0.5e0*np.einsum('imef,efma->ia',T2,Eri[nocc:,nocc:,:nocc,nocc:]) G -= 0.5e0*np.einsum('mnae,einm->ia',T2,Eri[nocc:,:nocc,:nocc,:nocc]) return G def CCSDdoubles_fact(F,Eri,T2,T1,nocc,nbas): #build intermediates according to Stanton et al. JCP 94(6) 1991 F_diag = np.diag(np.diag(F)) Tau_tilde = T2 + 0.50e0*(np.einsum('ia,jb->ijab',T1,T1)-np.einsum('ib,ja->ijab',T1,T1)) Tau = T2 + np.einsum('ia,jb->ijab',T1,T1) - np.einsum('ib,ja->ijab',T1,T1) #2-index intermediates Fae = F[nocc:,nocc:] - F_diag[nocc:,nocc:] Fae -= 0.5e0*(np.einsum('em,ma->ea',F[nocc:,:nocc],T1)) Fae += np.einsum('mf,fema->ea',T1,Eri[nocc:,nocc:,:nocc,nocc:]) Fae -= 0.5e0*np.einsum('mnaf,efmn->ea',Tau_tilde,Eri[nocc:,nocc:,:nocc,:nocc]) Fmi = F[:nocc,:nocc] - F_diag[:nocc,:nocc] Fmi += 0.5e0*(np.einsum('em,ie->im',F[nocc:,:nocc],T1)) Fmi += np.einsum('ne,iemn->im',T1,Eri[:nocc,nocc:,:nocc,:nocc]) Fmi += 0.5e0*np.einsum('inef,efmn->im',Tau_tilde,Eri[nocc:,nocc:,:nocc,:nocc]) Fme = F[nocc:,:nocc] + np.einsum('nf,efmn->em',T1,Eri[nocc:,nocc:,:nocc,:nocc]) #4-index intermediates Wijmn = Eri[:nocc,:nocc,:nocc,:nocc] + np.einsum('je,iemn->ijmn',T1,Eri[:nocc,nocc:,:nocc,:nocc]) Wijmn -= np.einsum('ie,jemn->ijmn',T1,Eri[:nocc,nocc:,:nocc,:nocc]) Wijmn += 0.25e0*
np.einsum('ijef,efmn->ijmn',Tau,Eri[nocc:,nocc:,:nocc,:nocc])
numpy.einsum
import json import hashlib import numpy as np from os import path import seaborn as sns from tqdm import tqdm from scipy.stats import zscore import matplotlib.pyplot as plt from scipy.optimize import curve_fit from sklearn.decomposition import PCA from multiprocessing import Process, Manager, Pool from Code import sampling from Code.file_io import load_spontaneous,load_orientations __author__ = '<NAME>' """ Calculates bootstrapped variance explained based on sampling of neurons """ def demo_variance_explained_curve(use_multiprocessing=False): """ Load example data and creates plot of dimensionality based on sample size """ # Load data and calculate (assumes .npy file is in the same directory) # neurons = np.load('stringer_spontaneous.npy', allow_pickle=True).item()['sresp'] neurons = load_spontaneous()['sresp'] cell_sample_nums = np.arange(10,20) cum_var_cutoff = 0.8 dmeans, dlower, dupper = get_variance_explained_curve(neurons, cell_sample_nums, cum_var_cutoff, use_multiprocessing=use_multiprocessing) # Plot dimensionality means and confidence intervals ax = plt.subplots(1,1,figsize=(10,10))[1] ax.plot(cell_sample_nums, dmeans) ax.fill_between(cell_sample_nums, (dlower), (dupper), color='b', alpha=.1, label='95%-Confidence Interval') plt.plot(cell_sample_nums, dmeans, color='b', label=f'Mean Dimensionality') plt.xlabel('Number of Cells Sampled') plt.ylabel(f'Dimensionality (Cummulative Var > {int(100*cum_var_cutoff)}%)') plt.title('Dimensionality of Spontaneous V1 Activity') plt.legend() plt.show() plt.close() return def get_variance_explained_curve(neurons, cell_sample_nums, cum_var_cutoff=0.8, pca_repetitions=10, z_transform_data=True, sampling_method='sample_uniform', use_multiprocessing=False, return_dict=False, depth_range=None, neuron_locs=None, **kwargs): """ Return a curve of variance explained. Extra arguments are passed to the sampling function. Warnings: 1) Returned data will be sorted from lowest to highest cell_sample_nums. :param neurons: 2D array. Raw data. MUST be in the shape Timepoints x Neurons. :param cell_sample_nums: 1D Int array. Contains sample numbers to use. :param cum_var_cutoff: Float. Between 0 and 1. Cutoff for cumulative variance explained. :param pca_repetitions: Int. Number of PCA repeats for each sample_num :param z_transform_data: Bool. Set to True to z-score your array before processing :param sampling_method: Str. Unused at this time. :param use_multiprocessing: Bool. Set to False if multiprocessing functions throw errors. Returns three lists: dimensionality means, lower confidence intervals, and upper confidence intervals """ sampling_func_lookup = {'sample_uniform': sampling.sample_uniform, 'sample_around_point': sampling.sample_around_point, 'sample_depths_uniform': sampling.sample_depth_range, 'sample_depths_point': sampling.sample_around_point} sample_func = sampling_func_lookup[sampling_method] if np.any(np.array(cell_sample_nums) > neurons.shape[1]): raise Exception('Warning: More samples than neurons available requested!') # This is shuffled to better estimate runtime in TQDM shuff_cell_sample_nums = np.copy(cell_sample_nums) np.random.shuffle(shuff_cell_sample_nums) # Create empty arrays to store values dimensionality_means = np.zeros_like(shuff_cell_sample_nums, dtype='float') dimensionality_lower_ci = np.zeros_like(shuff_cell_sample_nums) # 5th percentile of bootstrapped dimensionality dimensionality_upper_ci = np.zeros_like(shuff_cell_sample_nums) # 95th percentile of bootstrapped dimensionality # Transform data to z-score to center it as the units are not the same for all neurons Z = neurons if z_transform_data: Z = zscore(Z, axis=0) Z = np.nan_to_num(Z) # Filter dataset to only include depth range if sample_depths_point used if sampling_method == 'sample_depths_point': upper,lower = (np.max(depth_range), np.min(depth_range)) mask = np.where(np.logical_and(neuron_locs[2,:] <= upper, neuron_locs[2,:] >= lower))[0] Z = Z[:, mask] neuron_locs = np.array(neuron_locs)[:,mask] # Determine curve for dimensionality guess dim_sample_nums = [1000, 2000, 3000] dim_sample_results = [] for dim_sample_num in dim_sample_nums: sample_neurons = sampling_func_lookup['sample_uniform'](neurons=Z, n=dim_sample_num, depth_range=depth_range, **kwargs) guess_dimensionality = int(np.min(sample_neurons.shape)*0.75) dim_sample_results.append(get_pca_dimensionality(sample_neurons, cum_var_cutoff, guess_dimensionality)) dim_curve_params, _ = curve_fit(_dim_curve, dim_sample_nums, dim_sample_results, p0=(1, 1, 4000), maxfev=10000) full_data_dict = {} full_data_dict['neuron_nums'] = {} for i,cell_sample_num in tqdm(enumerate(shuff_cell_sample_nums), total=len(shuff_cell_sample_nums)): # Create list of smaller arrays to pass to multiprocessing function array_subsets = [] for rep in range(pca_repetitions): temp_array = sample_func(Z, n=cell_sample_num, neuron_locs=neuron_locs, depth_range=depth_range, **kwargs) array_subsets.append(temp_array) # Calculate dimensionality for all random samples dimensionality_guess = int(np.min((_dim_curve(cell_sample_num, *dim_curve_params)+300, *array_subsets[0].shape))) dimensionality_bootstrap = [] if use_multiprocessing: cutoff_array = np.ones(pca_repetitions)*cum_var_cutoff dimensionality_guess_array = (
np.ones(pca_repetitions)
numpy.ones
import autoarray as aa import os import shutil import numpy as np import pytest test_data_path = "{}/../test_files/array/".format( os.path.dirname(os.path.realpath(__file__)) ) @pytest.fixture(name="memoizer") def make_memoizer(): return aa.util.array.Memoizer() class TestMemoizer: def test_storing(self, memoizer): @memoizer def func(arg): return "result for {}".format(arg) func(1) func(2) func(1) assert memoizer.results == { "('arg', 1)": "result for 1", "('arg', 2)": "result for 2", } assert memoizer.calls == 2 def test_multiple_arguments(self, memoizer): @memoizer def func(arg1, arg2): return arg1 * arg2 func(1, 2) func(2, 1) func(1, 2) assert memoizer.results == { "('arg1', 1), ('arg2', 2)": 2, "('arg1', 2), ('arg2', 1)": 2, } assert memoizer.calls == 2 def test_key_word_arguments(self, memoizer): @memoizer def func(arg1=0, arg2=0): return arg1 * arg2 func(arg1=1) func(arg2=1) func(arg1=1) func(arg1=1, arg2=1) assert memoizer.results == { "('arg1', 1)": 0, "('arg2', 1)": 0, "('arg1', 1), ('arg2', 1)": 1, } assert memoizer.calls == 3 def test_key_word_for_positional(self, memoizer): @memoizer def func(arg): return "result for {}".format(arg) func(1) func(arg=2) func(arg=1) assert memoizer.calls == 2 def test_methods(self, memoizer): class Class: def __init__(self, value): self.value = value @memoizer def method(self): return self.value one = Class(1) two = Class(2) assert one.method() == 1 assert two.method() == 2 class TestResize: def test__trim__from_7x7_to_3x3(self): array = np.ones((7, 7)) array[3, 3] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(3, 3) ) assert ( modified == np.array([[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() def test__trim__from_7x7_to_4x4(self): array = np.ones((7, 7)) array[3, 3] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(4, 4) ) assert ( modified == np.array( [ [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 2.0, 1.0], [1.0, 1.0, 1.0, 1.0], ] ) ).all() def test__trim__from_6x6_to_4x4(self): array = np.ones((6, 6)) array[2:4, 2:4] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(4, 4) ) assert ( modified == np.array( [ [1.0, 1.0, 1.0, 1.0], [1.0, 2.0, 2.0, 1.0], [1.0, 2.0, 2.0, 1.0], [1.0, 1.0, 1.0, 1.0], ] ) ).all() def test__trim__from_6x6_to_3x3(self): array = np.ones((6, 6)) array[2:4, 2:4] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(3, 3) ) assert ( modified == np.array([[2.0, 2.0, 1.0], [2.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() def test__trim__from_5x4_to_3x2(self): array = np.ones((5, 4)) array[2, 1:3] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(3, 2) ) assert (modified == np.array([[1.0, 1.0], [2.0, 2.0], [1.0, 1.0]])).all() def test__trim__from_4x5_to_2x3(self): array = np.ones((4, 5)) array[1:3, 2] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(2, 3) ) assert (modified == np.array([[1.0, 2.0, 1.0], [1.0, 2.0, 1.0]])).all() def test__trim_with_new_origin_as_input(self): array = np.ones((7, 7)) array[4, 4] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(3, 3), origin=(4, 4) ) assert ( modified == np.array([[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() array = np.ones((6, 6)) array[3, 4] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(3, 3), origin=(3, 4) ) assert ( modified == np.array([[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() array = np.ones((9, 8)) array[4, 3] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(3, 3), origin=(4, 3) ) assert ( modified == np.array([[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() array = np.ones((8, 9)) array[3, 5] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(3, 3), origin=(3, 5) ) assert ( modified == np.array([[1.0, 1.0, 1.0], [1.0, 2.0, 1.0], [1.0, 1.0, 1.0]]) ).all() def test__pad__from_3x3_to_5x5(self): array = np.ones((3, 3)) array[1, 1] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(5, 5) ) assert ( modified == np.array( [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 1.0, 0.0], [0.0, 1.0, 2.0, 1.0, 0.0], [0.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ] ) ).all() def test__pad__from_3x3_to_4x4(self): array = np.ones((3, 3)) array[1, 1] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(4, 4) ) assert ( modified == np.array( [ [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 1.0], [0.0, 1.0, 2.0, 1.0], [0.0, 1.0, 1.0, 1.0], ] ) ).all() def test__pad__from_4x4_to_6x6(self): array = np.ones((4, 4)) array[1:3, 1:3] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(6, 6) ) assert ( modified == np.array( [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 1.0, 2.0, 2.0, 1.0, 0.0], [0.0, 1.0, 2.0, 2.0, 1.0, 0.0], [0.0, 1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ] ) ).all() def test__pad__from_4x4_to_5x5(self): array = np.ones((4, 4)) array[1:3, 1:3] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(5, 5) ) assert ( modified == np.array( [ [1.0, 1.0, 1.0, 1.0, 0.0], [1.0, 2.0, 2.0, 1.0, 0.0], [1.0, 2.0, 2.0, 1.0, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ] ) ).all() def test__pad__from_3x2_to_5x4(self): array = np.ones((3, 2)) array[1, 0:2] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(5, 4) ) assert ( modified == np.array( [ [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.0, 2.0, 2.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0], ] ) ).all() def test__pad__from_2x3_to_4x5(self): array = np.ones((2, 3)) array[0:2, 1] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(4, 5) ) assert ( modified == np.array( [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 2.0, 1.0, 0.0], [0.0, 1.0, 2.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ] ) ).all() def test__pad__with_input_new_origin(self): array = np.ones((3, 3)) array[2, 2] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(5, 5), origin=(2, 2) ) assert ( modified == np.array( [ [1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 1.0, 0.0, 0.0], [1.0, 1.0, 2.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ] ) ).all() array = np.ones((2, 3)) array[0, 0] = 2.0 modified = aa.util.array.resized_array_2d_from_array_2d( array_2d=array, resized_shape=(4, 5), origin=(0, 1) ) assert ( modified == np.array( [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 2.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 1.0, 0.0], ] ) ).all() class TestFits: def test__numpy_array_1d_from_fits(self): arr = aa.util.array.numpy_array_1d_from_fits( file_path=test_data_path + "3_ones.fits", hdu=0 ) assert (arr == np.ones((3))).all() def test__numpy_array_1d_to_fits__output_and_load(self): if os.path.exists(test_data_path + "test_autoarray.fits"): os.remove(test_data_path + "test_autoarray.fits") arr = np.array([10.0, 30.0, 40.0, 92.0, 19.0, 20.0]) aa.util.array.numpy_array_1d_to_fits( arr, file_path=test_data_path + "test_autoarray.fits" ) array_load = aa.util.array.numpy_array_1d_from_fits( file_path=test_data_path + "test_autoarray.fits", hdu=0 ) assert (arr == array_load).all() def test__numpy_array_2d_from_fits(self): arr = aa.util.array.numpy_array_2d_from_fits( file_path=test_data_path + "3x3_ones.fits", hdu=0 ) assert (arr == np.ones((3, 3))).all() arr = aa.util.array.numpy_array_2d_from_fits( file_path=test_data_path + "4x3_ones.fits", hdu=0 ) assert (arr == np.ones((4, 3))).all() def test__numpy_array_2d_to_fits__output_and_load(self): if os.path.exists(test_data_path + "test_autoarray.fits"): os.remove(test_data_path + "test_autoarray.fits") arr = np.array([[10.0, 30.0, 40.0], [92.0, 19.0, 20.0]]) aa.util.array.numpy_array_2d_to_fits( arr, file_path=test_data_path + "test_autoarray.fits" ) array_load = aa.util.array.numpy_array_2d_from_fits( file_path=test_data_path + "test_autoarray.fits", hdu=0 ) assert (arr == array_load).all() class TestReplaceNegativeNoise: def test__2x2_array__no_negative_values__no_change(self): image_2d = np.ones(shape=(2, 2)) noise_map_2d = np.array([[1.0, 2.0], [3.0, 4.0]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=1.0 ) assert (noise_map_2d == noise_map_2d).all() def test__2x2_array__negative_values__do_not_produce_absolute_signal_to_noise_values_above_target__no_change( self ): image_2d = -1.0 * np.ones(shape=(2, 2)) noise_map_2d = np.array([[1.0, 0.5], [0.25, 0.125]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=10.0 ) assert (noise_map_2d == noise_map_2d).all() def test__2x2_array__negative_values__values_give_absolute_signal_to_noise_below_target__replaces_their_noise( self ): image_2d = -1.0 * np.ones(shape=(2, 2)) noise_map_2d = np.array([[1.0, 0.5], [0.25, 0.125]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=4.0 ) assert (noise_map_2d == np.array([[1.0, 0.5], [0.25, 0.25]])).all() noise_map_2d = np.array([[1.0, 0.5], [0.25, 0.125]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=2.0 ) assert (noise_map_2d == np.array([[1.0, 0.5], [0.5, 0.5]])).all() noise_map_2d = np.array([[1.0, 0.5], [0.25, 0.125]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=1.0 ) assert (noise_map_2d == np.array([[1.0, 1.0], [1.0, 1.0]])).all() noise_map_2d = np.array([[1.0, 0.5], [0.25, 0.125]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=0.5 ) assert (noise_map_2d == np.array([[2.0, 2.0], [2.0, 2.0]])).all() def test__same_as_above__image_not_all_negative_ones(self): image_2d = np.array([[1.0, -2.0], [5.0, -4.0]]) noise_map_2d = np.array([[3.0, 1.0], [4.0, 8.0]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=1.0 ) assert (noise_map_2d == np.array([[3.0, 2.0], [4.0, 8.0]])).all() image_2d = np.array([[-10.0, -20.0], [100.0, -30.0]]) noise_map_2d = np.array([[1.0, 2.0], [40.0, 3.0]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=5.0 ) assert (noise_map_2d == np.array([[2.0, 4.0], [40.0, 6.0]])).all() def test__rectangular_2x3_and_3x2_arrays(self): image_2d = -1.0 * np.ones(shape=(2, 3)) noise_map_2d = np.array([[1.0, 0.5, 0.25], [0.25, 0.125, 2.0]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=2.0 ) assert (noise_map_2d == np.array([[1.0, 0.5, 0.5], [0.5, 0.5, 2.0]])).all() image_2d = -1.0 * np.ones(shape=(3, 2)) noise_map_2d = np.array([[1.0, 0.5], [0.25, 0.125], [0.25, 2.0]]) noise_map_2d = aa.util.array.replace_noise_map_2d_values_where_image_2d_values_are_negative( image_2d=image_2d, noise_map_2d=noise_map_2d, target_signal_to_noise=2.0 ) assert (noise_map_2d ==
np.array([[1.0, 0.5], [0.5, 0.5], [0.5, 2.0]])
numpy.array
""" pyrad.proc.process_traj ============================= Trajectory functions. Functions to pass trajectory dataset data to the product generation functions. .. autosummary:: :toctree: generated/ process_trajectory process_traj_trt process_traj_trt_contour process_traj_lightning process_traj_atplane process_traj_antenna_pattern _get_ts_values_antenna_pattern _get_contour_trt _get_gates _get_gates_trt _get_gates_antenna_pattern _get_closest_bin _sample_out_of_sector TargetRadar """ from warnings import warn import gc from copy import deepcopy import numpy as np from netCDF4 import num2date, date2num import pyart from pyart.config import get_metadata from pyart.core import Radar from ..io.io_aux import get_datatype_fields, get_fieldname_pyart from ..io.io_aux import get_field_unit, get_field_name from ..io.timeseries import TimeSeries from ..io.read_data_other import read_antenna_pattern from ..util.stat_utils import quantiles_weighted from ..util.radar_utils import belongs_roi_indices, find_nearest_gate def process_trajectory(procstatus, dscfg, radar_list=None, trajectory=None): """ Return trajectory Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types radar_list : list of Radar objects Optional. list of radar objects trajectory : Trajectory object containing trajectory samples Returns ------- new_dataset : Trajectory object radar object ind_rad : int None """ if procstatus != 1: return None, None if not dscfg['initialized']: if trajectory is None: raise Exception("ERROR: Undefined trajectory for dataset '%s'" % dscfg['dsname']) if radar_list is not None: for radar in radar_list: rad = trajectory.add_radar(radar) trajectory.calculate_velocities(rad) else: warn('ERROR: No valid radar found') return None, None dscfg['initialized'] = True return trajectory, None return None, None def process_traj_trt(procstatus, dscfg, radar_list=None, trajectory=None): """ Processes data according to TRT trajectory Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types time_tol : float. Dataset keyword tolerance between reference time of the radar volume and that of the TRT cell [s]. Default 100. alt_min, alt_max : float. Dataset keyword Minimum and maximum altitude of the data inside the TRT cell to retrieve [m MSL]. Default None cell_center : Bool. Dataset keyword If True only the range gate closest to the center of the cell is extracted. Default False latlon_tol : Float. Dataset keyword Tolerance in lat/lon when extracting data only from the center of the TRT cell. Default 0.01 radar_list : list of Radar objects Optional. list of radar objects trajectory : Trajectory object containing trajectory samples Returns ------- new_dataset : dictionary Dictionary containing radar_out, a radar object containing only data from inside the TRT cell ind_rad : int radar index """ if procstatus != 1: return None, None # Process field_names = [] datatypes = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_names.append(get_fieldname_pyart(datatype)) datatypes.append(datatype) ind_rad = int(radarnr[5:8])-1 if ((radar_list is None) or (radar_list[ind_rad] is None)): warn('ERROR: No valid radar found') return None, None # keep locally only field of interest in radar object radar = deepcopy(radar_list[ind_rad]) radar.fields = dict() nfields_available = 0 for field_name in field_names: if field_name not in radar_list[ind_rad].fields: warn("Datatype '%s' not available in radar data" % field_name) continue radar.add_field(field_name, radar_list[ind_rad].fields[field_name]) nfields_available += 1 if nfields_available == 0: warn("Fields not available in radar data") return None, None # get TRT cell corresponding to current radar volume time_tol = dscfg.get('TimeTol', 100.) alt_min = dscfg.get('alt_min', None) alt_max = dscfg.get('alt_max', None) cell_center = dscfg.get('cell_center', False) latlon_tol = dscfg.get('latlon_tol', 0.01) # aprox. 1 km inds_ray, inds_rng, lat, lon, alt = _get_gates_trt( radar, trajectory, dscfg['timeinfo'], time_tol=time_tol, alt_min=alt_min, alt_max=alt_max, cell_center=cell_center, latlon_tol=latlon_tol) if inds_ray is None: return None, None # prepare new radar object output radar_roi = deepcopy(radar) radar_roi.range['data'] = radar.range['data'][inds_rng] radar_roi.ngates = inds_rng.size radar_roi.time['data'] = np.asarray([radar_roi.time['data'][0]]) radar_roi.scan_type = 'roi' radar_roi.sweep_mode['data'] = np.array(['roi']) radar_roi.sweep_start_ray_index['data'] = np.array([0], dtype='int32') radar_roi.fixed_angle['data'] = np.array([], dtype='float64') radar_roi.sweep_number['data'] = np.array([0], dtype='int32') radar_roi.nsweeps = 1 if radar.rays_are_indexed is not None: radar_roi.rays_are_indexed['data'] = np.array( [radar.rays_are_indexed['data'][0]]) if radar.ray_angle_res is not None: radar_roi.ray_angle_res['data'] = np.array( [radar.ray_angle_res['data'][0]]) radar_roi.sweep_end_ray_index['data'] = np.array([1], dtype='int32') radar_roi.rays_per_sweep = np.array([1], dtype='int32') radar_roi.azimuth['data'] = np.array([], dtype='float64') radar_roi.elevation['data'] = np.array([], dtype='float64') radar_roi.nrays = 1 radar_roi.gate_longitude['data'] = np.empty( (radar_roi.nrays, radar_roi.ngates), dtype=float) radar_roi.gate_latitude['data'] = np.empty( (radar_roi.nrays, radar_roi.ngates), dtype=float) radar_roi.gate_altitude['data'] = np.empty( (radar_roi.nrays, radar_roi.ngates), dtype=float) radar_roi.gate_x['data'] = np.empty( (radar_roi.nrays, radar_roi.ngates), dtype=float) radar_roi.gate_y['data'] = np.empty( (radar_roi.nrays, radar_roi.ngates), dtype=float) radar_roi.gate_z['data'] = np.empty( (radar_roi.nrays, radar_roi.ngates), dtype=float) radar_roi.gate_longitude['data'][0, :] = lon radar_roi.gate_latitude['data'][0, :] = lat radar_roi.gate_altitude['data'][0, :] = alt radar_roi.gate_x['data'][0, :] = radar.gate_x['data'][inds_ray, inds_rng] radar_roi.gate_y['data'][0, :] = radar.gate_y['data'][inds_ray, inds_rng] radar_roi.gate_z['data'][0, :] = radar.gate_z['data'][inds_ray, inds_rng] radar_roi.fields = dict() for field_name in field_names: if field_name not in radar.fields: warn("Datatype '%s' not available in radar data" % field_name) continue field_dict = deepcopy(radar.fields[field_name]) field_dict['data'] = np.ma.empty( (radar_roi.nrays, radar_roi.ngates), dtype=float) field_dict['data'][0, :] = radar.fields[field_name]['data'][ inds_ray, inds_rng] radar_roi.add_field(field_name, field_dict) new_dataset = {'radar_out': radar_roi} return new_dataset, ind_rad def process_traj_trt_contour(procstatus, dscfg, radar_list=None, trajectory=None): """ Gets the TRT cell contour corresponding to each radar volume Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types time_tol : float. Dataset keyword tolerance between reference time of the radar volume and that of the TRT cell [s]. Default 100. radar_list : list of Radar objects Optional. list of radar objects trajectory : Trajectory object containing trajectory samples Returns ------- new_dataset : dict Dictionary containing radar_out and roi_dict. Radar out is the current radar object. roi_dict contains the positions defining the TRT cell contour ind_rad : int radar index """ if procstatus != 1: return None, None # Process field_names = [] datatypes = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_names.append(get_fieldname_pyart(datatype)) datatypes.append(datatype) ind_rad = int(radarnr[5:8])-1 if ((radar_list is None) or (radar_list[ind_rad] is None)): warn('ERROR: No valid radar found') return None, None # keep locally only field of interest in radar object radar = deepcopy(radar_list[ind_rad]) radar.fields = dict() nfields_available = 0 for field_name in field_names: if field_name not in radar_list[ind_rad].fields: warn("Datatype '%s' not available in radar data" % field_name) continue radar.add_field(field_name, radar_list[ind_rad].fields[field_name]) nfields_available += 1 if nfields_available == 0: warn("Fields not available in radar data") return None, None # get TRT cell corresponding to current radar volume time_tol = dscfg.get('TimeTol', 100.) roi_dict = _get_contour_trt( radar, trajectory, dscfg['timeinfo'], time_tol=time_tol) if roi_dict is None: return None, None new_dataset = { 'radar_out': radar, 'roi_dict': roi_dict} return new_dataset, ind_rad def process_traj_lightning(procstatus, dscfg, radar_list=None, trajectory=None): """ Return time series according to lightning trajectory Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types data_is_log : dict. Dataset keyword Dictionary specifying for each field if it is in log (True) or linear units (False). Default False ang_tol : float. Dataset keyword Factor that multiplies the angle resolution. Used when determining the neighbouring rays. Default 1.2 radar_list : list of Radar objects Optional. list of radar objects trajectory : Trajectory object containing trajectory samples Returns ------- trajectory : Trajectory object Object holding time series ind_rad : int radar index """ if procstatus == 0: # first call: nothing to do return None, None if procstatus == 2: # last call: do the products if not dscfg['initialized']: warn('ERROR: No trajectory dataset available!') return None, None trajdict = dscfg['traj_atplane_dict'] dataset = { 'ts': trajdict['ts'], 'final': 1 } return dataset, trajdict['ind_rad'] # Process field_names = [] datatypes = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_names.append(get_fieldname_pyart(datatype)) datatypes.append(datatype) ind_rad = int(radarnr[5:8])-1 if ((radar_list is None) or (radar_list[ind_rad] is None)): warn('ERROR: No valid radar found') return None, None # keep locally only field of interest in radar object radar = deepcopy(radar_list[ind_rad]) radar.fields = dict() nfields_available = 0 for field_name in field_names: if field_name not in radar_list[ind_rad].fields: warn("Datatype '%s' not available in radar data" % field_name) continue radar.add_field(field_name, radar_list[ind_rad].fields[field_name]) nfields_available += 1 if nfields_available == 0: warn("Fields not available in radar data") return None, None ttask_start = radar.time['data'].min() dt_task_start = num2date(ttask_start, radar.time['units'], radar.time['calendar']) if not dscfg['initialized']: # init if trajectory is None: raise Exception("ERROR: Undefined trajectory for dataset '%s'" % dscfg['dsname']) rad_traj = trajectory.add_radar(radar) description = [ "Description:", "Time series of a weather radar data type at the location", "of the lightning flash.", "The time samples where the flash was out of the weather radar", "sector are NOT included in this file.", "NaN (Not a number): No data detected at the flash location." ] ts_dict = dict() data_is_log = dict() for datatype, field_name in zip(datatypes, field_names): ts = TimeSeries( description, maxlength=trajectory.time_vector.size, datatype=datatype) unit = get_field_unit(datatype) name = get_field_name(datatype) # Append empty series: Note: sequence matters! ts.add_dataseries("#Flash", "", "", plot=False) ts.add_dataseries("Power", "", "dBm", plot=False) ts.add_dataseries("at_flash", name, unit, color='b') ts.add_dataseries("Mean", name, unit, color='r') ts.add_dataseries("Min", name, unit, color='k', linestyle=':') ts.add_dataseries("Max", name, unit, color='k', linestyle=':') ts.add_dataseries("#Valid", "", "", plot=False) ts_dict.update({field_name: ts}) data_is_log.update({field_name: False}) if 'data_is_log' in dscfg: if datatype in dscfg['data_is_log']: data_is_log[field_name] = (dscfg['data_is_log'] != 0) else: warn('Units type for data type '+datatype + ' not specified. Assumed linear') trajdict = dict({ 'radar_traj': rad_traj, 'radar_old': None, 'radar_old2': None, 'last_task_start_dt': None, 'ind_rad': ind_rad, 'ts_dict': ts_dict, 'data_is_log': data_is_log}) traj_ind = trajectory.get_samples_in_period(end=dt_task_start) dscfg['traj_atplane_dict'] = trajdict dscfg['initialized'] = True else: # init already done trajdict = dscfg['traj_atplane_dict'] rad_traj = trajdict['radar_traj'] traj_ind = trajectory.get_samples_in_period( start=trajdict['last_task_start_dt'], end=dt_task_start) ts_dict = trajdict['ts_dict'] data_is_log = trajdict['data_is_log'] traj_time_vec = date2num(trajectory.time_vector, radar.time['units'], radar.time['calendar']) if np.size(traj_ind) == 0: warn('No trajectory samples within current period') trajdict['radar_old2'] = trajdict['radar_old'] trajdict['radar_old'] = radar return None, None # User defined parameter ang_tol = dscfg.get('ang_tol', 1.2) az_list = [] el_list = [] rr_list = [] tt_list = [] for tind in np.nditer(traj_ind): az = rad_traj.azimuth_vec[tind] el = rad_traj.elevation_vec[tind] rr = rad_traj.range_vec[tind] tt = traj_time_vec[tind] dBm = trajectory.dBm[tind] flashnr = trajectory.flashnr_vec[tind] (radar_sel, traj_ray_ind, traj_rng_ind, cell_ray_inds, cell_rng_ind_min, cell_rng_ind_max) = _get_gates( radar, az, el, rr, tt, trajdict, ang_tol=ang_tol) if radar_sel is None: continue # Get data samples and compute statistics for field_name in field_names: if field_name not in radar_sel.fields: warn("Datatype '%s' not available in radar data" % field_name) continue rdata = radar_sel.fields[field_name]['data'] val = rdata[traj_ray_ind, traj_rng_ind] cell_vals = rdata[ cell_ray_inds, cell_rng_ind_min:cell_rng_ind_max+1] # Compute statistics and get number of valid data if data_is_log[field_name]: val_mean = np.ma.masked cell_vals_valid = cell_vals.compressed() if cell_vals_valid.size > 0: vals_lin = np.ma.power(10., cell_vals_valid/10.) val_mean = np.ma.mean(vals_lin) val_mean = 10. * np.ma.log10(val_mean) else: val_mean = np.ma.mean(cell_vals) val_min = np.ma.min(cell_vals) val_max = np.ma.max(cell_vals) nvals_valid = np.count_nonzero( np.logical_not(np.ma.getmaskarray(cell_vals))) # Add to time series dict ts_dict[field_name].add_timesample( trajectory.time_vector[tind], (flashnr, dBm, val, val_mean, val_min, val_max, nvals_valid)) az_list.append(az) el_list.append(el) rr_list.append(rr) tt_list.append(trajectory.time_vector[tind]) # end loop over traj samples within period # output radar volume and flash coordinates respect to radar radar_sel = radar if trajdict['radar_old'] is not None: radar_sel = trajdict['radar_old'] dataset = { 'azi_traj': np.asarray(az_list), 'ele_traj': np.asarray(el_list), 'rng_traj': np.asarray(rr_list), 'time_traj': np.asarray(tt_list), 'radar': radar_sel, 'final': 0 } # update trajectory dictionary trajdict['last_task_start_dt'] = dt_task_start trajdict['radar_old2'] = trajdict['radar_old'] trajdict['radar_old'] = radar return dataset, ind_rad def process_traj_atplane(procstatus, dscfg, radar_list=None, trajectory=None): """ Return time series according to trajectory Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries data set configuration. Accepted Configuration Keywords:: datatype : list of string. Dataset keyword The input data types data_is_log : dict. Dataset keyword Dictionary specifying for each field if it is in log (True) or linear units (False). Default False ang_tol : float. Dataset keyword Factor that multiplies the angle resolution. Used when determining the neighbouring rays. Default 1.2 radar_list : list of Radar objects Optional. list of radar objects trajectory : Trajectory object containing trajectory samples Returns ------- trajectory : Trajectory object Object holding time series ind_rad : int radar index """ if procstatus == 0: # first call: nothing to do return None, None if procstatus == 2: # last call: do the products if not dscfg['initialized']: warn('ERROR: No trajectory dataset available!') return None, None trajdict = dscfg['traj_atplane_dict'] dataset = { 'ts_dict': trajdict['ts_dict'], 'final': 1 } return dataset, trajdict['ind_rad'] # Process field_names = [] datatypes = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_names.append(get_fieldname_pyart(datatype)) datatypes.append(datatype) ind_rad = int(radarnr[5:8])-1 if ((radar_list is None) or (radar_list[ind_rad] is None)): warn('ERROR: No valid radar found') return None, None # keep locally only field of interest in radar object radar = deepcopy(radar_list[ind_rad]) radar.fields = dict() nfields_available = 0 for field_name in field_names: if field_name not in radar_list[ind_rad].fields: warn("Datatype '%s' not available in radar data" % field_name) continue radar.add_field(field_name, radar_list[ind_rad].fields[field_name]) nfields_available += 1 if nfields_available == 0: warn("Fields not available in radar data") return None, None ttask_start = radar.time['data'].min() dt_task_start = num2date(ttask_start, radar.time['units'], radar.time['calendar']) if not dscfg['initialized']: # init if trajectory is None: raise Exception("ERROR: Undefined trajectory for dataset '%s'" % dscfg['dsname']) rad_traj = trajectory.add_radar(radar) description = [ "Description:", "Time series of a weather radar data type at the location", "of the plane.", "The time samples where the plane was out of the weather radar", "sector are NOT included in this file.", "NaN (Not a number): No rain detected at the plane location." ] ts_dict = dict() data_is_log = dict() for datatype, field_name in zip(datatypes, field_names): ts = TimeSeries( description, maxlength=trajectory.time_vector.size, datatype=datatype) unit = get_field_unit(datatype) name = get_field_name(datatype) # Append empty series: Note: sequence matters! ts.add_dataseries("at plane", name, unit, color='b') ts.add_dataseries("Mean", name, unit, color='r') ts.add_dataseries("Min", name, unit, color='k', linestyle=':') ts.add_dataseries("Max", name, unit, color='k', linestyle=':') ts.add_dataseries("#Valid", "", "", plot=False) ts_dict.update({field_name: ts}) data_is_log.update({field_name: False}) if 'data_is_log' in dscfg: if datatype in dscfg['data_is_log']: data_is_log[field_name] = (dscfg['data_is_log'] != 0) else: warn('Units type for data type '+datatype + ' not specified. Assumed linear') trajdict = dict({ 'radar_traj': rad_traj, 'radar_old': None, 'radar_old2': None, 'last_task_start_dt': None, 'ind_rad': ind_rad, 'ts_dict': ts_dict, 'data_is_log': data_is_log}) traj_ind = trajectory.get_samples_in_period(end=dt_task_start) dscfg['traj_atplane_dict'] = trajdict dscfg['initialized'] = True else: # init already done trajdict = dscfg['traj_atplane_dict'] rad_traj = trajdict['radar_traj'] traj_ind = trajectory.get_samples_in_period( start=trajdict['last_task_start_dt'], end=dt_task_start) ts_dict = trajdict['ts_dict'] data_is_log = trajdict['data_is_log'] traj_time_vec = date2num(trajectory.time_vector, radar.time['units'], radar.time['calendar']) if np.size(traj_ind) == 0: warn('No trajectory samples within current period') trajdict['radar_old2'] = trajdict['radar_old'] trajdict['radar_old'] = radar return None, None # User defined parameter ang_tol = dscfg.get('ang_tol', 1.2) az_list = [] el_list = [] rr_list = [] tt_list = [] for tind in np.nditer(traj_ind): az = rad_traj.azimuth_vec[tind] el = rad_traj.elevation_vec[tind] rr = rad_traj.range_vec[tind] tt = traj_time_vec[tind] (radar_sel, traj_ray_ind, traj_rng_ind, cell_ray_inds, cell_rng_ind_min, cell_rng_ind_max) = _get_gates( radar, az, el, rr, tt, trajdict, ang_tol=ang_tol) if radar_sel is None: continue # Get data samples and compute statistics for field_name in field_names: if field_name not in radar_sel.fields: warn("Datatype '%s' not available in radar data" % field_name) continue rdata = radar_sel.fields[field_name]['data'] val = rdata[traj_ray_ind, traj_rng_ind] cell_vals = rdata[ cell_ray_inds, cell_rng_ind_min:cell_rng_ind_max+1] # Compute statistics and get number of valid data if data_is_log[field_name]: val_mean = np.ma.masked cell_vals_valid = cell_vals.compressed() if cell_vals_valid.size > 0: vals_lin = np.ma.power(10., cell_vals_valid/10.) val_mean = np.ma.mean(vals_lin) val_mean = 10. * np.ma.log10(val_mean) else: val_mean = np.ma.mean(cell_vals) val_min = np.ma.min(cell_vals) val_max = np.ma.max(cell_vals) nvals_valid = np.count_nonzero( np.logical_not(np.ma.getmaskarray(cell_vals))) # Add to time series dict ts_dict[field_name].add_timesample( trajectory.time_vector[tind], (val, val_mean, val_min, val_max, nvals_valid)) az_list.append(az) el_list.append(el) rr_list.append(rr) tt_list.append(trajectory.time_vector[tind]) # end loop over traj samples within period # output radar volume and antenna coordinates respect to radar radar_sel = radar if trajdict['radar_old'] is not None: radar_sel = trajdict['radar_old'] dataset = { 'azi_traj': np.asarray(az_list), 'ele_traj': np.asarray(el_list), 'rng_traj': np.asarray(rr_list), 'time_traj': np.asarray(tt_list), 'radar': radar_sel, 'final': 0 } # update trajectory dictionary trajdict['last_task_start_dt'] = dt_task_start trajdict['radar_old2'] = trajdict['radar_old'] trajdict['radar_old'] = radar return dataset, ind_rad def process_traj_antenna_pattern(procstatus, dscfg, radar_list=None, trajectory=None): """ Process a new array of data volumes considering a plane trajectory. As result a timeseries with the values transposed for a given antenna pattern is created. The result is created when the LAST flag is set. Parameters ---------- procstatus : int Processing status: 0 initializing, 1 processing volume, 2 post-processing dscfg : dictionary of dictionaries datatype : list of string. Dataset keyword The input data types antennaType : str. Dataset keyword Type of antenna of the radar we want to get the view from. Can be AZIMUTH, ELEVATION, LOWBEAM, HIGHBEAM par_azimuth_antenna : dict. Global ekyword Dictionary containing the parameters of the PAR azimuth antenna, i.e. name of the file with the antenna elevation pattern and fixed antenna angle par_elevation_antenna : dict. Global keyword Dictionary containing the parameters of the PAR elevation antenna, i.e. name of the file with the antenna azimuth pattern and fixed antenna angle asr_lowbeam_antenna : dict. Global keyword Dictionary containing the parameters of the ASR low beam antenna, i.e. name of the file with the antenna elevation pattern and fixed antenna angle asr_highbeam_antenna : dict. Global keyword Dictionary containing the parameters of the ASR high beam antenna, i.e. name of the file with the antenna elevation pattern and fixed antenna angle target_radar_pos : dict. Global keyword Dictionary containing the latitude, longitude and altitude of the radar we want to get the view from. If not specifying it will assume the radar is collocated range_all : Bool. Dataset keyword If the real radar and the synthetic radar are co-located and this parameter is true the statistics are going to be computed using all the data from range 0 to the position of the plane. Default False rhi_resolution : Bool. Dataset keyword Resolution of the synthetic RHI used to compute the data as viewed from the synthetic radar [deg]. Default 0.5 max_altitude : float. Dataset keyword Max altitude of the data to use when computing the view from the synthetic radar [m MSL]. Default 12000. latlon_tol : float. Dataset keyword The tolerance in latitude and longitude to determine which synthetic radar gates are co-located with real radar gates [deg]. Default 0.04 alt_tol : float. Datset keyword The tolerance in altitude to determine which synthetic radar gates are co-located with real radar gates [m]. Default 1000. distance_upper_bound : float. Dataset keyword The maximum distance where to look for a neighbour when determining which synthetic radar gates are co-located with real radar gates [m]. Default 1000. use_cKDTree : Bool. Dataset keyword Which function to use to find co-located real radar gates with the synthetic radar. If True a function using cKDTree from scipy.spatial is used. This function uses parameter distance_upper_bound. If False a native implementation is used that takes as parameters latlon_tol and alt_tol. Default True. pattern_thres : float. Dataset keyword The minimum of the sum of the weights given to each value in order to consider the weighted quantile valid. It is related to the number of valid data points data_is_log : dict. Dataset keyword Dictionary specifying for each field if it is in log (True) or linear units (False). Default False use_nans : dict. Dataset keyword Dictionary specyfing whether the nans have to be used in the computation of the statistics for each field. Default False nan_value : dict. Dataset keyword Dictionary with the value to use to substitute the NaN values when computing the statistics of each field. Default 0 radar_list : list of Radar objects Optional. list of radar objects trajectory : Trajectory object containing trajectory samples Returns ------- trajectory : Trajectory object Object holding time series ind_rad : int radar index """ if procstatus == 0: # first call: nothing to do return None, None if procstatus == 2: # last call: do the products if not dscfg['initialized']: warn('ERROR: No trajectory dataset available!') return None, None tadict = dscfg['traj_antenna_dict'] dataset = { 'ts_dict': tadict['ts_dict'], 'final': 1 } return dataset, tadict['ind_rad'] # Process field_names = [] datatypes = [] for datatypedescr in dscfg['datatype']: radarnr, _, datatype, _, _ = get_datatype_fields(datatypedescr) field_names.append(get_fieldname_pyart(datatype)) datatypes.append(datatype) ind_rad = int(radarnr[5:8])-1 if ((radar_list is None) or (radar_list[ind_rad] is None)): warn('ERROR: No valid radar found') return None, None # keep locally only field of interest in radar object radar = deepcopy(radar_list[ind_rad]) radar.fields = dict() nfields_available = 0 for field_name in field_names: if field_name not in radar_list[ind_rad].fields: warn("Datatype '%s' not available in radar data" % field_name) continue radar.add_field(field_name, radar_list[ind_rad].fields[field_name]) nfields_available += 1 if nfields_available == 0: warn("Fields not available in radar data") return None, None ttask_start = radar.time['data'].min() dt_task_start = num2date(ttask_start, radar.time['units'], radar.time['calendar']) if not dscfg['initialized']: # === init ============================================================ if trajectory is None: raise Exception("ERROR: Undefined trajectory for dataset '%s'" % dscfg['dsname']) # Check config if 'antennaType' not in dscfg: raise Exception("ERROR: Undefined 'antennaType' for dataset '%s'" % dscfg['dsname']) if 'configpath' not in dscfg: raise Exception("ERROR: Undefined 'configpath' for dataset '%s'" % dscfg['dsname']) if 'target_radar_pos' not in dscfg: radar_antenna_atsameplace = True target_radar = None warn('No target radar position specified. ' + 'The radars are assumed colocated') rad_traj = trajectory.add_radar(radar) else: radar_antenna_atsameplace = False # create dummy radar object with target radar specs latitude = get_metadata('latitude') longitude = get_metadata('longitude') altitude = get_metadata('altitude') latitude['data'] = np.array( [dscfg['target_radar_pos']['latitude']], dtype='float64') longitude['data'] = np.array( [dscfg['target_radar_pos']['longitude']], dtype='float64') altitude['data'] = np.array( [dscfg['target_radar_pos']['altitude']], dtype='float64') target_radar = TargetRadar(latitude, longitude, altitude) rad_traj = trajectory.add_radar(target_radar) if dscfg['antennaType'] == 'AZIMUTH': is_azimuth_antenna = True info = 'parAzAnt' description = [ "Antenna: PAR Azimuth antenna", "Description:", "Time series of a weather radar data type at the location", "of the plane weighted by the antenna pattern of the PAR", "antenna.", "The time samples where the plane was out of the weather", "radar sector are NOT included in this file.", "NaN (Not a number): No rain detected at the plane location." ] if 'par_azimuth_antenna' not in dscfg: raise Exception("ERROR: Undefined 'par_azimuth_antenna' for" " dataset '%s'" % dscfg['dsname']) patternfile = dscfg['configpath'] + 'antenna/' \ + dscfg['par_azimuth_antenna']['elPatternFile'] fixed_angle = dscfg['par_azimuth_antenna']['fixed_angle'] elif dscfg['antennaType'] == 'ELEVATION': is_azimuth_antenna = False info = 'parElAnt' description = [ "Antenna: PAR Elevation antenna", "Description:", "Time series of a weather radar data type at the location", "of the plane weighted by the antenna pattern of the PAR", "antenna.", "The time samples where the plane was out of the weather ", "radar sector are NOT included in this file.", "NaN (Not a number): No rain detected at the plane location." ] if 'par_elevation_antenna' not in dscfg: raise Exception("ERROR: Undefined 'par_elevation_antenna' for" " dataset '%s'" % dscfg['dsname']) patternfile = dscfg['configpath'] + 'antenna/' \ + dscfg['par_elevation_antenna']['azPatternFile'] fixed_angle = dscfg['par_elevation_antenna']['fixed_angle'] elif dscfg['antennaType'] == 'LOWBEAM': is_azimuth_antenna = True info = 'asrLowBeamAnt' description = [ "Antenna: ASR low beam antenna", "Description:", "Time series of a weather radar data type at the location", "of the plane weighted by the antenna pattern of the ASR", "antenna.", "The time samples where the plane was out of the weather", "radar sector are NOT included in this file.", "NaN (Not a number): No rain detected at the plane location." ] if 'asr_lowbeam_antenna' not in dscfg: raise Exception("ERROR: Undefined 'asr_lowbeam_antenna' for" " dataset '%s'" % dscfg['dsname']) patternfile = dscfg['configpath'] + 'antenna/' \ + dscfg['asr_lowbeam_antenna']['elPatternFile'] fixed_angle = dscfg['asr_lowbeam_antenna']['fixed_angle'] elif dscfg['antennaType'] == 'HIGHBEAM': is_azimuth_antenna = True info = 'asrHighBeamAnt' description = [ "Antenna: ASR high beam antenna", "Description:", "Time series of a weather radar data type at the location", "of the plane weighted by the antenna pattern of the ASR", "antenna.", "The time samples where the plane was out of the weather", "radar sector are NOT included in this file.", "NaN (Not a number): No rain detected at the plane location." ] if 'asr_highbeam_antenna' not in dscfg: raise Exception("ERROR: Undefined 'asr_highbeam_antenna' for" " dataset '%s'" % dscfg['dsname']) patternfile = dscfg['configpath'] + 'antenna/' \ + dscfg['asr_highbeam_antenna']['elPatternFile'] patternfile_low = dscfg['configpath'] + 'antenna/' \ + dscfg['asr_lowbeam_antenna']['elPatternFile'] fixed_angle = dscfg['asr_highbeam_antenna']['fixed_angle'] else: raise Exception("ERROR: Unexpected antenna type '%s' for dataset" " '%s'" % (dscfg['antennaType'], dscfg['dsname'])) # Read dataset config parameters: weight_threshold = dscfg.get('pattern_thres', 0.) do_all_ranges = False if 'range_all' in dscfg: if dscfg['range_all'] != 0: do_all_ranges = True # Config parameters for processing when the weather radar and the # antenna are not at the same place: rhi_resolution = dscfg.get('rhi_resolution', 0.5) # [deg] max_altitude = dscfg.get('max_altitude', 12000.) # [m] latlon_tol = dscfg.get('latlon_tol', 0.04) # [deg] alt_tol = dscfg.get('alt_tol', 1000.) # [m] distance_upper_bound = dscfg.get('distance_upper_bound', 1000.) use_cKDTree = dscfg.get('use_cKDTree', True) # Get antenna pattern and make weight vector try: if info == 'asrHighBeamAnt': antpattern = read_antenna_pattern( patternfile, linear=True, twoway=False) antpattern_low = read_antenna_pattern( patternfile_low, linear=True, twoway=False) antpattern['attenuation'] *= antpattern_low['attenuation'] else: antpattern = read_antenna_pattern(patternfile, linear=True, twoway=True) except Exception as ee: warn(str(ee)) raise pattern_angles = antpattern['angle'] + fixed_angle if not is_azimuth_antenna: pattern_angles[pattern_angles < 0] += 360. pattern_angles[pattern_angles >= 360.] -= 360. if radar_antenna_atsameplace: if is_azimuth_antenna: scan_angles = np.sort(np.unique( radar.elevation['data'].round(decimals=1))) else: scan_angles = np.sort(np.unique( radar.azimuth['data'].round(decimals=1))) else: scan_angles = np.arange(0, 90, rhi_resolution, dtype=float) weightvec = np.empty(scan_angles.size, dtype=float) for kk in range(scan_angles.size): ind = np.argmin(np.abs(pattern_angles - scan_angles[kk])) weightvec[kk] = antpattern['attenuation'][ind] ts_dict = dict() data_is_log = dict() use_nans = dict() nan_value = dict() for datatype, field_name in zip(datatypes, field_names): ts = TimeSeries( description, maxlength=trajectory.time_vector.size, datatype=datatype) unit = get_field_unit(datatype) name = get_field_name(datatype) # Quantiles of interest quantiles = [ {"val": 0.1, "plot": False, "color": None, "ltype": None}, {"val": 0.2, "plot": True, "color": 'k', "ltype": ':'}, {"val": 0.3, "plot": False, "color": None, "ltype": None}, {"val": 0.4, "plot": False, "color": None, "ltype": None}, {"val": 0.5, "plot": True, "color": 'r', "ltype": None}, {"val": 0.6, "plot": False, "color": None, "ltype": None}, {"val": 0.7, "plot": False, "color": None, "ltype": None}, {"val": 0.8, "plot": True, "color": 'k', "ltype": ':'}, {"val": 0.9, "plot": False, "color": None, "ltype": None}, {"val": 0.95, "plot": False, "color": None, "ltype": None}] ts.add_dataseries("Weighted average", name, unit, color='b') for qq in quantiles: label = "Quantile_%4.2f" % qq["val"] ts.add_dataseries(label, name, unit, plot=qq["plot"], color=qq["color"], linestyle=qq["ltype"]) ts.add_dataseries("#Valid", "", "", plot=False) ts_dict.update({field_name: ts}) data_is_log.update({field_name: False}) if 'data_is_log' in dscfg: if datatype in dscfg['data_is_log']: data_is_log[field_name] = ( dscfg['data_is_log'][datatype] != 0) else: warn('Units type for data type '+datatype + ' not specified. Assumed linear') use_nans.update({field_name: False}) if 'use_nans' in dscfg: if datatype in dscfg['use_nans']: use_nans[field_name] = ( dscfg['use_nans'][datatype] != 0) else: warn('Use of nans not specified for data type '+datatype + ' not specified. Assumed not used') nan_value.update({field_name: 0.}) if 'nan_value' in dscfg: if datatype in dscfg['nan_value']: nan_value[field_name] = dscfg['nan_value'][datatype] else: warn('NaN value not specified for data type '+datatype + ' not specified. Assumed 0') quants = np.array([ee['val'] for ee in quantiles]) # Persistent data structure tadict = dict({ 'radar_traj': rad_traj, 'radar_old': None, 'radar_old2': None, 'target_radar': target_radar, 'last_task_start_dt': None, 'ind_rad': ind_rad, 'is_azimuth_antenna': is_azimuth_antenna, 'info': info, 'scan_angles': scan_angles, 'radar_antenna_atsameplace': radar_antenna_atsameplace, 'weightvec': weightvec, 'quantiles': quants, 'use_nans': use_nans, 'nan_value': nan_value, 'weight_threshold': weight_threshold, 'do_all_ranges': do_all_ranges, 'max_altitude': max_altitude, 'latlon_tol': latlon_tol, 'alt_tol': alt_tol, 'distance_upper_bound': distance_upper_bound, 'use_cKDTree': use_cKDTree, 'data_is_log': data_is_log, 'ts_dict': ts_dict}) traj_ind = trajectory.get_samples_in_period(end=dt_task_start) dscfg['traj_antenna_dict'] = tadict dscfg['initialized'] = True # end init else: # init already done tadict = dscfg['traj_antenna_dict'] traj_ind = trajectory.get_samples_in_period( start=tadict['last_task_start_dt'], end=dt_task_start) if not _get_ts_values_antenna_pattern( radar, trajectory, tadict, traj_ind, field_names): return None, None tadict['last_task_start_dt'] = dt_task_start tadict['radar_old2'] = tadict['radar_old'] tadict['radar_old'] = radar # Collect garbage gc.collect() return None, None def _get_ts_values_antenna_pattern(radar, trajectory, tadict, traj_ind, field_names): """ Get the time series values of a trajectory using a synthetic antenna pattern Parameters ---------- radar : radar object The radar volume with the data trajectory : trajectory object The plane trajectory tadict : dict A dictionary containing parameters useful for trajectory computation traj_ind : array The indices of trajectory data within the current radar volume time field_names : list of str list of names of the radar field Returns ------- result : Bool A flag signaling whether radar data matching the trajectory was found """ rad_traj = tadict['radar_traj'] is_azimuth_antenna = tadict['is_azimuth_antenna'] scan_angles = tadict['scan_angles'] radar_antenna_atsameplace = tadict['radar_antenna_atsameplace'] nan_value = tadict['nan_value'] use_nans = tadict['use_nans'] weight_threshold = tadict['weight_threshold'] do_all_ranges = tadict['do_all_ranges'] ts_dict = tadict['ts_dict'] target_radar = tadict['target_radar'] max_altitude = tadict['max_altitude'] latlon_tol = tadict['latlon_tol'] alt_tol = tadict['alt_tol'] distance_upper_bound = tadict['distance_upper_bound'] use_cKDTree = tadict['use_cKDTree'] data_is_log = tadict['data_is_log'] traj_time_vec = date2num(trajectory.time_vector, radar.time['units'], radar.time['calendar']) if np.size(traj_ind) == 0: warn('No trajectory samples within current period') return False for tind in np.nditer(traj_ind): az = rad_traj.azimuth_vec[tind] el = rad_traj.elevation_vec[tind] rr = rad_traj.range_vec[tind] tt = traj_time_vec[tind] # Select radar object, find closest azimuth and elevation ray (radar_sel, ray_sel, rr_ind, el_vec_rnd, az_vec_rnd) = \ _get_closest_bin(az, el, rr, tt, radar, tadict) # Check if traj sample is within scan sector if (_sample_out_of_sector(az, el, rr, radar_sel, ray_sel, rr_ind, el_vec_rnd, az_vec_rnd)): continue if radar_antenna_atsameplace: # ============================================================== # Radar and scanning antenna are at the SAME place # ============================================================== # ============================================================== # Get sample at bin if is_azimuth_antenna: angles = radar_sel.azimuth['data'] angles_scan = radar_sel.elevation['data'] ray_angle = radar_sel.azimuth['data'][ray_sel] else: angles = radar_sel.elevation['data'] angles_scan = radar_sel.azimuth['data'] ray_angle = radar_sel.elevation['data'][ray_sel] d_angle = np.abs(angles - ray_angle) ray_inds = np.where(d_angle < 0.09)[0] angles_sortind = np.argsort(angles_scan[ray_inds]) ray_inds = ray_inds[angles_sortind] angles_sorted = angles_scan[ray_inds] # Set default values avg = None qvals = np.array([None] * tadict['quantiles'].size) nvals_valid = None if ((scan_angles.size != angles_sorted.size) or (np.max(np.abs(scan_angles - angles_sorted)) > 0.1)): warn("Scan angle mismatch!") for field_name in field_names: ts_dict[field_name].add_timesample( trajectory.time_vector[tind], np.concatenate([[avg], qvals, [nvals_valid]])) continue if do_all_ranges: rr_ind_min = 0 else: rr_ind_min = rr_ind w_vec = tadict['weightvec'] for field_name in field_names: if field_name not in radar_sel.fields: warn("Datatype '%s' not available in radar data" % field_name) continue rdata = radar_sel.fields[field_name]['data'] values = rdata[ray_inds, rr_ind_min:rr_ind+1] if use_nans[field_name]: values_ma = np.ma.getmaskarray(values) values[values_ma] = nan_value[field_name] try: (avg, qvals, nvals_valid) = quantiles_weighted( values, weight_vector=w_vec, quantiles=tadict['quantiles'], weight_threshold=weight_threshold, data_is_log=data_is_log[field_name]) except Exception as ee: warn(str(ee)) continue ts_dict[field_name].add_timesample( trajectory.time_vector[tind], np.concatenate([[avg], qvals, [nvals_valid]])) else: # ================================================================ # Radar and scanning antenna are NOT at the same place # ================================================================ ray_inds, rng_inds, w_inds = _get_gates_antenna_pattern( radar_sel, target_radar, az, rr, tt, scan_angles, alt_tol=alt_tol, latlon_tol=latlon_tol, max_altitude=max_altitude, distance_upper_bound=distance_upper_bound, use_cKDTree=use_cKDTree) w_vec = tadict['weightvec'][w_inds] for field_name in field_names: if field_name not in radar_sel.fields: warn("Datatype '%s' not available in radar data" % field_name) continue rdata = radar_sel.fields[field_name]['data'] values = rdata[ray_inds, rng_inds] if use_nans[field_name]: values_ma = np.ma.getmaskarray(values) values[values_ma] = nan_value[field_name] try: (avg, qvals, nvals_valid) = quantiles_weighted( values, weight_vector=w_vec, quantiles=tadict['quantiles'], weight_threshold=weight_threshold, data_is_log=data_is_log[field_name]) except Exception as ee: warn(str(ee)) continue ts_dict[field_name].add_timesample( trajectory.time_vector[tind],
np.concatenate([[avg], qvals, [nvals_valid]])
numpy.concatenate
""" Plot comparisons to understand contributions of SIC dependent on the thickness initial conditions for the regional experiments. Notes ----- Author : <NAME> Date : 9 October 2018 """ ### Import modules import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid import nclcmaps as ncm import datetime import read_MonthlyOutput as MO import calc_Utilities as UT import cmocean ### Define directories directorydata = '/surtsey/zlabe/simu/' directoryfigure = '/home/zlabe/Desktop/' #directoryfigure = '/home/zlabe/Documents/Research/SITperturb/Figures/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting SIC contributions - %s----' % titletime) ### Alott time series year1 = 1900 year2 = 2000 years = np.arange(year1,year2+1,1) ### Call arguments varnames = ['Z500','Z30','SLP','T2M','U10','U300','SWE','THICK','P','EGR', 'RNET'] varnames = ['Z500'] runnames = [r'CIT',r'FPOL',r'FSUB'] experiments = [r'\textbf{$\Delta$POLAR}',r'\textbf{$\Delta$SUBPOLAR}',r'\textbf{difference}'] period = 'DJF' for v in range(len(varnames)): ### Call function for surface temperature data from reach run lat,lon,time,lev,tascit = MO.readExperi(directorydata, '%s' % varnames[v],'CIT','surface') lat,lon,time,lev,tasfic = MO.readExperi(directorydata, '%s' % varnames[v],'FPOL','surface') lat,lon,time,lev,tasfict = MO.readExperi(directorydata, '%s' % varnames[v],'FSUB','surface') ### Create 2d array of latitude and longitude lon2,lat2 = np.meshgrid(lon,lat) ### Concatonate runs runs = [tascit,tasfic,tasfict] ### Separate per periods (ON,DJ,FM) if period == 'ON': tas_mo = np.empty((4,tascit.shape[0],tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i] = np.nanmean(runs[i][:,9:11,:,:],axis=1) elif period == 'DJ': tas_mo = np.empty((4,tascit.shape[0]-1,tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i],tas_mo[i] = UT.calcDecJan(runs[i],runs[i],lat, lon,'surface',1) elif period == 'FM': tas_mo= np.empty((4,tascit.shape[0],tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i] = np.nanmean(runs[i][:,1:3,:,:],axis=1) elif period == 'DJF': tas_mo= np.empty((4,tascit.shape[0]-1,tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i],tas_mo[i] = UT.calcDecJanFeb(runs[i],runs[i],lat, lon,'surface',1) elif period == 'M': tas_mo= np.empty((4,tascit.shape[0],tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i] = runs[i][:,2,:,:] else: ValueError('Wrong period selected! (ON,DJ,FM)') ### Composite by QBO phase tas_mocit = tas_mo[0][:,:,:] tas_mofic = tas_mo[1][:,:,:] tas_mofict = tas_mo[2][:,:,:] ### Compute comparisons for months - taken ensemble average ficcit = np.nanmean(tas_mofic - tas_mocit,axis=0) fictfit = np.nanmean(tas_mofict - tas_mocit,axis=0) difference = ficcit - fictfit diffruns_mo = [ficcit,fictfit,difference] ### Calculate significance for FM stat_FICCIT,pvalue_FICCIT = UT.calc_indttest(tas_mofic,tas_mocit) stat_FICTFIT,pvalue_FICTFIT = UT.calc_indttest(tas_mofict,tas_mocit) stat_difference,pvalue_difference = UT.calc_indttest(tas_mofic - tas_mocit, tas_mofict - tas_mocit) pruns_mo = [pvalue_FICCIT,pvalue_FICTFIT,pvalue_difference] ########################################################################### ########################################################################### ########################################################################### #### Plot T2M plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) fig = plt.figure() for i in range(len(experiments)): var = diffruns_mo[i] pvar = pruns_mo[i] ### Set limits for contours and colorbars if varnames[v] == 'T2M': limit = np.arange(-10,10.1,0.5) barlim = np.arange(-10,11,5) elif varnames[v] == 'Z500': limit = np.arange(-60,60.1,1) barlim = np.arange(-60,61,30) elif varnames[v] == 'Z30': limit = np.arange(-100,100.1,5) barlim = np.arange(-100,101,50) elif varnames[v] == 'SLP': limit = np.arange(-6,6.1,0.5) barlim = np.arange(-6,7,3) elif varnames[v] == 'U10' or varnames[v] == 'U300': limit = np.arange(-10,10.1,1) barlim = np.arange(-10,11,5) elif varnames[v] == 'SWE': limit = np.arange(-25,25.1,1) barlim = np.arange(-25,26,25) elif varnames[v] == 'P': limit = np.arange(-2,2.1,0.05) barlim = np.arange(-2,3,1) elif varnames[v] == 'THICK': limit = np.arange(-60,60.1,3) barlim =
np.arange(-60,61,30)
numpy.arange
"""This module provides convenience functions to calculate curved-sky responses and reconstruction noise curve for lensing or other estimators In plancklens a QE is often described by a short string. For example 'ptt' stands for lensing (or lensing gradient mode) from temperature x temperature. Anisotropy source keys are a one-letter string including 'p' (lensing gradient) 'x' (lensing curl) 's' (point sources) 'f' (modulation field) 'a' (polarization rotation) Typical keys include then: 'ptt', 'xtt', 'stt', 'ftt' for the corresponding QEs from temperature only 'p_p', 'x_p', 'f_p', 'a_p' for the corresponding QEs from polarization only (combining EE EB and BB if relevant) 'p', 'x', 'f', 'a', 'f' ... for the MV (or GMV) combination 'p_eb', ... for the EB estimator (this is the symmetrized version ('peb' + 'pbe') / 2 so that E and B appear each once on the gradient and inverse-variance filtered leg) Bias-hardening can be included by inserting '_bh_'. E.g. 'ptt_bh_s' is the lensing TT QE bias-hardened against point source contamination using the 'stt' estimator Responses method takes as input the QE weights (typically the lensed CMB spectra) and the filtering cls ('fals') which describes the filtering applied to the maps (the :math:`(C + N)^{-1}` operation) *get_N0_iter* calculates an estimate of the N0s for iterative lensing estimator beyond the QE """ import os import healpy as hp import numpy as np import plancklens from plancklens import utils, qresp, nhl from copy import deepcopy def get_N0(beam_fwhm=1.4, nlev_t:float or np.ndarray=5., nlev_p=None, lmax_CMB: dict or int =3000, lmin_CMB=100, lmax_out=None, cls_len:dict or None =None, cls_weight:dict or None=None, joint_TP=True, ksource='p'): r"""Example function to calculates reconstruction noise levels for a bunch of quadratic estimators Args: beam_fwhm: beam fwhm in arcmin nlev_t: T white noise level in uK-arcmin (an array of size lmax_CMB can be passed for scale-dependent noise level) nlev_p: P white noise level in uK-arcmin (defaults to root(2) nlevt) (can also be an array) lmax_CMB: max. CMB multipole used in the QE (use a dict with 't' 'e' 'b' keys instead of int to set different CMB lmaxes) lmin_CMB: min. CMB multipole used in the QE lmax_out: max lensing 'L' multipole calculated cls_len: CMB spectra entering the sky response to the anisotropy (defaults to FFP10 lensed CMB spectra) cls_weight: CMB spectra entering the QE weights (defaults to FFP10 lensed CMB spectra) joint_TP: if True include calculation of the N0s for the GMV estimator (incl. joint T and P filtering) ksource: anisotropy source to consider (defaults to 'p', lensing) Returns: N0s array for the lensing gradient and curl modes for the T-only, P-onl and (G)MV estimators Prompted by AL """ if nlev_p is None: nlev_p = nlev_t * np.sqrt(2) if not isinstance(lmax_CMB, dict): lmaxs_CMB = {s: lmax_CMB for s in ['t', 'e', 'b']} else: lmaxs_CMB = lmax_CMB print("Seeing lmax's:") for s in lmaxs_CMB.keys(): print(s + ': ' + str(lmaxs_CMB[s])) lmax_ivf = np.max(list(lmaxs_CMB.values())) lmin_ivf = lmin_CMB lmax_qlm = lmax_out or lmax_ivf cls_path = os.path.join(os.path.dirname(os.path.abspath(plancklens.__file__)), 'data', 'cls') cls_len = cls_len or utils.camb_clfile(os.path.join(cls_path, 'FFP10_wdipole_lensedCls.dat')) cls_weight = cls_weight or utils.camb_clfile(os.path.join(cls_path, 'FFP10_wdipole_lensedCls.dat')) # We consider here TT, Pol-only and the GMV comb if joint_TP is set qe_keys = [ksource + 'tt', ksource + '_p'] if not joint_TP: qe_keys.append(ksource) # Simple white noise model. Can feed here something more fancy if desired transf = hp.gauss_beam(beam_fwhm / 60. / 180. * np.pi, lmax=lmax_ivf) Noise_L_T = (nlev_t / 60. / 180. * np.pi) ** 2 / transf ** 2 Noise_L_P = (nlev_p / 60. / 180. * np.pi) ** 2 / transf ** 2 # Data power spectra cls_dat = { 'tt': (cls_len['tt'][:lmax_ivf + 1] + Noise_L_T), 'ee': (cls_len['ee'][:lmax_ivf + 1] + Noise_L_P), 'bb': (cls_len['bb'][:lmax_ivf + 1] + Noise_L_P), 'te': np.copy(cls_len['te'][:lmax_ivf + 1])} for s in cls_dat.keys(): cls_dat[s][min(lmaxs_CMB[s[0]], lmaxs_CMB[s[1]]) + 1:] *= 0. # (C+N)^{-1} filter spectra # For independent T and P filtering, this is really just 1/ (C+ N), diagonal in T, E, B space fal_sepTP = {spec: utils.cli(cls_dat[spec]) for spec in ['tt', 'ee', 'bb']} # Spectra of the inverse-variance filtered maps # In general cls_ivfs = fal * dat_cls * fal^t, with a matrix product in T, E, B space cls_ivfs_sepTP = utils.cls_dot([fal_sepTP, cls_dat, fal_sepTP], ret_dict=True) # For joint TP filtering, fals is matrix inverse fal_jtTP = utils.cl_inverse(cls_dat) # since cls_dat = fals, cls_ivfs = fals. If the data spectra do not match the filter, this must be changed: cls_ivfs_jtTP = utils.cls_dot([fal_jtTP, cls_dat, fal_jtTP], ret_dict=True) for cls in [fal_sepTP, fal_jtTP, cls_ivfs_sepTP, cls_ivfs_jtTP]: for cl in cls.values(): cl[:max(1, lmin_ivf)] *= 0. N0s = {} N0_curls = {} for qe_key in qe_keys: # This calculates the unormalized QE gradient (G), curl (C) variances and covariances: # (GC and CG is zero for most estimators) NG, NC, NGC, NCG = nhl.get_nhl(qe_key, qe_key, cls_weight, cls_ivfs_sepTP, lmax_ivf, lmax_ivf, lmax_out=lmax_qlm) # Calculation of the G to G, C to C, G to C and C to G QE responses (again, cross-terms are typically zero) RG, RC, RGC, RCG = qresp.get_response(qe_key, lmax_ivf, ksource, cls_weight, cls_len, fal_sepTP, lmax_qlm=lmax_qlm) # Gradient and curl noise terms N0s[qe_key] = utils.cli(RG ** 2) * NG N0_curls[qe_key] = utils.cli(RC ** 2) * NC if joint_TP: NG, NC, NGC, NCG = nhl.get_nhl(ksource, ksource, cls_weight, cls_ivfs_jtTP, lmax_ivf, lmax_ivf, lmax_out=lmax_qlm) RG, RC, RGC, RCG = qresp.get_response(ksource, lmax_ivf, ksource, cls_weight, cls_len, fal_jtTP, lmax_qlm=lmax_qlm) N0s[ksource] = utils.cli(RG ** 2) * NG N0_curls[ksource] = utils.cli(RC ** 2) * NC return N0s, N0_curls def cls2dls(cls): """Turns cls dict. into camb cl array format""" keys = ['tt', 'ee', 'bb', 'te'] lmax = np.max([len(cl) for cl in cls.values()]) - 1 dls = np.zeros((lmax + 1, 4), dtype=float) refac =
np.arange(lmax + 1)
numpy.arange
import numpy as np from scipy.optimize import minimize from intvalpy.MyClass import Interval from intvalpy.intoper import zeros def Uni(A, b, x=None, maxQ=False, x0=None, tol=1e-12, maxiter=1e3): """ Вычисление распознающего функционала Uni. В случае, если maxQ=True то находится максимум функционала. Parameters: A: Interval Матрица ИСЛАУ. b: Interval Вектор правой части ИСЛАУ. Optional Parameters: x: float, array_like Точка в которой вычисляется распознающий функционал. По умолчанию x равен массиву из нулей. maxQ: bool Если значение параметра равно True, то производится максимизация функционала. x0: float, array_like Первоначальная догадка. tol: float Погрешность для прекращения оптимизационного процесса. maxiter: int Максимальное количество итераций. Returns: out: float, tuple Возвращается значение распознающего функционала в точке x. В случае, если maxQ=True, то возвращается кортеж, где первый элемент -- корректность завершения оптимизации, второй элемент -- точка оптимума, третий элемент -- значение функции в этой точке. """ __uni = lambda x: min(b.rad - (b.mid - A @ x).mig) __minus_uni = lambda x: -__uni(x) if maxQ==False: if x is None: x = np.zeros(A.shape[1]) return __uni(x) else: from scipy.optimize import minimize if x0 is None: x0 = np.zeros(A.shape[1])+1 maximize = minimize(__minus_uni, x0, method='Nelder-Mead', tol=tol, options={'maxiter': maxiter}) return maximize.success, maximize.x, -maximize.fun def Tol(A, b, x=None, maxQ=False, x0=None, tol=1e-12, maxiter=1e3): """ Вычисление распознающего функционала Tol. В случае, если maxQ=True то находится максимум функционала. Parameters: A: Interval Матрица ИСЛАУ. b: Interval Вектор правой части ИСЛАУ. Optional Parameters: x: float, array_like Точка в которой вычисляется распознающий функционал. По умолчанию x равен массиву из нулей. maxQ: bool Если значение параметра равно True, то производится максимизация функционала. x0: float, array_like Первоначальная догадка. tol: float Погрешность для прекращения оптимизационного процесса. maxiter: int Максимальное количество итераций. Returns: out: float, tuple Возвращается значение распознающего функционала в точке x. В случае, если maxQ=True, то возвращается кортеж, где первый элемент -- корректность завершения оптимизации, второй элемент -- точка оптимума, третий элемент -- значение функции в этой точке. """ __tol = lambda x: min(b.rad - abs(b.mid - A @ x)) __minus_tol = lambda x: -__tol(x) if maxQ==False: if x is None: x = np.zeros(A.shape[1]) return __tol(x) else: from scipy.optimize import minimize if x0 is None: x0 = np.zeros(A.shape[1])+1 maximize = minimize(__minus_tol, x0, method='Nelder-Mead', tol=tol, options={'maxiter': maxiter}) return maximize.success, maximize.x, -maximize.fun def ive(A, b, N=40): """ Вычисление меры вариабельности оценки параметров. Parameters: A: Interval Матрица ИСЛАУ. b: Interval Вектор правой части ИСЛАУ. Optional Parameters: N: int Количество угловых матриц для которых вычисляется обусловленность. Returns: out: float Возвращается мера вариабельности IVE. """ success, _arg_max, _max = Tol(A, b, maxQ=True) if not success: print('Оптимизация функционала Tol завершена некорректно!') _inf = A.a _sup = A.b cond = float('inf') angle_A =
np.zeros(A.shape, dtype='float64')
numpy.zeros
import numpy from matplotlib import pyplot import advection import weno_coefficients from scipy.integrate import ode def weno(order, q): """ Do WENO reconstruction Parameters ---------- order : int The stencil width q : numpy array Scalar data to reconstruct Returns ------- qL : numpy array Reconstructed data - boundary points are zero """ C = weno_coefficients.C_all[order] a = weno_coefficients.a_all[order] sigma = weno_coefficients.sigma_all[order] qL = numpy.zeros_like(q) beta = numpy.zeros((order, len(q))) w = numpy.zeros_like(beta) np = len(q) - 2 * order epsilon = 1e-16 for i in range(order, np+order): q_stencils = numpy.zeros(order) alpha = numpy.zeros(order) for k in range(order): for l in range(order): for m in range(l+1): beta[k, i] += sigma[k, l, m] * q[i+k-l] * q[i+k-m] alpha[k] = C[k] / (epsilon + beta[k, i]**2) for l in range(order): q_stencils[k] += a[k, l] * q[i+k-l] w[:, i] = alpha / numpy.sum(alpha) qL[i] = numpy.dot(w[:, i], q_stencils) return qL def weno_M(order, q): """ Do WENOM reconstruction following Gerolymos equation (18) Parameters ---------- order : int The stencil width q : numpy array Scalar data to reconstruct Returns ------- qL : numpy array Reconstructed data - boundary points are zero """ C = weno_coefficients.C_all[order] a = weno_coefficients.a_all[order] sigma = weno_coefficients.sigma_all[order] qL =
numpy.zeros_like(q)
numpy.zeros_like
import itertools import logging import os.path as osp import tempfile import numpy as np from mmcv.utils import print_log from terminaltables import AsciiTable from .builder import DATASETS from .coco import CocoDataset # DATASETS.register_module(name='LVISDataset', module=LVISDataset) # LVISDataset = LVISV05Dataset # DATASETS.register_module(name='LVISDataset', module=LVISDataset) @DATASETS.register_module() class LVISV1Dataset(CocoDataset): CLASSES = ( 'aerosol_can', 'air_conditioner', 'airplane', 'alarm_clock', 'alcohol', 'alligator', 'almond', 'ambulance', 'amplifier', 'anklet', 'antenna', 'apple', 'applesauce', 'apricot', 'apron', 'aquarium', 'arctic_(type_of_shoe)', 'armband', 'armchair', 'armoire', 'armor', 'artichoke', 'trash_can', 'ashtray', 'asparagus', 'atomizer', 'avocado', 'award', 'awning', 'ax', 'baboon', 'baby_buggy', 'basketball_backboard', 'backpack', 'handbag', 'suitcase', 'bagel', 'bagpipe', 'baguet', 'bait', 'ball', 'ballet_skirt', 'balloon', 'bamboo', 'banana', 'Band_Aid', 'bandage', 'bandanna', 'banjo', 'banner', 'barbell', 'barge', 'barrel', 'barrette', 'barrow', 'baseball_base', 'baseball', 'baseball_bat', 'baseball_cap', 'baseball_glove', 'basket', 'basketball', 'bass_horn', 'bat_(animal)', 'bath_mat', 'bath_towel', 'bathrobe', 'bathtub', 'batter_(food)', 'battery', 'beachball', 'bead', 'bean_curd', 'beanbag', 'beanie', 'bear', 'bed', 'bedpan', 'bedspread', 'cow', 'beef_(food)', 'beeper', 'beer_bottle', 'beer_can', 'beetle', 'bell', 'bell_pepper', 'belt', 'belt_buckle', 'bench', 'beret', 'bib', 'Bible', 'bicycle', 'visor', 'billboard', 'binder', 'binoculars', 'bird', 'birdfeeder', 'birdbath', 'birdcage', 'birdhouse', 'birthday_cake', 'birthday_card', 'pirate_flag', 'black_sheep', 'blackberry', 'blackboard', 'blanket', 'blazer', 'blender', 'blimp', 'blinker', 'blouse', 'blueberry', 'gameboard', 'boat', 'bob', 'bobbin', 'bobby_pin', 'boiled_egg', 'bolo_tie', 'deadbolt', 'bolt', 'bonnet', 'book', 'bookcase', 'booklet', 'bookmark', 'boom_microphone', 'boot', 'bottle', 'bottle_opener', 'bouquet', 'bow_(weapon)', 'bow_(decorative_ribbons)', 'bow-tie', 'bowl', 'pipe_bowl', 'bowler_hat', 'bowling_ball', 'box', 'boxing_glove', 'suspenders', 'bracelet', 'brass_plaque', 'brassiere', 'bread-bin', 'bread', 'breechcloth', 'bridal_gown', 'briefcase', 'broccoli', 'broach', 'broom', 'brownie', 'brussels_sprouts', 'bubble_gum', 'bucket', 'horse_buggy', 'bull', 'bulldog', 'bulldozer', 'bullet_train', 'bulletin_board', 'bulletproof_vest', 'bullhorn', 'bun', 'bunk_bed', 'buoy', 'burrito', 'bus_(vehicle)', 'business_card', 'butter', 'butterfly', 'button', 'cab_(taxi)', 'cabana', 'cabin_car', 'cabinet', 'locker', 'cake', 'calculator', 'calendar', 'calf', 'camcorder', 'camel', 'camera', 'camera_lens', 'camper_(vehicle)', 'can', 'can_opener', 'candle', 'candle_holder', 'candy_bar', 'candy_cane', 'walking_cane', 'canister', 'canoe', 'cantaloup', 'canteen', 'cap_(headwear)', 'bottle_cap', 'cape', 'cappuccino', 'car_(automobile)', 'railcar_(part_of_a_train)', 'elevator_car', 'car_battery', 'identity_card', 'card', 'cardigan', 'cargo_ship', 'carnation', 'horse_carriage', 'carrot', 'tote_bag', 'cart', 'carton', 'cash_register', 'casserole', 'cassette', 'cast', 'cat', 'cauliflower', 'cayenne_(spice)', 'CD_player', 'celery', 'cellular_telephone', 'chain_mail', 'chair', 'chaise_longue', 'chalice', 'chandelier', 'chap', 'checkbook', 'checkerboard', 'cherry', 'chessboard', 'chicken_(animal)', 'chickpea', 'chili_(vegetable)', 'chime', 'chinaware', 'crisp_(potato_chip)', 'poker_chip', 'chocolate_bar', 'chocolate_cake', 'chocolate_milk', 'chocolate_mousse', 'choker', 'chopping_board', 'chopstick', 'Christmas_tree', 'slide', 'cider', 'cigar_box', 'cigarette', 'cigarette_case', 'cistern', 'clarinet', 'clasp', 'cleansing_agent', 'cleat_(for_securing_rope)', 'clementine', 'clip', 'clipboard', 'clippers_(for_plants)', 'cloak', 'clock', 'clock_tower', 'clothes_hamper', 'clothespin', 'clutch_bag', 'coaster', 'coat', 'coat_hanger', 'coatrack', 'cock', 'cockroach', 'cocoa_(beverage)', 'coconut', 'coffee_maker', 'coffee_table', 'coffeepot', 'coil', 'coin', 'colander', 'coleslaw', 'coloring_material', 'combination_lock', 'pacifier', 'comic_book', 'compass', 'computer_keyboard', 'condiment', 'cone', 'control', 'convertible_(automobile)', 'sofa_bed', 'cooker', 'cookie', 'cooking_utensil', 'cooler_(for_food)', 'cork_(bottle_plug)', 'corkboard', 'corkscrew', 'edible_corn', 'cornbread', 'cornet', 'cornice', 'cornmeal', 'corset', 'costume', 'cougar', 'coverall', 'cowbell', 'cowboy_hat', 'crab_(animal)', 'crabmeat', 'cracker', 'crape', 'crate', 'crayon', 'cream_pitcher', 'crescent_roll', 'crib', 'crock_pot', 'crossbar', 'crouton', 'crow', 'crowbar', 'crown', 'crucifix', 'cruise_ship', 'police_cruiser', 'crumb', 'crutch', 'cub_(animal)', 'cube', 'cucumber', 'cufflink', 'cup', 'trophy_cup', 'cupboard', 'cupcake', 'hair_curler', 'curling_iron', 'curtain', 'cushion', 'cylinder', 'cymbal', 'dagger', 'dalmatian', 'dartboard', 'date_(fruit)', 'deck_chair', 'deer', 'dental_floss', 'desk', 'detergent', 'diaper', 'diary', 'die', 'dinghy', 'dining_table', 'tux', 'dish', 'dish_antenna', 'dishrag', 'dishtowel', 'dishwasher', 'dishwasher_detergent', 'dispenser', 'diving_board', 'Dixie_cup', 'dog', 'dog_collar', 'doll', 'dollar', 'dollhouse', 'dolphin', 'domestic_ass', 'doorknob', 'doormat', 'doughnut', 'dove', 'dragonfly', 'drawer', 'underdrawers', 'dress', 'dress_hat', 'dress_suit', 'dresser', 'drill', 'drone', 'dropper', 'drum_(musical_instrument)', 'drumstick', 'duck', 'duckling', 'duct_tape', 'duffel_bag', 'dumbbell', 'dumpster', 'dustpan', 'eagle', 'earphone', 'earplug', 'earring', 'easel', 'eclair', 'eel', 'egg', 'egg_roll', 'egg_yolk', 'eggbeater', 'eggplant', 'electric_chair', 'refrigerator', 'elephant', 'elk', 'envelope', 'eraser', 'escargot', 'eyepatch', 'falcon', 'fan', 'faucet', 'fedora', 'ferret', 'Ferris_wheel', 'ferry', 'fig_(fruit)', 'fighter_jet', 'figurine', 'file_cabinet', 'file_(tool)', 'fire_alarm', 'fire_engine', 'fire_extinguisher', 'fire_hose', 'fireplace', 'fireplug', 'first-aid_kit', 'fish', 'fish_(food)', 'fishbowl', 'fishing_rod', 'flag', 'flagpole', 'flamingo', 'flannel', 'flap', 'flash', 'flashlight', 'fleece', 'flip-flop_(sandal)', 'flipper_(footwear)', 'flower_arrangement', 'flute_glass', 'foal', 'folding_chair', 'food_processor', 'football_(American)', 'football_helmet', 'footstool', 'fork', 'forklift', 'freight_car', 'French_toast', 'freshener', 'frisbee', 'frog', 'fruit_juice', 'frying_pan', 'fudge', 'funnel', 'futon', 'gag', 'garbage', 'garbage_truck', 'garden_hose', 'gargle', 'gargoyle', 'garlic', 'gasmask', 'gazelle', 'gelatin', 'gemstone', 'generator', 'giant_panda', 'gift_wrap', 'ginger', 'giraffe', 'cincture', 'glass_(drink_container)', 'globe', 'glove', 'goat', 'goggles', 'goldfish', 'golf_club', 'golfcart', 'gondola_(boat)', 'goose', 'gorilla', 'gourd', 'grape', 'grater', 'gravestone', 'gravy_boat', 'green_bean', 'green_onion', 'griddle', 'grill', 'grits', 'grizzly', 'grocery_bag', 'guitar', 'gull', 'gun', 'hairbrush', 'hairnet', 'hairpin', 'halter_top', 'ham', 'hamburger', 'hammer', 'hammock', 'hamper', 'hamster', 'hair_dryer', 'hand_glass', 'hand_towel', 'handcart', 'handcuff', 'handkerchief', 'handle', 'handsaw', 'hardback_book', 'harmonium', 'hat', 'hatbox', 'veil', 'headband', 'headboard', 'headlight', 'headscarf', 'headset', 'headstall_(for_horses)', 'heart', 'heater', 'helicopter', 'helmet', 'heron', 'highchair', 'hinge', 'hippopotamus', 'hockey_stick', 'hog', 'home_plate_(baseball)', 'honey', 'fume_hood', 'hook', 'hookah', 'hornet', 'horse', 'hose', 'hot-air_balloon', 'hotplate', 'hot_sauce', 'hourglass', 'houseboat', 'hummingbird', 'hummus', 'polar_bear', 'icecream', 'popsicle', 'ice_maker', 'ice_pack', 'ice_skate', 'igniter', 'inhaler', 'iPod', 'iron_(for_clothing)', 'ironing_board', 'jacket', 'jam', 'jar', 'jean', 'jeep', 'jelly_bean', 'jersey', 'jet_plane', 'jewel', 'jewelry', 'joystick', 'jumpsuit', 'kayak', 'keg', 'kennel', 'kettle', 'key', 'keycard', 'kilt', 'kimono', 'kitchen_sink', 'kitchen_table', 'kite', 'kitten', 'kiwi_fruit', 'knee_pad', 'knife', 'knitting_needle', 'knob', 'knocker_(on_a_door)', 'koala', 'lab_coat', 'ladder', 'ladle', 'ladybug', 'lamb_(animal)', 'lamb-chop', 'lamp', 'lamppost', 'lampshade', 'lantern', 'lanyard', 'laptop_computer', 'lasagna', 'latch', 'lawn_mower', 'leather', 'legging_(clothing)', 'Lego', 'legume', 'lemon', 'lemonade', 'lettuce', 'license_plate', 'life_buoy', 'life_jacket', 'lightbulb', 'lightning_rod', 'lime', 'limousine', 'lion', 'lip_balm', 'liquor', 'lizard', 'log', 'lollipop', 'speaker_(stero_equipment)', 'loveseat', 'machine_gun', 'magazine', 'magnet', 'mail_slot', 'mailbox_(at_home)', 'mallard', 'mallet', 'mammoth', 'manatee', 'mandarin_orange', 'manger', 'manhole', 'map', 'marker', 'martini', 'mascot', 'mashed_potato', 'masher', 'mask', 'mast', 'mat_(gym_equipment)', 'matchbox', 'mattress', 'measuring_cup', 'measuring_stick', 'meatball', 'medicine', 'melon', 'microphone', 'microscope', 'microwave_oven', 'milestone', 'milk', 'milk_can', 'milkshake', 'minivan', 'mint_candy', 'mirror', 'mitten', 'mixer_(kitchen_tool)', 'money', 'monitor_(computer_equipment) computer_monitor', 'monkey', 'motor', 'motor_scooter', 'motor_vehicle', 'motorcycle', 'mound_(baseball)', 'mouse_(computer_equipment)', 'mousepad', 'muffin', 'mug', 'mushroom', 'music_stool', 'musical_instrument', 'nailfile', 'napkin', 'neckerchief', 'necklace', 'necktie', 'needle', 'nest', 'newspaper', 'newsstand', 'nightshirt', 'nosebag_(for_animals)', 'noseband_(for_animals)', 'notebook', 'notepad', 'nut', 'nutcracker', 'oar', 'octopus_(food)', 'octopus_(animal)', 'oil_lamp', 'olive_oil', 'omelet', 'onion', 'orange_(fruit)', 'orange_juice', 'ostrich', 'ottoman', 'oven', 'overalls_(clothing)', 'owl', 'packet', 'inkpad', 'pad', 'paddle', 'padlock', 'paintbrush', 'painting', 'pajamas', 'palette', 'pan_(for_cooking)', 'pan_(metal_container)', 'pancake', 'pantyhose', 'papaya', 'paper_plate', 'paper_towel', 'paperback_book', 'paperweight', 'parachute', 'parakeet', 'parasail_(sports)', 'parasol', 'parchment', 'parka', 'parking_meter', 'parrot', 'passenger_car_(part_of_a_train)', 'passenger_ship', 'passport', 'pastry', 'patty_(food)', 'pea_(food)', 'peach', 'peanut_butter', 'pear', 'peeler_(tool_for_fruit_and_vegetables)', 'wooden_leg', 'pegboard', 'pelican', 'pen', 'pencil', 'pencil_box', 'pencil_sharpener', 'pendulum', 'penguin', 'pennant', 'penny_(coin)', 'pepper', 'pepper_mill', 'perfume', 'persimmon', 'person', 'pet', 'pew_(church_bench)', 'phonebook', 'phonograph_record', 'piano', 'pickle', 'pickup_truck', 'pie', 'pigeon', 'piggy_bank', 'pillow', 'pin_(non_jewelry)', 'pineapple', 'pinecone', 'ping-pong_ball', 'pinwheel', 'tobacco_pipe', 'pipe', 'pistol', 'pita_(bread)', 'pitcher_(vessel_for_liquid)', 'pitchfork', 'pizza', 'place_mat', 'plate', 'platter', 'playpen', 'pliers', 'plow_(farm_equipment)', 'plume', 'pocket_watch', 'pocketknife', 'poker_(fire_stirring_tool)', 'pole', 'polo_shirt', 'poncho', 'pony', 'pool_table', 'pop_(soda)', 'postbox_(public)', 'postcard', 'poster', 'pot', 'flowerpot', 'potato', 'potholder', 'pottery', 'pouch', 'power_shovel', 'prawn', 'pretzel', 'printer', 'projectile_(weapon)', 'projector', 'propeller', 'prune', 'pudding', 'puffer_(fish)', 'puffin', 'pug-dog', 'pumpkin', 'puncher', 'puppet', 'puppy', 'quesadilla', 'quiche', 'quilt', 'rabbit', 'race_car', 'racket', 'radar', 'radiator', 'radio_receiver', 'radish', 'raft', 'rag_doll', 'raincoat', 'ram_(animal)', 'raspberry', 'rat', 'razorblade', 'reamer_(juicer)', 'rearview_mirror', 'receipt', 'recliner', 'record_player', 'reflector', 'remote_control', 'rhinoceros', 'rib_(food)', 'rifle', 'ring', 'river_boat', 'road_map', 'robe', 'rocking_chair', 'rodent', 'roller_skate', 'Rollerblade', 'rolling_pin', 'root_beer', 'router_(computer_equipment)', 'rubber_band', 'runner_(carpet)', 'plastic_bag', 'saddle_(on_an_animal)', 'saddle_blanket', 'saddlebag', 'safety_pin', 'sail', 'salad', 'salad_plate', 'salami', 'salmon_(fish)', 'salmon_(food)', 'salsa', 'saltshaker', 'sandal_(type_of_shoe)', 'sandwich', 'satchel', 'saucepan', 'saucer', 'sausage', 'sawhorse', 'saxophone', 'scale_(measuring_instrument)', 'scarecrow', 'scarf', 'school_bus', 'scissors', 'scoreboard', 'scraper', 'screwdriver', 'scrubbing_brush', 'sculpture', 'seabird', 'seahorse', 'seaplane', 'seashell', 'sewing_machine', 'shaker', 'shampoo', 'shark', 'sharpener', 'Sharpie', 'shaver_(electric)', 'shaving_cream', 'shawl', 'shears', 'sheep', 'shepherd_dog', 'sherbert', 'shield', 'shirt', 'shoe', 'shopping_bag', 'shopping_cart', 'short_pants', 'shot_glass', 'shoulder_bag', 'shovel', 'shower_head', 'shower_cap', 'shower_curtain', 'shredder_(for_paper)', 'signboard', 'silo', 'sink', 'skateboard', 'skewer', 'ski', 'ski_boot', 'ski_parka', 'ski_pole', 'skirt', 'skullcap', 'sled', 'sleeping_bag', 'sling_(bandage)', 'slipper_(footwear)', 'smoothie', 'snake', 'snowboard', 'snowman', 'snowmobile', 'soap', 'soccer_ball', 'sock', 'sofa', 'softball', 'solar_array', 'sombrero', 'soup', 'soup_bowl', 'soupspoon', 'sour_cream', 'soya_milk', 'space_shuttle', 'sparkler_(fireworks)', 'spatula', 'spear', 'spectacles', 'spice_rack', 'spider', 'crawfish', 'sponge', 'spoon', 'sportswear', 'spotlight', 'squid_(food)', 'squirrel', 'stagecoach', 'stapler_(stapling_machine)', 'starfish', 'statue_(sculpture)', 'steak_(food)', 'steak_knife', 'steering_wheel', 'stepladder', 'step_stool', 'stereo_(sound_system)', 'stew', 'stirrer', 'stirrup', 'stool', 'stop_sign', 'brake_light', 'stove', 'strainer', 'strap', 'straw_(for_drinking)', 'strawberry', 'street_sign', 'streetlight', 'string_cheese', 'stylus', 'subwoofer', 'sugar_bowl', 'sugarcane_(plant)', 'suit_(clothing)', 'sunflower', 'sunglasses', 'sunhat', 'surfboard', 'sushi', 'mop', 'sweat_pants', 'sweatband', 'sweater', 'sweatshirt', 'sweet_potato', 'swimsuit', 'sword', 'syringe', 'Tabasco_sauce', 'table-tennis_table', 'table', 'table_lamp', 'tablecloth', 'tachometer', 'taco', 'tag', 'taillight', 'tambourine', 'army_tank', 'tank_(storage_vessel)', 'tank_top_(clothing)', 'tape_(sticky_cloth_or_paper)', 'tape_measure', 'tapestry', 'tarp', 'tartan', 'tassel', 'tea_bag', 'teacup', 'teakettle', 'teapot', 'teddy_bear', 'telephone', 'telephone_booth', 'telephone_pole', 'telephoto_lens', 'television_camera', 'television_set', 'tennis_ball', 'tennis_racket', 'tequila', 'thermometer', 'thermos_bottle', 'thermostat', 'thimble', 'thread', 'thumbtack', 'tiara', 'tiger', 'tights_(clothing)', 'timer', 'tinfoil', 'tinsel', 'tissue_paper', 'toast_(food)', 'toaster', 'toaster_oven', 'toilet', 'toilet_tissue', 'tomato', 'tongs', 'toolbox', 'toothbrush', 'toothpaste', 'toothpick', 'cover', 'tortilla', 'tow_truck', 'towel', 'towel_rack', 'toy', 'tractor_(farm_equipment)', 'traffic_light', 'dirt_bike', 'trailer_truck', 'train_(railroad_vehicle)', 'trampoline', 'tray', 'trench_coat', 'triangle_(musical_instrument)', 'tricycle', 'tripod', 'trousers', 'truck', 'truffle_(chocolate)', 'trunk', 'vat', 'turban', 'turkey_(food)', 'turnip', 'turtle', 'turtleneck_(clothing)', 'typewriter', 'umbrella', 'underwear', 'unicycle', 'urinal', 'urn', 'vacuum_cleaner', 'vase', 'vending_machine', 'vent', 'vest', 'videotape', 'vinegar', 'violin', 'vodka', 'volleyball', 'vulture', 'waffle', 'waffle_iron', 'wagon', 'wagon_wheel', 'walking_stick', 'wall_clock', 'wall_socket', 'wallet', 'walrus', 'wardrobe', 'washbasin', 'automatic_washer', 'watch', 'water_bottle', 'water_cooler', 'water_faucet', 'water_heater', 'water_jug', 'water_gun', 'water_scooter', 'water_ski', 'water_tower', 'watering_can', 'watermelon', 'weathervane', 'webcam', 'wedding_cake', 'wedding_ring', 'wet_suit', 'wheel', 'wheelchair', 'whipped_cream', 'whistle', 'wig', 'wind_chime', 'windmill', 'window_box_(for_plants)', 'windshield_wiper', 'windsock', 'wine_bottle', 'wine_bucket', 'wineglass', 'blinder_(for_horses)', 'wok', 'wolf', 'wooden_spoon', 'wreath', 'wrench', 'wristband', 'wristlet', 'yacht', 'yogurt', 'yoke_(animal_equipment)', 'zebra', 'zucchini') # def load_annotations(self, ann_file): # try: # import lvis # assert lvis.__version__ >= '10.5.3' # from lvis import LVIS # except AssertionError: # raise AssertionError('Incompatible version of lvis is installed. ' # 'Run pip uninstall lvis first. Then run pip ' # 'install mmlvis to install open-mmlab forked ' # 'lvis. ') # except ImportError: # raise ImportError('Package lvis is not installed. Please run pip ' # 'install mmlvis to install open-mmlab forked ' # 'lvis.') # self.coco = LVIS(ann_file) # # assert not self.custom_classes, 'LVIS custom classes is not supported' # self.cat_ids = self.coco.get_cat_ids() # self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} # self.img_ids = self.coco.get_img_ids() # data_infos = [] # for i in self.img_ids: # info = self.coco.load_imgs([i])[0] # # coco_url is used in LVISv1 instead of file_name # # e.g. http://images.cocodataset.org/train2017/000000391895.jpg # # train/val split in specified in url # info['filename'] = info['coco_url'].replace( # 'http://images.cocodataset.org/', '') # data_infos.append(info) # return data_infos def load_annotations(self, ann_file): try: import lvis assert lvis.__version__ >= '10.5.3' from lvis import LVIS except AssertionError: raise AssertionError('Incompatible version of lvis is installed. ' 'Run pip uninstall lvis first. Then run pip ' 'install mmlvis to install open-mmlab forked ' 'lvis. ') except ImportError: raise ImportError('Package lvis is not installed. Please run pip ' 'install mmlvis to install open-mmlab forked ' 'lvis.') self.lvis = LVIS(ann_file) self.full_cat_ids = self.lvis.get_cat_ids() self.full_cat2label = { cat_id: i + 1 for i, cat_id in enumerate(self.full_cat_ids) } self.CLASSES = tuple([item['name'] for item in self.lvis.dataset['categories']]) self.cat_ids = self.lvis.get_cat_ids() self.cat2label = { cat_id: i + 1 for i, cat_id in enumerate(self.cat_ids) } self.img_ids = self.lvis.get_img_ids() self.img_infos = [] for i in self.img_ids: info = self.lvis.load_imgs([i])[0] info['filename'] = info['coco_url'].replace( 'http://images.cocodataset.org/', '') self.img_infos.append(info) return self.img_infos def get_ann_info(self, idx): img_id = self.img_infos[idx]['id'] ann_ids = self.lvis.get_ann_ids(img_ids=[img_id]) ann_info = self.lvis.load_anns(ann_ids) return self._parse_ann_info(self.img_infos[idx], ann_info) def get_ann_info_withoutparse(self, idx): img_id = self.img_infos[idx]['id'] ann_ids = self.lvis.get_ann_ids(img_ids=[img_id]) ann_info = self.lvis.load_anns(ann_ids) return ann_info def _filter_imgs(self, min_size=32): """Filter images too small or without ground truths.""" valid_inds = [] ids_with_ann = set(_['image_id'] for _ in self.lvis.anns.values()) for i, img_info in enumerate(self.img_infos): if self.img_ids[i] not in ids_with_ann: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) return valid_inds def _parse_ann_info(self, img_info, ann_info): """Parse bbox and mask annotation. Args: ann_info (list[dict]): Annotation info of an image. with_mask (bool): Whether to parse mask annotations. Returns: dict: A dict containing the following keys: bboxes, bboxes_ignore, labels, masks, mask_polys, poly_lens. """ gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = [] # Two formats are provided. # 1. mask: a binary map of the same size of the image. # 2. polys: each mask consists of one or several polys, each poly is a # list of float. gt_masks = [] for i, ann in enumerate(ann_info): if ann.get('ignore', False): continue x1, y1, w, h = ann['bbox'] if ann['area'] <= 0 or w < 1 or h < 1: continue bbox = [x1, y1, x1 + w - 1, y1 + h - 1] if 'iscrowd' in ann.keys(): if ann['iscrowd']: gt_bboxes_ignore.append(bbox) else: gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['category_id']]) gt_masks.append(self.lvis.ann_to_mask(ann)) if gt_bboxes: gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels =
np.array(gt_labels, dtype=np.int64)
numpy.array
import pytest import sys import os from math import trunc, ceil, floor import numpy as np sys.path.insert(0, os.getcwd()) from uncvalue import Value, val, unc, set_unc # noqa: E402 ϵ = 1e-8 a = Value(3.1415, 0.0012) b = Value(-1.618, 0.235) c = Value(3.1264e2, 1.268) A = np.array([[a, a], [b, b], [c, c]]) B = Value([a.x] * 5, a.ux) C = Value([b.x] * 5, [b.ux] * 5) @pytest.mark.parametrize('v, x', [ (a, a.x), (A, np.array([[a.x, a.x], [b.x, b.x], [c.x, c.x]])), (B, a.x), (a.x, a.x)], ids=['Single', 'Array of values', 'Value array', 'Number']) def test_val(v, x): assert np.all(val(v) == x) @pytest.mark.parametrize('v, x', [ (a, a.ux), (A, np.array([[a.ux, a.ux], [b.ux, b.ux], [c.ux, c.ux]])), (B, a.ux), (a.x, 0)], ids=['Single', 'Array of values', 'Value array', 'Number']) def test_unc(v, x): assert np.all(unc(v) == x) def test_set_unc(): v = set_unc(0.234, 0.0052) assert isinstance(v, Value) assert v.x == 0.234 assert v.ux == 0.0052 v = set_unc(a, 0.0052) assert isinstance(v, Value) assert v.x == a.x assert v.ux == 0.0052 v = set_unc([0.234] * 8, 0.0052) assert isinstance(v, np.ndarray) assert v.shape == (8, ) assert np.mean(unc(v)) == 0.0052 v = set_unc([0.234] * 8, [0.0052] * 8) assert isinstance(v, np.ndarray) assert v.shape == (8, ) assert np.mean(unc(v)) == 0.0052 with pytest.raises(ValueError): set_unc(np.random.random((3, 2, 1)), np.random.random((4, 2, 1))) def test_constructor(): v = Value(3.1415, 0.0012) assert v.x == 3.1415 == v.val assert v.ux == 0.0012 == v.unc with pytest.raises(ValueError): Value(3.14, -0.28) V = Value([3.1415] * 8, 0.0012) assert V.x.shape == (8, ) assert V.ux.shape == (8, ) assert np.mean(V.ux) == 0.0012 V = Value([3.1415] * 8, [0.0012] * 8) assert V.x.shape == (8, ) assert V.ux.shape == (8, ) assert np.mean(V.ux) == 0.0012 with pytest.raises(ValueError): Value(np.random.random((3, 2, 1)), np.random.random((4, 2, 1))) with pytest.raises(ValueError): Value(1j, 0) Value(1, 2j) @pytest.mark.parametrize('x, y, r', [ (a.x, a, False), (a, a.x, False), (a, Value(a.x, a.ux * 5), False), (b, a, True), (a, a - 0.0001, False), (A, A, False), (B, C, False)], ids=['Right', 'Left', 'Both', 'Different', 'Within unc', 'Array eq', 'Array dif']) def test_smaller(x, y, r): assert np.all((x < y) == r) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(a.x + 1, a.ux)), (a, 1, Value(a.x + 1, a.ux)), (a, b, Value(a.x + b.x, np.hypot(a.ux, b.ux))), (1, A, np.array([[a+1, a+1], [b+1, b+1], [c+1, c+1]])), (a, A, np.array([[a+a, a+a], [b+a, b+a], [c+a, c+a]])), (1, B, Value(1 + B.x, B.ux)), (a, B, Value(a.x + B.x, np.hypot(a.ux, B.ux))), (A, A, np.array([[a+a, a+a], [b+b, b+b], [c+c, c+c]])), (B, C, Value(B.x + C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Number + Array', 'Value + Array', 'Array of values', 'Number + Valued array', 'Value + Valued array', 'Valued array']) def test_add(x, y, r): z = x + y assert np.all(val(z) == val(r)) assert np.all(unc(z) == unc(r)) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(a.x + 1, a.ux)), (a.copy(), 1, Value(a.x + 1, a.ux)), (a.copy(), b, Value(a.x + b.x, np.hypot(a.ux, b.ux))), (B.copy(), C, Value(B.x + C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Array']) def test_iadd(x, y, r): x += y assert isinstance(x, Value) assert np.all(x.x == r.x) assert np.all(x.ux == r.ux) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(1 - a.x, a.ux)), (a, 1, Value(a.x - 1, a.ux)), (a, b, Value(a.x - b.x, np.hypot(a.ux, b.ux))), (A, A, np.array([[a-a, a-a], [b-b, b-b], [c-c, c-c]])), (B, C, Value(B.x - C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Array of values', 'Valued array']) def test_sub(x, y, r): z = x - y assert np.all(val(z) == val(r)) assert np.all(unc(z) == unc(r)) @pytest.mark.parametrize('x, y, r', [ (1, a, Value(1 - a.x, a.ux)), (a.copy(), 1, Value(a.x - 1, a.ux)), (a.copy(), b, Value(a.x - b.x, np.hypot(a.ux, b.ux))), (B.copy(), C, Value(B.x - C.x, np.hypot(B.ux, C.ux))), ], ids=['Right', 'Left', 'Both', 'Array']) def test_isub(x, y, r): x -= y assert isinstance(x, Value) assert np.all(x.x == r.x) assert np.all(x.ux == r.ux) @pytest.mark.parametrize('x, y, r', [ (2, a, Value(2 * a.x, 2 * a.ux)), (a, 2, Value(a.x * 2, 2 * a.ux)), (a, b, Value(a.x * b.x, np.hypot(a.ux * b.x, a.x * b.ux))), (A, A, np.array([[a*a, a*a], [b*b, b*b], [c*c, c*c]])), (B, C, Value(B.x * C.x, np.hypot(B.ux * C.x, B.x * C.ux))), ], ids=['Right', 'Left', 'Both', 'Array of values', 'Valued array']) def test_mul(x, y, r): z = x * y assert np.all(val(z) == val(r)) assert np.all(unc(z) == unc(r)) @pytest.mark.parametrize('x, y, r', [ (2, a, Value(2 * a.x, 2 * a.ux)), (a.copy(), 2, Value(a.x * 2, 2 * a.ux)), (a.copy(), b, Value(a.x * b.x, np.hypot(a.ux * b.x, a.x * b.ux))), (B.copy(), C, Value(B.x * C.x, np.hypot(B.ux * C.x, B.x * C.ux))), ], ids=['Right', 'Left', 'Both', 'Array']) def test_imul(x, y, r): x *= y assert isinstance(x, Value) assert np.all(x.x == r.x) assert np.all(x.ux == r.ux) @pytest.mark.parametrize('x, y, r', [ (2, a, Value(2 / a.x, 2 * a.ux / a.x**2)), (a, 2, Value(a.x / 2, a.ux / 2)), (a, b, Value(a.x / b.x, np.hypot(a.ux / b.x, a.x * b.ux / b.x**2))), (B, C, Value(B.x / C.x, np.hypot(B.ux / C.x, B.x * C.ux / C.x**2))), ], ids=['Right', 'Left', 'Both', 'Array']) def test_div(x, y, r): z = x / y assert isinstance(z, Value) assert np.all(z.x == r.x) assert np.all(z.ux == r.ux) @pytest.mark.parametrize('x, y, r', [ (2, a, Value(2 // a.x, 2 * a.ux // a.x**2)), (a, 2, Value(a.x // 2, a.ux // 2)), (a, b, Value(a.x // b.x, np.hypot(a.ux // b.x, a.x * b.ux // b.x**2))), (B, C, Value(B.x // C.x, np.hypot(B.ux // C.x, B.x * C.ux // C.x**2))), ], ids=['Right', 'Left', 'Both', 'Array']) def test_floordiv(x, y, r): z = x // y assert isinstance(z, Value) assert
np.all(z.x == r.x)
numpy.all
import json import os import os.path as osp from glob import glob from PIL import Image import numpy as np from tqdm import tqdm from torch.utils.data import DataLoader, ConcatDataset, Dataset SRC_DATASET_DIR = '/data/datasets/ICDAR17_MLT' # FIXME DST_DATASET_DIR = '/data/datasets/ICDAR17_Korean' # FIXME NUM_WORKERS = 32 # FIXME IMAGE_EXTENSIONS = {'.gif', '.jpg', '.png'} LANGUAGE_MAP = { 'Korean': 'ko', 'Latin': 'en', 'Symbols': None } def get_language_token(x): return LANGUAGE_MAP.get(x, 'others') def maybe_mkdir(x): if not osp.exists(x): os.makedirs(x) class MLT17Dataset(Dataset): def __init__(self, image_dir, label_dir, copy_images_to=None): image_paths = {x for x in glob(osp.join(image_dir, '*')) if osp.splitext(x)[1] in IMAGE_EXTENSIONS} label_paths = set(glob(osp.join(label_dir, '*.txt'))) assert len(image_paths) == len(label_paths) sample_ids, samples_info = list(), dict() for image_path in image_paths: sample_id = osp.splitext(osp.basename(image_path))[0] label_path = osp.join(label_dir, 'gt_{}.txt'.format(sample_id)) assert label_path in label_paths words_info, extra_info = self.parse_label_file(label_path) if 'ko' not in extra_info['languages'] or extra_info['languages'].difference({'ko', 'en'}): continue sample_ids.append(sample_id) samples_info[sample_id] = dict(image_path=image_path, label_path=label_path, words_info=words_info) self.sample_ids, self.samples_info = sample_ids, samples_info self.copy_images_to = copy_images_to def __len__(self): return len(self.sample_ids) def __getitem__(self, idx): sample_info = self.samples_info[self.sample_ids[idx]] image_fname = osp.basename(sample_info['image_path']) image = Image.open(sample_info['image_path']) img_w, img_h = image.size if self.copy_images_to: maybe_mkdir(self.copy_images_to) image.save(osp.join(self.copy_images_to, osp.basename(sample_info['image_path']))) license_tag = dict(usability=True, public=True, commercial=True, type='CC-BY-SA', holder=None) sample_info_ufo = dict(img_h=img_h, img_w=img_w, words=sample_info['words_info'], tags=None, license_tag=license_tag) return image_fname, sample_info_ufo def parse_label_file(self, label_path): def rearrange_points(points): start_idx = np.argmin([np.linalg.norm(p, ord=1) for p in points]) if start_idx != 0: points =
np.roll(points, -start_idx, axis=0)
numpy.roll
## MINE_binary_search.py -- attack a network and update constant c with binary search ## ## author: <NAME> import sys import tensorflow as tf import numpy as np BINARY_SEARCH_STEPS = 9 # number of times to adjust the constant with binary search MAX_ITERATIONS = 10000 # number of iterations to perform gradient descent LEARNING_RATE = 1e-2 # larger values converge faster to less accurate results TARGETED = False # should we target one specific class? or just be wrong? CONFIDENCE = 0 # how strong the adversarial example should be INITIAL_CONST = 1e-3 # the initial constant c to pick as a first guess def standardized(img): mean, var = tf.nn.moments(tf.convert_to_tensor(img),[1]) mean = tf.tile(tf.reshape(mean,[-1,1]),[1,tf.shape(img)[1]]) var = tf.tile(tf.reshape(tf.sqrt(var),[-1,1]),[1, tf.shape(img)[1]]) img = (img-mean)/var return img def MiNetwork(x_in, y_in,mine_batch_='conv'): H=10 seed = np.random.randint(0,1000,1) y_shuffle = tf.gather(y_in, tf.random_shuffle(tf.range(tf.shape(y_in)[0]),seed=seed)) x_conc = tf.concat([x_in, x_in], axis=0) y_conc = tf.concat([y_in, y_shuffle], axis=0) # propagate the forward pass if mine_batch_ == 'conv': layerx = tf.layers.conv2d(x_conc, 16, 2, (1,1),use_bias=True,name='M_0') layerx = tf.layers.flatten(layerx,name='M_1') layerx = tf.layers.dense(layerx, 512,name='M_2',use_bias=True) layerx = tf.layers.dense(layerx, H,name='M_3',use_bias=True) #======================================== layery = tf.layers.conv2d(y_conc, 16, 2, (1,1),name='M_4',use_bias=True) layery = tf.layers.flatten(layery,name='M_5') layery = tf.layers.dense(layery, 512,name='M_6',use_bias=True) layery = tf.layers.dense(layery, H, name='M_7',use_bias=True) else: layerx = tf.layers.dense(x_conc, 512,name='M_2',use_bias=True) layerx = tf.layers.dense(layerx, H,name='M_3',use_bias=True) layery = tf.layers.dense(y_conc, 512,name='M_6',use_bias=True) layery = tf.layers.dense(layery, H, name='M_7',use_bias=True) layer2 = tf.nn.relu(layerx + layery,name='M_8') output = tf.layers.dense(layer2, 1,name='M_9',use_bias=False) # split in T_xy and T_x_y predictions N_samples = tf.shape(x_in)[0] T_xy = output[:N_samples] T_x_y = output[N_samples:] return T_xy, T_x_y class MINE_supervised_binary_search: def __init__(self, sess, model,batch_size=1, confidence = CONFIDENCE, targeted = False, learning_rate = LEARNING_RATE, binary_search_steps = BINARY_SEARCH_STEPS, max_iterations = MAX_ITERATIONS, initial_const = INITIAL_CONST, boxmin = 0, boxmax = 1,epsilon=0.3,mine_batch='conv'): """ Returns adversarial examples for the supplied model. confidence: Confidence of adversarial examples: higher produces examples that are farther away, but more strongly classified as adversarial. batch_size: Number of attacks to run simultaneously. targeted: True if we should perform a targetted attack, False otherwise. learning_rate: The learning rate for the attack algorithm. Smaller values produce better results but are slower to converge. binary_search_steps: The number of times we perform binary search to find the optimal tradeoff-constant between distance and confidence. max_iterations: The maximum number of iterations. Larger values are more accurate; setting too small will require a large learning rate and will produce poor results. initial_const: The initial tradeoff-constant to use to tune the relative importance of distance and confidence. boxmin: Minimum pixel value (default 0). boxmax: Maximum pixel value (default 1). epsilon: Maximum pixel value can be changed for attack. mine_batch: generate batch sample for MINE ('conv', 'random_sampling'). """ image_size, num_channels, num_labels = model.image_size, model.num_channels, model.num_labels self.sess = sess self.TARGETED = targeted self.LEARNING_RATE = learning_rate self.MAX_ITERATIONS = max_iterations self.BINARY_SEARCH_STEPS = binary_search_steps self.CONFIDENCE = confidence self.initial_const = initial_const self.batch_size = batch_size self.mine_batch = mine_batch shape = (batch_size,image_size,image_size,num_channels) # these are variables to be more efficient in sending data to tf self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32) self.tlab = tf.Variable(np.zeros((batch_size,num_labels)), dtype=tf.float32) self.const = tf.Variable(np.zeros(batch_size), dtype=tf.float32) # and here's what we use to assign them self.assign_timg = tf.placeholder(tf.float32, shape) self.assign_tlab = tf.placeholder(tf.float32, (batch_size,num_labels)) self.assign_const = tf.placeholder(tf.float32, [batch_size]) # the variable we're going to optimize over modifier = tf.Variable(np.random.uniform(-epsilon,epsilon,shape).astype('float32'),name='modifier') self.modifier = tf.get_variable('modifier',shape,trainable=True, constraint=lambda x: tf.clip_by_value(x, -epsilon, epsilon)) # the resulting image, tanh'd to keep bounded from boxmin to boxmax self.newimg = tf.clip_by_value(self.modifier + self.timg, boxmin, boxmax) if self.mine_batch == 'random_sampling': matrix = tf.random_normal([500,image_size*image_size*num_channels,128],0.,1.0/tf.sqrt(128.)) self.x_batch = standardized( tf.keras.backend.dot(tf.reshape(self.timg,[image_size*image_size*num_channels]),matrix)) self.y_batch = standardized( tf.keras.backend.dot(tf.reshape(self.newimg,[image_size*image_size*num_channels]),matrix)) else: self.x_batch = tf.transpose(model.conv1(self.timg),perm=[3,1,2,0]) self.y_batch = tf.transpose(model.conv1(self.newimg),perm=[3,1,2,0]) T_xy , T_x_y = MiNetwork(self.x_batch, self.y_batch, mine_batch_=self.mine_batch) self.MI = tf.reduce_mean(T_xy, axis=0) - tf.log(tf.reduce_mean(tf.exp(T_x_y))) # prediction BEFORE-SOFTMAX of the model self.output = model.predict(self.newimg) # compute the probability of the label class versus the maximum other real = tf.reduce_sum((self.tlab)*self.output,1) other = tf.reduce_max((1-self.tlab)*self.output - (self.tlab*10000),1) if self.TARGETED: # if targetted, optimize for making the other class most likely loss1 = tf.maximum(0.0, other-real+self.CONFIDENCE) else: # if untargeted, optimize for making this class least likely. loss1 = tf.maximum(0.0, real-other+self.CONFIDENCE) # sum up the losses self.loss1_1 = tf.maximum(0.0, real-other+self.CONFIDENCE) self.loss1 = tf.reduce_sum(self.const*loss1) self.loss = self.loss1 - self.MI # Setup the adam optimizer and keep track of variables we're creating start_vars = set(x.name for x in tf.global_variables()) m_var = [var for var in tf.global_variables() if 'M_' in var.name] optimizer = tf.train.GradientDescentOptimizer(self.LEARNING_RATE) self.mi_train = tf.train.AdamOptimizer(0.00002).minimize(-self.MI, var_list=m_var+[self.modifier]) self.train = optimizer.minimize(self.loss, var_list=[self.modifier]) end_vars = tf.global_variables() new_vars = [x for x in end_vars if x.name not in start_vars] # these are the variables to initialize when we run self.setup = [] self.setup.append(self.timg.assign(self.assign_timg)) self.setup.append(self.tlab.assign(self.assign_tlab)) self.setup.append(self.const.assign(self.assign_const)) self.init = tf.variables_initializer(var_list=[self.modifier]+new_vars) self.mi_init = tf.variables_initializer(var_list=m_var) def attack(self, imgs, targets): """ Perform the MINE-based attack on the given images for the given targets. If self.targeted is true, then the targets represents the target labels. If self.targeted is false, then targets are the original class labels. """ r = [] print('go up to',len(imgs)) for i in range(0,len(imgs),self.batch_size): print('tick',i) result, m = self.attack_batch(imgs[i:i+self.batch_size], targets[i:i+self.batch_size]) r.extend(result) return np.array(r), m def attack_batch(self, imgs, labs): """ Run the attack on a batch of images and labels. """ def compare(x,y): if not isinstance(x, (float, int, np.int64)): x = np.copy(x) if self.TARGETED: x[y] -= self.CONFIDENCE else: x[y] += self.CONFIDENCE x = np.argmax(x) if self.TARGETED: return x == y else: return x != y batch_size = self.batch_size # convert to tanh-space #imgs = np.arctanh((imgs - self.boxplus) / self.boxmul * 0.999999) # set the lower and upper bounds accordingly lower_bound = np.zeros(batch_size) CONST =
np.ones(batch_size)
numpy.ones
import importlib.resources import numpy as np from hexrd import constants from hexrd import symmetry, symbols from hexrd.spacegroup import Allowed_HKLs from hexrd.ipfcolor import sphere_sector, colorspace from hexrd.valunits import valWUnit import hexrd.resources import warnings import h5py from pathlib import Path from scipy.interpolate import interp1d import time eps = constants.sqrt_epsf class unitcell: ''' >> @AUTHOR: <NAME>, Lawrence Livermore National Lab, <EMAIL> >> @DATE: 10/09/2018 SS 1.0 original @DATE: 10/15/2018 SS 1.1 added space group handling >> @DETAILS: this is the unitcell class ''' # initialize the unitcell class # need lattice parameters and space group data from HDF5 file def __init__(self, lp, sgnum, atomtypes, charge, atominfo, U, dmin, beamenergy, sgsetting=0): self._tstart = time.time() self.pref = 0.4178214 self.atom_type = atomtypes self.chargestates = charge self.atom_pos = atominfo self._dmin = dmin self.lparms = lp self.U = U ''' initialize interpolation from table for anomalous scattering ''' self.InitializeInterpTable() ''' sets x-ray energy calculate wavelength also calculates anomalous form factors for xray scattering ''' self.voltage = beamenergy * 1000.0 ''' calculate symmetry ''' self.sgsetting = sgsetting self.sgnum = sgnum self._tstop = time.time() self.tinit = self._tstop - self._tstart def GetPgLg(self): ''' simple subroutine to get point and laue groups to maintain consistency for planedata initialization in the materials class ''' for k in list(_pgDict.keys()): if self.sgnum in k: pglg = _pgDict[k] self._pointGroup = pglg[0] self._laueGroup = pglg[1] self._supergroup = pglg[2] self._supergroup_laue = pglg[3] def CalcWavelength(self): # wavelength in nm self.wavelength = constants.cPlanck * \ constants.cLight / \ constants.cCharge / \ self.voltage self.wavelength *= 1e9 self.CalcAnomalous() def calcBetaij(self): self.betaij = np.zeros([self.atom_ntype, 3, 3]) for i in range(self.U.shape[0]): U = self.U[i, :] self.betaij[i, :, :] = np.array([[U[0], U[3], U[4]], [U[3], U[1], U[5]], [U[4], U[5], U[2]]]) self.betaij[i, :, :] *= 2. * np.pi**2 * self._aij def calcmatrices(self): a = self.a b = self.b c = self.c alpha = np.radians(self.alpha) beta = np.radians(self.beta) gamma = np.radians(self.gamma) ca = np.cos(alpha) cb = np.cos(beta) cg = np.cos(gamma) sa = np.sin(alpha) sb = np.sin(beta) sg = np.sin(gamma) tg = np.tan(gamma) ''' direct metric tensor ''' self._dmt = np.array([[a**2, a*b*cg, a*c*cb], [a*b*cg, b**2, b*c*ca], [a*c*cb, b*c*ca, c**2]]) self._vol = np.sqrt(np.linalg.det(self.dmt)) if(self.vol < 1e-5): warnings.warn('unitcell volume is suspiciously small') ''' reciprocal metric tensor ''' self._rmt = np.linalg.inv(self.dmt) ''' direct structure matrix ''' self._dsm = np.array([[a, b*cg, c*cb], [0., b*sg, -c*(cb*cg - ca)/sg], [0., 0., self.vol/(a*b*sg)]]) self._dsm[np.abs(self._dsm) < eps] = 0. ''' reciprocal structure matrix ''' self._rsm = np.array([[1./a, 0., 0.], [-1./(a*tg), 1./(b*sg), 0.], [b*c*(cg*ca - cb)/(self.vol*sg), a*c*(cb*cg - ca)/(self.vol*sg), a*b*sg/self.vol]]) self._rsm[np.abs(self._rsm) < eps] = 0. ast = self.CalcLength([1, 0, 0], 'r') bst = self.CalcLength([0, 1, 0], 'r') cst = self.CalcLength([0, 0, 1], 'r') self._aij = np.array([[ast**2, ast*bst, ast*cst], [bst*ast, bst**2, bst*cst], [cst*ast, cst*bst, cst**2]]) ''' transform between any crystal space to any other space. choices are 'd' (direct), 'r' (reciprocal) and 'c' (cartesian)''' def TransSpace(self, v_in, inspace, outspace): if(inspace == 'd'): if(outspace == 'r'): v_out = np.dot(v_in, self.dmt) elif(outspace == 'c'): v_out = np.dot(self.dsm, v_in) else: raise ValueError( 'inspace in ''d'' but outspace can''t be identified') elif(inspace == 'r'): if(outspace == 'd'): v_out = np.dot(v_in, self.rmt) elif(outspace == 'c'): v_out = np.dot(self.rsm, v_in) else: raise ValueError( 'inspace in ''r'' but outspace can''t be identified') elif(inspace == 'c'): if(outspace == 'r'): v_out = np.dot(v_in, self.rsm) elif(outspace == 'd'): v_out = np.dot(v_in, self.dsm) else: raise ValueError( 'inspace in ''c'' but outspace can''t be identified') else: raise ValueError('incorrect inspace argument') return v_out ''' calculate dot product of two vectors in any space 'd' 'r' or 'c' ''' def CalcDot(self, u, v, space): if(space == 'd'): dot = np.dot(u, np.dot(self.dmt, v)) elif(space == 'r'): dot = np.dot(u, np.dot(self.rmt, v)) elif(space == 'c'): dot = np.dot(u, v) else: raise ValueError('space is unidentified') return dot ''' calculate dot product of two vectors in any space 'd' 'r' or 'c' ''' def CalcLength(self, u, space): if(space == 'd'): vlen = np.sqrt(np.dot(u, np.dot(self.dmt, u))) elif(space == 'r'): vlen = np.sqrt(np.dot(u, np.dot(self.rmt, u))) elif(space == 'c'): vlen = np.linalg.norm(u) else: raise ValueError('incorrect space argument') return vlen ''' normalize vector in any space 'd' 'r' or 'c' ''' def NormVec(self, u, space): ulen = self.CalcLength(u, space) return u/ulen ''' calculate angle between two vectors in any space''' def CalcAngle(self, u, v, space): ulen = self.CalcLength(u, space) vlen = self.CalcLength(v, space) dot = self.CalcDot(u, v, space)/ulen/vlen angle = np.arccos(dot) return angle ''' calculate cross product between two vectors in any space. cross product of two vectors in direct space is a vector in reciprocal space cross product of two vectors in reciprocal space is a vector in direct space the outspace specifies if a conversion needs to be made @NOTE: iv is the switch (0/1) which will either turn division by volume of the unit cell on or off.''' def CalcCross(self, p, q, inspace, outspace, vol_divide=False): iv = 0 if(vol_divide): vol = self.vol else: vol = 1.0 pxq = np.array([p[1]*q[2]-p[2]*q[1], p[2]*q[0]-p[0]*q[2], p[0]*q[1]-p[1]*q[0]]) if(inspace == 'd'): ''' cross product vector is in reciprocal space and can be converted to direct or cartesian space ''' pxq *= vol if(outspace == 'r'): pass elif(outspace == 'd'): pxq = self.TransSpace(pxq, 'r', 'd') elif(outspace == 'c'): pxq = self.TransSpace(pxq, 'r', 'c') else: raise ValueError( 'inspace is ''d'' but outspace is unidentified') elif(inspace == 'r'): ''' cross product vector is in direct space and can be converted to any other space ''' pxq /= vol if(outspace == 'r'): pxq = self.TransSpace(pxq, 'd', 'r') elif(outspace == 'd'): pass elif(outspace == 'c'): pxq = self.TransSpace(pxq, 'd', 'c') else: raise ValueError( 'inspace is ''r'' but outspace is unidentified') elif(inspace == 'c'): ''' cross product is already in cartesian space so no volume factor is involved. can be converted to any other space too ''' if(outspace == 'r'): pxq = self.TransSpace(pxq, 'c', 'r') elif(outspace == 'd'): pxq = self.TransSpace(pxq, 'c', 'd') elif(outspace == 'c'): pass else: raise ValueError( 'inspace is ''c'' but outspace is unidentified') else: raise ValueError('inspace is unidentified') return pxq def GenerateRecipPGSym(self): self.SYM_PG_r = self.SYM_PG_d[0, :, :] self.SYM_PG_r = np.broadcast_to(self.SYM_PG_r, [1, 3, 3]) self.SYM_PG_r_laue = self.SYM_PG_d[0, :, :] self.SYM_PG_r_laue = np.broadcast_to(self.SYM_PG_r_laue, [1, 3, 3]) for i in range(1, self.npgsym): g = self.SYM_PG_d[i, :, :] g = np.dot(self.dmt, np.dot(g, self.rmt)) g = np.round(
np.broadcast_to(g, [1, 3, 3])
numpy.broadcast_to
#! /usr/bin/env python3 # -*- coding: utf-8 -*- """ Implements naive Q learning with tabular Q function """ import logging import numpy as np from collections import defaultdict from collections import namedtuple from rainman2.utils import exceptions from rainman2.lib.algorithm.Qlearning.agents import agent_template __author__ = '<NAME> (<EMAIL>)' __date__ = 'Wednesday, February 21st 2018, 12:42:05 pm' CELLULAR_AGENT_ACTION = namedtuple( 'CELLULAR_AGENT_ACTION', ('action', 'ap_id')) class QNaiveAgent(agent_template.Base): def __init__(self, alg_config, agent_config): # Make sure actions are provided by the environment assert self.n_actions # setup logging self.logger = logging.getLogger(self.__class__.__name__) # log params self.logger.info("Configuration used for the Agent:") self.logger.info("episodes: {}".format(self.episodes)) self.logger.info("alpha: {}".format(self.alpha)) self.logger.info("gamma: {}".format(self.gamma)) self.logger.info("epsilon: {}".format(self.epsilon)) self.logger.info("epsilon_decay: {}".format(self.epsilon_decay)) self.logger.info("epsilon_min: {}".format(self.epsilon_min)) # Build tabular Q(s, a) model self.model = self._build_model() def _build_model(self): """ Implements Q(s, a) """ # Initialize Q(s, a) arbitrarily. Here every state is initialized # to 0 return defaultdict(lambda: np.zeros(self.n_actions)) def _take_action(self, state): """ Implements how to take actions when provided with a state This follows epsilon-greedy policy (behavior policy) Args ---- state: (tuple) Returns ------- action: (float) """ # explore if random number between [0, 1] is less than epsilon, # that is this agent exlores 10% of the time and rest exploits if np.random.rand() < self.epsilon: return np.random.choice(list(range(self.n_actions))) return np.argmax(self.model[state]) def _learn(self, state, action, reward, next_state): """ Implements how the agent learns Args ---- state: (tuple) Current state of the environment. action: (float) Current action taken by the agent. reward: (float): Reward produced by the environment. next_state: (tuple) Next state of the environment. """ # update epsilon to reduce exploration with increase in episodes if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay target = reward + self.gamma * max(self.model[next_state]) error = target - self.model[state][action] # update self.model[state][action] += self.alpha * error @property def Q(self): """ Public method that keeps Q(s, a) values """ if not self.model: raise exceptions.AgentMethodNotImplemented( "_model is not implemented for this agent!") return self.model class QCellularAgent(agent_template.Base): def __init__(self, alg_config, agent_config): # Make sure actions are provided by the environment assert self.n_actions # setup logging self.logger = logging.getLogger(self.__class__.__name__) # log params self.logger.info("Configuration used for the QCellular Agent:") self.logger.info("episodes: {}".format(self.episodes)) self.logger.info("alpha: {}".format(self.alpha)) self.logger.info("gamma: {}".format(self.gamma)) self.logger.info("epsilon: {}".format(self.epsilon)) self.logger.info("epsilon_decay: {}".format(self.epsilon_decay)) self.logger.info("epsilon_min: {}".format(self.epsilon_min)) # Build tabular Q(s, a) model self.model = self._build_model() self.ap_model = self._build_ap_model() def _build_model(self): """ Implements Q(s, a) """ # Initialize Q(s, a) arbitrarily. Here every state is initialized # to 0 return defaultdict(lambda:
np.zeros(self.n_actions)
numpy.zeros
# Copyright 2020-present NAVER Corp. Under BSD 3-clause license from typing import Optional import numpy as np import quaternion import math import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture def get_position_diff(imgs_query, imgs_map): positions_query = np.empty((len(imgs_query), 3, 1), dtype=np.float32) for i, (_, pose) in enumerate(imgs_query): positions_query[i, :, 0] = pose.t_raw positions_query_tile = np.tile(positions_query, (1, 1, len(imgs_map))) positions_map = np.empty((1, 3, len(imgs_map)), dtype=np.float32) for i, (_, pose) in enumerate(imgs_map): positions_map[0, :, i] = pose.t_raw positions_map_tile = np.tile(positions_map, (len(imgs_query), 1, 1)) return np.sqrt(np.sum(np.square(positions_query_tile - positions_map_tile), axis=1)) def get_rotations_diff(imgs_query, imgs_map): rad_to_deg = 180.0 / math.pi rotations_query = np.empty((len(imgs_query), 1), dtype=np.quaternion) for i, (_, pose) in enumerate(imgs_query): rotations_query[i, 0] = pose.r rotations_query_tile = np.tile(rotations_query, (1, len(imgs_map))) rotations_map = np.empty((1, len(imgs_map)), dtype=np.quaternion) for i, (_, pose) in enumerate(imgs_map): rotations_map[0, i] = pose.r rotations_map_tile = np.tile(rotations_map, (len(imgs_query), 1)) return quaternion.rotation_intrinsic_distance(rotations_query_tile, rotations_map_tile) * rad_to_deg def get_pairs_distance(kdata: kapture.Kapture, kdata_query: kapture.Kapture, topk: Optional[int], min_distance: float, max_distance: float, max_angle: float, keep_rejected: bool): """ get pairs as list from distance """ if kdata.rigs is None: map_trajectories = kdata.trajectories else: map_trajectories = kapture.rigs_remove(kdata.trajectories, kdata.rigs) imgs_map = [(img, map_trajectories[ts, sensor_id].inverse()) for ts, sensor_id, img in kapture.flatten(kdata.records_camera) if (ts, sensor_id) in map_trajectories] if kdata_query.rigs is None: query_trajectories = kdata_query.trajectories else: query_trajectories = kapture.rigs_remove(kdata_query.trajectories, kdata_query.rigs) imgs_query = [(img, query_trajectories[ts, sensor_id].inverse()) for ts, sensor_id, img in kapture.flatten(kdata_query.records_camera) if (ts, sensor_id) in query_trajectories] positions_scores = get_position_diff(imgs_query, imgs_map) rotation_scores = get_rotations_diff(imgs_query, imgs_map) # is_rejected = (distance < min_distance or distance > max_distance or rotation_distance > max_angle) ones =
np.ones(positions_scores.shape)
numpy.ones
import numpy as np def calculate_variance(prediction_probs): mean_for_every_classifier = [] variance_for_every_classifier=[] for collumn in range(len(prediction_probs[1])):#collumns mean_for_this_classifier=0.0 for row in range(len(prediction_probs)):#rows mean_for_this_classifier=mean_for_this_classifier+prediction_probs[row][collumn] mean_for_this_classifier=mean_for_this_classifier/len(prediction_probs) mean_for_every_classifier.append(mean_for_this_classifier) #print(mean_for_every_classifier) preds_sub_mean=np.subtract(prediction_probs, mean_for_every_classifier) #print(preds_sub_mean) preds_sub_mean_squared=np.square(preds_sub_mean) #print(preds_sub_mean_squared) for collumn in range(len(prediction_probs[1])): variance = 0 for row in range(len(prediction_probs)): variance=variance+preds_sub_mean_squared[row][collumn] variance=variance/len(prediction_probs) variance_for_every_classifier.append(variance) #print(variance_for_every_classifier) return variance_for_every_classifier def calculate_deviation(variance_for_every_classifier): deviation_for_every_classifier=
np.sqrt(variance_for_every_classifier)
numpy.sqrt
# xyz Dec 2017 from __future__ import print_function import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) #from plyfile import (PlyData, PlyElement, make2d, PlyParseError, PlyProperty) import numpy as np import h5py import glob import time import multiprocessing as mp import itertools from block_data_prep_util import Normed_H5f ROOT_DIR = os.path.dirname(BASE_DIR) DATA_DIR = os.path.join(ROOT_DIR,'data') DATASET_DIR={} DATASET_DIR['scannet'] = os.path.join(DATA_DIR,'scannet_data') DATASET_DIR['stanford_indoor3d'] = os.path.join(DATA_DIR,'stanford_indoor3d') matterport3D_h5f_dir = os.path.join(DATA_DIR,'Matterport3D_H5F/all_merged_nf5') DATASET_DIR['matterport3d'] = matterport3D_h5f_dir #------------------------------------------------------------------------------- # provider for training and testing #------------------------------------------------------------------------------ class Net_Provider(): ''' (1) provide data for training (2) load file list to list of Norm_H5f[] dataset_name: 'stanford_indoor3d' 'scannet' all_filename_glob: stride_1_step_2_test_small_4096_normed/*.nh5 eval_fnglob_or_rate: file name str glob or file number rate. 'scan1*.nh5' 0.2 num_point_block: if the block point number is not this, do randomly sample feed_data_elements: sub list of ['xyz_1norm','xyz_midnorm','nxnynz','color_1norm','intensity_1norm'] feed_label_elements: sub list of ['label_category','label_instance','label_material'] ''' # input normalized h5f files # normed_h5f['data']: [blocks*block_num_point*num_channel],like [1000*4096*9] # one batch would contain sevel(batch_size) blocks,this will be set out side # provider with train_start_idx and test_start_idx def __init__(self,dataset_name,all_filename_glob,eval_fnglob_or_rate,\ only_evaluate,num_point_block=None,feed_data_elements=['xyz_midnorm'],feed_label_elements=['label_category'],\ train_num_block_rate=1,eval_num_block_rate=1 ): self.dataset_name = dataset_name self.feed_data_elements = feed_data_elements self.feed_label_elements = feed_label_elements self.num_point_block = num_point_block all_file_list = self.get_all_file_name_list(dataset_name,all_filename_glob) train_file_list,eval_file_list = self.split_train_eval_file_list\ (all_file_list,eval_fnglob_or_rate) if only_evaluate: open_type = 'a' # need to write pred labels else: open_type = 'r' self.train_file_N = train_file_N = len(train_file_list) eval_file_N = len(eval_file_list) self.g_file_N = train_file_N + eval_file_N self.normed_h5f_file_list = normed_h5f_file_list = train_file_list + eval_file_list #----------------------------------------------------------------------- # open each file as a Normed_H5f class instance self.norm_h5f_L = [] # self.g_block_idxs: within the whole train/test dataset (several files) # record the start/end row idx of each file to help search data from all files # [ [start_global_row_idxs,end_global__idxs] ] # [[ 0, 38], [ 38, 90],[ 90, 150],...[259, 303],[303, 361],[361, 387]] # self.train_num_blocks: 303 # self.eval_num_blocks: 84 # self.eval_global_start_idx: 303 self.g_block_idxs = np.zeros((self.g_file_N,2),np.int32) self.eval_global_start_idx = None for i,fn in enumerate(normed_h5f_file_list): assert(os.path.exists(fn)) h5f = h5py.File(fn,open_type) norm_h5f = Normed_H5f(h5f,fn) self.norm_h5f_L.append( norm_h5f ) self.g_block_idxs[i,1] = self.g_block_idxs[i,0] + norm_h5f.data_set.shape[0] if i<self.g_file_N-1: self.g_block_idxs[i+1,0] = self.g_block_idxs[i,1] self.eval_global_start_idx = self.g_block_idxs[train_file_N,0] if train_file_N > 0: self.train_num_blocks = self.g_block_idxs[train_file_N-1,1] # = self.eval_global_start_idx else: self.train_num_blocks = 0 self.eval_num_blocks = self.g_block_idxs[-1,1] - self.train_num_blocks self.num_classes = self.norm_h5f_L[0].num_classes self.label_ele_idxs = self.norm_h5f_L[0].label_ele_idxs self.label_eles = self.norm_h5f_L[0].label_set_elements self.update_sample_loss_weight() self.update_train_eval_shuffled_idx() #----------------------------------------------------------------------- # use only part of the data to test code: if train_num_block_rate!=1 or eval_num_block_rate!=1: self.get_data_label_shape() print('whole train data shape: %s'%(str(self.train_data_shape))) print('whole eval data shape: %s'%(str(self.eval_data_shape))) # train: use the front part self.train_num_blocks = int( self.train_num_blocks * train_num_block_rate ) if not only_evaluate: self.train_num_blocks = max(self.train_num_blocks,2) new_eval_num_blocks = int( max(2,self.eval_num_blocks * eval_num_block_rate) ) # eval:use the back part, so train_file_list and eval_file_list can be # the same self.eval_global_start_idx += self.eval_num_blocks - new_eval_num_blocks self.eval_num_blocks = new_eval_num_blocks self.get_data_label_shape() self.update_data_summary() #self.test_tmp() def update_data_summary(self): self.data_summary_str = '%s \nfeed_data_elements:%s \nfeed_label_elements:%s \n'%(self.dataset_name,self.feed_data_elements,self.feed_label_elements) self.data_summary_str += 'train data shape: %s \ntest data shape: %s \n'%( str(self.train_data_shape),str(self.eval_data_shape)) # self.data_summary_str += 'train labels histogram: %s \n'%( np.array_str(np.transpose(self.train_labels_hist_1norm) )) # self.data_summary_str += 'test labels histogram: %s \n'%( np.array_str(np.transpose(self.test_labels_hist_1norm) )) self.data_summary_str += 'labels histogram: %s \n'%( np.array_str(np.transpose(self.labels_hist_1norm[:,0]) )) #print(self.data_summary_str) def get_all_file_name_list(self,dataset_name,all_filename_globs): all_file_list = [] fn_globs = [] for all_filename_glob in all_filename_globs: fn_glob = os.path.join(DATASET_DIR[dataset_name],all_filename_glob+'*.nh5') all_file_list += glob.glob( fn_glob ) fn_globs.append(fn_glob) if len(all_file_list)== 0: print('no file in:') print(fn_globs) return all_file_list def split_train_eval_file_list(self,all_file_list,eval_fnglob_or_rate=None): if eval_fnglob_or_rate == None: if self.dataset_name=='stanford_indoor3d': eval_fnglob_or_rate = 'Area_6' if self.dataset_name=='scannet': eval_fnglob_or_rate = 0.2 if type(eval_fnglob_or_rate)==str: # split by name train_file_list = [] eval_file_list = [] for fn in all_file_list: if fn.find(eval_fnglob_or_rate) > 0: eval_file_list.append(fn) else: train_file_list.append(fn) elif type(eval_fnglob_or_rate) == float: # split by number n = len(all_file_list) m = int(n*(1-eval_fnglob_or_rate)) train_file_list = all_file_list[0:m] eval_file_list = all_file_list[m:n] log_str = '\ntrain file list (n=%d) = \n%s\n\n'%(len(train_file_list),train_file_list[-2:]) log_str += 'eval file list (n=%d) = \n%s\n\n'%(len(eval_file_list),eval_file_list[-2:]) print( log_str ) return train_file_list,eval_file_list def get_data_label_shape(self): data_batches,label_batches,_ = self.get_train_batch(0,1) self.train_data_shape = list(data_batches.shape) self.train_data_shape[0] = self.train_num_blocks self.num_channels = self.train_data_shape[2] self.eval_data_shape = list(data_batches.shape) self.eval_data_shape[0] = self.eval_num_blocks self.num_label_eles = label_batches.shape[2] def test_tmp(self): s = 0 e = 1 train_data,train_label = self.get_train_batch(s,e) eval_data,eval_label = self.get_eval_batch(s,e) print('train:\n',train_data[0,0,:]) print('eval:\n',eval_data[0,0,:]) print('err=\n',train_data[0,0,:]-eval_data[0,0,:]) def __exit__(self): print('exit Net_Provider') for norm_h5f in self.norm_h5f: norm_h5f.h5f.close() def global_idx_to_local(self,g_start_idx,g_end_idx): assert(g_start_idx>=0 and g_start_idx<=self.g_block_idxs[-1,1]) assert(g_end_idx>=0 and g_end_idx<=self.g_block_idxs[-1,1]) for i in range(self.g_file_N): if g_start_idx >= self.g_block_idxs[i,0] and g_start_idx < self.g_block_idxs[i,1]: start_file_idx = i local_start_idx = g_start_idx - self.g_block_idxs[i,0] for j in range(i,self.g_file_N): if g_end_idx > self.g_block_idxs[j,0] and g_end_idx <= self.g_block_idxs[j,1]: end_file_idx = j local_end_idx = g_end_idx - self.g_block_idxs[j,0] return start_file_idx,end_file_idx,local_start_idx,local_end_idx def set_pred_label_batch(self,pred_label,g_start_idx,g_end_idx): start_file_idx,end_file_idx,local_start_idx,local_end_idx = \ self.global_idx_to_local(g_start_idx,g_end_idx) pred_start_idx = 0 for f_idx in range(start_file_idx,end_file_idx+1): if f_idx == start_file_idx: start = local_start_idx else: start = 0 if f_idx == end_file_idx: end = local_end_idx else: end = self.norm_h5f_L[f_idx].label_set.shape[0] n = end-start self.norm_h5f_L[f_idx].set_dset_value('pred_label',\ pred_label[pred_start_idx:pred_start_idx+n,:],start,end) pred_start_idx += n self.norm_h5f_L[f_idx].h5f.flush() def get_global_batch(self,g_start_idx,g_end_idx): start_file_idx,end_file_idx,local_start_idx,local_end_idx = \ self.global_idx_to_local(g_start_idx,g_end_idx) #t0 = time.time() data_ls = [] label_ls = [] center_mask = [] for f_idx in range(start_file_idx,end_file_idx+1): if f_idx == start_file_idx: start = local_start_idx else: start = 0 if f_idx == end_file_idx: end = local_end_idx else: end = self.norm_h5f_L[f_idx].labels_set.shape[0] data_i,feed_data_elements_idxs = self.norm_h5f_L[f_idx].get_normed_data(start,end,self.feed_data_elements) label_i = self.norm_h5f_L[f_idx].get_label_eles(start,end,self.feed_label_elements) data_ls.append(data_i) label_ls.append(label_i) if 'xyz_midnorm' in self.feed_data_elements: xyz_midnorm_i = data_i[:,:,feed_data_elements_idxs['xyz_midnorm']] else: xyz_midnorm_i,_ = self.norm_h5f_L[f_idx].get_normed_data(start,end,['xyz_midnorm']) center_mask_i = self.get_center_mask(xyz_midnorm_i) center_mask.append(center_mask_i) data_batches = np.concatenate(data_ls,0) label_batches = np.concatenate(label_ls,0) center_mask = np.concatenate(center_mask,0) data_batches,label_batches = self.sample(data_batches,label_batches,self.num_point_block) num_label_eles = self.labels_weights.shape[1] center_mask = np.expand_dims(center_mask,axis=-1) center_mask = np.tile(center_mask,(1,1,num_label_eles)) sample_weights = [] for k in range(num_label_eles): sample_weights_k = np.take(self.labels_weights[:,k],label_batches[:,:,k]) sample_weights.append(
np.expand_dims(sample_weights_k,axis=-1)
numpy.expand_dims
""" (c) RIKEN 2015. All rights reserved. Author: <NAME> This software is released under the new BSD License; see LICENSE. """ import numpy vectors_angle = lambda x, y: abs(numpy.arccos(numpy.dot(x,y)/numpy.linalg.norm(x)/numpy.linalg.norm(y))) def kabsch_superpose(P, Q): # P,Q: vstack'ed matrix """ Usage: P = numpy.vstack([a2, b2, c2]) Q = numpy.vstack([a1, b1, c1]) m = kabsch_superpose(P, Q) newP = numpy.dot(m, P) """ A = numpy.dot(numpy.transpose(P), Q) U, s, V =
numpy.linalg.svd(A)
numpy.linalg.svd
import mne import pickle import numpy as np from sta import sta_matrix, sdtw_matrix from sklearn.manifold import TSNE # change this if you have GPUs # in our platform, this experiment ran on 4 GPUs in around 20 minutes n_gpu_devices = 0 def generate_samples(n_samples, n_times, time_point, space_points, M, smoothing_time=1., smoothing_space=0.01, seed=None): """Simulate brain signals at a time_point and in a random vertex among `space_points`.""" rng = np.random.RandomState(seed) n_features = len(M) time_points = (np.ones(n_samples) * time_point).astype(int) space_points = rng.choice(space_points, size=n_samples) signals = np.zeros((n_samples, n_times, n_features)).astype(float) values = rng.rand(n_samples) * 2 + 1 signals[
np.arange(n_samples)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Wed Jun 24 22:54:15 2015 @author: sansomk """ import numpy as np #import matplotlib.pyplot as plt #from mpl_toolkits.mplot3d import Axes3D #import scipy.special as special #jn, jn_zeros #from matplotlib import cm import os #from scipy import interpolate import glob import re from pydicom import dicomio #from matplotlib.widgets import Slider, Button, RadioButtons import fnmatch import pickle import hashlib def build_dcm_dict(dcmpath, fn_dict, image_dict_pkl="image_dict.pkl"): slice_location = [] trigger_time = [] image_dict = {} hash_value = hashlib.sha1(dcmpath).hexdigest() #count = 0 for dirname, subdirlist, filelist in os.walk(dcmpath): for filen in filelist: filePath = os.path.join(dirname,filen) #print(filePath) #print(dirname, subdirlist, filelist) #print(filePath) #print(f.SliceLocation) try: f = dicomio.read_file(filePath, stop_before_pixels=True) except Exception as e: print(str(e)) print("error: {0}".format(filen)) continue #dictionary of images if (f.TriggerTime not in image_dict.keys()): image_dict[f.TriggerTime] = {} if (f.SliceLocation not in image_dict[f.TriggerTime].keys()): image_dict[f.TriggerTime][f.SliceLocation] = {} for fn_key in fn_dict.keys(): if( fn_key not in image_dict[f.TriggerTime][f.SliceLocation].keys()): image_dict[f.TriggerTime][f.SliceLocation][fn_key] = {} #print(fn_key, filen, fn_dict[fn_key]) if (fnmatch.fnmatch(filen, fn_dict[fn_key])): #print('did i get here') if (f.SOPInstanceUID not in image_dict[f.TriggerTime][f.SliceLocation][fn_key].keys()): image_dict[f.TriggerTime][f.SliceLocation][fn_key][f.SOPInstanceUID] = [filePath] #print(image_dict[fn_key]) if (f.TriggerTime not in trigger_time): trigger_time.append(f.TriggerTime) if (f.SliceLocation not in slice_location): slice_location.append(f.SliceLocation) print("writing {0} to current working directory".format(image_dict_pkl)) with open(os.path.join(os.getcwd(), image_dict_pkl), "wb") as pkl_f: pickle.dump(hash_value, pkl_f, -1) pickle.dump(image_dict, pkl_f, -1) return image_dict def load_dcm_dict(dcmpath, fn_dict, image_dict_pkl="image_dict.pkl"): try: with open(os.path.join(os.getcwd(), image_dict_pkl), "rb") as pkl_f: hash_value = pickle.load(pkl_f) image_dict = pickle.load(pkl_f) if (hash_value != hashlib.sha1(dcmpath).hexdigest()): raise Exception("pickle file doesn't match, rebuilding") except Exception as e: print(str(e)) print("no image dictionary pickle file, building one") # create the dictionary #dcm_files = [] #count = 0 #dict_test = {} # tags # TriggerTime = time of the image # SliceLocation = spatial location of slice. # SliceThickness = the thickness of the image # need to figure our how to convert images to axial ones image_dict = build_dcm_dict(dcmpath, fn_dict, image_dict_pkl="image_dict.pkl") else: print('Read the pickle file from the current directory') trigger_time = image_dict.keys() slice_location = image_dict[trigger_time[0]].keys() return image_dict, sorted(slice_location), sorted(trigger_time) def create_image_volume(image_dict, mri_2_cfd_map, image_type, return_coord=True): trigger_t = mri_2_cfd_map[0] slice_location = image_dict[trigger_t].keys() dcm_files = [] for loc in slice_location: for image_id in image_dict[trigger_t][loc][image_type].keys(): dcm_files.append(image_dict[trigger_t][loc][image_type][image_id][0]) path_loc = zip(dcm_files, slice_location) path_loc.sort(key=lambda x: x[1]) dcm_files, slice_location = zip(*path_loc) #print(slice_location) # get reference image #print(len(dcm_files), dcm_files) ref_image = dicomio.read_file(dcm_files[0]) # load dimensions based on the number of rows columns and slices const_pixel_dims = (int(ref_image.Rows), int(ref_image.Columns), len(dcm_files)) #check it whether image has been interpolated if (hasattr(ref_image, 'SpacingBetweenSlices')): if(ref_image.SpacingBetweenSlices < ref_image.SliceThickness): z_spacing = float(ref_image.SpacingBetweenSlices) else: z_spacing = float(ref_image.SliceThickness) else: z_spacing = float(ref_image.SliceThickness) # the array is sized based on 'const_pixel_dims array_dicom = np.zeros(const_pixel_dims, dtype=np.float64) #ref_image.pixel_array.dtype) print(array_dicom.shape) #loop through all the DICOM FILES for filenamedcm in dcm_files: #read the file ds = dicomio.read_file(filenamedcm) #store the raw image data array_dicom[:, :, dcm_files.index(filenamedcm)] = ( np.asarray(ds.pixel_array, dtype=np.float64) * ( np.float64(ds.RescaleSlope)) +
np.float64(ds.RescaleIntercept)
numpy.float64
# HaloFeedback import time import warnings from abc import ABC, abstractmethod from time import time as timeit import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes from scipy.integrate import quad, simps from scipy.interpolate import interp1d from scipy.special import ellipeinc, ellipkinc, ellipe, ellipk from scipy.special import gamma as Gamma from scipy.special import beta as Beta # ------------------ G_N = 4.3021937e-3 # (km/s)^2 pc/M_sun c = 2.9979e5 # km/s # Conversion factors pc_to_km = 3.085677581e13 # Numerical parameters N_GRID = 10000 # Number of grid points in the specific energy #N_GRID = 2000 N_KICK = 50 # Number of points to use for integration over Delta-epsilon float_2eps = 2.0 * np.finfo(float).eps # ------------------ # Alternative elliptic function which is valid for m > 1 def ellipeinc_alt(phi, m): beta = np.arcsin(np.clip(np.sqrt(m) * np.sin(phi), 0, 1)) return np.sqrt(m) * ellipeinc(beta, 1 / m) + ((1 - m) / np.sqrt(m)) * ellipkinc( beta, 1 / m ) class DistributionFunction(ABC): """ Base class for phase space distribution of a DM spike surrounding a black hole with an orbiting body. Child classes must implement the following: Methods - rho_init(): initial density function - f_init() initial phase-space distribution function Attributes - r_sp: DM halo extent [pc]. Used for making grids for the calculation. - IDstr_model: ID string used for file names. """ def __init__(self, M_BH=1e3, M_NS=1.0, Lambda=-1): self.M_BH = M_BH # Solar mass self.M_NS = M_NS # Solar mass if Lambda <= 0: self.Lambda = np.sqrt(M_BH / M_NS) else: self.Lambda = Lambda self.r_isco = 6.0 * G_N * M_BH / c ** 2 # Initialise grid of r, eps and f(eps) self.r_grid = np.geomspace(self.r_isco, 1e5 * self.r_isco, N_GRID - 1000) self.r_grid = np.append( self.r_grid, np.geomspace(1.01 * self.r_grid[-1], 1e3 * self.r_sp, 1000) ) self.eps_grid = self.psi(self.r_grid) self.f_eps = self.f_init(self.eps_grid) # Density of states self.DoS = ( np.sqrt(2) * (np.pi * G_N * self.M_BH) ** 3 * self.eps_grid ** (-5 / 2.0) ) # Define a string which specifies the model parameters # and numerical parameters (for use in file names etc.) self.IDstr_num = "lnLambda=%.1f" % (
np.log(self.Lambda)
numpy.log
# coding: utf-8 """ Tests for infer_potential.py """ from __future__ import division, print_function __author__ = "adrn <<EMAIL>>" # Standard library import os, sys import logging import shutil import time # Third-party import astropy.units as u from astropy.utils import isiterable import h5py import matplotlib import matplotlib.pyplot as plt import numpy as np import triangle # Project from streams.coordinates.frame import galactocentric, heliocentric import streams.io as io import streams.inference as si from streams.inference.back_integrate import back_integration_likelihood import streams.potential as sp from streams.util import project_root matplotlib.rc('lines', marker=None, linestyle='-') # Create logger logger = logging.getLogger(__name__) logging.basicConfig(level=logging.DEBUG) minimum_config = """ name: test data_file: data/observed_particles/2.5e8.hdf5 nparticles: 4 particle_idx: [3, 3667, 710, 1576] potential: class_name: LawMajewski2010 {potential_params} particles: {particles_params} satellite: {satellite_params} """ pot_params = """ parameters: [q1, qz, phi, v_halo] """ ptc_params = """ parameters: [d] """ # parameters: [d, mul, mub, vr] sat_params = """ parameters: [alpha] """ # parameters: [logmass, logmdot, d, mul, mub, vr] # _config = minimum_config.format(potential_params=pot_params, # particles_params=ptc_params, # satellite_params=sat_params) _config = minimum_config.format(potential_params=pot_params, particles_params="", satellite_params=sat_params) # particles_params=ptc_params, # satellite_params=sat_params Ncoarse = 21 Nfine = 71 output_path = os.path.join(project_root, 'plots', 'tests', 'infer_potential') if not os.path.exists(output_path): os.mkdir(output_path) def make_plot(model, idx, vals1, vals2): fig,axes = plt.subplots(2,2,figsize=(12,12),sharex='col') p = model.truths.copy() Ls = [] for val in vals1: p[idx] = val Ls.append(model(p)) axes[0,0].plot(vals1, Ls) axes[0,0].set_ylabel("$\ln\mathcal{L}$") axes[1,0].plot(vals1, np.exp(Ls-np.max(Ls))) axes[1,0].set_ylabel("$\mathcal{L}$") p = model.truths.copy() Ls = [] for val in vals2: p[idx] = val Ls.append(model(p)) #logger.debug("{} vs truth {}".format(vals[np.argmax(Ls)], truth)) #logger.debug("{:.2f}% off".format(abs(vals[np.argmax(Ls)] - truth)/truth*100.)) axes[0,1].set_title("zoomed") axes[0,1].plot(vals2, Ls) axes[1,1].plot(vals2, np.exp(Ls-np.max(Ls))) for ax in axes.flat: ax.axvline(model.truths[idx]) return fig class TestStreamModel(object): def setup(self): config = io.read_config(_config) self.model = si.StreamModel.from_config(config) self.model.sample_priors() def test_simple(self): # make sure true posterior value is higher than any randomly sampled value logger.debug("Checking posterior values...") true_ln_p = self.model.ln_posterior(self.model.truths, *self.model.lnpargs) true_ln_p2 = self.model(self.model.truths) logger.debug("\t\t At truth: {}".format(true_ln_p)) p0 = self.model.sample_priors() ln_p = self.model.ln_posterior(p0, *self.model.lnpargs) ln_p2 = self.model(p0) logger.debug("\t\t At random sample: {}".format(ln_p)) assert true_ln_p > ln_p assert true_ln_p == true_ln_p2 assert ln_p == ln_p2 def test_model(self): """ Simple test of posterior """ model = self.model test_path = os.path.join(output_path, "model") if not os.path.exists(test_path): os.mkdir(test_path) truth_dict = model._decompose_vector(model.truths) model.sample_priors() idx = 0 for group_name,group in truth_dict.items(): for param_name,truths in group.items(): print(group_name, param_name) param = model.parameters[group_name][param_name] if group_name == "potential": vals1 = np.linspace(param._prior.a, param._prior.b, Ncoarse) vals2 = np.linspace(0.9,1.1,Nfine)*truths fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 if group_name == "particles": if param_name in heliocentric.coord_names: for jj in range(param.value.shape[0]): prior = model._prior_cache[("particles",param_name)] truth = truths[jj] mu,sigma = truth,prior.sigma[jj] vals1 = np.linspace(mu-10*sigma, mu+10*sigma, Ncoarse) vals2 = np.linspace(mu-3*sigma, mu+3*sigma, Nfine) fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "ptcl{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 elif param_name == 'p_shocked': for jj in range(param.value.shape[0]): vals1 = np.linspace(param._prior.a[jj], param._prior.b[jj], Ncoarse) vals2 = np.linspace(param._prior.a[jj], param._prior.b[jj], Nfine) fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "ptcl{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 elif param_name == 'beta': for jj in range(param.value.shape[0]): vals1 = np.linspace(param._prior.a[jj], param._prior.b[jj], Ncoarse) vals2 = np.linspace(param._prior.a[jj], param._prior.b[jj], Nfine) fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "ptcl{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 elif param_name == 'tub': for jj in range(param.value.shape[0]): vals1 = np.linspace(param._prior.a[jj], param._prior.b[jj], Ncoarse) vals2 = np.linspace(0.9,1.1,Nfine)*truths[jj] fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "ptcl{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 if group_name == "satellite": if param_name in heliocentric.coord_names: for jj in range(param.value.shape[0]): prior = model._prior_cache[("satellite",param_name)] truth = truths mu,sigma = truth,prior.sigma vals1 = np.linspace(mu-10*sigma, mu+10*sigma, Ncoarse) vals2 = np.linspace(mu-3*sigma, mu+3*sigma, Nfine) fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "sat{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 elif param_name == "logmass": vals1 = np.linspace(param._prior.a, param._prior.b, Ncoarse) vals2 = np.linspace(0.9,1.1,Nfine)*truths fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "sat{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 elif param_name == "logmdot": vals1 = np.linspace(param._prior.a, param._prior.b, Ncoarse) vals2 = np.linspace(0.9,1.1,Nfine)*truths fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "sat{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 elif param_name == "alpha": vals1 = np.linspace(0.5, 3.5, Ncoarse) vals2 = np.linspace(0.9, 1.1, Nfine)*truths fig = make_plot(model, idx, vals1, vals2) fig.savefig(os.path.join(test_path, "sat{}_{}.png".format(idx,param_name))) plt.close('all') idx += 1 def test_sample_priors(self): test_path = os.path.join(output_path, "model", "priors") if not os.path.exists(test_path): os.mkdir(test_path) p = self.model.sample_priors(size=100).T #ptruths = self.model.start_truths(size=100).T ptruths = self.model.sample_priors(size=100, start_truth=True).T plt.figure(figsize=(5,5)) for ii,(vals,truevals) in enumerate(zip(p,ptruths)): n,bins,pat = plt.hist(vals, bins=25, alpha=0.5) plt.hist(truevals, bins=25, alpha=0.5) plt.savefig(os.path.join(test_path, "{}.png".format(ii))) plt.clf() return def test_per_particle(self): _c = minimum_config.format(potential_params=pot_params, particles_params="", satellite_params=sat_params) config = io.read_config(_c) model = si.StreamModel.from_config(config) model.sample_priors() test_path = os.path.join(output_path, "model") if not os.path.exists(test_path): os.mkdir(test_path) # likelihood args t1, t2, dt = model.lnpargs p_gc = model.true_particles.to_frame(galactocentric)._X s_gc = model.true_satellite.to_frame(galactocentric)._X logmass = model.satellite.logmass.truth logmdot = model.satellite.logmdot.truth #true_alpha = model.satellite.alpha.truth true_alpha = 1.4 beta = model.particles.beta.truth tub = model.particles.tub.truth truth_dict = model._decompose_vector(model.truths) group = truth_dict['potential'] for param_name,truths in group.items(): print(param_name) param = model.parameters['potential'][param_name] vals =
np.linspace(0.9,1.1,Nfine)
numpy.linspace
# -*- coding: utf-8 -*- """ Created on Thu Mar 4 10:27:55 2021 @author: Raj """ import numpy as np from .mechanical_drive import MechanicalDrive from .utils.load import params_from_experiment as load_parm from .utils.load import simulation_configuration as load_sim_config from ffta.pixel_utils.load import configuration from scipy.interpolate import InterpolatedUnivariateSpline as ius from scipy.signal import medfilt from matplotlib import pyplot as plt import pandas as pd def cal_curve(can_path, param_cfg, taus_range=[], plot=True, **kwargs): ''' Generates a calibration curve for a given cantilever given some particular parameters. Ideally you would have a tip parameters file as well. Usage: ------ >>> param_cfg = 'path' >>> can_params = 'path' >>> taus, tfp, spl = cal_curve(param_cfg, can_params) >>> from matplotlib import pyplot as plt >>> plt.plot(tfp, taus, 'bX-') If you want to change the fit parameters per tau taus, tfp, spl = cal_curve(param_cfg, can_params, roi=0.001, n_taps=199) :param can_path: :type can_path: str :param params_cfg: Path to parameters.cfg file (from FFtrEFM experiment, in the data folder) :type params_cfg: string :param taus_range: taus_range to set a range for the simulations, taken as [low, high] :type taus_range: ndarray (2-index array), optional :param plot: Plots the last taus vs tfps for verification :type plot: bool, optional :param kwargs: :type kwargs: :returns: tuple (taus, tfps, spl) WHERE ndarray taus is the single exponential taus that were simulated ndarray tfps is the measured time to first peaks UnivariateSpline spl is spline object of the calibration curve. To scale an image, type spl(x) ''' if isinstance(can_path, str): can_params, force_params, sim_params, _, parms = load_parm(can_path, param_cfg) elif isinstance(can_path, tuple): can_params, force_params, sim_params = load_sim_config(can_path) _, parms = configuration(param_cfg) can_params['drive_freq'] = parms['drive_freq'] can_params['res_freq'] = parms['drive_freq'] sim_params['trigger'] = parms['trigger'] sim_params['total_time'] = parms['total_time'] sim_params['sampling_rate'] = parms['sampling_rate'] _rlo = -7 _rhi = -3 if len(taus_range) != 2 or (taus_range[1] <= taus_range[0]): raise ValueError('Range must be ascending and 2-items') else: _rlo = np.log10(taus_range[0]) _rhi = np.log10(taus_range[1]) # _rlo = np.floor(np.log10(taus_range[0])) # _rhi = np.ceil(np.log10(taus_range[1])) taus =
np.logspace(_rlo, _rhi, 50)
numpy.logspace
# SPDX-License-Identifier: Apache-2.0 """Rewrites operator einsum into simple ONNX operators. """ import math from itertools import permutations import numpy as np from onnx import helper, numpy_helper, TensorProto, AttributeProto from .. import utils from ..constants import OPSET_TO_IR_VERSION, PREFERRED_OPSET from .optimizer_base import GraphOptimizerBase class OnnxMicroRuntime: """ Implements a micro runtime for ONNX graphs. It does not implements all the operator types. This runtime is used to infer shape. `shape_inference` from `onnx` does not return all shapes when the onnx graph includes an operator *Reshape*. :param model_onnx: ONNX model """ def __init__(self, model_onnx): if not hasattr(model_onnx, 'graph'): raise TypeError( "model_onnx is not an ONNX graph but %r." % type(model_onnx)) self.model_onnx = model_onnx def run(self, inputs): """ Computes the outputs of the graph. :param inputs: dictionary :return: all intermediates results and output as a dictionary """ def _get_dtype(onnx_type): if onnx_type == 1: return np.float32 if onnx_type == 7: return np.int64 raise ValueError("Unable to guess dtype from ONNX type %r." % onnx_type) def _extract_numpy_array(v): return np.frombuffer(v.raw_data, dtype=_get_dtype(v.data_type)) if not isinstance(inputs, dict): raise TypeError( "inputs must be a dictionary not %r." % type(inputs)) results = inputs.copy() for init in self.model_onnx.graph.initializer: name = init.name mat = _extract_numpy_array(init) results[name] = mat for node in self.model_onnx.graph.node: op_type = node.op_type inp = [results[n] for n in node.input] meth_name = "_op_%s" % op_type.lower() if not hasattr(self, meth_name): raise NotImplementedError( "OnnxMicroRuntime does not implement operator %r." % op_type) kwargs = {} for at in node.attribute: kwargs[at.name] = at out = getattr(self, meth_name)(*inp, **kwargs) for n, o in zip(node.output, out): results[n] = o return results def _op_add(self, x, y): "Runtime for operator." return (x + y,) def _op_concat(self, *args, axis=None): "Runtime for operator." if axis is not None: axis = axis.i def _preprocess(a, axis): if axis >= len(a.shape): new_shape = a.shape + (1,) * (axis + 1 - len(a.shape)) return a.reshape(new_shape) return a targs = tuple(_preprocess(a, axis) for a in args) return (np.concatenate(targs, axis),) def _op_gemm(self, a, b, c=None, alpha=None, beta=None, # pylint: disable=C0103 transA=None, transB=None): # pylint: disable=C0103 "Runtime for operator." if alpha is not None: alpha = alpha.f if beta is not None: beta = beta.f if transA is None: transA = False else: transA = transA.i if transB is None: transB = False else: transB = transB.i def _gemm00(a, b, c, alpha, beta): o = np.dot(a, b) * alpha if beta != 0: o += c * beta return o def _gemm01(a, b, c, alpha, beta): o = np.dot(a, b.T) * alpha if beta != 0: o += c * beta return o def _gemm10(a, b, c, alpha, beta): o = np.dot(a.T, b) * alpha if beta != 0: o += c * beta return o def _gemm11(a, b, c, alpha, beta): o = np.dot(a.T, b.T) * alpha if beta != 0: o += c * beta return o if transA: fct = _gemm11 if transB else _gemm10 else: fct = _gemm01 if transB else _gemm00 return (fct(a, b, c, alpha=alpha, beta=beta),) def _op_gather(self, x, indices, axis=None): "Runtime for operator." if not x.flags['C_CONTIGUOUS']: x = np.ascontiguousarray(x) if not indices.flags['C_CONTIGUOUS']: indices = indices.ascontiguousarray() if axis is not None: axis = axis.i return (np.take(x, indices, axis=axis),) def _op_identity(self, x): "Runtime for operator." return (x,) def _op_matmul(self, x, y): "Runtime for operator." return (np.matmul(x, y),) def _op_max(self, *x): "Runtime for operator." return (np.maximum(*x),) #pylint: disable=E1120 def _op_mul(self, x, y): "Runtime for operator." return (x * y,) def _op_reduceprod(self, data, axes=None, keepdims=None): "Runtime for operator :epkg:`Op:ReduceProd`." if keepdims is not None: keepdims = keepdims.i if axes is not None and not isinstance(axes, int): if isinstance(axes, np.ndarray) and len(axes.shape) == 0: axes = int(axes) else: axes = tuple(axes) if len(axes) > 0 else None return (np.prod(data, axis=axes, keepdims=keepdims, dtype=data.dtype),) def _op_reducesum(self, data, axes, keepdims=None, noop_with_empty_axes=None): "Runtime for operator." if keepdims is not None: keepdims = keepdims.i if noop_with_empty_axes is not None: noop_with_empty_axes = noop_with_empty_axes.i if axes is None and self.noop_with_empty_axes is not None: return (data,) if axes is not None and not isinstance(axes, int): if isinstance(axes, np.ndarray) and len(axes.shape) == 0: axes = int(axes) else: axes = tuple(axes) if len(axes) > 0 else None return (np.sum(data, axis=axes, keepdims=keepdims, dtype=data.dtype),) def _op_reshape(self, x, shape): "Runtime for operator." return (x.reshape(shape),) def _op_shape(self, x): "Runtime for operator." return (np.array(list(x.shape), dtype=np.int64),) def _op_squeeze(self, x, axes=None): "Runtime for operator." if axes is None: return (x,) if isinstance(axes, AttributeProto): axes = list(axes.ints) if hasattr(axes, '__iter__'): return (np.squeeze(x, axis=tuple(axes)),) return (np.squeeze(x, axis=axes),) def _op_transpose(self, x, perm=None): "Runtime for operator." if perm is not None: perm = tuple(perm.ints) return (np.transpose(x, perm),) def _op_unsqueeze(self, x, axes=None): "Runtime for operator." if axes is None: return (x,) if isinstance(axes, AttributeProto): axes = list(axes.ints) if hasattr(axes, '__iter__'): return (np.expand_dims(x, axis=tuple(axes)),) return (np.expand_dims(x, axis=axes),) def single_axes(axes): """ *axes* contains positive values, then it is the position of this axis in the original matrix, otherwise it is -1 meaning this axis is an added single dimension to align all the dimensions based on the einsum equation. :param axes: axes described above :return: list of integer in set `{1, 2}`, 1 for a single axis, 2 otherwise """ if axes is None: return axes return [(1 if a == -1 else 2) for a in axes] class EinsumSubOp: """ Defines a sub operation used in Einsum decomposition. :param name: name (reshape, transpose, reduce_sum, matmul, id, squeeze, diagonal, mul, batch_dot) :param inputs: inputs :param kwargs: arguments Operator suffixed by `_mm` (*transpose_mm*, *reduce_sum_mm*) are equivalent to the same operator without the suffix but takes two inputs and only changes the first one. Attributes `_info` summarizes the known information about dimensions. Many of them are empty because inserted. Value `1` means it was the case, `2` means it is a plain dimension. """ _allowed = {'expand_dims', 'transpose', 'reduce_sum', 'matmul', 'id', 'squeeze', 'diagonal', 'mul', 'batch_dot', 'transpose_mm', 'reduce_sum_mm'} def __init__(self, full_dim, name, *inputs, **kwargs): self.full_dim = full_dim self.name = name self.inputs = inputs self.kwargs = kwargs self._info = {} if name not in EinsumSubOp._allowed: raise ValueError( "Unexpected name %r. It should be in %r." "" % (name, EinsumSubOp._allowed)) if len(inputs) not in (1, 2): raise RuntimeError( "Inputs must contains 1 or 2 inputs not %d." % len(inputs)) if name == 'matmul' and len(inputs) != 2: raise RuntimeError( "Inputs must contains 2 inputs not %d for operator 'matmul'." "" % len(inputs)) for i, inp in enumerate(inputs): if not isinstance(inp, (int, EinsumSubOp)): raise TypeError( "Input %d has type %r, int or EinsumSubOp is expected." "" % (i, type(inp))) self._check_() def _check_(self): "Checks for wrong values." if self.name == 'transpose': self._check_arg_('perm', tuple) perm = self.kwargs['perm'] if len(perm) != len(set(perm)): raise RuntimeError( "perm has duplicated values %r (name=%r)." "" % (perm, self.name)) if list(perm) == list(range(len(perm))): raise ValueError( "Transpose = identity perm=%r. It must be removed." "" % perm) elif self.name == 'matmul': self._check_arg_('axes', tuple) self._check_arg_('left', tuple) self._check_arg_('right', tuple) axes = self.kwargs['axes'] left = self.kwargs['left'] right = self.kwargs['right'] for a in axes: if a in left and a in right: raise RuntimeError( "One axis belongs to every set (axes, left, right). " "axes=%r, left=%r, right=%r." % (axes, left, right)) def __repr__(self): inps = ", ".join(map(str, self.inputs)) kw = ", ".join("%s=%r" % (k, w) for k, w in self.kwargs.items()) m = "%s(%r, %s, %s)" % ( self.__class__.__name__, self.name, inps, kw) return m def _check_arg_(self, name, typ, empty=False): if name not in self.kwargs: raise RuntimeError( "Parameter %r not found for operator %r." % (name, self.name)) if empty and self.kwargs[name] is None: return if not isinstance(self.kwargs[name], typ): raise TypeError( "Unexpected type %r for parameter %r and parameter %r." "" % (type(self.kwargs[name]), name, self.name)) def _check_row_(self, row, inp=False): """ Checks input or output is valid. """ def _compute_output_row_id(self, row, row2=None, ab=False): "compute shape after operator id" if ab: raise RuntimeError("ab option not allowed.") self._check_row_(row, True) row[:] = row2[:] self._check_row_(row) def _compute_output_row_transpose(self, row, row2=None, ab=False): "compute shape after operator transpose" if ab: self._compute_output_row_transpose(row2) return self._check_row_(row, True) self._check_arg_('perm', tuple) if len(self.kwargs['perm']) != len(row): raise RuntimeError( "Unexpected permutation %r (row=%r)." "" % (self.kwargs['perm'], row)) perm = self.kwargs['perm'] cpy = row.copy() for i, p in enumerate(perm): row[i] = cpy[p] self._check_row_(row) def _compute_output_row_transpose_mm(self, row, row2=None, ab=False): "compute shape after operator transpose" if not ab: raise RuntimeError("ab must be True.") self._check_row_(row, True) if row2 is None: raise RuntimeError("transpose_mm expects a second input.") self._compute_output_row_transpose(row, row2=None) def _compute_output_row_expand_dims(self, row, row2=None, ab=False): "compute shape after operator expand_dims" if ab: raise RuntimeError("ab option not allowed.") self._check_row_(row, True) self._check_arg_('axes', tuple) axes = self.kwargs['axes'] for axis in axes: if not isinstance(axis, tuple): raise TypeError( "Parameter axes of expand_dims should be a tuple of " "tuple, axes=%r." % axes) if row[axis[1]] != -1: raise RuntimeError( "Dimension should be -1 in row %r axis=%r." % ( row, self.kwargs['axis'])) self._check_row_(row) def _compute_output_row_reduce_sum(self, row, row2=None, ab=False): "compute shape after operator reduce_sum" if ab: raise RuntimeError("ab option not allowed.") self._check_row_(row, True) self._check_arg_('axes', tuple) for a in self.kwargs['axes']: row[a] = -1 self._check_row_(row) def _compute_output_row_reduce_sum_mm(self, row, row2=None, ab=False): "compute shape after operator reduce_sum" if not ab: raise RuntimeError("ab must be true.") self._check_row_(row2, True) if row2 is None: raise RuntimeError("reduce_sum_mm expects a second input.") self._compute_output_row_reduce_sum(row, row2=None) def _compute_output_row_squeeze(self, row, row2=None, ab=False): "compute shape after operator squeeze" if ab: raise RuntimeError("ab option not allowed.") self._check_row_(row, True) self._check_arg_('axes', tuple) for a in self.kwargs['axes']: row[a] = -1 self._check_row_(row) def _compute_output_row_diagonal(self, row, row2=None, ab=False): "compute shape after operator diagonal" if ab: raise RuntimeError("ab option not allowed.") self._check_row_(row, True) self._check_arg_('diag', list) to_remove = [] for choice, choices in self.kwargs['diag']: for ch in choices: if ch != choice: to_remove.append(ch) for i in range(len(row)): # pylint: disable=C0200 if row[i] in choices: if row[i] != choice: row[i] = choice to_remove.sort() for r in to_remove: for i in range(len(row)): # pylint: disable=C0200 if row[i] == r: raise RuntimeError( "Unexpected result r=%r row=%r to_remove=%r " "diag=%r." % ( r, row, to_remove, self.kwargs['diag'])) if row[i] > r: row[i] -= 1 self._check_row_(row) def _compute_output_row_matmul(self, row, row2=None, ab=False): "compute shape after operator matmul" if not ab: raise RuntimeError("ab must be True.") self._check_row_(row, True) self._check_row_(row2, True) self._check_arg_('axes', tuple) self._check_arg_('left', tuple) self._check_arg_('right', tuple) self._check_arg_('ndim', int) if row2 is None: raise RuntimeError("matmul expects two inputs.") row2[:] = np.maximum(row, row2) for a in self.kwargs['axes']: if a not in self.kwargs['right']: row2[a] = -1 self._check_row_(row2) def _compute_output_row_batch_dot(self, row, row2=None, ab=False): "compute shape after operator batch_dot" if not ab: raise RuntimeError("ab must be True.") self._check_row_(row, True) self._check_row_(row2, True) self._check_arg_('batch_axes', tuple) self._check_arg_('keep_axes', tuple, empty=True) self._check_arg_('sum_axes', tuple) self._check_arg_('left', tuple) self._check_arg_('right', tuple) self._check_arg_('ndim', int) if row2 is None: raise RuntimeError("batch_dot expects two inputs.") row2[:] = np.maximum(row, row2) for a in self.kwargs['sum_axes']: if a not in self.kwargs['right']: row2[a] = -1 self._check_row_(row2) def _compute_output_row_mul(self, row, row2=None, ab=False): "compute shape after operator mul" if not ab: raise RuntimeError("ab must be True.") self._check_row_(row, True) self._check_row_(row2, True) if row2 is None: raise RuntimeError("mul expects two inputs.") row2[:] = np.maximum(row, row2) self._check_row_(row2) def compute_output_row(self, row, row2=None, ab=False): """ Updates *row* based on the operator. """ method_name = "_compute_output_row_%s" % self.name meth = getattr(self, method_name, None) if meth is None: raise NotImplementedError( "compute_output_row not implemented for %r." % self.name) self.add_info(i_row=single_axes(row), i_row2=single_axes(row2)) meth(row, row2=row2, ab=ab) self.add_info(o_row=single_axes(row), o_row2=single_axes(row2)) def add_info(self, **kwargs): """ Adds information to the node. :param kwargs: dictionary """ for k, v in kwargs.items(): if k in self._info: raise KeyError( "Key %r already added (operator %r)." % (k, self.name)) self._info[k] = v def _check_inputs_(self, n_expected, check_dim=False): if len(self.inputs) != n_expected: raise RuntimeError( "Number of inputs must be %d not %d for operator %r." "" % (n_expected, len(self.inputs), self.name)) def _check_shape_(self, m): if len(m.shape) != self.full_dim: raise RuntimeError( "Number of dimensions %r is different from expected value " "%d." % (m.shape, self.full_dim)) def _get_data(self, data, key, as_str=False): "Returns data[key] or raises an exception if not here." if isinstance(key, int): if key not in data: raise RuntimeError( "Unable to find key %d in %r." % ( key, list(sorted(data)))) value = data[key] elif isinstance(key, EinsumSubOp): if id(key) not in data: raise RuntimeError( "Unable to find key %d in %r." % ( id(key), list(sorted(data)))) value = data[id(key)] else: raise TypeError( "Unexpected input type %r." % type(key)) if as_str: if isinstance(value, str): return value if hasattr(value, 'output') and len(value.output) == 1: return value.output[0] if hasattr(value, list) and len(value) == 1: return value[0] raise RuntimeError( "Unable to guess what to return in that case %r - %r" "." % (type(value), value)) return value def _onnx_name(self): return 'einsum%d_%s' % (id(self), self.name[:2]) def _check_onnx_opset_(self, opset, limit): if opset is not None and opset < limit: raise RuntimeError( "Opset (%r) must be >= %r for operator %r." "" % (opset, limit, self.name)) def _to_onnx_id(self, names, opset): # pylint: disable=W0613 self._check_inputs_(1) inp = self.inputs[0] name = self._get_data(names, inp) yield helper.make_node('Identity', [name], [self._onnx_name()]) def _to_onnx_expand_dims(self, names, opset): "insert node unsqueeze" self._check_inputs_(1) self._check_onnx_opset_(opset, 11) inp = self.inputs[0] name = self._get_data(names, inp) axes = self.kwargs['axes'] name_axes = name + '_axes' if opset >= 13: yield numpy_helper.from_array( np.array([a[1] for a in axes], dtype=np.int64), name=name_axes) yield helper.make_node( 'Unsqueeze', [name, name_axes], [self._onnx_name()]) else: yield helper.make_node( 'Unsqueeze', [name], [self._onnx_name()], axes=[a[1] for a in axes]) def _to_onnx_squeeze(self, names, opset): "insert node squeeze" self._check_inputs_(1) self._check_onnx_opset_(opset, 11) inp = self.inputs[0] name = self._get_data(names, inp) axes = self.kwargs['axes'] name_axes = name + '_axes' if opset >= 13: yield numpy_helper.from_array(
np.array(axes, dtype=np.int64)
numpy.array
import numpy as np import matplotlib.pyplot as plt ## softmax: 0.1 600 ## perceptron: 0.05 550 def readData(csvname): data = np.loadtxt(csvname, delimiter=',') x = data[:-1, :] y = data[-1:, :] return x, y def softmaxCostFunc(x, y, w): cost = np.sum(np.log(1 + np.exp(-y*np.transpose(np.dot(np.transpose(x), w))))) return cost / float(np.size(y)) def gradientDescentOneStepForSoftmax(x, y, w, alpha=0.1): total = np.zeros([9,1]) for i in range(np.size(y)): power = np.exp(-y[:,i] * np.dot(x[:,i], w)) term = power / (1 + power) total += term * y[:,i] * x[:,[i]] w = w + alpha * (1/np.size(y)) * total return w def perceptronCostFunc(x, y, w): cost = 0 a = (-y*np.transpose(np.dot(np.transpose(x), w)))[0] for i in range(len(a)): cost += a[i] if (a[i] > 0) else 0 return cost / float(np.size(y)) def gradientDescentOneStepForPerceptron(x, y, w, alpha=0.05): total = np.zeros([9,1]) for i in range(np.size(y)): term = -y[:,i] * np.dot(x[:,[i]].T, w) total += 0 if term <= 0 else -y[:,i] * x[:,[i]] w = w - alpha * (1/
np.size(y)
numpy.size
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 *
np.array([14, 2, 7, 5])
numpy.array
# python3 # -*- coding: utf-8 -*- # @Author : lina # @Time : 2018/12/5 21:32 """ 功能:使用train_seq2seq_word_based.py保存的模型和参数生成歌词。 """ from keras.models import load_model, Model from keras.layers import Input import numpy as np import json import warnings warnings.filterwarnings("ignore") LATENT_DIM = 1000 # encoder结果语义向量的维度,需要和train文件中的配置一样 def load_param(model_file, word2index_input_file, index2word_input_file, word2index_target_file, index2word_target_file): """ 加载模型和参数 :param model_file: 模型和参数路径 :param word2index_input_file: 输入的word2index :param index2word_input_file: 输入的index2word :param word2index_target_file: 输出的word2index :param index2word_target_file: 输出的index2word :return: model:训练之后的模型和参数 word2index_input, index2word_input_new: 输入的index2word和word2index word2index_target, index2word_target_new: 输出的index2word和word2index。 """ # get model. model = load_model(model_file) # get the word2index and index2word data. with open(word2index_input_file, 'r', encoding='utf8') as f: json_obj = f.read() word2index_input = json.loads(json_obj) f.close() with open(index2word_input_file, 'r', encoding='utf8') as f: json_obj = f.read() index2word_input = json.loads(json_obj) f.close() index2word_input_new = {} for key, value in index2word_input.items(): index2word_input_new[int(key)] = value with open(word2index_target_file, 'r', encoding='utf8') as f: json_obj = f.read() word2index_target = json.loads(json_obj) f.close() with open(index2word_target_file, 'r', encoding='utf8') as f: json_obj = f.read() index2word_target = json.loads(json_obj) f.close() index2word_target_new = {} for key, value in index2word_target.items(): index2word_target_new[int(key)] = value print("word2index is::", index2word_input_new) print("word2index is::", word2index_input) print("index2word is::", index2word_target_new) return model, word2index_input, index2word_input_new, word2index_target, index2word_target_new def get_model(model): """ 通过已经加载的模型,获取模型中的encoder和decoder :param model: 模型和参数路径 :return: encoder_model, decoder_model: 编码模型和解码编码,编码模型用于对上句编码,解码模型用于生成下句 """ encoder_inputs = model.get_layer(name="encoder_inputs").input encoder_outputs, state_h_enc, state_c_enc = model.get_layer(name="encoder_outputs").output encoder_states = [state_h_enc, state_c_enc] encoder_model = Model(encoder_inputs, encoder_states) decoder_inputs = model.get_layer(name="decoder_inputs").input decoder_state_input_h = Input(shape=(LATENT_DIM,), name='input_3') decoder_state_input_c = Input(shape=(LATENT_DIM,), name='input_4') decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h_dec, state_c_dec = model.get_layer(name="decoder_LSTM")(decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h_dec, state_c_dec] decoder_outputs = model.get_layer(name="Dense_1")(decoder_outputs) decoder_model = Model([decoder_inputs] + decoder_states_inputs, [decoder_outputs] +decoder_states) return encoder_model, decoder_model def sample(preds, diversity = 1.0): """ 得到最大概率的phrase对应的下标 :param preds: :param diversity: :return: """ preds =
np.asarray(preds)
numpy.asarray
# encoding: utf-8 """ Following the notation in [1]_, the Kalman filter framework consists of a *dynamic model* (state transition model) .. math:: x_k = A x_{k-1} + q_{k-1}, \\qquad q_{k-1} \\sim N(0, Q) and a *measurement model* (observation model) .. math:: y_k = H x_k + r_k, \\qquad r_k \\sim N(0, R), where the vector :math:`x` is the (hidden) state of the system and :math:`y` is an observation. `A` and `H` are matrices of suitable shape and :math:`Q`, :math:`R` are positive-definite noise covariance matrices. .. [1] <NAME> (2013). Bayesian Filtering and Smoothing. Cambridge University Press. https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf Usage example --------------- .. testsetup :: import numpy.random numpy.random.seed(0) Define model .. testcode :: import simdkalman import numpy as np kf = simdkalman.KalmanFilter( state_transition = [[1,1],[0,1]], # matrix A process_noise = np.diag([0.1, 0.01]), # Q observation_model = np.array([[1,0]]), # H observation_noise = 1.0) # R Generate some fake data .. testcode :: import numpy.random as random # 100 independent time series data = random.normal(size=(100, 200)) # with 10% of NaNs denoting missing values data[random.uniform(size=data.shape) < 0.1] = np.nan Smooth all data .. testcode :: smoothed = kf.smooth(data, initial_value = [1,0], initial_covariance = np.eye(2) * 0.5) # second timeseries, third time step, hidden state x print('mean') print(smoothed.states.mean[1,2,:]) print('covariance') print(smoothed.states.cov[1,2,:,:]) .. testoutput :: mean [ 0.29311384 -0.06948961] covariance [[ 0.19959416 -0.00777587] [-0.00777587 0.02528967]] Predict new data for a single series (1d case) .. testcode :: predicted = kf.predict(data[1,:], 123) # predicted observation y, third new time step pred_mean = predicted.observations.mean[2] pred_stdev = np.sqrt(predicted.observations.cov[2]) print('%g +- %g' % (pred_mean, pred_stdev)) .. testoutput :: 1.71543 +- 1.65322 """ import numpy as np # pylint: disable=W0401,W0614 from simdkalman.primitives import * class Gaussian: def __init__(self, mean, cov): self.mean = mean if cov is not None: self.cov = cov @staticmethod def empty(n_states, n_vars, n_measurements, cov=True): mean = np.empty((n_vars, n_measurements, n_states)) if cov: cov = np.empty((n_vars, n_measurements, n_states, n_states)) else: cov = None return Gaussian(mean, cov) def unvectorize_state(self): n_states = self.mean.shape[-1] assert(n_states == 1) mean = self.mean cov = self.cov mean = mean[...,0] if cov is not None: cov = cov[...,0,0] return Gaussian(mean, cov) def unvectorize_vars(self): n_vars = self.mean.shape[0] assert(n_vars == 1) mean = self.mean cov = self.cov mean = mean[0,...] if cov is not None: cov = cov[0,...] return Gaussian(mean, cov) def __str__(self): s = "mean:\n %s" % str(self.mean).replace("\n", "\n ") if self.cov is not None: s += "\ncov:\n %s" % str(self.cov).replace("\n", "\n ") return s class KalmanFilter(object): """ The main Kalman filter class providing convenient interfaces to vectorized smoothing and filtering operations on multiple independent time series. As long as the shapes of the given parameters match reasonably according to the rules of matrix multiplication, this class is flexible in their exact nature accepting * scalars: ``process_noise = 0.1`` * (2d) numpy matrices: ``process_noise = numpy.eye(2)`` * 2d arrays: ``observation_model = [[1,2]]`` * 3d arrays and matrices for vectorized computations. Unlike the other options, this locks the shape of the inputs that can be processed by the smoothing and prediction methods. :param state_transition: State transition matrix :math:`A` :param process_noise: Process noise (state transition covariance) matrix :math:`Q` :param observation_model: Observation model (measurement model) matrix :math:`H` :param observation_noise: Observation noise (measurement noise covariance) matrix :math:`R` """ # pylint: disable=W0232 class Result: def __str__(self): s = "" for k,v in self.__dict__.items(): if len(s) > 0: s += "\n" s += "%s:\n" % k s += " " + str(v).replace("\n", "\n ") return s def __init__(self, state_transition, process_noise, observation_model, observation_noise): state_transition = ensure_matrix(state_transition) n_states = state_transition.shape[0] process_noise = ensure_matrix(process_noise, n_states) observation_model = ensure_matrix(observation_model) n_obs = observation_model.shape[-2] observation_noise = ensure_matrix(observation_noise, n_obs) assert(state_transition.shape[-2:] == (n_states, n_states)) assert(process_noise.shape[-2:] == (n_states, n_states)) assert(observation_model.shape[-2:] == (n_obs, n_states)) assert(observation_noise.shape[-2:] == (n_obs, n_obs)) self.state_transition = state_transition self.process_noise = process_noise self.observation_model = observation_model self.observation_noise = observation_noise def predict_next(self, m, P): """ Single prediction step :param m: :math:`{\\mathbb E}[x_{j-1}]`, the previous mean :param P: :math:`{\\rm Cov}[x_{j-1}]`, the previous covariance :rtype: ``(prior_mean, prior_cov)`` predicted mean and covariance :math:`{\\mathbb E}[x_j]`, :math:`{\\rm Cov}[x_j]` """ return predict(m, P, self.state_transition, self.process_noise) def update(self, m, P, y, log_likelihood=False): """ Single update step with NaN check. :param m: :math:`{\\mathbb E}[x_j|y_1,\\ldots,y_{j-1}]`, the prior mean of :math:`x_j` :param P: :math:`{\\rm Cov}[x_j|y_1,\\ldots,y_{j-1}]`, the prior covariance of :math:`x_j` :param y: observation :math:`y_j` :param log_likelihood: compute log-likelihood? :type states: boolean :rtype: ``(posterior_mean, posterior_covariance, log_likelihood)`` posterior mean :math:`{\\mathbb E}[x_j|y_1,\\ldots,y_j]` & covariance :math:`{\\rm Cov}[x_j|y_1,\\ldots,y_j]` and, if requested, log-likelihood. If :math:`y_j` is NaN, returns the prior mean and covariance instead """ return priv_update_with_nan_check(m, P, self.observation_model, self.observation_noise, y, log_likelihood=log_likelihood) def predict_observation(self, m, P): """ Probability distribution of observation :math:`y` for a given distribution of :math:`x` :param m: :math:`{\\mathbb E}[x]` :param P: :math:`{\\rm Cov}[x]` :rtype: mean :math:`{\\mathbb E}[y]` and covariance :math:`{\\rm Cov}[y]` """ return predict_observation(m, P, self.observation_model, self.observation_noise) def smooth_current(self, m, P, ms, Ps): """ Simgle Kalman smoother backwards step :param m: :math:`{\\mathbb E}[x_j|y_1,\\ldots,y_j]`, the filtered mean of :math:`x_j` :param P: :math:`{\\rm Cov}[x_j|y_1,\\ldots,y_j]`, the filtered covariance of :math:`x_j` :param ms: :math:`{\\mathbb E}[x_{j+1}|y_1,\\ldots,y_T]` :param Ps: :math:`{\\rm Cov}[x_{j+1}|y_1,\\ldots,y_T]` :rtype: ``(smooth_mean, smooth_covariance, smoothing_gain)`` smoothed mean :math:`{\\mathbb E}[x_j|y_1,\\ldots,y_T]`, and covariance :math:`{\\rm Cov}[x_j|y_1,\\ldots,y_T]` & smoothing gain :math:`C` """ return priv_smooth(m, P, self.state_transition, self.process_noise, ms, Ps) def predict(self, data, n_test, initial_value = None, initial_covariance = None, states = True, observations = True, covariances = True, verbose = False): """ Filter past data and predict a given number of future values. The data can be given as either of * 1d array, like ``[1,2,3,4]``. In this case, one Kalman filter is used and the return value structure will contain an 1d array of ``observations`` (both ``.mean`` and ``.cov`` will be 1d). * 2d matrix, whose each row is interpreted as an independent time series, all of which are filtered independently. The returned ``observations`` members will be 2-dimensional in this case. * 3d matrix, whose the last dimension can be used for multi-dimensional observations, i.e, ``data[1,2,:]`` defines the components of the third observation of the second series. In the-multi-dimensional case the returned ``observations.mean`` will be 3-dimensional and ``observations.cov`` 4-dimensional. Initial values and covariances can be given as scalars or 2d matrices in which case the same initial states will be used for all rows or 3d arrays for different initial values. :param data: Past data :param n_test: number of future steps to predict. :type n_test: integer :param initial_value: Initial value :math:`{\\mathbb E}[x_0]` :param initial_covariance: Initial uncertainty :math:`{\\rm Cov}[x_0]` :param states: predict states :math:`x`? :type states: boolean :param observations: predict observations :math:`y`? :type observations: boolean :param covariances: include covariances in predictions? :type covariances: boolean :rtype: Result object with fields ``states`` and ``observations``, if the respective parameter flags are set to True. Both are ``Gaussian`` result objects with fields ``mean`` and ``cov`` (if the *covariances* flag is True) """ return self.compute( data, n_test, initial_value, initial_covariance, smoothed = False, states = states, covariances = covariances, observations = observations, verbose = verbose).predicted def smooth(self, data, initial_value = None, initial_covariance = None, observations = True, states = True, covariances = True, verbose = False): """ Smooth given data, which can be either * 1d array, like ``[1,2,3,4]``. In this case, one Kalman filter is used and the return value structure will contain an 1d array of ``observations`` (both ``.mean`` and ``.cov`` will be 1d). * 2d matrix, whose each row is interpreted as an independent time series, all of which are smoothed independently. The returned ``observations`` members will be 2-dimensional in this case. * 3d matrix, whose the last dimension can be used for multi-dimensional observations, i.e, ``data[1,2,:]`` defines the components of the third observation of the second series. In the-multi-dimensional case the returned ``observations.mean`` will be 3-dimensional and ``observations.cov`` 4-dimensional. Initial values and covariances can be given as scalars or 2d matrices in which case the same initial states will be used for all rows or 3d arrays for different initial values. :param data: 1d or 2d data, see above :param initial_value: Initial value :math:`{\\mathbb E}[x_0]` :param initial_covariance: Initial uncertainty :math:`{\\rm Cov}[x_0]` :param states: return smoothed states :math:`x`? :type states: boolean :param observations: return smoothed observations :math:`y`? :type observations: boolean :param covariances: include covariances results? :type covariances: boolean :rtype: Result object with fields ``states`` and ``observations``, if the respective parameter flags are set to True. Both are ``Gaussian`` result objects with fields ``mean`` and ``cov`` (if the *covariances* flag is True) """ return self.compute( data, 0, initial_value, initial_covariance, smoothed = True, states = states, covariances = covariances, observations = observations, verbose = verbose).smoothed def compute(self, data, n_test, initial_value = None, initial_covariance = None, smoothed = True, filtered = False, states = True, covariances = True, observations = True, likelihoods = False, gains = False, log_likelihood = False, verbose = False): """ Smoothing, filtering and prediction at the same time. Used internally by other methods, but can also be used directly if, e.g., both smoothed and predicted data is wanted. See **smooth** and **predict** for explanation of the common parameters. With this method, there also exist the following flags. :param smoothed: compute Kalman smoother (used by **smooth**) :type smoothed: boolean :param filtered: return (one-way) filtered data :type filtered: boolean :param likelihoods: return likelihoods of each step :type likelihoods: boolean :param gains: return Kalman gains and pairwise covariances (used by the EM algorithm) :type gains: boolean :param log_likelihood: return the log-likelihood(s) for the entire series. If matrix data is given, this will be a vector where each element is the log-likelihood of a single row. :type log_likelihood: boolean :rtype: result object whose fields depend on of the above parameter flags are True. The possible values are: ``smoothed`` (the return value of **smooth**), ``filtered`` (like *smoothed*), ``predicted`` (the return value of **predict** if ``n_test > 0``) ``gains``, ``pairwise_covariances``, ``likelihoods`` and ``log_likelihood``. """ # pylint: disable=W0201 result = KalmanFilter.Result() data = ensure_matrix(data) single_sequence = len(data.shape) == 1 if single_sequence: data = data[np.newaxis,:] n_vars = data.shape[0] n_measurements = data.shape[1] n_states = self.state_transition.shape[0] n_obs = self.observation_model.shape[-2] def empty_gaussian( n_states=n_states, n_measurements=n_measurements, cov=covariances): return Gaussian.empty(n_states, n_vars, n_measurements, cov) def auto_flat_observations(obs_gaussian): r = obs_gaussian if n_obs == 1: r = r.unvectorize_state() if single_sequence: r = r.unvectorize_vars() return r def auto_flat_states(obs_gaussian): if single_sequence: return obs_gaussian.unvectorize_vars() return obs_gaussian if initial_value is None: initial_value = np.zeros((n_states, 1)) initial_value = ensure_matrix(initial_value) if len(initial_value.shape) == 1: initial_value = initial_value.reshape((n_states, 1)) if initial_covariance is None: initial_covariance = ensure_matrix( np.trace(ensure_matrix(self.observation_model))*(5**2), n_states) initial_covariance = ensure_matrix(initial_covariance, n_states) initial_value = ensure_matrix(initial_value) assert(initial_value.shape[-2:] == (n_states, 1)) assert(initial_covariance.shape[-2:] == (n_states, n_states)) if len(initial_value.shape) == 2: initial_value = np.vstack([initial_value[np.newaxis,...]]*n_vars) if len(initial_covariance.shape) == 2: initial_covariance = np.vstack([initial_covariance[np.newaxis,...]]*n_vars) m = initial_value P = initial_covariance keep_filtered = filtered or smoothed if filtered or gains: result.filtered = KalmanFilter.Result() if log_likelihood: result.log_likelihood = np.zeros((n_vars,)) if likelihoods: result.log_likelihoods = np.empty((n_vars, n_measurements)) if keep_filtered: if observations: filtered_observations = empty_gaussian(n_states=n_obs) filtered_states = empty_gaussian(cov=True) if gains: result.filtered.gains = np.empty((n_vars, n_measurements, n_states, n_states)) for j in range(n_measurements): if verbose: print('filtering %d/%d' % (j+1, n_measurements)) y = data[:,j,...].reshape((n_vars, n_obs, 1)) tup = self.update(m, P, y, log_likelihood) m, P, K = tup[:3] if log_likelihood: l = tup[-1] result.log_likelihood += l if likelihoods: result.log_likelihoods[:,j] = l if keep_filtered: if observations: obs_mean, obs_cov = self.predict_observation(m, P) filtered_observations.mean[:,j,:] = obs_mean[...,0] if covariances: filtered_observations.cov[:,j,:,:] = obs_cov filtered_states.mean[:,j,:] = m[...,0] filtered_states.cov[:,j,:,:] = P if gains: result.filtered.gains[:,j,:,:] = K m, P = self.predict_next(m, P) if smoothed: result.smoothed = KalmanFilter.Result() if states: result.smoothed.states = empty_gaussian() # lazy trick to keep last filtered = last smoothed result.smoothed.states.mean = 1*filtered_states.mean if covariances: result.smoothed.states.cov = 1*filtered_states.cov if observations: result.smoothed.observations = empty_gaussian(n_states=n_obs) result.smoothed.observations.mean = 1*filtered_observations.mean if covariances: result.smoothed.observations.cov = 1*filtered_observations.cov if gains: result.smoothed.gains = np.zeros((n_vars, n_measurements, n_states, n_states)) result.pairwise_covariances = np.zeros((n_vars, n_measurements, n_states, n_states)) ms = filtered_states.mean[:,-1,:][...,np.newaxis] Ps = filtered_states.cov[:,-1,:,:] for j in range(n_measurements)[-2::-1]: if verbose: print('smoothing %d/%d' % (j+1, n_measurements)) m0 = filtered_states.mean[:,j,:][...,np.newaxis] P0 = filtered_states.cov[:,j,:,:] PsNext = Ps ms, Ps, Cs = self.smooth_current(m0, P0, ms, Ps) if states: result.smoothed.states.mean[:,j,:] = ms[...,0] if covariances: result.smoothed.states.cov[:,j,:,:] = Ps if observations: obs_mean, obs_cov = self.predict_observation(ms, Ps) result.smoothed.observations.mean[:,j,:] = obs_mean[...,0] if covariances: result.smoothed.observations.cov[:,j,:,:] = obs_cov if gains: result.smoothed.gains[:,j,:,:] = Cs result.pairwise_covariances[:,j,:,:] = ddot_t_right(PsNext, Cs) if filtered: if states: result.filtered.states = Gaussian(filtered_states.mean, None) if covariances: result.filtered.states.cov = filtered_states.cov result.filtered.states = auto_flat_states(result.filtered.states) if observations: result.filtered.observations = auto_flat_observations( filtered_observations) if smoothed: if observations: result.smoothed.observations = auto_flat_observations( result.smoothed.observations) if states: result.smoothed.states = auto_flat_states( result.smoothed.states) if n_test > 0: result.predicted = KalmanFilter.Result() if observations: result.predicted.observations = empty_gaussian( n_measurements=n_test, n_states=n_obs) if states: result.predicted.states = empty_gaussian(n_measurements=n_test) for j in range(n_test): if verbose: print('predicting %d/%d' % (j+1, n_test)) if states: result.predicted.states.mean[:,j,:] = m[...,0] if covariances: result.predicted.states.cov[:,j,:,:] = P if observations: obs_mean, obs_cov = self.predict_observation(m, P) result.predicted.observations.mean[:,j,:] = obs_mean[...,0] if covariances: result.predicted.observations.cov[:,j,:,:] = obs_cov m, P = self.predict_next(m, P) if observations: result.predicted.observations = auto_flat_observations( result.predicted.observations) if states: result.predicted.states = auto_flat_states(result.predicted.states) return result def em_process_noise(self, result, verbose=False): n_vars, n_measurements, n_states = result.smoothed.states.mean.shape res =
np.zeros((n_vars, n_states, n_states))
numpy.zeros
import numpy as np import pytest from numpy import ndarray from numpy.testing import assert_array_equal from pytest import approx from meshkernel import ( DeleteMeshOption, GeometryList, InputError, Mesh2d, MeshKernel, MeshKernelError, MeshRefinementParameters, RefinementType, ) cases_is_geometric_constructor = [(True), (False)] @pytest.mark.parametrize("is_geometric", cases_is_geometric_constructor) def test_constructor(is_geometric: bool): """Test if the constructor works""" MeshKernel(is_geometric) def test_different_instances_have_different_ids(): """Test if the meshkernelid of two instances differs""" mk_1 = MeshKernel() mk_2 = MeshKernel() assert mk_1._meshkernelid != mk_2._meshkernelid def test_mesh2d_set_and_mesh2d_get(): """Test to set a simple mesh and then get it again with new parameters 3---2 | | 0---1 """ mk = MeshKernel() edge_nodes = np.array([0, 1, 1, 2, 2, 3, 3, 0], dtype=np.int32) node_x = np.array([0.0, 1.0, 1.0, 0.0], dtype=np.double) node_y = np.array([0.0, 0.0, 1.0, 1.0], dtype=np.double) input_mesh2d = Mesh2d(node_x, node_y, edge_nodes) mk.mesh2d_set(input_mesh2d) output_mesh2d = mk.mesh2d_get() # Test if the input and output differs assert_array_equal(output_mesh2d.edge_nodes, input_mesh2d.edge_nodes) assert_array_equal(output_mesh2d.node_x, input_mesh2d.node_x) assert_array_equal(output_mesh2d.node_y, input_mesh2d.node_y) # Test if faces are correctly calculated assert_array_equal(output_mesh2d.face_nodes, np.array([0, 1, 2, 3])) assert_array_equal(output_mesh2d.nodes_per_face, np.array([4])) assert_array_equal(output_mesh2d.face_x, np.array([0.5])) assert_array_equal(output_mesh2d.face_y, np.array([0.5])) # Test if edges are correctly calculated assert_array_equal(output_mesh2d.edge_x, np.array([0.5, 1.0, 0.5, 0.0])) assert_array_equal(output_mesh2d.edge_y, np.array([0.0, 0.5, 1.0, 0.5])) def test_mesh2d_insert_edge(meshkernel_with_mesh2d: MeshKernel): """Test `mesh2d_insert_edge` by inserting one edge within a 1x1 Mesh2d. 2---3 | | 0---1 """ mk = meshkernel_with_mesh2d(1, 1) edge_index = mk.mesh2d_insert_edge(0, 3) mesh2d = mk.mesh2d_get() assert edge_index == 4 assert mesh2d.node_x.size == 4 assert mesh2d.edge_x.size == 5 assert mesh2d.face_x.size == 2 def test_mesh2d_insert_node(meshkernel_with_mesh2d: MeshKernel): """Test `mesh2d_insert_node` with a 1x1 Mesh2d. 2---3 | | 0---1 """ mk = meshkernel_with_mesh2d(1, 1) node_index = mk.mesh2d_insert_node(1.5, 0.5) edge_index = mk.mesh2d_insert_edge(3, node_index) mesh2d = mk.mesh2d_get() assert node_index == 4 assert mesh2d.node_x.size == 5 assert edge_index == 4 assert mesh2d.edge_x.size == 5 cases_mesh2d_delete_node = [ (0, 0.0, 0.0), (1, 1.0, 0.0), (2, 2.0, 0.0), (3, 0.0, 1.0), (4, 1.0, 1.0), (5, 2.0, 1.0), (6, 0.0, 2.0), (7, 1.0, 2.0), (8, 2.0, 2.0), ] @pytest.mark.parametrize("node_index, deleted_x, deleted_y", cases_mesh2d_delete_node) def test_mesh2d_delete_node( meshkernel_with_mesh2d: MeshKernel, node_index: int, deleted_x: float, deleted_y: float, ): """Test `mesh2d_delete_node` by deleting a node from a 2x2 Mesh2d. 6---7---8 | | | 3---4---5 | | | 0---1---2 """ mk = meshkernel_with_mesh2d(2, 2) mk.mesh2d_delete_node(node_index) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 8 for x, y in zip(mesh2d.node_x, mesh2d.node_y): assert x != deleted_x or y != deleted_y def test_mesh2d_delete_node_invalid_node_index(meshkernel_with_mesh2d: MeshKernel): """Test `mesh2d_delete_node` by passing a negative `node_index`.""" mk = meshkernel_with_mesh2d(1, 1) with pytest.raises(InputError): mk.mesh2d_delete_node(-1) cases_mesh2d_move_node = [ (0, 0.0, 0.0), (1, 1.0, 0.0), (2, 2.0, 0.0), (3, 0.0, 1.0), (4, 1.0, 1.0), (5, 2.0, 1.0), (6, 0.0, 2.0), (7, 1.0, 2.0), (8, 2.0, 2.0), ] @pytest.mark.parametrize("node_index, moved_x, moved_y", cases_mesh2d_move_node) def test_mesh2d_move_node( meshkernel_with_mesh2d: MeshKernel, node_index: int, moved_x: float, moved_y: float ): """Test to move a node in a simple Mesh2d to new location. 6---7---8 | | | 3---4---5 | | | 0---1---2 """ mk = meshkernel_with_mesh2d(2, 2) mk.mesh2d_move_node(5.0, 7.0, node_index) mesh2d = mk.mesh2d_get() assert mesh2d.node_x[node_index] == 5.0 assert mesh2d.node_y[node_index] == 7.0 for x, y in zip(mesh2d.node_x, mesh2d.node_y): assert x != moved_x or y != moved_y def test_mesh2d_move_node_invalid_node_index(meshkernel_with_mesh2d: MeshKernel): """Test `mesh2d_move_node` by passing a negative `node_index`.""" mk = meshkernel_with_mesh2d(1, 1) with pytest.raises(InputError): mk.mesh2d_move_node(5.0, 7.0, -1) cases_mesh2d_delete_edge = [ (0.5, 0.0), (1.5, 0.0), (0.0, 0.5), (1.0, 0.5), (2.0, 0.5), (0.5, 1.0), (1.5, 1.0), (0.0, 1.5), (1.0, 1.5), (2.0, 1.5), (0.5, 2.0), (1.5, 2.0), ] @pytest.mark.parametrize("delete_x, delete_y", cases_mesh2d_delete_edge) def test_mesh2d_delete_edge( meshkernel_with_mesh2d: MeshKernel, delete_x: float, delete_y: float ): """Test `mesh2d_delete_edge` by deleting an edge from a 2x2 Mesh2d. 6---7---8 | | | 3---4---5 | | | 0---1---2 """ mk = meshkernel_with_mesh2d(2, 2) mk.mesh2d_delete_edge(delete_x, delete_y) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 9 assert mesh2d.edge_x.size == 11 assert mesh2d.face_x.size == 3 for x, y in zip(mesh2d.edge_x, mesh2d.edge_y): assert x != delete_x or y != delete_y cases_mesh2d_get_edge = [ (0.5, 0.0, 2), (1.0, 0.5, 1), (0.5, 1.0, 3), (0.0, 0.5, 0), ] @pytest.mark.parametrize("x, y, exp_index", cases_mesh2d_get_edge) def test_mesh2d_get_edge( meshkernel_with_mesh2d: MeshKernel, x: float, y: float, exp_index: int ): """Test `mesh2d_get_edge` on a 2x2 Mesh2d. (3) 2---3 (0)| |(1) 0---1 (2) """ mk = meshkernel_with_mesh2d(1, 1) edge_index = mk.mesh2d_get_edge(x, y) assert edge_index == exp_index cases_mesh2d_get_node_index = [ (0.0, 0.0, 0), (0.4, 0.0, 0), (0.0, 0.4, 0), (1.0, 0.0, 1), (0.6, 0.0, 1), (1.0, 0.4, 1), (0.0, 1.0, 2), (0.4, 1.0, 2), (0.0, 0.6, 2), (1.0, 1.0, 3), (0.6, 1.0, 3), (1.0, 0.6, 3), ] @pytest.mark.parametrize("x, y, exp_index", cases_mesh2d_get_node_index) def test_mesh2d_get_node_index( meshkernel_with_mesh2d: MeshKernel, x: float, y: float, exp_index: int ): """Test `mesh2d_get_node_index` on a 1x1 Mesh2d. 2---3 | | 0---1 """ mk = meshkernel_with_mesh2d(1, 1) edge_index = mk.mesh2d_get_node_index(x, y, 0.5) assert edge_index == exp_index def test_mesh2d_get_node_index_no_node_in_search_radius( meshkernel_with_mesh2d: MeshKernel, ): """Test `get_node_index` when there is no node within the search radius.""" mk = meshkernel_with_mesh2d(1, 1) with pytest.raises(MeshKernelError): mk.mesh2d_get_node_index(0.5, 0.5, 0.4) cases_mesh2d_delete_small_polygon = [ (True, DeleteMeshOption.ALL_NODES, 4, 4, 1), (True, DeleteMeshOption.ALL_FACE_CIRCUMCENTERS, 16, 24, 9), (True, DeleteMeshOption.ALL_COMPLETE_FACES, 4, 4, 1), (False, DeleteMeshOption.ALL_NODES, 32, 48, 16), (False, DeleteMeshOption.ALL_FACE_CIRCUMCENTERS, 32, 48, 16), (False, DeleteMeshOption.ALL_COMPLETE_FACES, 36, 60, 25), ] @pytest.mark.parametrize( "invert_deletion, delete_option, exp_nodes, exp_edges, exp_faces", cases_mesh2d_delete_small_polygon, ) def test_mesh2d_delete_small_polygon( meshkernel_with_mesh2d: MeshKernel, invert_deletion: bool, delete_option: DeleteMeshOption, exp_nodes: int, exp_edges: int, exp_faces: int, ): """Test `mesh2d_delete` by deleting a polygon from a 5x5 mesh2d. 30--31--32--33--34--35 | | | | | | 24--25--26--27--28--29 | | * | | * | | 18--19--20--21--22--23 | | | | | | 12--13--14--15--16--17 | | * | | * | | 6---7---8---9---10--11 | | | | | | 0---1---2---3---4---5 """ mk = meshkernel_with_mesh2d(5, 5) # Polygon around nodes 14, 15, 21 & 20 (through the face circum centers) x_coordinates = np.array([1.5, 3.5, 3.5, 1.5, 1.5], dtype=np.double) y_coordinates = np.array([1.5, 1.5, 3.5, 3.5, 1.5], dtype=np.double) geometry_list = GeometryList(x_coordinates, y_coordinates) mk.mesh2d_delete(geometry_list, delete_option, invert_deletion) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == exp_nodes assert mesh2d.edge_x.size == exp_edges assert mesh2d.face_x.size == exp_faces cases_mesh2d_delete_empty_polygon = [(False, 0, 0, 0), (True, 25, 40, 16)] @pytest.mark.parametrize( "invert_deletion, exp_nodes, exp_edges, exp_faces", cases_mesh2d_delete_empty_polygon, ) def test_mesh2d_delete_empty_polygon( meshkernel_with_mesh2d: MeshKernel, invert_deletion: bool, exp_nodes: int, exp_edges: int, exp_faces: int, ): """Test `mesh2d_delete` by deleting a an empty polygon from a 4x4 mesh2d. 20--21--22--23--24 | | | | | 15--16--17--18--19 | | | | | 10--11--12--13--14 | | | | | 5---6---7---8---9 | | | | | 0---1---2---3---4 """ mk = meshkernel_with_mesh2d(4, 4) x_coordinates = np.empty(0, dtype=np.double) y_coordinates = np.empty(0, dtype=np.double) geometry_list = GeometryList(x_coordinates, y_coordinates) delete_option = DeleteMeshOption.ALL_NODES mk.mesh2d_delete(geometry_list, delete_option, invert_deletion) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == exp_nodes assert mesh2d.edge_x.size == exp_edges assert mesh2d.face_x.size == exp_faces cases_mesh2d_get_hanging_edges = [ ( np.array([0.0, 1.0, 1.0, 0.0], dtype=np.double), # node_x np.array([0.0, 0.0, 1.0, 1.0], dtype=np.double), # node_y np.array([0, 1, 1, 3, 2, 3, 2, 0], dtype=np.int32), # edge_nodes np.array([], dtype=np.int32), # expected ), ( np.array([0.0, 1.0, 1.0, 0.0, 0.0], dtype=np.double), # node_x np.array([0.0, 0.0, 1.0, 1.0, 2.0], dtype=np.double), # node_y np.array([0, 1, 1, 3, 2, 3, 2, 0, 3, 4], dtype=np.int32), # edge_nodes np.array([4], dtype=np.int32), # expected ), ( np.array([0.0, 1.0, 1.0, 0.0, 0.0, 2.0], dtype=np.double), # node_x np.array([0.0, 0.0, 1.0, 1.0, 2.0, 1.0], dtype=np.double), # node_y np.array([0, 1, 1, 3, 2, 3, 2, 0, 3, 4, 2, 5], dtype=np.int32), # edge_nodes np.array([4, 5], dtype=np.int32), # expected ), ] @pytest.mark.parametrize( "node_x, node_y, edge_nodes, expected", cases_mesh2d_get_hanging_edges ) def test_mesh2d_get_hanging_edges( node_x: np.ndarray, node_y: np.ndarray, edge_nodes: np.ndarray, expected: int ): """Tests `mesh2d_get_hanging_edges` by comparing the returned hanging edges with the expected ones 4* | 3---2---5* | | 0---1 """ mk = MeshKernel() mesh2d = Mesh2d(node_x, node_y, edge_nodes) mk.mesh2d_set(mesh2d) result = mk.mesh2d_get_hanging_edges() assert_array_equal(result, expected) def test_mesh2d_delete_hanging_edges(): """Tests `mesh2d_delete_hanging_edges` by deleting 2 hanging edges in a simple Mesh2d 4* | 3---2---5* | | 0---1 """ mk = MeshKernel() node_x = np.array([0.0, 1.0, 1.0, 0.0, 0.0, 2.0], dtype=np.double) node_y = np.array([0.0, 0.0, 1.0, 1.0, 2.0, 1.0], dtype=np.double) edge_nodes = np.array([0, 1, 1, 2, 2, 3, 3, 0, 3, 4, 2, 5], dtype=np.int32) mesh2d = Mesh2d(node_x, node_y, edge_nodes) mk.mesh2d_set(mesh2d) mk.mesh2d_delete_hanging_edges() mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 4 assert mesh2d.edge_x.size == 4 assert mesh2d.face_x.size == 1 def test_mesh2d_make_mesh_from_polygon(): """Tests `mesh2d_make_mesh_from_polygon` by creating a mesh2d from a simple hexagon.""" mk = MeshKernel() # 5__4 # / \ # 0 3 # \1__2/ x_coordinates = np.array([0.0, 0.5, 1.5, 2.0, 1.5, 0.5, 0.0], dtype=np.double) y_coordinates = np.array([1.0, 0.0, 0.0, 1.0, 2.0, 2.0, 1.0], dtype=np.double) polygon = GeometryList(x_coordinates, y_coordinates) mk.mesh2d_make_mesh_from_polygon(polygon) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 7 assert mesh2d.edge_x.size == 12 assert mesh2d.face_x.size == 6 def test_mesh2d_make_mesh_from_samples(): """Tests `mesh2d_make_mesh_from_samples` by creating a mesh2d from six sample points.""" mk = MeshKernel() # 5 4 # 0 3 # 1 2 x_coordinates = np.array([0.0, 0.5, 1.5, 2.0, 1.5, 0.5, 0.0], dtype=np.double) y_coordinates = np.array([1.0, 0.0, 0.0, 1.0, 2.0, 2.0, 1.0], dtype=np.double) polygon = GeometryList(x_coordinates, y_coordinates) mk.mesh2d_make_mesh_from_samples(polygon) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 6 assert mesh2d.edge_x.size == 9 assert mesh2d.face_x.size == 4 cases_polygon_refine = [ (0, 0, 30.0, 9), (0, 1, 30.0, 6), (0, 2, 30.0, 7), (0, 3, 30.0, 8), (0, 4, 30.0, 9), (0, 0, 20.0, 13), (0, 1, 20.0, 7), (0, 2, 20.0, 9), (0, 3, 20.0, 11), (0, 4, 20.0, 13), ] @pytest.mark.parametrize("start, end, length, exp_nodes", cases_polygon_refine) def test_polygon_refine(start: int, end: int, length: float, exp_nodes: int): """Tests `polygon_refine` by refining a simple polygon.""" mk = MeshKernel() # 3---2 # | | # 0---1 x_coordinates = np.array([0.0, 60.0, 60.0, 0.0, 0.0], dtype=np.double) y_coordinates = np.array([0.0, 0.0, 60.0, 60.0, 0.0], dtype=np.double) polygon = GeometryList(x_coordinates, y_coordinates) geom = mk.polygon_refine(polygon, start, end, length) assert geom.x_coordinates.size == exp_nodes cases_mesh2d_refine_based_on_samples = [ (0.5, 0, 9, 12, 4), (0.5, 1, 25, 40, 16), # (0.5, 2, 81, 144, 64), ] @pytest.mark.parametrize( "min_face_size, sample_value, exp_nodes, exp_edges, exp_faces", cases_mesh2d_refine_based_on_samples, ) def test_mesh2d_refine_based_on_samples( meshkernel_with_mesh2d: MeshKernel, min_face_size: float, sample_value: float, exp_nodes: int, exp_edges: int, exp_faces: int, ): """Tests `mesh2d_refine_based_on_samples` with a simple 2x2 mesh. 6---7---8 | | | 3---4---5 | | | 0---1---2 """ mk = meshkernel_with_mesh2d(2, 2) x_coordinates = np.array([0.5, 0.5, 1.5, 1.5], dtype=np.double) y_coordinates = np.array([0.5, 1.5, 1.5, 0.5], dtype=np.double) values = np.array( [sample_value, sample_value, sample_value, sample_value], dtype=np.double ) samples = GeometryList(x_coordinates, y_coordinates, values) refinement_params = MeshRefinementParameters( False, False, min_face_size, RefinementType.REFINEMENT_LEVELS, False, False, 1 ) mk.mesh2d_refine_based_on_samples(samples, 1.0, 1, refinement_params) mesdh2d = mk.mesh2d_get() assert mesdh2d.node_x.size == exp_nodes assert mesdh2d.edge_x.size == exp_edges assert mesdh2d.face_x.size == exp_faces cases_mesh2d_refine_based_on_polygon = [ (1, 25, 40, 16), (2, 81, 144, 64), (3, 289, 544, 256), ] @pytest.mark.parametrize( "max_iterations, exp_nodes, exp_edges, exp_faces", cases_mesh2d_refine_based_on_polygon, ) def test_mesh2d_refine_based_on_polygon( meshkernel_with_mesh2d: MeshKernel, max_iterations: int, exp_nodes: int, exp_edges: int, exp_faces: int, ): """Tests `mesh2d_refine_based_on_polygon` with a simple 2x2 mesh. 6---7---8 | | | 3---4---5 | | | 0---1---2 """ mk = meshkernel_with_mesh2d(2, 2) x_coordinates = np.array([0.0, 0.0, 2.0, 2.0, 0.0], dtype=np.double) y_coordinates = np.array([0.0, 2.0, 2.0, 0.0, 0.0], dtype=np.double) polygon = GeometryList(x_coordinates, y_coordinates) refinement_params = MeshRefinementParameters( True, False, 0.5, 1, False, False, max_iterations ) mk.mesh2d_refine_based_on_polygon(polygon, refinement_params) mesdh2d = mk.mesh2d_get() assert mesdh2d.node_x.size == exp_nodes assert mesdh2d.edge_x.size == exp_edges assert mesdh2d.face_x.size == exp_faces def test_mesh2d_get_mesh_boundaries_as_polygons(meshkernel_with_mesh2d: MeshKernel): """Tests `mesh2d_get_mesh_boundaries_as_polygons` by checking if the resulted boundary is as expected""" mk = meshkernel_with_mesh2d(2, 2) mesh_boundary = mk.mesh2d_get_mesh_boundaries_as_polygons() assert_array_equal( mesh_boundary.x_coordinates, np.array([0.0, 0.0, 0.0, 1.0, 2.0, 2.0, 2.0, 1.0, 0.0], dtype=np.double), ) assert_array_equal( mesh_boundary.y_coordinates, np.array([0.0, 1.0, 2.0, 2.0, 2.0, 1.0, 0.0, 0.0, 0.0], dtype=np.double), ) cases_mesh2d_merge_nodes = [(1e-2, 4), (1e-4, 5)] @pytest.mark.parametrize("merging_distance, number_of_nodes", cases_mesh2d_merge_nodes) def test_mesh2d_merge_nodes(merging_distance: float, number_of_nodes: int): """Test if `mesh2d_merge_nodes` reduces the number of close nodes 4---3 | | 01--2 """ mk = MeshKernel() # Set up mesh edge_nodes = np.array([0, 1, 1, 2, 2, 3, 3, 4, 4, 0], dtype=np.int32) node_x = np.array([0.0, 1e-3, 1.0, 1.0, 0.0], dtype=np.double) node_y = np.array([0.0, 0.0, 0.0, 1.0, 1.0], dtype=np.double) input_mesh2d = Mesh2d(node_x, node_y, edge_nodes) mk.mesh2d_set(input_mesh2d) # Define polygon where we want to merge x_coordinates = np.array([-1.0, 2.0, 2.0, -1.0, -1.0], dtype=np.double) y_coordinates = np.array([-1.0, -1.0, 2.0, 2.0, -1.0], dtype=np.double) geometry_list = GeometryList(x_coordinates, y_coordinates) mk.mesh2d_merge_nodes(geometry_list, merging_distance) output_mesh2d = mk.mesh2d_get() assert output_mesh2d.node_x.size == number_of_nodes cases_mesh2d_merge_two_nodes = [(0, 1, 4), (4, 5, 4), (0, 4, 3)] @pytest.mark.parametrize( "first_node, second_node, num_faces", cases_mesh2d_merge_two_nodes ) def test_mesh2d_merge_two_nodes( meshkernel_with_mesh2d: MeshKernel, first_node: int, second_node: int, num_faces: int, ): """Tests `mesh2d_merge_two_nodes` by checking if two selected nodes are properly merged 6---7---8 | | | 3---4---5 | | | 0---1---2 """ mk = meshkernel_with_mesh2d(2, 2) mk.mesh2d_merge_two_nodes(first_node, second_node) output_mesh2d = mk.mesh2d_get() assert output_mesh2d.node_x.size == 8 assert output_mesh2d.face_x.size == num_faces cases_polygon_get_included_points = [ ( # Select all np.array([0.0, 3.0, 3.0, 0.0, 0.0]), np.array([0.0, 0.0, 3.0, 3.0, 0.0]), np.array([1.0, 1.0, 1.0, 1.0, 1.0]), ), ( # Select right half np.array([1.5, 3.0, 3.0, 1.5, 1.5]), np.array([0.0, 0.0, 3.0, 3.0, 0.0]), np.array([0.0, 1.0, 1.0, 0.0, 0.0]), ), ( # Select bottom-right np.array([1.5, 3.0, 3.0, 1.5, 1.5]), np.array([0.0, 0.0, 1.5, 1.5, 0.0]), np.array([0.0, 1.0, 0.0, 0.0, 0.0]), ), ( # Select top half np.array([0.0, 3.0, 3.0, 0.0, 0.0]), np.array([1.5, 1.5, 3.0, 3.0, 1.5]), np.array([0.0, 0.0, 1.0, 1.0, 0.0]), ), ( # Select top-left np.array([0.0, 1.5, 1.5, 0.0, 0.0]), np.array([1.5, 1.5, 3.0, 3.0, 1.5]), np.array([0.0, 0.0, 0.0, 1.0, 0.0]), ), ] @pytest.mark.parametrize( "selecting_x, selecting_y, exp_values", cases_polygon_get_included_points, ) def test_polygon_get_included_points( selecting_x: np.array, selecting_y: np.array, exp_values: np.array ): """Tests `polygon_get_included_points` with a simple polygon and various selecting polygons.""" selecting_polygon = GeometryList(selecting_x, selecting_y) x_coordinates = np.array([1.0, 2.0, 2.0, 1.0, 1.0], dtype=np.double) y_coordinates = np.array([1.0, 1.0, 2.0, 2.0, 1.0], dtype=np.double) selected_polygon = GeometryList(x_coordinates, y_coordinates) mk = MeshKernel() selection = mk.polygon_get_included_points(selecting_polygon, selected_polygon) assert_array_equal(selection.values, exp_values) @pytest.mark.parametrize("triangulate", [True, False]) def test_mesh2d_flip_edges(triangulate: bool): """Tests `mesh2d_flip_edges` with a simple triangular mesh (heptagon).""" mk = MeshKernel() node_x = np.array([0, -8, -10, -4, 4, 10, 8, 0], dtype=np.double) node_y = np.array([10, 6, -2, -9, -9, -2, 6, -5], dtype=np.double) edge_nodes = np.array( [ 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 0, 0, 7, 1, 7, 2, 7, 3, 7, 4, 7, 5, 7, 6, 7, ], dtype=np.int32, ) mk.mesh2d_set(Mesh2d(node_x, node_y, edge_nodes)) polygon_x = np.array([-11, 11, 11, -11, -11], dtype=np.double) polygon_y = np.array([-11, -11, 11, 11, -11], dtype=np.double) polygon = GeometryList(polygon_x, polygon_y) land_boundaries_x = np.array([-10, -4, 4, 10], dtype=np.double) land_boundaries_y = np.array([-2, -9, -9, -2], dtype=np.double) land_boundaries = GeometryList(land_boundaries_x, land_boundaries_y) mk.mesh2d_flip_edges(triangulate, False, polygon, land_boundaries) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 8 assert mesh2d.edge_x.size == 14 assert mesh2d.face_x.size == 7 def test_mesh2d_flip_edges2_triangulate(meshkernel_with_mesh2d: MeshKernel): """Tests `mesh2d_flip_edges` with a simple 2x2 mesh. 6---7---8 6---7---8 | | | | / | / | 3---4---5 --> 3---4---5 | | | | / | / | 0---1---2 0---1---2 """ mk = meshkernel_with_mesh2d(2, 2) mk.mesh2d_flip_edges( True, True, GeometryList(np.empty(0, dtype=np.double), np.empty(0, dtype=np.double)), GeometryList(np.empty(0, dtype=np.double), np.empty(0, dtype=np.double)), ) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 9 assert mesh2d.edge_x.size == 16 assert mesh2d.face_x.size == 8 assert np.all(mesh2d.nodes_per_face == 3) def test_mesh2d_count_obtuse_triangles(): r"""Tests `_mesh2d_count_obtuse_triangles` on a 3x3 mesh with two obtuse triangles. 6---7---8 | / \ | 3---4---5 | \ / | 0---1---2 """ mk = MeshKernel() # Mesh with obtuse triangles (4, 5, 7 and 1, 5, 4) node_x = np.array([0.0, 1.0, 2.0, 0.0, 1.5, 2.0, 0.0, 1.0, 2.0], dtype=np.double) node_y = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0], dtype=np.double) edge_nodes = np.array( [ 0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 1, 3, 1, 5, 3, 7, 5, 7, ], dtype=np.int32, ) mk.mesh2d_set(Mesh2d(node_x, node_y, edge_nodes)) n_obtuse_triangles = mk._mesh2d_count_obtuse_triangles() assert n_obtuse_triangles == 2 def test_mesh2d_get_obtuse_triangles_mass_centers(): r"""Tests `mesh2d_get_obtuse_triangles_mass_centers` on a 3x3 mesh with two obtuse triangles. 6---7---8 | / \ | 3---4---5 | \ / | 0---1---2 """ mk = MeshKernel() # Mesh with obtuse triangles (4, 5, 7 and 1, 5, 4) node_x = np.array([0.0, 1.0, 2.0, 0.0, 1.5, 2.0, 0.0, 1.0, 2.0], dtype=np.double) node_y = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0], dtype=np.double) edge_nodes = np.array( [ 0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 1, 3, 1, 5, 3, 7, 5, 7, ], dtype=np.int32, ) mk.mesh2d_set(Mesh2d(node_x, node_y, edge_nodes)) obtuse_triangles = mk.mesh2d_get_obtuse_triangles_mass_centers() assert obtuse_triangles.x_coordinates.size == 2 assert obtuse_triangles.x_coordinates[0] == 1.5 assert obtuse_triangles.y_coordinates[0] == approx(0.666, 0.01) assert obtuse_triangles.x_coordinates[1] == 1.5 assert obtuse_triangles.y_coordinates[1] == approx(1.333, 0.01) cases_mesh2d_count_small_flow_edge_centers = [(0.9, 0), (1.0, 0), (1.1, 4)] @pytest.mark.parametrize( "threshold, exp_int", cases_mesh2d_count_small_flow_edge_centers ) def test_mesh2d_count_small_flow_edge_centers(threshold: float, exp_int: int): """Tests `_mesh2d_count_small_flow_edge_centers` with a simple 3x3 mesh with 4 small flow edges. 6---7---8 | 11|-12| 3-|-4-|-5 | 9-|-10| 0---1---2 """ mk = MeshKernel() node_x = np.array( [0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.5, 1.5, 0.5, 1.5], dtype=np.double, ) node_y = np.array( [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.5, 0.5, 1.5, 1.5], dtype=np.double, ) edge_nodes = np.array( [ 0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 9, 10, 11, 12, 9, 11, 10, 12, ], dtype=np.int32, ) mk.mesh2d_set(Mesh2d(node_x, node_y, edge_nodes)) n_small_flow_edges = mk._mesh2d_count_small_flow_edge_centers(threshold) assert n_small_flow_edges == exp_int def test_mesh2d_get_small_flow_edge_centers(): """Tests `mesh2d_get_small_flow_edge_centers` with a simple 3x3 mesh with 4 small flow edges. 6---7---8 | 11|-12| 3-|-4-|-5 | 9-|-10| 0---1---2 """ mk = MeshKernel() node_x = np.array( [0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.5, 1.5, 0.5, 1.5], dtype=np.double, ) node_y = np.array( [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 0.5, 0.5, 1.5, 1.5], dtype=np.double, ) edge_nodes = np.array( [ 0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 9, 10, 11, 12, 9, 11, 10, 12, ], dtype=np.int32, ) mk.mesh2d_set(Mesh2d(node_x, node_y, edge_nodes)) small_flow_edge_centers = mk.mesh2d_get_small_flow_edge_centers(1.1) assert small_flow_edge_centers.x_coordinates.size == 4 assert small_flow_edge_centers.x_coordinates[0] == 0.5 assert small_flow_edge_centers.y_coordinates[0] == 1.0 assert small_flow_edge_centers.x_coordinates[1] == 1.5 assert small_flow_edge_centers.y_coordinates[1] == 1.0 assert small_flow_edge_centers.x_coordinates[2] == 1.0 assert small_flow_edge_centers.y_coordinates[2] == 0.5 assert small_flow_edge_centers.x_coordinates[3] == 1.0 assert small_flow_edge_centers.y_coordinates[3] == 1.5 def test_mesh2d_delete_small_flow_edges_and_small_triangles_delete_small_flow_edges(): r"""Tests `mesh2d_get_small_flow_edge_centers` with a simple mesh with one small flow link. 3---4---5 | 6-|-7 | 0---1---2 """ mk = MeshKernel() node_x = np.array( [0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.5, 1.5], dtype=np.double, ) node_y = np.array( [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.5, 0.5], dtype=np.double, ) edge_nodes = np.array( [0, 1, 1, 2, 3, 4, 4, 5, 0, 3, 1, 4, 2, 5, 6, 7], dtype=np.int32, ) mk.mesh2d_set(Mesh2d(node_x, node_y, edge_nodes)) mk.mesh2d_delete_small_flow_edges_and_small_triangles(1.1, 0.01) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 8 assert mesh2d.edge_x.size == 7 assert mesh2d.face_x.size == 1 def test_mesh2d_delete_small_flow_edges_and_small_triangles_delete_small_triangles(): r"""Tests `mesh2d_get_small_flow_edge_centers` with a simple mesh with one small triangle. 3---4---5\ | | | 6 0---1---2/ """ mk = MeshKernel() node_x = np.array( [0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 2.1], dtype=np.double, ) node_y = np.array( [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.5], dtype=np.double, ) edge_nodes = np.array( [0, 1, 1, 2, 3, 4, 4, 5, 0, 3, 1, 4, 2, 5, 5, 6, 6, 2], dtype=np.int32, ) mk.mesh2d_set(Mesh2d(node_x, node_y, edge_nodes)) mk.mesh2d_delete_small_flow_edges_and_small_triangles(1.0, 0.01) mesh2d = mk.mesh2d_get() assert mesh2d.node_x.size == 7 assert mesh2d.edge_x.size == 8 assert mesh2d.face_x.size == 2 cases_nodes_in_polygons_mesh2d = [ (np.array([1.5, 2.5, 2.5, 1.5, 1.5]), np.array([1.5, 1.5, 2.5, 2.5, 1.5]), True, 1), ( np.array([1.5, 2.5, 2.5, 1.5, 1.5]), np.array([1.5, 1.5, 2.5, 2.5, 1.5]), False, 8, ), ( np.array([]),
np.array([])
numpy.array
import os import time import datetime import json import pandas as pd import numpy as np from pathlib import Path from tqdm import tqdm from typing import List, Optional class PrepareData: """ Limpiar y extraer las series de tiempo de una tabla CSV + Asegurar fechas continuas, completar con 0 las no registradas + Separar series de tiempo de acuerdo al identificador que se eliga (Ej: id_producto, id_producto + cadena) + Guardar todas las series de tiempo generadas con el nombre de su identificador en formato numpy. Además, guardar un archivo json con la lista de timesteps y los nombres de las features de cada serie de tiempo """ def __init__(self, path_data: str, colname_datetime: str, colname_features: List[str], colname_id_time_series: str = None,): """ + Los datos son cargados desde 'path_data'. + 'colname_datetime' corresponde a la columna que contiene las fechas. + Se crea una serie de tiempo por cada valor distinto en la columna 'colname_id_time_series'. Si esta es None, se considera que los datos corresponden a una sola serie de tiempo. """ self.path_data = path_data self.colname_datetime = colname_datetime self.colname_features = colname_features self.colname_id_time_series = colname_id_time_series self.time_series = {} # Diccionario para guardar series de tiempo por su id def __call__(self,): "Cargar los datos y generar las series de tiempo" self.load_data() # Cargar datos self.get_id_time_series() # Obtener id de cada serie de tiempo self.get_timesteps() # Obtener rango de fechas self.get_minmax() # Obtener minimos y maximos por feature self.get_mean_std() # Obtener promedio y desv std por feature print("Generando series de tiempo") time.sleep(1) for id_time_serie in tqdm(self.id_time_series): self.get_time_serie(id_time_serie) def load_data(self,): "Cargar datos" ALLOWED_FILES = [".csv"] # En caso de agregar mas formas de cargar. Ej: xlsx, pickle. # Extension del archivo proporcionado extension = os.path.splitext(self.path_data)[-1] # Verificar si es uno de los archivos que podemos cargar assert extension in set(ALLOWED_FILES), "Archivo debe ser uno de estos {}. El suyo '{}'".format(ALLOWED_FILES, extension) # Cargar el archivo if self._file_exists(filename = self.path_data): self.data = pd.read_csv(self.path_data) print("Archivo cargado desde {}".format(self.path_data)) def get_id_time_series(self,): "Definir el identificador de cada serie de tiempo a generar" self.colname_id = "ID_ts" self.data[self.colname_id] = self.data[self.colname_id_time_series].apply(lambda row: "_".join([ str(c) + "-" + str(r) for c,r in zip(self.colname_id_time_series,row) ]), axis=1) # Total de series de tiempo que se van a extraer self.id_time_series = list(set(self.data[self.colname_id].tolist())) total_id = len(self.id_time_series) print("Se encontraron {} series de tiempo con id {}.".format(total_id, self.colname_id)) def get_time_serie(self, id_time_serie): """Obtener serie de tiempo para un id, en el rango total de fechas. Guardar la serie de tiempo generada en el atributo .time_series """ # Extraer datos de la serie de tiempo solicitada cols = [self.colname_datetime] cols.extend(self.colname_features) time_serie = self.data.query("`ID_ts` == '{}'".format(id_time_serie))[cols].copy() time_serie_by_date = {d.get(self.colname_datetime): [d.get(feature) for feature in self.colname_features] for d in time_serie.to_dict("records")} # Extraer las fechas dates_time_serie = list(time_serie_by_date.keys()) # Construir la serie de tiempo en el rango total de fechas rows = [] for date in self.timesteps: str_date = self.date_to_str(date) if str_date in dates_time_serie: date_values = time_serie_by_date.get(str_date) #info_date = time_serie_by_date.get(str_date) #date_values = info_date#[info_date for feature in self.colname_features] else: date_values = [0 for _ in self.colname_features] rows.append(date_values) self.time_series[id_time_serie] = np.array(rows) def get_timesteps(self,): "Obtener rango de fechas" # Obtener la columna con todas las fechas dates = self.data[self.colname_datetime].tolist() # Transformar a datetime dates = [self.str_to_date(date) for date in dates] # Calcular fecha minima y maxima self.min_date = min(dates) self.max_date = max(dates) # Obtener el listado de timesteps n_days = (self.max_date-self.min_date).days + 1 # todos los dias incluidos inicial y final self.timesteps = [ self.add_days(self.min_date, days) for days in range(n_days)] print(f"Datos desde {self.date_to_str(self.min_date)} hasta {self.date_to_str(self.max_date)}, ({n_days} dias) ") def get_minmax(self,): self.list_min = self.data[self.colname_features].min(axis=0).tolist() self.list_max = self.data[self.colname_features].max(axis=0).tolist() def get_mean_std(self,): self.list_mean = self.data[self.colname_features].mean(axis=0).tolist() self.list_std = self.data[self.colname_features].std(axis=0).tolist() def save(self,): """Guardar series de tiempo generadas como numpy y un archivo de configuracion con los timesteps, features y paths a los numpy""" folder = Path("time_series") folder.mkdir(exist_ok=True) folder.joinpath("numpy").mkdir(exist_ok=True) print("Guardando series de tiempo") time.sleep(1) for name_ts, ts_array in tqdm(self.time_series.items()): path_save = str(folder.joinpath("numpy/{}.npy".format(name_ts)))
np.save(path_save, ts_array)
numpy.save
import numpy as np from scipy.interpolate import interp2d, NearestNDInterpolator from nbodykit.utils import DistributedArray from nbodykit.lab import BigFileCatalog, MultipleSpeciesCatalog from nbodykit.cosmology.cosmology import Cosmology from pmesh.pm import ParticleMesh from sfr import logSFR_Behroozi gb_k_B = 1.38064852e-16 # Boltzmann constant in unit of erg K^-1 gb_L_sun = 3.83e33 # in unit of erg/s gb_c = 2.99792458e5 # in units of km/s gb_len_conv = 3.086e19 # conversion factor from Mpc to km gb_h = 0.677 cosmodef = {'omegam':0.309167, 'h':0.677, 'omegab':0.048} cosmo = Cosmology.from_dict(cosmodef) def H(z): return 100.* cosmo.h * cosmo.efunc(z) # ########################################### ########################################### # ########################################### MODELS ########################################### # ########################################### ########################################### class ModelHI_A(): def __init__(self, aa): self.aa = aa self.zz = 1/aa-1 self.alp = (1+2*self.zz)/(2+2*self.zz) #self.mcut = 1e9*( 1.8 + 15*(3*self.aa)**8) self.mcut = 3e9*( 1 + 10*(3*self.aa)**8) ###self.normhalo = 3e5*(1+(3.5/self.zz)**6) ###self.normhalo = 3e7 *(4+(3.5/self.zz)**6) self.normhalo = 8e5*(1+(3.5/self.zz)**6) self.normsat = self.normhalo*(1.75 + 0.25*self.zz) self.normsat *= 0.5 #THis is to avoid negative masses #z=1 if np.abs(self.zz-1.0)<0.1: self.alp = 0.76 self.mcut = 2.6e10 self.normhalo = 4.6e8 self.normsat = self.normsat/5 #z=0.5 if np.abs(self.zz-0.5)<0.1: self.alp = 0.63 self.mcut = 3.7e10 self.normhalo = 9.8e8 self.normsat = self.normsat/100 #z=0 if np.abs(self.zz - 0.0)<0.1: #print('Modify') self.alp = 0.49 self.mcut = 5.2e10 self.normhalo = 2.1e9 self.normsat = self.normsat/100 def assignline(self, halocat, cencat, satcat): mHIhalo = self.assignhalo(halocat['Mass'].compute()) mHIsat = self.assignsat(satcat['Mass'].compute()) mHIcen = self.assigncen(mHIhalo, mHIsat, satcat['GlobalID'].compute(), cencat.csize, cencat.comm) return mHIhalo, mHIcen, mHIsat def assignhalo(self, mhalo): xx = mhalo/self.mcut+1e-10 mHI = xx**self.alp * np.exp(-1/xx) mHI*= self.normhalo return mHI def assignsat(self, msat): xx = msat/self.mcut+1e-10 mHI = xx**self.alp * np.exp(-1/xx) mHI*= self.normsat return mHI def getinsat(self, mHIsat, satid, totalsize, localsize, comm): #print(comm.rank, np.all(np.diff(satid) >=0)) #diff = np.diff(satid) #if comm.rank == 260: # print(satid[:-1][diff <0], satid[1:][diff < 0]) da = DistributedArray(satid, comm) mHI = da.bincount(mHIsat, shared_edges=False) zerosize = totalsize - mHI.cshape[0] zeros = DistributedArray.cempty(cshape=(zerosize, ), dtype=mHI.local.dtype, comm=comm) zeros.local[...] = 0 mHItotal = DistributedArray.concat(mHI, zeros, localsize=localsize) return mHItotal def assigncen(self, mHIhalo, mHIsat, satid, censize, comm): #Assumes every halo has a central...which it does...usually mHItotal = self.getinsat(mHIsat, satid, censize, mHIhalo.size, comm) return mHIhalo - mHItotal.local def assignrsd(self, rsdfac, halocat, cencat, satcat, los=[0,0,1]): hrsdpos = halocat['Position']+halocat['Velocity']*los * rsdfac crsdpos = cencat['Position']+cencat['Velocity']*los * rsdfac srsdpos = satcat['Position']+satcat['Velocity']*los * rsdfac return hrsdpos, crsdpos, srsdpos def createmesh(self, bs, nc, positions, weights): '''use this to create mesh of HI ''' pm = ParticleMesh(BoxSize=bs, Nmesh=[nc,nc,nc]) mesh = pm.create(mode='real', value=0) comm = pm.comm rankweight = sum([wt.sum() for wt in weights]) totweight = comm.allreduce(rankweight) for wt in weights: wt /= totweight/float(nc)**3 for i in range(len(positions)): lay = pm.decompose(positions[i]) mesh.paint(positions[i], mass=weights[i], layout=lay, hold=True) return mesh def createmesh_catalog(self, bs, nc, halocat, cencat, satcat, mode='galaxies', position='RSDpos', weight='HImass', tofield=False): '''use this to create mesh of HI ''' comm = halocat.comm if mode == 'halos': catalogs = [halocat] elif mode == 'galaxies': catalogs = [cencat, satcat] elif mode == 'all': catalogs = [halocat, cencat, satcat] else: print('Mode not recognized') rankweight = sum([cat[weight].sum().compute() for cat in catalogs]) totweight = comm.allreduce(rankweight) for cat in catalogs: cat[weight] /= totweight/float(nc)**3 allcat = MultipleSpeciesCatalog(['%d'%i for i in range(len(catalogs))], *catalogs) mesh = allcat.to_mesh(BoxSize=bs,Nmesh=[nc,nc,nc],\ position=position,weight=weight) if tofield: mesh = mesh.to_field() return mesh # ########################################### class ModelHI_A2(ModelHI_A): '''Same as model A with a different RSD for satellites ''' def __init__(self, aa): super().__init__(aa) def assignrsd(self, rsdfac, halocat, cencat, satcat, los=[0,0,1]): hrsdpos = halocat['Position']+halocat['Velocity']*los * rsdfac crsdpos = cencat['Position']+cencat['Velocity']*los * rsdfac srsdpos = satcat['Position']+satcat['Velocity_HI']*los * rsdfac return hrsdpos, crsdpos, srsdpos # ########################################### class ModelHI_B(): def __init__(self, aa, h=0.6776): self.aa = aa self.zz = 1/aa-1 self.h = h #self.mcut = 1e9*( 1.8 + 15*(3*self.aa)**8 ) self.mcut = 3e9*( 1 + 10*(3*self.aa)**8) self.normhalo = 1 #self.slope, self.intercept = np.polyfit([8.1, 11], [0.2, -1.], deg=1) def assignline(self, halocat, cencat, satcat): mHIsat = self.assignsat(satcat['Mass'].compute()) mHIcen = self.assigncen(cencat['Mass'].compute()) mHIhalo = self.assignhalo(mHIcen, mHIsat, satcat['GlobalID'].compute(), halocat.csize, halocat.comm) return mHIhalo, mHIcen, mHIsat def assignhalo(self, mHIcen, mHIsat, satid, hsize, comm): #Assumes every halo has a central...which it does...usually mHItotal = self.getinsat(mHIsat, satid, hsize, mHIcen.size, comm) return mHIcen + mHItotal.local def getinsat(self, mHIsat, satid, totalsize, localsize, comm): da = DistributedArray(satid, comm) mHI = da.bincount(mHIsat, shared_edges=False) zerosize = totalsize - mHI.cshape[0] zeros = DistributedArray.cempty(cshape=(zerosize, ), dtype=mHI.local.dtype, comm=comm) zeros.local[...] = 0 mHItotal = DistributedArray.concat(mHI, zeros, localsize=localsize) return mHItotal def _assign(self, mstellar): '''Takes in M_stellar and gives M_HI in M_solar ''' mm = 3e8 #5e7 f = 0.18 #0.35 alpha = 0.4 #0.35 mfrac = f*(mm/(mstellar + mm))**alpha mh1 = mstellar * mfrac return mh1 def assignsat(self, msat, scatter=None): mstellar = self.moster(msat, scatter=scatter)/self.h mh1 = self._assign(mstellar) mh1 = mh1*self.h #* np.exp(-self.mcut/msat) return mh1 def assigncen(self, mcen, scatter=None): mstellar = self.moster(mcen, scatter=scatter)/self.h mh1 = self._assign(mstellar) mh1 = mh1*self.h #* np.exp(-self.mcut/mcen) return mh1 def moster(self, Mhalo, scatter=None): """ moster(Minf,z): Returns the stellar mass (M*/h) given Minf and z from Table 1 and Eq. (2,11-14) of Moster++13 [1205.5807]. This version now works in terms of Msun/h units, convert to Msun units in the function To get "true" stellar mass, add 0.15 dex of lognormal scatter. To get "observed" stellar mass, add between 0.1-0.45 dex extra scatter. """ z = self.zz Minf = Mhalo/self.h zzp1 = z/(1+z) M1 = 10.0**(11.590+1.195*zzp1) mM = 0.0351 - 0.0247*zzp1 beta = 1.376 - 0.826*zzp1 gamma = 0.608 + 0.329*zzp1 Mstar = 2*mM/( (Minf/M1)**(-beta) + (Minf/M1)**gamma ) Mstar*= Minf if scatter is not None: Mstar = 10**(np.log10(Mstar) + np.random.normal(0, scatter, Mstar.size)) return Mstar*self.h # def assignrsd(self, rsdfac, halocat, cencat, satcat, los=[0,0,1]): hrsdpos = halocat['Position']+halocat['Velocity']*los * rsdfac crsdpos = cencat['Position']+cencat['Velocity']*los * rsdfac srsdpos = satcat['Position']+satcat['Velocity']*los * rsdfac return hrsdpos, crsdpos, srsdpos def createmesh(self, bs, nc, positions, weights): '''use this to create mesh of HI ''' pm = ParticleMesh(BoxSize=bs,Nmesh=[nc,nc,nc]) mesh = pm.create(mode='real', value=0) comm = pm.comm rankweight = sum([wt.sum() for wt in weights]) totweight = comm.allreduce(rankweight) for wt in weights: wt /= totweight/float(nc)**3 for i in range(len(positions)): lay = pm.decompose(positions[i]) mesh.paint(positions[i], mass=weights[i], layout=lay, hold=True) return mesh def createmesh_catalog(self, bs, nc, halocat, cencat, satcat, mode='galaxies', position='RSDpos', weight='HImass', tofield=False): '''use this to create mesh of HI ''' comm = halocat.comm if mode == 'halos': catalogs = [halocat] elif mode == 'galaxies': catalogs = [cencat, satcat] elif mode == 'all': catalogs = [halocat, cencat, satcat] else: print('Mode not recognized') rankweight = sum([cat[weight].sum().compute() for cat in catalogs]) totweight = comm.allreduce(rankweight) for cat in catalogs: cat[weight] /= totweight/float(nc)**3 allcat = MultipleSpeciesCatalog(['%d'%i for i in range(len(catalogs))], *catalogs) mesh = allcat.to_mesh(BoxSize=bs,Nmesh=[nc,nc,nc],\ position=position,weight=weight) if tofield: mesh = mesh.to_field() return mesh # ########################################### class ModelHI_C(ModelHI_A): '''Vanilla model with no centrals and satellites, only halo Halos have the COM velocity but do not have any dispersion over it ''' def __init__(self, aa): super().__init__(aa) self.normsat = 0 #self.alp = 1.0 #self.mcut = 1e9 #self.normhalo = 2e5*(1+3/self.zz**2) #self.normhalo = 1.1e5*(1+4/self.zz) self.alp = 0.9 self.mcut = 1e10 self.normhalo = 3.5e6*(1+1/self.zz) def derivate(self, param, delta): if param == 'alpha': self.alp = (1+delta)*self.alp elif param == 'mcut': self.mcut = 10**( (1+delta)*np.log10(self.mcut)) elif param == 'norm': self.mcut = 10**( (1+delta)*np.log10(self.normhalo)) else: print('Parameter to vary not recongnized. Should be "alpha", "mcut" or "norm"') def assignline(self, halocat, cencat, satcat): mHIhalo = self.assignhalo(halocat['Mass'].compute()) mHIsat = self.assignsat(satcat['Mass'].compute()) mHIcen = self.assigncen(cencat['Mass'].compute()) return mHIhalo, mHIcen, mHIsat def assignsat(self, msat): return msat*0 def assigncen(self, mcen): return mcen*0 def createmesh(self, bs, nc, positions, weights): '''use this to create mesh of HI ''' pm = ParticleMesh(BoxSize=bs,Nmesh=[nc,nc,nc]) mesh = pm.create(mode='real', value=0) comm = pm.comm rankweight = sum([wt.sum() for wt in weights]) totweight = comm.allreduce(rankweight) for wt in weights: wt /= totweight/float(nc)**3 for i in range(len(positions)): lay = pm.decompose(positions[i]) mesh.paint(positions[i], mass=weights[i], layout=lay, hold=True) return mesh def createmesh_catalog(self, bs, nc, halocat, cencat, satcat, mode='halos', position='RSDpos', weight='HImass', tofield=False): '''use this to create mesh of HI ''' comm = halocat.comm if mode == 'halos': catalogs = [halocat] else: print('Mode not recognized') rankweight = sum([cat[weight].sum().compute() for cat in catalogs]) totweight = comm.allreduce(rankweight) for cat in catalogs: cat[weight] /= totweight/float(nc)**3 allcat = MultipleSpeciesCatalog(['%d'%i for i in range(len(catalogs))], *catalogs) mesh = allcat.to_mesh(BoxSize=bs,Nmesh=[nc,nc,nc],\ position=position,weight=weight) if tofield: mesh = mesh.to_field() return mesh # ########################################### class ModelHI_C2(ModelHI_C): '''Vanilla model with no centrals and satellites, only halo Halos have the COM velocity and a dispersion from VN18 added over it ''' def __init__(self, aa): super().__init__(aa) self.vdisp = self._setupvdisp() def _setupvdisp(self): vzdisp0 = np.array([31, 34, 39, 44, 51, 54]) vzdispal = np.array([0.35, 0.37, 0.38, 0.39, 0.39, 0.40]) vdispz = np.arange(0, 6) vdisp0fit = np.polyfit(vdispz, vzdisp0, 1) vdispalfit = np.polyfit(vdispz, vzdispal, 1) vdisp0 = self.zz * vdisp0fit[0] + vdisp0fit[1] vdispal = self.zz * vdispalfit[0] + vdispalfit[1] return lambda M: vdisp0*(M/1e10)**vdispal def assignrsd(self, rsdfac, halocat, cencat, satcat, los=[0,0,1]): dispersion = np.random.normal(0, self.vdisp(halocat['Mass'].compute())).reshape(-1, 1) hvel = halocat['Velocity']*los + dispersion*los hrsdpos = halocat['Position']+ hvel*rsdfac crsdpos = cencat['Position']+cencat['Velocity']*los * rsdfac srsdpos = satcat['Position']+satcat['Velocity']*los * rsdfac return hrsdpos, crsdpos, srsdpos # ########################################### class ModelHI_D(): '''Vanilla model with no centrals and satellites, only halo Halos have the COM velocity and a dispersion from VN18 added over it ''' def __init__(self, aa): self.aa = aa self.zz = 1/aa-1 self.alp = (1.+2*self.zz)/(2.+2*self.zz) self.mcut = 6e10*np.exp(-0.75*self.zz) + 1 self.normhalo = 1.7e9/(1+self.zz)**(5./3.) self.nsatfhalo = 0.1 def fsat_h1(self, mhalo): logmass = np.log10(mhalo) mminf = 9.5 #10 - 0.2*self.zz mhalf = 12.8 #13 - 0.1*self.zz fsat = 0.5/(mhalf-mminf)**2 * (logmass-mminf)**2 fsat[logmass < mminf] = 0 fsat[fsat > 0.8] = 0.8 return fsat def nsat_h1(self, mhalo): return ((1 + self.nsatfhalo*mhalo / self.mcut)**0.5).astype(int) #2 #int(mhalo*0 + 2) def vdisp(self, mhalo): h = cosmo.efunc(self.zz) return 1100. * (h * mhalo / 1e15) ** 0.33333 def assignline(self, halocat, cencat, satcat): if halocat.comm.rank == 0: if cencat is not None: print("\nCencat not used") if satcat is not None: print("\nSatcat not used") mHIhalo = self.assignhalo(halocat['Mass'].compute()) mHIsat = self.assignsat(halocat['Mass'].compute(), mHIhalo) mHIcen = self.assigncen(mHIhalo, mHIsat) #now repeat satellite catalog and reduce mass nsat = self.nsat_h1(halocat['Mass'].compute()) mHIsat = np.repeat(mHIsat/nsat, nsat, axis=0) return mHIhalo, mHIcen, mHIsat def assignhalo(self, mhalo): xx = (mhalo + 1e-30)/self.mcut+1e-10 mHI = xx**self.alp * np.exp(-1.0/xx) mHI*= self.normhalo return mHI def assignsat(self, mhalo, mh1halo): frac = self.fsat_h1(mhalo) mHI = mh1halo*frac return mHI def assigncen(self, mHIhalo, mHIsat): #Assumes every halo has a central...which it does...usually return mHIhalo - mHIsat def assignrsd(self, rsdfac, halocat, cencat, satcat, los=[0,0,1]): hrsdpos = halocat['Position']+halocat['Velocity']*los * rsdfac crsdpos = hrsdpos #cencat['Position']+cencat['Velocity']*los * rsdfac #now satellites nsat = self.nsat_h1(halocat['Mass'].compute()) dispersion = np.random.normal(0, np.repeat(self.vdisp(halocat['Mass'].compute()), nsat)).reshape(-1, 1)*los hvel = np.repeat(halocat['Velocity'].compute(), nsat, axis=0)*los hveldisp = hvel + dispersion srsdpos = np.repeat(halocat['Position'].compute(), nsat, axis=0) + hveldisp*rsdfac return hrsdpos, crsdpos, srsdpos def createmesh(self, bs, nc, positions, weights): '''use this to create mesh of HI ''' pm = ParticleMesh(BoxSize=bs,Nmesh=[nc,nc,nc]) mesh = pm.create(mode='real', value=0) comm = pm.comm rankweight = sum([wt.sum() for wt in weights]) totweight = comm.allreduce(rankweight) for wt in weights: wt /= totweight/float(nc)**3 for i in range(len(positions)): lay = pm.decompose(positions[i]) mesh.paint(positions[i], mass=weights[i], layout=lay, hold=True) return mesh # ########################################### class ModelHI_D2(): '''Vanilla model with no centrals and satellites, only halo Halos have the COM velocity and a dispersion from VN18 added over it ''' def __init__(self, aa): self.aa = aa self.zz = 1/aa-1 self.alp = (1.+2*self.zz)/(2.+2*self.zz) self.mcut = 6e10*
np.exp(-0.75*self.zz)
numpy.exp
from collections import defaultdict import numpy as np import torch from tqdm import tqdm from env.envs import make from learners.policies_algs import REINFORCE from runners.runners import EnvRunnerNoController from train_nas import make_rl_learner, make_nas_env, make_controller from utils.additional import get_device from utils.arguments import args from utils.trajectory_transforms import get_nas_transforms def train(device, args, env_id='FreewayNoFrameskip-v0', logdir=' '): args = args['atari'] env = make(env_id=env_id, nenvs=args['nenvs']) learner = make_rl_learner(env, args, device) nasenv = make_nas_env(learner, args, device) controller = make_controller(learner.model.space, device) nasrunner = EnvRunnerNoController(nasenv, args['num_nas_runner_steps'], asarray=False, transforms=get_nas_transforms(), step_var=nasenv.summarizer.step_var) optimizer = torch.optim.Adam(controller.model.parameters(), args['nas_lr'], eps=args['optimizer_epsilon']) lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args['num_train_steps']) nasalgo = REINFORCE(controller, optimizer, lr_scheduler=lr_scheduler, entropy_coef=args['nas_entropy_coef'], baseline_momentum=args['nas_baseline_momentum'], step_var=nasenv.summarizer.step_var) with tqdm(total=args['num_train_steps']) as pbar: while int(learner.runner.step_var) < args['num_train_steps']: pbar.update(int(learner.runner.step_var) - pbar.n) trajectory = defaultdict(list, {"actions": []}) observations = [] rewards = [] resets = [] if controller.is_recurrent(): nasrunner.state["policy_state"] = controller.get_state() nasrunner.state["env_steps"] = nasrunner.nsteps for i in range(nasrunner.nsteps): act = controller.act(nasrunner.state["latest_observation"]) done = nasrunner.get_next(act, observations, rewards, resets, trajectory) # Only reset if the env is not batched. Batched envs should auto-reset. if not nasrunner.nenvs and np.all(done): nasrunner.state["env_steps"] = i + 1 nasrunner.state["latest_observation"] = nasrunner.env.reset() if nasrunner.cutoff or (nasrunner.cutoff is None and controller.is_recurrent()): pass trajectory.update(observations=observations, rewards=rewards, resets=resets) if nasrunner.asarray: for key, val in trajectory.items(): try: trajectory[key] =
np.asarray(val)
numpy.asarray
"""Implement the GeometricProgram class""" import sys import warnings as pywarnings from time import time from collections import defaultdict import numpy as np from ..repr_conventions import lineagestr from ..small_classes import CootMatrix, SolverLog, Numbers, FixedScalar from ..small_scripts import appendsolwarning, initsolwarning from ..keydict import KeyDict from ..solution_array import SolutionArray from .set import ConstraintSet from ..exceptions import (InvalidPosynomial, Infeasible, UnknownInfeasible, PrimalInfeasible, DualInfeasible, UnboundedGP, InvalidLicense) DEFAULT_SOLVER_KWARGS = {"cvxopt": {"kktsolver": "ldl"}} SOLUTION_TOL = {"cvxopt": 1e-3, "mosek_cli": 1e-4, "mosek_conif": 1e-3} class MonoEqualityIndexes: "Class to hold MonoEqualityIndexes" def __init__(self): self.all = set() self.first_half = set() def _get_solver(solver, kwargs): """Get the solverfn and solvername associated with solver""" if solver is None: from .. import settings try: solver = settings["default_solver"] except KeyError: raise ValueError("No default solver was set during build, so" " solvers must be manually specified.") if solver == "cvxopt": from ..solvers.cvxopt import optimize elif solver == "mosek_cli": from ..solvers.mosek_cli import optimize_generator optimize = optimize_generator(**kwargs) elif solver == "mosek_conif": from ..solvers.mosek_conif import optimize elif hasattr(solver, "__call__"): solver, optimize = solver.__name__, solver else: raise ValueError("Unknown solver '%s'." % solver) return solver, optimize class GeometricProgram: # pylint: disable=too-many-instance-attributes """Standard mathematical representation of a GP. Attributes with side effects ---------------------------- `solver_out` and `solve_log` are set during a solve `result` is set at the end of a solve if solution status is optimal Examples -------- >>> gp = gpkit.constraints.gp.GeometricProgram( # minimize x, [ # subject to x >= 1, ], {}) >>> gp.solve() """ _result = solve_log = solver_out = model = v_ss = nu_by_posy = None choicevaridxs = integersolve = None def __init__(self, cost, constraints, substitutions, *, checkbounds=True, **_): self.cost, self.substitutions = cost, substitutions for key, sub in self.substitutions.items(): if isinstance(sub, FixedScalar): sub = sub.value if hasattr(sub, "units"): sub = sub.to(key.units or "dimensionless").magnitude self.substitutions[key] = sub if not isinstance(sub, (Numbers, np.ndarray)): raise TypeError("substitution {%s: %s} has invalid value type" " %s." % (key, sub, type(sub))) cost_hmap = cost.hmap.sub(self.substitutions, cost.vks) if any(c <= 0 for c in cost_hmap.values()): raise InvalidPosynomial("a GP's cost must be Posynomial") hmapgen = ConstraintSet.as_hmapslt1(constraints, self.substitutions) self.hmaps = [cost_hmap] + list(hmapgen) self.gen() # Generate various maps into the posy- and monomials if checkbounds: self.check_bounds(err_on_missing_bounds=True) def check_bounds(self, *, err_on_missing_bounds=False): "Checks if any variables are unbounded, through equality constraints." missingbounds = {} for var, locs in self.varlocs.items(): upperbound, lowerbound = False, False for i in locs: if i not in self.meq_idxs.all: if self.exps[i][var] > 0: # pylint:disable=simplifiable-if-statement upperbound = True else: lowerbound = True if upperbound and lowerbound: break if not upperbound: missingbounds[(var, "upper")] = "." if not lowerbound: missingbounds[(var, "lower")] = "." if not missingbounds: return {} # all bounds found in inequalities meq_bounds = gen_meq_bounds(missingbounds, self.exps, self.meq_idxs) fulfill_meq_bounds(missingbounds, meq_bounds) if missingbounds and err_on_missing_bounds: raise UnboundedGP( "\n\n".join("%s has no %s bound%s" % (v, b, x) for (v, b), x in missingbounds.items())) return missingbounds def gen(self): """Generates nomial and solve data (A, p_idxs) from posynomials. k [posys]: number of monomials (rows of A) present in each constraint m_idxs [mons]: monomial indices of each posynomial p_idxs [mons]: posynomial index of each monomial cs, exps [mons]: coefficient and exponents of each monomial varlocs: {vk: monomial indices of each variables' location} meq_idxs: {all indices of equality mons} and {the first index of each} varidxs: {vk: which column corresponds to it in A} A [mons, vks]: sparse array of each monomials' variables' exponents """ self.k = [len(hmap) for hmap in self.hmaps] self.m_idxs, self.p_idxs, self.cs, self.exps = [], [], [], [] self.varkeys = self.varlocs = defaultdict(list) self.meq_idxs = MonoEqualityIndexes() m_idx = 0 row, col, data = [], [], [] for p_idx, (N_mons, hmap) in enumerate(zip(self.k, self.hmaps)): self.p_idxs.extend([p_idx]*N_mons) self.m_idxs.append(slice(m_idx, m_idx+N_mons)) if getattr(self.hmaps[p_idx], "from_meq", False): self.meq_idxs.all.add(m_idx) if len(self.meq_idxs.all) > 2*len(self.meq_idxs.first_half): self.meq_idxs.first_half.add(m_idx) self.exps.extend(hmap) self.cs.extend(hmap.values()) for exp in hmap: if not exp: # space out A matrix with constants for mosek row.append(m_idx) col.append(0) data.append(0) for var in exp: self.varlocs[var].append(m_idx) m_idx += 1 self.p_idxs = np.array(self.p_idxs, "int32") # to use array equalities self.varidxs = {vk: i for i, vk in enumerate(self.varlocs)} self.choicevaridxs = {vk: i for i, vk in enumerate(self.varlocs) if vk.choices} for j, (var, locs) in enumerate(self.varlocs.items()): row.extend(locs) col.extend([j]*len(locs)) data.extend(self.exps[i][var] for i in locs) self.A = CootMatrix(row, col, data) # pylint: disable=too-many-statements, too-many-locals def solve(self, solver=None, *, verbosity=1, gen_result=True, **kwargs): """Solves a GeometricProgram and returns the solution. Arguments --------- solver : str or function (optional) By default uses a solver found during installation. If "mosek_conif", "mosek_cli", or "cvxopt", uses that solver. If a function, passes that function cs, A, p_idxs, and k. verbosity : int (default 1) If greater than 0, prints solver name and solve time. gen_result : bool (default True) If True, makes a human-readable SolutionArray from solver output. **kwargs : Passed to solver constructor and solver function. Returns ------- SolutionArray (or dict if gen_result is False) """ solvername, solverfn = _get_solver(solver, kwargs) if verbosity > 0: print("Using solver '%s'" % solvername) print(" for %i free variables" % len(self.varlocs)) print(" in %i posynomial inequalities." % len(self.k)) solverargs = DEFAULT_SOLVER_KWARGS.get(solvername, {}) solverargs.update(kwargs) if self.choicevaridxs and solvername == "mosek_conif": solverargs["choicevaridxs"] = self.choicevaridxs self.integersolve = True starttime = time() solver_out, infeasibility, original_stdout = {}, None, sys.stdout try: sys.stdout = SolverLog(original_stdout, verbosity=verbosity-2) solver_out = solverfn(c=self.cs, A=self.A, meq_idxs=self.meq_idxs, k=self.k, p_idxs=self.p_idxs, **solverargs) except Infeasible as e: infeasibility = e except InvalidLicense as e: raise InvalidLicense("license for solver \"%s\" is invalid." % solvername) from e except Exception as e: raise UnknownInfeasible("Something unexpected went wrong.") from e finally: self.solve_log = "\n".join(sys.stdout) sys.stdout = original_stdout self.solver_out = solver_out solver_out["solver"] = solvername solver_out["soltime"] = time() - starttime if verbosity > 0: print("Solving took %.3g seconds." % solver_out["soltime"]) if infeasibility: if isinstance(infeasibility, PrimalInfeasible): msg = ("The model had no feasible points; relaxing some" " constraints or constants will probably fix this.") elif isinstance(infeasibility, DualInfeasible): msg = ("The model ran to an infinitely low cost" " (or was otherwise dual infeasible); bounding" " the right variables will probably fix this.") elif isinstance(infeasibility, UnknownInfeasible): msg = ("Solver failed for an unknown reason. Relaxing" " constraints/constants, bounding variables, or" " using a different solver might fix it.") if verbosity > 0 and solver_out["soltime"] < 1 and self.model: print(msg + "\nSince the model solved in less than a second," " let's run `.debug()` to analyze what happened.\n") return self.model.debug(solver=solver) # else, raise a clarifying error msg += (" Running `.debug()` or increasing verbosity may pinpoint" " the trouble.") raise infeasibility.__class__(msg) from infeasibility if not gen_result: return solver_out # else, generate a human-readable SolutionArray self._result = self.generate_result(solver_out, verbosity=verbosity-2) return self.result @property def result(self): "Creates and caches a result from the raw solver_out" if not self._result: self._result = self.generate_result(self.solver_out) return self._result def generate_result(self, solver_out, *, verbosity=0, dual_check=True): "Generates a full SolutionArray and checks it." if verbosity > 0: soltime = solver_out["soltime"] tic = time() # result packing # result = self._compile_result(solver_out) # NOTE: SIDE EFFECTS if verbosity > 0: print("Result packing took %.2g%% of solve time." % ((time() - tic) / soltime * 100)) tic = time() # solution checking # initsolwarning(result, "Solution Inconsistency") try: tol = SOLUTION_TOL.get(solver_out["solver"], 1e-5) self.check_solution(result["cost"], solver_out['primal'], solver_out["nu"], solver_out["la"], tol) except Infeasible as chkerror: msg = str(chkerror) if not ("Dual" in msg and not dual_check): appendsolwarning(msg, None, result, "Solution Inconsistency") if verbosity > -4: print("Solution check warning: %s" % msg) if verbosity > 0: print("Solution checking took %.2g%% of solve time." % ((time() - tic) / soltime * 100)) return result def _generate_nula(self, solver_out): if "nu" in solver_out: # solver gave us monomial sensitivities, generate posynomial ones solver_out["nu"] = nu = np.ravel(solver_out["nu"]) nu_by_posy = [nu[mi] for mi in self.m_idxs] solver_out["la"] = la = np.array([sum(nup) for nup in nu_by_posy]) elif "la" in solver_out: la = np.ravel(solver_out["la"]) if len(la) == len(self.hmaps) - 1: # assume solver dropped the cost's sensitivity (always 1.0) la = np.hstack(([1.0], la)) # solver gave us posynomial sensitivities, generate monomial ones solver_out["la"] = la z = np.log(self.cs) + self.A.dot(solver_out["primal"]) m_iss = [self.p_idxs == i for i in range(len(la))] nu_by_posy = [la[p_i]*np.exp(z[m_is])/sum(np.exp(z[m_is])) for p_i, m_is in enumerate(m_iss)] solver_out["nu"] =
np.hstack(nu_by_posy)
numpy.hstack
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Quantum SVM algorithm.""" import logging import sys import numpy as np from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister from qiskit.tools import parallel_map from qiskit.tools.events import TextProgressBar from qiskit.circuit import ParameterVector from qiskit.aqua import aqua_globals from qiskit.aqua.algorithms import QuantumAlgorithm from qiskit.aqua import AquaError from qiskit.aqua.algorithms.many_sample.qsvm._qsvm_binary import _QSVM_Binary from qiskit.aqua.algorithms.many_sample.qsvm._qsvm_multiclass import _QSVM_Multiclass from qiskit.aqua.utils.dataset_helper import get_num_classes from qiskit.aqua.utils import split_dataset_to_data_and_labels logger = logging.getLogger(__name__) # pylint: disable=invalid-name class QSVM(QuantumAlgorithm): """ Quantum SVM algorithm. Internally, it will run the binary classification or multiclass classification based on how many classes the data has. """ CONFIGURATION = { 'name': 'QSVM', 'description': 'QSVM Algorithm', 'input_schema': { '$schema': 'http://json-schema.org/draft-07/schema#', 'id': 'QSVM_schema', 'type': 'object', 'properties': { }, 'additionalProperties': False }, 'problems': ['classification'], 'depends': [ {'pluggable_type': 'multiclass_extension'}, {'pluggable_type': 'feature_map', 'default': { 'name': 'SecondOrderExpansion', 'depth': 2 } }, ], } BATCH_SIZE = 1000 def __init__(self, feature_map, training_dataset=None, test_dataset=None, datapoints=None, multiclass_extension=None): """ Args: feature_map (FeatureMap): feature map module, used to transform data training_dataset (dict, optional): training dataset. test_dataset (dict, optional): testing dataset. datapoints (numpy.ndarray, optional): prediction dataset. multiclass_extension (MultiExtension, optional): if number of classes > 2 then a multiclass scheme is needed. Raises: AquaError: use binary classifier for classes > 3 """ super().__init__() # check the validity of provided arguments if possible if training_dataset is not None: is_multiclass = get_num_classes(training_dataset) > 2 if is_multiclass: if multiclass_extension is None: raise AquaError('Dataset has more than two classes. ' 'A multiclass extension must be provided.') else: if multiclass_extension is not None: logger.warning("Dataset has just two classes. " "Supplied multiclass extension will be ignored") self.training_dataset = None self.test_dataset = None self.datapoints = None self.class_to_label = None self.label_to_class = None self.num_classes = None self.setup_training_data(training_dataset) self.setup_test_data(test_dataset) self.setup_datapoint(datapoints) self.feature_map = feature_map self.num_qubits = self.feature_map.num_qubits if multiclass_extension is None: qsvm_instance = _QSVM_Binary(self) else: qsvm_instance = _QSVM_Multiclass(self, multiclass_extension) self.instance = qsvm_instance @staticmethod def _construct_circuit(x, feature_map, measurement, is_statevector_sim=False): """ If `is_statevector_sim` is True, we only build the circuits for Psi(x1)|0> rather than Psi(x2)^dagger Psi(x1)|0>. """ x1, x2 = x if len(x1) != len(x2): raise ValueError("x1 and x2 must be the same dimension.") q = QuantumRegister(feature_map.num_qubits, 'q') c = ClassicalRegister(feature_map.num_qubits, 'c') qc = QuantumCircuit(q, c) # write input state from sample distribution qc += feature_map.construct_circuit(x1, q) if not is_statevector_sim: qc += feature_map.construct_circuit(x2, q).inverse() if measurement: qc.barrier(q) qc.measure(q, c) return qc @staticmethod def _compute_overlap(idx, results, is_statevector_sim, measurement_basis): if is_statevector_sim: i, j = idx # TODO: qiskit-terra did not support np.int64 to lookup result v_a = results.get_statevector(int(i)) v_b = results.get_statevector(int(j)) # |<0|Psi^daggar(y) x Psi(x)|0>|^2, take the amplitude tmp = np.vdot(v_a, v_b) kernel_value = np.vdot(tmp, tmp).real # pylint: disable=no-member else: result = results.get_counts(idx) kernel_value = result.get(measurement_basis, 0) / sum(result.values()) return kernel_value def construct_circuit(self, x1, x2, measurement=False): """ Generate inner product of x1 and x2 with the given feature map. The dimension of x1 and x2 must be the same. Args: x1 (numpy.ndarray): data points, 1-D array, dimension is D x2 (numpy.ndarray): data points, 1-D array, dimension is D measurement (bool): add measurement gates at the end Returns: QuantumCircuit: constructed circuit """ return QSVM._construct_circuit((x1, x2), self.feature_map, measurement) @staticmethod def get_kernel_matrix(quantum_instance, feature_map, x1_vec, x2_vec=None): """ Construct kernel matrix, if x2_vec is None, self-innerproduct is conducted. Notes: When using `statevector_simulator`, we only build the circuits for Psi(x1)|0> rather than Psi(x2)^dagger Psi(x1)|0>, and then we perform the inner product classically. That is, for `statevector_simulator`, the total number of circuits will be O(N) rather than O(N^2) for `qasm_simulator`. Args: quantum_instance (QuantumInstance): quantum backend with all settings feature_map (FeatureMap): a feature map that maps data to feature space x1_vec (numpy.ndarray): data points, 2-D array, N1xD, where N1 is the number of data, D is the feature dimension x2_vec (numpy.ndarray): data points, 2-D array, N2xD, where N2 is the number of data, D is the feature dimension Returns: numpy.ndarray: 2-D matrix, N1xN2 """ use_parameterized_circuits = feature_map.support_parameterized_circuit if x2_vec is None: is_symmetric = True x2_vec = x1_vec else: is_symmetric = False is_statevector_sim = quantum_instance.is_statevector measurement = not is_statevector_sim measurement_basis = '0' * feature_map.num_qubits mat = np.ones((x1_vec.shape[0], x2_vec.shape[0])) # get all indices if is_symmetric: mus, nus = np.triu_indices(x1_vec.shape[0], k=1) # remove diagonal term else: mus, nus =
np.indices((x1_vec.shape[0], x2_vec.shape[0]))
numpy.indices
from __future__ import print_function, division, absolute_import import unittest import imp import numpy as np from openmdao.api import Problem, Group, IndepVarComp from openconcept.utilities.dvlabel import DVLabel from openmdao.utils.assert_utils import assert_near_equal, assert_check_partials class TestBasic(unittest.TestCase): def setUp(self): self.nn = 3 self.p = Problem(model=Group()) ivc = IndepVarComp() ivc.add_output(name='a_to_be_renamed', shape=(self.nn,)) ivc.add_output(name='b_to_be_renamed', shape=(self.nn,)) dvlabel = DVLabel([['a_to_be_renamed','a',np.ones(self.nn),None], ['b_to_be_renamed','b',np.ones(self.nn),None]]) self.p.model.add_subsystem(name='ivc', subsys=ivc, promotes_outputs=['*']) self.p.model.add_subsystem(name='dvlabel', subsys=dvlabel, promotes_inputs=['*'], promotes_outputs=['*']) self.p.setup() self.p['a_to_be_renamed'] = np.random.rand(self.nn,) self.p['b_to_be_renamed'] = np.random.rand(self.nn,) self.p.run_model() def test_results(self): a_in = self.p['a_to_be_renamed'] b_in = self.p['b_to_be_renamed'] a_out = self.p['a'] b_out = self.p['b'] assert_near_equal(a_in, a_out,1e-16) assert_near_equal(b_in, b_out,1e-16) def test_partials(self): partials = self.p.check_partials(method='fd', out_stream=None) assert_check_partials(partials) class TestUnits(unittest.TestCase): def setUp(self): self.nn = 3 self.p = Problem(model=Group()) ivc = IndepVarComp() ivc.add_output(name='a_to_be_renamed', shape=(self.nn,), units='m/s') ivc.add_output(name='b_to_be_renamed', shape=(self.nn,), units='kg') dvlabel = DVLabel([['a_to_be_renamed','a',np.ones(self.nn),'m/s'], ['b_to_be_renamed','b',
np.ones(self.nn)
numpy.ones
import os import math import cv2 as cv import scipy import numpy as np import matplotlib import matplotlib.pyplot as plt from scipy.stats import describe, linregress from scipy.signal import detrend from matplotlib.animation import FuncAnimation #~~~~~~~~~~~~~~~HELPER FUNCTIONS FOR IDENTIFYING SURFACE LINE~~~~~~~~~~~~~~~~~~ # these functions help identify the surface line in PLIF images def _get_frame(cap: cv.VideoCapture, N: int) -> np.ndarray : """ Get the Nth frame from the video capture in grayscale Return the nth frame from an opencv video capture object as greyscale or None if it fails. Raises TypeError for some inputs. Raises IndexError if N is out of bounds. Raises AssertionError is video capture is not open. """ if not isinstance(cap,cv.VideoCapture): raise TypeError("cap must be an opencv video capture object") elif not cap.isOpened(): raise AssertionError("cap must be open") elif not isinstance(N,int): raise TypeError("N must be an int") frame_count = cap.get(cv.CAP_PROP_FRAME_COUNT) # Apparently, frameCount == -2147483648 or -1 for single image sequence if frame_count < 0: frame_count = 1 if not 0<=N<frame_count: raise IndexError("N must be positive and <= frame count of cap") # cap.set is expensive, only use if needed if cap.get(cv.CAP_PROP_POS_FRAMES) != N: cap.set(cv.CAP_PROP_POS_FRAMES, N) ret_frame, frame = cap.read() if ret_frame: if len(frame.shape) == 2: pass # already greyscale elif frame.shape[2] == 3: frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) elif frame.shape[2] == 4: frame = cv.cvtColor(frame, cv.COLOR_BGRA2GRAY) else: raise TypeError("video source not supported") return frame else: return None def _get_grad_phase(src: np.ndarray) -> "tuple of np.ndarray" : """ Return the gradient and phase of the grayscale image Return the gradient and phase of a grayscale image or None if it fails. Uses Scharr gradient estimation. Normalizes quantites to use the entire dynamic range of the src image data type. Raises TypeError for some inputs. """ if not isinstance(src,np.ndarray): raise TypeError("src must be a numpy array") if not (src.dtype == np.uint8 or src.dtype == np.uint16): raise TypeError("src must have type np.uint8 or np.uint16") gradx = cv.Scharr(src, cv.CV_32F, 1, 0, 3) grady = cv.Scharr(src, cv.CV_32F, 0, 1, 3) grad = cv.magnitude(gradx, grady) phase = cv.phase(gradx, grady) if src.dtype == np.uint8: kwargs = {'alpha':0,'beta':255,'norm_type':cv.NORM_MINMAX, 'dtype':cv.CV_8UC1} else: # otherwise np.uint16 kwargs = {'alpha':0,'beta':65535,'norm_type':cv.NORM_MINMAX, 'dtype':cv.CV_16UC1} grad = cv.normalize(grad , grad , **kwargs) phase = cv.normalize(phase, phase, **kwargs) return grad, phase def _get_mask_from_gradient(src: np.ndarray, k: int) -> np.ndarray : """ Identifies large values of an image gradient with a binary mask. Return a binary mask isolating the values of src that are sufficiently large. Sufficiently large is determined by clustering the image in to k parts, then defining the background as the cluster with the largest number of elements. All other clusters are considered sufficently large and their locations in the image are marked 1 in the binary mask. The background is marked 0 in the binary mask. Raises TypeError for some inputs. """ if not isinstance(src,np.ndarray): raise TypeError("src must be a numpy array") if not (src.dtype == np.uint8 or src.dtype == np.uint16): raise TypeError("src must have type np.uint8 or np.uint16") # Prepare the src for clustering clusterable = np.array(src.ravel(), dtype=np.float32) # kmeans requires some initial guess to iteratively improve # Using this inital label seems to be more reliable than using PP or random labels = np.zeros(clusterable.shape, dtype=np.int32) labels[ np.argwhere(clusterable == clusterable.max()) ] = k-1 # generate and shape label array criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 20, 1.0) _, labels, centers = cv.kmeans(clusterable, k, labels, criteria, 1, cv.KMEANS_USE_INITIAL_LABELS) labels = labels.reshape(-1, src.shape[0]) # exclude the background label from a binary mask where the background label # has the smallest gradient value among the cluster centers, all other labels # are included. The background label can be identified by noting that the # center values are organized like: center[label] = gradient_value dst = np.ones(src.shape, dtype=src.dtype) dst[ labels == np.argmin(centers) ] = 0 return dst def _get_mask_from_phase(src: np.ndarray, mask: np.ndarray, direction: "'low' or 'high'") -> np.ndarray : """ Identifies the low or high phase of an image gradient with a binary mask. Return a binary mask identifying a low valued cluster or the high valued cluster as indicated by the directio input. The background cluster is assumed to be the cluster with the largest count and is ignored. Raises a TypeError or a ValueError for some inputs. """ if not isinstance(src,np.ndarray): raise TypeError("src must be a numpy array") elif not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (src.dtype == np.uint8 or src.dtype == np.uint16): raise TypeError("src must have type np.uint8 or np.uint16") elif not (mask.dtype == np.uint8 or mask.dtype == np.uint16): raise TypeError("mask must have type np.uint8 or np.uint16") elif not len(src.shape) == len(mask.shape) == 2: raise ValueError("src and mask must have two dimensions (grayscale)") elif not (direction == 'low' or direction == 'high'): raise ValueError("direction must be 'low' or 'high'") # make them the same dtype but preserve the dynamic range of src if src.dtype != mask.dtype: mask = np.array(mask,dtype=mask.dtype) # identify the foreground cluster with the correct directionality clusterable = np.array(np.multiply(src,mask).ravel(), dtype=np.float32) labels = np.zeros(clusterable.shape,dtype=np.int32) criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 20, 1.0) # phase is normalized to take up the entire dynamic range, so choose to # split the mask down the middle into an 'low' and 'high' phase mid = 255//2 if (src.dtype == np.uint8) else 65535//2 # low phase is in the lower half and nonzero labels[ np.argwhere(np.logical_and(clusterable > 0, clusterable < mid)) ] = 1 # high phase is in the upper half labels[ np.argwhere(clusterable > mid) ] = 2 # TODO: determine if this clustering actually improves results # compared to a simple binary threshold _, labels, centers = cv.kmeans(clusterable, 3, labels, criteria, 1, cv.KMEANS_USE_INITIAL_LABELS ) labels = np.array(labels.reshape(-1, src.shape[0]), dtype=src.dtype) # To identify the low and high labels, must also identify the background # label which is assumed to be the largest group by count # recall phase data is clustered like: centers[label] = phase_val label_by_count = np.argsort(np.bincount(labels.ravel())) label_by_phase = np.argsort(centers.ravel()) background_label = label_by_count[-1] label_by_phase_excluding_background = np.delete( label_by_phase, np.where(label_by_phase == background_label)) low_label = label_by_phase_excluding_background[ 0] high_label = label_by_phase_excluding_background[-1] choose_label = int(low_label) if direction=='low' else int(high_label) return cv.compare(labels,(choose_label,0,0,0),cv.CMP_EQ) def _get_widest_connected_group(mask: np.ndarray) -> np.ndarray: ''' Identifes the widest group (uppermost in case of ties) in the binary image. Find the widest connected group in the binary mask. If there are multiple, choose the uppermost among them. Requires an uint8 type image but assumes that the input image is a binary mask (no check). Raises a TypeError for some inputs. ''' if not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (mask.dtype == np.uint8): raise TypeError("mask must have type np.uint8") num_groups, labels, stats, centroids = \ cv.connectedComponentsWithStats(mask,connectivity=8) # identify candidates of connected components by area idx_candidates = np.argsort(stats[:,cv.CC_STAT_AREA])[:-1] # among the valid candidates, sort by width of connected components stats_width = stats[idx_candidates,cv.CC_STAT_WIDTH] widest_groups = np.argwhere(stats_width == np.amax(stats_width)) # among the widest groups, choose the one closes to top of image # recall that the y axis for images is flipped top_group = np.argmin(stats[idx_candidates,cv.CC_STAT_TOP][widest_groups]) # create a new mask from the label of the widest & highest cluster mask_new = np.zeros(labels.shape, dtype=bool) label = idx_candidates[widest_groups[top_group]] mask_new[labels == label] = 1 return np.multiply(mask,mask_new) def _get_mask_maxima(grad: np.ndarray, mask: np.ndarray) -> np.ndarray: """ Finds the local maxima of an image gradeint where the mask is 1. Returns a binary mask where the values are local maxima or a plateau edge of grad. Applies the input mask before finding the local maxima. Assumes (no check) that the mask is binary. Raises a TypeError for some inputs. """ if not isinstance(grad,np.ndarray): raise TypeError("grad must be a numpy array") elif not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (mask.dtype == np.uint8 or mask.dtype == np.uint16): raise TypeError("mask must have type np.uint8 or np.uint16") se = np.array([1,0,1],dtype=np.uint8).reshape(-1,1) grad_masked = np.multiply(grad,mask) local_max = cv.dilate(grad_masked, se) local_max = cv.compare(grad_masked,local_max,cv.CMP_GE) return np.multiply(local_max,mask) def _get_surfaceline(mask: np.ndarray, side: "'lower' or 'upper'") \ -> np.ndarray: """ Identifes the surface line from a binary mask. Returns a 1 dimensional numpy array with the pixel values of the uppermost or lowermost values in mask. Raises a TypeError or ValueError for some inputs. """ if not isinstance(mask,np.ndarray): raise TypeError("mask must be a numpy array") elif not (mask.dtype == np.uint8 or mask.dtype == np.uint16): raise TypeError("mask must have type np.uint8 or np.uint16") elif not (side=='upper' or side=='lower'): raise ValueError("direction must be 'low' or 'high'") # TODO: why convert uint8 or uint16 into binary mask? # just require a binary array in the first place? # accept any non-zero value of the mask, mask must be converted to binary mask = mask>0 n,m = mask.shape if side=='upper': args = (0,n,n) else: # side=='lower' args = (n,0,n) weight_y = np.linspace(*args,dtype=int).reshape(-1,1).repeat(m,axis=1) line = np.argmax(weight_y*mask,axis=0) # TODO: replace this with numpy functions # when columns are all 0, line returns an invalid point, replace with -1 for i, j in enumerate(line): if mask[j,i]==0: line[i] = -1 return line.ravel() def _get_supersample(line: np.ndarray, grad: np.ndarray) -> np.ndarray: """ Identifes the supersample interpolation along the surface line of grad. Returns a tuple of 1 dimensional numpy arrays. The first returns line with values replaced to be negative if the supersample is invalid. The second returns the supersample of the gradient or 0 if the supersample is invalid. Negative values in the first array correspond to the following meanings: -1 : no identified maxima in column -2 : identified maxima is not a local maxima (all equal) -3 : identified maxima is not a local maxima (on a line) Raises a TypeError or ValueError for some inputs. """ if not isinstance(line,np.ndarray): raise TypeError("line must be a numpy array") elif not isinstance(grad,np.ndarray): raise TypeError("grad must be a numpy array") elif not len(line.shape) == 1: raise ValueError("line must have one dimension") elif not len(grad.shape) == 2: raise ValueError("grad must have two dimensions") supersample = np.zeros(line.shape) # TODO: replace loop with array operations for i,j in enumerate(line): try: upper = int(grad[j-1,i]) center = int(grad[j ,i]) lower = int(grad[j+1,i]) except IndexError: line[i] = -1 continue numerator = upper - lower denominator = 2*upper + 2*lower - 4*center if j == -1: pass elif upper==center and lower==center and upper==lower: line[i] = -2 elif numerator!=0 and denominator==0: line[i] = -3 else: supersample[i] = numerator/denominator # useful for debugging #if not np.isfinite(supersample).all(): # print(f"non-finite value at {i}, {j}") # print(f"numerator: {numerator}") # print(f"denominator: {denominator}") # raise ValueError return line, supersample # The following functions each handle different combinations of the input # values to lif(), this is explicit but perhaps too verbose. def _loop_phase_mask_connected(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = True calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_connected = _get_widest_connected_group(mask_phase) mask_maxima = _get_mask_maxima(grad,mask)*mask_connected line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_phase_mask_connected_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple,) \ -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = True calibration_params = Tuple ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) frame = cv.undistort(frame, calibration_params[0], calibration_params[1]) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_connected = _get_widest_connected_group(mask_phase) mask_maxima = _get_mask_maxima(grad,mask)*mask_connected line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_phase_mask(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_maxima = _get_mask_maxima(grad,mask)*mask_phase line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_phase_mask_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple) -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = True connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) frame = cv.undistort(frame, calibration_params[0], calibration_params[1]) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_phase = _get_mask_from_phase(phase,mask,direction) mask_maxima = _get_mask_maxima(grad,mask)*mask_phase line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_local_maxima(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = False connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_maxima = _get_mask_maxima(grad,mask) line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_local_maxima_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple) -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = False use_phase_mask = False connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) frame = cv.undistort(frame, calibration_params[0], calibration_params[1]) grad, phase = _get_grad_phase(frame) mask = _get_mask_from_gradient(grad, k) mask_maxima = _get_mask_maxima(grad,mask) line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_maxima(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'") -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = True use_phase_mask = False connected = False calibration_params = None ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface = np.empty((num_frames,width)) for num in range(num_frames): frame = _get_frame(cap,num) grad, _ = _get_grad_phase(frame) mask_maxima = np.zeros(grad.shape, dtype=np.uint8) mask_maxima[np.argmax(grad,axis=0),np.arange(width)] = 1 line = _get_surfaceline(mask_maxima,side) line , supersample = _get_supersample(line, grad) surface[num,:] = line + supersample return surface def _loop_maxima_calibrate(cap: cv.VideoCapture, num_frames: int, k: int, direction: "'low' or 'high'", side: "'lower' or 'upper'", calibration_params: tuple) -> np.ndarray: ''' Performs LIF for a specific case in the lif function. Assumes valid input. Considers the the case: use_column_max = True use_phase_mask = False connected = False calibration_params = tuple ''' width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) surface =
np.empty((num_frames,width))
numpy.empty
''' Computer vision assignment 2 by <NAME> A2_2d_transformation.py Implementation of various 2-d transformation. * Status: Implement all basic specifications, not include 'reduce artifacts (extra credit)'. * GitHub Link: https://github.com/pseudowasabi/computer-vision-exercises/tree/master/CV_A2_ ''' import cv2 import numpy as np import math def get_transformed_image(img, M): # initialize plane plane = np.empty((801, 801)) for i in range(801): for j in range(801): plane[i][j] = 255 ''' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (3, 5) shape image center is (400, 400) left top is (399, 398) correspond to (center.x - shape[0] // 2, center.y - shape[1] // 2) right bottom is (401, 402) correspond to (center.x + shape[0] // 2, center.y + shape[1] // 2) - under condition that assumes all input image should be odd size in both height and width. [solution] 1. make homogenous coordinate first for original image. 2. calculate transformed coordinate and set intensity in each transformed position. ''' origin_y_coord = np.zeros((img.shape[0], img.shape[1])) origin_x_coord = np.zeros((img.shape[0], img.shape[1])) # do not use zeros_like (data type would be uint8, however desired data type is at least uint16) y_range = range(400 - img.shape[0] // 2, 400 + img.shape[0] // 2 + 1) x_range = range(400 - img.shape[1] // 2, 400 + img.shape[1] // 2 + 1) # (i, 0 -> y), (j, 1 -> x) i = 0 for y in y_range: j = 0 for x in x_range: if (i in range(img.shape[0])) and (j in range(img.shape[1])): origin_y_coord[i][j] = y origin_x_coord[i][j] = x j += 1 i += 1 #print(origin_y_coord) #print(origin_x_coord) for i in range(img.shape[0]): # y range for j in range(img.shape[1]): # x range x_prime = M[0][0] * origin_x_coord[i][j] + M[0][1] * origin_y_coord[i][j] + M[0][2] * 1 y_prime = M[1][0] * origin_x_coord[i][j] + M[1][1] * origin_y_coord[i][j] + M[1][2] * 1 if (int(y_prime) in range(801)) and (int(x_prime) in range(801)): plane[int(y_prime)][int(x_prime)] = img[i][j] else: print("out of range", i, j, origin_y_coord[i][j], origin_x_coord[i][j], y_prime, x_prime) # plus - reducing artifact (not implemented yet) # check x-dir and y-dir respectively, then fill the blanks along each directions cv2.arrowedLine(plane, (400, 800), (400, 0), (0, 0, 0), thickness=2, tipLength=0.01) cv2.arrowedLine(plane, (0, 400), (800, 400), (0, 0, 0), thickness=2, tipLength=0.01) return plane img_smile = cv2.imread('./smile.png', cv2.IMREAD_GRAYSCALE) current_M = np.identity(3) plane = get_transformed_image(img_smile, current_M) _M = {} # save all transformation matrix into hash map degree_5 = math.pi / 36. cos_5 = math.cos(degree_5) sin_5 = math.sin(degree_5) _M[ord('a')] = np.array([[1., 0., -5.], [0., 1., 0.], [0., 0., 1.]]) # move left by 5 pixels _M[ord('d')] = np.array([[1., 0., +5.], [0., 1., 0.], [0., 0., 1.]]) # move right by 5 pixels _M[ord('w')] = np.array([[1., 0., 0.], [0., 1., -5.], [0., 0., 1.]]) # move upward by 5 pixels _M[ord('s')] = np.array([[1., 0., 0.], [0., 1., +5.], [0., 0., 1.]]) # move downward by 5 pixels _M[ord('R')] = np.array([[cos_5, -sin_5, 0.], [sin_5, cos_5, 0.], [0., 0., 1.]]) # rotate CW by 5 degrees _M[ord('r')] =
np.array([[cos_5, sin_5, 0.], [-sin_5, cos_5, 0.], [0., 0., 1.]])
numpy.array
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Utilities for dealing with HEALPix projections and mappings.""" import copy import numpy as np from astropy import units as u from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.units import Quantity from gammapy.utils.array import is_power2 from ..axes import MapAxes from ..coord import MapCoord, skycoord_to_lonlat from ..geom import Geom, pix_tuple_to_idx from ..utils import INVALID_INDEX, coordsys_to_frame, frame_to_coordsys from .io import HPX_FITS_CONVENTIONS, HpxConv from .utils import ( coords_to_vec, get_nside_from_pix_size, get_pix_size_from_nside, get_subpixels, get_superpixels, match_hpx_pix, nside_to_order, parse_hpxregion, ravel_hpx_index, unravel_hpx_index, ) # Not sure if we should expose this in the docs or not: # HPX_FITS_CONVENTIONS, HpxConv __all__ = ["HpxGeom"] class HpxGeom(Geom): """Geometry class for HEALPIX maps. This class performs mapping between partial-sky indices (pixel number within a HEALPIX region) and all-sky indices (pixel number within an all-sky HEALPIX map). Multi-band HEALPIX geometries use a global indexing scheme that assigns a unique pixel number based on the all-sky index and band index. In the single-band case the global index is the same as the HEALPIX index. By default the constructor will return an all-sky map. Partial-sky maps can be defined with the ``region`` argument. Parameters ---------- nside : `~numpy.ndarray` HEALPIX nside parameter, the total number of pixels is 12*nside*nside. For multi-dimensional maps one can pass either a single nside value or a vector of nside values defining the pixel size for each image plane. If nside is not a scalar then its dimensionality should match that of the non-spatial axes. nest : bool True -> 'NESTED', False -> 'RING' indexing scheme frame : str Coordinate system, "icrs" | "galactic" region : str or tuple Spatial geometry for partial-sky maps. If none the map will encompass the whole sky. String input will be parsed according to HPX_REG header keyword conventions. Tuple input can be used to define an explicit list of pixels encompassed by the geometry. axes : list Axes for non-spatial dimensions. """ is_hpx = True is_region = False def __init__(self, nside, nest=True, frame="icrs", region=None, axes=None): # FIXME: Require NSIDE to be power of two when nest=True self._nside = np.array(nside, ndmin=1) self._axes = MapAxes.from_default(axes, n_spatial_axes=1) if self.nside.size > 1 and self.nside.shape != self.shape_axes: raise ValueError( "Wrong dimensionality for nside. nside must " "be a scalar or have a dimensionality consistent " "with the axes argument." ) self._nest = nest self._frame = frame self._ipix = None self._region = region self._create_lookup(region) self._npix = self._npix * np.ones(self.shape_axes, dtype=int) def _create_lookup(self, region): """Create local-to-global pixel lookup table.""" if isinstance(region, str): ipix = [ self.get_index_list(nside, self._nest, region) for nside in self._nside.flat ] self._ipix = [ ravel_hpx_index((p, i * np.ones_like(p)), np.ravel(self.npix_max)) for i, p in enumerate(ipix) ] self._region = region self._indxschm = "EXPLICIT" self._npix = np.array([len(t) for t in self._ipix]) if self.nside.ndim > 1: self._npix = self._npix.reshape(self.nside.shape) self._ipix = np.concatenate(self._ipix) elif isinstance(region, tuple): region = [np.asarray(t) for t in region] m = np.any(np.stack([t >= 0 for t in region]), axis=0) region = [t[m] for t in region] self._ipix = ravel_hpx_index(region, self.npix_max) self._ipix =
np.unique(self._ipix)
numpy.unique
import numpy as np from ..core.structures import Tensor from ..utils import sliceT, genToeplitzMatrix import itertools class basicTensor(): """ Generates a dense or sparse tensor of any dimension and fills it accordingly Parameters ---------- dim : int specifies the dimensions of the tensor distr (optional): string Specifies the random generation using a class of the numpy.random module distr_type (optional) : int Number of indices to not fix. 0 will be applied globally, 1 will apply to fibers, 2 to slices, etc. Returns ------- tensor: Tensor Generated tensor according to the parameters specified """ def __init__(self, dim, distr='uniform', distr_type=0): self.dim = dim self.distr_type = distr_type self.distr = distr def _predefined_distr(self, dim): distrlist = {'uniform':np.random.uniform(size=dim), 'normal':np.random.normal(size=dim), 'triangular': np.random.triangular(-1, 0, 1, size=dim), 'standard-t': np.random.standard_t(10, size=dim), 'ones': np.ones(dim), 'zeros': np.zeros(dim)} if self.distr not in distrlist: raise NameError("The distribution {} is not an available one.\ Please refer to the list of implementations: {}".format(self.distr, distrlist.keys())) return distrlist[self.distr] def dense(self, fxdind=None): """ Defines a dense Tensor Returns ------- tensor : Tensor """ # fxdind: fixed indices if self.distr_type == 0: tensor = self._predefined_distr(self.dim) else: tensor =
np.random.uniform(size=self.dim)
numpy.random.uniform
""" Simple computation graph implmentation. Doesn't handle cycles. Used to do back propigation for a batch normalization node. """ from collections import deque import numpy as np class CompNode(object): def __init__(self): self.name = "unamed" self.output = None def cprint(self, *args): #print(args) pass class PlusNode(CompNode): def __init__(self): CompNode.__init__(self) self.name = "plus" def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.output = inputs[0] + inputs[1] def reverse(self, dout, output_map): return [dout, dout] class SubNode(CompNode): def __init__(self): CompNode.__init__(self) self.name = "minus" def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.output = inputs[0] - inputs[1] def reverse(self, dout, output_map): return [dout, -dout] class SqrtNode(CompNode): def __init__(self): CompNode.__init__(self) self.name = "sqrt" def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.output = np.sqrt(inputs[0]) self.cprint("Sqrt out", self.output) def reverse(self, dout, output_map): out = dout / (2 *self.output) return [out] class DivNoode(CompNode): def __init__(self): self.name = "divide" def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.numerator = inputs[0] self.denominator = inputs[1] self.output = inputs[0] / inputs[1] self.cprint("divout", self.output) def reverse(self, dout, output_map): out0 = dout / self.denominator out1 = -dout * self.numerator / (self.denominator * self.denominator) return [out0, out1] class InputNode(CompNode): def __init__(self): self.name = "input" pass def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.output = inputs[0] def reverse(self, dout, output_map): if 'dx' in output_map: #print("dx - adding") #print("existing: ", output_map['dx']) #print("incoming:", dout) output_map['dx'] += dout else: output_map['dx'] = dout class ConstantNode(CompNode): def __init__(self, value): self.name = "constant" self.value = value pass def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.output = self.value def reverse(self, dout, output_map): return [np.zeros_like(dout)] class MuNode(CompNode): def __init__(self): self.name = "average" pass def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.output = np.mean(inputs[0], axis = 0) self.shape = inputs[0].shape self.cprint("mu", self.output) def reverse(self, dout, output_map): vsum = np.sum(dout, axis = 0) # by convention, we want an N x D output. Adding vsum # to an array of 0's will replicate the rows. out = (vsum + np.zeros(self.shape)) /self.shape[0] return [out] class SigmaNode(CompNode): def __init__(self): self.name = "sigma" pass def execute(self, inputs): self.cprint("Executing:", self.name, inputs) self.x = inputs[0] out = np.var(self.x, axis = 0) out =
np.zeros_like(self.x)
numpy.zeros_like
import glob import numpy as np import os.path as osp from PIL import Image import random import struct from torch.utils.data import Dataset import scipy.ndimage as ndimage import cv2 from skimage.measure import block_reduce import h5py import scipy.ndimage as ndimage class BatchLoader(Dataset): def __init__(self, dataRoot, dirs = ['main_xml', 'main_xml1', 'mainDiffLight_xml', 'mainDiffLight_xml1', 'mainDiffMat_xml', 'mainDiffMat_xml1'], imHeight = 240, imWidth = 320, phase='TRAIN', rseed = None, cascadeLevel = 0, isLight = False, isAllLight = False, envHeight = 8, envWidth = 16, envRow = 120, envCol = 160, SGNum = 12 ): if phase.upper() == 'TRAIN': self.sceneFile = osp.join(dataRoot, 'train.txt') elif phase.upper() == 'TEST': self.sceneFile = osp.join(dataRoot, 'test.txt') else: print('Unrecognized phase for data loader') assert(False ) with open(self.sceneFile, 'r') as fIn: sceneList = fIn.readlines() sceneList = [x.strip() for x in sceneList] self.imHeight = imHeight self.imWidth = imWidth self.phase = phase.upper() self.cascadeLevel = cascadeLevel self.isLight = isLight self.isAllLight = isAllLight self.envWidth = envWidth self.envHeight = envHeight self.envRow = envRow self.envCol = envCol self.envWidth = envWidth self.envHeight = envHeight self.SGNum = SGNum shapeList = [] for d in dirs: shapeList = shapeList + [osp.join(dataRoot, d, x) for x in sceneList ] shapeList = sorted(shapeList) print('Shape Num: %d' % len(shapeList ) ) self.imList = [] for shape in shapeList: imNames = sorted(glob.glob(osp.join(shape, 'im_*.hdr') ) ) self.imList = self.imList + imNames if isAllLight: self.imList = [x for x in self.imList if osp.isfile(x.replace('im_', 'imenv_') ) ] if cascadeLevel > 0: self.imList = [x for x in self.imList if osp.isfile(x.replace('im_', 'imenv_').replace('.hdr', '_%d.h5' % (self.cascadeLevel - 1 ) ) ) ] print('Image Num: %d' % len(self.imList ) ) # BRDF parameter self.albedoList = [x.replace('im_', 'imbaseColor_').replace('hdr', 'png') for x in self.imList ] self.normalList = [x.replace('im_', 'imnormal_').replace('hdr', 'png') for x in self.imList ] self.normalList = [x.replace('DiffLight', '') for x in self.normalList ] self.roughList = [x.replace('im_', 'imroughness_').replace('hdr', 'png') for x in self.imList ] self.depthList = [x.replace('im_', 'imdepth_').replace('hdr', 'dat') for x in self.imList ] self.depthList = [x.replace('DiffLight', '') for x in self.depthList ] self.depthList = [x.replace('DiffMat', '') for x in self.depthList ] self.segList = [x.replace('im_', 'immask_').replace('hdr', 'png') for x in self.imList ] self.segList = [x.replace('DiffMat', '') for x in self.segList ] if self.cascadeLevel == 0: if self.isLight: self.envList = [x.replace('im_', 'imenv_') for x in self.imList ] else: if self.isLight: self.envList = [x.replace('im_', 'imenv_') for x in self.imList ] self.envPreList = [x.replace('im_', 'imenv_').replace('.hdr', '_%d.h5' % (self.cascadeLevel -1) ) for x in self.imList ] self.albedoPreList = [x.replace('im_', 'imbaseColor_').replace('.hdr', '_%d.h5' % (self.cascadeLevel - 1) ) for x in self.imList ] self.normalPreList = [x.replace('im_', 'imnormal_').replace('.hdr', '_%d.h5' % (self.cascadeLevel-1) ) for x in self.imList ] self.roughPreList = [x.replace('im_', 'imroughness_').replace('.hdr', '_%d.h5' % (self.cascadeLevel-1) ) for x in self.imList ] self.depthPreList = [x.replace('im_', 'imdepth_').replace('.hdr', '_%d.h5' % (self.cascadeLevel-1) ) for x in self.imList ] self.diffusePreList = [x.replace('im_', 'imdiffuse_').replace('.hdr', '_%d.h5' % (self.cascadeLevel - 1) ) for x in self.imList ] self.specularPreList = [x.replace('im_', 'imspecular_').replace('.hdr', '_%d.h5' % (self.cascadeLevel - 1) ) for x in self.imList ] # Permute the image list self.count = len(self.albedoList ) self.perm = list(range(self.count ) ) if rseed is not None: random.seed(0) random.shuffle(self.perm ) def __len__(self): return len(self.perm ) def __getitem__(self, ind): # Read segmentation seg = 0.5 * (self.loadImage(self.segList[self.perm[ind] ] ) + 1)[0:1, :, :] segArea = np.logical_and(seg > 0.49, seg < 0.51 ).astype(np.float32 ) segEnv = (seg < 0.1).astype(np.float32 ) segObj = (seg > 0.9) if self.isLight: segObj = segObj.squeeze() segObj = ndimage.binary_erosion(segObj, structure=np.ones((7, 7) ), border_value=1) segObj = segObj[np.newaxis, :, :] segObj = segObj.astype(np.float32 ) # Read Image im = self.loadHdr(self.imList[self.perm[ind] ] ) # Random scale the image im, scale = self.scaleHdr(im, seg) # Read albedo albedo = self.loadImage(self.albedoList[self.perm[ind] ], isGama = False) albedo = (0.5 * (albedo + 1) ) ** 2.2 # normalize the normal vector so that it will be unit length normal = self.loadImage(self.normalList[self.perm[ind] ] ) normal = normal / np.sqrt(np.maximum(np.sum(normal * normal, axis=0), 1e-5) )[np.newaxis, :] # Read roughness rough = self.loadImage(self.roughList[self.perm[ind] ] )[0:1, :, :] # Read depth depth = self.loadBinary(self.depthList[self.perm[ind] ]) if self.isLight == True: envmaps, envmapsInd = self.loadEnvmap(self.envList[self.perm[ind] ] ) envmaps = envmaps * scale if self.cascadeLevel > 0: envmapsPre = self.loadH5(self.envPreList[self.perm[ind] ] ) if envmapsPre is None: print("Wrong envmap pred") envmapsInd = envmapsInd * 0 envmapsPre = np.zeros((84, 120, 160), dtype=np.float32 ) if self.cascadeLevel > 0: # Read albedo albedoPre = self.loadH5(self.albedoPreList[self.perm[ind] ] ) albedoPre = albedoPre / np.maximum(np.mean(albedoPre ), 1e-10) / 3 # normalize the normal vector so that it will be unit length normalPre = self.loadH5(self.normalPreList[self.perm[ind] ] ) normalPre = normalPre / np.sqrt(np.maximum(np.sum(normalPre * normalPre, axis=0), 1e-5) )[np.newaxis, :] normalPre = 0.5 * (normalPre + 1) # Read roughness roughPre = self.loadH5(self.roughPreList[self.perm[ind] ] )[0:1, :, :] roughPre = 0.5 * (roughPre + 1) # Read depth depthPre = self.loadH5(self.depthPreList[self.perm[ind] ] ) depthPre = depthPre / np.maximum(np.mean(depthPre), 1e-10) / 3 diffusePre = self.loadH5(self.diffusePreList[self.perm[ind] ] ) diffusePre = diffusePre / max(diffusePre.max(), 1e-10) specularPre = self.loadH5(self.specularPreList[self.perm[ind] ] ) specularPre = specularPre / max(specularPre.max(), 1e-10) batchDict = {'albedo': albedo, 'normal': normal, 'rough': rough, 'depth': depth, 'segArea': segArea, 'segEnv': segEnv, 'segObj': segObj, 'im': im, 'name': self.imList[self.perm[ind] ] } if self.isLight: batchDict['envmaps'] = envmaps batchDict['envmapsInd'] = envmapsInd if self.cascadeLevel > 0: batchDict['envmapsPre'] = envmapsPre if self.cascadeLevel > 0: batchDict['albedoPre'] = albedoPre batchDict['normalPre'] = normalPre batchDict['roughPre'] = roughPre batchDict['depthPre'] = depthPre batchDict['diffusePre'] = diffusePre batchDict['specularPre'] = specularPre return batchDict def loadImage(self, imName, isGama = False): if not(osp.isfile(imName ) ): print(imName ) assert(False ) im = Image.open(imName) im = im.resize([self.imWidth, self.imHeight], Image.ANTIALIAS ) im =
np.asarray(im, dtype=np.float32)
numpy.asarray
#!/usr/bin/env python # -*- coding: utf-8 -*- """A graph generator based on the PC algorithm [Kalisch2007]. [Kalisch2007] <NAME> and <NAME>. Estimating high-dimensional directed acyclic graphs with the pc-algorithm. In The Journal of Machine Learning Research, Vol. 8, pp. 613-636, 2007. """ from __future__ import print_function import logging import math from itertools import combinations, permutations import pandas as pd import networkx as nx import numpy as np from gsq.ci_tests import ci_test_bin, ci_test_dis from gsq.gsq_testdata import bin_data, dis_data # from networkx.drawing.tests.test_pylab import plt from scipy.stats import norm import matplotlib.pyplot as plt from utils.pageRank import PRIterator _logger = logging.getLogger(__name__) # 条件独立性检验 def gaussCItest(suffstat, x, y, S): S = list(S) C = pd.DataFrame(suffstat).astype(float).corr().values n = pd.DataFrame(suffstat).values.shape[0] cut_at = 0.9999999 # 偏相关系数 # S中没有点 if len(S) == 0: r = C[x, y] # S中只有一个点 一阶偏相关系数 elif len(S) == 1: a = (C[x, y] - C[x, S] * C[y, S]) try: b = math.sqrt((1 - math.pow(C[y, S], 2)) * (1 - math.pow(C[x, S], 2))) r = a / b except: r = C[x, y] # 其实我没太明白这里是怎么求的,但R语言的pcalg包就是这样写的 else: m = C[np.ix_([x] + [y] + S, [x] + [y] + S)] PM = np.linalg.pinv(m) r = -1 * PM[0, 1] / math.sqrt(abs(PM[0, 0] * PM[1, 1])) r = min(cut_at, max(-1 * cut_at, r)) # Fisher’s z-transform res = math.sqrt(n - len(S) - 3) * .5 * math.log1p((2 * r) / (1 - r)) # Φ^{-1}(1-α/2) return 2 * (1 - norm.cdf(abs(res))) def _create_complete_graph(node_ids): """ 根据「节点列表」创建「图结构」 Create a complete graph from the list of node ids. Args: node_ids: a list of node ids Returns: An undirected graph (as a networkx.Graph) """ g = nx.Graph() g.add_nodes_from(node_ids) for (i, j) in combinations(node_ids, 2): g.add_edge(i, j) return g def estimate_skeleton(indep_test_func, data_matrix, alpha, **kwargs): """ 根据统计信息预估骨架图, 1. 根据原始数据转换成无方向的的图 2. 遍历所有的有向边,进行独立性检测,当独立性检测结果大于 alpha 时,删除边 Estimate a skeleton graph from the statistical information. Args: indep_test_func: 独立性检测方法 the function name for a conditional independency test. data_matrix: data (as a numpy array). alpha: the significance level. kwargs: 'max_reach': maximum value of l (see the code). The value depends on the underlying distribution. 'method': if 'stable' given, use stable-PC algorithm (see [Colombo2014]). 'init_graph': initial structure of skeleton graph (as a networkx.Graph). If not specified, a complete graph is used. other parameters may be passed depending on the indep_test_func()s. Returns: g: a skeleton graph (as a networkx.Graph). sep_set: a separation set (as an 2D-array of set()). [Colombo2014] <NAME> and <NAME>. Order-independent constraint-based causal structure learning. In The Journal of Machine Learning Research, Vol. 15, pp. 3741-3782, 2014. """ def method_stable(kwargs): return ('method' in kwargs) and kwargs['method'] == "stable" node_ids = range(data_matrix.shape[1]) node_size = data_matrix.shape[1] sep_set = [[set() for i in range(node_size)] for j in range(node_size)] if 'init_graph' in kwargs: g = kwargs['init_graph'] if not isinstance(g, nx.Graph): raise ValueError elif not g.number_of_nodes() == len(node_ids): raise ValueError('init_graph not matching data_matrix shape') for (i, j) in combinations(node_ids, 2): if not g.has_edge(i, j): sep_set[i][j] = None sep_set[j][i] = None else: # 构造无向边的图 g = _create_complete_graph(node_ids) l = 0 while True: cont = False remove_edges = [] # 遍历 node_ids 的全排列,去遍历所有可能存在的边(因为是有向边,所以是排列) for (i, j) in permutations(node_ids, 2): # 即其相邻节点 adj_i = list(g.neighbors(i)) # 如果 j 是 i 的相邻节点,则删除;否则继续下一次遍历 if j not in adj_i: continue else: adj_i.remove(j) # The process stops if all neighborhoods in the current graph are smaller than the size of the conditional set. if len(adj_i) >= l: # _logger.debug('testing %s and %s' % (i, j)) _logger.debug('测试 %s 节点和 %s 节点' % (i, j)) # _logger.debug('neighbors of %s are %s' % (i, str(adj_i))) _logger.debug('%s 的相邻节点有 %s' % (i, str(adj_i))) if len(adj_i) < l: continue # 存在任意节点 k(其实不是节点 k,也可能是节点集合 k),使 i-j 满足条件独立性,那么需要删除 i-j for k in combinations(adj_i, l): _logger.debug('indep prob of %s and %s with subset %s' % (i, j, str(k))) # 求独立性检测概率 # p_val = indep_test_func(data_matrix, i, j, set(k), **kwargs) p_val = gaussCItest(data_matrix, i, j, set(k)) _logger.debug('独立性检测概率为 %s' % str(p_val)) # 如果概率值大于 alpha 超参数,则移除 i->j 的边 if p_val > alpha: if g.has_edge(i, j): _logger.debug('p: 移除边 (%s, %s)' % (i, j)) if method_stable(kwargs): remove_edges.append((i, j)) else: g.remove_edge(i, j) # 求并集,即将集合 k 加入到 sep_set 中,由于本步骤不考虑方向,因此 i->j j->i 都采取这种策略 sep_set[i][j] |= set(k) sep_set[j][i] |= set(k) break cont = True l += 1 if method_stable(kwargs): g.remove_edges_from(remove_edges) if cont is False: break if ('max_reach' in kwargs) and (l > kwargs['max_reach']): break return (g, sep_set) def estimate_cpdag(skel_graph, sep_set): """ Estimate a CPDAG from the skeleton graph and separation sets returned by the estimate_skeleton() function. Args: skel_graph: A skeleton graph (an undirected networkx.Graph). sep_set: An 2D-array of separation set. The contents look like something like below. sep_set[i][j] = set([k, l, m]) Returns: An estimated DAG. """ # 将骨架图变成有方向的 dag = skel_graph.to_directed() node_ids = skel_graph.nodes() # 提取所有的 i,j 组合 for (i, j) in combinations(node_ids, 2): # 寻找满足关系的 k,i → k ← j adj_i = set(dag.successors(i)) if j in adj_i: continue adj_j = set(dag.successors(j)) if i in adj_j: continue # 程序稳定的验证,无实际意义 if sep_set[i][j] is None: continue # 叮! 找到了 K 可能的集合 common_k = adj_i & adj_j for k in common_k: # k 不能存在于 sep_set,由于上一步中无方向,因此只需要判断一个即可 if k not in sep_set[i][j]: # 如果 k->i,那么j->i,这是不合理的 if dag.has_edge(k, i): _logger.debug('S: 移除边 (%s, %s)' % (k, i)) dag.remove_edge(k, i) # 同上 if dag.has_edge(k, j): _logger.debug('S: remove edge (%s, %s)' % (k, j)) dag.remove_edge(k, j) def _has_both_edges(dag, i, j): return dag.has_edge(i, j) and dag.has_edge(j, i) def _has_any_edge(dag, i, j): return dag.has_edge(i, j) or dag.has_edge(j, i) def _has_one_edge(dag, i, j): return ((dag.has_edge(i, j) and (not dag.has_edge(j, i))) or (not dag.has_edge(i, j)) and dag.has_edge(j, i)) def _has_no_edge(dag, i, j): return (not dag.has_edge(i, j)) and (not dag.has_edge(j, i)) # For all the combination of nodes i and j, apply the following # rules. # 开始使用三种规则了 old_dag = dag.copy() while True: # 提取所有的 i,j 组合 for (i, j) in combinations(node_ids, 2): # Rule 1: Orient i-j into i->j whenever there is an arrow k->i # such that k and j are nonadjacent. # # Check if i-j. # 检验是否存在 i-j 无向边 if _has_both_edges(dag, i, j): # Look all the predecessors of i. for k in dag.predecessors(i): # Skip if there is an arrow i->k. if dag.has_edge(i, k): continue # Skip if k and j are adjacent. if _has_any_edge(dag, k, j): continue # Make i-j into i->j _logger.debug('R1: remove edge (%s, %s)' % (j, i)) dag.remove_edge(j, i) break # Rule 2: Orient i-j into i->j whenever there is a chain # i->k->j. # # Check if i-j. if _has_both_edges(dag, i, j): # Find nodes k where k is i->k. succs_i = set() for k in dag.successors(i): if not dag.has_edge(k, i): succs_i.add(k) # Find nodes j where j is k->j. preds_j = set() for k in dag.predecessors(j): if not dag.has_edge(j, k): preds_j.add(k) # Check if there is any node k where i->k->j. if len(succs_i & preds_j) > 0: # Make i-j into i->j _logger.debug('R2: remove edge (%s, %s)' % (j, i)) dag.remove_edge(j, i) # Rule 3: Orient i-j into i->j whenever there are two chains # i-k->j and i-l->j such that k and l are nonadjacent. # # Check if i-j. if _has_both_edges(dag, i, j): # Find nodes k where i-k. adj_i = set() for k in dag.successors(i): if dag.has_edge(k, i): adj_i.add(k) # For all the pairs of nodes in adj_i, for (k, l) in combinations(adj_i, 2): # Skip if k and l are adjacent. if _has_any_edge(dag, k, l): continue # Skip if not k->j. if dag.has_edge(j, k) or (not dag.has_edge(k, j)): continue # Skip if not l->j. if dag.has_edge(j, l) or (not dag.has_edge(l, j)): continue # Make i-j into i->j. _logger.debug('R3: remove edge (%s, %s)' % (j, i)) dag.remove_edge(j, i) break # Rule 4: Orient i-j into i->j whenever there are two chains # i-k->l and k->l->j such that k and j are nonadjacent. # # However, this rule is not necessary when the PC-algorithm # is used to estimate a DAG. if nx.is_isomorphic(dag, old_dag): break old_dag = dag.copy() return dag def construct_service_dependency_diagram(b): data = np.array(b.iloc[:, :])[:, :] columns = list(b.columns)[:] columns_mapping = {i: str(column) for i, column in enumerate(columns)} (g, sep_set) = estimate_skeleton(indep_test_func=ci_test_dis, data_matrix=data, alpha=0.05) g = estimate_cpdag(skel_graph=g, sep_set=sep_set) return g, columns_mapping def get_root_cause(g): """ 通过关系图获取根因列表 Args: g: 关系图 Returns: 根因列表 """ result = list() node_ids = g.nodes() # 获取原因最多的节点 max_pre_node, max_pre_size = None, 0 for node_id in node_ids: if len(list(g.predecessors(node_id))) > max_pre_size: max_pre_node = node_id max_pre_size = len(list(g.predecessors(node_id))) # 层次遍历 node_filter, node_queue = {max_pre_node}, list([max_pre_node]) while node_queue: node_now = node_queue.pop(0) if not g.predecessors(node_now): result.append(node_now) continue is_pre_not_filter = False for k in g.predecessors(node_now): if k not in node_filter: is_pre_not_filter = True node_filter.add(k) node_queue.append(k) # 如果所有的上游节点都在 filter 中,将当前节点加入 result,避免 result 为空的情况 if not is_pre_not_filter: result.append(node_now) return result if __name__ == '__main__': # 打印日志,不要注释掉 ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) _logger.setLevel(logging.DEBUG) _logger.addHandler(ch) # mock 原始数据 dm = np.array(bin_data).reshape((5000, 5)) (g, sep_set) = estimate_skeleton(indep_test_func=ci_test_bin, data_matrix=dm, alpha=0.01) # g = estimate_cpdag(skel_graph=g, sep_set=sep_set) g_answer = nx.DiGraph() g_answer.add_nodes_from([0, 1, 2, 3, 4]) g_answer.add_edges_from([(0, 1), (2, 3), (3, 2), (3, 1), (2, 4), (4, 2), (4, 1)]) print('Edges are:', g.edges(), end='') if nx.is_isomorphic(g, g_answer): print(' => GOOD') else: print(' => WRONG') print('True edges should be:', g_answer.edges()) # 又 mock 了多点的数据进行测试 dm =
np.array(dis_data)
numpy.array
import matplotlib.pyplot as plt import numpy as np def ResultPlotter(Results,statsToPlot,calibrationMethods,numRuns,numHops): ''' Plots of the results from the multi-hop calibration Errorplots of different metrics (Y-axis; specified in config.json: "statsToPlot": ["deltaB","rmse","corr","nrmse"]) over hop id (X-axis) Inputs: Results: See MultihopCalibration.py statsToPlot: List containing strings of the statistics/metrics which should be plotted (any of ["deltaB","rmse","corr","nrmse"]) calibrationMethods: List containing strings of the calibration methods used (any of ["scan","mls]) numRuns: see DataCreator.py numHops: see DataCreator.py ''' numStats = len(statsToPlot) fig, axs = plt.subplots(numStats) for m in calibrationMethods: for s in range(numStats): stat = statsToPlot[s] SummarizedResult = np.zeros((numRuns,numHops)) # results: runs x hops for run in range(numRuns): curR = [d[stat] for d in Results[m + '_run_'+str(run)] if stat in d] SummarizedResult[run,:] = curR meanSummarizedResult = np.mean(SummarizedResult,axis=0) stdSummarizedResult = np.std(SummarizedResult,axis=0) if numStats > 1: axs[s].errorbar(np.arange(numHops), meanSummarizedResult,yerr=stdSummarizedResult, label=m) axs[s].set(ylabel=stat) else: axs.errorbar(
np.arange(numHops)
numpy.arange
from paramz.caching import Cache_this from paramz.transformations import Logexp from GPy.kern.src.kern import CombinationKernel from GPy.core.parameterization import Param import GPy.kern as _Gk import numpy as np from GPy_ABCD.Kernels.sigmoidalKernels import SigmoidalKernel, SigmoidalIndicatorKernel class ChangeWindowShiftedSidesBase(CombinationKernel): """ Abstract class for changewindow kernels with the two sides being allowed a vertical shift difference """ def __init__(self, first, second, sigmoidal, sigmoidal_indicator, location: float = 0., slope: float = 0.5, width = 1., name = 'change_window_shifted_sides_base', fixed_slope = False): _newkerns = [kern.copy() for kern in (first, second)] super(ChangeWindowShiftedSidesBase, self).__init__(_newkerns, name) self.first = first self.second = second self._fixed_slope = fixed_slope # Note: here to be used by subclasses, and changing it from the outside does not link the parameter if self._fixed_slope: self.slope = slope else: self.slope = Param('slope',
np.array(slope)
numpy.array
""" This script contains a number of functions used for interpolation of kinetic profiles and D,V profiles in STRAHL. Refer to the STRAHL manual for details. """ # MIT License # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from scipy.interpolate import interp1d import numpy as np def funct(params, rLCFS, r): """ Function 'funct' in STRAHL manual The "params" input is broken down into 6 arguments: y0 is core offset y1 is edge offset y2 (>y0, >y1) sets the gaussian amplification p0 sets the width of the inner gaussian P1 sets the width of the outer gaussian p2 sets the location of the inner and outer peaks """ params = np.reshape(params, (-1, 6)) out = [] for param in params: y0, y1, y2, p0, p1, p2 = param r1 = p2 * rLCFS rin = r[r <= r1] rout = r[r > r1] yin = y0 + (y2 - y0) * np.exp(np.maximum(-((rin - r1) ** 2) / p0 ** 2, -50)) yout = y1 + (y2 - y1) * np.exp(np.maximum(-((rout - r1) ** 2) / p1 ** 2, -50)) out.append(np.concatenate((yin, yout))) return np.array(out) def funct2(params, rLCFS, r): """Function 'funct2' in STRAHL manual. """ params_1, params_2 = np.swapaxes(np.reshape(params, (-1, 2, 6)), 0, 1) funct_1 = funct(params_1, rLCFS, r) funct_2 = funct(params_2, rLCFS, r) return funct_1 + funct_2 def exppol0(params, d, rLCFS, r): rho = r[:, None] / rLCFS d = np.array(d) / rLCFS params = np.array(params).T idx =
np.searchsorted(r, rLCFS)
numpy.searchsorted
#!/usr/bin/env python from __future__ import print_function from __future__ import division from builtins import zip from builtins import input from builtins import map from builtins import next from builtins import str from builtins import range from past.utils import old_div from builtins import object import sys import json import pprint import os import threading from collections import defaultdict, Counter import multiprocessing from itertools import islice, chain, count import argparse import numpy as np from sklearn.feature_extraction import FeatureHasher import scipy.sparse as sp from fastxml import Inferencer, Trainer, metric_cluster from fastxml.weights import uniform, nnllog, propensity, logexp from fastxml.metrics import ndcg, precision, pSndcg def build_arg_parser(): parser = argparse.ArgumentParser(description='FastXML trainer and tester', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("model", help="Model to use for dataset file") parser.add_argument("input_file", help="Input file to use") group = parser.add_mutually_exclusive_group() group.add_argument("--standard-dataset", dest="standardDataset", action="store_true", help="Input is standard dataset sparse format") group.add_argument("--pre-gen", dest="preGen", type=int, help="Input is is pregenerated sparse format") parser.add_argument("--verbose", action="store_true", help="Verbose" ) subparsers = parser.add_subparsers(dest="command") trainer = subparsers.add_parser('train', help="Set up for trainer") build_train_parser(trainer) inference = subparsers.add_parser('inference', help="Runs a model against a dataset") build_repl_parser(inference) build_inference_parser(inference) cluster = subparsers.add_parser('cluster', help="Clusters labels into NDCG classes") build_cluster_parser(cluster) repl = subparsers.add_parser('repl', help="Interactive mode for a model") build_repl_parser(repl) return parser def build_cluster_parser(parser): parser.add_argument("--trees", dest="trees", type=int, default=1, help="Number of random trees to cluster on" ) parser.add_argument("--label-weight", dest="label_weight", choices=('uniform', 'nnllog', 'propensity', 'logexp'), default='propensity', help="Metric for computing label weighting." ) parser.add_argument("--max_leaf_size", dest="max_leaf_size", type=int, default=10, help="Maximumum number of examples allowed per leaf" ) parser.add_argument("--label-weight-hp", dest="label_weight_hp", metavar="P", nargs=2, type=float, default = (None, None), help="Hyper parameters for label weight tuning" ) def build_repl_parser(parser): parser.add_argument("--max-predict", dest="max_predict", type=int, default=10, help="Maximum number of classes to predict" ) parser.add_argument("--gamma", type=float, help="Overrides default gamma value for leaf classifiers" ) parser.add_argument("--blend_factor", type=float, help="Overrides default blend factor" ) parser.add_argument("--leaf-probs", dest="leafProbs", type=lambda x: x.lower() == "true", help="Overrides whether to show log vs P(Y|X)" ) def build_inference_parser(parser): parser.add_argument("--dict", dest="dict", action="store_true", help="Store predict as dict" ) parser.add_argument("--score", action="store_true", help="Scores results according to ndcg and precision" ) parser.add_argument("--score-only", dest="scoreOnly", action="store_true", help="Scores the dataset and returns the average NDCG scores" ) def build_train_parser(parser): parser.add_argument("--engine", dest="engine", default="auto", choices=('auto', 'sgd', 'liblinear'), help="Which engine to use." ) parser.add_argument("--auto-weight", dest="auto_weight", default=32, type=int, help="When engine is 'auto', number of classes * max_leaf_size remaining to revert to SGD" ) parser.add_argument("--no-remap-labels", dest="noRemap", action="store_true", help="Whether to remap labels to an internal format. Needed for string labels" ) parser.add_argument("--trees", dest="trees", type=int, default=50, help="Number of trees to use" ) parser.add_argument("--max_leaf_size", dest="max_leaf_size", type=int, default=10, help="Maximumum number of examples allowed per leaf" ) parser.add_argument("--max_labels_per_leaf", dest="max_labels_per_leaf", type=int, default=50, help="Maximum number of classes to retaion for probability distribution per leaf" ) parser.add_argument("--re_split", dest="re_split", type=int, default=1, help="After fitting a classifier, re-splits the data according to fitted "\ "classifier. If greater than 1, it will re-fit and re-train a classifier "\ "the data if after splitting, it all ends in a leaf. Will retry N times." ) parser.add_argument("--alpha", dest="alpha", type=float, default=1e-3, help="L1 coefficient. Too high and it won't learn a split, too low and "\ "it won't be sparse (larger file size, slower inference)." ) parser.add_argument("--C", dest="C", type=float, default=1, help="C value for when using auto, penalizing accuracy over fit" ) parser.add_argument("--iters", dest="iters", type=lambda x: int(x) if x != 'auto' else x, default=2, help="Number of iterations to run over the dataset when fitting classifier" ) parser.add_argument("--n_updates", dest="n_updates", type=int, default=100, help="If iters is 'auto', makes it use iters = n_update / N" ) parser.add_argument("--no_bias", dest="bias", action="store_false", help="Fits a bias for the classifier. Not needed if data has E[X] = 0" ) parser.add_argument("--subsample", dest="subsample", type=float, default=1.0, help="Subsample data per tree. if less than 1, interpretted as a "\ "percentage. If greater than one, taken as number of data " \ "points per tree." ) parser.add_argument("--loss", dest="loss", choices=('log', 'hinge'), default='log', help="Loss to minimize." ) parser.add_argument("--threads", dest="threads", type=int, default=multiprocessing.cpu_count(), help="Number of threads to use. Will use min(threads, trees)" ) parser.add_argument("--label-weight", dest="label_weight", choices=('uniform', 'nnllog', 'propensity', 'logexp'), default='propensity', help="Metric for computing label weighting." ) parser.add_argument("--label-weight-hp", dest="label_weight_hp", metavar="P", nargs=2, type=float, default = (None, None), help="Hyper parameters for label weight tuning" ) parser.add_argument("--optimization", dest="optimization", choices=('fastxml', 'dsimec'), default='fastxml', help="optimization strategy to use for linear classifier" ) parser.add_argument("--eps", dest="eps", type=float, help="Sparsity epsilon. Weights lower than eps will suppress to zero" ) parser.add_argument("--leaf-classifiers", dest="leaf_class", action="store_true", help="Whether to use and compute leaf classifiers" ) parser.add_argument("--gamma", type=int, default=30, help="Gamma coefficient for hyper-sphere weighting" ) parser.add_argument("--blend-factor", dest="blend_factor", type=float, default=0.5, help="blend * tree-probs + (1 - blend) * tail-classifiers" ) parser.add_argument("--min-label-count", dest="mlc", type=int, default=5, help="Filter out labels with count < min-label-count" ) parser.add_argument("--leaf-probs", dest="leafProbs", action="store_true", help="Computes probability: TP(X) * LP(X)" ) return parser def sliding(it, window): x = list(islice(it, window)) try: if len(x) == window: while True: yield x x2 = x[1:] x2.append(next(it)) x = x2 except StopIteration: pass class Quantizer(object): def stream(self, fn): raise NotImplementedError() class JsonQuantizer(Quantizer): def __init__(self, verbose, min_label_count=1, inference=False): self.fh = FeatureHasher(dtype='float32') self.verbose = verbose self.inference = inference self.min_label_count = min_label_count def quantize(self, text): text = text.lower().replace(',', '') unigrams = text.split() bigrams = (' '.join(xs) for xs in sliding(iter(unigrams), 2)) trigrams = (' '.join(xs) for xs in sliding(iter(unigrams), 3)) d = {f: 1.0 for f in chain(unigrams, bigrams, trigrams)} return self.fh.transform([d]) def yieldJson(self, fname): with open(fname, 'rt') as f: for i, line in enumerate(f): if self.verbose and i % 10000 == 0: print("%s docs encoded" % i) yield json.loads(line) def count_labels(self, fname): c = Counter() for data in self.yieldJson(fname): c.update(data['tags']) return (lambda t: c[t] >= self.min_label_count) def stream(self, fname, no_features=False): if self.min_label_count > 1: f = self.count_labels(fname) else: f = lambda x: True for data in self.yieldJson(fname): y = [yi for yi in set(data.get('tags', [])) if f(yi)] if no_features: yield data, y else: X = self.quantize(data['title']) yield data, X, y class PregenQuantizer(JsonQuantizer): def __init__(self, verbose, min_label_count, dims, inference=False): super(PregenQuantizer, self).__init__(verbose, min_label_count, inference) self.dims = dims def quantize(self, text): data = [] row_ind = [] col_ind = [] for p in text.split(): rIndex, rValue = p.split(':') row_ind.append(0) col_ind.append(int(rIndex)) data.append(float(rValue)) return sp.csr_matrix((data, (row_ind, col_ind)), (1, self.dims)).astype('float32') class StandardDatasetQuantizer(Quantizer): def __init__(self, verbose): self.verbose = verbose def quantize(self, line, no_features): if " " not in line: classes, sparse = line.strip(), "" elif line.startswith(' '): classes, sparse = '', line.strip() else: classes, sparse = line.strip().split(None, 1) if classes: y = list(map(int, classes.split(','))) else: y = [] if no_features: return y c, d = [], [] for v in sparse.split(): loc, v = v.split(":") c.append(int(loc)) d.append(float(v)) return (c, d), y def stream(self, fn, no_features=False): with open(fn, 'rt') as f: n_samples, n_feats, n_classes = list(map(int, f.readline().split())) for i, line in enumerate(f): if i == 0: continue if self.verbose and i % 10000 == 0: print("%s docs encoded" % i) res = self.quantize(line, no_features) if no_features: yield {"labels": res}, res else: (c, d), y = res yield {"labels": y}, sp.csr_matrix((d, ([0] * len(d), c)), shape=(1, n_feats), dtype='float32'), y class Dataset(object): def __init__(self, dataset): self.dataset = dataset @property def model(self): return os.path.join(self.dataset, 'model') @property def classes(self): return os.path.join(self.dataset, 'counts') @property def weights(self): return os.path.join(self.dataset, 'weights') class ClusterDataset(object): def __init__(self, dataset): self.dataset = dataset def probs(self, i): return os.path.join(self.dataset, 'probs.%s' % i) @property def clusters(self): return os.path.join(self.dataset, 'cluster') def quantize(args, quantizer, classes): cnt = count() for _, X, ys in quantizer.stream(args.input_file): nys = [] for y in ys: if y not in classes: classes[y] = y if getattr(args, 'noRemap', False) else next(cnt) nys.append(classes[y]) yield X, nys def quantize_y(args, quantizer, classes): cnt = count() for _, ys in quantizer.stream(args.input_file, no_features=True): nys = [] for y in ys: if y not in classes: classes[y] = y if getattr(args, 'noRemap', False) else next(cnt) nys.append(classes[y]) yield nys def train(args, quantizer): cnt = count() classes, X_train, y_train = {}, [], [] for i, (X, y) in enumerate(quantize(args, quantizer, classes)): if y: X_train.append(X) y_train.append(y) elif args.verbose: print("Skipping example %s since it has no classes matching threshold" % i) # Save the mapping dataset = Dataset(args.model) if not os.path.isdir(args.model): os.makedirs(args.model) with open(dataset.classes, 'wt') as out: json.dump(list(classes.items()), out) weights = compute_weights(y_train, args.label_weight, args.label_weight_hp) with open(dataset.weights, 'wt') as out: for i, w in enumerate(weights): out.write("%s,%s\n" % (i, w)) # Train clf = Trainer( n_trees=args.trees, max_leaf_size=args.max_leaf_size, max_labels_per_leaf=args.max_labels_per_leaf, re_split=args.re_split, alpha=args.alpha, n_epochs=args.iters, n_updates=args.n_updates, bias=args.bias, subsample=args.subsample, loss=args.loss, leaf_classifiers=args.leaf_class, n_jobs=args.threads, optimization=args.optimization, eps=args.eps, C=args.C, engine=args.engine, auto_weight=args.auto_weight, verbose=args.verbose ) clf.fit(X_train, y_train, weights=weights) clf.save(dataset.model) sys.exit(0) def compute_weights(y_train, label_weight, hps): args = (y_train,) if hps[0] is not None: args += tuple(hps) if label_weight == 'nnllog': return nnllog(*args) elif label_weight == 'uniform': return uniform(y_train) elif label_weight == 'propensity': return propensity(*args) elif label_weight == 'logexp': return logexp(*args) else: raise NotImplementedError(label_weight) def print_metrics(ndcgs, precs, pndcgs, toStderr): fout = sys.stderr if toStderr else sys.stdout ndcgT = list(zip(*ndcgs)) precsT = list(zip(*precs)) pndcgT = list(zip(*pndcgs)) for i in range(3): print('P@{}: {}'.format(2 * i + 1, np.mean(precsT[i])), file=fout) for i in range(3): print('NDCG@{}: {}'.format(2 * i + 1,
np.mean(ndcgT[i])
numpy.mean
import sys, os import numpy as np from keras.preprocessing.image import transform_matrix_offset_center, apply_transform, Iterator,random_channel_shift, flip_axis from scipy.ndimage.interpolation import map_coordinates from scipy.ndimage.filters import gaussian_filter import cv2 import random import pdb from skimage.io import imsave, imread from skimage.transform import rotate from skimage import transform from skimage.transform import resize from params import * import json import math #import matplotlib.pyplot as plt def clip(img, dtype, maxval): return np.clip(img, 0, maxval).astype(dtype) def RandomLight(img,img_right): lights = random.choice(["Rfilter","Rbright","Rcontr", "RSat","RhueSat"]) #print(lights) if lights=="Rfilter": alpha = 0.5 * random.uniform(0, 1) kernel = np.ones((3, 3), np.float32)/9 * 0.2 colored = img[..., :3] colored = alpha * cv2.filter2D(colored, -1, kernel) + (1-alpha) * colored maxval = np.max(img[..., :3]) dtype = img.dtype img[..., :3] = clip(colored, dtype, maxval) #right image colored = img_right[..., :3] colored = alpha * cv2.filter2D(colored, -1, kernel) + (1-alpha) * colored maxval = np.max(img_right[..., :3]) dtype = img_right.dtype img_right[..., :3] = clip(colored, dtype, maxval) if lights=="Rbright": alpha = 1.0 + 0.1*random.uniform(-1, 1) maxval = np.max(img[..., :3]) dtype = img.dtype img[..., :3] = clip(alpha * img[...,:3], dtype, maxval) #right image maxval = np.max(img_right[..., :3]) dtype = img_right.dtype img_right[..., :3] = clip(alpha * img_right[...,:3], dtype, maxval) if lights=="Rcontr": alpha = 1.0 + 0.1*random.uniform(-1, 1) gray = cv2.cvtColor(img[:, :, :3], cv2.COLOR_BGR2GRAY) gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) maxval = np.max(img[..., :3]) dtype = img.dtype img[:, :, :3] = clip(alpha * img[:, :, :3] + gray, dtype, maxval) #right image gray = cv2.cvtColor(img_right[:, :, :3], cv2.COLOR_BGR2GRAY) gray = (3.0 * (1.0 - alpha) / gray.size) * np.sum(gray) maxval = np.max(img_right[..., :3]) dtype = img.dtype img_right[:, :, :3] = clip(alpha * img_right[:, :, :3] + gray, dtype, maxval) if lights=="RSat": maxval = np.max(img[..., :3]) dtype = img.dtype alpha = 1.0 + random.uniform(-0.1, 0.1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) img[..., :3] = alpha * img[..., :3] + (1.0 - alpha) * gray img[..., :3] = clip(img[..., :3], dtype, maxval) #righ image maxval = np.max(img_right[..., :3]) dtype = img_right.dtype alpha = 1.0 + random.uniform(-0.1, 0.1) gray = cv2.cvtColor(img_right, cv2.COLOR_BGR2GRAY) gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) img_right[..., :3] = alpha * img_right[..., :3] + (1.0 - alpha) * gray img_right[..., :3] = clip(img_right[..., :3], dtype, maxval) if lights=="RhueSat": img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(img) hue_shift = np.random.uniform(-25,25) h = cv2.add(h, hue_shift) sat_shift = np.random.uniform(-25,25) s = cv2.add(s, sat_shift) val_shift = np.random.uniform(-25, 25) v = cv2.add(v, val_shift) img = cv2.merge((h, s, v)) img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR) #right image img_right = cv2.cvtColor(img_right, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(img_right) h = cv2.add(h, hue_shift) s = cv2.add(s, sat_shift) v = cv2.add(v, val_shift) img_right = cv2.merge((h, s, v)) img_right = cv2.cvtColor(img_right, cv2.COLOR_HSV2BGR) return img,img_right def perspectivedist(img,img_right,img_mask, flag='all'): if flag=='all': magnitude=3 # pdb.set_trace() rw=img.shape[0] cl=img.shape[1] #x = random.randrange(50, 200) #nonzeromask=(img_mask>0).nonzero() #nonzeroy = np.array(nonzeromask[0]) #nonzerox = np.array(nonzeromask[1]) #bbox = (( np.maximum(np.min(nonzerox)-x,0), np.maximum(np.min(nonzeroy)-x,0)), (np.minimum(np.max(nonzerox)+x,cl), np.minimum(np.max(nonzeroy)+x,rw))) #pdb.set_trace() # img=img[bbox[0][1]:(bbox[1][1]),bbox[0][0]:(bbox[1][0])] # img_mask=img_mask[bbox[0][1]:(bbox[1][1]),bbox[0][0]:(bbox[1][0])] skew = random.choice(["TILT", "TILT_LEFT_RIGHT", "TILT_TOP_BOTTOM", "CORNER"]) w, h,_ = img.shape x1 = 0 x2 = h y1 = 0 y2 = w original_plane = np.array([[(y1, x1), (y2, x1), (y2, x2), (y1, x2)]], dtype=np.float32) max_skew_amount = max(w, h) max_skew_amount = int(math.ceil(max_skew_amount *magnitude)) skew_amount = random.randint(1, max_skew_amount) if skew == "TILT" or skew == "TILT_LEFT_RIGHT" or skew == "TILT_TOP_BOTTOM": if skew == "TILT": skew_direction = random.randint(0, 3) elif skew == "TILT_LEFT_RIGHT": skew_direction = random.randint(0, 1) elif skew == "TILT_TOP_BOTTOM": skew_direction = random.randint(2, 3) if skew_direction == 0: # Left Tilt new_plane = np.array([(y1, x1 - skew_amount), # Top Left (y2, x1), # Top Right (y2, x2), # Bottom Right (y1, x2 + skew_amount)], dtype=np.float32) # Bottom Left elif skew_direction == 1: # Right Tilt new_plane = np.array([(y1, x1), # Top Left (y2, x1 - skew_amount), # Top Right (y2, x2 + skew_amount), # Bottom Right (y1, x2)],dtype=np.float32) # Bottom Left elif skew_direction == 2: # Forward Tilt new_plane = np.array([(y1 - skew_amount, x1), # Top Left (y2 + skew_amount, x1), # Top Right (y2, x2), # Bottom Right (y1, x2)], dtype=np.float32) # Bottom Left elif skew_direction == 3: # Backward Tilt new_plane = np.array([(y1, x1), # Top Left (y2, x1), # Top Right (y2 + skew_amount, x2), # Bottom Right (y1 - skew_amount, x2)], dtype=np.float32) # Bottom Left if skew == "CORNER": skew_direction = random.randint(0, 7) if skew_direction == 0: # Skew possibility 0 new_plane = np.array([(y1 - skew_amount, x1), (y2, x1), (y2, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 1: # Skew possibility 1 new_plane = np.array([(y1, x1 - skew_amount), (y2, x1), (y2, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 2: # Skew possibility 2 new_plane = np.array([(y1, x1), (y2 + skew_amount, x1), (y2, x2), (y1, x2)],dtype=np.float32) elif skew_direction == 3: # Skew possibility 3 new_plane = np.array([(y1, x1), (y2, x1 - skew_amount), (y2, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 4: # Skew possibility 4 new_plane = np.array([(y1, x1), (y2, x1), (y2 + skew_amount, x2), (y1, x2)], dtype=np.float32) elif skew_direction == 5: # Skew possibility 5 new_plane = np.array([(y1, x1), (y2, x1), (y2, x2 + skew_amount), (y1, x2)], dtype=np.float32) elif skew_direction == 6: # Skew possibility 6 new_plane = np.array([(y1, x1), (y2, x1), (y2, x2), (y1 - skew_amount, x2)],dtype=np.float32) elif skew_direction == 7: # Skew possibility 7 new_plane =np.array([(y1, x1), (y2, x1), (y2, x2), (y1, x2 + skew_amount)], dtype=np.float32) # pdb.set_trace() perspective_matrix = cv2.getPerspectiveTransform(original_plane, new_plane) img = cv2.warpPerspective(img, perspective_matrix, (img.shape[1], img.shape[0]), flags = cv2.INTER_LINEAR) img_right = cv2.warpPerspective(img_right, perspective_matrix, (img.shape[1], img.shape[0]), flags = cv2.INTER_LINEAR) img_mask = cv2.warpPerspective(img_mask, perspective_matrix, (img.shape[1], img.shape[0]), flags = cv2.INTER_LINEAR) return img, img_right, img_mask def apply_clahe(img): lab= cv2.cvtColor(img, cv2.COLOR_BGR2LAB) l, a, b = cv2.split(lab) clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) cl = clahe.apply(l) limg = cv2.merge((cl,a,b)) img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) return img def add_gaussian_noise(X_imgs): #pdb.set_trace() row, col,_= X_imgs.shape #X_imgs=X_imgs/255 X_imgs = X_imgs.astype(np.float32) # Gaussian distribution parameters mean = 0 var = 0.1 sigma = var ** 0.5 gaussian = np.random.random((row, col, 1)).astype(np.float32) gaussian = np.concatenate((gaussian, gaussian, gaussian), axis = 2) gaussian_img = cv2.addWeighted(X_imgs, 0.75, 0.25 * gaussian, 0.25, 0) gaussian_img = np.array(gaussian_img, dtype = np.uint8) return gaussian_img def random_affine(img,img_right,img_mask): flat_sum_mask=sum(img_mask.flatten()) (row,col,_)=img_mask.shape angle=shear_deg=0 zoom=1 center_shift = np.array((1000, 1000)) / 2. - 0.5 tform_center = transform.SimilarityTransform(translation=-center_shift) tform_uncenter = transform.SimilarityTransform(translation=center_shift) big_img=np.zeros((1000,1000,3), dtype=np.uint8) big_img_right=np.zeros((1000,1000,3), dtype=np.uint8) big_mask=np.zeros((1000,1000,3), dtype=np.uint8) big_img[190:(190+row),144:(144+col)]=img big_img_right[190:(190+row),144:(144+col)]=img_right big_mask[190:(190+row),144:(144+col)]=img_mask affine = random.choice(["rotate", "zoom", "shear"]) if affine == "rotate": angle= random.uniform(-90, 90) if affine == "zoom": zoom = random.uniform(0.5, 1.5) if affine=="shear": shear_deg = random.uniform(-5, 5) # pdb.set_trace() tform_aug = transform.AffineTransform(rotation = np.deg2rad(angle), scale =(1/zoom, 1/zoom), shear = np.deg2rad(shear_deg), translation = (0, 0)) tform = tform_center + tform_aug + tform_uncenter # pdb.set_trace() img_tr=transform.warp((big_img), tform) img_tr_right=transform.warp((big_img_right), tform) mask_tr=transform.warp((big_mask), tform) # pdb.set_trace() masktemp = cv2.cvtColor((img_tr*255).astype(np.uint8), cv2.COLOR_BGR2GRAY)>20 img_tr=img_tr[np.ix_(masktemp.any(1),masktemp.any(0))] mask_tr = mask_tr[np.ix_(masktemp.any(1),masktemp.any(0))] img_tr_right = img_tr_right[np.ix_(masktemp.any(1),masktemp.any(0))] return (img_tr*255).astype(np.uint8),(img_tr_right*255).astype(np.uint8),(mask_tr*255).astype(np.uint8) class CustomNumpyArrayIterator(Iterator): def __init__(self, X, y, image_data_generator, batch_size=32, shuffle=False, seed=None, dim_ordering='th'): self.X = X self.y = y self.image_data_generator = image_data_generator self.dim_ordering = dim_ordering self.training=image_data_generator.training self.img_rows=image_data_generator.netparams.img_rows self.img_cols=image_data_generator.netparams.img_cols with open('labels_2017.json') as json_file: self.Data = json.load(json_file) #pdb.set_trace() super(CustomNumpyArrayIterator, self).__init__(X.shape[0], batch_size, shuffle, seed) def _get_batches_of_transformed_samples(self, index_array): # pdb.set_trace() batch_x_right = np.zeros((len(index_array),self.img_rows,self.img_cols,3), dtype=np.float32) batch_x_left = np.zeros((len(index_array),self.img_rows,self.img_cols,3), dtype=np.float32) if self.training: if self.image_data_generator.netparams.task=='all': ch_num=11 elif self.image_data_generator.netparams.task=='binary': ch_num=1 elif self.image_data_generator.netparams.task=='parts': ch_num=3 elif self.image_data_generator.netparams.task=='instrument': ch_num=7 else: ch_num=3 batch_y=np.zeros((len(index_array), self.img_rows,self.img_cols,ch_num), dtype=np.float32) infos=[] for i, j in enumerate(index_array): #pdb.set_trace() x_left = imread(self.X[j][0]) x_right =imread(self.X[j][1]) y1 =imread(self.y[j]) y1 = y1[...,[1,2,0]] #print(j) #pdb.set_trace() infos.append((self.X[j][0], x_left.shape)) _x_left, _x_right, _y1 = self.image_data_generator.random_transform(x_left.astype(np.uint8), x_right.astype(np.uint8),y1.astype(np.uint8),self.Data) batch_x_left[i]=_x_left batch_x_right[i]=_x_right batch_y[i]=_y1 #inf_temp=[] #inf_temp.append() # inf_temp.append() # infos.append( # pdb.set_trace() batch_y=np.reshape(batch_y,(-1,self.img_rows,self.img_cols,ch_num)) return batch_x_left,batch_x_right,batch_y,infos def next(self): with self.lock: index_array = next(self.index_generator) #print(index_array) return self._get_batches_of_transformed_samples(index_array) def convert_gray(data,im, tasktype): #pdb.set_trace() #np.shape(self.Data['instrument']) if tasktype.task=='all': out = (np.zeros((im.shape[0],im.shape[1],11)) ).astype(np.uint8) #pdb.set_trace() image=np.squeeze(im[:,:,0]) indexc=0 for label_info,index in zip(data['instrument'],range(0,np.shape(data['instrument'])[0]+1)): rgb=label_info['color'][0] if rgb==0: continue temp_out = (np.zeros(im.shape[:2]) ).astype(np.uint8) gray_val=255 #pdb.set_trace() match_pxls = np.where(image == rgb) temp_out[match_pxls] = gray_val out[:,:,index-1]=temp_out #print(index-1) #print(rgb) image=np.squeeze(im[:,:,1]) for label_info,index in zip(data['parts'],range(np.shape(data['instrument'])[0],np.shape(data['instrument'])[0]+np.shape(data['parts'])[0])): rgb=label_info['color'][1] #pdb.set_trace() if rgb==0: continue temp_out = (np.zeros(im.shape[:2]) ).astype(np.uint8) gray_val=255 match_pxls = np.where(image == rgb) temp_out[match_pxls] = gray_val out[:,:,index-1]=temp_out #print(index-1) #print(rgb) #pdb.set_trace() out[:,:,index]=np.squeeze(im[:,:,2]) #print(index) #pdb.set_trace() if tasktype.task=='binary': out = (np.zeros((im.shape[0],im.shape[1])) ).astype(np.uint8) out[:,:]=np.squeeze(im[:,:,2]) if tasktype.task=='instrument': out = (np.zeros((im.shape[0],im.shape[1],np.shape(data['instrument'])[0]-1))).astype(np.uint8) #pdb.set_trace() image=np.squeeze(im[:,:,0]) indexc=0 for label_info,index in zip(data['instrument'],range(0,np.shape(data['instrument'])[0]+1)): rgb=label_info['color'][0] #pdb.set_trace() if rgb==0: continue temp_out = (np.zeros(im.shape[:2]) ).astype(np.uint8) gray_val=255 match_pxls = np.where((image == rgb)) temp_out[match_pxls] = gray_val out[:,:,index-1]=temp_out if tasktype.task=='parts': out = (np.zeros((im.shape[0],im.shape[1],np.shape(data['parts'])[0])) ).astype(np.uint8) #pdb.set_trace() image=np.squeeze(im[:,:,1]) indexc=0 for label_info,index in zip(data['parts'],range(0,np.shape(data['parts'])[0])): rgb=label_info['color'][1] #pdb.set_trace() if rgb==0: continue temp_out = (np.zeros(im.shape[:2]) ).astype(np.uint8) gray_val=255 match_pxls = np.where(image == rgb) temp_out[match_pxls] = gray_val out[:,:,index]=temp_out return out.astype(np.uint8) def convert_color(data,im, tasktype): # pdb.set_trace() im=np.squeeze(im) if tasktype.task=='all': out1 = (np.zeros((im.shape[0],im.shape[1])) ).astype(np.uint8) out2 = (np.zeros((im.shape[0],im.shape[1])) ).astype(np.uint8) out3 = (np.zeros((im.shape[0],im.shape[1])) ).astype(np.uint8) for label_info,index in zip(data['instrument'],range(0,np.shape(data['instrument'])[0]+1)): rgb=label_info['color'][0] if np.sum(rgb)==0: continue temp=im[:,:,index-1] temp=temp.astype(np.float) #temp =cv2.resize(temp,(224,224),interpolation=cv2.INTER_CUBIC) match_pxls = np.where(temp > 0.2) out1[match_pxls] = rgb for label_info,index in zip(data['parts'],range(np.shape(data['instrument'])[0],np.shape(data['instrument'])[0]+np.shape(data['parts'])[0])): rgb=label_info['color'][1] #pdb.set_trace() if np.sum(rgb)==0: continue temp=im[:,:,index-1] #print(index-1) temp=temp.astype(np.float) #temp =cv2.resize(temp,(224,224),interpolation=cv2.INTER_CUBIC) match_pxls = np.where(temp > 0.2) out2[match_pxls] = rgb out3=(im[:,:,index]>0.2)*255 out=np.dstack((out1,out2,out3)) #pdb.set_trace() if tasktype.task=='binary': out = (np.zeros((im.shape[0],im.shape[1])) ).astype(np.uint8) out=(im>0.2)*255 if tasktype.task=='parts': out = (np.zeros((im.shape[0],im.shape[1])) ).astype(np.uint8) for label_info,index in zip(data['parts'],range(0,np.shape(data['parts'])[0])): rgb=label_info['color'][1] if np.sum(rgb)==0: continue temp=im[:,:,index] temp=temp.astype(np.float) temp =cv2.resize(temp,(224,224),interpolation=cv2.INTER_CUBIC) match_pxls = np.where(temp > 0.2) out[match_pxls] = rgb if tasktype.task=='instrument': out = (
np.zeros((im.shape[0],im.shape[1]))
numpy.zeros
""" unstratified-primary-cylindrical.py A regression test for globAccDisk-src-primary_grav.hpp (source terms for gravity with a source at the coordinate center). Current test: -- stratified gravity -- cylindrical coordinate version -- a Keplerian disk inclined wrt the coordinate system is initialized, the test ensures that it remains stationary """ # Modules import numpy as np # standard Python module for numerics import sys # standard Python module to change path import scripts.utils.athena as athena # utilities for running Athena++ import scripts.utils.comparison as comparison # more utilities explicitly for testing sys.path.insert(0, '../../vis/python') # insert path to Python read scripts import athena_read # utilities for reading Athena++ data # noqa import socket # recognizing host machine def prepare(**kwargs): # check which machine we're running on and configure accordingly if socket.gethostname() == 'ast1506-astro': athena.configure('hdf5', 'mpi', prob='globAccDisk-test-binary_gravity', flux='roe', eos='adiabatic', coord='cylindrical', hdf5_path='/usr/local/Cellar/hdf5/1.10.4', **kwargs) else: athena.configure('hdf5', 'mpi', prob='globAccDisk-test-binary_gravity', flux='roe', eos='adiabatic', coord='cylindrical', **kwargs) athena.make() def run(**kwargs): arguments = ['job/problem_id=stratified-primary-cylindrical', 'output1/file_type=hdf5', 'output1/variable=prim', 'output1/dt=%.20f' % (2.5), 'time/cfl_number=0.3', 'time/tlim=%.20f' % (2.5), 'mesh/nx1=32', 'mesh/x1min=0.5', 'mesh/x1max=1.0', 'mesh/ix1_bc=reflecting', 'mesh/ox1_bc=reflecting', 'mesh/nx2=64', 'mesh/x2min=0.0', 'mesh/x2max=%.20f' % (2.*np.pi), 'mesh/ix2_bc=periodic', 'mesh/ox2_bc=periodic', 'mesh/nx3=16', 'mesh/x3min=-0.5', 'mesh/x3max=0.5', 'mesh/ix3_bc=reflecting', 'mesh/ox3_bc=reflecting', 'meshblock/nx1=16', 'meshblock/nx2=16', 'meshblock/nx3=16', 'hydro/gamma=1.1', 'hydro/dfloor=0.0001', 'hydro/pfloor=0.0001', 'problem/stratified=1', 'problem/binary_component=0', 'problem/GM1=1.0', 'problem/rho=1.0', 'problem/rho0=0.01', 'problem/press=0.01', 'problem/inclination=0.3', 'problem/position_angle=1.0', 'problem/ang_dist_max=0.2'] athena.run('hydro/athinput.binary_gravity', arguments) def analyze(): initial_state = athena_read.athdf('bin/stratified-primary-cylindrical.out1.00000.athdf') r0, phi0, z0, rho = [initial_state[key] for key in ['x1v', 'x2v', 'x3v', 'rho']] z, phi, r = np.meshgrid(z0, phi0, r0, indexing='ij') #calculate the center of mass of each vertical stencil to be compared with the final state com_expected = np.sum(rho*z, axis=0) / np.sum(rho, axis=0) # check if the frames are identical for i in range(1,2): test_results = athena_read.athdf('bin/stratified-primary-cylindrical.out1.0000%i.athdf' % i) rho = test_results['rho'] com = np.sum(rho*z, axis=0) / np.sum(rho, axis=0) error_rel_com = np.sum(np.abs(com_expected - com)) / (
np.product(com.shape)
numpy.product
import matplotlib.pyplot as plt import numpy as np from scipy import ndimage from scipy.ndimage import binary_fill_holes as fillholes from skimage import img_as_ubyte from skimage.util import img_as_float from skimage.exposure import adjust_sigmoid from skimage.filters import threshold_otsu, threshold_triangle, rank, laplace, sobel from skimage.segmentation import clear_border from skimage.measure import label from skimage.morphology import closing, square, disk, remove_small_objects, opening, dilation, watershed, erosion from skimage.color import label2rgb, rgb2gray from skimage.transform import rescale import os from os.path import join from scipy import ndimage as ndi def frequency_filter(im, mu, sigma, passtype='low'): ''' This function applies a lowpass or highpass filter to an image. Paramters --------- im : (N, M) ndarray Grayscale input image. mu : float, optional Average for input in low pass filter. Default value is 500. sigma : float, optional Standard deviation for input in low pass filter. Default value is 70. passtype: string Applies a 'high' or 'low' pass filter. Default value is 'low'. Returns ------- out : ndarray Low or high pass filtered output image. Examples -------- >>> image = plt.imread('..\C3-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') >>> lowpass = frequency_filter(im, 500, 70, passtype='low') ''' # define x and y based on image shape y_length, x_length = np.shape(im) xi = np.linspace(0, x_length-1, x_length) yi = np.linspace(0, y_length-1, y_length) x, y = np.meshgrid(xi, yi) # define lowpass or highpass filter if passtype == 'low': gfilt = np.exp(-((x-mu)**2 + (y-mu)**2)/(2*sigma**2)) if passtype == 'high': gfilt = 1 - np.exp(-((x-mu)**2 + (y-mu)**2)/(2*sigma**2)) fim = np.fft.fft2(im) # moving to spacial domain fim_c = np.fft.fftshift(fim) # centering fim_filt = np.multiply(fim_c, gfilt) # apply the filter fim_uc = np.fft.ifftshift(fim_filt) # uncenter im_pass = np.real(np.fft.ifft2(fim_uc)) # perform inverse transform return im_pass def _check_dtype_supported(ar): ''' Used in remove_large_objects function and taken from skimage.morphology package. ''' # Should use `issubdtype` for bool below, but there's a bug in numpy 1.7 if not (ar.dtype == bool or np.issubdtype(ar.dtype, np.integer)): raise TypeError("Only bool or integer image types are supported. " "Got %s." % ar.dtype) def remove_large_objects(ar, max_size=10000, connectivity=1, in_place=False): ''' Remove connected components larger than the specified size. (Modified from skimage.morphology.remove_small_objects) Parameters ---------- ar : ndarray (arbitrary shape, int or bool type) The array containing the connected components of interest. If the array type is int, it is assumed that it contains already-labeled objects. The ints must be non-negative. max_size : int, optional (default: 10000) The largest allowable connected component size. connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1) The connectivity defining the neighborhood of a pixel. in_place : bool, optional (default: False) If `True`, remove the connected components in the input array itself. Otherwise, make a copy. Raises ------ TypeError If the input array is of an invalid type, such as float or string. ValueError If the input array contains negative values. Returns ------- out : ndarray, same shape and type as input `ar` The input array with small connected components removed. Examples -------- >>> from skimage import morphology >>> a = np.array([[0, 0, 0, 1, 0], ... [1, 1, 1, 0, 0], ... [1, 1, 1, 0, 1]], bool) >>> b = morphology.remove_large_objects(a, 6) >>> b array([[False, False, False, False, False], [ True, True, True, False, False], [ True, True, True, False, False]], dtype=bool) >>> c = morphology.remove_small_objects(a, 7, connectivity=2) >>> c array([[False, False, False, True, False], [ True, True, True, False, False], [ True, True, True, False, False]], dtype=bool) >>> d = morphology.remove_large_objects(a, 6, in_place=True) >>> d is a True ''' # Raising type error if not int or bool _check_dtype_supported(ar) if in_place: out = ar else: out = ar.copy() if max_size == 0: # shortcut for efficiency return out if out.dtype == bool: selem = ndi.generate_binary_structure(ar.ndim, connectivity) ccs = np.zeros_like(ar, dtype=np.int32) ndi.label(ar, selem, output=ccs) else: ccs = out try: component_sizes = np.bincount(ccs.ravel()) except ValueError: raise ValueError("Negative value labels are not supported. Try " "relabeling the input with `scipy.ndimage.label` or " "`skimage.morphology.label`.") if len(component_sizes) == 2: warn("Only one label was provided to `remove_small_objects`. " "Did you mean to use a boolean array?") too_large = component_sizes > max_size too_large_mask = too_large[ccs] out[too_large_mask] = 0 return out def phalloidin_labeled(im, selem=disk(3), mu=500, sigma=70, cutoff=0, gain=100, min_size=250, max_size=10000, connectivity=1): """ Signature: phalloidin_labeled(*args) Docstring: Segment and label image Extended Summary ---------------- The colorize function applies preprocessing filters (contrast and high pass) then defines the threshold value for the desired image. Thresholding is calculated by the otsu function creates a binarized image by setting pixel intensities above that thresh value to white, and the ones below to black (background). Next, it cleans up the image by filling in random noise within the cell outlines and removes small background objects. It then labels adjacent pixels with the same value and defines them as a region. It returns an RGB image with color-coded labels. Paramters --------- im : (N, M) ndarray Grayscale input image. selem : numpy.ndarray, optional Area used for separating cells. Default value is skimage.morphology.disk(3). cutoff : float, optional Cutoff of the sigmoid function that shifts the characteristic curve in horizontal direction. Default value is 0. gain : float, optional The constant multiplier in exponential's power of sigmoid function. Default value is 100. mu : float, optional Average for input in low pass filter. Default value is 500. sigma : float, optional Standard deviation for input in low pass filter. Default value is 70. min_size : int, optional The smallest allowable object size. Default value is 250. max_size : int, optional The largest allowable object size. Default value is 10000. connectivity : int, optional The connectvitivy defining the neighborhood of a pixel. Default value is 1. Returns ------- out : label_image (ndarray) segmented and object labeled for analysis Examples -------- image = plt.imread('C3-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') label_image = phalloidin_488_binary(image, mu=500, sigma=70, cutoff=0, gain=100) image = plt.imread('..\C3-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') label, overlay = phalloidin_488_segment(image, mu=500, sigma=70, cutoff=0, gain=100) """ # contrast adjustment im_con = adjust_sigmoid(im, cutoff=cutoff, gain=gain, inv=False) # contrast + low pass filter im_lo = frequency_filter(im_con, mu, sigma, passtype='low') # contrast + low pass + binary thresh = threshold_otsu(im_lo, nbins=256) im_bin = im_lo > thresh # fill holes, separate cells, and remove small/large objects im_fill = ndimage.binary_fill_holes(im_bin) im_open = opening(im_fill, selem) im_clean_i = remove_small_objects(im_open, min_size=min_size, connectivity=connectivity, in_place=False) im_clean = remove_large_objects(im_clean_i, max_size=max_size, connectivity=connectivity, in_place=False) # labelling regions that are cells label_image = label(im_clean) # coloring labels over cells image_label_overlay = label2rgb(label_image, image=im, bg_label=0) print(image_label_overlay.shape) # plot overlay image fig, ax = plt.subplots(figsize=(10, 6)) ax.imshow(image_label_overlay) ax.set_axis_off() plt.tight_layout() plt.show() return (label_image) def SMA_segment(im, mu=500, sigma=70, cutoff=0, gain=100, min_size=100, connectivity=1): """ This function binarizes a Smooth muscle actin (SMA) fluorescence microscopy channel using contrast adjustment, high pass filter, otsu thresholding, and removal of small objects. Paramters --------- im : (N, M) ndarray Grayscale input image. cutoff : float, optional Cutoff of the sigmoid function that shifts the characteristic curve in horizontal direction. Default value is 0. gain : float, optional The constant multiplier in exponential's power of sigmoid function. Default value is 100. mu : float, optional Average for input in low pass filter. Default value is 500. sigma : float, optional Standard deviation for input in low pass filter. Default value is 70. min_size : int, optional The smallest allowable object size. Default value is 100. connectivity : int, optional The connectvitivy defining the neighborhood of a pixel. Default value is 1. Returns ------- out : label_image (ndarray) segmented and object labeled for analysis, image_label_overlay (ndarray) Examples -------- >>> image = plt.imread('..\C4-NTG-CFbs_NTG5ECM_1mMRGD_20x_003.tif') >>> label, overlay = SMA_segment(image, mu=500, sigma=70, cutoff=0, gain=100) """ # contrast adjustment im_con = adjust_sigmoid(im, cutoff=cutoff, gain=gain, inv=False) # contrast + low pass filter im_lo = frequency_filter(im_con, mu, sigma, passtype='low') # contrast + low pass + binary thresh = threshold_otsu(im_lo, nbins=256) im_bin = im_lo > thresh # remove small objects im_bin_clean = remove_small_objects(im_bin, min_size=min_size, connectivity=connectivity, in_place=False) # labelling regions that are cells label_image = label(im_bin_clean) # coloring labels over cells image_label_overlay = label2rgb(label_image, image=im, bg_label=0) return label_image, image_label_overlay def colorize(image, i, x): """ Signature: colorize(*args) Docstring: segment and label image Extended Summary: ---------------- The colorize function defines the threshold value for the desired image by the triangle function and then creates a binarized image by setting pixel intensities above that thresh value to white, and the ones below to black (background). Next, it closes up the image by filling in random noise within the cell outlines and smooths/clears out the border. It then labels adjacent pixels with the same value and defines them as a region. It returns an RGB image with color-coded labels. Parameters: ---------- image : 2D array greyscale image i : int dimension of square to be used for binarization x : float dimension of image in microns according to imageJ Returns: -------- RGB image overlay int : 2D ndarray """ # resizing image image = rescale(image, x/1024, anti_aliasing=False) # applying threshold to image thresh = threshold_triangle(image) binary = closing(image > thresh, square(i)) binary = ndimage.binary_fill_holes(binary) # cleaning up boundaries of cells cleared = clear_border(binary) # labelling regions that are cells label_image = label(cleared) # coloring labels over cells image_label_overlay = label2rgb(label_image, image=image, bg_label=0) print(image_label_overlay.shape) fig, ax = plt.subplots(figsize=(10, 6)) ax.imshow(image_label_overlay) ax.set_axis_off() plt.tight_layout() plt.show() return (label_image) def sharpen_nuclei(image, selem=square(8), ksize=10, alpha=0.2, sigma=40, imshow=True): """ Highlight nucleis in the image. Make a sharp contrast between nucleis and background to highlight nucleis in the input image, achieved by mean blurring, laplace sharpening, and Gaussian high-pass filter. Selem, ksize, alpha, sigma parameters have default values while could be customize by user. Parameters ---------- image : numpy.ndarray grayscale image which needs to enhance the nucleis. selem : numpy.ndarray area used for scanning in blurring, default to be square(8). ksize : int ksize used for laplace transform, default to be 10. alpha : float coefficient used in laplace sharpening, default to be 0.2. sigma : int power coefficient in Gussian filter, default to be 40. imshow : bool, str users choose whether to show the processed images, default to be True. Returns ---------- Return to 2 processed grayscale images with sharpened nucleis(2 dimension arrays) in the image using two different sharpening styles. """ image = img_as_ubyte(image) def custom(image): imin = np.min(image) imax = np.max(image) full = imax - imin new = (image - imin)/full return new im = custom(image) print(im.shape) threshold2 = np.mean(im) + 3*np.std(im) print(threshold2) im1 = im > threshold2 im2 = rank.mean(im1, selem) im21 = custom(im2) threshold3 = np.mean(im21) + np.std(im21) print(threshold3) im3 = im > threshold3 im5 = laplace(im2, ksize=ksize) im4 = im2 + alpha*im5 threshold4 = np.mean(im4) + np.std(im4) im4 = im4 > threshold4 xi = np.linspace(0, (im.shape[1]-1), im.shape[1]) yi = np.linspace(0, (im.shape[0]-1), im.shape[0]) x, y = np.meshgrid(xi, yi) sigma = sigma mi = im.shape[1]/2 ni = im.shape[0]/2 gfilt = np.exp(-((x-mi)**2+(y-ni)**2)/(2*sigma**2)) fim =
np.fft.fft2(im1)
numpy.fft.fft2
from collections import defaultdict import librosa import os import numpy as np import h5py class Audio: filename = None project = None bucket = None tempo = None beats = None features = None tokens = None loaded_from_cache = False has_changed = False def __init__(self, filename, project): self.filename = filename self.project = project self.features = defaultdict() self.tokens = defaultdict() self.signal_has_changed = False self.feature_has_changed = False self.token_has_changed = False self.y = None self.sr = None def load(self): if self.project.cache_features: self.__load_features_from_cache() self.__load_tokens_from_cache() def add_feature(self, feature_name, feature): self.features[feature_name] = feature self.feature_has_changed = True def add_tokens(self, tokens_key, tokens): self.tokens[tokens_key] = tokens self.token_has_changed = True def persist(self): if self.project.cache_features and self.feature_has_changed: self.persist_features() if self.project.cache_tokens and self.token_has_changed: self.persist_tokens() if self.project.cache_signal and self.signal_has_changed: self.persist_signal() def signal(self): if self.y is None: self.y, self.sr = self.__load_signal() return (self.y, self.sr) def cleanup(self): self.y = None self.sr = None def persist_features(self): self.__create_cache_folder() print('dumping features', self.filename) with h5py.File(self.cache_filename('features'), "w") as f: for key in self.features.keys(): f.create_dataset(key, data=self.features[key]) self.feature_has_changed = False def persist_tokens(self): print('dumping tokens', self.filename) with h5py.File(self.cache_filename('tokens'), "w") as f: for key in self.tokens.keys(): f.attrs[key] = self.tokens[key] self.token_has_changed = False def persist_signal(self): self.__create_cache_folder() print('dumping audio', self.filename) with h5py.File(self.cache_filename('audio'), "w") as f: f.create_dataset('y', data=self.y) f.attrs["sr"] = self.sr self.signal_has_changed = False def clean_cache(self, file_type_str): if self.cache_filename_exists(): os.remove(self.cache_filename(file_type_str)) def __load_signal(self): return self.__load_signal_from_cache() or self.__load_signal_from_file() def __load_signal_from_file(self): print('loading signal from file - %s' % self.filename) self.y, self.sr = librosa.load(self.filename) self.signal_has_changed = True return (self.y, self.sr) def __load_signal_from_cache(self): if not self.cache_filename_exists('audio'): return None print('loading signal from cache - %s' % self.filename) with h5py.File(self.cache_filename('audio'), 'r') as f: self.y = np.array(f['y']) self.sr = f.attrs["sr"] return (self.y, self.sr) def __load_features_from_cache(self): if not self.cache_filename_exists('features'): return with h5py.File(self.cache_filename('features'), 'r') as f: for k in f.keys(): self.features[k] =
np.array(f[k])
numpy.array
import os import torch from torch.utils.data import Dataset import random import numpy as np from torchvision.transforms import transforms import pickle from scipy import ndimage from config import opts import monai.transforms as mt config = opts() def pkload(fname): with open(fname, 'rb') as f: return pickle.load(f) # def MaxMinNormalization(x): # Max = np.max(x) # Min = np.min(x) # x = (x - Min) / (Max - Min) # return x class MaxMinNormalization(object): def __call__(self, sample): image = sample['image'] label = sample['label'] Max = np.max(image) Min = np.min(image) image = (image - Min) / (Max - Min) return {'image': image, 'label': label} class Random_Flip(object): def __call__(self, sample): image = sample['image'] label = sample['label'] if random.random() < 0.5: image = np.flip(image, 0) label = np.flip(label, 0) if random.random() < 0.5: image = np.flip(image, 1) label = np.flip(label, 1) if random.random() < 0.5: image = np.flip(image, 2) label = np.flip(label, 2) return {'image': image, 'label': label} class Random_Crop(object): def __call__(self, sample): image = sample['image'] label = sample['label'] H = random.randint(0, config.input_H - config.crop_H) W = random.randint(0, config.input_W - config.crop_W) D = random.randint(0, config.input_D - config.crop_D) image = image[H: H + config.crop_H, W: W + config.crop_W, D: D + config.crop_D, ...] label = label[..., H: H + config.crop_H, W: W + config.crop_W, D: D + config.crop_D] return {'image': image, 'label': label} class Random_intencity_shift(object): def __call__(self, sample, factor=0.1): image = sample['image'] label = sample['label'] scale_factor = np.random.uniform(1.0-factor, 1.0+factor, size=[1, image.shape[1], 1, image.shape[-1]]) shift_factor =
np.random.uniform(-factor, factor, size=[1, image.shape[1], 1, image.shape[-1]])
numpy.random.uniform
# -*- coding:utf-8 -*- import argparse import codecs import os import random import sys import numpy as np import tensorflow as tf from tensorflow.python.keras.callbacks import ModelCheckpoint, TensorBoard from modeling_bert import BertForSequenceClassification from tensorflow.python.keras.models import load_model from sklearn.metrics import classification_report, confusion_matrix from finetune.tokenization_bert import BertTokenizer from finetune.dataset import ChnSentiCorpDataset import time from datetime import datetime os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "0" def set_random(): # seed random.seed(42)
np.random.seed(42)
numpy.random.seed
from argparse import Namespace import os from copy import copy import warnings import glob import io_mp import numpy as np import pandas as pd import sampler from nnest import NestedSampler, MCMCSampler """ Neural network sampling python montepython/MontePython.py run -o chains/nn_nested -p input/base2015_ns.param -m NN --NN_sampler nested --NN_n_live_points 100 python montepython/MontePython.py run -o chains/nn_mcmc -p input/base2015.param -m NN --NN_sampler mcmc --NN_bootstrap_fileroot chains/file """ NN_subfolder = 'NN' NN_prefix = 'NN_' name_paramnames = '.paramnames' name_arguments = '.arguments' str2bool = lambda s: True if s.lower() == 'true' else False NN_user_arguments = { # General sampling options 'sampler': {'help': 'Type of sampler', 'type': str, 'default': 'nested'}, 'n_live_points': {'help': 'Number of live samples', 'type': int, 'default': 100}, 'switch': {'help': 'Switch from rejection sampling to MCMC', 'type': float, 'default': -1}, 'train_iters': {'help': 'Number of training iterations', 'type': int, 'default': 2000}, 'mcmc_steps': {'help': 'Nest sampling MCMC steps', 'type': int, 'default':-1}, 'fastslow': {'help': 'True or False', 'type': str2bool, 'default': True}, # NN 'hidden_dim': {'help': 'Hidden dimension', 'type': int, 'default': 128}, 'hidden_layers': {'help': 'Number of hidden layers', 'type': int, 'default': 1}, 'num_blocks': {'help': 'Number of flow blocks', 'type': int, 'default': 5}, # Ending conditions 'evidence_tolerance': {'help': 'Evidence tolerance', 'type': float, 'default': 0.5}, # MCMC sampler options 'bootstrap_fileroot': {'help': 'Bootstrap chain fileroot', 'type': str} } def initialise(cosmo, data, command_line): """ Main call to prepare the information for the NeuralNest run. """ # Convenience variables varying_param_names = data.get_mcmc_parameters(['varying']) derived_param_names = data.get_mcmc_parameters(['derived']) if getattr(command_line, NN_prefix+'sampler', '').lower() == 'nested': # Check that all the priors are flat and that all the parameters are bound is_flat, is_bound = sampler.check_flat_bound_priors( data.mcmc_parameters, varying_param_names) if not is_flat: raise io_mp.ConfigurationError( 'Nested Sampling with NeuralNest is only possible with flat ' + 'priors. Sorry!') if not is_bound: raise io_mp.ConfigurationError( 'Nested Sampling with NeuralNest is only possible for bound ' + 'parameters. Set reasonable bounds for them in the ".param"' + 'file.') # If absent, create the sub-folder NS NN_folder = os.path.join(command_line.folder, NN_subfolder) if not os.path.exists(NN_folder): os.makedirs(NN_folder) run_num = sum(os.path.isdir(os.path.join(NN_folder,i)) for i in os.listdir(NN_folder)) + 1 # -- Automatic arguments data.NN_arguments['x_dim'] = len(varying_param_names) data.NN_arguments['num_derived'] = len(derived_param_names) data.NN_arguments['verbose'] = True data.NN_arguments['log_dir'] = os.path.join(NN_folder, str(run_num)) data.NN_arguments['use_gpu'] = False data.NN_arguments['flow'] = 'nvp' data.NN_arguments['load_model'] = '' data.NN_arguments['batch_size'] = 100 if getattr(command_line, NN_prefix+'fastslow'): data.NN_arguments['num_slow'] = data.block_parameters[0] else: data.NN_arguments['num_slow'] = 0 # -- User-defined arguments for arg in NN_user_arguments: value = getattr(command_line, NN_prefix+arg) data.NN_arguments[arg] = value if arg == 'switch': if value >= 0: data.NN_arguments['switch'] = value elif data.NN_arguments['num_slow'] > 0: data.NN_arguments['switch'] = 1.0 / (5 * data.NN_arguments['num_slow']) if getattr(command_line, NN_prefix + 'sampler', '').lower() == 'mcmc': data.NN_arguments['mcmc_steps'] = getattr(command_line, 'N') data.NN_param_names = varying_param_names base_name = os.path.join(NN_folder, 'base') if run_num == 1: # Write the NeuralNest arguments and parameter ordering with open(base_name+name_arguments, 'w') as afile: for arg in data.NN_arguments: afile.write(' = '.join( [str(arg), str(data.NN_arguments[arg])])) afile.write('\n') with open(base_name+name_paramnames, 'w') as pfile: pfile.write('\n'.join(data.NN_param_names+derived_param_names)) def run(cosmo, data, command_line): derived_param_names = data.get_mcmc_parameters(['derived']) NN_param_names = data.NN_param_names nDims = len(data.NN_param_names) nDerived = len(derived_param_names) if data.NN_arguments['sampler'].lower() == 'nested': def prior(cube): # NN uses cube -1 to 1 so convert to 0 to 1 cube = cube / 2 + 0.5 if len(cube.shape) == 1: theta = [0.0] * nDims for i, name in enumerate(data.NN_param_names): theta[i] = data.mcmc_parameters[name]['prior'] \ .map_from_unit_interval(cube[i]) return np.array([theta]) else: thetas = [] for c in cube: theta = [0.0] * nDims for i, name in enumerate(data.NN_param_names): theta[i] = data.mcmc_parameters[name]['prior'] \ .map_from_unit_interval(c[i]) thetas.append(theta) return np.array(thetas) def loglike(thetas): logls = [] for theta in thetas: try: data.check_for_slow_step(theta) except KeyError: pass for i, name in enumerate(data.NN_param_names): data.mcmc_parameters[name]['current'] = theta[i] data.update_cosmo_arguments() # Compute likelihood logl = sampler.compute_lkl(cosmo, data) if not
np.isfinite(logl)
numpy.isfinite
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals import os import os.path import numpy as np import h5py from fuel.converters.base import fill_hdf5_file np.random.seed(104174) # update to local for easy debugging data_dir = './' square = np.array( [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]) triangle = np.array( [[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) shapes = [square, triangle, triangle[::-1, :].copy()] def generate_shapes_image(width, height, nr_shapes=3): img = np.zeros((height, width)) grp = np.zeros_like(img) k = 1 for i in range(nr_shapes): shape = shapes[np.random.randint(0, len(shapes))] sy, sx = shape.shape x = np.random.randint(0, width-sx+1) y = np.random.randint(0, height-sy+1) region = (slice(y,y+sy), slice(x,x+sx)) img[region][shape != 0] += 1 grp[region][shape != 0] = k k += 1 grp[img > 1] = 0 img = img != 0 return img, grp # Definition of the number of instances in training set. np.random.seed(265076) nr_train_examples = 50000 # 50000 nr_valid_examples = 10000 # 10000 nr_test_examples = 10000 # 10000 nr_single_examples = 10000 # 10000 width = 20 height = 20 nr_shapes = 3 data = np.zeros((nr_train_examples, height, width), dtype=np.float32) grps = np.zeros_like(data, dtype=np.uint8) for i in range(nr_train_examples): data[i], grps[i] = generate_shapes_image(width, height, nr_shapes) data_valid = np.zeros((nr_valid_examples, height, width), dtype=np.float32) grps_valid = np.zeros_like(data_valid, dtype=np.uint8) for i in range(nr_valid_examples): data_valid[i], grps_valid[i] = generate_shapes_image(width, height, nr_shapes) data_test = np.zeros((nr_test_examples, height, width), dtype=np.float32) grps_test = np.zeros_like(data_test, dtype=np.uint8) for i in range(nr_test_examples): data_test[i], grps_test[i] = generate_shapes_image(width, height, nr_shapes) data_single = np.zeros((nr_single_examples, height, width), dtype=np.float32) grps_single = np.zeros_like(data_single, dtype=np.uint8) for i in range(nr_single_examples): data_single[i], grps_single[i] = generate_shapes_image(width, height, 1) targets = np.zeros((nr_train_examples, 1), dtype=np.uint8) targets_valid =
np.zeros((nr_valid_examples, 1), dtype=np.uint8)
numpy.zeros
# <NAME> 27 July 2018 # This module contains several functions for converting and constrain Gemini observing tot_time constraints. # get_timing_windows is the main method. # import tot_time as t import astropy.units as u from astropy.time import Time from multiprocessing import cpu_count from joblib import Parallel, delayed import numpy as np import re from dt import deltat from target_table import target_table def time_window_indices(utc, time_wins, dt, verbose = False): """ Convert the times in time_wins to indices in utc. Parameters ---------- utc : 'astropy.tot_time.core.Time' np.array UTC tot_time grid for scheduling period (i.e. night) dt : 'astropy.units' size of tot_time grid spacing time_wins : 'astropy.tot_time.core.Time' pair(s) observation tot_time windows during scheduling period. Example ------- An observation with 4 tot_time windows within the current night... time_wins = [ [<Time object: scale='utc' format='unix' value=1522655300.0>, <Time object: scale='utc' format='unix' value=1522655388.0>], [<Time object: scale='utc' format='unix' value=1522657440.0>, <Time object: scale='utc' format='unix' value=1522657548.0>], [<Time object: scale='utc' format='unix' value=1522659600.0>, <Time object: scale='utc' format='unix' value=1522659708.0>], [<Time object: scale='utc' format='unix' value=1522661760.0>, <Time object: scale='utc' format='unix' value=1522661868.0>] ] """ if verbose: print('dt', dt) print('utc range', utc[0].iso, (utc[-1] + dt).iso) print(time_wins) nt = len(utc) i_time_wins = [] if len(time_wins) == 0: return i_time_wins else: for win in time_wins: if verbose: print('obs window', win[0].iso, win[1].iso) # Get index of start of window win[0].format = 'jd' if win[0] <= utc[0]: i_start = 0 i = 0 else: for i in range(nt): # print(utc[i].iso, win[0].iso, (utc[i] + dt).iso) # print(type(utc[i]), type(win[0]), type((utc[i] + dt))) # print(utc[i].scale, win[0].scale, (utc[i] + dt).scale) # print(utc[i].format, win[0].format, (utc[i] + dt).format) # print(utc[i].value, win[0].value, (utc[i] + dt).value) # print(utc[i].value <= win[0].value, win[0] < utc[i] + dt) # Note: there is a astropy.tot_time.Time comparison error that is # due to rounding error (issue: 'Float comparison issues with tot_time # and quantity #6970'). It appears that as Time objects are manipulated # they are converted to TAI then back to UTC. # As a result, equal times were occasionally considered # neither equal or unequal, raising an error during this algorithm. # As a work around Time are now compared using their JD float values. if utc[i].value <= win[0].value < (utc[i] + dt).value: i_start = i break # estimate the index of the end of the window. # round down to closest integer ntwin = int((win[1] - win[0]).to('hour')/dt) i = i + ntwin # Get index of end of window win[1].format = 'jd' if i >= nt: i_end = nt - 1 else: for j in range(i, nt): if utc[j].value <= win[1].value < (utc[j] + dt).value: i_end = j break if verbose: print('index window boundaries', i_start, i_end) print('corresponding tot_time grid times', utc[i_start].iso, utc[i_end].iso) i_time_wins.append([i_start, i_end]) if verbose: print('i_time_wins:') [print(i_win) for i_win in i_time_wins] return i_time_wins def i_time(times, timegrid): """ Return, for a list of times, the indices at which they appear in a tot_time grid. Note: tot_time strings must be in formats accepted by '~astropy.tot_time.Time'. Preferably ISO format. Parameters ---------- times : list or array of str times to check in formats accepted by '~astropy.tot_time.Time' timegrid : list or array of str tot_time grid lf observing window in formats accepted by '~astropy.tot_time.Time' Returns ------- bool """ if len(times) == 0: return [] else: timegrid = Time(timegrid) times = Time(times) i_times = np.zeros(len(times), dtype=int) for i in range(0, len(times)): for j in range(0, len(timegrid) - 1): if timegrid[j] < times[i] < timegrid[j + 1]: i_times[i] = j break return i_times def checkwindow(times, timegrid): """ Check which times are within the boundaries of a tot_time grid. Return an array of booleans. Note: tot_time strings must be in formats accepted by '~astropy.tot_time.Time'. Preferably ISO format. Parameters ---------- times : list or array of str times to check timegrid : list or array of str times in grid (in formats accepted by '~astropy.tot_time.Time') Returns ------- np.array of booleans """ start = Time(timegrid[0]) end = Time(timegrid[-1]) bools = np.full(len(times), False) for i in range(0, len(times)): time = Time(times[i]) if start < time < end: bools[i] = True return bools def convconstraint(time_const, start, end, current_time=None, verbose = False): """ Convert and compute tot_time windows within scheduling period from tot_time constraints 'time_const' for and observation in the ObsTable structure. Parameters ---------- time_const : str Time constraint for Gemini Observation formatted as in the catalog browser ascii dump. Format ------ time_const = '[{start, duration, repeats, period}, {start, duration, repeats, period}, ...]' start : unix tot_time in milliseconds (-1 = current) duration : window length in milliseconds (-1 = infinite) repeats : number of repeats (-1 = infinite) period : milliseconds between window start times start : '~astropy.tot_time.core.Time' Scheduling period start tot_time. end : '~astropy.tot_time.core.Time' Scheduling period end tot_time. current_time : '~astropy.tot_time.core.Time' or None Current tot_time in simulation (for triggering ToO tot_time constraints). Returns ------- time_win : list of '~astropy,tot_time.core.Time' arrays, or None Array of tot_time pairs of tot_time windows overlapping with scheduling period. Returns None is no tot_time windows overlap with the scheduling window. Example ------- >>> from timing_windows import convconstraint >>> start = '2018-01-01 00:00:00' >>> end = '2019-01-01 00:00:00' >>> time_const = '[{start, duration, repeats, period}, {start, duration, repeats, period}, ...]' >>> time_wins = convconstraint(time_const, start, end) """ if verbose: print('\ntime_const', time_const) print('start', start) print('end', end) infinity = 3. * 365. * 24. * u.h # infinite tot_time duration # Split individual tot_time constraint strings into list string = re.sub('[\[{}\]]', '', time_const).split(',') # remove brackets string = [tc.strip() for tc in string] # remove whitespace if verbose: print('Constraint strings: ', string) if string[0] == '': # if no tot_time constraints return [[start, end]] else: # if observation has tot_time constraints obs_win = [] # observation tot_time windows tc = [re.findall(r'[+-]?\d+(?:\.\d+)?', val) for val in string] # split numbers into lists tc.sort() # sort constraints into chronological order if verbose: print('Ordered constraints: ', tc) for const in tc: # cycle through constraints # tot_time window start tot_time t0 (unix tot_time format milliseconds). # for ToOs, the timing constraint must begin at the tot_time of arrival to the queue. # To do this, set the ToO program start to the tot_time of arrival, and give the # ToO observation tot_time constraint a t0 value of -1. In this case, the tot_time constraint # will begin from the new program start tot_time. t0 = float(const[0]) if t0 == -1: # -1 = current tot_time in simulation t0 = current_time else: t0 = Time((float(const[0]) * u.ms).to_value('s'), format='unix', scale='utc') duration = float(const[1]) # duration (milliseconds) if duration == -1.0: # infinite pass duration = infinity else: duration = duration / 3600000. * u.h repeats = int(const[2]) # number of repetitions if repeats == -1: # infinite repeats = 1000 period = float(const[3]) / 3600000. * u.h # period between windows (milliseconds) if verbose: print('t0.iso, duration, repeats, period: ', t0.iso, duration, repeats, period) n_win = repeats + 1 # number of tot_time windows in constraint including repeats win_start = t0 for j in range(n_win): # cycle through tot_time window repeats win_start = win_start + period # start of current tot_time window win_end = win_start + duration # start of current tot_time window if verbose: print('j, window: ', j, [win_start.iso, win_end.iso]) # save tot_time window if there is overlap with schedule period if win_start < end and start < win_end: obs_win.append([win_start, win_end]) if verbose: print('\nadded window') elif win_end < start: # go to next next window if current window precedes schedule period pass else: # stop if current window is past schedule period break if not obs_win: return None else: return obs_win def twilights(twilight_evening, twilight_morning, obs_windows, verbose = False): """ Confine observation timing constraints within nautical twilights. Parameters ---------- twilight_evening : '~astropy.tot_time.core.Time' array Evening twilight tot_time for scheduling period (UTC) twilight_morning : '~astropy.tot_time.core.Time' array Morning twilight tot_time for scheduling period (UTC) obs_windows : list of '~astropy.tot_time.core.Time' pairs, or None Observation timing window tot_time-pairs in UTC. Each observation can have any number of tot_time windows. Returns ------- new_windows : list of lists of '~astropy.tot_time.core.Time' pairs or None New list of tot_time windows constrained within twilights. """ new_windows = [] if obs_windows is not None and len(obs_windows) != 0: for i in range(len(twilight_evening)): # cycle through nights if verbose: print('\ntwilights: ', twilight_evening[i].iso, twilight_morning[i].iso) for j in range(len(obs_windows)): # cycle through tot_time windows if verbose: print('time_const[' + str(j) + ']:', obs_windows[j][0].iso, obs_windows[j][1].iso) # save tot_time window if there is overlap with schedule period if obs_windows[j][0] < twilight_morning[i] and twilight_evening[i] < obs_windows[j][1]: # Add window with either twilight times or window edges as boundaries (whichever are innermost). new_windows.append([max([twilight_evening[i], obs_windows[j][0]]), min([twilight_morning[i], obs_windows[j][1]])]) if verbose: print('\tadded:', max([twilight_evening[i], obs_windows[j][0]]).iso, min([twilight_morning[i], obs_windows[j][1]]).iso) if verbose: print('new_windows:') [print('\t', new_window[0].iso, new_window[1].iso) for new_window in new_windows] if len(new_windows) == 0: return None else: return new_windows else: return None def instrument(i_obs, obs_inst, obs_disp, obs_fpu, obs_mos, insts, gmos_disp, gmos_fpu, gmos_mos, f2_fpu, f2_mos, verbose = False): """ Constrain observation timing constraints in accordance with the installed instruments and component configuration on the current tot_time. Output indices of observations matching the nightly instruments and components. Parameters ---------- i_obs : integer array indices in obs_inst, obs_disp, and obs_fpu to check for current night. obs_inst : list of strings Observation instruments obs_disp : list of strings Observation dispersers obs_fpu : list of string Observation focal plane units obs_mos : list of string Observation custom mask name insts : list of strings Instruments installed on current night gmos_disp : list of strings GMOS disperser installed on current night gmos_fpu : list of strings GMOS focal plane units (not MOS) installed on current night gmos_mos : list of strings GMOS MOS masks installed on current night f2_fpu : list of strings Flamingos-2 focal plane units (not MOS) installed on current night f2_mos : list of strings Flamingos-2 MOS masks installed on current night Returns ------- in_obs : integer array List indices for observations matching tonight's instrument configuration. """ if verbose: print('Installed instruments') print('insts', insts) print('gmos_disp', gmos_disp) print('gmos_fpu', gmos_fpu) print('gmos_mos', gmos_mos) print('f2_fpu', f2_fpu) print('f2_mos', f2_mos) print('i_obs', i_obs) if len(i_obs) == 0: return [] else: in_obs = [] # Select i_obs from observation lists obs_inst = obs_inst[i_obs] obs_disp = obs_disp[i_obs] obs_fpu = obs_fpu[i_obs] for i in range(len(obs_inst)): if verbose: print('obs_inst[i], obs_disp[i], obs_fpu[i], obs_mos[i]', obs_inst[i], obs_disp[i], obs_fpu[i], obs_mos[i]) if obs_inst[i] in insts or insts == 'all': if 'GMOS' in obs_inst[i]: if ((obs_disp[i] in gmos_disp) or ('all' in gmos_disp))\ and (((obs_fpu[i] in gmos_fpu) or ('all' in gmos_fpu))\ or ((obs_mos[i] in gmos_mos) or (('all' in gmos_mos) and ('Custom Mask' == obs_fpu[i])))): in_obs.append(i) if verbose: print('Added i =', i) elif 'Flamingos' in obs_inst[i]: if ((obs_fpu[i] in f2_fpu) or ('all' in f2_fpu))\ or ((obs_mos[i] in f2_mos) or (('all' in f2_mos) and ('Custom Mask' == obs_fpu[i]))): in_obs.append(i) if verbose: print('Added i =', i) else: in_obs.append(i) if verbose: print('Added i =', i) return in_obs def nightly_calendar(twilight_evening, twilight_morning, time_windows, verbose = False): """ Sort observation tot_time windows by nightly observing window. Parameters ---------- twilight_evening : '~astropy.tot_time.core.Time' Evening twilight tot_time for scheduling period (UTC) twilight_morning : '~astropy.tot_time.core.Time' Morning twilight tot_time for scheduling period (UTC) time_windows : list of lists of '~astropy.tot_time.core.Time' pairs Array of tot_time windows for all observations. Returns ------- i_obs : int array Indices of observations with a time_window during the night of the provided date. obs_windows : array of '~astropy.tot_time.core.Time' pair(s) Observation tot_time windows for current night corresponding to 'i_obs'. """ # define start of current day as local noon night_start = twilight_evening night_end = twilight_morning if verbose: print('\nDate window (start,end): ', night_start.iso, night_end.iso) i_obs = [] # list of current night's observations obs_windows = [] # tot_time windows corresponding to i_obs for i in range(len(time_windows)): # cycle through observations if verbose: print('\tobs i:', i) if time_windows[i] is not None: obs_wins = [] for j in range(len(time_windows[i])): # cycle through tot_time windows if verbose: print('\t\ttime_window[' + str(i) + '][' + str(j) + ']:', time_windows[i][j][0].iso, time_windows[i][j][1].iso) # save index if there is overlap with schedule period if time_windows[i][j][1] >= night_start and night_end >= time_windows[i][j][0]: obs_wins.append(time_windows[i][j]) if verbose: print('\t\t\tadded window') # else: # print('\t\tnot added') # if tot_time window(s) overlapped with night, save obs index and window(s) if len(obs_wins) != 0: i_obs.append(i) obs_windows.append(obs_wins) if verbose: print('\t\tadded obs index' ' to list') else: if verbose: print('\t\t\ttime_window[' + str(i) + ']:', time_windows[i]) pass # if verbose: # print('i_obs', i_obs) # print('obs_windows', obs_windows) return i_obs, obs_windows def elevation_const(targets, i_wins, elev_const): """ Restrict tot_time windows for elevation constraints. If all tot_time windows for a given observation are removed, let time_window[i] = NoneType. Parameters ---------- targets : '~astropy.table.Table' Target table for current night (Columns: 'i', 'id', 'ZD', 'HA', 'AZ', 'AM', 'mdist'). i_wins : list of lists Observation tot_time windows as tot_time grid indices. Each observation may have one or more tot_time windows. Example ------- i_wins = [ [[0,2], [4, 10]], [[0,20]], [[0,10], [15,20], ...] elev_const : list of dictionaries Elevation constraints of observations in observation table (dictionary keys: {'type':str, 'min': float or '~astropy.units', 'max': float or '~astropy.units'}). Returns ------- targets : '~astropy.table.Table' target table Target table for current night with tot_time windows constrained to meet elevation constraints. If an observation has no remaining tot_time windows, the table cell is given NoneType. """ verbose = False if len(targets) != 0: for i in range(len(targets)): # cycle through rows in table # set new window boundaries to -1 to start i_start = -1 i_end = -1 if verbose: print() print(targets['i'].data[i], elev_const[i]) j = targets['i'].data[i] # elevation constraint index of target # Get tot_time grid window indices for elevation constraint if elev_const[j]['type'] == 'Hour Angle': if verbose: print('\nHour Angle!') print(targets['HA'].quantity[i]) print(elev_const[i]['min']) print(elev_const[i]['max']) # print(targets['HA'].quantity[i] >= elev_const[i]['min']) # print(targets['HA'].quantity[i] <= elev_const[i]['max']) # get indices of hour angles within constraint limits ii = np.where(np.logical_and( targets['HA'].quantity[i] >= elev_const[j]['min'], targets['HA'].quantity[i] <= elev_const[j]['max']) )[0][:] if verbose: print('ii', ii) # save boundaries of indices within constraint if len(ii) != 0: i_start = ii[0] i_end = ii[-1] elif elev_const[j]['type'] == 'Airmass': if verbose: print('\nAirmass!') print(targets['AM'][i]) # get indices of airmass within constraint limits ii = np.where(np.logical_and(targets['AM'][i] >= elev_const[j]['min'], targets['AM'][i] <= elev_const[j]['max']) )[0][:] if verbose: print('ii', ii) # save boundaries of indices within constraint if len(ii) != 0: i_start = ii[0] i_end = ii[-1] else: # skip to next observation if current one has no elevation constraints if verbose: print('No elevation constraint!') continue # Set new tot_time windows boundaries if observation had elevation constraint if i_start != -1 and i_end != -1: if verbose: print('i_start, i_end: ', i_start, i_end) # Cycle through observation tot_time windows for current night. # Adjust each window to satisfy elevation constraint. j = 0 while True: if verbose: print('initial tot_time window:', i_wins[i][j][0], i_wins[i][j][1]) # If current tot_time window overlaps with elevation constraint window, set new window. if i_wins[i][j][0] <= i_end and i_start <= i_wins[i][j][1]: # Change window to portion of overlap. i_wins[i][j] = ([max([i_start, i_wins[i][j][0]]), min([i_end, i_wins[i][j][1]])]) j = j + 1 if verbose: print('\toverlap of windows:', i_wins[i][j-1][0], i_wins[i][j-1][1]) else: # Delete window if there is no overlap if verbose: print('i_wins[i],j', i_wins[i], j, type(i_wins[i]), type(i_wins[i][j])) del i_wins[i][j] if verbose: print('\tdelete window') if j == len(i_wins[i]): break if len(i_wins[i]) == 0: i_wins[i] = None if verbose: print('new observation tot_time windows for tonight:') if i_wins[i] is not None: for j in range(len(i_wins[i])): print([i_wins[i][j][0], i_wins[i][j][1]]) else: print(i_wins[i]) return i_wins def get_timing_windows(site, timetable, moon, obs, progs, instcal, current_time=None, verbose_progress=True, verbose=False, debug=False): """ Main timing windows algorithm. This is the main method that generates timing windows and the target data tables. It performs the following sequence of steps using functions from timing_windows.py and target_table.py. 1. Convert timing window constraints 2. Constrain within plan boundaries and program activation dates 3. Constrain within twilights 4. Organize tot_time windows by date 5. Constrain within instrument calendar 6. Generate a list of nightly target data tables (from target_table.py) 7. Constrain windows within elevation constraints Return list of target data tables. Parameters ---------- site : 'astroplan.Observer' Observatory site object timetable : 'astropy.table.Table' Time data table generated by time_table.py moon : 'astropy.table.Table' Moon data table generated by moon_table.py obs : 'astropy.table.Table' Observation data table generated by observation_table.py progs : 'astropy.table.Table' Program status data table generated by program_table.py instcal : 'astropy.table.Table' instrument calendar table generated by instrument_table.py current_time : 'astropy.tot_time.core.Time' [DEFAULT = None] Current tot_time in simulation (used for setting start tot_time of ToO tot_time constraint) Returns ------- targetcal : list of 'astropy.table.Table' List of target data tables generated by target_table.py. """ # verbose_progress = verbose # print progress # verbose = verbose # basic outputs verbose2 = debug # detailed outputs # ====== Convert timing constraints to tot_time windows ====== if verbose_progress: print('...timing windows (convert tot_time constraints)') # Compute all tot_time windows of observations within scheduling period boundaries or program activation/deactivation # times. Whichever are constraining. # print(obs['i_prog'].data[0]) # print(obs['obs_id'].data[0]) # print(progs['gemprgid'].data[obs['i_prog'].data[0]]) # print(progs['prog_start'].data[obs['i_prog'].data[0]].iso) # print(progs['prog_end'].data[obs['i_prog'].data[0]].iso) # print(max(timetable['twilight_evening'].data[0], progs['prog_start'].data[obs['i_prog'].data[0]])) # print(min(timetable['twilight_morning'].data[-1], progs['prog_end'].data[obs['i_prog'].data[0]])) ncpu = cpu_count() time_windows = Parallel(n_jobs=ncpu)( delayed(convconstraint)( time_const=obs['time_const'][i], start=max(timetable['twilight_evening'].data[0], progs['prog_start'].data[obs['i_prog'].data[i]]), end=min(timetable['twilight_morning'].data[-1], progs['prog_end'].data[obs['i_prog'].data[i]]), current_time=current_time) for i in range(len(obs))) # # Use standard for loop for troubleshooting # time_windows = [timing_windows.convconstraint(time_const=obs['time_const'][i], # start=timetable['twilight_evening'][0], # end=timetable['twilight_morning'][-1]) # for i in range(len(obs))] # ====== Timing windows (twilights) ====== if verbose_progress: print('...timing windows (twilights)') # Constrain tot_time windows to within nautical twilights time_windows = Parallel(n_jobs=ncpu)(delayed(twilights)(twilight_evening=timetable['twilight_evening'].data, twilight_morning=timetable['twilight_morning'].data, obs_windows=time_windows[i]) for i in range(len(obs))) # ====== Sort tot_time windows and observation indices by day ====== if verbose_progress: print('...timing windows (organize into nights)') # By this point, timing windows are sorted by observation. # Reorganize tot_time windows such that they are sorted by night. # For each night, make an array of indices corresponding to the # available observation tot_time windows on that night. # Make a second array containing the corresponding timing window(s). i_obs_nightly = [] # Lists of observation indices (one per night). time_windows_nightly = [] # Lists of corresponding tot_time windows. for i in range(len(timetable['date'])): i_obs_tonight, time_windows_tonight = \ nightly_calendar(twilight_evening=timetable['twilight_evening'][i], twilight_morning=timetable['twilight_morning'][i], time_windows=time_windows) i_obs_nightly.append(np.array(i_obs_tonight)) time_windows_nightly.append(time_windows_tonight) # # Use for loop for easier troubleshooting # time_windows = [timing_windows.twilights(twilight_evening=timetable['twilight_evening'].data, # twilight_morning=timetable['twilight_morning'].data, # obs_windows=time_windows[i]) # for i in range(len(obs))] # for i in range(len(time_windows_nightly)): # for j in range(len(time_windows_nightly[i])): # print(i_obs_nightly[i][j], time_windows_nightly[i][j]) # ====== Timing windows (instrument calendar) ====== if verbose_progress: print('...timing windows (instrument calendar)') # Constrain tot_time windows according to the installed instruments and # component configuration on each night i_obs_insts = Parallel(n_jobs=ncpu)(delayed(instrument)(i_obs=i_obs_nightly[i], obs_inst=obs['inst'].data, obs_disp=obs['disperser'].data, obs_fpu=obs['fpu'].data, obs_mos=obs['custom_mask_mdf'].data, insts=instcal['insts'].data[i], gmos_disp=instcal['gmos_disp'].data[i], gmos_fpu=instcal['gmos_fpu'].data[i], gmos_mos=instcal['gmos_mos'].data[i], f2_fpu=instcal['f2_fpu'].data[i], f2_mos = instcal['f2_fpu'].data[i], verbose=verbose) for i in range(len(timetable['date']))) # # Use for loop for easier troubleshooting # i_obs_insts = [instrument(i_obs=i_obs_nightly[i], # obs_inst=obs['inst'].data, # obs_disp=obs['disperser'].data, # obs_fpu=obs['fpu'].data, # insts=instcal['insts'].data[i], # gmos_disp=instcal['gmos_disp'].data[i], # gmos_fpu=instcal['gmos_fpu'].data[i], # f2_fpu=instcal['f2_fpu'].data[i]) # for i in range(len(timetable['date']))] # Get nightly observation indices and tot_time windows from results of the instrument calendar for i in range(len(timetable['date'])): i_obs_nightly[i] = [i_obs_nightly[i][j] for j in i_obs_insts[i]] time_windows_nightly[i] = [time_windows_nightly[i][j] for j in i_obs_insts[i]] # print observation indices and corresponding tot_time windows on each night if verbose2: for i in range(len(time_windows_nightly)): for j in range(len(time_windows_nightly[i])): print('obs index: ', i_obs_nightly[i][j]) if time_windows_nightly[i][j] is None: print('\t', None) else: for window in time_windows_nightly[i][j]: print('\t', window[0].iso, window[1].iso) # ====== Convert tot_time windows to tot_time grid indices ====== if verbose_progress: print('...tot_time window indices') dt = deltat(time_strings=timetable['utc'][0][0:2]) # tot_time grid spacing i_wins_nightly = [] for i in range(len(time_windows_nightly)): # i_wins_tonight = Parallel(n_jobs=10)(delayed(time_window_indices)(utc=timetable['utc'].data[i], # time_wins=time_windows_nightly[i][j], # dt=dt) # for j in range(len(time_windows_nightly[i]))) i_wins_tonight = [time_window_indices(utc=timetable['utc'].data[i], time_wins=time_windows_nightly[i][j], dt=dt) for j in range(len(time_windows_nightly[i]))] i_wins_nightly.append(i_wins_tonight) # for i in range(len(i_wins_nightly)): # for j in range(len(i_wins_nightly[i])): # print(i_obs_nightly[i][j], i_wins_nightly[i][j]) # ====== Target Calendar ====== if verbose_progress: print('...target data') # Create list of 'astropy.table.Table' objects (one table per night). # Each table stores the positional data of each available target throughout # the night. # targetcal = Parallel(n_jobs=10)(delayed(target_table)(i_obs=i_obs_nightly[i], # latitude=site.location.lat, # lst=timetable['lst'].data[i] * u.hourangle, # utc=timetable['utc'].data[i], # obs_id=obs['obs_id'].data, # obs_ra=obs['ra'].quantity, # obs_dec=obs['dec'].quantity, # moon_ra=moon['ra'].data[i] * u.deg, # moon_dec=moon['dec'].data[i] * u.deg) # for i in range(len(timetable['date']))) targetcal = [target_table(i_obs=i_obs_nightly[i], latitude=site.location.lat, lst=timetable['lst'].data[i] * u.hourangle, utc=timetable['utc'].data[i], obs_id=obs['obs_id'].data, obs_ra=obs['ra'].quantity, obs_dec=obs['dec'].quantity, moon_ra=moon['ra'].data[i] * u.deg, moon_dec=moon['dec'].data[i] * u.deg) for i in range(len(timetable['date']))] # ====== Timing windows (elevation constraint) ====== if verbose_progress: print('...timing windows (elevation constraint)') # Constrain timing windows to satisfy elevation constraints. # (can be either airmass or hour angle limits). # targetcal = Parallel(n_jobs=10)(delayed(elevation_const)(targets=targetcal[i], # elev_const=obs['elev_const']) # for i in range(len(timetable['date']))) # Use for loop for troubleshooting i_wins_nightly = [elevation_const(targets=targetcal[i], i_wins=i_wins_nightly[i], elev_const=obs['elev_const'].data) for i in range(len(timetable['date']))] # ====== Add tot_time window column to target tables ====== for i in range(len(targetcal)): targetcal[i]['i_wins'] = i_wins_nightly[i] # ====== Clean up target tables ====== # Remove observations from target calender if the elevation constraint # process removed all timing windows for a given night. # Remove corresponding rows from tables in targetcal. for targets in targetcal: if len(targets) != 0: if verbose2: # print observation indices and remaining timing windows # one current night. for j in range(len(targets)): print('\t', targets['i'][j]) if targets['i_wins'][j] is not None: for k in range(len(targets['i_wins'][j])): print('\t\t', targets['i_wins'][j][k][0], targets['i_wins'][j][k][1]) else: print('\t\t', targets['i_wins'][j]) # get indices for current night of observations with no remaining timing windows # ii_del = np.where([len(targets['time_wins'].data[j]) == 0 for j in range(len(targets))])[0][:] ii_del = np.where(targets['i_wins'].data == None)[0][:] if verbose2: print('ii_del', ii_del) # delete these rows from the corresponding targetcal target_tables if len(ii_del) != 0: for j in sorted(ii_del, reverse=True): # delete higher indices first targets.remove_row(j) # print target tables if verbose: [print(targets) for targets in targetcal] if verbose2: # print nightly observations and tot_time windows for i in range(len(targetcal)): if len(targetcal[i]) != 0: print('\ntargetcal[i][\'i\']:\n', targetcal[i]['i'].data) print('\nNight (start,end):', timetable['utc'][i][0].iso, timetable['utc'][i][-1].iso) print('\nTwilights:', timetable['twilight_evening'][i].iso, timetable['twilight_morning'][i].iso) print('Date:', timetable['date'][i]) print('time_windows:') for j in range(len(targetcal[i]['i_wins'])): print('\ti:', targetcal[i]['i'][j]) if targetcal[i]['i_wins'][j] is not None: for k in range(len(targetcal[i]['i_wins'].data[j])): print('\t\t', targetcal[i]['i_wins'].data[j][k][0], targetcal[i]['i_wins'].data[j][k][1]) else: print('\t\t', 'None') else: print('\ntargetcal[i][\'i\']:\n', targetcal[i]) return targetcal def test_checkwindow(): print('\ntest_checkwindow()...') times = ['2018-07-02 03:20:00', '2018-07-02 06:45:00', '2018-07-03 02:30:00', '2018-07-03 04:45:00'] utc = ['2018-07-01 22:49:57.001', '2018-07-02 10:37:57.001'] print('times to check', times) print('window', utc) print(checkwindow(times, utc)) assert checkwindow(times, utc).all() == np.array([True, True, False, False]).all() print('Test successful!') return def test_i_time(): print('\ntest_i_time()...') times = ['2018-07-02 03:20:00', '2018-07-02 06:45:00'] utc = ['2018-07-01 22:49:57.001', '2018-07-01 23:49:57.001', '2018-07-02 00:49:57.001', '2018-07-02 01:49:57.001', '2018-07-02 02:49:57.001', '2018-07-02 03:49:57.001', '2018-07-02 04:49:57.001', '2018-07-02 05:49:57.001', '2018-07-02 06:49:57.001', '2018-07-02 07:49:57.001', '2018-07-02 08:49:57.001', '2018-07-02 09:49:57.001'] print('times to get indices', times) print('tot_time array', utc) print(i_time(times, utc)) assert i_time(times, utc).all() == np.array([4, 7]).all() print('Test successful!') return def test_constraint(): print('\ntest_constraint()...') # time_const = '[{1524614400000 -1 0 0}]' time_const = '[{1488592145000 3600000 -1 140740000}]' # time_const = '[{1522713600000 3600000 -1 108000000}]' start = Time('2018-04-10 00:00:00') end = Time('2018-04-12 00:00:00') print('time_const', time_const) print('start, end of schedule window: ', start, end) const = convconstraint(time_const, start, end) print('Timing window (start,end):') [[print(c.iso) for c in con] for con in const] assert const[0][0].iso == Time('2018-04-10 10:08:45.000').iso assert const[0][1].iso == Time('2018-04-10 11:08:45.000').iso print('Test successful!') return def test_instrument(): from astropy.table import Table print('\ntest_instrument()...') inst = np.array(['GMOS']) disperser = np.array(['B']) fpu = np.array(['A']) i_obs = [
np.array([0], dtype=int)
numpy.array
##%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ## Process Fault Detection via SVDD in metal etch dataset ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #%% read data import numpy as np X_train = np.loadtxt('Metal_etch_2DPCA_trainingData.csv', delimiter=',') #%% bandwidth via modified mean criteria import scipy.spatial N = X_train.shape[0] phi = 1/np.log(N-1) delta = -0.14818008*np.power(phi,4) + 0.2846623624*np.power(phi,3) - 0.252853808*np.power(phi,2) + 0.159059498*phi - 0.001381145 D2 = np.sum(scipy.spatial.distance.pdist(X_train, 'sqeuclidean'))/(N*(N-1)/2) # pdist computes pairwise distances between observations sigma = np.sqrt(D2/np.log((N-1)/delta*delta)) gamma = 1/(2*sigma*sigma) #%% SVM fit from sklearn.svm import OneClassSVM model = OneClassSVM(nu=0.01, gamma=0.025).fit(X_train) # nu corresponds to f #%% predict for test data X_test =
np.loadtxt('Metal_etch_2DPCA_testData.csv', delimiter=',')
numpy.loadtxt
""" Unit-aware replacements for numpy functions. """ from __future__ import absolute_import from functools import wraps import pkg_resources import numpy as np from .fundamentalunits import (Quantity, wrap_function_dimensionless, wrap_function_remove_dimensions, fail_for_dimension_mismatch, is_dimensionless, DIMENSIONLESS) __all__ = [ 'log', 'log10', 'exp', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'diagonal', 'ravel', 'trace', 'dot', 'where', 'ones_like', 'zeros_like', 'arange', 'linspace' ] def where(condition, *args, **kwds): # pylint: disable=C0111 if len(args) == 0: # nothing to do return np.where(condition, *args, **kwds) elif len(args) == 2: # check that x and y have the same dimensions fail_for_dimension_mismatch(args[0], args[1], 'x and y need to have the same dimensions') if is_dimensionless(args[0]): return np.where(condition, *args, **kwds) else: # as both arguments have the same unit, just use the first one's dimensionless_args = [
np.asarray(arg)
numpy.asarray
import numpy as np from hypothesis import given, strategies as st import pytest import pyGPA.phase_unwrap as pu # This test code was written by the `hypothesis.extra.ghostwriter` module # and is provided under the Creative Commons Zero public domain dedication. @pytest.mark.filterwarnings("ignore:invalid value encountered in true_divide") @given(kmax=st.integers(1, 30)) def test_equivalent_phase_unwrap_ref_phase_unwrap(kmax): N = 256 xx, yy = np.meshgrid(np.arange(N), np.arange(N), indexing='ij') psi0 = (yy+xx) / (4*np.sqrt(2)) psi = pu._wrapToPi(psi0) weight =
np.ones_like(psi)
numpy.ones_like
# -*- coding: utf-8 -*- """ Created on Sat May 5 23:57:12 2018 @author: Arthur """ import numpy as np import matplotlib.pyplot as plt from AdamANN import AdamANN_clf from sklearn.preprocessing import StandardScaler N = 100 # number of points per class D = 2 # dimensionality K = 3 # number of classes X = np.zeros((N*K,D)) # data matrix (each row = single example) y = np.zeros(N*K, dtype='uint8') # class labels for j in range(K): ix = range(N*j,N*(j+1)) r = np.linspace(0.0,1,N) # radius t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] y[ix] = j # lets visualize the data: #plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) #plt.show() normalizer = StandardScaler() X = normalizer.fit_transform(X) # set hyperparameters hidden_units = [50,50] hidden_func = 'relu' alpha = 0 p_dropout = 0.1 epoch = 100 learning_rate = 0.01 learn_decay = 10 batch_size = 100 NN_clf = AdamANN_clf(hidden_units, hidden_func, alpha, p_dropout, epoch, learning_rate, learn_decay, batch_size, verbose=True) NN_clf.fit(X, y) y_pred = NN_clf.predict(X) train_accuracy = accuracy_score(y, y_pred) print('Train accuracy :', train_accuracy) def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx1, xx2 = np.meshgrid(
np.arange(x1_min, x1_max, h)
numpy.arange
import numpy as np import jesse.indicators as ta from jesse.factories import fake_range_candle_from_range_prices from .data.test_candles_indicators import * def test_acosc(): candles = np.array(mama_candles) single = ta.acosc(candles) seq = ta.acosc(candles, sequential=True) assert type(single).__name__ == 'AC' assert round(single.osc, 2) == -21.97 assert round(single.change, 2) == -9.22 assert seq.osc[-1] == single.osc assert len(seq.osc) == len(candles) def test_ad(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.ad(candles) seq = ta.ad(candles, sequential=True) assert round(single, 0) == 6346031 assert len(seq) == len(candles) assert seq[-1] == single def test_adosc(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.adosc(candles, fast_period=3, slow_period=10) seq = ta.adosc(candles, fast_period=3, slow_period=10, sequential=True) assert round(single / 1000000, 3) == -1.122 assert len(seq) == len(candles) assert seq[-1] == single def test_adx(): candles = np.array(adx_candles) single = ta.adx(candles) seq = ta.adx(candles, sequential=True) assert round(single) == 26 assert len(seq) == len(candles) assert seq[-1] == single def test_adxr(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.adxr(candles, period=14) seq = ta.adxr(candles, period=14, sequential=True) assert round(single, 0) == 36 assert len(seq) == len(candles) assert seq[-1] == single def test_alligator(): candles = np.array(mama_candles) single = ta.alligator(candles) seq = ta.alligator(candles, sequential=True) assert type(single).__name__ == 'AG' assert round(single.teeth, 0) == 236 assert round(single.jaw, 0) == 233 assert round(single.lips, 0) == 222 assert seq.teeth[-1] == single.teeth assert len(seq.teeth) == len(candles) def test_ao(): candles = np.array(mama_candles) single = ta.ao(candles) seq = ta.ao(candles, sequential=True) assert round(single.osc, 0) == -46 assert len(seq[-1]) == len(candles) assert seq.osc[-1] == single.osc def test_apo(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.apo(candles, fast_period=12, slow_period=26, matype=1) seq = ta.apo(candles, fast_period=12, slow_period=26, matype=1, sequential=True) assert round(single, 2) == -15.32 assert len(seq) == len(candles) assert seq[-1] == single def test_aroon(): candles = np.array(mama_candles) aroon = ta.aroon(candles, period=14) assert type(aroon).__name__ == 'AROON' assert round(aroon.down, 2) == 100 assert round(aroon.up, 2) == 64.29 seq_aroon = ta.aroon(candles, period=14, sequential=True) assert seq_aroon.down[-1] == aroon.down assert len(seq_aroon.down) == len(candles) assert len(seq_aroon.up) == len(candles) def test_aroon_osc(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.aroonosc(candles, period=14) seq = ta.aroonosc(candles, period=14, sequential=True) assert round(single, 2) == -35.71 assert len(seq) == len(candles) assert seq[-1] == single def test_atr(): candles = np.array(atr_candles) single = ta.atr(candles) seq = ta.atr(candles, sequential=True) assert round(single, 1) == 2.8 assert len(seq) == len(candles) assert seq[-1] == single def test_avgprice(): candles = np.array(mama_candles) single = ta.avgprice(candles) seq = ta.avgprice(candles, sequential=True) assert round(single, 1) == 149.8 assert len(seq) == len(candles) assert seq[-1] == single def test_beta(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.beta(candles) seq = ta.beta(candles, sequential=True) assert round(single, 2) == -0.31 assert len(seq) == len(candles) assert seq[-1] == single def test_bandpass(): candles = np.array(mama_candles) bp = ta.bandpass(candles) assert type(bp).__name__ == 'BandPass' assert round(bp.bp, 2) == -7.56 assert round(bp.bp_normalized, 2) == -0.29 assert bp.signal == 1 assert round(bp.trigger, 2) == -0.27 seq_bp = ta.bandpass(candles, sequential=True) assert seq_bp.bp[-1] == bp.bp assert len(seq_bp.bp) == len(candles) assert len(seq_bp.bp_normalized) == len(candles) assert len(seq_bp.signal) == len(candles) assert len(seq_bp.trigger) == len(candles) def test_bollinger_bands(): candles = np.array(bollinger_bands_candles) bb = ta.bollinger_bands(candles) u, m, l = bb assert type(bb).__name__ == 'BollingerBands' assert round(u, 1) == 145.8 assert round(m, 1) == 141.2 assert round(l, 1) == 136.7 seq_bb = ta.bollinger_bands(candles, sequential=True) assert seq_bb.upperband[-1] == u assert len(seq_bb.upperband) == len(candles) assert len(seq_bb.middleband) == len(candles) assert len(seq_bb.lowerband) == len(candles) def test_bollinger_bands_width(): candles = np.array(bollinger_bands_width_candles) single = ta.bollinger_bands_width(candles) seq = ta.bollinger_bands_width(candles, sequential=True) assert round(single, 4) == 0.0771 assert len(seq) == len(candles) assert seq[-1] == single def test_bop(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.bop(candles) seq = ta.bop(candles, sequential=True) assert round(single, 2) == -0.92 assert len(seq) == len(candles) assert seq[-1] == single def test_cc(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.cc(candles) seq = ta.cc(candles, sequential=True) assert round(single, 0) == -41 assert len(seq) == len(candles) assert seq[-1] == single def test_cci(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.cci(candles, period=14) seq = ta.cci(candles, period=14, sequential=True) assert round(single, 2) == -285.29 assert len(seq) == len(candles) assert seq[-1] == single def test_cfo(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.cfo(candles) seq = ta.cfo(candles, sequential=True) assert round(single, 2) == -66.53 assert len(seq) == len(candles) assert seq[-1] == single def test_cg(): candles = np.array(mama_candles) single = ta.cg(candles) seq = ta.cg(candles, sequential=True) assert round(single, 2) == -5.37 assert len(seq) == len(candles) assert seq[-1] == single def test_chande(): # use the same candles as mama_candles candles = np.array(mama_candles) single_long = ta.chande(candles) seq_long = ta.chande(candles, sequential=True) single_short = ta.chande(candles, direction="short") seq_short = ta.chande(candles, direction="short", sequential=True) assert round(single_long, 0) == 213 assert round(single_short, 0) == 165 assert len(seq_short) == len(candles) assert len(seq_long) == len(candles) assert seq_long[-1] == single_long assert seq_short[-1] == single_short def test_chop(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.chop(candles) seq = ta.chop(candles, sequential=True) assert round(single, 2) == 28.82 assert len(seq) == len(candles) assert seq[-1] == single def test_cksp(): candles = np.array(mama_candles) single = ta.cksp(candles) assert type(single).__name__ == 'CKSP' assert round(single.long, 2) == 247.62 assert round(single.short, 2) == 127.89 seq = ta.cksp(candles, sequential=True) assert seq.long[-1] == single.long assert seq.short[-1] == single.short assert len(seq.long) == len(candles) assert len(seq.short) == len(candles) def test_cmo(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.cmo(candles, period=9) seq = ta.cmo(candles, period=9, sequential=True) assert round(single, 0) == -70 assert len(seq) == len(candles) assert seq[-1] == single def test_correl(): candles = np.array(mama_candles) single = ta.correl(candles) seq = ta.correl(candles, sequential=True) assert round(single, 2) == 0.58 assert len(seq) == len(candles) assert seq[-1] == single def test_correlation_cycle(): candles = np.array(mama_candles) single = ta.correlation_cycle(candles) assert type(single).__name__ == 'CC' assert round(single.real, 2) == 0.23 assert round(single.imag, 2) == 0.38 assert round(single.angle, 2) == -55.87 assert round(single.state, 2) == -1 seq = ta.correlation_cycle(candles, sequential=True) assert seq.real[-1] == single.real assert seq.imag[-1] == single.imag assert seq.angle[-1] == single.angle assert seq.state[-1] == single.state assert len(seq.real) == len(candles) assert len(seq.imag) == len(candles) assert len(seq.angle) == len(candles) assert len(seq.state) == len(candles) def test_cvi(): candles = np.array(mama_candles) single = ta.cvi(candles) seq = ta.cvi(candles, sequential=True) assert round(single, 2) == 196.8 assert len(seq) == len(candles) assert seq[-1] == single def test_damiani_volatmeter(): candles = np.array(mama_candles) single = ta.damiani_volatmeter(candles) assert type(single).__name__ == 'DamianiVolatmeter' assert round(single.vol, 2) == 1.39 assert round(single.anti, 2) == 0.93 seq = ta.damiani_volatmeter(candles, sequential=True) assert seq.vol[-1] == single.vol assert seq.anti[-1] == single.anti assert len(seq.vol) == len(candles) assert len(seq.anti) == len(candles) def test_dec_osc(): candles = np.array(mama_candles) single = ta.dec_osc(candles) seq = ta.dec_osc(candles, sequential=True) assert round(single, 0) == -20 assert len(seq) == len(candles) assert seq[-1] == single def test_decycler(): candles = np.array(mama_candles) single = ta.decycler(candles) seq = ta.decycler(candles, sequential=True) assert round(single, 0) == 233 assert len(seq) == len(candles) assert seq[-1] == single def test_dema(): candles = np.array(dema_candles) single = ta.dema(candles, 9) seq = ta.dema(candles, 9, sequential=True) assert round(single, 0) == 165 assert len(seq) == len(candles) assert seq[-1] == single def test_devstop(): candles = np.array(mama_candles) single = ta.devstop(candles) seq = ta.devstop(candles, sequential=True) assert round(single, 0) == 248.0 assert len(seq) == len(candles) assert seq[-1] == single def test_di(): candles = np.array(mama_candles) single = ta.di(candles, period=14) assert type(single).__name__ == 'DI' assert round(single.plus, 2) == 10.80 assert round(single.minus, 1) == 45.3 seq = ta.di(candles, period=14, sequential=True) assert seq.plus[-1] == single.plus assert seq.minus[-1] == single.minus assert len(seq.plus) == len(candles) assert len(seq.minus) == len(candles) def test_dm(): candles = np.array(mama_candles) single = ta.dm(candles, period=14) assert type(single).__name__ == 'DM' assert round(single.plus, 2) == 36.78 assert round(single.minus, 1) == 154.1 seq = ta.dm(candles, period=14, sequential=True) assert seq.plus[-1] == single.plus assert seq.minus[-1] == single.minus assert len(seq.plus) == len(candles) assert len(seq.minus) == len(candles) def test_donchian(): candles = np.array(mama_candles) single = ta.donchian(candles, period=20) seq = ta.donchian(candles, period=20, sequential=True) assert type(single).__name__ == 'DonchianChannel' assert round(single.upperband, 2) == 277.20 assert round(single.middleband, 2) == 189.20 assert round(single.lowerband, 2) == 101.20 assert seq.middleband[-1] == single.middleband assert len(seq.upperband) == len(candles) assert len(seq.middleband) == len(candles) assert len(seq.lowerband) == len(candles) def test_dpo(): candles = np.array(dema_candles) single = ta.dpo(candles) seq = ta.dpo(candles, sequential=True) assert round(single, 0) == 22 assert len(seq) == len(candles) assert seq[-1] == single def test_dti(): candles = np.array(mama_candles) single = ta.dti(candles) seq = ta.dti(candles, sequential=True) assert round(single, 2) == -32.6 assert len(seq) == len(candles) assert seq[-1] == single def test_dx(): candles = np.array(dema_candles) single = ta.dx(candles) seq = ta.dx(candles, sequential=True) assert round(single, 0) == 67 assert len(seq) == len(candles) assert seq[-1] == single def test_efi(): candles = np.array(mama_candles) single = ta.efi(candles) seq = ta.efi(candles, sequential=True) assert round(single, 0) == -51628073 assert len(seq) == len(candles) assert seq[-1] == single def test_ema(): close_prices = [ 204.23, 205.01, 196.9, 197.33, 198.7, 199.86, 202.23, 200.3, 212.3, 210.82603059, 220.84, 218.99, 212.71, 211.01, 213.19, 212.99724894, 212.67760477, 209.85, 187.2, 184.15, 176.99, 175.9, 178.99, 150.96, 133.85, 138.18, 126.32, 125.23, 114.79, 118.73, 110.74409879, 111.72, 124.04, 118.52, 113.64, 119.65, 117.11129288, 109.23, 110.77, 102.65, 91.99 ] candles = fake_range_candle_from_range_prices(close_prices) single = ta.ema(candles, 8) seq = ta.ema(candles, 8, sequential=True) assert round(single, 3) == 108.546 assert len(seq) == len(candles) assert seq[-1] == single assert np.isnan(ta.ema(candles, 400)) def test_emd(): candles = np.array(mama_candles) single = ta.emd(candles) seq = ta.emd(candles, sequential=True) assert type(single).__name__ == 'EMD' assert round(single.middleband, 2) == 3.12 assert round(single.upperband, 2) == 1.21 assert round(single.lowerband, 2) == -0.28 assert seq.middleband[-1] == single.middleband assert seq.upperband[-1] == single.upperband assert seq.lowerband[-1] == single.lowerband assert len(seq.middleband) == len(candles) assert len(seq.upperband) == len(candles) assert len(seq.lowerband) == len(candles) def test_emv(): candles = np.array(mama_candles) single = ta.emv(candles) seq = ta.emv(candles, sequential=True) assert round(single, 0) == -11 assert len(seq) == len(candles) assert seq[-1] == single def test_er(): candles = np.array(mama_candles) single = ta.er(candles) seq = ta.er(candles, sequential=True) assert round(single, 2) == 0.02 assert len(seq) == len(candles) assert round(seq[-1], 2) == round(single, 2) def test_eri(): candles = np.array(mama_candles) single = ta.eri(candles) seq = ta.eri(candles, sequential=True) assert type(single).__name__ == 'ERI' assert round(single.bull, 2) == -7.14 assert round(single.bear, 2) == -101.49 assert seq.bull[-1] == single.bull assert len(seq.bull) == len(candles) assert len(seq.bear) == len(candles) def test_fisher(): candles = np.array(mama_candles) single = ta.fisher(candles, period=9) seq = ta.fisher(candles, period=9, sequential=True) assert type(single).__name__ == 'FisherTransform' assert round(single.fisher, 2) == -1.77 assert round(single.signal, 2) == -1.31 assert seq.fisher[-1] == single.fisher assert len(seq.fisher) == len(candles) assert len(seq.signal) == len(candles) def test_fosc(): candles = np.array(mama_candles) single = ta.fosc(candles) seq = ta.fosc(candles, sequential=True) assert round(single, 0) == -69 assert len(seq) == len(candles) assert seq[-1] == single def test_frama(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.frama(candles, window=10, SC=200, FC=10, ) seq = ta.frama(candles, window=10, SC=200, FC=10, sequential=True) assert round(single, 0) == 219 assert len(seq) == len(candles) assert seq[-1] == single def test_fwma(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.fwma(candles) seq = ta.fwma(candles, sequential=True) assert round(single, 0) == 161 assert len(seq) == len(candles) assert seq[-1] == single def test_gator(): candles = np.array(mama_candles) single = ta.gatorosc(candles) seq = ta.gatorosc(candles, sequential=True) assert type(single).__name__ == 'GATOR' assert round(single.upper, 2) == 2.39 assert round(single.upper_change, 2) == 0.98 assert round(single.lower, 2) == -13.44 assert round(single.lower_change, 2) == 5.06 assert seq.upper[-1] == single.upper assert len(seq.upper) == len(candles) def test_gauss(): candles = np.array(mama_candles) single = ta.gauss(candles) seq = ta.gauss(candles, sequential=True) assert round(single, 0) == 190 assert len(seq) == len(candles) assert seq[-1] == single def test_high_pass(): candles = np.array(mama_candles) single = ta.high_pass(candles) seq = ta.high_pass(candles, sequential=True) assert round(single, 0) == -106 assert len(seq) == len(candles) assert seq[-1] == single def test_high_pass_2_pole(): candles = np.array(mama_candles) single = ta.high_pass_2_pole(candles) seq = ta.high_pass_2_pole(candles, sequential=True) assert round(single, 0) == -101 assert len(seq) == len(candles) assert seq[-1] == single def test_hma(): candles = np.array(mama_candles) single = ta.hma(candles) seq = ta.hma(candles, sequential=True) assert round(single, 0) == 134 assert len(seq) == len(candles) assert seq[-1] == single def test_ht_dcperiod(): candles = np.array(mama_candles) single = ta.ht_dcperiod(candles) seq = ta.ht_dcperiod(candles, sequential=True) assert round(single, 0) == 24 assert len(seq) == len(candles) assert seq[-1] == single def test_ht_dcphase(): candles = np.array(mama_candles) single = ta.ht_dcphase(candles) seq = ta.ht_dcphase(candles, sequential=True) assert round(single, 0) == 10 assert len(seq) == len(candles) assert seq[-1] == single def test_ht_phasor(): candles = np.array(mama_candles) single = ta.ht_phasor(candles) seq = ta.ht_phasor(candles, sequential=True) assert type(single).__name__ == 'IQ' assert round(single.inphase, 0) == 11 assert round(single.quadrature, 0) == -52 assert seq.inphase[-1] == single.inphase assert seq.quadrature[-1] == single.quadrature assert len(seq.inphase) == len(candles) assert len(seq.quadrature) == len(candles) def test_ht_sine(): candles = np.array(mama_candles) single = ta.ht_sine(candles) seq = ta.ht_sine(candles, sequential=True) assert type(single).__name__ == 'SINEWAVE' assert round(single.sine, 2) == 0.18 assert round(single.lead, 2) == 0.82 assert seq.sine[-1] == single.sine assert seq.lead[-1] == single.lead assert len(seq.sine) == len(candles) assert len(seq.lead) == len(candles) def test_ht_trendline(): candles = np.array(mama_candles) single = ta.ht_trendline(candles) seq = ta.ht_trendline(candles, sequential=True) assert round(single, 0) == 236 assert len(seq) == len(candles) assert seq[-1] == single def test_ht_trendmode(): candles = np.array(mama_candles) single = ta.ht_trendmode(candles) seq = ta.ht_trendmode(candles, sequential=True) assert single == 1 assert len(seq) == len(candles) assert seq[-1] == single def test_ichimoku_cloud(): candles = np.array(ichimoku_candles) ic = ta.ichimoku_cloud(candles) current_conversion_line, current_base_line, span_a, span_b = ic assert type(ic).__name__ == 'IchimokuCloud' assert (current_conversion_line, current_base_line, span_a, span_b) == (8861.59, 8861.59, 8466.385, 8217.45) def test_ichimoku_cloud_seq(): candles = np.array(ichimoku_candles) conversion_line, base_line, span_a, span_b, lagging_line, future_span_a, future_span_b = ta.ichimoku_cloud_seq( candles) seq = ta.ichimoku_cloud_seq(candles, sequential=True) assert type(seq).__name__ == 'IchimokuCloud' assert (conversion_line, base_line, span_a, span_b, lagging_line, future_span_a, future_span_b) == ( seq.conversion_line[-1], seq.base_line[-1], seq.span_a[-1], seq.span_b[-1], seq.lagging_line[-1], seq.future_span_a[-1], seq.future_span_b[-1]) assert (conversion_line, base_line, span_a, span_b, lagging_line, future_span_a, future_span_b) == ( 8861.59, 8861.59, 8465.25, 8204.715, 8730.0, 8861.59, 8579.49) assert len(seq.conversion_line) == len(candles) def test_ift_rsi(): # use the same candles as dema_candles candles = np.array(mama_candles) single = ta.ift_rsi(candles) seq = ta.ift_rsi(candles, sequential=True) assert round(single, 2) == 0.89 assert len(seq) == len(candles) assert seq[-1] == single def test_itrend(): candles = np.array(mama_candles) single = ta.itrend(candles) seq = ta.itrend(candles, sequential=True) assert type(single).__name__ == 'ITREND' assert round(single.it, 0) == 223 assert round(single.trigger, 0) == 182 assert single.signal == -1 assert seq.it[-1] == single.it assert seq.signal[-1] == single.signal assert seq.trigger[-1] == single.trigger assert len(seq.it) == len(candles) def test_jma(): # use the same candles as dema_candles candles = np.array(mama_candles) single = ta.jma(candles) seq = ta.jma(candles, sequential=True) assert round(single, 2) == 156.72 assert len(seq) == len(candles) assert seq[-1] == single def test_kama(): # use the same candles as dema_candles candles = np.array(dema_candles) single = ta.kama(candles, 10) seq = ta.kama(candles, 10, sequential=True) assert round(single, 0) == 202 assert len(seq) == len(candles) assert seq[-1] == single def test_kaufmanstop(): # use the same candles as dema_candles candles = np.array(dema_candles) single = ta.kaufmanstop(candles) seq = ta.kaufmanstop(candles, sequential=True) assert round(single, 0) == -57 assert len(seq) == len(candles) assert seq[-1] == single def test_kdj(): candles = np.array(mama_candles) kd = ta.kdj(candles) k, d, j = kd assert type(kd).__name__ == 'KDJ' assert round(k, 1) == 13.3 assert round(d, 1) == 15.7 assert round(j, 1) == 8.6 seq_kd = ta.kdj(candles, sequential=True) assert seq_kd.k[-1] == k assert len(seq_kd.k) == len(candles) assert len(seq_kd.d) == len(candles) assert len(seq_kd.j) == len(candles) def test_kelner_channels(): candles = np.array(keltner_channel_candles) kc = ta.keltner(candles) u, m, l = kc assert type(kc).__name__ == 'KeltnerChannel' assert round(u, 1) == 145.0 assert round(m, 1) == 139.7 assert round(l, 1) == 134.4 seq_kc = ta.keltner(candles, sequential=True) assert seq_kc.upperband[-1] == u assert len(seq_kc.upperband) == len(candles) assert len(seq_kc.middleband) == len(candles) assert len(seq_kc.lowerband) == len(candles) def test_kst(): candles = np.array(mama_candles) single = ta.kst(candles) seq = ta.kst(candles, sequential=True) assert type(single).__name__ == 'KST' assert round(single.line, 2) == -93.38 assert round(single.signal, 2) == 31.1 assert seq.line[-1] == single.line assert seq.signal[-1] == single.signal assert len(seq.line) == len(candles) assert len(seq.signal) == len(candles) def test_kurtosis(): candles = np.array(mama_candles) single = ta.kurtosis(candles) seq = ta.kurtosis(candles, sequential=True) assert round(single, 2) == -0.22 assert len(seq) == len(candles) assert seq[-1] == single def test_kvo(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.kvo(candles) seq = ta.kvo(candles, sequential=True) assert round(single / 10000000, 2) == -5.52 assert len(seq) == len(candles) assert seq[-1] == single def test_linearreg(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.linearreg(candles) seq = ta.linearreg(candles, sequential=True) assert round(single, 2) == 179.56 assert len(seq) == len(candles) assert seq[-1] == single def test_linearreg_angle(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.linearreg_angle(candles) seq = ta.linearreg_angle(candles, sequential=True) assert round(single, 2) == -78.42 assert len(seq) == len(candles) assert seq[-1] == single def test_linearreg_intercept(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.linearreg_intercept(candles) seq = ta.linearreg_intercept(candles, sequential=True) assert round(single, 2) == 242.98 assert len(seq) == len(candles) assert seq[-1] == single def test_linearreg_slope(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.linearreg_slope(candles) seq = ta.linearreg_slope(candles, sequential=True) assert round(single, 2) == -4.88 assert len(seq) == len(candles) assert seq[-1] == single def test_lrsi(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.lrsi(candles) seq = ta.lrsi(candles, sequential=True) assert round(single, 2) == 0.1 assert round(seq[-2], 2) == 0.04 assert len(seq) == len(candles) assert seq[-1] == single def test_ma(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.ma(candles, matype=9) seq = ta.ma(candles, matype=9, sequential=True) seq_average = ta.ma(seq, matype=9, sequential=True) assert round(single, 2) == 166.99 assert round(seq[-2], 2) == 203.56 assert round(seq_average[-2], 2) == 212.12 assert len(seq) == len(candles) assert len(seq_average) == len(candles) assert seq[-1] == single def test_macd(): candles = np.array(mama_candles) single = ta.macd(candles, fast_period=12, slow_period=26, signal_period=9) seq = ta.macd(candles, fast_period=12, slow_period=26, signal_period=9, sequential=True) assert type(single).__name__ == 'MACD' assert round(single.macd, 2) == -15.32 assert round(single.signal, 2) == -4.10 assert round(single.hist, 2) == -11.22 assert seq.macd[-1] == single.macd assert len(seq.macd) == len(candles) assert len(seq.signal) == len(candles) assert len(seq.hist) == len(candles) def test_macdext(): candles = np.array(mama_candles) single = ta.macdext(candles, fast_period=12, fast_matype=0, slow_period=26, slow_matype=0, signal_period=9, signal_matype=0) seq = ta.macdext(candles, fast_period=12, fast_matype=0, slow_period=26, slow_matype=0, signal_period=9, signal_matype=0, sequential=True) assert type(single).__name__ == 'MACDEXT' assert round(single.macd, 2) == -23.12 assert round(single.signal, 2) == -18.51 assert round(single.hist, 2) == -4.61 assert seq.macd[-1] == single.macd assert len(seq.macd) == len(candles) assert len(seq.signal) == len(candles) assert len(seq.hist) == len(candles) def test_median_ad(): candles = np.array(mama_candles) single = ta.median_ad(candles) seq = ta.median_ad(candles, sequential=True) assert round(single, 2) == 6.86 assert len(seq) == len(candles) assert seq[-1] == single def test_mean_ad(): candles = np.array(mama_candles) single = ta.mean_ad(candles) seq = ta.mean_ad(candles, sequential=True) assert round(single, 2) == 23.82 assert len(seq) == len(candles) assert seq[-1] == single def test_mama(): candles = np.array(mama_candles) mama = ta.mama(candles, 0.5, 0.05) assert type(mama).__name__ == 'MAMA' assert round(mama.mama, 2) == 206.78 assert round(mama.fama, 2) == 230.26 seq_mama = ta.mama(candles, 0.5, 0.05, sequential=True) assert seq_mama.mama[-1] == mama.mama assert len(seq_mama.mama) == len(candles) assert len(seq_mama.fama) == len(candles) def test_marketfi(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.marketfi(candles) seq = ta.marketfi(candles, sequential=True) assert round(single * 100000, 2) == 2.47 assert len(seq) == len(candles) assert seq[-1] == single def test_mass(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.mass(candles) seq = ta.mass(candles, sequential=True) assert round(single, 2) == 5.76 assert len(seq) == len(candles) assert seq[-1] == single def test_mcginley_dynamic(): candles = np.array(mama_candles) single = ta.mcginley_dynamic(candles) seq = ta.mcginley_dynamic(candles, sequential=True) assert round(single, 2) == 107.82 assert len(seq) == len(candles) assert seq[-1] == single def test_medprice(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.medprice(candles) seq = ta.medprice(candles, sequential=True) assert round(single, 1) == 148.4 assert len(seq) == len(candles) assert seq[-1] == single def test_mfi(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.mfi(candles, period=9) seq = ta.mfi(candles, period=9, sequential=True) assert round(single, 1) == 31.2 assert len(seq) == len(candles) assert seq[-1] == single def test_midpoint(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.midpoint(candles) seq = ta.midpoint(candles, sequential=True) assert round(single, 1) == 176.4 assert len(seq) == len(candles) assert seq[-1] == single def test_midprice(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.midprice(candles) seq = ta.midprice(candles, sequential=True) assert round(single, 1) == 176.6 assert len(seq) == len(candles) assert seq[-1] == single def test_minmax(): candles = np.array(mama_candles) single = ta.minmax(candles) seq = ta.minmax(candles, sequential=True) assert type(single).__name__ == 'EXTREMA' assert round(seq.is_max[-6], 2) == 251.93 assert round(seq.is_min[-15], 2) == 210 assert round(single.last_max, 2) == 251.93 assert round(single.last_min, 2) == 210 assert seq.last_max[-1] == single.last_max assert seq.last_min[-1] == single.last_min assert len(seq.is_min) == len(candles) def test_mom(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.mom(candles, period=9) seq = ta.mom(candles, period=9, sequential=True) assert round(single, 2) == -116.09 assert len(seq) == len(candles) assert seq[-1] == single def test_msw(): candles = np.array(mama_candles) single = ta.msw(candles) seq = ta.msw(candles, sequential=True) assert type(single).__name__ == 'MSW' assert round(single.lead, 2) == -0.66 assert round(single.sine, 2) == -1.0 assert seq.lead[-1] == single.lead assert seq.sine[-1] == single.sine assert len(seq.sine) == len(candles) def test_natr(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.natr(candles, period=14) seq = ta.natr(candles, period=14, sequential=True) assert round(single, 2) == 22.55 assert len(seq) == len(candles) assert seq[-1] == single def test_nvi(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.nvi(candles) seq = ta.nvi(candles, sequential=True) assert round(single, 2) == 722.58 assert len(seq) == len(candles) assert seq[-1] == single def test_obv(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.obv(candles) seq = ta.obv(candles, sequential=True) assert round(single / 1000000, 0) == -6 assert len(seq) == len(candles) assert seq[-1] == single def test_pattern_recognizion(): candles = np.array(inverted_hammer_candles) res = ta.pattern_recognition(candles, pattern_type="CDLINVERTEDHAMMER") seq = ta.pattern_recognition(candles, pattern_type="CDLINVERTEDHAMMER", sequential=True) assert len(seq) == len(candles) assert res == 0 candles = np.array(bullish_engulfing_candles) res = ta.pattern_recognition(candles, pattern_type="CDLENGULFING") assert res == 0 candles = np.array(bearish_engulfing_candles) res = ta.pattern_recognition(candles, pattern_type="CDLENGULFING") assert res == 0 candles = np.array(hammer_candles) res = ta.pattern_recognition(candles, pattern_type="CDLHAMMER") assert res == 0 candles = np.array(doji_candles) res = ta.pattern_recognition(candles, pattern_type="CDLDOJI") assert res == 1 def test_pfe(): # use the same candles as mama_candles candles = np.array(mama_candles) single = ta.pfe(candles) seq = ta.pfe(candles, sequential=True) assert round(single, 2) == -211.85 assert len(seq) == len(candles) assert seq[-1] == single def test_pivot(): candles = np.array(mama_candles) single = ta.pivot(candles, mode=0) seq = ta.pivot(candles, mode=0, sequential=True) assert type(single).__name__ == 'PIVOT' assert seq.r1[-1] == single.r1 assert len(seq.r1) == len(candles) assert len(seq.r2) == len(candles) assert len(seq.r3) == len(candles) assert len(seq.r4) == len(candles) assert len(seq.pp) == len(candles) assert len(seq.s1) == len(candles) assert len(seq.s2) == len(candles) assert len(seq.s3) == len(candles) assert len(seq.s4) == len(candles) def test_pivot1(): candles = np.array(mama_candles) single = ta.pivot(candles, mode=1) seq = ta.pivot(candles, mode=1, sequential=True) assert type(single).__name__ == 'PIVOT' assert seq.r1[-1] == single.r1 assert len(seq.r1) == len(candles) assert len(seq.r2) == len(candles) assert len(seq.r3) == len(candles) assert len(seq.r4) == len(candles) assert len(seq.pp) == len(candles) assert len(seq.s1) == len(candles) assert len(seq.s2) == len(candles) assert len(seq.s3) == len(candles) assert len(seq.s4) == len(candles) def test_pivot2(): candles =
np.array(mama_candles)
numpy.array
"""LinearSolver that uses PetSC KSP to solve for a system's derivatives.""" from __future__ import division, print_function import numpy as np try: import petsc4py from petsc4py import PETSc except ImportError: PETSc = None from openmdao.solvers.solver import LinearSolver from openmdao.utils.general_utils import warn_deprecation KSP_TYPES = [ "richardson", "chebyshev", "cg", "groppcg", "pipecg", "pipecgrr", "cgne", "nash", "stcg", "gltr", "fcg", "pipefcg", "gmres", "pipefgmres", "fgmres", "lgmres", "dgmres", "pgmres", "tcqmr", "bcgs", "ibcgs", "fbcgs", "fbcgsr", "bcgsl", "cgs", "tfqmr", "cr", "pipecr", "lsqr", "preonly", "qcg", "bicg", "minres", "symmlq", "lcd", "python", "gcr", "pipegcr", "tsirm", "cgls" ] def _get_petsc_vec_array_new(vec): """ Get the array of values for the given PETSc vector. Helper function to handle a petsc backwards incompatibility. Parameters ---------- vec : petsc vector Vector whose data is being requested. Returns ------- ndarray A readonly copy of the array of values from vec. """ return vec.getArray(readonly=True) def _get_petsc_vec_array_old(vec): """ Get the array of values for the given PETSc vector. Helper function to handle a petsc backwards incompatibility. Parameters ---------- vec : petsc vector Vector whose data is being requested. Returns ------- ndarray An array of values from vec. """ return vec.getArray() if PETSc: try: petsc_version = petsc4py.__version__ except AttributeError: # hack to fix doc-tests petsc_version = "3.5" if PETSc and int((petsc_version).split('.')[1]) >= 6: _get_petsc_vec_array = _get_petsc_vec_array_new else: _get_petsc_vec_array = _get_petsc_vec_array_old class Monitor(object): """ Prints output from PETSc's KSP solvers. Callable object given to KSP as a callback for printing the residual. Attributes ---------- _solver : _solver the openmdao solver. _norm : float the current norm. _norm0 : float the norm for the first iteration. """ def __init__(self, solver): """ Store pointer to the openmdao solver and initialize norms. Parameters ---------- solver : object the openmdao solver. """ self._solver = solver self._norm = 1.0 self._norm0 = 1.0 def __call__(self, ksp, counter, norm): """ Store norm if first iteration, and print norm. Parameters ---------- ksp : object the KSP solver. counter : int the counter. norm : float the norm. """ if counter == 0 and norm != 0.0: self._norm0 = norm self._norm = norm self._solver._mpi_print(counter, norm, norm / self._norm0) self._solver._iter_count += 1 class PETScKrylov(LinearSolver): """ LinearSolver that uses PetSC KSP to solve for a system's derivatives. Attributes ---------- precon : Solver Preconditioner for linear solve. Default is None for no preconditioner. _ksp : dist dictionary of KSP instances (keyed on vector name). """ SOLVER = 'LN: PETScKrylov' def __init__(self, **kwargs): """ Declare the solver options. Parameters ---------- **kwargs : dict dictionary of options set by the instantiating class/script. """ if PETSc is None: raise RuntimeError("PETSc is not available.") super(PETScKrylov, self).__init__(**kwargs) # initialize dictionary of KSP instances (keyed on vector name) self._ksp = {} # initialize preconditioner to None self.precon = None def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ super(PETScKrylov, self)._declare_options() self.options.declare('ksp_type', default='fgmres', values=KSP_TYPES, desc="KSP algorithm to use. Default is 'fgmres'.") self.options.declare('restart', default=1000, types=int, desc='Number of iterations between restarts. Larger values increase ' 'iteration cost, but may be necessary for convergence') self.options.declare('precon_side', default='right', values=['left', 'right'], desc='Preconditioner side, default is right.') # changing the default maxiter from the base class self.options['maxiter'] = 100 def _assembled_jac_solver_iter(self): """ Return a generator of linear solvers using assembled jacs. """ if self.options['assemble_jac']: yield self if self.precon is not None: for s in self.precon._assembled_jac_solver_iter(): yield s def _setup_solvers(self, system, depth): """ Assign system instance, set depth, and optionally perform setup. Parameters ---------- system : <System> pointer to the owning system. depth : int depth of the current system (already incremented). """ super(PETScKrylov, self)._setup_solvers(system, depth) if self.precon is not None: self.precon._setup_solvers(self._system, self._depth + 1) def _set_solver_print(self, level=2, type_='all'): """ Control printing for solvers and subsolvers in the model. Parameters ---------- level : int iprint level. Set to 2 to print residuals each iteration; set to 1 to print just the iteration totals; set to 0 to disable all printing except for failures, and set to -1 to disable all printing including failures. type_ : str Type of solver to set: 'LN' for linear, 'NL' for nonlinear, or 'all' for all. """ super(PETScKrylov, self)._set_solver_print(level=level, type_=type_) if self.precon is not None and type_ != 'NL': self.precon._set_solver_print(level=level, type_=type_) def mult(self, mat, in_vec, result): """ Apply Jacobian matrix (KSP Callback). The following attributes must be defined when solve is called to provide information used in this callback: _system : System pointer to the owning system. _vec_name : str the right-hand-side (RHS) vector name. _mode : str 'fwd' or 'rev'. Parameters ---------- mat : PETSc.Mat PETSc matrix object. in_vec : PetSC Vector Incoming vector. result : PetSC Vector Empty array into which we place the matrix-vector product. """ # assign x and b vectors based on mode system = self._system vec_name = self._vec_name if self._mode == 'fwd': x_vec = system._vectors['output'][vec_name] b_vec = system._vectors['residual'][vec_name] else: # rev x_vec = system._vectors['residual'][vec_name] b_vec = system._vectors['output'][vec_name] # set value of x vector to KSP provided value x_vec._data[:] = _get_petsc_vec_array(in_vec) # apply linear scope_out, scope_in = system._get_scope() system._apply_linear(self._assembled_jac, [vec_name], self._rel_systems, self._mode, scope_out, scope_in) # stuff resulting value of b vector into result for KSP result.array[:] = b_vec._data def _linearize_children(self): """ Return a flag that is True when we need to call linearize on our subsystems' solvers. Returns ------- boolean Flag for indicating child linerization """ precon = self.precon return (precon is not None) and (precon._linearize_children()) def _linearize(self): """ Perform any required linearization operations such as matrix factorization. """ if self.precon is not None: self.precon._linearize() def solve(self, vec_names, mode, rel_systems=None): """ Solve the linear system for the problem in self._system. The full solution vector is returned. Parameters ---------- vec_names : list list of vector names. mode : string Derivative mode, can be 'fwd' or 'rev'. rel_systems : set of str Names of systems relevant to the current solve. """ self._vec_names = vec_names self._rel_systems = rel_systems self._mode = mode system = self._system options = self.options if self._system.under_complex_step: msg = 'PETScKrylov solver is not supported under complex step.' raise RuntimeError(msg) maxiter = options['maxiter'] atol = options['atol'] rtol = options['rtol'] for vec_name in vec_names: self._vec_name = vec_name # assign x and b vectors based on mode if self._mode == 'fwd': x_vec = system._vectors['output'][vec_name] b_vec = system._vectors['residual'][vec_name] else: # rev x_vec = system._vectors['residual'][vec_name] b_vec = system._vectors['output'][vec_name] # create numpy arrays to interface with PETSc sol_array = x_vec._data.copy() rhs_array = b_vec._data.copy() # create PETSc vectors from numpy arrays sol_petsc_vec = PETSc.Vec().createWithArray(sol_array, comm=system.comm) rhs_petsc_vec = PETSc.Vec().createWithArray(rhs_array, comm=system.comm) # run PETSc solver self._iter_count = 0 ksp = self._get_ksp_solver(system, vec_name) ksp.setTolerances(max_it=maxiter, atol=atol, rtol=rtol) ksp.solve(rhs_petsc_vec, sol_petsc_vec) # stuff the result into the x vector x_vec._data[:] = sol_array sol_petsc_vec = rhs_petsc_vec = None def apply(self, mat, in_vec, result): """ Apply preconditioner. Parameters ---------- mat : PETSc.Mat PETSc matrix object. in_vec : PETSc.Vector Incoming vector result : PETSc.Vector Empty vector in which the preconditioned in_vec is stored. """ if self.precon: system = self._system vec_name = self._vec_name mode = self._mode # Need to clear out any junk from the inputs. system._vectors['input'][vec_name].set_const(0.0) # assign x and b vectors based on mode if mode == 'fwd': x_vec = system._vectors['output'][vec_name] b_vec = system._vectors['residual'][vec_name] else: # rev x_vec = system._vectors['residual'][vec_name] b_vec = system._vectors['output'][vec_name] # set value of b vector to KSP provided value b_vec._data[:] = _get_petsc_vec_array(in_vec) # call the preconditioner self._solver_info.append_precon() self.precon.solve([vec_name], mode) self._solver_info.pop() # stuff resulting value of x vector into result for KSP result.array[:] = x_vec._data else: # no preconditioner, just pass back the incoming vector result.array[:] = _get_petsc_vec_array(in_vec) def _get_ksp_solver(self, system, vec_name): """ Get an instance of the KSP solver for `vec_name` in `system`. Instances will be created on first request and cached for future use. Parameters ---------- system : `System` Parent `System` object. vec_name : string name of vector. Returns ------- KSP the KSP solver instance. """ # use cached instance if available if vec_name in self._ksp: return self._ksp[vec_name] iproc = system.comm.rank lsize = np.sum(system._var_sizes[vec_name]['output'][iproc, :]) size =
np.sum(system._var_sizes[vec_name]['output'])
numpy.sum
import sys from numpy.testing import * import numpy.core.umath as ncu import numpy as np class _FilterInvalids(object): def setUp(self): self.olderr = np.seterr(invalid='ignore') def tearDown(self): np.seterr(**self.olderr) class TestDivision(TestCase): def test_division_int(self): # int division should follow Python x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120]) if 5 / 10 == 0.5: assert_equal(x / 100, [0.05, 0.1, 0.9, 1, -0.05, -0.1, -0.9, -1, -1.2]) else: assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80]) def test_division_complex(self): # check that implementation is correct msg = "Complex division implementation check" x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128) assert_almost_equal(x**2/x, x, err_msg=msg) # check overflow, underflow msg = "Complex division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = x**2/x assert_almost_equal(y/x, [1, 1], err_msg=msg) def test_zero_division_complex(self): err = np.seterr(invalid="ignore", divide="ignore") try: x = np.array([0.0], dtype=np.complex128) y = 1.0/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.nan)/x assert_(np.isinf(y)[0]) y = complex(np.nan, np.inf)/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.inf)/x assert_(np.isinf(y)[0]) y = 0.0/x assert_(np.isnan(y)[0]) finally: np.seterr(**err) def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2,x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg) class TestPower(TestCase): def test_power_float(self): x = np.array([1., 2., 3.]) assert_equal(x**0, [1., 1., 1.]) assert_equal(x**1, x) assert_equal(x**2, [1., 4., 9.]) y = x.copy() y **= 2 assert_equal(y, [1., 4., 9.]) assert_almost_equal(x**(-1), [1., 0.5, 1./3]) assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)]) def test_power_complex(self): x = np.array([1+2j, 2+3j, 3+4j]) assert_equal(x**0, [1., 1., 1.]) assert_equal(x**1, x) assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j]) assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3]) assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4]) assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)]) assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2]) assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197, (-117-44j)/15625]) assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j), ncu.sqrt(3+4j)]) norm = 1./((x**14)[0]) assert_almost_equal(x**14 * norm, [i * norm for i in [-76443+16124j, 23161315+58317492j, 5583548873 + 2465133864j]]) # Ticket #836 def assert_complex_equal(x, y): assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) for z in [complex(0, np.inf), complex(1, np.inf)]: err = np.seterr(invalid="ignore") z = np.array([z], dtype=np.complex_) try: assert_complex_equal(z**1, z) assert_complex_equal(z**2, z*z) assert_complex_equal(z**3, z*z*z) finally: np.seterr(**err) def test_power_zero(self): # ticket #1271 zero = np.array([0j]) one = np.array([1+0j]) cinf = np.array([complex(np.inf, 0)]) cnan = np.array([complex(np.nan, np.nan)]) def assert_complex_equal(x, y): x, y = np.asarray(x), np.asarray(y) assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) # positive powers for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, p), zero) # zero power assert_complex_equal(np.power(zero, 0), one) assert_complex_equal(np.power(zero, 0+1j), cnan) # negative power for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, -p), cnan) assert_complex_equal(np.power(zero, -1+0.2j), cnan) def test_fast_power(self): x=np.array([1,2,3], np.int16) assert (x**2.00001).dtype is (x**2.0).dtype class TestLog2(TestCase): def test_log2_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.log2(xf), yf) class TestExp2(TestCase): def test_exp2_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf) class TestLogAddExp2(_FilterInvalids): # Need test for intermediate precisions def test_logaddexp2_values(self) : x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec in zip(['f','d','g'],[6, 15, 15]) : xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec) def test_logaddexp2_range(self) : x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf) def test_inf(self) : err = np.seterr(invalid='ignore') inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] try: for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf) finally: np.seterr(**err) def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan))) class TestLog(TestCase): def test_log_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : log2_ = 0.69314718055994530943 xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt)*log2_ assert_almost_equal(np.log(xf), yf) class TestExp(TestCase): def test_exp_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : log2_ = 0.69314718055994530943 xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt)*log2_ assert_almost_equal(np.exp(yf), xf) class TestLogAddExp(_FilterInvalids): def test_logaddexp_values(self) : x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec in zip(['f','d','g'],[6, 15, 15]) : xf = np.log(np.array(x, dtype=dt)) yf = np.log(np.array(y, dtype=dt)) zf = np.log(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec) def test_logaddexp_range(self) : x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp(logxf, logyf), logzf) def test_inf(self) : err = np.seterr(invalid='ignore') inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] try: for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp(logxf, logyf), logzf) finally: np.seterr(**err) def test_nan(self): assert_(np.isnan(np.logaddexp(np.nan, np.inf))) assert_(np.isnan(np.logaddexp(np.inf, np.nan))) assert_(np.isnan(np.logaddexp(np.nan, 0))) assert_(np.isnan(np.logaddexp(0, np.nan))) assert_(np.isnan(np.logaddexp(np.nan, np.nan))) class TestLog1p(TestCase): def test_log1p(self): assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2)) assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6)) class TestExpm1(TestCase): def test_expm1(self): assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1) assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1) class TestHypot(TestCase, object): def test_simple(self): assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2)) assert_almost_equal(ncu.hypot(0, 0), 0) def assert_hypot_isnan(x, y): err = np.seterr(invalid='ignore') try: assert_(np.isnan(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y))) finally: np.seterr(**err) def assert_hypot_isinf(x, y): err = np.seterr(invalid='ignore') try: assert_(np.isinf(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y))) finally: np.seterr(**err) class TestHypotSpecialValues(TestCase): def test_nan_outputs(self): assert_hypot_isnan(np.nan, np.nan) assert_hypot_isnan(np.nan, 1) def test_nan_outputs(self): assert_hypot_isinf(np.nan, np.inf) assert_hypot_isinf(np.inf, np.nan) assert_hypot_isinf(np.inf, 0) assert_hypot_isinf(0, np.inf) def assert_arctan2_isnan(x, y): assert_(np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_ispinf(x, y): assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_isninf(x, y): assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_ispzero(x, y): assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_isnzero(x, y): assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y))) class TestArctan2SpecialValues(TestCase): def test_one_one(self): # atan2(1, 1) returns pi/4. assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi) assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi) assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi) def test_zero_nzero(self): # atan2(+-0, -0) returns +-pi. assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi) assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi) def test_zero_pzero(self): # atan2(+-0, +0) returns +-0. assert_arctan2_ispzero(np.PZERO, np.PZERO) assert_arctan2_isnzero(np.NZERO, np.PZERO) def test_zero_negative(self): # atan2(+-0, x) returns +-pi for x < 0. assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi) assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi) def test_zero_positive(self): # atan2(+-0, x) returns +-0 for x > 0. assert_arctan2_ispzero(np.PZERO, 1) assert_arctan2_isnzero(np.NZERO, 1) def test_positive_zero(self): # atan2(y, +-0) returns +pi/2 for y > 0. assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi) assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi) def test_negative_zero(self): # atan2(y, +-0) returns -pi/2 for y < 0. assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi) assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi) def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi) def test_any_pinf(self): # atan2(+-y, +infinity) returns +-0 for finite y > 0. assert_arctan2_ispzero(1, np.inf) assert_arctan2_isnzero(-1, np.inf) def test_inf_any(self): # atan2(+-infinity, x) returns +-pi/2 for finite x. assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi) def test_inf_ninf(self): # atan2(+-infinity, -infinity) returns +-3*pi/4. assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi) def test_inf_pinf(self): # atan2(+-infinity, +infinity) returns +-pi/4. assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi) def test_nan_any(self): # atan2(nan, x) returns nan for any x, including inf assert_arctan2_isnan(np.nan, np.inf) assert_arctan2_isnan(np.inf, np.nan) assert_arctan2_isnan(np.nan, np.nan) class TestLdexp(TestCase): def _check_ldexp(self, tp): assert_almost_equal(ncu.ldexp(np.array(2., np.float32), np.array(3, tp)), 16.) assert_almost_equal(ncu.ldexp(np.array(2., np.float64), np.array(3, tp)), 16.) assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble), np.array(3, tp)), 16.) def test_ldexp(self): # The default Python int type should work assert_almost_equal(ncu.ldexp(2., 3), 16.) # The following int types should all be accepted self._check_ldexp(np.int8) self._check_ldexp(np.int16) self._check_ldexp(np.int32) self._check_ldexp('i') self._check_ldexp('l') @dec.knownfailureif(sys.platform == 'win32' and sys.version_info < (2, 6), "python.org < 2.6 binaries have broken ldexp in the " "C runtime") def test_ldexp_overflow(self): # silence warning emitted on overflow err = np.seterr(over="ignore") try: imax = np.iinfo(np.dtype('l')).max imin = np.iinfo(np.dtype('l')).min assert_equal(ncu.ldexp(2., imax), np.inf) assert_equal(ncu.ldexp(2., imin), 0) finally: np.seterr(**err) class TestMaximum(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.maximum.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), np.nan) assert_equal(func(tmp2), np.nan) def test_reduce_complex(self): assert_equal(np.maximum.reduce([1,2j]),1) assert_equal(np.maximum.reduce([1+3j,2j]),1+3j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([nan, nan, nan]) assert_equal(np.maximum(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([nan, nan, nan], dtype=np.complex) assert_equal(np.maximum(arg1, arg2), out) def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.maximum(arg1, arg2), arg2) class TestMinimum(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.minimum.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), np.nan) assert_equal(func(tmp2), np.nan) def test_reduce_complex(self): assert_equal(np.minimum.reduce([1,2j]),2j) assert_equal(np.minimum.reduce([1+3j,2j]),2j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([nan, nan, nan]) assert_equal(np.minimum(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([nan, nan, nan], dtype=np.complex) assert_equal(np.minimum(arg1, arg2), out) def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.minimum(arg1, arg2), arg1) class TestFmax(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmax.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 9) assert_equal(func(tmp2), 9) def test_reduce_complex(self): assert_equal(np.fmax.reduce([1,2j]),1) assert_equal(np.fmax.reduce([1+3j,2j]),1+3j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmax(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmax(arg1, arg2), out) class TestFmin(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1) def test_reduce_complex(self): assert_equal(np.fmin.reduce([1,2j]),2j) assert_equal(np.fmin.reduce([1+3j,2j]),2j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmin(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmin(arg1, arg2), out) class TestFloatingPoint(TestCase): def test_floating_point(self): assert_equal(ncu.FLOATING_POINT_SUPPORT, 1) class TestDegrees(TestCase): def test_degrees(self): assert_almost_equal(ncu.degrees(np.pi), 180.0) assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0) class TestRadians(TestCase): def test_radians(self): assert_almost_equal(ncu.radians(180.0), np.pi) assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi) class TestSign(TestCase): def test_sign(self): a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) out = np.zeros(a.shape) tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0]) olderr = np.seterr(invalid='ignore') try: res = ncu.sign(a) assert_equal(res, tgt) res = ncu.sign(a, out) assert_equal(res, tgt) assert_equal(out, tgt) finally: np.seterr(**olderr) class TestSpecialMethods(TestCase): def test_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = with_wrap() r.arr = arr r.context = context return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) func, args, i = x.context self.assertTrue(func is ncu.minimum) self.assertEqual(len(args), 2) assert_equal(args[0], a) assert_equal(args[1], a) self.assertEqual(i, 0) def test_wrap_with_iterable(self): # test fix for bug #1026: class with_wrap(np.ndarray): __array_priority__ = 10 def __new__(cls): return np.asarray(1).view(cls).copy() def __array_wrap__(self, arr, context): return arr.view(type(self)) a = with_wrap() x = ncu.multiply(a, (1, 2, 3)) self.assertTrue(isinstance(x, with_wrap)) assert_array_equal(x, np.array((1, 2, 3))) def test_priority_with_scalar(self): # test fix for bug #826: class A(np.ndarray): __array_priority__ = 10 def __new__(cls): return np.asarray(1.0, 'float64').view(cls).copy() a = A() x = np.float64(1)*a self.assertTrue(isinstance(x, A)) assert_array_equal(x, np.array(1)) def test_old_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr): r = with_wrap() r.arr = arr return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) def test_priority(self): class A(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = type(self)() r.arr = arr r.context = context return r class B(A): __array_priority__ = 20. class C(A): __array_priority__ = 40. x = np.zeros(1) a = A() b = B() c = C() f = ncu.minimum self.assertTrue(type(f(x,x)) is np.ndarray) self.assertTrue(type(f(x,a)) is A) self.assertTrue(type(f(x,b)) is B) self.assertTrue(type(f(x,c)) is C) self.assertTrue(type(f(a,x)) is A) self.assertTrue(type(f(b,x)) is B) self.assertTrue(type(f(c,x)) is C) self.assertTrue(type(f(a,a)) is A) self.assertTrue(type(f(a,b)) is B) self.assertTrue(type(f(b,a)) is B) self.assertTrue(type(f(b,b)) is B) self.assertTrue(type(f(b,c)) is C) self.assertTrue(type(f(c,b)) is C) self.assertTrue(type(f(c,c)) is C) self.assertTrue(type(ncu.exp(a) is A)) self.assertTrue(type(ncu.exp(b) is B)) self.assertTrue(type(ncu.exp(c) is C)) def test_failing_wrap(self): class A(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a) def test_default_prepare(self): class with_wrap(object): __array_priority__ = 10 def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): return arr a = with_wrap() x = ncu.minimum(a, a) assert_equal(x, np.zeros(1)) assert_equal(type(x), np.ndarray) def test_prepare(self): class with_prepare(np.ndarray): __array_priority__ = 10 def __array_prepare__(self, arr, context): # make sure we can return a new return np.array(arr).view(type=with_prepare) a = np.array(1).view(type=with_prepare) x = np.add(a, a) assert_equal(x, np.array(2)) assert_equal(type(x), with_prepare) def test_failing_prepare(self): class A(object): def __array__(self): return np.zeros(1) def __array_prepare__(self, arr, context=None): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a) def test_array_with_context(self): class A(object): def __array__(self, dtype=None, context=None): func, args, i = context self.func = func self.args = args self.i = i return np.zeros(1) class B(object): def __array__(self, dtype=None): return np.zeros(1, dtype) class C(object): def __array__(self): return np.zeros(1) a = A() ncu.maximum(np.zeros(1), a) self.assertTrue(a.func is ncu.maximum) assert_equal(a.args[0], 0) self.assertTrue(a.args[1] is a) self.assertTrue(a.i == 1) assert_equal(ncu.maximum(a, B()), 0) assert_equal(ncu.maximum(a, C()), 0) class TestChoose(TestCase): def test_mixed(self): c = np.array([True,True]) a = np.array([True,True]) assert_equal(np.choose(c, (a, 1)), np.array([1,1])) def is_longdouble_finfo_bogus(): info = np.finfo(np.longcomplex) return not np.isfinite(np.log10(info.tiny/info.eps)) class TestComplexFunctions(object): funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh, np.arctanh, np.sin, np.cos, np.tan, np.exp, np.exp2, np.log, np.sqrt, np.log10, np.log2, np.log1p] def test_it(self): for f in self.funcs: if f is np.arccosh : x = 1.5 else : x = .5 fr = f(x) fz = f(np.complex(x)) assert_almost_equal(fz.real, fr, err_msg='real part %s'%f) assert_almost_equal(fz.imag, 0., err_msg='imag part %s'%f) def test_precisions_consistent(self) : z = 1 + 1j for f in self.funcs : fcf = f(np.csingle(z)) fcd = f(np.cdouble(z)) fcl = f(np.clongdouble(z)) assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s'%f) assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s'%f) def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1 yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1 yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1 ], 1, 1 yield _check_branch_cut, np.arccosh, [-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [-2j, 2j, 0], [1, 1, 1j], 1, 1 @dec.knownfailureif(True, "These branch cuts are known to fail") def test_branch_cuts_failing(self): # XXX: signed zero not OK with ICC on 64-bit platform for log, see # http://permalink.gmane.org/gmane.comp.python.numeric.general/25335 yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True # XXX: signed zeros are not OK for sqrt or for the arc* functions yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1, True yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1, True yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1, True def test_against_cmath(self): import cmath, sys # cmath.asinh is broken in some versions of Python, see # http://bugs.python.org/issue1381 broken_cmath_asinh = False if sys.version_info < (2,6): broken_cmath_asinh = True points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) if cname == 'asinh' and broken_cmath_asinh: continue assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname,p,a,b)) def check_loss_of_precision(self, dtype): """Check loss of precision in complex arc* functions""" # Check against known-good functions info = np.finfo(dtype) real_dtype = dtype(0.).real.dtype eps = info.eps def check(x, rtol): x = x.astype(real_dtype) z = x.astype(dtype) d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1) assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(), 'arcsinh')) z = (1j*x).astype(dtype) d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1) assert_(
np.all(d < rtol)
numpy.all
import numpy as np from numpy.testing import (run_module_suite, assert_equal, assert_almost_equal, assert_) from dipy.reconst.odf import (OdfFit, OdfModel, minmax_normalize, gfa) from dipy.core.subdivide_octahedron import create_unit_hemisphere from dipy.sims.voxel import multi_tensor, multi_tensor_odf from dipy.data import get_sphere from dipy.core.gradients import gradient_table, GradientTable _sphere = create_unit_hemisphere(4) _odf = (_sphere.vertices * [1, 2, 3]).sum(-1) _gtab = GradientTable(np.ones((64, 3))) class SimpleOdfModel(OdfModel): sphere = _sphere def fit(self, data): fit = SimpleOdfFit(self, data) return fit class SimpleOdfFit(OdfFit): def odf(self, sphere=None): if sphere is None: sphere = self.model.sphere # Use ascontiguousarray to work around a bug in NumPy return np.ascontiguousarray((sphere.vertices * [1, 2, 3]).sum(-1)) def test_OdfFit(): m = SimpleOdfModel(_gtab) f = m.fit(None) odf = f.odf(_sphere) assert_equal(len(odf), len(_sphere.theta)) def test_minmax_normalize(): bvalue = 3000 S0 = 1 SNR = 100 sphere = get_sphere('symmetric362') bvecs = np.concatenate(([[0, 0, 0]], sphere.vertices)) bvals = np.zeros(len(bvecs)) + bvalue bvals[0] = 0 gtab = gradient_table(bvals, bvecs) evals = np.array(([0.0017, 0.0003, 0.0003], [0.0017, 0.0003, 0.0003])) multi_tensor(gtab, evals, S0, angles=[(0, 0), (90, 0)], fractions=[50, 50], snr=SNR) odf = multi_tensor_odf(sphere.vertices, evals, angles=[(0, 0), (90, 0)], fractions=[50, 50]) odf2 = minmax_normalize(odf) assert_equal(odf2.max(), 1) assert_equal(odf2.min(), 0) odf3 = np.empty(odf.shape) odf3 = minmax_normalize(odf, odf3) assert_equal(odf3.max(), 1) assert_equal(odf3.min(), 0) def test_gfa(): g = gfa(np.ones(100)) assert_equal(g, 0) g = gfa(np.ones((2, 100))) assert_equal(g, np.array([0, 0])) # The following series follows the rule (sqrt(n-1)/((n-1)^2)) g = gfa(np.hstack([np.ones((9)), [0]])) assert_almost_equal(g, np.sqrt(9./81)) g = gfa(np.hstack([np.ones((99)), [0]])) assert_almost_equal(g, np.sqrt(99./(99.**2))) # All-zeros returns a nan with no warning: g = gfa(np.zeros(10)) assert_(
np.isnan(g)
numpy.isnan
''' Script integrating detumble with orbit/magnetic field knowledge ''' # from detumble.py_funcs import detumble_B_cross,detumble_B_dot,get_B_dot, detumble_B_dot_bang_bang import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math import numpy as np import scipy.integrate as integrate from orbit_propagation import get_orbit_pos, get_B_field_at_point # from GNC.cmake_build_debug import SGP4_cpp as SGP4 # from util_funcs.py_funcs.frame_conversions import eci2ecef import time_functions_cpp as tfcpp import frame_conversions_cpp as fccpp import detumble_cpp as dcpp import time import euler_cpp as ecpp # clear figures plt.close('all') pi = math.pi #--------------------Values from FSW sim---------------------------------------- # # Seed Initial Position/Velocity with TLE - BEESAT-1 # # (optional) - can instead replace this with r_i, v_i as np.array(3) # line1 = ('1 35933U 09051C 19315.45643387 .00000096 00000-0 32767-4 0 9991') # line2 = ('2 35933 98.6009 127.6424 0006914 92.0098 268.1890 14.56411486538102') # # # Simulation Parameters # tstart = datetime(2019, 12, 30, 00, 00, 00) # tstep = .1 # [sec] - 1 Hz # # # Initial Spacecraft Attitude # q_i = np.array([1, 0, 0, 0]) # quaternion # w_i = np.array([.01, .05, -.03]) # radians/sec # # # Spacecraft Properties # I = np.array([[17,0,0],[0,18,0],[0,0,22]]) # mass = 1.0 # kg #--------------------End Values from FSW sim--------------------------------------- # inertia properties (add real later) Ixx = 0.34375 Iyy = 0.34375 Izz = 0.34375 I = np.array([[Ixx, 0.0, 0.0],[0.0, Iyy, 0.0], [0.0, 0.0, Izz]]) max_dipoles = np.array([[8.8e-3], [1.373e-2], [8.2e-3]]) # initial attitude conditions, radians & rad/s q_0 = np.array([[1.0],[0.0],[0.0],[0.0]]) # initial quaternion, scalar last w_0 = np.array([[.01],[.05],[-.03]]) # initial rotation rate, rad/s # initial state: quaternion, rotation rate x_0 = np.squeeze(np.concatenate((q_0,w_0))) # initial orbit state conditions, TLE+epoch epoch = '2019-12-30T00:00:00.00' line1 = ('1 35933U 09051C 19315.45643387 .00000096 00000-0 32767-4 0 9991') line2 = ('2 35933 98.6009 127.6424 0006914 92.0098 268.1890 14.56411486538102') TLE = {'line1': line1, 'line2': line2} # initial orbit time (fair warning, this is the time for PyCubed, not Orsted) MJD = 58847.0 GMST_0 = tfcpp.MJD2GMST(MJD) mean_motion = 14.46/(24*3600)*2*math.pi # mean motion, radians/second period = 2*pi/mean_motion # Period, seconds # feed in a vector of times and plot orbit t0 = 0.0 tf = 600 tstep = .1 times =
np.arange(t0,tf,tstep)
numpy.arange
import unittest from unittest.mock import patch import numpy as np from deepen import propagation as prop class DeepenPropagationInitializeParamsTest(unittest.TestCase): def setUp(self): self.layer_dims = [2, 3, 1] self.num_dims = len(self.layer_dims) def test_returns_correct_number_of_params(self): number_of_params = 2 * (self.num_dims - 1) params = prop.initialize_params(self.layer_dims) self.assertEqual(len(params), number_of_params) def test_correct_shape_for_weights(self): params = prop.initialize_params(self.layer_dims) for l in range(1, self.num_dims): with self.subTest(l = l): self.assertEqual( params['W' + str(l)].shape, (self.layer_dims[l], self.layer_dims[l-1]) ) def test_correct_shape_for_biases(self): params = prop.initialize_params(self.layer_dims) for l in range(1, self.num_dims): with self.subTest(l = l): self.assertEqual( params['b' + str(l)].shape, (self.layer_dims[l], 1) ) def test_weights_are_not_zero(self): params = prop.initialize_params(self.layer_dims) for l in range(1, self.num_dims): with self.subTest(l = l): self.assertTrue(params['W' + str(l)].all()) def test_biases_are_zero(self): params = prop.initialize_params(self.layer_dims) for l in range(1, self.num_dims): with self.subTest(l = l): self.assertFalse(params['b' + str(l)].any()) class DeepenPropagationLinearForwardTest(unittest.TestCase): def setUp(self): self.A = np.array([[1], [2]]) self.W = np.array([[1, 2], [3, 4], [5, 6]]) self.b = np.array([[1], [2], [3]]) self.params = (self.A, self.W, self.b) # Z = W·A + b self.Z_expected = np.array([[6], [13], [20]]) def test_Z_has_the_correct_shape(self): Z, _ = prop.linear_forward(*self.params) self.assertEqual(Z.shape, self.Z_expected.shape) def test_Z_is_linear_combination_of_the_inputs(self): Z, _ = prop.linear_forward(*self.params) self.assertTrue(np.array_equal(Z, self.Z_expected)) def test_cache_contains_the_inputs(self): _, cache = prop.linear_forward(*self.params) subtests = zip(cache, self.params, ('A', 'W', 'b')) for cached, param, description in subtests: with self.subTest(parameter = description): self.assertTrue(np.array_equal(cached, param)) class DeepenPropagationLayerForwardTest(unittest.TestCase): def setUp(self): self.A = np.array([[1], [2]]) self.W = np.array([[1, 2], [3, 4], [5, 6]]) self.b = np.array([[1], [2], [3]]) self.params = (self.A, self.W, self.b) # Z = W·A + b self.Z = np.array([[6], [13], [20]]) def test_A_has_the_correct_shape(self): A, _ = prop.layer_forward(*self.params, 'relu') self.assertTrue(A.shape == self.Z.shape) def test_linear_cache_contains_the_inputs(self): _, (linear_cache, _) = prop.layer_forward(*self.params, 'relu') subtests = zip(linear_cache, self.params, ('A', 'W', 'b')) for cached, param, description in subtests: with self.subTest(parameter = description): self.assertTrue(np.array_equal(cached, param)) def test_activation_cache_has_the_correct_shape(self): _, (_, activation_cache) = prop.layer_forward(*self.params, 'relu') self.assertTrue(activation_cache.shape == self.Z.shape) def test_calls_relu_activation(self): with unittest.mock.patch( 'deepen.propagation.relu', wraps = prop.relu ) as relu_spy: prop.layer_forward(*self.params, 'relu') relu_spy.assert_called_once() def test_calls_sigmoid(self): with unittest.mock.patch( 'deepen.propagation.sigmoid', wraps = prop.sigmoid ) as sigmoid_spy: prop.layer_forward(*self.params, 'sigmoid') sigmoid_spy.assert_called_once() class DeepenPropagationModelForwardTest(unittest.TestCase): def setUp(self): self.X =
np.ones((2, 1))
numpy.ones
import math import torch import numpy as np from sklearn.metrics import average_precision_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score def eval_one_epoch(hint, tgan, sampler, src, dst, ts, label, val_e_idx_l=None): val_acc, val_ap, val_f1, val_auc, val_pr, val_rec = [], [], [], [], [], [] with torch.no_grad(): tgan = tgan.eval() TEST_BATCH_SIZE = 30 num_test_instance = len(src) num_test_batch = math.ceil(num_test_instance / TEST_BATCH_SIZE) for k in range(num_test_batch): # percent = 100 * k / num_test_batch # if k % int(0.2 * num_test_batch) == 0: # logger.info('{0} progress: {1:10.4f}'.format(hint, percent)) s_idx = k * TEST_BATCH_SIZE e_idx = min(num_test_instance - 1, s_idx + TEST_BATCH_SIZE) if s_idx == e_idx: continue src_l_cut = src[s_idx:e_idx] dst_l_cut = dst[s_idx:e_idx] ts_l_cut = ts[s_idx:e_idx] e_l_cut = val_e_idx_l[s_idx:e_idx] if (val_e_idx_l is not None) else None # label_l_cut = label[s_idx:e_idx] size = len(src_l_cut) src_l_fake, dst_l_fake = sampler.sample(size) pos_prob, neg_prob = tgan.contrast(src_l_cut, dst_l_cut, dst_l_fake, ts_l_cut, e_l_cut, test=True) pred_score = np.concatenate([(pos_prob).cpu().numpy(), (neg_prob).cpu().numpy()]) pred_label = pred_score > 0.5 true_label = np.concatenate([np.ones(size), np.zeros(size)]) val_acc.append((pred_label == true_label).mean()) val_ap.append(average_precision_score(true_label, pred_score)) val_f1.append(f1_score(true_label, pred_label)) val_auc.append(roc_auc_score(true_label, pred_score)) val_pr.append(precision_score(true_label, pred_label, zero_division=1)) val_rec.append(recall_score(true_label, pred_label)) return np.mean(val_acc), np.mean(val_ap),
np.mean(val_f1)
numpy.mean
import numpy as np from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.metrics import mean_absolute_error, r2_score from sklearn.model_selection import GridSearchCV, PredefinedSplit from xgboost import XGBRegressor, XGBClassifier from sparta.tomer.alpha_go.consts import MODE import pandas as pd import pdb class ModelConstructor(object): def __init__(self, year, X_train, y_train, X_test, y_test, train_data, model, validation_size, workers): self.year = year self._train_data = train_data.copy(deep=True) self.X_train = X_train self.y_train = np.array(y_train).reshape(-1, ) self.X_test = X_test self.y_test = np.array(y_test).reshape(-1, ) self.model = model self.predefined_split_sample_size = 12 self.feature_names = self._train_data.columns.to_list()[:-1] self.best_params = None self.validation_size = validation_size self.workers = workers self.features_display = X_test.columns.to_list() @staticmethod def rf_params(): rf_n_estimators = [int(x) for x in np.linspace(200, 1000, 5)] rf_n_estimators.append(1500) rf_n_estimators.append(2000) rf_n_estimators = [int(x) for x in np.linspace(200, 1000, 3)] # Maximum number of levels in tree rf_max_depth = [int(x) for x in np.linspace(5, 55, 11)] # Add the default as a possible value rf_max_depth.append(None) # rf_max_depth = [5, 10] # Number of features to consider at every split rf_max_features = ['auto', 'sqrt', 'log2'] # rf_max_features = ['log2'] # Criterion to split on rf_criterion = ['mse', 'mae'] # rf_criterion = ['mae'] # Minimum number of samples required to split a node rf_min_samples_split = [int(x) for x in np.linspace(2, 10, 9)] # rf_min_samples_split = [2, 5, 7] # Minimum decrease in impurity required for split to happen rf_min_impurity_decrease = [0.0, 0.05, 0.1] # rf_min_impurity_decrease = [0.05, 0.1] # Method of selecting samples for training each tree rf_bootstrap = [True, False] # rf_bootstrap = [True] return {'n_estimators': rf_n_estimators, 'max_depth': rf_max_depth, 'max_features': rf_max_features, 'criterion': rf_criterion, 'min_samples_split': rf_min_samples_split, 'min_impurity_decrease': rf_min_impurity_decrease, 'bootstrap': rf_bootstrap, 'random_state': [42] } @staticmethod def get_rf_best_params(): return {'n_estimators': 300, 'max_depth': 6, 'max_features': 5, 'criterion': 'mae', 'bootstrap': True, 'random_state': 42 } @staticmethod def xgboost_params(): xgb_n_estimators = [int(x) for x in np.linspace(200, 2000, 20)] # xgb_n_estimators = [200, 2000] # Maximum number of levels in tree xgb_max_depth = [int(x) for x in np.linspace(2, 20, 10)] # xgb_max_depth = [2, 20, 10] # Minimum number of instaces needed in each node xgb_min_child_weight = [int(x) for x in np.linspace(1, 10, 10)] # xgb_min_child_weight = [1, 10, 10] # Learning rate xgb_eta = [x for x in np.linspace(0.1, 0.6, 6)] # xgb_eta = [0.1, 0.6] # Minimum loss reduction required to make further partition xgb_gamma = [int(x) for x in np.linspace(0, 0.5, 6)] # xgb_gamma = [0.1, 0.5] return {'n_estimators': xgb_n_estimators, 'max_depth': xgb_max_depth, 'min_child_weight': xgb_min_child_weight, 'learning_rate': xgb_eta, 'gamma': xgb_gamma, 'random_state': [42] } @staticmethod def get_xgboost_best_params(): return {'n_estimators': 1000, 'max_depth': 2, 'learning_rate': 0.1, 'random_state': 42, } # def grid_and_train_model(self, grid_params): # self.train_data.reset_index(inplace=True) # self.train_data.sort_values('date', inplace=True) # self.date_index = pd.to_datetime(self.train_data['date'].unique()).sort_values() # # min_training_periods = 12 * 2 # self.training_dates = self.date_index[min_training_periods::6] # # for i in range(min_training_periods, len(self.date_index)): # self.test_date = self.date_index[i] # self.train_dates = self.date_index[i - min_training_periods:i] # # self.valid_dates = self.train_dates[-self.predefined_split_sample_size:] # self.train_dates = self.train_dates[:-self.predefined_split_sample_size] # self.X_train = np.array( # self.train_data.loc[self.train_data['date'].isin(self.train_dates), self.feature_names]) # self.y_train = np.array( # self.train_data.loc[self.train_data['date'].isin(self.train_dates), 'pct_change']) # self.X_valid = np.array( # self.train_data.loc[self.train_data['date'].isin(self.valid_dates), self.feature_names]) # self.y_valid = np.array( # self.train_data.loc[self.train_data['date'].isin(self.valid_dates), 'pct_change']) # self.test_fold = list(np.ones(len(self.y_train) - len(self.y_valid))) + list(np.zeros(len(self.y_valid))) # # self.X_test = np.array(self.train_data.loc[self.train_data['date'] == self.test_date, self.feature_names]) # self.y_test = np.array(self.train_data.loc[self.train_data['date'] == self.test_date, 'pct_change']) # # cv = [[c for c in PredefinedSplit(self.test_fold).split()][0]] # # grid_search = GridSearchCV(estimator=self.model, param_grid=grid_params, refit=False, # scoring='neg_mean_squared_error', cv=cv, n_jobs=-1, verbose=3).fit(self.X_train, # self.y_train) # # self.model = grid_search.best_estimator_ # print(f'Model: {self.model} best params are: {grid_search.best_estimator_}') # # self.model.fit(self.X_train, self.y_train) # # pickle.dump(self.model, open(Path(LOCAL_PATH) / f'model_{self.test_date: %Y-%M-%d}.pkl', 'wb')) # def grid_search(self, grid_params, validation_size): # # self.X_train.append(self.y_train) # val_dates = train_dates[-validation_size:] # # n_test_obs = processed_data['date'].isin(train_dates).sum() # n_valid_obs = processed_data['date'].isin(valid_dates).sum() # # test_fold_encoding = list(np.concatenate([np.ones(n_test_obs - n_valid_obs), np.zeros(n_valid_obs)])) # # cv = [[c for c in PredefinedSplit(test_fold=test_fold_encoding).split()][0]] # # grid_search = GridSearchCV(estimator=self.model, param_grid=grid_params, refit=False, # scoring='neg_mean_squared_error', cv=cv, n_jobs=1).fit(self.X_train, # self.y_train) # # print(f'Model: {self.model} best params are: {grid_search.best_estimator_}') # return grid_search.best_estimator_ def _grid_and_train_model(self, grid_params): self._train_data.reset_index(inplace=True) self._train_data.sort_values('date', inplace=True) self.train_dates = pd.to_datetime(self._train_data['date'].unique()).sort_values() val_dates = self.train_dates[-self.validation_size:] n_test_obs = self._train_data['date'].isin(self.train_dates).sum() n_valid_obs = self._train_data['date'].isin(val_dates).sum() test_fold_encoding = list(np.concatenate([np.ones(n_test_obs - n_valid_obs),
np.zeros(n_valid_obs)
numpy.zeros
import numpy as np import copy import scipy from scipy.stats import norm from scipy import io,signal import matplotlib.cm as cm import matplotlib.pyplot as plt from weighted_median import * def check_str_bool(s): return s in ['True' ,'true', '1', 't', 'y','YES' ,'Yes','yes', 'yeah','Yeah', 'yup', 'certainly', 'uh-huh'] class vec_properties: def __init__(self,source,ws,time_unit,time_scale_to_seconds,length_unit,length_scale_to_meter): self.source = source self.ws = ws self.time_unit = time_unit self.time_scale_to_seconds = time_scale_to_seconds self.length_unit = length_unit self.length_scale_to_meter = length_scale_to_meter self.velocity_units = length_unit+'/'+time_unit def show(self): print( 'source: ',self.source,'\n', 'window size: ',self.ws,'\n', 'dt: ',self.time_scale_to_seconds,'\n', 'pixel to meter: ',self.length_scale_to_meter,'\n', 'velocity units: ',self.velocity_units,'\n') class field_properties: def __init__(self,frame,time,images_path,source,time_unit,time_scale_to_seconds,length_unit,length_scale_to_meter): self.frame = frame self.time = time self.images_path = images_path self.source = source self.history = '' self.time_unit = time_unit self.time_scale_to_seconds = time_scale_to_seconds self.length_unit = length_unit self.length_scale_to_meter = length_scale_to_meter self.velocity_units = length_unit+'/'+time_unit def show(self): print( 'frame: ',self.frame,'\n', 'absolute time: ',self.time,'\n', 'images_path: ',self.images_path,'\n', 'source: ',self.source,'\n', 'dt: ',self.time_scale_to_seconds,'\n', 'pixel to meter: ',self.length_scale_to_meter,'\n', 'length units: ',self.length_scale_to_meter,'\n', 'velocity units: ',self.velocity_units) class run_properties: pass class vector: def __init__(self,X,Y,U,V,S2N,properties): self.X = X self.Y = Y self.U = U self.V = V self.S2N = S2N self.properties = properties def convert_units(self,output_length_unit,output_time_unit): LS = {'mm':0.001, 'cm':0.01, 'm':1.0,'meter':1.0,'meters':1.0, 'km':1000.} TS = {'ms':0.001, 's':1.0,'second':1.0,'seconds':1.0, 'min':60.,'mins':60.,'h':3600.,'hour':3600.,'hours':3600.} LS[self.properties.length_unit]=float(self.properties.length_scale_to_meter) TS[self.properties.time_unit]=float(self.properties.time_scale_to_seconds) self.X = self.X*(LS[self.properties.length_unit]/LS[output_length_unit]) self.Y = self.Y*(LS[self.properties.length_unit]/LS[output_length_unit]) self.U = self.U*(LS[self.properties.length_unit]/LS[output_length_unit])*(TS[output_time_unit]/TS[self.properties.time_unit]) self.V = self.V*(LS[self.properties.length_unit]/LS[output_length_unit])*(TS[output_time_unit]/TS[self.properties.time_unit]) self.properties.length_unit = output_length_unit self.properties.length_scale_to_meter = LS[output_length_unit] self.properties.time_unit = output_time_unit self.properties.time_scale_to_seconds = TS[output_time_unit] self.properties.velocity_units = output_length_unit+'/'+output_time_unit class field: def __init__(self,field_properties): self.data = {} self.filtered = {} self.properties = field_properties def __add__(self,other): check_list = [] check_list.append(self.properties.length_unit == other.properties.length_unit) check_list.append(self.properties.length_scale_to_meter == other.properties.length_scale_to_meter) check_list.append(self.properties.time_unit == other.properties.time_unit) check_list.append(self.properties.time_scale_to_seconds == other.properties.time_scale_to_seconds) check_list.append(self.properties.velocity_units == other.properties.velocity_units) if all(check_list): sum_properties = self.properties sum_properties.source = 'Sum' sum_properties.frame = self.properties.frame + ' & ' + other.properties.frame sum_properties.time = self.properties.time + ' & ' + other.properties.time sum_properties.images_path = self.properties.images_path + ' & ' + other.properties.images_path sum_field = field(sum_properties) for xy in list(self.data.keys()): sum_field.add_vec(self.data[xy]) for xy in list(other.data.keys()): sum_field.add_vec(other.data[xy]) return sum_field else: print( 'Field properties do not match') def add_vec(self, vector): self.data[vector.X,vector.Y] = vector def check_if_grid_point_exists(self,x,y): xy = list(self.data.keys()) return (x,y) in xy def move_to_filtered(self,vector): self.filtered[vector.X,vector.Y] = copy.deepcopy(vector) vector.U = np.nan vector.V = np.nan vector.properties.source = 'filtered' def transfer(self,other): for xy in list(other.data.keys()): self.add_vec(other.data[xy]) def convert_field_units(self,output_length_unit,output_time_unit): XY = list(self.data.keys()) if self.properties.length_unit == None or self.properties.length_unit == '': self.properties.length_unit = str(input('field length units')) if self.properties.length_scale_to_meter== None or self.properties.length_scale_to_meter == '': self.length_scale_to_meter = str(input('field length units to meters')) if self.properties.time_unit == None or self.properties.time_unit == '': self.properties.time_unit = str(input('field time units')) if self.properties.time_scale_to_seconds== None or self.properties.time_scale_to_seconds == '': self.properties.time_scale_to_seconds = str(input('field time units to seconds')) for xy in XY: self.data[xy].properties.length_unit = self.properties.length_unit self.data[xy].properties.length_scale_to_meter = self.properties.length_scale_to_meter self.data[xy].properties.time_unit = self.properties.time_unit self.data[xy].properties.time_scale_to_seconds = self.properties.time_scale_to_seconds self.data[xy].convert_units(output_length_unit,output_time_unit) self.add_vec(self.data[xy]) self.remove_vec(xy[0],xy[1]) XY0 = list(self.data.keys())[0] self.properties.length_unit = self.data[XY0].properties.length_unit self.properties.length_scale_to_meter = self.data[XY0].properties.length_scale_to_meter self.properties.time_unit = self.data[XY0].properties.time_unit self.properties.time_scale_to_seconds = self.data[XY0].properties.time_scale_to_seconds self.properties.velocity_units = self.data[XY0].properties.velocity_units def remove_vec(self,X,Y,vector=None): if vector is not None: del self.data[vector.X,vector.Y] else: del self.data[X,Y] def return_vel(self,x,y): u = self.data[x,y].U v = self.data[x,y].V return u,v def return_n_closest_neighbors(self,x,y,n=4): X,Y = self.return_grid() dist = np.sqrt((X-x)**2+(Y-y)**2) n_closest_neighbors = [ [(X[ind],Y[ind]),dist[ind]] for ind in dist.argsort()[:n]] return n_closest_neighbors def return_closest_neighbors_radius(self,x,y,radius): X,Y = self.return_grid() dist = np.sqrt((X-x)**2+(Y-y)**2) indecies = np.where(dist<radius) closest_neighbors = [[(X[indecies[0][i]],Y[indecies[0][i]]),dist[indecies[0][i]]] for i in range(len(indecies[0]))] return closest_neighbors def return_grid(self): XY = list(self.data.keys()) X,Y = zip(*XY) X = np.array(X) Y = np.array(Y) return X,Y def return_all_velocities(self): XY = list(self.data.keys()) U = np.array([self.data[xy[0],xy[1]].U for xy in XY]) V = np.array([self.data[xy[0],xy[1]].V for xy in XY]) return U,V def sub_average(self): XY = list(self.data.keys()) umean,ustd,vmean,vstd = self.mean_velocity() for i in range(len(XY)): self.data[XY[i]].U = self.data[XY[i]].U - umean self.data[XY[i]].V = self.data[XY[i]].V - vmean def create_mesh_grid(self): X,Y = self.return_grid() U,V = self.return_all_velocities() X_mesh_grid = sorted(list(set(X))) Y_mesh_grid = sorted(list(set(Y))) X_mesh_grid,Y_mesh_grid = np.meshgrid(X_mesh_grid,Y_mesh_grid) U_mesh_grid = np.empty(X_mesh_grid.shape) U_mesh_grid.fill(np.nan) V_mesh_grid = np.empty(X_mesh_grid.shape) V_mesh_grid.fill(np.nan) for vec_ind in range(len(X)): x = X[vec_ind] y = Y[vec_ind] col = np.array(np.where(X_mesh_grid[0,:]==x))[0,0] row = np.array(np.where(Y_mesh_grid[:,0]==y))[0,0] U_mesh_grid[row,col] = U[vec_ind] V_mesh_grid[row,col] = V[vec_ind] return X_mesh_grid,Y_mesh_grid[::-1],U_mesh_grid[::-1],V_mesh_grid[::-1] def s2n_filter(self,threshold): XY = list(self.data.keys()) for xy in XY: if self.data[xy].S2N < threshold: self.move_to_filtered(self.data[xy]) def hist_filter(self,percentage): def TrueXor(*args): return sum(args) == 1 hist_u,hist_v,hist2d = self.velocity_histogram() #strech boundry edges hist_u[1][0] = hist_u[1][0]-1 hist_u[1][-1] = hist_u[1][-1]+1 hist_v[1][0] = hist_v[1][0]-1 hist_v[1][-1] = hist_v[1][-1]+1 hist2d[1][0] = hist2d[1][0]-1 hist2d[1][-1] = hist2d[1][-1]+1 hist2d[2][0] = hist2d[2][0]-1 hist2d[2][-1] = hist2d[2][-1]+1 XY = list(self.data.keys()) number_of_vectors = len(XY) for xy in XY: u = self.data[xy].U v = self.data[xy].V if np.isfinite(u) and not np.isfinite(v): if hist_u[0][np.digitize(u,hist_u[1])-1] / number_of_vectors > percentage/100: u_iter,v_iter = self.inverse_distance_interpolation(xy[0],xy[1]) if np.isfinite(v_iter): self.data[xy].V = v_iter v = v_iter else: self.move_to_filtered(self.data[xy]) if np.isfinite(v) and not np.isfinite(u): if hist_v[0][np.digitize(v,hist_v[1])-1] / number_of_vectors > percentage/100: u_iter,v_iter = self.inverse_distance_interpolation(xy[0],xy[1]) if np.isfinite(u_iter): self.data[xy].U = u_iter u = u_iter else: self.move_to_filtered(self.data[xy]) if np.isfinite(v) and np.isfinite(u): U_histpos = np.digitize(u,hist2d[1])-1 V_histpos = np.digitize(v,hist2d[2])-1 if hist2d[0][U_histpos,V_histpos] / number_of_vectors < percentage/100: self.move_to_filtered(self.data[xy]) def Z_filter(self,threshold,neighbors=4,power=1): XY = list(self.data.keys()) for xy in XY: u = self.data[xy].U v = self.data[xy].V closest_neighbors = self.return_n_closest_neighbors(self.data[xy].X,self.data[xy].Y,neighbors+1)[1:] neighbor_pos , dis = zip(*closest_neighbors) weights = [(1/d)**power for d in dis] U,V = zip(*[self.return_vel(pos[0],pos[1]) for pos in neighbor_pos]) median_U = weighted_median(U,weights) median_V = weighted_median(V,weights) median_absolute_deviation_U = weighted_median([np.abs(u_neighbor - median_U) for u_neighbor in U],weights) median_absolute_deviation_V = weighted_median([np.abs(v_neighbor - median_V) for v_neighbor in V],weights) if 0.6745*(u - median_U) / max(median_absolute_deviation_U,0.01) > threshold: self.move_to_filtered(self.data[xy]) continue if 0.6745*(v - median_V) / max(median_absolute_deviation_V,0.01) > threshold: self.move_to_filtered(self.data[xy]) continue def max_arg_filter(self,U_bound,V_bound): XY = list(self.data.keys()) for xy in XY: U_check = True V_check = True if self.data[xy].U > U_bound[1] or self.data[xy].U < U_bound[0]: U_check=False if self.data[xy].V > V_bound[1] or self.data[xy].V < V_bound[0]: V_check=False if U_check and not V_check: u_itr,v_itr = self.inverse_distance_interpolation(xy[0],xy[1]) self.data[xy].V = v_itr elif V_check and not U_check: u_itr,v_itr = self.inverse_distance_interpolation(xy[0],xy[1]) self.data[xy].U = u_itr elif not V_check and not U_check: self.move_to_filtered(self.data[xy]) def mean_velocity(self): U,V = self.return_all_velocities() return np.nanmean(U),np.nanstd(U),np.nanmean(V),np.nanstd(V) def velocity_histogram(self,bins=10): def remove_nans(u,v): u = list(u) v = list(v) nan_index=[] for i in range(len(u)): if not np.isfinite(u[i]) or not np.isfinite(v[i]): nan_index.append(i) for index in sorted(nan_index, reverse=True): del u[index] del v[index] return np.array(u),np.array(v) U,V = self.return_all_velocities() hist_U = np.histogram(U[np.isfinite(U)],bins) hist_V = np.histogram(V[np.isfinite(V)],bins) U,V = remove_nans(U,V) hist2d = np.histogram2d(U, V, bins) return hist_U,hist_V,hist2d def extract_area(self,x_boundry,y_boundry): area = field(self.properties) X,Y = self.return_grid() for i in range(len(X)): if x_boundry[0]<=X[i]<=x_boundry[1] and y_boundry[0]<=Y[i]<=y_boundry[1]: area.add_vec(self.data[X[i],Y[i]]) return area def vel_gradients(self): X,Y,U,V = self.create_mesh_grid() Udx,Udy = np.gradient(U) Vdx,Vdy = np.gradient(V) return X,Y,Udx,Udy,Vdx,Vdy def vel_differntial(self): def least_square_diff(field,grid,axis=0): if axis==0: shape = field.shape dif = np.zeros(shape) for row in range(shape[0]): for col in range(2,shape[1]-2): rs = 2*field[row,col+2]+field[row,col+1] ls = -field[row,col-1]-2*field[row,col-2] dis = 10*(grid[row,col+1]-grid[row,col]) dif[row,col] = (rs+ls)/dis #dif[row,col] = (2*field[row,col+2]+field[row,col+1]-field[row,col-1]-2*field[row,col-2])/10*(grid[row,col+1]-grid[row,col]) return dif elif axis==1: shape = field.shape dif = np.zeros(shape) for row in range(2,shape[0]-2): for col in range(shape[1]): us = 2*field[row-2,col]+field[row-1,col] ds = -field[row+1,col]-2*field[row+2,col] dis = 10*(grid[row-1,col]-grid[row,col]) dif[row,col] = (us+ds)/dis #dif[row,col] = (2*field[row-2,col]+field[row-1,col]-field[row+1,col]-2*field[row+2,col])/10*(grid[row-1,col]-grid[row,col]) return dif X,Y,U,V = self.create_mesh_grid() dU_x = least_square_diff(U,X) dU_y = least_square_diff(U,Y,axis=1) dV_x = least_square_diff(V,X) dV_y = least_square_diff(V,Y,axis=1) return dU_x,dU_y,dV_x,dV_y def profile(self,axis='y'): X,Y,U,V = self.create_mesh_grid() if axis=='y' or axis=='Y': U_profile = np.nanmean(U,axis=1)[::-1] V_profile = np.nanmean(V,axis=1)[::-1] Y_profile = Y[:,0] return U_profile,V_profile,Y_profile else: U_profile = np.nanmean(U,axis=0)[::-1] V_profile = np.nanmean(V,axis=0)[::-1] X_profile = X[0,:] return U_profile,V_profile,X_profile def vorticity_field(self): dU_x,dU_y,dV_x,dV_y = self.vel_differntial() vort = dV_x-dU_y return vort[2:-2,2:-2] def inverse_distance_interpolation(self,x,y,number_of_neighbors=5,radius=None,inverse_power=2): def weigted_velocity(neighbors_vels,weights): weight_sum=0 weigted_vels=[] for i in range(len(neighbors_vels)): if not np.isnan(neighbors_vels[i]): weight_sum += weights[i] weigted_vels.append(weights[i]*neighbors_vels[i]) return np.nansum(weigted_vels)/weight_sum if self.check_if_grid_point_exists(x,y): if radius is not None: indecies,distances = zip(*self.return_closest_neighbors_radius(x,y,radius)) else: indecies,distances = zip(*self.return_n_closest_neighbors(x,y,n=number_of_neighbors+1)) weights = list(np.array(distances[1:])**-float(inverse_power)) neighbors_vel = [self.return_vel(ind[0],ind[1]) for ind in indecies[1:]] u_vels,v_vels = zip(*neighbors_vel) inter_u = weigted_velocity(u_vels,weights) inter_v = weigted_velocity(v_vels,weights) return inter_u,inter_v else: if radius is not None: indecies,distances = zip(*self.return_closest_neighbors_radius(x,y,radius)) else: indecies,distances = zip(*self.return_n_closest_neighbors(x,y,n=number_of_neighbors)) weights = list(np.array(distances)**-float(inverse_power)) neighbors_vel = [self.return_vel(ind[0],ind[1]) for ind in indecies] u_vels,v_vels = zip(*neighbors_vel) inter_u = weigted_velocity(u_vels,weights) inter_v = weigted_velocity(v_vels,weights) return inter_u,inter_v def interpf(self): X,Y = self.return_grid() for ind in range(X.shape[0]): pos = (X[ind],Y[ind]) u_cur,v_cur = self.return_vel(pos[0],pos[1]) if np.isnan(u_cur) and np.isnan(v_cur): u_iter,v_iter = self.inverse_distance_interpolation(pos[0],pos[1]) vec = self.data[pos] vec.U = u_iter vec.V = v_iter vec.properties.source = 'Interpolation' elif np.isnan(u_cur): u_iter,v_iter = self.inverse_distance_interpolation(pos[0],pos[1]) vec = self.data[pos] vec.U = u_iter vec.properties.source = 'Interpolation' elif np.isnan(v_cur): u_iter,v_iter = self.inverse_distance_interpolation(pos[0],pos[1]) vec = self.data[pos] vec.V = v_iter vec.properties.source = 'Interpolation' def remap(self,X,Y,shape_of_new_grid=None): new_feild = field(self.properties) Xold,Yold = self.return_grid() if shape_of_new_grid==None: X = X.flatten() Y = Y.flatten() else: X,Y = np.meshgrid(np.linspace(Xold.min(),Xold.max(),shape_of_new_grid[1]),np.linspace(Yold.min(),Yold.max(),shape_of_new_grid[0])) X = X.flatten() Y = Y.flatten() vec_properties = self.data[Xold[0],Yold[0]].properties vec_properties.source = 'Interpolation' for ind in range(len(X)): u,v = self.inverse_distance_interpolation(X[ind],Y[ind]) vec = vector(X[ind],Y[ind],u,v,0,vec_properties) new_feild.add_vec(vec) self.filtered = self.data self.data = {} self.transfer(new_feild) def auto_spatial_correlation(self): X,Y,U,V = self.create_mesh_grid() Uc = scipy.signal.convolve2d(U,U[::-1]) Vc = scipy.signal.convolve2d(V,V[::-1]) Uc = Uc - Uc.min() Vc = Vc - Vc.min() s_cor = np.sqrt(Uc**2+Vc**2) dX = X - np.mean(X[0,:]) dY = Y - np.mean(Y[:,0]) return dX,dY,s_cor class run: def __init__(self): self.fields = {} def add_field(self,field): self.fields[field.properties.frame] = field def frames(self): return list(self.fields.keys()) def remove_field(self,frame,field=None): if field is not None: del self.fields[field.properties.frame] else: del self.fields[frame] def remap_run(self,X,Y,shape_of_new_grid=None): frames = self.frames() for frame in frames: self.fields[frame].remap(X,Y,shape_of_new_grid) def convert_run_units(self,output_length_unit,output_time_unit,run_length_unit=None,run_length_scale_to_meter=None,run_time_unit=None,run_time_scale_to_seconds=None): same_prop = check_str_bool(input('Do all frames in run have the same properties?')) if same_prop: ''' After correcting the properties of run use this: if self.properties.length_unit == None or self.properties.length_unit == '': self.properties.length_unit = str(input('run length units: ')) if self.properties.length_scale_to_meter== None or self.properties.length_scale_to_meter == '': self.properties.length_scale_to_meter = str(input('run length units to meters: ')) if self.properties.time_unit == None or self.properties.time_unit == '': self.properties.time_unit = str(input('run time units: ')) if self.properties.time_scale_to_seconds== None or self.properties.time_scale_to_seconds == '': self.properties.time_scale_to_seconds = str(input('run time units to seconds: ')) ''' if run_length_unit is None: self.length_unit = str(input('run length units: ')) else: self.length_unit = run_length_unit if run_length_scale_to_meter is None: self.length_scale_to_meter = str(input('run length units to meters: ')) else: self.length_scale_to_meter = run_length_scale_to_meter if run_time_unit is None: self.time_unit = str(input('run time units: ')) else: self.time_unit = run_time_unit if run_time_scale_to_seconds is None: self.time_scale_to_seconds = str(input('run time units to seconds: ')) else: self.time_scale_to_seconds = run_time_scale_to_seconds frames = self.frames() for frame in frames: if same_prop: self.fields[frame].properties.length_unit = self.length_unit self.fields[frame].properties.length_scale_to_meter = self.length_scale_to_meter self.fields[frame].properties.time_unit = self.time_unit self.fields[frame].properties.time_scale_to_seconds = self.time_scale_to_seconds self.fields[frame].convert_field_units(output_length_unit,output_time_unit) def check_same_grid_run(self): frames = self.frames() base_frame = frames[0] for frame in frames: X_base,Y_base = self.fields[base_frame].return_grid() X_check,Y_check = self.fields[frame].return_grid() if all(X_base == X_check) and all(Y_base == Y_check): base_frame = frame else: return False return True def gp_exists_all_frames(self,x,y,show_missing_frames=False): frames = self.frames() gp_exists = [self.fields[f].check_if_grid_point_exists(x,y) for f in frames] if all(gp_exists): return True else: no_gp_frames = [x for x, y in zip(frames, gp_exists) if y == False] frames_with_gp = [x for x, y in zip(frames, gp_exists) if y == True] #allows checking of misssing grid point frames if show_missing_frames: print('Frames without the requested grid point ','(',x,',',y,')',': ',no_gp_frames) return frames_with_gp def run_grid(self): frames = self.frames() Y_agp = [] X_agp =[] for frame in frames: X,Y = self.fields[frame].return_grid() Y_agp += Y.tolist() Y_agp = sorted(list(set(Y_agp))) X_agp += X.tolist() X_agp = sorted(list(set(X_agp))) return np.meshgrid(np.array(X_agp),np.array(Y_agp)) def grid_point_velocity(self,x,y,frames=None): if frames==None: frames = self.frames() if self.gp_exists_all_frames(x,y): U = [] V = [] for f in frames: u,v = self.fields[f].return_vel(x,y) U.append(u) V.append(v) U = np.array(U) V = np.array(V) return U,V else: U = [] V = [] for f in frames: u,v = self.fields[f].return_vel(x,y) U.append(u) V.append(v) U = np.array(U) V = np.array(V) return U,V def return_field(self,number_of_field,name_of_frame=None): if name_of_frame is not None: return self.fields[name_of_frame] else: return self.fields[self.frames()[number_of_field]] def mean_gp_velocity(self,x,y): for_all_frames = self.gp_exists_all_frames(x,y) if for_all_frames==True: U,V = self.grid_point_velocity(x,y) U_rms = U - np.nanmean(U) V_rms = V - np.nanmean(V) return np.nanmean(U),U_rms,np.nanmean(V),V_rms else: U,V = self.grid_point_velocity(x,y,for_all_frames) U_rms = U - np.nanmean(U) V_rms = V - np.nanmean(V) return np.nanmean(U),U_rms,np.nanmean(V),V_rms def mean_velocity_properties(self): frames = self.frames() U_mean = [] V_mean = [] for f in frames: u_mean,u_std,v_mean,v_std = self.fields[f].mean_velocity() U_mean.append(u_mean) V_mean.append(v_mean) Um = np.mean(U_mean) Vm = np.mean(V_mean) U_rms = [(np.sqrt((u-Um)**2)) for u in U_mean] V_rms = [(np.sqrt((v-Vm)**2)) for v in V_mean] print('Max in mean U velocity accures in frame: ',frames[U_mean.index(max(U_mean))]) print('Max in mean V velocity accures in frame: ',frames[V_mean.index(max(V_mean))]) U_mean = np.array(U_mean) V_mean = np.array(V_mean) U_rms = np.array(U_rms) V_rms = np.array(V_rms) return U_mean,U_rms,V_mean,V_rms def run_mean_velocities(self): if self.check_same_grid_run(): X,Y = self.run_grid() frames = self.frames() shape = (X.shape[0],X.shape[1],len(frames)) U_mean = np.zeros(shape) V_mean = np.zeros(shape) for ind in range(len(frames)): x,y,u,v = self.fields[frames[ind]].create_mesh_grid() U_mean[:,:,ind] = u[::-1] V_mean[:,:,ind] = v[::-1] return np.nanmean(U_mean,axis=2),np.nanmean(V_mean,axis=2) else: X,Y = self.run_grid() U_mean = np.zeros(X.shape) V_mean = np.zeros(Y.shape) for row in range(X.shape[0]): for col in range(X.shape[1]): u,urms,v,vrms = self.mean_gp_velocity(X[row,col],Y[row,col]) U_mean[row,col] = u V_mean[row,col] = v return U_mean,V_mean def run_reynolds_stress(self,direction='xy'): X,Y = self.run_grid() rstress = np.zeros(X.shape) for row in range(X.shape[0]): for col in range(X.shape[1]): #check equation - do you need to multiply by density?? u,urms,v,vrms = self.mean_gp_velocity(X[row,col],Y[row,col]) if direction=='xy' or direction=='yx': rstress[row,col] = np.nanmean(np.multiply(urms,vrms)) elif direction=='xx': rstress[row,col] = np.nanmean(np.multiply(urms,urms)) elif direction=='yy': rstress[row,col] = np.nanmean(np.multiply(vrms,vrms)) return rstress def frame_reynolds_stress(self,frame,direction='xy'): X,Y,U,V = self.fields[frame].create_mesh_grid() rstress = np.zeros(X.shape) for row in range(X.shape[0]): for col in range(X.shape[1]): #check equation - do you need to multiply by density?? u,urms,v,vrms = self.mean_gp_velocity(X[row,col],Y[row,col]) if direction=='xy' or direction=='yx': rstress[row,col] = (U[row,col] - u)*(V[row,col] - v) elif direction=='xx': rstress[row,col] = (U[row,col] - u)**2 elif direction=='yy': rstress[row,col] = (V[row,col] - v)**2 return rstress def mean_profile(self,axis='y'): frames = self.frames() if axis=='y' or axis=='Y': Y_agp = [] for frame in frames: X,Y = self.fields[frame].return_grid() Y_agp += Y.tolist() Y_agp = sorted(list(set(Y_agp))) U_profiles = np.empty((len(Y_agp),len(frames))) U_profiles.fill(np.nan) V_profiles = np.empty((len(Y_agp),len(frames))) V_profiles.fill(np.nan) Y_agp = np.array(Y_agp) for col_ind,frame in list(enumerate(frames)): U_cur_prof,V_cur_prof,Y_cur_prof = self.fields[frame].profile(axis=axis) for i in range(len(Y_cur_prof)): row_ind = np.where(Y_agp==Y_cur_prof[i])[0][0] U_profiles[row_ind,col_ind] = U_cur_prof[i] V_profiles[row_ind,col_ind] = V_cur_prof[i] U_mean_profile = np.nanmean(U_profiles,axis=1)[::-1] U_number_of_vectors = np.sum(np.invert(np.isnan(U_profiles)),1) V_mean_profile = np.nanmean(V_profiles,axis=1)[::-1] V_number_of_vectors = np.sum(np.invert(
np.isnan(V_profiles)
numpy.isnan
# -*- coding: utf-8 -*- import numpy as np import pytest from hypothesis import assume from hypothesis import given from hypothesis.extra.numpy import arrays from hypothesis.strategies import integers from hypothesis.strategies import sampled_from from hypothesis.strategies import text from nata.axes import Axis from nata.axes import GridAxis from nata.types import AxisType from nata.types import GridAxisType from .strategies import anyarray from .strategies import bounded_intergers from .strategies import number def test_Axis_type_check(): assert isinstance(Axis, AxisType) @given(anyarray()) def test_Axis_default_init(arr): axis = Axis(arr) assert axis.name == "unnamed" assert axis.label == "" assert axis.unit == "" assert axis.shape == ( arr.shape[1:] if arr.ndim != 0 and len(arr) == 1 else arr.shape ) if arr.ndim != 0 and len(arr) == 1: np.testing.assert_array_equal(axis, arr[0, ...]) else: np.testing.assert_array_equal(axis, arr) @given(base=anyarray(), new=anyarray()) def test_Axis_data_change_broadcastable(base, new): try: expected =
np.broadcast_to(new, base.shape)
numpy.broadcast_to
# -*- coding: utf-8 -*- from __future__ import print_function from distutils.version import LooseVersion from numpy import nan, random import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, Timestamp, date_range) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData, _check_mixed_float def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') class TestDataFrameMissingData(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_dropEmptyRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) original = Series(mat, index=self.frame.index, name='foo') expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how='all') # check that original was preserved assert_series_equal(frame['foo'], original) inplace_frame1.dropna(how='all', inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame1['foo'], expected) smaller_frame = frame.dropna(how='all', subset=['foo']) inplace_frame2.dropna(how='all', subset=['foo'], inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame2['foo'], expected) def test_dropIncompleteRows(self): N = len(self.frame.index) mat =
random.randn(N)
numpy.random.randn
from utils import load_data import torch import argparse import numpy as np import torch.optim as optim import random import pickle import torch.nn as nn import sklearn from modularity import greedy_modularity_communities, partition, baseline_spectral, make_modularity_matrix from utils import make_normalized_adj, edge_dropout, negative_sample from models import GCNLink, GCNClusterNet, GCNDeep, GCNDeepSigmoid, GCN, GCNClusterGAT,GINClusterNet from loss_functions import loss_kcenter, loss_modularity import copy from kcenter import CenterObjective, make_all_dists, gonzalez_kcenter, greedy_kcenter, make_dists_igraph, rounding parser = argparse.ArgumentParser() parser.add_argument('--no-cuda', action='store_true', default=True, help='Disables CUDA training.') parser.add_argument('--seed', type=int, default=24, help='Random seed.') parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.') parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay (L2 loss on parameters).') parser.add_argument('--hidden', type=int, default=50, help='Number of hidden units.') parser.add_argument('--dropout', type=float, default=0.5, help='Dropout rate (1 - keep probability).') parser.add_argument('--embed_dim', type=int, default=50, help='Dimensionality of node embeddings') parser.add_argument('--K', type=int, default=5, help='How many partitions') parser.add_argument('--negsamplerate', type=int, default=1, help='How many negative examples to include per positive in link prediction training') parser.add_argument('--edge_dropout', type=float, default=0.2, help='Rate at which to remove edges in link prediction training') parser.add_argument('--objective', type=str, default='kcenter', help='What objective to optimize (currently partitioning or modularity') parser.add_argument('--dataset', type=str, default='synthetic_spa', help='which network to load') parser.add_argument('--clustertemp', type=float, default=20, help='how hard to make the softmax for the cluster assignments') parser.add_argument('--kcentertemp', type=float, default=100, help='how hard to make seed selection softmax assignment') parser.add_argument('--kcentermintemp', type=float, default=0, help='how hard to make the min over nodes in kcenter training objective') parser.add_argument('--use_igraph', action='store_true', default=True, help='use igraph to compute shortest paths in twostage kcenter') parser.add_argument('--train_iters', type=int, default=1000, help='number of training iterations') parser.add_argument('--num_cluster_iter', type=int, default=1, help='number of iterations for clustering') parser.add_argument('--singletrain', action='store_true', default=False, help='only train on a single instance') parser.add_argument('--pure_opt', action='store_true', default=False, help='do only optimization, no link prediction needed') parser.add_argument('--graph_embedding', type=str, default='GCN', help='embedding layer GCN,GAT or GIN') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() np.random.seed(args.seed) torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if 'synthetic_spa' not in args.dataset: directory = args.dataset else: directory = 'synthetic_spa' # Load data reload_data = True pure_optimization = args.pure_opt train_pct = 0.4 if 'synthetic' in args.dataset: num_graphs = 60 numtest = 30 else: #pubmed dataset num_graphs = 20 numtest = 8 if reload_data: bin_adj_all = [] adj_all = [] #features = [] adj_train = [] bin_adj_train = [] features_train = [] features_all = [] dist_all = [] dist_train = [] for i in range(num_graphs): adj_i, features_i, labels_i, idx_train, idx_val, idx_test = load_data('data/{}/'.format(directory), '{}_{}'.format(args.dataset, i)) bin_adj_i = (adj_i.to_dense() > 0).float() bin_adj_all.append(bin_adj_i) adj_all.append(adj_i.coalesce()) features_all.append(features_i) adj_train_i, features_train_i, labels_train_i, idx_train, idx_val, idx_test = load_data('data/{}/'.format(directory), '{0}_{1}_train_{2:.2f}'.format(args.dataset, i, train_pct)) bin_adj_train_i = (adj_train_i.to_dense() > 0).float() bin_adj_train.append(bin_adj_train_i) adj_train.append(adj_train_i.coalesce()) features_train.append(features_train_i) vals = {} algs = ['ClusterNet', 'ClusterNet-ft', 'ClusterNet-ft-only', 'GCN-e2e', 'GCN-e2e-ft', 'GCN-e2e-ft-only'] if args.objective == 'modularity': ts_algos = ['agglomerative', 'recursive', 'spectral'] elif args.objective == 'kcenter': ts_algos = ['gonzalez', 'greedy'] for algo in ts_algos: algs.append('train-' + algo) algs.append('ts-' + algo) algs.append('ts-ft-' + algo) algs.append('ts-ft-only-' + algo) for algo in algs: vals[algo] = np.zeros(numtest) aucs_algs = ['ts', 'ts-ft', 'ts-ft-only'] aucs = {} for algo in aucs_algs: aucs[algo] = np.zeros(numtest) if args.objective == 'modularity': mods_test = [make_modularity_matrix(A) for A in bin_adj_all] mods_train = [make_modularity_matrix(A) for A in bin_adj_train] test_object = mods_test train_object = mods_train loss_fn = loss_modularity elif args.objective == 'kcenter': for i in range(num_graphs): try: dist_all.append(torch.load('{}_{}_test_dist.pt'.format(args.dataset, i))) dist_train.append(torch.load('{}_{}_{:.2f}_train_dist.pt'.format(args.dataset, i, train_pct))) diameter = dist_all[-1].max() except: dist_all_i = make_all_dists(bin_adj_all[i], 100) diameter = dist_all_i[dist_all_i < 100].max() dist_all_i[dist_all_i == 100] = diameter torch.save(dist_all_i, '{}_{}_test_dist.pt'.format(args.dataset, i)) dist_all.append(dist_all_i) dist_train_i = make_all_dists(bin_adj_train[i], 100) dist_train_i[dist_train_i == 100] = diameter torch.save(dist_train_i, '{}_{}_{:.2f}_train_dist.pt'.format(args.dataset, i, train_pct)) dist_train.append(dist_train_i) obj_train = [CenterObjective(d, diameter, args.kcentermintemp) for d in dist_train] obj_train_hardmax = [CenterObjective(d, diameter, args.kcentermintemp, hardmax=True) for d in dist_train] obj_test = [CenterObjective(d, diameter, args.kcentertemp, hardmax=True) for d in dist_all] obj_test_softmax = [CenterObjective(d, diameter, args.kcentermintemp) for d in dist_all] test_object = obj_test train_object = obj_train loss_fn = loss_kcenter if pure_optimization: train_object = test_object adj_train = adj_all bin_adj_train = bin_adj_all dist_train = dist_all for test_idx in range(1): if 'pubmed' in args.dataset: valid_instances = list(range(10, 12)) test_instances= list(range(12, 20)) if 'synthetic' in args.dataset: test_instances = list(range(20, 50)) valid_instances = list(range(50, 60)) if not args.singletrain: train_instances = [x for x in range(num_graphs) if x not in test_instances and x not in valid_instances] else: train_instances = [0] nfeat = features_all[0].shape[1] K = args.K # Model and optimizer model_ts = GCNLink(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout) if args.graph_embedding=='GAT': model_cluster = GCNClusterGAT(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) if args.graph_embedding == 'GCN': model_cluster = GCNClusterNet(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) if args.graph_embedding == 'GIN': model_cluster = GINClusterNet(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) #keep a couple of initializations here so that the random seeding lines up #with results reported in the paper -- removing these is essentially equivalent to #changing the seed _ = GCN(nfeat, args.hidden, args.embed_dim, args.dropout) _ = nn.Parameter(torch.rand(K, args.embed_dim)) # if args.objective == 'modularity': model_gcn = GCNDeep(nfeat=nfeat, nhid=args.hidden, nout=args.K, dropout=args.dropout, nlayers=2) elif args.objective == 'kcenter': model_gcn = GCNDeepSigmoid(nfeat=nfeat, nhid=args.hidden, nout=1, dropout=args.dropout, nlayers=2) optimizer = optim.Adam(model_cluster.parameters(), lr=args.lr, weight_decay=args.weight_decay) losses = [] losses_test = [] num_cluster_iter = args.num_cluster_iter def get_average_loss(model, adj, bin_adj, bin_adj_for_loss, objectives, instances, features, num_reps = 10, hardmax = False, update = False, algoname = None): if hardmax: model.eval() loss = 0 for _ in range(num_reps): for idx, i in enumerate(instances): mu, r, embeds, dist = model(features[i], adj[i], num_cluster_iter) if hardmax: r = torch.softmax(100*r, dim=1) this_loss = loss_fn(mu, r, embeds, dist, bin_adj_for_loss[i], objectives[i], args) loss += this_loss if update: vals[algoname][test_instances.index(i)] = this_loss.item() if hardmax: model.train() return loss/(len(instances)*num_reps) def get_kcenter_test_loss(model, adj, bin_adj, train_objectives, test_objectives, instances, features, num_reps = 10, hardmax = False, update = False, algoname = None): loss = 0 for idx, i in enumerate(instances): best_loss = 100 x_best = None for _ in range(num_reps): mu, r, embeds, dist = model(features[i], adj[i], num_cluster_iter) x = torch.softmax(dist*args.kcentertemp, 0).sum(dim=1) x = 2*(torch.sigmoid(4*x) - 0.5) if x.sum() > args.K: x = args.K*x/x.sum() train_loss = loss_fn(mu, r, embeds, dist, bin_adj[i], train_objectives[i], args) if train_loss.item() < best_loss: best_loss = train_loss.item() x_best = x testvals = []; trainvals = [] for _ in range(50): y = rounding(x_best) testvals.append(test_objectives[i](y).item()) trainvals.append(train_objectives[i](y).item()) loss += testvals[np.argmin(trainvals)] if update: vals[algoname][test_instances.index(i)] = testvals[np.argmin(trainvals)] return loss/(len(instances)) #Decision-focused training if True: for t in range(args.train_iters): i = np.random.choice(train_instances) mu, r, embeds, dist = model_cluster(features_train[i], adj_train[i], num_cluster_iter) if args.objective == 'modularity': loss = loss_fn(mu, r, embeds, dist, bin_adj_all[i], test_object[i], args) else: loss = loss_fn(mu, r, embeds, dist, bin_adj_all[i], obj_test_softmax[i], args) if args.objective != 'kcenter': loss = -loss optimizer.zero_grad() loss.backward() if t % 100 == 0 and t != 0: num_cluster_iter = 5 if t % 10 == 0: if args.objective == 'modularity': r = torch.softmax(100*r, dim=1) loss_train = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, train_instances, features_train, hardmax=True) loss_test = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True) loss_valid = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, valid_instances, features_train, hardmax=True) losses_test.append(loss_test.item()) print(t, loss_train.item(), loss_test.item(), loss_valid.item()) losses.append(loss.item()) optimizer.step() if args.objective == 'kcenter': loss_round = get_kcenter_test_loss(model_cluster, adj_train, bin_adj_train, train_object, test_object, test_instances, features_train, update = True, algoname = 'ClusterNet') elif args.objective == 'modularity': loss_test = get_average_loss(model_cluster, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True, update = True, algoname = 'ClusterNet') print('after training', np.mean(vals['ClusterNet'][:numtest]), np.std(vals['ClusterNet'])) if args.singletrain: pickle.dump((vals, aucs), open('results_distributional_singletrain_{}_{}_{}.pickle'.format(args.dataset, args.objective, args.K), 'wb')) break def fine_tune(model, features, adj, bin_adj, objective, num_training_iters = 1000): optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) for t in range(num_training_iters): mu, r, embeds, dist = model(features, adj, num_cluster_iter) loss = loss_fn(mu, r, embeds, dist, bin_adj, objective, args) if args.objective != 'kcenter': loss = -loss optimizer.zero_grad() loss.backward() optimizer.step() num_cluster_iter = 1 loss_finetune = 0 loss_round = 0 for i in test_instances: model_i = copy.deepcopy(model_cluster) fine_tune(model_i, features_train[i], adj_train[i], bin_adj_train[i], train_object[i], num_training_iters = 50) loss_finetune += get_average_loss(model_i, adj_train, bin_adj_train, bin_adj_all, test_object, [i], features_train, hardmax=True, update = True, algoname = 'ClusterNet-ft').item() if args.objective == 'kcenter': loss_round += get_kcenter_test_loss(model_i, adj_train, bin_adj_train, train_object, test_object, [i], features_train, update = True, algoname = 'ClusterNet-ft') print('finetune', np.mean(vals['ClusterNet-ft']), np.std(vals['ClusterNet-ft'])) loss_finetune = 0 loss_round = 0 for i in test_instances: model_i = GCNClusterNet(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout, K = args.K, cluster_temp = args.clustertemp) fine_tune(model_i, features_train[i], adj_train[i], bin_adj_train[i], train_object[i], num_training_iters = 500) loss_finetune += get_average_loss(model_i, adj_train, bin_adj_train, bin_adj_all, test_object, [i], features_train, hardmax=True, update = True, algoname = 'ClusterNet-ft-only').item() if args.objective == 'kcenter': loss_round += get_kcenter_test_loss(model_i, adj_train, bin_adj_train, train_object, test_object, [i], features_train, update = True, algoname = 'ClusterNet-ft-only') print('finetune only', np.mean(vals['ClusterNet-ft-only']), np.std(vals['ClusterNet-ft-only'])) #Train a two-stage model for link prediction with cross-entropy loss and #negative sampling def train_twostage(model_ts, train_instances, test_instances, features, algoname): optimizer_ts = optim.Adam(model_ts.parameters(), lr=args.lr, weight_decay=args.weight_decay) edges = {} edges_eval = {} labels_eval = {} for i in train_instances + test_instances: edges[i] = adj_train[i].indices().t() edges_eval_i, labels_eval_i = negative_sample(adj_all[i].indices().t(), 1, bin_adj_all[i]) edges_eval[i] = edges_eval_i labels_eval[i] = labels_eval_i def get_evaluation(instances): test_ce = 0 test_auc = 0 for i in instances: preds_test_eval = model_ts(features[i], adj_train[i], edges_eval[i]) test_ce += torch.nn.BCEWithLogitsLoss()(preds_test_eval, labels_eval[i]) test_auc_i = sklearn.metrics.roc_auc_score(labels_eval[i].long().detach().numpy(), nn.Sigmoid()(preds_test_eval).detach().numpy()) aucs[algoname][test_instances.index(i)] = test_auc test_auc += test_auc_i return test_ce/len(instances), test_auc/len(instances) for t in range(150): i = np.random.choice(train_instances) adj_input = make_normalized_adj(edge_dropout(edges[i], args.edge_dropout), bin_adj_train[i].shape[0]) edges_eval_i, labels_i = negative_sample(edges[i], args.negsamplerate, bin_adj_train[i]) preds = model_ts(features[i], adj_input, edges_eval_i) loss = torch.nn.BCEWithLogitsLoss()(preds, labels_i) optimizer_ts.zero_grad() loss.backward() if t % 10 == 0: test_ce, test_auc = get_evaluation(test_instances) print(t, loss.item(), test_ce.item(), test_auc) optimizer_ts.step() def test_twostage(model_ts, test_instances_eval, algoname): for test_i in test_instances_eval: #predict probability that all unobserved edges exist n = adj_train[test_i].shape[0] indices = torch.tensor(np.arange(n)) to_pred = torch.zeros(n**2, 2) to_pred[:, 1] = indices.repeat(n) for i in range(n): to_pred[i*n:(i+1)*n, 0] = i to_pred = to_pred.long() preds = model_ts(features_train[test_i], adj_train[test_i], to_pred) preds = nn.Sigmoid()(preds).view(n, n) preds = bin_adj_train[test_i] + (1 - bin_adj_train[test_i])*preds if args.objective == 'modularity': r = greedy_modularity_communities(preds, K) loss = loss_fn(None, r, None, None, bin_adj_all[test_i], test_object[test_i], args).item() vals[algoname + '-agglomerative'][test_instances.index(test_i)] = loss r = partition(preds, K) loss = loss_fn(None, r, None, None, bin_adj_all[test_i], test_object[test_i], args).item() vals[algoname + '-recursive'][test_instances.index(test_i)] = loss degrees = preds.sum(dim=1) preds = torch.diag(1./degrees)@preds mod_pred = make_modularity_matrix(preds) r = baseline_spectral(mod_pred, K) loss = loss_fn(None, r, None, None, bin_adj_all[test_i], test_object[test_i], args).item() vals[algoname + '-spectral'][test_instances.index(test_i)] = loss elif args.objective == 'kcenter': print('making dists') if args.use_igraph: dist_ts = make_dists_igraph(preds) else: dist_ts = make_all_dists(preds, 100) diameter = dist_ts[dist_ts < 100].max() dist_ts[dist_ts == 100] = diameter print(test_i) dist_ts = dist_ts.float() diameter = dist_ts.max() x = gonzalez_kcenter(dist_ts, K) loss = obj_test[test_i](x) vals[algoname + '-gonzalez'][test_instances.index(test_i)] = loss.item() x = greedy_kcenter(dist_ts, diameter, K) loss = obj_test[test_i](x) vals[algoname + '-greedy'][test_instances.index(test_i)] = loss.item() if True: print('two stage') #do pretrained two stage train_twostage(model_ts, train_instances, test_instances, features_train, 'ts') test_twostage(model_ts, test_instances, 'ts') for algo in algs: if 'ts' in algo and 'ft' not in algo: print(algo, np.mean(vals[algo]), np.std(vals[algo])) # do finetuning loss_agglom_ft = 0; loss_recursive_ft = 0; loss_spectral_ft = 0 loss_greedy_ft = 0; loss_gonzalez_ft = 0 for i in test_instances: model_i = copy.deepcopy(model_ts) train_twostage(model_i, [i], [i], features_train, 'ts-ft') test_twostage(model_ts, [i], 'ts-ft') for algo in algs: if 'ts-ft' in algo and 'only' not in algo: print(algo, np.mean(vals[algo]), np.std(vals[algo])) #do only finetuning loss_agglom_ft_only = 0; loss_recursive_ft_only = 0; loss_spectral_ft_only = 0 loss_greedy_ft_only = 0; loss_gonzalez_ft_only = 0 for i in test_instances: model_i = GCNLink(nfeat=nfeat, nhid=args.hidden, nout=args.embed_dim, dropout=args.dropout) train_twostage(model_i, [i], [i], features_train, 'ts-ft-only') test_twostage(model_ts, [i], 'ts-ft-only') for algo in algs: if 'ts-ft-only' in algo: print(algo, np.mean(vals[algo]), np.std(vals[algo])) if True: def get_average_loss(model, adj, bin_adj, bin_adj_for_loss, objectives, instances, features, num_reps = 1, hardmax = False, update = False, algoname = None): loss = 0 for _ in range(num_reps): for i in instances: if args.objective == 'modularity': r = model(features[i], adj[i]) r = torch.softmax(r, dim = 1) if hardmax: r = torch.softmax(100*r, dim=1) this_loss = -loss_fn(None, r, None, None, bin_adj_for_loss[i], objectives[i], args) elif args.objective == 'kcenter': x = model(features[i], adj[i]) if x.sum() > K: x = K*x/x.sum() this_loss = objectives[i](x) loss += this_loss if update: vals[algoname][test_instances.index(i)] = this_loss.item() return loss/(len(instances)*num_reps) def get_kcenter_test_loss(model, adj, bin_adj, train_objectives, test_objectives, instances, features, num_reps = 10, hardmax = False, update = False, algoname = None): loss = 0 for i in instances: best_loss = 100 x_best = None for _ in range(num_reps): x = model(features[i], adj[i]) if x.sum() > args.K: x = args.K*x/x.sum() train_loss = train_objectives[i](x) if train_loss.item() < best_loss: best_loss = train_loss.item() x_best = x testvals = []; trainvals = [] for _ in range(50): y = rounding(x_best) testvals.append(test_objectives[i](y).item()) trainvals.append(train_objectives[i](y).item()) loss += testvals[np.argmin(trainvals)] if update: vals[algoname][test_instances.index(i)] = testvals[np.argmin(trainvals)] return loss/(len(instances)) print('just GCN') optimizer_gcn = optim.Adam(model_gcn.parameters(), lr = args.lr, weight_decay = args.weight_decay) def train_gcn_model(model, train_instances, num_iters = 1000, verbose=False): for t in range(num_iters): i = random.choice(train_instances) loss = get_average_loss(model_gcn, adj_train, bin_adj_train, bin_adj_train, train_object, [i], features_train) optimizer.zero_grad() loss.backward() losses.append(loss.item()) optimizer.step() if t % 100 == 0 and verbose: loss_train = get_average_loss(model_gcn, adj_all, bin_adj_all, bin_adj_all, test_object, train_instances, features_all) loss_test = get_average_loss(model_gcn, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True) losses_test.append(loss_test.item()) print(t, loss.item(), loss_train.item(), loss_test.item()) train_gcn_model(model_gcn, train_instances, num_iters = 1000, verbose = True) if args.objective == 'kcenter': loss_round = get_kcenter_test_loss(model_gcn, adj_train, bin_adj_train, train_object, test_object, test_instances, features_train , update = True, algoname = 'GCN-e2e') elif args.objective == 'modularity': loss_gcne2e = get_average_loss(model_gcn, adj_train, bin_adj_train, bin_adj_all, test_object, test_instances, features_train, hardmax=True, update = True, algoname = 'GCN-e2e').item() print('GCN-e2e', np.mean(vals['GCN-e2e']), np.std(vals['GCN-e2e'])) ################# #GCN FINETUNE ################# loss_finetune = 0 loss_round = 0 for i in test_instances: model_i = copy.deepcopy(model_gcn) train_gcn_model(model_i, [i], num_iters = 500) loss_finetune += get_average_loss(model_i, adj_train, bin_adj_train, bin_adj_all, test_object, [i], features_train, hardmax=True, update = True, algoname = 'GCN-e2e-ft').item() if args.objective == 'kcenter': loss_round += get_kcenter_test_loss(model_i, adj_train, bin_adj_train, train_object, test_object, [i], features_train, update = True, algoname = 'GCN-e2e-ft') print('GCN-e2e-ft',
np.mean(vals['GCN-e2e-ft'])
numpy.mean
import numpy as np from base_test import ArkoudaTest from context import arkouda as ak from arkouda.dtypes import npstr """ Encapsulates unit tests for the numeric module with the exception of the where method, which is in the where_test module """ class NumericTest(ArkoudaTest): def testSeededRNG(self): N = 100 seed = 8675309 numericdtypes = [ak.int64, ak.float64, ak.bool, ak.uint64] for dt in numericdtypes: # Make sure unseeded runs differ a = ak.randint(0, 2**32, N, dtype=dt) b = ak.randint(0, 2**32, N, dtype=dt) self.assertFalse((a == b).all()) # Make sure seeded results are same a = ak.randint(0, 2**32, N, dtype=dt, seed=seed) b = ak.randint(0, 2**32, N, dtype=dt, seed=seed) self.assertTrue((a == b).all()) # Uniform self.assertFalse((ak.uniform(N) == ak.uniform(N)).all()) self.assertTrue((ak.uniform(N, seed=seed) == ak.uniform(N, seed=seed)).all()) # Standard Normal self.assertFalse((ak.standard_normal(N) == ak.standard_normal(N)).all()) self.assertTrue((ak.standard_normal(N, seed=seed) == ak.standard_normal(N, seed=seed)).all()) # Strings (uniformly distributed length) self.assertFalse( (ak.random_strings_uniform(1, 10, N) == ak.random_strings_uniform(1, 10, N)).all() ) self.assertTrue( ( ak.random_strings_uniform(1, 10, N, seed=seed) == ak.random_strings_uniform(1, 10, N, seed=seed) ).all() ) # Strings (log-normally distributed length) self.assertFalse( (ak.random_strings_lognormal(2, 1, N) == ak.random_strings_lognormal(2, 1, N)).all() ) self.assertTrue( ( ak.random_strings_lognormal(2, 1, N, seed=seed) == ak.random_strings_lognormal(2, 1, N, seed=seed) ).all() ) def testCast(self): N = 100 arrays = { ak.int64: ak.randint(-(2**48), 2**48, N), ak.float64: ak.randint(0, 1, N, dtype=ak.float64), ak.bool: ak.randint(0, 2, N, dtype=ak.bool), } roundtripable = set( ( (ak.bool, ak.bool), (ak.int64, ak.int64), (ak.int64, ak.float64), (ak.int64, npstr), (ak.float64, ak.float64), (ak.float64, npstr), (ak.uint8, ak.int64), (ak.uint8, ak.float64), (ak.uint8, npstr), ) ) for t1, orig in arrays.items(): for t2 in ak.DTypes: t2 = ak.dtype(t2) other = ak.cast(orig, t2) self.assertEqual(orig.size, other.size) if (t1, t2) in roundtripable: roundtrip = ak.cast(other, t1) self.assertTrue( (orig == roundtrip).all(), f"{t1}: {orig[:5]}, {t2}: {roundtrip[:5]}" ) self.assertTrue((ak.array([1, 2, 3, 4, 5]) == ak.cast(ak.linspace(1, 5, 5), dt=ak.int64)).all()) self.assertEqual(ak.cast(ak.arange(0, 5), dt=ak.float64).dtype, ak.float64) self.assertTrue( ( ak.array([False, True, True, True, True]) == ak.cast(ak.linspace(0, 4, 5), dt=ak.bool) ).all() ) def testStrCastErrors(self): intNAN = -(2**63) intstr = ak.array(["1", "2 ", "3?", "!4", " 5", "-45", "0b101", "0x30", "N/A"]) intans = np.array([1, 2, intNAN, intNAN, 5, -45, 0b101, 0x30, intNAN]) uintNAN = 0 uintstr = ak.array(["1", "2 ", "3?", "-4", " 5", "45", "0b101", "0x30", "N/A"]) uintans = np.array([1, 2, uintNAN, uintNAN, 5, 45, 0b101, 0x30, uintNAN]) floatstr = ak.array(["1.1", "2.2 ", "3?.3", "4.!4", " 5.5", "6.6e-6", "78.91E+4", "6", "N/A"]) floatans = np.array([1.1, 2.2, np.nan, np.nan, 5.5, 6.6e-6, 78.91e4, 6.0, np.nan]) boolstr = ak.array( ["True", "False ", "Neither", "N/A", " True", "true", "false", "TRUE", "NOTTRUE"] ) boolans = np.array([True, False, False, False, True, True, False, True, False]) validans = ak.array([True, True, False, False, True, True, True, True, False]) for dt, arg, ans in [ (ak.int64, intstr, intans), (ak.uint64, uintstr, uintans), (ak.float64, floatstr, floatans), (ak.bool, boolstr, boolans), ]: with self.assertRaises(RuntimeError): ak.cast(arg, dt, errors=ak.ErrorMode.strict) res = ak.cast(arg, dt, errors=ak.ErrorMode.ignore) self.assertTrue(np.allclose(ans, res.to_ndarray(), equal_nan=True)) res, valid = ak.cast(arg, dt, errors=ak.ErrorMode.return_validity) self.assertTrue((valid == validans).all()) self.assertTrue(np.allclose(ans, res.to_ndarray(), equal_nan=True)) def testHistogram(self): pda = ak.randint(10, 30, 40) bins, result = ak.histogram(pda, bins=20) self.assertIsInstance(result, ak.pdarray) self.assertEqual(20, len(bins)) self.assertEqual(20, len(result)) self.assertEqual(int, result.dtype) with self.assertRaises(TypeError): ak.histogram([range(0,10)], bins=1) with self.assertRaises(TypeError): ak.histogram(pda, bins='1') with self.assertRaises(TypeError): ak.histogram([range(0,10)], bins='1') def testLog(self): na = np.linspace(1, 10, 10) pda = ak.array(na) self.assertTrue((np.log(na) == ak.log(pda).to_ndarray()).all()) with self.assertRaises(TypeError): ak.log([range(0,10)]) def testExp(self): na = np.linspace(1, 10, 10) pda = ak.array(na) self.assertTrue((np.exp(na) == ak.exp(pda).to_ndarray()).all()) with self.assertRaises(TypeError): ak.exp([range(0,10)]) def testAbs(self): na = np.linspace(1, 10, 10) pda = ak.array(na) self.assertTrue((np.abs(na) == ak.abs(pda).to_ndarray()).all()) self.assertTrue((ak.arange(5, 1, -1) == ak.abs(ak.arange(-5, -1))).all()) self.assertTrue((ak.array([5, 4, 3, 2, 1]) == ak.abs(ak.linspace(-5, -1, 5))).all()) with self.assertRaises(TypeError): ak.abs([range(0, 10)]) def testCumSum(self): na = np.linspace(1, 10, 10) pda = ak.array(na) self.assertTrue((np.cumsum(na) == ak.cumsum(pda).to_ndarray()).all()) # Test uint case na = np.linspace(1, 10, 10, "uint64") pda = ak.cast(pda, ak.uint64) self.assertTrue((np.cumsum(na) == ak.cumsum(pda).to_ndarray()).all()) with self.assertRaises(TypeError): ak.cumsum([range(0, 10)]) def testCumProd(self): na =
np.linspace(1, 10, 10)
numpy.linspace
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 9 13:22:31 2021 Model Simulation & Grid Interpolation @authors: <NAME> & <NAME> """ import numpy as np import sys from scipy.stats import norm from scipy.stats import uniform import scipy.special as sc import mpmath import scipy.integrate as si import scipy.interpolate as interp import scipy.optimize as optim from scipy.stats import genextreme ## integration.cpp ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## Import C++ function library ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## ## ## i.e., RW_marginal, pRW_me_interp, find_xrange_pRW_me ## import os, ctypes # g++ -std=c++11 -shared -fPIC -o p_integrand.so p_integrand.cpp lib = ctypes.CDLL(os.path.abspath('./nonstat_model_noXs_global/p_integrand.so')) i_and_o_type = np.ctypeslib.ndpointer(ndim=1, dtype=np.float64) grid_type = np.ctypeslib.ndpointer(ndim=1, dtype=np.float64) bool_type = np.ctypeslib.ndpointer(ndim=1, dtype='bool') lib.pRW_me_interp_C.restype = ctypes.c_int lib.pRW_me_interp_C.argtypes = (i_and_o_type, grid_type, grid_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_int, ctypes.c_int, i_and_o_type) lib.RW_marginal_C.restype = ctypes.c_int lib.RW_marginal_C.argtypes = (i_and_o_type, ctypes.c_double, ctypes.c_double, ctypes.c_int, i_and_o_type) lib.RW_me_2_unifs.restype = ctypes.c_int lib.RW_me_2_unifs.argtypes = (i_and_o_type, grid_type, grid_type, ctypes.c_double, i_and_o_type, ctypes.c_double, ctypes.c_int, ctypes.c_int, ctypes.c_int, i_and_o_type) lib.find_xrange_pRW_me_C.restype = ctypes.c_int lib.find_xrange_pRW_me_C.argtypes = (ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double, grid_type, grid_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_int, i_and_o_type) lib.pchip.restype = ctypes.c_int lib.pchip.argtypes = (grid_type, grid_type, grid_type, grid_type, ctypes.c_int, ctypes.c_int) lib.qRW_me_interp.restype = ctypes.c_int lib.qRW_me_interp.argtypes = (i_and_o_type, grid_type, grid_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_int, ctypes.c_int, i_and_o_type, grid_type, grid_type, ctypes.c_int, ctypes.c_double, ctypes.c_double) lib.RW_density_C.restype = ctypes.c_int lib.RW_density_C.argtypes = (i_and_o_type, ctypes.c_double, ctypes.c_double, ctypes.c_int, i_and_o_type) lib.dRW_me_interp_C.restype = ctypes.c_int lib.dRW_me_interp_C.argtypes = (i_and_o_type, grid_type, grid_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_int, ctypes.c_int, i_and_o_type) lib.density_interp_grid.restype = ctypes.c_int lib.density_interp_grid.argtypes = (grid_type, i_and_o_type, ctypes.c_double, ctypes.c_int, ctypes.c_int, i_and_o_type, i_and_o_type) lib.dgev_C.restype = ctypes.c_double lib.dgev_C.argtypes = (ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_bool) lib.dnorm_C.restype = ctypes.c_double lib.dnorm_C.argtypes = (ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_bool) lib.marg_transform_data_mixture_me_likelihood_C.restype = ctypes.c_double lib.marg_transform_data_mixture_me_likelihood_C.argtypes = (i_and_o_type, i_and_o_type, i_and_o_type, bool_type, bool_type, i_and_o_type, i_and_o_type, i_and_o_type, ctypes.c_double, i_and_o_type, ctypes.c_double, grid_type, grid_type, ctypes.c_int, ctypes.c_int) lib.marg_transform_data_mixture_me_likelihood_F.restype = ctypes.c_double lib.marg_transform_data_mixture_me_likelihood_F.argtypes = (i_and_o_type, i_and_o_type, i_and_o_type, bool_type, bool_type, i_and_o_type, i_and_o_type, i_and_o_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, grid_type, grid_type, ctypes.c_int, ctypes.c_int) lib.marg_transform_data_mixture_me_likelihood_global.restype = ctypes.c_double lib.marg_transform_data_mixture_me_likelihood_global.argtypes = (i_and_o_type, i_and_o_type, i_and_o_type, bool_type, bool_type, i_and_o_type, i_and_o_type, i_and_o_type, ctypes.c_double, i_and_o_type, ctypes.c_double, grid_type, grid_type, ctypes.c_int, ctypes.c_int, ctypes.c_int) lib.Thresh_X_try.restype = ctypes.c_int lib.Thresh_X_try.argtypes = (i_and_o_type, grid_type, grid_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_int, ctypes.c_int, i_and_o_type, i_and_o_type) lib.X_update.restype = ctypes.c_int lib.X_update.argtypes = (i_and_o_type, grid_type, grid_type, i_and_o_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_int, ctypes.c_int, ctypes.c_int, i_and_o_type) lib.unifs_2_RW_me.restype = ctypes.c_int lib.unifs_2_RW_me.argtypes = (i_and_o_type, grid_type, grid_type, ctypes.c_double, i_and_o_type, ctypes.c_double, ctypes.c_double, ctypes.c_double, ctypes.c_int, ctypes.c_int, ctypes.c_int, i_and_o_type) lib.print_Vec.restype = ctypes.c_double lib.print_Vec.argtypes = (i_and_o_type, ctypes.c_int, ctypes.c_int) ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## Generate Levy random samples ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## ## ## i.e., Stable variables with alpha=1/2 ## def rlevy(n, m = 0, s = 1): if np.any(s < 0): sys.exit("s must be positive") return s/norm.ppf(uniform.rvs(0,1,n)/2)**2 + m ## The density for R^phi in which R is levy distributed def dR_power_phi(x, phi, m=0, s=1, log=False): x_phi = x**(1/phi) if np.any(x_phi <= m): sys.exit("some x**phi <= m") if np.any(s <= 0): sys.exit("s must be positive") tmp = np.sum(np.log(s/(2 * np.pi))/2 - 3 * np.log(x_phi - m)/2 - s/(2 * (x_phi - m)) + (1/phi-1)*np.log(x)-np.log(phi)) if np.invert(log): tmp = np.exp(tmp) return tmp ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## Calculate unregularized upper incomplete gamma function ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## ## ## The negative a values are allowed ## def gammaincc_unregulized(a,x): if(isinstance(x, (int, np.int64, float))): x=np.array([x]) if x.any()<0: sys.exit("x must be positive") if a>0: return sc.gamma(a)*sc.gammaincc(a,x) elif a<0: return gammaincc_unregulized(a+1,x)/a-(x**a)*np.exp(-x)/a else: return mpmath.gammainc(0,x) ## Compare with mpmath.gammainc ## gammaincc_unregulized is more efficient # import time # # start_time = time.time() # gammaincc_unregulized(-3.62,5) # time.time() - start_time # start_time = time.time() # mpmath.gammainc(-3.62,5) # time.time() - start_time ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## Calculate the exact marginal survival function for R^phi*W ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## ## ## def RW_marginal_uni(x,phi,gamma,survival = True): tmp1 = gamma/(2*(x**(1/phi))) tmp2 = (gamma/2)**phi/sc.gamma(0.5) res = sc.gammainc(0.5,tmp1) + tmp2*gammaincc_unregulized(0.5-phi,tmp1)/x if survival: return res else: return 1-res RW_marginal = np.vectorize(RW_marginal_uni) def RW_marginal_asymp(x,phi,gamma): if phi<0.5: moment = ((2*gamma)**phi)*sc.gamma(1-2*phi)/sc.gamma(1-phi) return moment/x elif phi>0.5: return np.sqrt(2*gamma/np.pi)*(x**(-1/(2*phi)))/(1-1/(2*phi)) else: return np.sqrt(2*gamma/np.pi)*np.log(x)/x def RW_quantile_asymp(p,phi,gamma): if phi<0.5: moment = ((2*gamma)**phi)*sc.gamma(1-2*phi)/sc.gamma(1-phi) return moment/(1-p) elif phi>0.5: return (np.sqrt(2*gamma/np.pi)/(1-1/(2*phi))/(1-p))**(2*phi) else: tmp = (1-p)/np.sqrt(2*gamma/np.pi) return tmp/sc.lambertw(tmp) # # Compare the exact and asymptotic CDF # gamma = 1.2; x =10; phi=0.3 # import matplotlib.pyplot as plt # axes = plt.gca() # axes.set_ylim([0,0.125]) # X_vals = np.linspace(100,1500,num=200) # P_vals = RW_marginal(X_vals,phi,gamma) # P_asym = RW_marginal_asymp(X_vals,phi,gamma) # plt.plot(X_vals, P_vals, 'b') # plt.plot(X_vals, P_asym, 'r',linestyle='--'); ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## Calculate the marginal survival function for R^phi*W + epsilon ## -------------------------------------------------------------------------- ## ## -------------------------------------------------------------------------- ## ## ## # ---------------- 1. Define integrand in Python: exact form ---------------- # def mix_distn_integrand(t, xval, phi, tmp1, tmp2, tau_sqd): diff = xval - t tmp3 = tmp1/(diff**(1/phi)) res = sc.gammainc(0.5,tmp3) + tmp2*gammaincc_unregulized(0.5-phi,tmp3)/diff result = res * np.exp(-t**2/(2*tau_sqd)) return result def pRW_me_uni(xval, phi, gamma, tau_sqd): tmp1 = gamma/2 tmp2 = ((gamma/2)**phi)/sc.gamma(0.5) sd = np.sqrt(tau_sqd) I_1 = si.quad(mix_distn_integrand, -np.inf, xval, args=(xval, phi, tmp1, tmp2, tau_sqd)) # 0.00147 tmp = norm.cdf(xval, loc=0.0, scale=sd)-I_1[0]/np.sqrt(2*np.pi*tau_sqd) if tmp<0.999: return tmp else: return RW_marginal_uni(xval,phi,gamma,survival = False) pRW_me = np.vectorize(pRW_me_uni) # ----------- 2. Define integrand in Python: linear interpolation ----------- # # Actually BETTER than numerical integration because there are no singular values. # We use the Trapezoidal rule. ## **** (0). Generate a GRIDDED set of values for P(RW>x) **** def survival_interp_grid(phi, gamma, grid_size=800): xp_1 = np.linspace(0.000001, 200, grid_size, endpoint = False) xp_2 = np.linspace(200.5, 900, int(grid_size/4), endpoint = False) xp_3 = np.linspace(900.5, 100000, int(grid_size/10), endpoint = False) xp = np.concatenate((xp_1, xp_2, xp_3)) xp = xp[::-1] # reverse order xp = np.ascontiguousarray(xp, np.float64) #C contiguous order: xp.flags['C_CONTIGUOUS']=True? n_xval = len(xp); surv_p = np.empty(n_xval) tmp_int = lib.RW_marginal_C(xp, phi, gamma, n_xval, surv_p) if tmp_int!=1: sys.exit('C implementaion failed.') # surv_p = RW_marginal(xp, phi, gamma) return (xp, surv_p) ## **** (1). Vectorize univariate function **** def pRW_me_uni_interp(xval, xp, surv_p, tau_sqd): tp = xval-xp integrand_p = np.exp(-tp**2/(2*tau_sqd)) * surv_p sd = np.sqrt(tau_sqd) I_1 = sum(np.diff(tp)*(integrand_p[:-1] + integrand_p[1:])/2) # 0.00036 tmp = norm.cdf(xval, loc=0.0, scale=sd)-I_1/np.sqrt(2*np.pi*tau_sqd) return tmp def pRW_me_interp_slower(xval, xp, surv_p, tau_sqd): return np.array([pRW_me_uni_interp(xval_i, xp, surv_p, tau_sqd) for xval_i in xval]) ## **** (2). Broadcast matrices and vectorize columns **** def pRW_me_interp_py(xval, xp, surv_p, tau_sqd, phi, gamma): if(isinstance(xval, (int, np.int64, float))): xval=np.array([xval], dtype='float64') tmp = np.zeros(xval.shape) # Store the results # Use the smooth process CDF values if tau_sqd<0.05 if tau_sqd>0.05: which = (xval<820) else: which = np.repeat(False, xval.shape) # Calculate for values that are less than 820 if(np.sum(which)>0): xval_less = xval[which] tp = xval_less-xp[:,np.newaxis] integrand_p = np.exp(-tp**2/(2*tau_sqd)) * surv_p[:,np.newaxis] sd = np.sqrt(tau_sqd) ncol = integrand_p.shape[1] I_1 = np.array([np.sum(np.diff(tp[:,index])*(integrand_p[:-1,index] + integrand_p[1:,index])/2) for index in np.arange(ncol)]) tmp_res = norm.cdf(xval_less, loc=0.0, scale=sd)-I_1/np.sqrt(2*np.pi*tau_sqd) # Numerical negative when xval is very small if(np.any(tmp_res<0)): tmp_res[tmp_res<0] = 0 tmp[which] = tmp_res # Calculate for values that are greater than 820 if(xval.size-np.sum(which)>0): tmp[np.invert(which)] = RW_marginal(xval[np.invert(which)],phi,gamma,survival = False) return tmp ## **** (3). Use the C implementation **** def pRW_me_interp(xval, xp, surv_p, tau_sqd, phi, gamma): if(isinstance(xval, (int, np.int64, float))): xval=np.array([xval], dtype='float64') n_xval = len(xval); n_grid = len(xp) result = np.zeros(n_xval) # Store the results tmp_int = lib.pRW_me_interp_C(xval, xp, surv_p, tau_sqd, phi, gamma, n_xval, n_grid, result) if tmp_int!=1: sys.exit('C implementaion failed.') return result # ----------- 3. Define integrand in Python: linear interpolation ----------- # # The grid in the previous version depends on gamma. It's not ideal. ## **** (0). Generate a GRIDDED set of values for the integrand **** ## When phi > 1 and gamma < 0.01 (fixed?) or gamma > 120, the abnormality kicks in quicker. ## When phi=0.7 and gamma=1e-05, it works fine. def survival_interp_grid1(phi, grid_size=1000): sp_1 = np.linspace(0.000001, 400, grid_size, endpoint = False) sp_2 = np.linspace(400.5, 1100, int(grid_size/4), endpoint = False) sp_3 = np.linspace(1100.5, 100000, int(grid_size/10), endpoint = False) sp = np.concatenate((sp_1, sp_2, sp_3)) tmp = 1/(sp**(1/phi)) surv_p = sc.gammainc(0.5,tmp) + gammaincc_unregulized(0.5-phi,tmp)/(sp*sc.gamma(0.5)) return (sp, surv_p) def pRW_me_interp1(xval, sp, surv_p, tau_sqd, phi, gamma): if(isinstance(xval, (int, np.int64, float))): xval=np.array([xval], dtype='float64') res = np.zeros(xval.size) # Store the results tmp1 = (gamma/2)**phi # If the asymp quantile level reaches 0.98, use the smooth distribution func. thresh = max(RW_quantile_asymp(0.98,phi,gamma),7.5) # 7.5 is for gamma<0.0001 # Use the smooth process CDF values if tau_sqd<0.05 if tau_sqd>0.05: which = (xval<thresh) else: which = np.repeat(False, xval.shape) # Calculate for values that are less than 820 if(np.sum(which)>0): xval_less = xval[which] tp = xval_less-tmp1*sp[:,np.newaxis] integrand_p = np.exp(-tp**2/(2*tau_sqd)) * surv_p[:,np.newaxis] sd = np.sqrt(tau_sqd) ncol = integrand_p.shape[1] I_1 = np.array([np.sum(np.diff(sp)*(integrand_p[:-1,index] + integrand_p[1:,index])/2) for index in np.arange(ncol)]) tmp_res = norm.cdf(xval_less, loc=0.0, scale=sd)-tmp1*I_1/np.sqrt(2*np.pi*tau_sqd) # Numerical negative when xval is very small if(np.any(tmp_res<0)): tmp_res[tmp_res<0] = 0 res[which] = tmp_res # Calculate for values that are greater than 820 if(xval.size-np.sum(which)>0): res[
np.invert(which)
numpy.invert
# -*- coding: utf-8 -*- """ Implementation of cost-based feature selection/ranking algorithms. Implementation of the cost-based version of the filter feature selection method based on Maximal-Relevance-Minimal-Redundancy (mRMR), Joint Mutual Information (JMI), Joint Mutual Information Maximization (JMIM), a version of ReliefF that can compute nearest neighbors either with random forests, or with an L1 distance. A cost-based ranking is also available by penalization of the random forest feature importance, or by using the feature importance of a random forest where the sampling of features at each internal node is proportional to the inverse of their cost. Moreover, to analyze the rankings for different penalization parameter values, we also implement corresponding functions that return the different rankings for each penalization value. """ import collections import copy import numpy as np from sklearn.feature_selection import mutual_info_classif from sklearn.feature_selection import mutual_info_regression from sklearn.ensemble import RandomForestClassifier from scipy import spatial from .old.cost_based_methods import _private_proximity_matrix from ._util import evaluate_proximity_matrix # To use the R package ranger for RF importance computation import rpy2.robjects def random_ranking(X, y, is_disc, cost_vec=None, cost_param=0): """ Return a random feature ranking. """ # Select features sequentially proportional to their inverse selection probability. if cost_vec is None: proba = np.ones(X.shape[1]) else: assert cost_vec.shape == (X.shape[1],) proba = cost_vec ** -cost_param # "Rank" the features by sequentially selecting them proportional to the given probability. We # first convert to lists because they are easier to deal with for sequential sampling. candidates = list(np.arange(proba.size)) proba = list(proba) ranking = [] while candidates: # We need to renormalize the probabilities each time. idx = np.random.choice(len(proba), p=np.asarray(proba) / np.sum(proba)) ranking.append(candidates.pop(idx)) proba.pop(idx) return ranking, def evaluate_pairwise_mutual_information(X: np.ndarray, is_disc: np.ndarray, random_seed: int = 123) -> np.ndarray: """ Compute all pairwise mutual information scores. """ _, num_features = X.shape matrix_MI = np.zeros((num_features, num_features), dtype=float) for ii in range(num_features): if is_disc[ii]: # If the ii-th feature is discrete # we use the classif version matrix_MI[ii, :] = mutual_info_classif(X, X[:, ii], discrete_features=is_disc, random_state=random_seed) else: # otherwise we use the continuous (regression) version matrix_MI[ii, :] = mutual_info_regression(X, X[:, ii], discrete_features=is_disc, random_state=random_seed) return matrix_MI def evaluate_conditional_mutual_information(X: np.ndarray, is_disc: np.ndarray, y: np.ndarray, random_seed: int = 123) -> np.ndarray: """ Compute pairwise mutual information conditional on the class of `y`. """ _, num_features = X.shape # Create a dictionary that will contains the corresponding MI matrices # conditionally on the different unique values of y MI_condY = dict() # For each modality of y for valY in np.unique(y): # Initialize a new matrix matTmp = np.zeros((num_features, num_features), dtype=float) # Extract the rows of X with this modality of Y subX = X[y == valY] # proportion of this modality proValY = np.mean(y == valY) is_discForSubX = copy.deepcopy(is_disc) for featIdx in range(num_features): if is_disc[featIdx] and len(np.unique(subX[:, featIdx])) == subX.shape[0]: is_discForSubX[featIdx] = False # Fill the matrix for ii in range(num_features): if is_discForSubX[ii]: matTmp[ii, :] = proValY * mutual_info_classif( subX, subX[:, ii], discrete_features=is_discForSubX, random_state=random_seed) else: matTmp[ii, :] = proValY * mutual_info_regression( subX, subX[:, ii], discrete_features=is_discForSubX, random_state=random_seed) MI_condY[valY] = matTmp return MI_condY def mRMR(X, y, is_disc, cost_vec=None, cost_param=0, num_features_to_select=None, random_seed=123, MI_matrix=None, MI_conditional=None): """ Cost-based feature ranking with maximum relevance minimum redundancy. Cost-based adaptation of the filter feature selection algorithm Maximal- Relevance-Minimal-Redundancy (mRMR, Peng et al. (2005)). <NAME>, <NAME>, and <NAME>. Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on pattern analysis and machine intelligence, 27:1226--1238, 2005. Args: X (numpy.ndarray): the numerical features to use as training data, where each row represents an individual, and each column a feature. y (list): a list of integers representing the training data labels. is_disc (list): a list of booleans indicating with True if the feature is discrete and False if continuous. cost_vec (numpy.ndarray): the vector of costs represented by a numpy.ndarray with shape (1, X.shape[1]). If None, the cost is set to zero for each feature. cost_param (float): the positive cost penalization parameter. 0 by default. num_features_to_select (int): the number of best features to select. If unspecified, does not select a subset of features but keep all of them. random_seed (int): the random seed to use with the mutual_information function (when computing the Mutual Information (MI) involving one or more continuous features). MI_matrix (numpy.ndarray): the matrix of precomputed pairwise MI between pairs of features to save times when wanting to use multiple cost values. By default this matrix is computed in the function. Returns: ranking (list): list containing the indices of the ranked features as specified in X, in decreasing order of importance. matrix_MI (numpy.ndarray): the matrix of precomputed MI between pairs of features. """ num_features = X.shape[1] if cost_vec is None: # If no cost is specified, then all costs are set as equal to zero cost_vec = np.zeros(num_features) # Check on num_features_to_select if (num_features_to_select is not None): num_selected_features = min(num_features, num_features_to_select) else: num_selected_features = num_features # unRanked contains the feature indices unranked unRanked = list(range(num_features)) # If a feature is discrete but with always different values, then # convert it into a continuous one # (to handle errors with the MI computation function) for featIdx in range(num_features): if is_disc[featIdx] and len(np.unique(X[:, featIdx])) == X.shape[0]: is_disc[featIdx] = False # Computing all the MIs I(X_j; y) initial_scores = mutual_info_classif(X, y, discrete_features=is_disc, random_state=random_seed) # The cost based will substract lambda*cost for each item of initial_scores initial_scores_mcost = initial_scores - cost_param*cost_vec if MI_matrix is None: matrix_MI = evaluate_pairwise_mutual_information(X, is_disc, random_seed) else: matrix_MI = MI_matrix # ranking contains the indices of the final ranking in decreasing order of importance ranking = [] # The first selected feature is the one with the maximal penalized I(X_j, Y) value selected = np.argmax(initial_scores_mcost) ranking.append(selected) unRanked.pop(selected) # Until we have the desired number of selected_features, we apply the selection criterion for k in range(1, num_selected_features): featureRel = [] # Compute the criterion to maximize for each unranked covariate for idx in unRanked: featureRel.append(initial_scores_mcost[idx] - np.mean(matrix_MI[ranking, idx])) tmp_idx = np.argmax(featureRel) ranking.append(unRanked[tmp_idx]) unRanked.pop(tmp_idx) return ranking, matrix_MI def JMI(X, y, is_disc, cost_vec=None, cost_param=0, num_features_to_select=None, random_seed=123, MI_matrix=None, MI_conditional=None): """ Cost-based feature ranking based on Joint Mutual Information. Cost-based adaptation of the filter feature selection algorithm based on Joint Mutual Information (Yang and Moody (1999)). <NAME> and <NAME>. Feature selection based on joint mutual information. In Advances in intelligent data analysis, proceedings of international ICSC symposium, pages 22—-25, 1999. Args: X (numpy.ndarray): the numerical features to use as training data, where each row represents an individual, and each column a feature. y (list): a list of integers representing the training data labels. is_disc (list): a list of booleans indicating with True if the feature is discrete and False if continuous. cost_vec (numpy.ndarray): the vector of costs represented by a numpy.ndarray with shape (1, X.shape[1]). If None, the cost is set to zero for each feature. cost_param (float): the positive cost penalization parameter. 0 by default. num_features_to_select (int): the number of best features to select. If unspecified, does not select a subset of features but keep all of them. random_seed (int): the random seed to use with the mutual_information function (when computing the Mutual Information (MI) involving one or more continuous features). MI_matrix (numpy.ndarray): the matrix of precomputed pairwise MI between pairs of features to save times when wanting to use multiple cost values. By default this matrix is computed in the function. MI_conditional (dict): a dictionary that contains the precomputed numpy.ndarray of conditional pairwise MI between features, conditioned to the response values. Each key is a response modality, and each value is a conditional MI matrix between features I(X_i, X_j | y=key). Useful to save computational times when wanting to use multiple cost values, but by default it is computed in the function. Returns: ranking (list): list containing the indices of the ranked features as specified in X, in decreasing order of importance. matrix_MI_Xk_Xj (numpy.ndarray): the matrix of precomputed MI between pairs of features. MI_condY (dict): a dictionary that contains the precomputed numpy.ndarray of conditional pairwise MI between features, conditioned to the response values. Each key is a response modality, and each value is a conditional MI matrix between features I(X_i, X_j | y=key). """ num_features = X.shape[1] if cost_vec is None: # If no cost is specified, then all costs are set as equal to zero cost_vec = np.zeros(num_features) # Check on num_features_to_select if num_features_to_select is not None: num_selected_features = min(num_features, num_features_to_select) else: num_selected_features = num_features # unRanked contains the feature indices unranked unRanked = list(range(num_features)) # If a feature is discrete but with always different values, then # convert it into a continuous one # (to handle errors with the MI computation function) for featIdx in range(num_features): if is_disc[featIdx] and len(np.unique(X[:, featIdx])) == X.shape[0]: is_disc[featIdx] = False # Computing all the MIs I(X_j; y) initial_scores = mutual_info_classif(X, y, discrete_features=is_disc, random_state=random_seed) # The cost based will substract lambda*cost for each item of initial_scores initial_scores_mcost = initial_scores - cost_param * cost_vec if MI_matrix is None: matrix_MI_Xk_Xj = evaluate_pairwise_mutual_information(X, is_disc, random_seed) else: matrix_MI_Xk_Xj = MI_matrix # For the Joint mutual information, we also need to compute the matrices # I(Xk, Xj | Y=y) for y in Y # Create a dictionary that will contains the corresponding MI matrices given the different # unique values of y. if MI_conditional is None: MI_condY = evaluate_conditional_mutual_information(X, is_disc, y, random_seed) else: MI_condY = MI_conditional # ranking contains the indices of the final ranking in decreasing order of importance ranking = [] # The first selected feature is the one with the maximal penalized I(X_j, Y) value selected = np.argmax(initial_scores_mcost) ranking.append(selected) unRanked.pop(selected) # Until we have the desired number of selected_features, we apply the selection criterion for k in range(1, num_selected_features): featureRel = [] # Compute the criterion to maximize for each unranked covariate for idx in unRanked: vecSummed = np.zeros(len(ranking)) for valY in np.unique(y): # Compute I(Xk; Xj | Y) vecSummed += MI_condY[valY][ranking, idx] criterionVal = initial_scores_mcost[idx] - np.mean(matrix_MI_Xk_Xj[ranking, idx]) \ + np.mean(vecSummed) featureRel.append(criterionVal) tmp_idx =
np.argmax(featureRel)
numpy.argmax
from os import path import numpy as np from numpy.testing import * import datetime class TestDateTime(TestCase): def test_creation(self): for unit in ['Y', 'M', 'W', 'B', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', 'ps', 'fs', 'as']: dt1 = np.dtype('M8[750%s]' % unit) assert dt1 == np.dtype('datetime64[750%s]' % unit) dt2 = np.dtype('m8[%s]' % unit) assert dt2 == np.dtype('timedelta64[%s]' % unit) def test_divisor_conversion_year(self): assert np.dtype('M8[Y/4]') == np.dtype('M8[3M]') assert np.dtype('M8[Y/13]') == np.dtype('M8[4W]') assert np.dtype('M8[3Y/73]') == np.dtype('M8[15D]') def test_divisor_conversion_month(self): assert np.dtype('M8[M/2]') == np.dtype('M8[2W]') assert np.dtype('M8[M/15]') == np.dtype('M8[2D]') assert np.dtype('M8[3M/40]') == np.dtype('M8[54h]') def test_divisor_conversion_week(self): assert np.dtype('m8[W/5]') == np.dtype('m8[B]') assert np.dtype('m8[W/7]') ==
np.dtype('m8[D]')
numpy.dtype
from __future__ import print_function, division import os import sys import pytest import warnings import numpy from galpy.util import galpyWarning from test_actionAngle import reset_warning_registry _TRAVIS= bool(os.getenv('TRAVIS')) PY2= sys.version < '3' # Print all galpyWarnings always for tests of warnings warnings.simplefilter("always",galpyWarning) #Basic sanity checking: circular orbit should have constant R, zero vR, vT=vc def test_actionAngleTorus_basic(): from galpy.actionAngle import actionAngleTorus from galpy.potential import MWPotential, rl, vcirc, \ FlattenedPowerPotential, PlummerPotential tol= -4. jr= 10.**-10. jz= 10.**-10. aAT= actionAngleTorus(pot=MWPotential) # at R=1, Lz=1 jphi= 1. angler= numpy.linspace(0.,2.*numpy.pi,101) anglephi= numpy.linspace(0.,2.*numpy.pi,101)+1. anglez= numpy.linspace(0.,2.*numpy.pi,101)+2. RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(MWPotential,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(MWPotential,rl(MWPotential,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' # at Lz=1.5, using Plummer tol= -3.25 pp= PlummerPotential(normalize=1.) aAT= actionAngleTorus(pot=pp) jphi= 1.5 RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(pp,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(pp,rl(pp,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' # at Lz=0.5, using FlattenedPowerPotential tol= -4. fp= FlattenedPowerPotential(normalize=1.) aAT= actionAngleTorus(pot=fp) jphi= 0.5 RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T assert numpy.all(numpy.fabs(RvR[0]-rl(fp,jphi)) < 10.**tol), \ 'circular orbit does not have constant radius for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[1]) < 10.**tol), \ 'circular orbit does not have zero radial velocity for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[2]-vcirc(fp,rl(fp,jphi))) < 10.**tol), \ 'circular orbit does not have constant vT=vc for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[3]) < 10.**tol), \ 'circular orbit does not have zero vertical height for actionAngleTorus' assert numpy.all(numpy.fabs(RvR[4]) < 10.**tol), \ 'circular orbit does not have zero vertical velocity for actionAngleTorus' return None #Basic sanity checking: close-to-circular orbit should have freq. = epicycle freq. def test_actionAngleTorus_basic_freqs(): from galpy.actionAngle import actionAngleTorus from galpy.potential import epifreq, omegac, verticalfreq, rl, \ JaffePotential, PowerSphericalPotential, HernquistPotential tol= -3. jr= 10.**-6. jz= 10.**-6. jp= JaffePotential(normalize=1.) aAT= actionAngleTorus(pot=jp) # at Lz=1 jphi= 1. om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(jp,rl(jp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(jp,rl(jp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(jp,rl(jp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' # at Lz=1.5, w/ different potential pp= PowerSphericalPotential(normalize=1.) aAT= actionAngleTorus(pot=pp) jphi= 1.5 om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(pp,rl(pp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(pp,rl(pp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(pp,rl(pp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' # at Lz=0.5, w/ different potential tol= -2.5 # appears more difficult hp= HernquistPotential(normalize=1.) aAT= actionAngleTorus(pot=hp) jphi= 0.5 om= aAT.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-epifreq(hp,rl(hp,jphi)))/om[0]) < 10.**tol, \ 'Close-to-circular orbit does not have Or=kappa for actionAngleTorus' assert numpy.fabs((om[1]-omegac(hp,rl(hp,jphi)))/om[1]) < 10.**tol, \ 'Close-to-circular orbit does not have Ophi=omega for actionAngleTorus' assert numpy.fabs((om[2]-verticalfreq(hp,rl(hp,jphi)))/om[2]) < 10.**tol, \ 'Close-to-circular orbit does not have Oz=nu for actionAngleTorus' return None #Test that orbit from actionAngleTorus is the same as an integrated orbit def test_actionAngleTorus_orbit(): from galpy.actionAngle import actionAngleTorus from galpy.potential import MWPotential2014 from galpy.orbit import Orbit # Set up instance aAT= actionAngleTorus(pot=MWPotential2014,tol=10.**-5.) jr,jphi,jz= 0.05,1.1,0.025 # First calculate frequencies and the initial RvR RvRom= aAT.xvFreqs(jr,jphi,jz, numpy.array([0.]), numpy.array([1.]), numpy.array([2.])) om= RvRom[1:] # Angles along an orbit ts= numpy.linspace(0.,100.,1001) angler= ts*om[0] anglephi= 1.+ts*om[1] anglez= 2.+ts*om[2] # Calculate the orbit using actionAngleTorus RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate the orbit using orbit integration orb= Orbit([RvRom[0][0,0],RvRom[0][0,1],RvRom[0][0,2], RvRom[0][0,3],RvRom[0][0,4],RvRom[0][0,5]]) orb.integrate(ts,MWPotential2014) # Compare tol= -3. assert numpy.all(numpy.fabs(orb.R(ts)-RvR[0]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in R' assert numpy.all(numpy.fabs(orb.vR(ts)-RvR[1]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vR' assert numpy.all(numpy.fabs(orb.vT(ts)-RvR[2]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vT' assert numpy.all(numpy.fabs(orb.z(ts)-RvR[3]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in z' assert numpy.all(numpy.fabs(orb.vz(ts)-RvR[4]) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in vz' assert numpy.all(numpy.fabs((orb.phi(ts)-RvR[5]+numpy.pi) % (2.*numpy.pi) -numpy.pi) < 10.**tol), \ 'Integrated orbit does not agree with torus orbit in phi' return None # Test that actionAngleTorus w/ interp pot gives same freqs as regular pot # Doesn't work well: TM aborts because our interpolated forces aren't # consistent enough with the potential for TM's taste, but we test that it at # at least works somewhat def test_actionAngleTorus_interppot_freqs(): from galpy.actionAngle import actionAngleTorus from galpy.potential import LogarithmicHaloPotential, interpRZPotential lp= LogarithmicHaloPotential(normalize=1.) ip= interpRZPotential(RZPot=lp, interpPot=True, interpDens=True,interpRforce=True,interpzforce=True, enable_c=True) aAT= actionAngleTorus(pot=lp) aATi= actionAngleTorus(pot=ip) jr,jphi,jz= 0.05,1.1,0.02 om= aAT.Freqs(jr,jphi,jz) omi= aATi.Freqs(jr,jphi,jz) assert numpy.fabs((om[0]-omi[0])/om[0]) < 0.2, 'Radial frequency computed using the torus machine does not agree between potential and interpolated potential' assert numpy.fabs((om[1]-omi[1])/om[1]) < 0.2, 'Azimuthal frequency computed using the torus machine does not agree between potential and interpolated potential' assert numpy.fabs((om[2]-omi[2])/om[2]) < 0.8, 'Vertical frequency computed using the torus machine does not agree between potential and interpolated potential' return None #Test the actionAngleTorus against an isochrone potential: actions def test_actionAngleTorus_Isochrone_actions(): from galpy.potential import IsochronePotential from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochrone ip= IsochronePotential(normalize=1.,b=1.2) aAI= actionAngleIsochrone(ip=ip) tol= -6. aAT= actionAngleTorus(pot=ip,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.]) anglephi= numpy.array([numpy.pi]) anglez= numpy.array([numpy.pi/2.]) # Calculate position from aAT RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate actions from aAI ji= aAI(*RvR) djr= numpy.fabs((ji[0]-jr)/jr) dlz= numpy.fabs((ji[1]-jphi)/jphi) djz= numpy.fabs((ji[2]-jz)/jz) assert djr < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (djr*100.) assert dlz < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (dlz*100.) assert djz < 10.**tol, 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Jr at %f%%' % (djz*100.) return None #Test the actionAngleTorus against an isochrone potential: frequencies and angles def test_actionAngleTorus_Isochrone_freqsAngles(): from galpy.potential import IsochronePotential from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochrone ip= IsochronePotential(normalize=1.,b=1.2) aAI= actionAngleIsochrone(ip=ip) tol= -6. aAT= actionAngleTorus(pot=ip,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.1])+numpy.linspace(0.,numpy.pi,101) angler= angler % (2.*numpy.pi) anglephi= numpy.array([numpy.pi])+numpy.linspace(0.,numpy.pi,101) anglephi= anglephi % (2.*numpy.pi) anglez= numpy.array([numpy.pi/2.])+numpy.linspace(0.,numpy.pi,101) anglez= anglez % (2.*numpy.pi) # Calculate position from aAT RvRom= aAT.xvFreqs(jr,jphi,jz,angler,anglephi,anglez) # Calculate actions, frequencies, and angles from aAI ws= aAI.actionsFreqsAngles(*RvRom[0].T) dOr= numpy.fabs((ws[3]-RvRom[1])) dOp= numpy.fabs((ws[4]-RvRom[2])) dOz= numpy.fabs((ws[5]-RvRom[3])) dar= numpy.fabs((ws[6]-angler)) dap= numpy.fabs((ws[7]-anglephi)) daz= numpy.fabs((ws[8]-anglez)) dar[dar > numpy.pi]-= 2.*numpy.pi dar[dar < -numpy.pi]+= 2.*numpy.pi dap[dap > numpy.pi]-= 2.*numpy.pi dap[dap < -numpy.pi]+= 2.*numpy.pi daz[daz > numpy.pi]-= 2.*numpy.pi daz[daz < -numpy.pi]+= 2.*numpy.pi assert numpy.all(dOr < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Or at %f%%' % (numpy.nanmax(dOr)*100.) assert numpy.all(dOp < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Ophi at %f%%' % (numpy.nanmax(dOp)*100.) assert numpy.all(dOz < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for Oz at %f%%' % (numpy.nanmax(dOz)*100.) assert numpy.all(dar < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for ar at %f' % (numpy.nanmax(dar)) assert numpy.all(dap < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for aphi at %f' % (numpy.nanmax(dap)) assert numpy.all(daz < 10.**tol), 'actionAngleTorus and actionAngleIsochrone applied to isochrone potential disagree for az at %f' % (numpy.nanmax(daz)) return None #Test the actionAngleTorus against a Staeckel potential: actions def test_actionAngleTorus_Staeckel_actions(): from galpy.potential import KuzminKutuzovStaeckelPotential from galpy.actionAngle import actionAngleTorus, \ actionAngleStaeckel delta= 1.2 kp= KuzminKutuzovStaeckelPotential(normalize=1.,Delta=delta) aAS= actionAngleStaeckel(pot=kp,delta=delta,c=True) tol= -3. aAT= actionAngleTorus(pot=kp,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.]) anglephi= numpy.array([numpy.pi]) anglez= numpy.array([numpy.pi/2.]) # Calculate position from aAT RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate actions from aAI ji= aAS(*RvR) djr= numpy.fabs((ji[0]-jr)/jr) dlz= numpy.fabs((ji[1]-jphi)/jphi) djz= numpy.fabs((ji[2]-jz)/jz) assert djr < 10.**tol, 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Jr at %f%%' % (djr*100.) assert dlz < 10.**tol, 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Jr at %f%%' % (dlz*100.) assert djz < 10.**tol, 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Jr at %f%%' % (djz*100.) return None #Test the actionAngleTorus against an isochrone potential: frequencies and angles def test_actionAngleTorus_Staeckel_freqsAngles(): from galpy.potential import KuzminKutuzovStaeckelPotential from galpy.actionAngle import actionAngleTorus, \ actionAngleStaeckel delta= 1.2 kp= KuzminKutuzovStaeckelPotential(normalize=1.,Delta=delta) aAS= actionAngleStaeckel(pot=kp,delta=delta,c=True) tol= -3. aAT= actionAngleTorus(pot=kp,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.1])+numpy.linspace(0.,numpy.pi,101) angler= angler % (2.*numpy.pi) anglephi= numpy.array([numpy.pi])+numpy.linspace(0.,numpy.pi,101) anglephi= anglephi % (2.*numpy.pi) anglez= numpy.array([numpy.pi/2.])+numpy.linspace(0.,numpy.pi,101) anglez= anglez % (2.*numpy.pi) # Calculate position from aAT RvRom= aAT.xvFreqs(jr,jphi,jz,angler,anglephi,anglez) # Calculate actions, frequencies, and angles from aAI ws= aAS.actionsFreqsAngles(*RvRom[0].T) dOr= numpy.fabs((ws[3]-RvRom[1])) dOp= numpy.fabs((ws[4]-RvRom[2])) dOz= numpy.fabs((ws[5]-RvRom[3])) dar= numpy.fabs((ws[6]-angler)) dap= numpy.fabs((ws[7]-anglephi)) daz= numpy.fabs((ws[8]-anglez)) dar[dar > numpy.pi]-= 2.*numpy.pi dar[dar < -numpy.pi]+= 2.*numpy.pi dap[dap > numpy.pi]-= 2.*numpy.pi dap[dap < -numpy.pi]+= 2.*numpy.pi daz[daz > numpy.pi]-= 2.*numpy.pi daz[daz < -numpy.pi]+= 2.*numpy.pi assert numpy.all(dOr < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Or at %f%%' % (numpy.nanmax(dOr)*100.) assert numpy.all(dOp < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Ophi at %f%%' % (numpy.nanmax(dOp)*100.) assert numpy.all(dOz < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for Oz at %f%%' % (numpy.nanmax(dOz)*100.) assert numpy.all(dar < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for ar at %f' % (numpy.nanmax(dar)) assert numpy.all(dap < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for aphi at %f' % (numpy.nanmax(dap)) assert numpy.all(daz < 10.**tol), 'actionAngleTorus and actionAngleStaeckel applied to Staeckel potential disagree for az at %f' % (numpy.nanmax(daz)) return None #Test the actionAngleTorus against a general potential w/ actionAngleIsochroneApprox: actions def test_actionAngleTorus_isochroneApprox_actions(): from galpy.potential import MWPotential2014 from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochroneApprox aAIA= actionAngleIsochroneApprox(pot=MWPotential2014,b=0.8) tol= -2.5 aAT= actionAngleTorus(pot=MWPotential2014,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.]) anglephi= numpy.array([numpy.pi]) anglez= numpy.array([numpy.pi/2.]) # Calculate position from aAT RvR= aAT(jr,jphi,jz,angler,anglephi,anglez).T # Calculate actions from aAIA ji= aAIA(*RvR) djr= numpy.fabs((ji[0]-jr)/jr) dlz= numpy.fabs((ji[1]-jphi)/jphi) djz= numpy.fabs((ji[2]-jz)/jz) assert djr < 10.**tol, 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for Jr at %f%%' % (djr*100.) assert dlz < 10.**tol, 'actionAngleTorus and actionAngleIsochroneApprox applied to MWPotential2014 potential disagree for Jr at %f%%' % (dlz*100.) assert djz < 10.**tol, 'actionAngleTorus and actionAngleMWPotential2014 applied to MWPotential2014 potential disagree for Jr at %f%%' % (djz*100.) return None #Test the actionAngleTorus against a general potential w/ actionAngleIsochrone: frequencies and angles def test_actionAngleTorus_isochroneApprox_freqsAngles(): from galpy.potential import MWPotential2014 from galpy.actionAngle import actionAngleTorus, \ actionAngleIsochroneApprox aAIA= actionAngleIsochroneApprox(pot=MWPotential2014,b=0.8) tol= -3.5 aAT= actionAngleTorus(pot=MWPotential2014,tol=tol) jr,jphi,jz= 0.075,1.1,0.05 angler= numpy.array([0.1])+numpy.linspace(0.,numpy.pi,21) angler= angler % (2.*numpy.pi) anglephi= numpy.array([numpy.pi])+numpy.linspace(0.,numpy.pi,21) anglephi= anglephi % (2.*numpy.pi) anglez= numpy.array([numpy.pi/2.])+numpy.linspace(0.,numpy.pi,21) anglez= anglez % (2.*numpy.pi) # Calculate position from aAT RvRom= aAT.xvFreqs(jr,jphi,jz,angler,anglephi,anglez) # Calculate actions, frequencies, and angles from aAI ws= aAIA.actionsFreqsAngles(*RvRom[0].T) dOr= numpy.fabs((ws[3]-RvRom[1])) dOp= numpy.fabs((ws[4]-RvRom[2])) dOz= numpy.fabs((ws[5]-RvRom[3])) dar= numpy.fabs((ws[6]-angler)) dap=
numpy.fabs((ws[7]-anglephi))
numpy.fabs
import numpy as np from statesegmentation import GSBS import gsbs_extra from typing import Tuple from scipy.spatial.distance import cdist from scipy.stats import pearsonr, ttest_ind, mannwhitneyu from sklearn.model_selection import KFold from hrf_estimation import hrf import timeit from help_functions import fit_metrics_simulation, compute_fits_hmm, deltas_states from brainiak.eventseg.event import EventSegment as HMM from importlib import reload def basic_simulation(): results = dict() real_bounds, subData, _ = generate_simulated_data_HRF(length_std=l, nstates=n, TRfactor=TRfactor, rep=rep) states = gsbs_extra.GSBS(kmax=n, x=subData[0, :, :], finetune=finetune) states.fit() recovered_bounds = np.double(states.get_bounds(k=n)>0) permut_accuracy, permut_zaccuracy, distance = fit_metrics_simulation(real_bounds, recovered_bounds) results['perm_accuracy'] = permut_accuracy results['perm_zaccuracy'] = permut_zaccurcy results['distance'] = distance results['real_bounds'] = states.bounds results['real_states'] = deltas_states(real_bounds) # simulation 1, vary state length and estimate how accurately we can recover state boundaries def run_simulation_evlength(length_std, nstates_list, run_HMM, rep, TRfactor=1, finetune=1): res = dict() list2 = ['dists_GS','dists_HMM', 'dists_HMMsplit'] nstd = len(length_std) nstates = len(nstates_list) for key in list2: res[key] = np.zeros([nstd, nstates, nstates_list[-1]]) list = ['sim_GS', 'sim_HMM','sim_HMMsplit', 'simz_GS', 'simz_HMM', 'simz_HMMsplit'] for key in list: res[key] = np.zeros([nstd, nstates]) res['statesreal'] = np.zeros([nstd, nstates, ntime]) res['bounds'] = np.zeros([nstd, nstates, ntime]) res['bounds_HMMsplit'] = np.zeros([nstd, nstates, ntime]) for idxl, l in enumerate(length_std): for idxn, n in enumerate(nstates_list): print(rep, l) bounds, subData, _ = generate_simulated_data_HRF(length_std=l, nstates=n, TRfactor=TRfactor, rep=rep) states = gsbs_extra.GSBS(kmax=n, x=subData[0,:,:], finetune=finetune) states.fit() res['sim_GS'][idxl,idxn], res['simz_GS'][idxl, idxn],res['dists_GS'][idxl,idxn,0:n] = fit_metrics_simulation(bounds, np.double(states.get_bounds(k=n)>0)) res['bounds'][idxl,idxn,:] = states.bounds res['statesreal'][idxl,idxn,:] = deltas_states(bounds) if run_HMM is True: ev = HMM(n, split_merge=False) ev.fit(subData[0, :, :]) hmm_bounds = np.insert(np.diff(np.argmax(ev.segments_[0], axis=1)), 0, 0).astype(int) res['sim_HMM'][idxl, idxn], res['simz_HMM'][idxl, idxn], res['dists_HMM'][idxl, idxn, 0:n] = fit_metrics_simulation(bounds, hmm_bounds) ev = HMM(n, split_merge=True) ev.fit(subData[0, :, :]) hmm_bounds_split = np.insert(np.diff(np.argmax(ev.segments_[0], axis=1)), 0, 0).astype(int) res['sim_HMMsplit'][idxl, idxn], res['simz_HMMsplit'][idxl, idxn], res['dists_HMMsplit'][idxl, idxn, 0:n] = fit_metrics_simulation(bounds, hmm_bounds_split) res['bounds_HMMsplit'][idxl, idxn, :] = hmm_bounds_split return res #simulation 2, how do the different fit measures compare, depending on how many states there are (more states should cause more similarity between distinct states) def run_simulation_compare_nstates( nstates_list, mindist, run_HMM, finetune, zs, rep): res2 = dict() metrics = ['LL', 'WAC', 'tdist', 'mdist', 'meddist', 'mwu'] methods = ['HMM', 'GS'] types = ['optimum'] for metric, method, type_ in itertools.product(metrics, methods, types): key = type_+"_"+metric+"_"+method res2[key] = np.zeros(len(nstates_list)) metrics = ['LL', 'WAC', 'tdist'] methods = ['GS', 'HMM', 'HMMsplit'] types = ['sim', 'simz'] for metric, method, type_ in itertools.product(metrics, methods, types): key = type_+"_"+metric+"_"+method res2[key] = np.zeros(len(nstates_list)) list2 = ['tdist', 'WAC', 'mdist', 'meddist', 'LL_HMM', 'WAC_HMM', 'tdist_HMM', 'fit_W_mean', 'fit_W_std', 'fit_Ball_mean', 'fit_Ball_std', 'fit_Bcon_mean', 'fit_Bcon_std'] for i in list2: res2[i] = np.zeros([len(nstates_list), maxK+1]) for idxl, l in enumerate(nstates_list): print(rep, l) real_bounds, subData,_ = generate_simulated_data_HRF(nstates=l, rep=rep) data = subData[0, :, :] states = gsbs_extra.GSBS(x=data, kmax=maxK, outextra=True, dmin=mindist, finetune=finetune) states.fit() res2['sim_GS_tdist'][idxl], res2['simz_GS_tdist'][idxl], dist = \ fit_metrics_simulation(real_bounds, states.deltas) res2['sim_GS_WAC'][idxl], res2['simz_GS_WAC'][idxl], dist = \ fit_metrics_simulation(real_bounds, states.get_deltas(k=states.optimum_WAC)) for metric in ['tdist', 'WAC', 'meddist', 'mdist']: res2[metric][idxl, :] = getattr(states, metric) attr = "optimum_" + metric optimum = getattr(states, attr) key = "optimum_" + metric + "_GS" res2[key][idxl] = optimum res2['fit_W_mean'][idxl, :] = states.all_m_W res2['fit_W_std'][idxl, :] = states.all_sd_W res2['fit_Ball_mean'][idxl, :] = states.all_m_Ball res2['fit_Ball_std'][idxl, :] = states.all_sd_Ball res2['fit_Bcon_mean'][idxl, :] = states.all_m_Bcon res2['fit_Bcon_std'][idxl, :] = states.all_sd_Bcon # HMM t = None ind = None for i in range(2, maxK): res2['LL_HMM'][idxl, i], res2['WAC_HMM'][idxl, i], res2['tdist_HMM'][idxl, i], \ hmm_bounds, t, ind = compute_fits_hmm(data, i, mindist, type='HMM', y=None, t1=t, ind1=ind, zs=zs) for metric in ['LL', 'WAC', 'tdist']: keyword = "%s_HMM" % (metric) optimum_ncluster = np.argmax(res2[keyword][idxl]) if metric == 'LL': optimum_ncluster = np.argmax(res2[keyword][idxl][2:90]) + 2 res2['optimum_%s' % keyword] = optimum_ncluster for method in ['HMM', 'HMMsplit']: _, _, _, recovered_bounds, t, ind = compute_fits_hmm( data=data, k=optimum_ncluster, mindist=1, type=method, y=None, t1=t, ind1=ind) simm, simz, dist = fit_metrics_simulation(real_bounds, recovered_bounds) keyword = 'sim_%s_%s' % (metric, method) res2[keyword][idxl] = simm keyword = 'simz_%s_%s' % (metric, method) res2[keyword][idxl] = simz return res2 #simulation 3, can we correctly estimate the number of states in the group when there is ideosyncracy in state boundaries between participants? def run_simulation_sub_noise( CV_list, sub_std_list, kfold_list, nsub, rep): res3=dict() list=['optimum', 'sim_GS','sim_GS_fixK', 'simz_GS', 'simz_GS_fixK'] for key in list: res3[key] = np.zeros([np.shape(CV_list)[0], np.shape(sub_std_list)[0], np.shape(kfold_list)[0]]) res3['tdist'] = np.zeros([np.shape(CV_list)[0], np.shape(sub_std_list)[0], np.shape(kfold_list)[0], maxK + 1]) list = ['optimum_subopt', 'sim_GS_subopt', 'simz_GS_subopt'] for key in list: res3[key] = np.zeros([np.shape(sub_std_list)[0], nsub]) for idxs, s in enumerate(sub_std_list): bounds, subData,_ = generate_simulated_data_HRF(sub_std=s, nsub=nsub, rep=rep) for idxi, i in enumerate(kfold_list): print(rep, s, i) if i>1: kf = KFold(n_splits=i, shuffle=True) for idxl, l in enumerate(CV_list): tdist_temp = np.zeros([i,maxK+1]); optimum_temp = np.zeros(i); GS_sim_temp = np.zeros(i) GS_sim_temp_fixK = np.zeros(i); simz_temp = np.zeros(i); simz_temp_fixK = np.zeros(i) count=-1 for train_index, test_index in kf.split(np.arange(0,np.max(kfold_list))): count=count+1 print(count) if l is False: states = gsbs_extra.GSBS(x=np.mean(subData[test_index, :, :], axis=0), kmax=maxK) elif l is True: states = gsbs_extra.GSBS(x=np.mean(subData[train_index, :, :], axis=0), y=np.mean(subData[test_index, :, :], axis=0), kmax=maxK) states.fit() optimum_temp[count] = states.nstates tdist_temp[count, :] = states.tdists GS_sim_temp[count], simz_temp[count], dist = fit_metrics_simulation(bounds, states.deltas) GS_sim_temp_fixK[count] , simz_temp_fixK[count], dist = fit_metrics_simulation(bounds, states.get_deltas(k=nstates)) res3['optimum'][idxl, idxs, idxi] = np.mean(optimum_temp) res3['sim_GS'][idxl, idxs, idxi] = np.mean(GS_sim_temp) res3['sim_GS_fixK'][idxl, idxs, idxi] =
np.mean(GS_sim_temp_fixK)
numpy.mean
# COVID dataset input readers # # <EMAIL>, 2020 import sys import numpy as np from datetime import datetime,timedelta from termcolor import colored import os import pandas as pd #from datetime import datetime #a = datetime.strptime(dt[0], '%Y-%m-%d') def todiff(series): """ Turn cumulative series into differential """ series = np.diff(series, prepend=0) # Fix possible NaN series[~np.isfinite(series)] = 0 # Fix possible errors in data (cumulative were not monotonic) ind = series < 0 if np.sum(series[ind]) != 0: print(colored(f'{__name__}.todiff: fixing non-monotonic input (negative dx set to 0)', 'red')) print(series) series[ind] = 0 return series def data_processor(meta): """ Dataset processor wrapper """ evalstr = f"{meta['function']}(meta)" print(evalstr) try: d = eval(evalstr) return d except: print(__name__ + f".data_processor: {colored('Failed to process','yellow')} {meta['isocode']}") print(f'Error: {sys.exc_info()[0]} {sys.exc_info()[1]}') def get_isocodes(): isodata = pd.read_csv('./data/iso.csv', comment='#') code = np.array(isodata['code']) return code def get_european_isocodes(): isodata = pd.read_csv('./data/iso.csv', comment='#') code = np.array(isodata['code']) continent = np.array(isodata['continent']) return code[continent == 4] # Europe only def data_reader_swiss(meta): """ Swiss data format reader """ # -------------------------------------------------------------------- # DEATHS df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) d = {} d['dt'] = np.array(df["Date"]) # Turn cumulative into daily d['deaths'] = todiff(df[meta['region']]) # -------------------------------------------------------------------- # Cases df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) # Turn cumulative into daily d['cases'] = todiff(df[meta['region']]) # -------------------------------------------------------------------- # Tests df = pd.read_csv('./data/' + meta['filename_tested'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) # Turn cumulative into daily d['tests'] = todiff(df[meta['region']]) # -------------------------------------------------------------------- d['population'] = meta['population'] d['isocode'] = meta['isocode'] # -------------------------------------------------------------------- if (len(d['deaths']) != len(d['cases'])): raise Exception(__name__ + '.data_reader_swiss: len(deaths) != len(cases)') if (len(d['cases']) != len(d['tests'])): raise Exception(__name__ + '.data_reader_swiss: len(cases) != len(tests)') return d def data_reader_sweden(meta): d = {} d['isocode'] = meta['isocode'] d['population'] = meta['population'] df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') df = df.loc[df["Region"] == meta['region']] # -------------------------------------------------------------------- # Iterating the columns, find date columns dt=list() for col in df.columns: if "2020-" in col: dt.append(col) d['dt'] = dt # -------------------------------------------------------------------- # Cases d['cases'] = np.array(df[dt])[0] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') df = df.loc[df["Region"] == meta['region']] d['deaths'] = np.array(df[dt])[0] # -------------------------------------------------------------------- # Tests # ** NOT AVAILABLE ** d['tests'] = np.zeros(len(dt))*np.nan return d def data_reader_usa(meta): d = {} d['population'] = meta['population'] d['isocode'] = meta['isocode'] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename'], comment='#') df = df.loc[df["county"] == meta['region']] d['dt'] = np.array(df['date']) d['deaths'] = todiff(df['deaths']) # -------------------------------------------------------------------- # Cases d['cases'] = todiff(df['cases']) # -------------------------------------------------------------------- # Tests d['tests'] = np.zeros(len(d['dt']))*np.nan return d def data_reader_heinsberg(meta): d = {} d['population'] = meta['population'] d['isocode'] = meta['isocode'] # Cases data #df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') #data = df.loc[df["county"] == meta['region']] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') d['dt'] = np.array(df['date']) d['deaths'] = np.array(df['deaths']) # -------------------------------------------------------------------- # Cases d['cases'] = np.zeros(len(d['dt']))*np.nan # -------------------------------------------------------------------- # Tests d['tests'] = np.zeros(len(d['dt']))*np.nan return d def data_reader_florida(meta): d = {} d['population'] = meta['population'] d['isocode'] = meta['isocode'] # Cases data #df = pd.read_csv('./data/' + meta['filename_cases'], comment='#') #data = df.loc[df["county"] == meta['region']] # -------------------------------------------------------------------- # Deaths df = pd.read_csv('./data/' + meta['filename_deaths'], comment='#') d['dt'] = np.array(df['date']) d['deaths'] = np.array(df['deaths']) # -------------------------------------------------------------------- # Cases d['cases'] = np.zeros(len(d['dt']))*np.nan #np.array(data["frequency"]) # -------------------------------------------------------------------- # Tests d['tests'] = np.zeros(len(d['dt']))*np.nan return d def data_reader_LA(meta): """ LA County data format reader """ df = pd.read_csv('./data/' + meta['filename'], comment='#') df = df.sort_index(ascending=meta['ascending'], axis=0) d = {} d['dt'] = np.array(df["date_dt"]) d['cases'] =
np.array(df["new_case"])
numpy.array
import os import time import shutil import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim from torch.nn.utils import clip_grad_norm_ import numpy as np from config import parser args = parser.parse_args() import pickle from network import Two_Stream_RNN from dataloader import Face_Dataset, UtteranceRecord from sklearn.metrics import mean_squared_error from torch.autograd import Variable as Variable import copy from tqdm import tqdm import glob from Same_Length_Sampler import SameLengthBatchSampler import pandas as pd class My_loss(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x, y): vx = x - torch.mean(x) vy = y - torch.mean(y) rho = torch.sum(vx * vy) / (torch.sqrt(torch.sum(torch.pow(vx, 2))) * torch.sqrt(torch.sum(torch.pow(vy, 2)))) x_m = torch.mean(x) y_m = torch.mean(y) x_s = torch.std(x) y_s = torch.std(y) ccc = 2*rho*x_s*y_s/(torch.pow(x_s, 2) + torch.pow(y_s, 2) + torch.pow(x_m - y_m, 2)) return -ccc class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def ccc(y_true, y_pred): true_mean = np.mean(y_true) pred_mean = np.mean(y_pred) v_pred = y_pred - pred_mean v_true = y_true - true_mean rho = np.sum(v_pred*v_true) / (np.sqrt(np.sum(v_pred**2)) * np.sqrt(np.sum(v_true**2))) std_predictions = np.std(y_pred) std_gt = np.std(y_true) ccc = 2 * rho * std_gt * std_predictions / ( std_predictions ** 2 + std_gt ** 2 + (pred_mean - true_mean) ** 2) return ccc, rho def check_rootfolders(): """Create log and model folder""" folders_util = [args.root_log, args.root_model, args.root_output, args.root_tensorboard] folders_util = ["%s/"%(args.save_root) +folder for folder in folders_util] for folder in folders_util: if not os.path.exists(folder): print('creating folder ' + folder) os.makedirs(folder) def main(): root_path = args.root_path label_name = args.label_name if args.cnn == 'resnet50': feature_root = '/media/newssd/OMG_experiments/Extracted_features/resnet50_ferplus_features_fps=30_pool5_7x7_s1' elif args.cnn == 'vgg': feature_root = '/media/newssd/OMG_experiments/Extracted_features/vgg_fer_features_fps=30_pool5' if len(args.store_name)==0: args.store_name = '_'.join( [label_name, 'cnn:{}'.format(args.cnn), 'loss_type:{}'.format(args.loss_type), 'batch_size:{}'.format(args.batch_size), 'cat_before_gru:{}'.format(args.cat_before_gru), 'freeze:{}'.format(args.freeze), 'fusion:{}'.format(args.fusion)]) if len(args.save_root)==0: setattr(args, 'save_root', args.store_name) else: setattr(args, 'save_root', os.path.join(args.save_root, args.store_name)) print("save experiment to :{}".format(args.save_root)) check_rootfolders() num_class = 1 if not "_" in args.label_name else 2 setattr(args, 'num_class', num_class) if args.loss_type == 'mse': criterion = nn.MSELoss().cuda() elif args.loss_type=='ccc': criterion = My_loss().cuda() else: # another loss is mse or mae raise ValueError("Unknown loss type") L = args.length train_dict = pickle.load(open(args.train_dict, 'rb')) val_dict = pickle.load(open(args.val_dict, 'rb')) train_dict.update(val_dict) train_val_dict = copy.copy(train_dict) video_names = sorted(list(train_dict.keys())) np.random.seed(0) video_indexes = np.random.permutation(len(video_names)) video_names = [video_names[i] for i in video_indexes] if args.test: run_5_fold_prediction_on_test_set(feature_root) for i in range(5): ########################### Modify the classifier ################### model = Two_Stream_RNN(mlp_hidden_units=args.hidden_units, phase_size=48, phase_channels=2*L, phase_hidden_size=256, cat_before_gru=args.cat_before_gru, gru_hidden = 64, gru_num_layers=2, fusion=args.fusion) ########################### Modify the classifier ################### pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Total Params: {}".format(pytorch_total_params)) phasenet_param = sum(p.numel() for p in model.phase_net.parameters() if p.requires_grad) print("Temporal Stream params: {} ({:.2f})".format( phasenet_param, phasenet_param/float(pytorch_total_params))) mlp_param = sum(p.numel() for p in model.mlp.parameters() if p.requires_grad) print("Spatial Stream params: {} ({:.2f})".format( mlp_param, mlp_param/float(pytorch_total_params))) model.cuda() if args.cat_before_gru: params_dict = [{'params': model.rnns.parameters(), 'lr':args.lr}, {'params': model.classifier.parameters(), 'lr':args.lr}, {'params': model.fusion_module.parameters(), 'lr':args.lr}] else: params_dict = [{'params': model.rnns_spatial.parameters(), 'lr':args.lr}, {'params': model.rnns_temporal.parameters(), 'lr':args.lr}, {'params': model.classifier.parameters(), 'lr':args.lr}, {'params': model.fusion_module.parameters(), 'lr':args.lr}] if not args.freeze: params_dict += [{'params': model.mlp.parameters(), 'lr':args.lr}, {'params': model.phase_net.parameters(), 'lr':args.lr}] optimizer = torch.optim.SGD(params_dict, # do not set learn rate for mlp and args.lr, momentum=args.momentum, weight_decay=args.weight_decay) torch.cuda.empty_cache() cudnn.benchmark = True length = len(video_names)//5 # five fold cross validation val_video_names = video_names[i*length:(i+1)*length] if i==4: val_video_names = video_names[i*length:] train_video_names = [name for name in video_names if name not in val_video_names] train_video_names = video_names # delete it later train_dict = {key:train_val_dict[key] for key in train_video_names} val_dict = {key:train_val_dict[key] for key in val_video_names} train_dataset = Face_Dataset([os.path.join(root_path,'Train'), os.path.join(root_path,'Validation')], feature_root, train_dict, label_name, py_level=args.py_level, py_nbands=args.py_nbands, sample_rate = args.sample_rate, num_phase=L, phase_size=48, test_mode=False, return_phase=False) val_dataset = Face_Dataset([os.path.join(root_path,'Train'), os.path.join(root_path,'Validation')], feature_root, val_dict, label_name, py_level=args.py_level, py_nbands=args.py_nbands, sample_rate = args.sample_rate, num_phase=L, phase_size=48, test_mode=True, return_phase=False) train_batch_sampler = SameLengthBatchSampler(train_dataset.indices_list, batch_size=args.batch_size, drop_last=True) val_batch_sampler = SameLengthBatchSampler(val_dataset.indices_list, batch_size = args.eval_batch_size, drop_last=True, random=False) train_loader = torch.utils.data.DataLoader( train_dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, pin_memory=False) val_loader = torch.utils.data.DataLoader( val_dataset, batch_sampler=val_batch_sampler, num_workers=args.workers, pin_memory=False) print("train dataset:{}".format(len(train_dataset))) print("val dataset:{}".format(len(val_dataset))) log = open(os.path.join(args.save_root, args.root_log, 'fold_{}.txt'.format(i)), 'w') output = "\n Fold: {}\n".format(i) log.write(output) log.flush() best_loss = 1000 best_ccc = -100 val_accum_epochs = 0 for epoch in range(args.epochs): adjust_learning_rate(optimizer, epoch, args.lr_steps) train_mean, train_std = train(train_loader, model, criterion, optimizer, epoch, log) log_train_mean_std = open(os.path.join(args.save_root, args.root_log, 'mean_std_{}.txt'.format(i)), 'w') log_train_mean_std.write("{} {}".format(train_mean, train_std)) log_train_mean_std.flush() torch.cuda.empty_cache() if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1: loss_val, ccc_current_val = validate(val_loader, model, criterion, (epoch + 1) * len(train_loader), log, train_mean, train_std) is_best_loss = loss_val< best_loss best_loss = min(loss_val, best_loss) is_best_ccc = ccc_current_val >best_ccc best_ccc = max(ccc_current_val , best_ccc) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), }, is_best_loss, is_best_ccc, filename='fold_{}'.format(i)) if not is_best_ccc: val_accum_epochs+=1 else: val_accum_epochs=0 if val_accum_epochs>=args.early_stop: print("validation ccc did not improve over {} epochs, stop".format(args.early_stop)) break run_5_fold_prediction_on_test_set(feature_root) def run_5_fold_prediction_on_test_set(feature_root): test_dataset = Face_Dataset(os.path.join(args.root_path,'Test'), feature_root, args.test_dict, args.label_name, py_level=args.py_level, py_nbands=args.py_nbands, sample_rate = args.sample_rate, num_phase=args.num_phase, phase_size=48, test_mode=True, return_phase=False) print("test dataset:{}".format(len(test_dataset))) test_batch_sampler = SameLengthBatchSampler(test_dataset.indices_list, batch_size = args.eval_batch_size, drop_last=False, random=False) test_loader = torch.utils.data.DataLoader( test_dataset, batch_sampler=test_batch_sampler, num_workers=args.workers, pin_memory=False) for i in range(5): file = open(os.path.join(args.save_root, args.root_log, 'mean_std_{}.txt'.format(i)), 'r') string = file.readline() train_mean, train_std = string.split(" ") train_mean = float(train_mean) train_std = float(train_std) # resume model = Two_Stream_RNN(mlp_hidden_units=args.hidden_units, phase_size=48, phase_channels=2*args.num_phase, phase_hidden_size=256, cat_before_gru=args.cat_before_gru) model.cuda() saved_model_path = os.path.join(args.save_root, args.root_model, 'fold_{}_best_ccc.pth.tar'.format(i)) checkpoint = torch.load(saved_model_path) start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) print(("=> loading checkpoint '{}' epoch:{}".format(saved_model_path, start_epoch))) preds, names = test(test_loader, model,train_mean=train_mean, train_std=train_std) df= pd.DataFrame() df['video'] = pd.Series([n.split(" ")[0] for n in names]) df['utterance'] = pd.Series([n.split(" ")[1] for n in names]) df[args.label_name] = pd.Series([v for v in preds]) df.to_csv(os.path.join(args.save_root, args.root_log, 'test_predictions_{}.csv'.format(i)), index=False) def train(dataloader, model, criterion, optimizer, epoch, log): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() end = time.time() optimizer.zero_grad() model.train() targets = [] for i, data_batch in enumerate(dataloader): data_time.update(time.time() - end) phase_0, phase_1, rgb_features, label, names = data_batch phase_0 = Variable(phase_0.type('torch.FloatTensor').cuda()) phase_1 = Variable(phase_1.type('torch.FloatTensor').cuda()) rgb_features = Variable(rgb_features.type('torch.FloatTensor').cuda()) label_var = Variable(label.type('torch.FloatTensor').cuda()) out = model([phase_0, phase_1, rgb_features]) loss= criterion(out.squeeze(-1), label_var) loss.backward() optimizer.step() # We have accumulated enought gradients optimizer.zero_grad() targets.append(label_var.data.cpu().numpy() ) # measure elapsed time batch_time.update(time.time() - end) losses.update(loss.item(), label_var.size(0)) end = time.time() if i % args.print_freq == 0: output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.6f}\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' .format( epoch, i, len(dataloader), batch_time=batch_time, data_time=data_time, loss=losses, lr=optimizer.param_groups[-1]['lr'])) print(output) log.write(output + '\n') log.flush() torch.cuda.empty_cache() targets = np.concatenate([array for array in targets], axis=0) train_mean, train_std = np.mean(targets), np.std(targets) return train_mean, train_std def validate(dataloader, model, criterion, iter, log, train_mean=None, train_std=None): batch_time = AverageMeter() losses = AverageMeter() # switch to evaluate mode model.eval() # df = pd.DataFrame(columns = ['video','utterance',str(args.label_name)+'_target', str(args.label_name)+'_prediction']) end = time.time() targets, preds = [], [] for i, data_batch in enumerate(dataloader): phase_0, phase_1, rgb_features, label, names = data_batch if (torch.sum(torch.isnan(phase_0))>0) or (torch.sum(torch.isnan(phase_1))>0) or (torch.sum(torch.isnan(rgb_features))>0): print() with torch.no_grad(): phase_0 = Variable(phase_0.type('torch.FloatTensor').cuda()) phase_1 = Variable(phase_1.type('torch.FloatTensor').cuda()) rgb_features = Variable(rgb_features.type('torch.FloatTensor').cuda()) label_var = Variable(label.type('torch.FloatTensor').cuda()) out = model([phase_0, phase_1, rgb_features]) targets.append(label_var.data.cpu().numpy() ) preds.append(out.squeeze(-1).data.cpu().numpy()) loss = criterion(out.squeeze(-1), label_var) losses.update(loss.item(), label_var.size(0)) # if np.isnan(losses.avg): # print() # caused by batch size =1 batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: output = ('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' .format( i, len(dataloader), batch_time=batch_time, loss=losses)) print(output) log.write(output + '\n') log.flush() torch.cuda.empty_cache() targets, preds = np.concatenate([array for array in targets], axis=0), np.concatenate([array for array in preds], axis=0) mse_func = mean_squared_error ccc_score = ccc(targets, preds)[0] mse_loss = mse_func(targets, preds) if train_mean is None: output = ' Validation : [{0}][{1}], ccc: {ccc_score:.4f} , loss:{loss_mse:.4f}'.format( i, len(dataloader), ccc_score=ccc_score, loss_mse = loss) else: ccc_corr = ccc(targets, correct(preds, train_mean, train_std))[0] output = ' Validation : [{0}][{1}], ccc: {ccc_score:.4f}({ccc_corr:.4f}) , mse:{loss_mse:.4f}({loss_mse_c:.4f})'.format( i, len(dataloader), ccc_score=ccc_score, ccc_corr=ccc_corr, loss_mse = mse_loss, loss_mse_c = mse_func(targets, correct(preds, train_mean, train_std))) ccc_score = ccc_corr print(output) log.write(output + '\n') log.flush() return loss, ccc_score def test(dataloader, model, train_mean=None, train_std=None): print("Testing...") # switch to evaluate mode model.eval() preds = [] names = [] for i, data_batch in tqdm(enumerate(dataloader)): phase_0, phase_1, rgb_features, label, name_batch = data_batch with torch.no_grad(): phase_0 = Variable(phase_0.type('torch.FloatTensor').cuda()) phase_1 = Variable(phase_1.type('torch.FloatTensor').cuda()) rgb_features = Variable(rgb_features.type('torch.FloatTensor').cuda()) out = model([phase_0, phase_1, rgb_features]) preds.append(out.squeeze(-1).data.cpu().numpy()) names.append(name_batch) preds = np.concatenate([array for array in preds], axis=0) names = np.concatenate([array for array in names], axis=0) preds = correct(preds, train_mean, train_std) return preds, names def adjust_learning_rate(optimizer, epoch, lr_steps): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" decay = 0.1 ** (sum(epoch >=
np.array(lr_steps)
numpy.array
"""Various utilities functions.""" import numpy as np def pack_layers(i, hiddens, o): """Create the full NN topology from input size, hidden layers, and output.""" layers = [] layers.append(i) for h in hiddens: layers.append(h) layers.append(o) return layers def scarcify(X, u, N): """Randomly split a dataset into train-val subsets.""" idx =
np.random.choice(X.shape[0], N, replace=False)
numpy.random.choice
# from __future__ import division #------------------------------------- # # Started at 06/08/2018 (YuE) # # This script based on the previous script # threeApproachesComparison_v6.py # ## Upgraded version of python (python3.4): script was rewritten to take into # account some differences in the descriptions and using of some functions # (version cma_v3 and more earlier scripts are written under python2). # # 07/24/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # # But nevertheless, the dependences of the transmitted energy on the impact # parameter are close to the inverse quadratic (as it should be!) at all velocities. # # 07/27/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # The investigation of that is in progress. # # Some features were improved, some figures were corrected. # #------------------------------------- #======================================================== # # This code compairs two approaches: "classical" (from [1]) and # "magnus" (from [2]). # # For "classical" approach the magnetized interaction between ion # and electron is considered for ion velocities V_i > rmsTrnsvVe. # # References: # # [1] <NAME>, <NAME>, <NAME>, <NAME>. # "Physics guide of BETACOOL code. Version 1.1". C-A/AP/#262, November # 2006, Brookhaven National Laboratory, Upton, NY 11973. # [2] <NAME>, <NAME>. "New Algorithm for Dynamical Friction # of Ions in a Magnetized Electron Beam". AIP Conf. Proc. 1812, 05006 (2017). # #======================================================== ######################################################### # # Main issues of the calculations: # # 1) Friction force (FF) is calculated in the (P)article (R)est (F)rame, # i.e. in the frame moving together with both (cooled and cooling) # beams at a velocity V0; # 2) Friction force is calculated for each value of ion velocity # in the interval from .1*rmsTrnsvVe till 10*rmsTrnsvVe; # 3) Initially assumped that all electrons have a logitudinal # velocity rmsLongVe and transversal velocity rmsTrnsvVe; # 4) For each ion velocity the minimal and maximal values of the # impact parameter are defined. Radius of the shielding of the # electric field of the ion equals to the value of the maximal # impact parameter; # 5) For each impact parameter in the interval from minimal till # maximal values the transfered momenta deltap_x,y,z are # calculated; # 6) Founded transfered momenta allow to calculate the transfered # energy delta_E =deltap^2/(2*m_e) and to integrate it over # impact parameter; then (expressions (3.4), (3.5) from [1]): # FF =-2*pi*n_e*integral_rhoMin^rhoMax delta_E*rho*drho; # 7) For taking into account the velocity distribution of the # electrons it is necessary to repeat these calculations for # each value of the electron's velocity and then integrate result # over distribution of the velocities. # # 10/26/2018: # # 8) Item 6 is wrong and correct expression for transfered # energy delta_E will be used; # 9) Method (my own) Least Squares Method - LSM is used to fit the # dependence of transferred momenta on impact parameter; # # # 11/08/2018: # # 10) Two functions ('fitting' and 'errFitAB' are defined to realize # my LSM to find the parameters of the fitting end error of this # fitting; # # 11) Analys of different dependeces between values; graphical # presentation of these dependences; # ######################################################### import os, sys import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm from matplotlib import ticker from matplotlib import markers import matplotlib as mpl from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D import scipy.integrate as integrate from scipy.integrate import quad, nquad, dblquad from scipy.constants import pi from scipy import optimize from statistics import mean from array import array # # All physical constants have its dimension in units in the system CI. # This code uses units in the system CGS! # from scipy.constants import speed_of_light as clight from scipy.constants import epsilon_0 as eps0 from scipy.constants import mu_0 as mu0 from scipy.constants import elementary_charge as qe from scipy.constants import electron_mass as me from scipy.constants import proton_mass as mp from scipy.constants import Boltzmann as kB pi=3.14159265358 # # Physical constants: # m_e=9.10938356e-28 # electron mass, g m_elec=m_e # to keep variable from previous script m_p=1.672621898e-24 # electron mass, g M_ion = m_p # to keep variable from previous script q_e=4.803204673e-10 # electron charge, CGSE unit: sqrt(g*cm^3/sec^2) q_elec=q_e # to keep variable from previous script Z_ion = q_e # to keep variable from previous script cLight=2.99792458e10 # speed of light, cm/sec eVtoErg=1.6021766208e-12 # 1 eV = 1.6...e-12 erg CtoPart=2.99792458e9 # 1 C = 1 A*sec = 2.9...e9 particles m_e_eV = m_e*cLight**2/eVtoErg # # Electron beam parameters: # Ekin=3.0e4 # kinetic energy, eV curBeam=0.5 # current density, A/cm^2 dBeam=3.0 # beam diameter, cm angSpread=3.0 # angular spread, mrad trnsvT=0.5 # transversal temperature, eV longT=2.0e-4 # longitudinal temperature, eV (was 2.0e-4) nField=1 # number ov values of the magnetic field fieldB=np.zeros(nField) # magnetic field fieldB[0]=3.e3 # Gs omega_p=1.0e9 # plasma frequency, 1/sec n_e=omega_p**2*m_e/(4.*pi*q_e**2) # plasma density, 3.1421e+08 cm-3 n_e1=8.e7 # plasma density, cm-3 omega_p1=np.sqrt(4.*pi*n_e1*q_e**2/m_e) # plasma frequency, 5.0459e+08 1/s # # Cooling system parameter: # coolLength=150.0 # typical length of the coolong section, cm # # HESR: # Ekin=90.8e4 # HESR kinetic energy, eV curBeam=0.5 # HESR current beam, A dBeam=2.0 # HESR beam diameter, cm angSpread=0.0 # HESR angular spread, mrad trnsvT=0.2 # HESR transversal temperature, eV longT=1.0e-2 # HESR longitudinal temperature, eV (was 2.0e-4) fieldB[0]=1.e3 # HESR, Gs coolLength=270.0 # HESR typical length of the coolong section, cm # # EIC: # angSpread=0.0 # EIC angular spread, mrad fieldB[0]=5.e4 # EIC, Gs coolLength=300.0 # EIC typical length of the coolong section, cm # # Calculated parameters of the electron beam: # V0 = cLight*np.sqrt(Ekin/m_e_eV*(Ekin/m_e_eV+2.))/(Ekin/m_e_eV+1.) print ('V0 =%e' % V0) tetaV0=0. # angle between V0 and magnetic field, rad B_mag=fieldB[0]*np.cos(tetaV0) # magnetic field acting on an electron, Gs rmsTrnsvVe=np.sqrt(2.*trnsvT*eVtoErg/m_e) # RMS transversal velocity, cm/s rmsLongVe=np.sqrt(2.*longT*eVtoErg/m_e) # RMS longitudinal velocity, cm/s # HESR: dens=curBeam*(CtoPart/q_e)/(pi*(.5*dBeam)**2*V0) # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('HESR: dens = %e,omega_p = %e' % (dens,omega_p)) # EIC: rmsLongVe = 1.0e+7 # cm/s longT = .5*m_e*rmsLongVe**2/eVtoErg rmsTrnsvVe = 4.2e+7 # cm/s trnsvT = .5*m_e*rmsTrnsvVe**2/eVtoErg print ('EIC: rmsLongVe = %e, longT = %e, rmsTrnsvVe = %e, trnsvT = %e' % \ (rmsLongVe,longT,rmsTrnsvVe,trnsvT)) dens=2.e9 # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('EIC: dens = %e,omega_p = %e' % (dens,omega_p)) cyclFreq=q_e*B_mag/(m_e*cLight) # cyclotron frequency, 1/s rmsRoLarm=rmsTrnsvVe*cyclFreq**(-1) # RMS Larmor radius, cm dens=omega_p**2*m_e/(4.*pi*q_e**2) # density, 1/cm^3 likeDebyeR=(3./dens)**(1./3.) # "Debye" sphere with 3 electrons, cm eTempTran=trnsvT # to keep variable from previous script eTempLong=longT # to keep variable from previous script coolPassTime=coolLength/V0 # time pass through cooling section, cm thetaVi=0. # polar angle ion and cooled electron beams, rad phiVi=0. # azimuth angle ion and cooled electron beams, rad powV0=round(np.log10(V0)) mantV0=V0/(10**powV0) pow_n_e=round(np.log10(n_e)) mant_n_e=n_e/(10**pow_n_e) # # Formfactor ffForm for friction force: # # ffForm = 2*pi*dens*q_e**4/(m_e*V0**2)= # = 0.5*omega_p**2*q_e**2/V0**2 # # Dimension of ffForm is force: g*cm/sec**2=erg/cm # # 1 MeV/m = 1.e6*eVtoErg/100. g*cm/sec**2 = 1.e4*eVtoErg erg/cm MeV_mToErg_cm=1.e4*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/MeV_mToErg_cm # MeV/m eV_mToErg_m=100.*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/eV_mToErg_m # =-6.8226e-12 eV/m eV_mInErg_cm=100.*eVtoErg ffForm=-.5*omega_p**2*q_e**2/V0**2/eVtoErg # =-6.8226e-10 eV/cm ffForm=100.*ffForm # =-6.8226e-08 eV/m ergToEV = 1./1.60218e-12 # # Relative velocities of electrons: # relVeTrnsv=rmsTrnsvVe/V0 relVeLong=rmsLongVe/V0 print ('V0=%e cm/s, rmsTrnsvVe=%e cm/s (rel = %e), rmsLongVe=%e cm/s (rel = %e)' % \ (V0,rmsTrnsvVe,relVeTrnsv,rmsLongVe,relVeLong)) # Indices: (Ix, Ipx, Iy, Ipy, Iz, Ipz) = range(6) stepsNumberOnGyro = 25 # number of the steps on each Larmour period ''' # # Opening the input file: # inputFile='areaOfImpactParameter_tAC-v6_fig110.data' print ('Open input file "%s"...' % inputFile) inpfileFlag=0 try: inpfile = open(inputFile,'r') inpfileFlag=1 except: print ('Problem to open input file "%s"' % inputFile) if inpfileFlag == 1: print ('No problem to open input file "%s"' % inputFile) lines=0 # Number of current line from input file dataNumber=0 # Number of current value of any types of Data xAboundary=np.zeros(100) xBboundary=np.zeros(100) while True: lineData=inpfile.readline() # print ('line=%d: %s' % (lines,lineData)) if not lineData: break lines += 1 if lines > 4: words=lineData.split() nWords=len(words) # print ('Data from %d: words=%s, number of entries = %d' % (lines,words,nWords)) xAboundary[dataNumber]=float(words[0]) xBboundary[dataNumber]=float(words[1]) dataNumber += 1 inpfile.close() print ('Close input file "%s"' % inputFile) ''' #==================================================================== # #------------------ Begin of defined functions ----------------------- # # Larmor frequency electron: # def omega_Larmor(mass,B_mag): return (q_elec)*B_mag/(mass*clight*1.e+2) # rad/sec # # Derived quantities: # omega_L = omega_Larmor(m_elec,B_mag) # rad/sec T_larm = 2*pi/omega_L # sec timeStep = T_larm/stepsNumberOnGyro # time step, sec print ('omega_Larmor= %e rad/sec, T_larm = %e sec, timeStep = %e sec' % \ (omega_L,T_larm,timeStep)) nLarmorAvrgng=10 # number of averaged Larmor rotations # # Data to integrate transferred momemta over the track: # timeStep_c=nLarmorAvrgng*stepsNumberOnGyro*timeStep # sec print ('timeStep_c = %e s' % timeStep_c) eVrmsTran = np.sqrt(2.*eTempTran*eVtoErg/m_elec) # cm/sec eVrmsLong = np.sqrt(2.*eTempLong*eVtoErg/m_elec) # cm/sec kinEnergy = m_elec*(eVrmsTran**2+eVrmsLong**2)/2. # kinetic energy; erg print ('eVrmsTran = %e cm/sec, eVrmsLong = %e cm/sec, kinEnergy = %e eV' % \ (eVrmsTran,eVrmsLong,ergToEV*kinEnergy)) ro_larmRMS = eVrmsTran/omega_L # cm print ('ro_larmRMS =%e mkm' % (1.e4*ro_larmRMS)) # # Electrons are magnetized for impact parameter >> rhoCrit: # rhoCrit=math.pow(q_elec**2/(m_elec*omega_L**2),1./3) # cm print ('rhoCrit (mkm) = ' , 1.e+4*rhoCrit) # # Convertion from 6-vector of relectron's "coordinates" to 6-vector # of guiding-center coordinates: # z_e=(x_e,px_e,y_e,py_e,z_e,pz_e) --> zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e); # def toGuidingCenter(z_e): mOmega=m_elec*omega_L # g/sec zgc_e=z_e.copy() # 6-vector zgc_e[Ix] = np.arctan2(z_e[Ipx]+mOmega*z_e[Iy],z_e[Ipy]) # radians zgc_e[Ipx]= (((z_e[Ipx]+mOmega*z_e[Iy])**2+z_e[Ipy]**2)/(2.*mOmega)) # g*cm**2/sec zgc_e[Iy] =-z_e[Ipx]/mOmega # cm zgc_e[Ipy]= z_e[Ipy]+mOmega*z_e[Ix] # g/sec return zgc_e # # Convertion from 6-vector of guiding-center coordinates to 6-vector # of electron's "coordinates": # zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e) --> z_e=(x_e,px_e,y_e,py_e,z_e,pz_e); # def fromGuidingCenter(zgc_e): mOmega=m_elec*omega_L # g/sec rho_larm=np.sqrt(2.*zgc_e[Ipx]/mOmega) # cm z_e = zgc_e.copy() # 6-vector z_e[Ix] = zgc_e[Ipy]/mOmega-rho_larm*np.cos(zgc_e[Ix]) # cm z_e[Ipx]=-mOmega*zgc_e[Iy] # g*cm/sec z_e[Iy] = zgc_e[Iy]+rho_larm*np.sin(zgc_e[Ix]) # cm z_e[Ipy]= mOmega*rho_larm*np.cos(zgc_e[Ix]) # g*cm/sec return z_e # # Matrix to dragg electron through the solenoid with field 'B_mag' # during time interval 'deltaT': # def solenoid_eMatrix(B_mag,deltaT): slndMtrx=np.identity(6) omega_L=omega_Larmor(m_elec,B_mag) # rad/sec mOmega= m_elec*omega_L # g/sec phi=omega_L*deltaT # phase, rad cosPhi=math.cos(phi) # dimensionless sinPhi=math.sin(phi) # dimensionless cosPhi_1=2.*math.sin(phi/2.)**2 # dimensionless slndMtrx[Iy, Iy ]= cosPhi # dimensionless slndMtrx[Ipy,Ipy]= cosPhi # dimensionless slndMtrx[Iy, Ipy]= sinPhi/mOmega # sec/g slndMtrx[Ipy,Iy ]=-mOmega*sinPhi # g/sec slndMtrx[Iz, Ipz]= deltaT/m_elec # sec/g slndMtrx[Ix, Ipx]= sinPhi/mOmega # sec/g slndMtrx[Ix, Iy ]= sinPhi # dimensionless slndMtrx[Ix, Ipy]= cosPhi_1/mOmega # sec/g slndMtrx[Iy, Ipx]=-cosPhi_1/mOmega # sec/g slndMtrx[Ipy,Ipx]=-sinPhi # dimensionless return slndMtrx # # Matrix to dragg particle through the drift during time interval 'deltaT': # def drift_Matrix(M_prtcl,deltaT): driftMtrx = np.identity(6) for i in (Ix,Iy,Iz): driftMtrx[i,i+1]=deltaT/M_prtcl # sec/g return driftMtrx # # Matrix to dragg electron in the "guiding center" system during time interval 'deltaT': # def guidingCenter_Matrix(deltaT): gcMtrx = np.identity(6) gcMtrx[Iz,Ipz]=deltaT/m_elec # sec/g return gcMtrx # # Description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron: # def guidingCenterCollision(vectrElec_gc,vectrIon,deltaT): dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3/2) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec b_gc=np.sqrt((vectrIon[0]-x_gc)**2+ \ (vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-dpFactor_gc*deltaT*(vectrIon[0]-x_gc)/b_gc**3 dpIon[1]=-dpFactor_gc*deltaT*(vectrIon[2]-vectrElec_gc[2])/b_gc**3 dpIon[2]=-dpFactor_gc*deltaT*(vectrIon[4]-vectrElec_gc[4])/b_gc**3 dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,b_gc # # "Magnus expansion" description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron and electron y_gc coordinate # as well calculated parameters C1,C2,C3,b,D1,D2,q for testing: # def MagnusExpansionCollision(vectrElec_gc,vectrIon,deltaT): # print ('Ion: x=%e, y=%e, z=%e' % (vectrIon[0],vectrIon[2],vectrIon[4])) # print ('Electron: x=%e, y=%e, z=%e' % # (vectrElec_gc[0],vectrElec_gc[4],vectrElec_gc[4])) dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3./2.) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec # C1=np.sqrt((vectrIon[0]-x_gc)**2+ \ # (vectrIon[2]-vectrElec_gc[2])**2+ \ # (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm^2 C1=(vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm # cm^2 C2=2.*((vectrIon[0]-x_gc)*vectrIon[1]/M_ion+ \ (vectrIon[2]-vectrElec_gc[2])*vectrIon[3]/M_ion+ \ (vectrIon[4]-vectrElec_gc[4])* \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)) # cm^2/sec C3=(vectrIon[1]/M_ion)**2+(vectrIon[3]/M_ion)**2+ \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)**2 # cm^2/sec^2 b=np.sqrt(C1+C2*deltaT+C3*deltaT**2) # cm D1=(2.*C3*deltaT+C2)/b-C2/np.sqrt(C1) # cm/sec D2=(C2*deltaT+2.*C1)/b-2.*np.sqrt(C1) # cm q=4.*C1*C3-C2**2 # cm^4/sec^2 # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-2.*dpFactor_gc/q*((vectrIon[0]-x_gc)*D1-vectrIon[1]/M_ion*D2) dpIon[1]=-2.*dpFactor_gc/q*((vectrIon[2]-vectrElec_gc[2])*D1- \ vectrIon[3]/M_ion*D2) dpIon[2]=-2.*dpFactor_gc/q*((vectrIon[4]-vectrElec_gc[4])*D1- \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)*D2) dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] dy_gc=dpIon[0]/mOmegaLarm # cm # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,dy_gc,C1,C2,C3,b,D1,D2,q # # Minimized functional (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # Funcional = {log10(funcY) - [fitB*log10(argX) + fitA]}^2 # def fitting(nPar1,nPar2,argX,funcY): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) for i in range(nVion): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) sumFuncY = np.zeros(nPar2) sumArgXfuncY= np.zeros(nPar2) fitA = np.zeros(nPar2) fitB = np.zeros(nPar2) for i in range(nPar2): for n in range(nPar1): sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 sumFuncY[i] += log10funcY[n,i] sumArgXfuncY[i] += log10argX[n,i]*log10funcY[n,i] delta = sumArgX[i]**2-nPar1*sumArgX2[i] fitA[i] = (sumArgX[i]*sumArgXfuncY[i]-sumArgX2[i]*sumFuncY[i])/delta fitB[i] = (sumArgX[i]*sumFuncY[i]-nPar1*sumArgXfuncY[i])/delta # print ('fitA(%d) = %e, fitB(%d) = %e' % (i,fitA[i],i,fitB[i])) argXfit = np.zeros((nPar1,nPar2)) funcYfit = np.zeros((nPar1,nPar2)) funcHi2 = np.zeros(nPar2) for i in range(nPar2): factorA = math.pow(10.,fitA[i]) for n in range(nPar1): argXfit[n,i] = math.pow(10.,log10argX[n,i]) funcYfit[n,i] = factorA*math.pow(argXfit[n,i],fitB[i]) funcHi2[i] += (np.log10(abs(funcY[n,i])) - np.log10(abs(funcYfit[n,i])))**2 return fitA,fitB,funcHi2,argXfit,funcYfit # # +-Errors for fitied parameters fitA and fitB: # def errFitAB(nPar1,nPar2,argX,funcY,fitA,fitB,funcHi2,errVar,errType): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) posErrFit = np.zeros(nPar2) negErrFit = np.zeros(nPar2) # return posErrFit,negErrFit stepA = 5.e-4*mean(funcHi2) stepB = 1.e-4*mean(funcHi2) # print ('errFitAB: mean(funcHi2) = %e, stepA = %e, stepB = %e' % (mean(funcHi2),stepA,stepB)) for i in range(nPar2): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); positive error) for %d' % (errVar,i)) break # print ('i=%d: fitParamtr = %e, funcHi2 = %e' % (i,fitParamtr[i], funcHi2[i])) curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] + k*stepA curFuncHi2 = 0. factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] + k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): posErrFit[i] = abs(curFitA - fitA[i]) else: posErrFit[i] = abs(curFitB - fitB[i]) func1sigma2 = funcHi2[i]/(nPar2-3) if (int(errVar) == 1): fitSigma = np.sqrt(sumArgX2[i]/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) else: fitSigma = np.sqrt(nPar2/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) if (int(errType) == 2): posErrFit[i] = fitSigma # if (int(errVar) == 1): # print ('i=%d: fitA = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); negative error) for %d' % (errVar,i)) break curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] - k*stepA factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] - k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): negErrFit[i] = abs(curFitA - fitA[i]) else: negErrFit[i] = abs(curFitB - fitB[i]) if (int(errType) == 2): negErrFit[i] = posErrFit[i] # if (errVar == 1): # print ('i=%d: fitA = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],negErrFit[i],funcHi2[i],k,curFuncHi2)) return posErrFit,negErrFit def fittedGKintegration(xMin,xMax,fitA,fitB): # # "Gauss-Kronrod" method of integration (GK) # # # Points (psi_i) and weigths (w_i) to integrate for interval from -1 to 1; # These data are from <NAME>. "Handbook of Mathematical Science". # 5th Edition, CRC Press, Inc, 1978. # # To integrate for interval from 0 to 1 it is necessary to change points # psi_i with points ksi_i=(1+psi_i)/2; # # For method with order N for function F(x): # int_(-1)^1 = sum_1^N [w_i* F(psi_i)]; # # In case of integration over interval from a to b: # int_(a)^b = (b-a)/2 * sum_1^N [w_i* F(x_i)], where # x_i = (b-a)*psi_i/2+(a+b)/2. # #---------------------------------------------------- # # Data for GK: # #---------------------------------------------------- nPoints_GK = 16 psi_16=np.array([-0.9894009, -0.9445750, -0.8656312, -0.7554044, -0.6178762, \ -0.4580168, -0.2816036, -0.0950125, 0.0950125, 0.2816036, \ 0.4580168, 0.6178762, 0.7554044, 0.8656312, 0.9445750, \ 0.9894009]) w_16 =np.array([ 0.0271525, 0.0622535, 0.0951585, 0.1246290, 0.1495960, \ 0.1691565, 0.1826034, 0.1894506, 0.1894506, 0.1826034, \ 0.1691565, 0.1495960, 0.1246290, 0.0951585, 0.0622535, \ 0.0271525]) y = np.zeros(nPoints_GK) yIntegrated = 0. for n in range(nPoints_GK): xCrrnt = psi_16[n]*(xMax-xMin)/2 + (xMax+xMin)/2. factorA = math.pow(10.,fitA) y[n] = factorA*math.pow(xCrrnt,fitB) yIntegrated += (xMax-xMin)*w_16[n]*y[n]*xCrrnt return y,yIntegrated #------------------ End of defined functions ----------------------- # #==================================================================== sphereNe=3. R_e=math.pow(sphereNe/n_e,1./3) # cm print ('R_e (cm)=%e' % R_e) ro_Larm = eVrmsTran/omega_L # cm print ('ro_Larm (cm)=%e' % ro_Larm) impctPrmtrMin=2.*ro_Larm # rhoDependenceFlag = 1 # skip calculation of rho dependence if = 0! #============ Important flags =========================== # # Taking into account the transfer of momenta for both particles # (for "classical" only): dpTransferFlag = 1 # no taking into account if = 0! # saveFilesFlag = 0 # no saving if = 0! # plotFigureFlag = 1 # plot if = 1! # #======================================================== nVion=50 Vion=np.zeros(nVion) VionLong=np.zeros(nVion) VionTrnsv=np.zeros(nVion) VionRel=np.zeros(nVion) vIonMin=4.e-3*eVrmsTran vIonMax=10.*eVrmsTran vIonMinRel=vIonMin/V0 vIonMaxRel=vIonMax/V0 print ('VionMin=%e (vIonMinRel=%e), vIonMax=%e (vIonMaxRel=%e)' % \ (vIonMin,vIonMinRel,vIonMax,vIonMaxRel)) vIonLogStep=math.log10(vIonMax/vIonMin)/(nVion-1) R_debye=np.zeros(nVion) R_pass=np.zeros(nVion) R_pass_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. impctPrmtrMax=np.zeros(nVion) impctPrmtrMax_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. for i in range(nVion): crrntLogVionRel=math.log10(vIonMinRel)+i*vIonLogStep VionRel[i]=math.pow(10.,crrntLogVionRel) Vion[i]=VionRel[i]*V0 VionLong[i]=Vion[i]*np.cos(thetaVi) VionTrnsv[i]=Vion[i]*np.sin(thetaVi) R_debye[i]=np.sqrt(Vion[i]**2+eVrmsTran**2+eVrmsLong**2)/omega_p R_pass[i]=np.sqrt(Vion[i]**2+eVrmsLong**2)*coolPassTime R_pass_1[i]=np.sqrt(Vion[i]**2+0.*eVrmsLong**2)*coolPassTime help=max(R_debye[i],R_e) impctPrmtrMax[i]=min(help,R_pass[i]) impctPrmtrMax_1[i]=min(help,R_pass_1[i]) #----------------------------------------------------------------- # Checking of corection of the maximal impact parameter on depence # of preset number of minimal Larmor turns # larmorTurnsMin=[10,20,30,40] impctPrmtrMaxCrrctd=np.zeros((nVion,4)) impctPrmtrMaxCrrctdRel=np.zeros((nVion,4)) for n in range (4): for i in range(nVion): impctPrmtrMaxCrrctd[i,n]=impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurnsMin[n]*eVrmsLong/omega_L/impctPrmtrMax[i])**2) impctPrmtrMaxCrrctdRel[i,n]=impctPrmtrMaxCrrctd[i,n]/impctPrmtrMax[i] # # First plotting: # if (plotFigureFlag == 0): fig10 = plt.figure(10) plt.semilogx(impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,0],'-r', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,1],'-b', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,2],'-g', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,3],'-m',linewidth=2) plt.grid(True) hold=True plt.xlabel('Maximal Impact parameter $R_{max}$, cm',color='m',fontsize=16) plt.ylabel('$R_{max}^{Crrctd}/R_{Max}$',color='m',fontsize=16) # plt.xlim([.9*min(impctPrmtrMax),1.1*max(impctPrmtrMax)]) plt.xlim([1.e-2,1.1*max(impctPrmtrMax)]) plt.ylim([.986,1.001]) titleHeader='$R_{max}^{Crrctd}=R_{Max} \cdot [1-(\pi\cdot N_{Larm} \cdot' titleHeader += '\Delta_{e||}/(\omega_{Larm} \cdot R_{max})]^{1/2}$' plt.title(titleHeader,color='m',fontsize=16) plt.legend([('$N_{Larm}=$%2d' % larmorTurnsMin[0]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[1]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[2]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[3])],loc='lower center',fontsize=14) if (saveFilesFlag == 1): fig10.savefig('picturesCMA/correctedRmax_fig10cma.png') print ('File "picturesCMA/correctedRmax_fig10cma.png" is written') xLimit=[.9*VionRel[0],1.1*VionRel[nVion-1]] # # Typs of collisions: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'Types of Collisions: $V_{e0}=%4.2f\cdot10^{%2d}$ cm/s, $B=%6.1f$ Gs' plt.title(titleHeader % (mantV0,powV0,fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,.0018,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-4,1.75e-3,'$R_{min}=2\cdot<rho_\perp>$',color='k',fontsize=16) plt.text(7.e-4,5.e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.85e-5,3.3e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(1.e-4,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(1.e-4,10.e-4,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.25e-5,.275,'Collisions are Screened',color='r',fontsize=20) plt.text(1.6e-5,1.e-3,'$ \cong 20\cdot R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') # # Picture for HESR: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'HESR Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(4.4e-4,8.4e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.e-4,8.4e-4,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.7e-6,3.4e-3,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(2.8e-4,.1,'$R_{max}$',color='k',fontsize=16) plt.text(1.e-4,1.8e-2,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(6.8e-5,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(2.3e-5,1.95e-3,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.e-5,.275,'Screened Collisions',color='r',fontsize=20) plt.text(3.58e-6,2.05e-3,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('HESRimpctPrmtr_fig3151cma.png') print ('File "HESRimpctPrmtr_fig3151cma.png" is written') # # Picture for EIC: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'EIC Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[5.e-5,.3] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(9.e-4,4.e-5,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.7e-4,3.e-5,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(6.3e-6,1.1e-4,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(1.e-4,2.1e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.57e-5,5.e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(2.3e-5,1.e-3,'Magnetized Collisions',color='r',fontsize=20) # plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(1.1e-5,5.7e-5,'Weak or Adiabatic or Fast Collisions',color='r',fontsize=16) plt.text(2.e-5,.15,'Screened Collisions',color='r',fontsize=20) plt.text(2.5e-3,1.7e-4,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('EICimpctPrmtr_fig3151cma.png') print ('File "EICimpctPrmtr_fig3151cma.png" is written') # plt.show() # sys.exit() # # Magnetized collisions: # if (plotFigureFlag == 0): fig209=plt.figure (209) plt.loglog(VionRel,R_debye,'-r',VionRel,R_pass,'-b', \ VionRel,R_pass_1,'--b',linewidth=2) plt.grid(True) hold=True plt.plot([VionRel[0],VionRel[nVion-1]],[R_e,R_e],color='m',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$R_{Debye}$, $R_{Pass}$, $R_e$, cm',color='m',fontsize=16) # titleHeader='Magnetized Collision: $R_{Debye}$, $R_{Pass}$, $R_e$: $V_{e0}=%5.3f\cdot10^{%2d}$cm/s' # plt.title(titleHeader % (mantV0,powV0),color='m',fontsize=16) plt.title('Magnetized Collisions: $R_{Debye}$, $R_{Pass}$, $R_e$',color='m',fontsize=16) plt.xlim(xLimit) yLimit=[1.e-3,10.] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.5e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,0.001175,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-5,2.45e-3,'$R_e$',color='k',fontsize=16) plt.text(3.e-5,5.e-2,'$R_{Debye}$',color='k',fontsize=16) plt.text(3.e-5,1.8e-2,'$R_{Pass}$',color='k',fontsize=16) plt.text(4.5e-5,4.8e-3,'$R_{Pass}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.text(8.3e-5,4.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) if (saveFilesFlag == 1): fig209.savefig('picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png') print ('File "picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png" is written') # # Coulomb logarithm evaluation: # clmbLog = np.zeros(nVion) for i in range(nVion): clmbLog[i] = math.log(impctPrmtrMax[i]/impctPrmtrMin) # clmbLog[i] = math.log(impctPrmtrMax_1[i]/impctPrmtrMin) if (plotFigureFlag == 0): fig3155=plt.figure (3155) plt.semilogx(VionRel,clmbLog,'-xr',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Coulomb Logarithm $L_c$',color='m',fontsize=14) plt.title('Coulomb Logarithm: $L_c$ = $ln(R_{max}/R_{min})$',color='m',fontsize=16) yLimit=[min(clmbLog)-.1,max(clmbLog)+.1] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.4e-5,5.,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3155.savefig('picturesCMA_v7/coulombLogrthm_fig3155cma.png') print ('File "picturesCMA_v7/coulombLogrthm_fig3155cma.png" is written') # # matrix for electron with .5*timeStep_c: # matr_elec_c=guidingCenter_Matrix(.5*timeStep_c) # # matrix for ion with mass M_ion and .5*timeStep_c: # matr_ion_c=drift_Matrix(M_ion,.5*timeStep_c) larmorTurns = 10 nImpctPrmtr = 50 rhoMin = impctPrmtrMin rhoMax = np.zeros(nVion) log10rhoMin = math.log10(rhoMin) crrntImpctPrmtr = np.zeros(nImpctPrmtr) halfLintr = np.zeros((nImpctPrmtr,nVion)) pointAlongTrack = np.zeros((nImpctPrmtr,nVion)) totalPoints = 0 for i in range(nVion): rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! # print ('rhoMax(%d) = %e' % (i,rhoMax[i])) log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # print (' rhoCrrnt(%d) = %e' % (n,rhoCrrnt)) halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm timeHalfPath = halfLintr[n,i]/eVrmsLong # 0.5 time of interaction; sec numbLarmor = int(2.*timeHalfPath/T_larm) pointAlongTrack[n,i] = int(2.*timeHalfPath/timeStep_c) totalPoints += pointAlongTrack[n,i] # print (' %d: rhoCrrnt = %e, numbLarmor = %d, pointAlongTrack = %d' % \ # (n,rhoCrrnt,numbLarmor,pointAlongTrack[n,i])) # print ('totalPoints = %d' % totalPoints) totalPoints = int(totalPoints) nnTotalPoints=np.arange(0,2*totalPoints-1,1) arrayA=np.zeros(2*totalPoints) arrayB=np.zeros(2*totalPoints) bCrrnt_c = np.zeros(2*totalPoints) # # Variables for different testing: # b_gc = np.zeros(totalPoints) action_gc = np.zeros(totalPoints) C1test = np.zeros(totalPoints) C2test = np.zeros(totalPoints) C3test = np.zeros(totalPoints) b_ME = np.zeros(totalPoints) D1test = np.zeros(totalPoints) D2test = np.zeros(totalPoints) qTest = np.zeros(totalPoints) action_ME = np.zeros(totalPoints) actn_gc_ME_rel = np.zeros(totalPoints) indxTest = 0 rhoInit = np.zeros((nImpctPrmtr,nVion)) # # "Classical" approach: # deltaPx_c = np.zeros((nImpctPrmtr,nVion)) deltaPy_c = np.zeros((nImpctPrmtr,nVion)) deltaPz_c = np.zeros((nImpctPrmtr,nVion)) ionVx_c = np.zeros((nImpctPrmtr,nVion)) ionVy_c = np.zeros((nImpctPrmtr,nVion)) ionVz_c =
np.zeros((nImpctPrmtr,nVion))
numpy.zeros
# Copyright (c) Facebook, Inc. and its affiliates. import itertools import json import logging import numpy as np import os from collections import OrderedDict import PIL.Image as Image import pycocotools.mask as mask_util import torch from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.utils.comm import all_gather, is_main_process, synchronize from detectron2.utils.file_io import PathManager from .evaluator import DatasetEvaluator class SemSegEvaluator(DatasetEvaluator): """ Evaluate semantic segmentation metrics. """ def __init__(self, dataset_name, distributed=True, output_dir=None, *, num_classes=None, ignore_label=None, write_outputs=False): """ Args: dataset_name (str): name of the dataset to be evaluated. distributed (bool): if True, will collect results from all ranks for evaluation. Otherwise, will evaluate the results in the current process. output_dir (str): an output directory to dump results. num_classes, ignore_label: deprecated argument """ self._logger = logging.getLogger(__name__) if num_classes is not None: self._logger.warn( "SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata." ) if ignore_label is not None: self._logger.warn( "SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata." ) self._dataset_name = dataset_name self._distributed = distributed self._output_dir = output_dir self._write_outputs = write_outputs self._cpu_device = torch.device("cpu") self.input_file_to_gt_file = { dataset_record["file_name"]: dataset_record["sem_seg_file_name"] for dataset_record in DatasetCatalog.get(dataset_name) } meta = MetadataCatalog.get(dataset_name) # Dict that maps contiguous training ids to COCO category ids try: c2d = meta.stuff_dataset_id_to_contiguous_id self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()} except AttributeError: self._contiguous_id_to_dataset_id = None self._class_names = meta.stuff_classes self._num_classes = len(meta.stuff_classes) if num_classes is not None: assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}" self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label def reset(self): self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64) self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a model. It is a list of dicts. Each dict corresponds to an image and contains keys like "height", "width", "file_name". outputs: the outputs of a model. It is either list of semantic segmentation predictions (Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic segmentation prediction in the same format. """ from cityscapesscripts.helpers.labels import trainId2label pred_output = os.path.join(self._output_dir, 'predictions') if not os.path.exists(pred_output): os.makedirs(pred_output) pred_colour_output = os.path.join(self._output_dir, 'colour_predictions') if not os.path.exists(pred_colour_output): os.makedirs(pred_colour_output) for input, output in zip(inputs, outputs): output = output["sem_seg"].argmax(dim=0).to(self._cpu_device) pred = np.array(output, dtype=np.uint8) pred64 = np.array(output, dtype=np.int64) # to use it on bitcount for conf matrix with PathManager.open(self.input_file_to_gt_file[input["file_name"]], "rb") as f: gt = np.array(Image.open(f), dtype=np.int64) gt[gt == self._ignore_label] = self._num_classes self._conf_matrix += np.bincount( (self._num_classes + 1) * pred64.reshape(-1) + gt.reshape(-1), minlength=self._conf_matrix.size, ).reshape(self._conf_matrix.shape) if self._write_outputs: file_name = input["file_name"] basename = os.path.splitext(os.path.basename(file_name))[0] pred_filename = os.path.join(pred_output, basename + '.png') Image.fromarray(pred).save(pred_filename) # colour prediction output = output.numpy() pred_colour_filename = os.path.join(pred_colour_output, basename + '.png') pred_colour = 255 * np.ones([output.shape[0],output.shape[1],3], dtype=np.uint8) for train_id, label in trainId2label.items(): #if label.ignoreInEval: # continue #pred_colour[np.broadcast_to(output == train_id, pred_colour.shape)] = 0 #label.color pred_colour[(output == train_id),0] = label.color[0] pred_colour[(output == train_id),1] = label.color[1] pred_colour[(output == train_id),2] = label.color[2] Image.fromarray(pred_colour).save(pred_colour_filename) #self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"])) def evaluate(self): """ Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval): * Mean intersection-over-union averaged across classes (mIoU) * Frequency Weighted IoU (fwIoU) * Mean pixel accuracy averaged across classes (mACC) * Pixel Accuracy (pACC) """ if self._distributed: synchronize() conf_matrix_list = all_gather(self._conf_matrix) self._predictions = all_gather(self._predictions) self._predictions = list(itertools.chain(*self._predictions)) if not is_main_process(): return self._conf_matrix = np.zeros_like(self._conf_matrix) for conf_matrix in conf_matrix_list: self._conf_matrix += conf_matrix '''if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "sem_seg_predictions.json") with PathManager.open(file_path, "w") as f: f.write(json.dumps(self._predictions))''' print(self._conf_matrix) acc = np.full(self._num_classes, np.nan, dtype=np.float) iou = np.full(self._num_classes, np.nan, dtype=np.float) tp = self._conf_matrix.diagonal()[:-1].astype(np.float) pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float) class_weights = pos_gt / np.sum(pos_gt) pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float) acc_valid = pos_gt > 0 acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid] iou_valid = (pos_gt + pos_pred) > 0 union = pos_gt + pos_pred - tp iou[acc_valid] = tp[acc_valid] / union[acc_valid] macc = np.sum(acc[acc_valid]) / np.sum(acc_valid) miou =
np.sum(iou[acc_valid])
numpy.sum
# -*- coding: utf-8 -*- """ @author: <NAME>, University of Bristol, <EMAIL> This programme will take an input array of peaks in 1D I vs q data (such as those returned from the finder programme), and returns a dictionary of possible phases that the data can take on, along with the miller plane index and the peaks used to for that possible phase assignment. There are separate (but almost identical) methods for distinguishing cubic phases and Lamellar/Inverse Hexagonal ones. It is recommended that having used the peak finding programme, the phase is attempted to be assigned by using the number of peaks found in the data. In general from the author's experience, the La and HII phases produce fewer Bragg peaks, such that if a condition were used along the lines of if len(peaks)<3: La_HII_possible_phases(peaks, etc) else: Q_possible_phases(peaks etc) then there should be a good chance of assigning the correct phase. Otherwise there is a risk of simultaneously assigning the HII along with a cubic one. Worst comes to worst... The old fashioned hand method won't fail... The information passed to the dictionary at the end should be enough to plot I vs q data with information about which peak has been indexed as which, along with information about the lattice parameter and phase. See the optional plot in the finder.py programme for more of an idea about the kind of way that matplotlib can plot something like this, using a combination of plt.axvline and plt.text. At the bottom of this programme there is an example set of data in a comment that can be run through to see what result to expect at the end. """ import numpy as np """ La_HII_possible_phases works similarly to Q_possible_phases, in that it uses a statistical methodology to work out which peaks can be assigned to which phase. However, as fewer peaks are expected to be passed to this module, it simply determines the phase by finding a consistent lattice parameter, and taking the longest assignment from La or HII given to it. La_HII_possible_phases will return a dictionary keyed by phase name, with values of lattice parameter, hkl plane factors, and the peaks correspondingly assigned. pass the following parameters to this function: peaks - an array of peaks that have previously been found elsewhere """ def La_HII_possible_phases(peaks): La_ratios=np.array([1,2,3])[:,np.newaxis] HII_ratios=np.sqrt(np.array([1,3,4])[:,np.newaxis]) La_init = 2*np.pi*(1/peaks)*La_ratios HII_init = (2/np.sqrt(3))*2*np.pi*(1/peaks)*HII_ratios La=np.ndarray.flatten(La_init) HII=np.ndarray.flatten(HII_init) values=np.concatenate((La,HII)) hist,bin_edges=np.histogram(values,bins=2*np.size(values)) inds=np.digitize(values,bin_edges)-1 hist_max_bin_pos=np.where(inds==np.argmax(hist))[0] La_sourced=hist_max_bin_pos[np.where(hist_max_bin_pos<len(La))] HII_sourced=hist_max_bin_pos[np.where(hist_max_bin_pos>len(La)-1)] n=np.reshape(np.arange(0,np.size(La_init)),np.shape(La_init)) La_peaks=np.zeros(0) La_factors=np.zeros(0) HII_peaks=np.zeros(0) HII_factors=np.zeros(0) for a in range(0,len(La_sourced)): La_hkl=La_ratios[np.where(np.mod(La_sourced[a],np.size(n))==n)[0]][0][0] La_peak=peaks[np.where(np.mod(La_sourced[a],np.size(n))==n)[1]][0] La_peaks=np.append(La_peaks,La_peak) La_factors=np.append(La_factors,La_hkl) for b in range(0,len(HII_sourced)): HII_hkl=HII_ratios[np.where(np.mod(HII_sourced[b],np.size(n))==n)[0]][0][0] HII_peak=peaks[np.where(np.mod(HII_sourced[b],np.size(n))==n)[1]][0] HII_peaks=np.append(HII_peaks,HII_peak) HII_factors=np.append(HII_factors,HII_hkl) phase_dict={} if len(La_peaks)>len(HII_peaks): phase_dict['La']=np.mean(values[np.where(inds==np.argmax(hist))]),La_factors,La_peaks elif len(HII_peaks)>len(La_peaks): phase_dict['HII']=np.mean(values[np.where(inds==np.argmax(hist))]),HII_factors,HII_peaks return phase_dict """ Q_possible_phases works by creating matrices of lattice parameter values that can arise having declared that any peak that has been found can be indexed as any miller index for any phase. These values are then collapsed into a single 1D array, which is investigated as a histogram. The number of bins in teh histogram is arbitrarily taken as twice the number of values, so care should taken. Peaks in the histogram will arise at the points where there are matching values resulting from peaks being correctly indexed in the correct phase. The possible_phases takes a threshold number, such that bins with more values in it than the threshold are considered to be possible phase values. This is due to the fact that because of symmetry degeneracies, 'correct' phase values may arise from more than a single phase matrix. The values in the bins which exceed threshold population are then investigated for their origins: which peak and index were responsible for bringing them about? The Q_possible_phases will return a dictionary, keyed through lattice parameters, with associated values of the phase (D=0, P=1, G=3), the peaks that have been indexed, and the indicies assigned to the peak. pass the following parameters to this function: peaks - an array of peaks that have previously been found elsewhere """ def Q_possible_phases(peaks): #define the characteristic peak ratios QIID=np.array([2,3,4,6,8,9,10,11])[:,np.newaxis] QIIP=np.array([2,4,6,8,10,12,14])[:,np.newaxis] QIIG=np.array([6,8,14,16,20,22,24])[:,np.newaxis] QIID_ratios=np.sqrt(QIID) QIIP_ratios=np.sqrt(QIIP) QIIG_ratios=np.sqrt(QIIG) ''' 1) create matrices of all possible lattice parameter values 2) flatten each matrix to one dimension 3) combine the matricies into one ''' D_init = 2*np.pi*(1/peaks)*QIID_ratios P_init = 2*np.pi*(1/peaks)*QIIP_ratios G_init = 2*np.pi*(1/peaks)*QIIG_ratios ''' n_D, n_P, n_G are arrays of integers running from 0 to the size of the respective initial arrays. They will be used later on to determine the source of where matching lattice parameter values have arisen from. ''' n_D=np.reshape(np.arange(0,np.size(D_init)),np.shape(D_init)) n_P=np.reshape(np.arange(0,np.size(P_init)),np.shape(P_init)) n_G=np.reshape(np.arange(0,np.size(G_init)),np.shape(G_init)) n=np.reshape(np.arange(0,np.size(np.ndarray.flatten(np.concatenate((n_D,n_G,n_P))))),np.shape(np.concatenate((n_D,n_G,n_P)))) D=np.ndarray.flatten(D_init) P=np.ndarray.flatten(P_init) G=np.ndarray.flatten(G_init) values=np.concatenate((D,P,G)) #histogram the data so that we have some bins. bin number increase is arbitrary. hist, bin_edges=np.histogram(values,bins=np.int(2*np.size(values))) #digitise the data (see numpy docs for explanations) inds=np.digitize(values,bin_edges) #will return the possible phases, their lattice parameters, and the peaks and hkl index from which they arise as a dictionary. phase_dict={} for i in range(0, np.size(values)): try: #find the values from the values array which are actually present in each bin and put them in the values array binned_values=values[np.where(inds==i)] #this size filtering is completely arbitrary. if np.size(binned_values)>5: #trace where the values in the bin originated from in the arrays. positions_array=np.zeros(0) for k in range(0, np.size(binned_values)): positions_array=np.append(positions_array,np.where(binned_values[k]==values)[0]) #look at the distribution of the origin of the arrays - they should be group dependent on the phase. #D_sourced, P_sourced, G_sourced are the positions in the values array where the matching peaks have come from final_pos_array=np.unique(positions_array) #split the positions up into which cubic phase calculation they have come from. D_factors=np.where(final_pos_array<np.size(D))[0][0:] P_factors=(np.where(final_pos_array<=(np.size(P)+np.size(D))-1)[0][0:])[np.size(D_factors):] G_factors=np.where(final_pos_array> (np.size(P)+np.size(D))-1)[0][0:] #correspond the positions in the factors arrays to where they come from in the final positions array D_sourced=final_pos_array[D_factors].astype(int) P_sourced=final_pos_array[P_factors].astype(int) G_sourced=final_pos_array[G_factors].astype(int) ''' want to find where the matching phases have come from in the array to see which one is the real one. e.g. np.mod(o_sourced[a],n) corrects the position in the o array for running the same length as the sourced array then find where the value is the same to identify the row then find from which ratio factor the peak originated from. ''' D_sourced_factors=np.zeros(0,dtype=np.int) P_sourced_factors=np.zeros(0,dtype=np.int) G_sourced_factors=np.zeros(0,dtype=np.int) D_sourced_peaks=np.zeros(0) P_sourced_peaks=np.zeros(0) G_sourced_peaks=np.zeros(0) for a in range(0,len(D_sourced)): D_array_position=D_sourced[a] D_array_comparison_pos=np.mod(D_array_position,np.size(D)) D_position=np.where(D_array_comparison_pos==n) D_hkl=QIID[D_position[0][0]][0] D_peak_hkl=peaks[D_position[1][0]] D_sourced_factors=np.append(D_sourced_factors,np.int(D_hkl)) D_sourced_peaks=np.append(D_sourced_peaks,D_peak_hkl) for b in range(0,len(P_sourced)): P_array_position=P_sourced[b] P_array_comparison_pos=P_array_position-np.size(D) P_position=np.where(P_array_comparison_pos==n) P_hkl=QIIP[P_position[0][0]][0] P_peak_hkl=peaks[P_position[1][0]] P_sourced_factors=np.append(P_sourced_factors,np.int(P_hkl)) P_sourced_peaks=np.append(P_sourced_peaks,P_peak_hkl) for c in range(0,len(G_sourced)): G_array_position=G_sourced[c] G_array_comparison_pos=G_array_position-np.size(P)-np.size(D) G_position=np.where(G_array_comparison_pos==n) G_hkl=QIIG[G_position[0][0]][0] G_peak_hkl=peaks[G_position[1][0]] G_sourced_factors=np.append(G_sourced_factors,np.int(G_hkl)) G_sourced_peaks=np.append(G_sourced_peaks,G_peak_hkl) ''' Only save the phase (as keyed number: D=0, P=1,G=2), and related data to the returned dictionary if there are more than 3 peaks in there. As the coincidence of factors between the QIID and QIIP is high, attempt to clarify which phase is actually present if the same factors have been assigned to the same peaks. ''' if len(D_sourced_factors) >3 and len(P_sourced_factors) >3: lp=np.mean((np.mean(values[D_sourced]),np.mean(values[P_sourced]))) #find which set of values is longer and which is shorter if len(D_sourced_factors)>len(P_sourced_factors): shorter_factors=P_sourced_factors shorter_peaks=P_sourced_peaks longer_factors=D_sourced_factors longer_peaks=D_sourced_peaks switch=0 else: shorter_factors=D_sourced_factors shorter_peaks=D_sourced_peaks longer_factors=P_sourced_factors longer_peaks=P_sourced_peaks switch=1 #find which pairs of peaks and factors have been assigned. matching_factors=np.intersect1d(shorter_factors,longer_factors) matching_peaks=np.intersect1d(shorter_peaks,longer_peaks) ''' if the shorter set of factors is completely incidental into the longer set, then the phase can be assigned as being the longer set of factors. ''' if (len(matching_factors)==len(shorter_factors)) and (len(matching_peaks)==len(shorter_peaks)): phase_dict[switch]=lp,longer_factors,longer_peaks elif len(D_sourced_factors) >3 and len(P_sourced_factors) <4: phase_dict[0] = np.mean(values[D_sourced]), D_sourced_factors, D_sourced_peaks elif len(D_sourced_factors) <4 and len(P_sourced_factors) >3: phase_dict[1] = np.mean(values[P_sourced]), P_sourced_factors, P_sourced_peaks if len(G_sourced_factors) >3: phase_dict[2] = np.mean(values[G_sourced]), G_sourced_factors, G_sourced_peaks except IndexError: pass return phase_dict """ projection_testing is the final clarification stage of identifying which of the possible identified phases are 'real'. The phases are checked against a fundamental 'mode' that the lattice parameter and phase identified. From this fundamental value, the peaks in q which should exist can be calculated. These proposed peaks are subsequently checked against the peaks which actually exist in the data. This is done through constructing a difference matrix, populated by the differences between the peaks in the projected and physical arrays. The matrix is then searched for where the value is very small - ie. the proposed peak is present in the physical data. If all or all but one or two of the proposed peaks are present in the physical data, then it is said that that phase proposed is real, and not a feature of degenerate symmetry in the data. NB! you might want to change the number of peaks that are acceptably omissible depending on how successful you are. Alternatively: change the number of peak indicies used for calculations throughout the code. pass the following parameters to this function: phase_array - the integer spacing ratios of the proposed phase that needs to be tested. fundamental - the ratio of a peak value of a phase to the square root of its index. Defined in the main below as the average of these values across a set of peaks in a proposed phase. peak_array - the full set of peaks that have been actually been physically found in the data, to test against a set of peaks which should exist given the peaks present. lo_q - the same low limit in q that was used to define the width in which peaks are to be found """ def Q_projection_testing(phase_array, fundamental, peak_array,lo_q): #now project the fundamental q value over the phase projected_values=(np.sqrt(phase_array)*fundamental)[:,np.newaxis] #check that the first projected peak is within the finding q width: if projected_values[0]>lo_q: ''' the matches variable is an evaluation of where peaks that have been projected correspond to peaks that actually exist. arbitrarily, if the difference in the lengths of the arrays is less than 2, (Ie. all peaks are present or only one or two are missing in the data) then return a confirmation that the phase is a real assignment of the peaks. ''' matches=np.where(np.abs(np.subtract(projected_values,peak_array))<0.001)[0] if len(matches)>3: return 1 #if the lowest peak is not in the desired q range else: return 0 """ the main module runs the above modules, passing the required data from one to the other. pass the following parameters to this function: peaks - an array of peaks that have previously been found elsewhere lo_q - the same low limit in q that was used to define the width in which peaks are to be found """ def Q_main(peaks,lo_q): QIID_ratios=np.array([2,3,4,6,8,9,10,11]) QIIP_ratios=np.array([2,4,6,8,10,12,14]) QIIG_ratios=
np.array([6,8,14,16,20,22,24])
numpy.array
# === Start Python 2/3 compatibility from __future__ import absolute_import, division, print_function, unicode_literals from future.builtins import * # noqa pylint: disable=W0401, W0614 from future.builtins.disabled import * # noqa pylint: disable=W0401, W0614 # === End Python 2/3 compatibility import pytest import numpy as np import h5py from kotekan import runner from kotekan import visutil from kotekan import visbuffer import time # Skip if HDF5 support not built into kotekan if not runner.has_hdf5(): pytest.skip("HDF5 support not available.", allow_module_level=True) start_time = 1_500_000_000 old_timestamp = start_time - 10.0 new_timestamp = start_time + 5.0 old_update_id = f"gains{old_timestamp}" new_update_id = f"gains{new_timestamp}" transition_interval = 10.0 new_state = True global_params = { "num_elements": 16, "num_ev": 4, "total_frames": 20, "start_time": start_time, "cadence": 1.0, "mode": "fill_ij", "freq_ids": [250], "buffer_depth": 8, "updatable_config": "/gains", "gains": { "kotekan_update_endpoint": "json", "start_time": old_timestamp, "update_id": old_update_id, "transition_interval": transition_interval, "new_state": new_state, }, "wait": True, "sleep_before": 2.0, "num_threads": 4, "dataset_manager": {"use_dataset_broker": False}, } def gen_gains(filename, mult_factor, num_elements, freq): """Create gain file and return the gains and weights.""" nfreq = len(freq) gain = ( np.arange(nfreq)[:, None] * 1j * np.arange(num_elements)[None, :] * mult_factor ).astype(np.complex64) # Make some weights zero to test the behaviour of apply_gains weight = np.ones((nfreq, num_elements), dtype=np.bool8) weight[:, 1] = False weight[:, 3] = False with h5py.File(str(filename), "w") as f: dset = f.create_dataset("gain", data=gain) dset2 = f.create_dataset("weight", data=weight) dset2[...] = weight freq_ds = f.create_dataset("index_map/freq", (nfreq,), dtype="f") ipt_ds = f.create_dataset("index_map/input", (num_elements,), dtype="i") freq_ds[...] = freq ipt_ds[:] =
np.arange(num_elements)
numpy.arange
import numpy as np import pandas as pd import time import csv def file_processing(file_path, encode): data = [] # 每一個維度儲存一種污染物的資訊 for i in range(18): data.append([]) with open(file_path, encoding=encode) as file: rows = csv.reader(file , delimiter=",") n_row = 0 for row in rows: if n_row != 0: for i in range(3, 27): if row[i] != 'NR': data[(n_row-1)%18].append(row[i]) else: data[(n_row-1)%18].append(0) n_row += 1 data = np.array(data) return data def data_processing(data): # 資料有12個月 X 20天 = 240 # 一個月(20天)連續取10小時的資料 -> 有20x24-9 = 471筆 # 一年連續取10小時資料 -> y 有240x24-9 = 5751筆 #x = np.zeros((5751, 9)) #y = np.zeros((5751, 1)) x_total = [] y_total = [] for n in range(18): x = np.zeros((5751, 9)) y = np.zeros((5751, 1)) for i in range(5751): x[i] = data[n][i:i+9] y[i] = data[n][i+9] x_total.append(x) y_total.append(y) x_total, y_total = np.array(x_total),
np.array(y_total)
numpy.array
import pandas as pd from multiprocessing import Pool, RawArray, cpu_count from portfolio_methods import PortfolioMethods import numpy as np import copy from decorators import timeit from sklearn.linear_model import LinearRegression import numpy.random as npr import json import datetime as dt from portfolio import PM, Portfolio GLOBAL_DICT = {} def init_worker(returnMatrix, excessReturnMatrix, excessMarketReturn, dates, shapes): global GLOBAL_DICT GLOBAL_DICT['returnMatrix'] = np.frombuffer(returnMatrix).reshape(shapes['return']) GLOBAL_DICT['excessReturnMatrix'] = np.frombuffer(excessReturnMatrix).reshape(shapes['return']) GLOBAL_DICT['excessMarketReturn'] = np.frombuffer(excessMarketReturn).reshape(shapes['market']) GLOBAL_DICT['dates'] = dates def test_global(i): global GLOBAL_DICT return GLOBAL_DICT['returnMatrix'] class PortfolioOptimizer: @timeit def __init__(self, universeObj): self.universeObj = universeObj self.universeObj.make() self.init() @timeit def init(self): self.returnCols = self.universeObj.assets self.returns = self.universeObj.data['assetsReturnOnFreq'] self.riskFree = self.universeObj.data['rfOnFreq'] self.market = self.universeObj.data['factorsReturnOnFreq'] self.makeMatrices() @timeit def makeMatrices(self): self.returnMatrix = self.returns.values self.rfVector = self.riskFree.values self.excessReturn = self.returnMatrix - self.rfVector self.marketVec = self.market.values self.excessMarketReturn = self.marketVec - self.rfVector self.shapes = {'return': self.returnMatrix.shape, 'market': self.excessMarketReturn.shape} @timeit def getRawArrays(self): returnMatrix = RawArray('d', self.returnMatrix.reshape(np.prod(self.shapes['return']))) excessReturnMatrix = RawArray('d', self.excessReturn.reshape(np.prod(self.shapes['return']))) excessMarketReturn = RawArray('d', self.excessMarketReturn.reshape(np.prod(self.shapes['market']))) return returnMatrix, excessReturnMatrix, excessMarketReturn @staticmethod def calculateAllocation(vector): #pickSize = max([int(abs(vector[-1])), 1]) pickSize = 30 vector = np.abs(vector)#np.abs(np.array(vector[:-1]))## # Selecting stocks, idx of the # pickSize biggest idx = (-vector).argsort()[:pickSize] weights = vector[idx] allocation = weights/weights.sum() direction = np.ones(pickSize) return idx, allocation, direction @staticmethod def calculateAllocationLongShort(vector): #pickSize = max(np.int(np.abs(vector[-1])), 10) #pickSize = min(pickSize, 30) pickSize = 30 #vector = vector[:-1]#np.array(vector,dtype=np.float32)[:-1] direction = (vector > 0).astype(np.float32) direction[direction == 0] = -1 allocWeight = np.abs(vector) # Selecting stocks, idx of the # pickSize biggest idx = ((-allocWeight).argsort()[:pickSize]) weights = allocWeight[idx] allocation = (weights / weights.sum()) direction = direction[idx] return idx, allocation, direction @staticmethod def fitness_print(vector): return PortfolioOptimizer.fitness_test1(vector, printData=True) @staticmethod def fitness_strategy1(vector, printData=False): global GLOBAL_DICT idx, allocation, direction = PortfolioOptimizer.calculateAllocationLongShort(vector) if (allocation > 0.3).any() and printData == False: return 0 selectedReturn = GLOBAL_DICT['returnMatrix'][:, idx] selectedExcessReturn = GLOBAL_DICT['excessReturnMatrix'][:, idx] marketReturn = GLOBAL_DICT['excessMarketReturn'] dates = GLOBAL_DICT['dates'] pReturn = PM._pReturn(selectedReturn.astype(np.float32), allocation, direction) pReturnExcess = PM._pReturn(selectedExcessReturn.astype(np.float32), allocation, direction) mktError = (pReturnExcess - marketReturn) trackingError = np.std(mktError) # Portfolio Metrics alpha, beta = PM._alphaBeta(pReturnExcess, marketReturn, intercept=True) beta = np.sum(beta) targetBeta = 0.2 betaPenalty = np.abs(targetBeta - beta) volMkt = marketReturn.std() vol = pReturn.std() mean = pReturnExcess.mean() maximizeTerm = (1.0 + alpha + pReturnExcess.mean()) * np.sign(alpha) minimizeTerm = (1 + volMkt + betaPenalty/10 + trackingError/10) fitness = maximizeTerm / minimizeTerm return fitness @staticmethod def fitness_strategy2(vector, printData=False): global GLOBAL_DICT idx, allocation, direction = PortfolioOptimizer.calculateAllocation(vector) if (allocation > 0.5).any() and printData == False: return 0 selectedReturn = GLOBAL_DICT['returnMatrix'][:, idx] selectedExcessReturn = GLOBAL_DICT['excessReturnMatrix'][:, idx] marketReturn = GLOBAL_DICT['excessMarketReturn'] dates = GLOBAL_DICT['dates'] pReturn = PM._pReturn(selectedReturn.astype(np.float32), allocation, direction) pReturnExcess = PM._pReturn(selectedExcessReturn.astype(np.float32), allocation, direction) mktError = (pReturnExcess - marketReturn) trackingError = np.std(mktError) # Portfolio Metrics alpha, beta = PM._alphaBeta(pReturnExcess, marketReturn, intercept=True) beta = np.sum(beta) #targetBeta = 0.5 betaPenalty = 0#np.abs(targetBeta - beta) volMkt = marketReturn.std() vol = pReturn.std() mean = pReturnExcess.mean() maximizeTerm = (1.0 + alpha + pReturnExcess.mean()) minimizeTerm = (1 + volMkt + betaPenalty/10 + trackingError/10) fitness = maximizeTerm / minimizeTerm return fitness @staticmethod def fitness_best_sharp(vector): global GLOBAL_DICT idx, allocation, direction = PortfolioOptimizer.calculateAllocationLongShort(vector) if (allocation > 0.4).any(): return 0 selectedReturn = GLOBAL_DICT['returnMatrix'][:, idx] selectedExcessReturn = GLOBAL_DICT['excessReturnMatrix'][:, idx] marketReturn = GLOBAL_DICT['excessMarketReturn'] dates = GLOBAL_DICT['dates'] cumulative, _ = PM._pReturn(selectedExcessReturn.astype(np.float32), allocation, direction) pReturnExcess = np.concatenate(([0],
np.diff(cumulative)
numpy.diff
import murnaghan2017 as m import numpy as np # EXAMPLE RUN FOR BCC STRUCTURE USING MURNAGHAN EOS AND # THE ABINIT CODE. # THE TEMPLATEDIR DIRECTORY WITH THE TEMPLATE FILE # AND PSEUDOPOTENTIALS/PAWs NEEDS TO BE SET UP AS DESCRIBED # IN THE README energy_driver = 'abinit' # template file is usually 'abinit.in.template' for abinit, # 'crystal.template' for socorro, # or 'elk.in.template' for elk template_file = 'abinit.in.template' # scales to loop though. These get multiplied by abc_guess s = [0.95, 0.975, 1.0, 1.025, 1.05] # lattice parameter guesses abc_guess = [6.3, 6.3, 6.3] # this list of abc arrays gets passed to actual sweep abc_list = [si*
np.array(abc_guess)
numpy.array
""" Copyright 2020, the e-prop team Full paper: A solution to the learning dilemma for recurrent networks of spiking neurons Authors: <NAME>*, <NAME>*, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> Training LSNN model to solve framewise phone classification of TIMIT dataset CUDA_VISIBLE_DEVICES=0 python3 -u solve_timit_with_framewise_lsnn.py """ import tensorflow as tf import numpy as np import numpy.random as rd from alif_eligibility_propagation import CustomALIF, exp_convolve from toolbox.matplotlib_extension import raster_plot, strip_right_top_axis from toolbox.file_saver_dumper_no_h5py import NumpyAwareEncoder from tools import TimitDataset, einsum_bij_jk_to_bik, pad_vector import time import os import errno import json import datetime def flag_to_dict(FLAG): if float(tf.__version__[2:]) >= 5: flag_dict = FLAG.flag_values_dict() else: flag_dict = FLAG.__flags return flag_dict script_name = os.path.basename(__file__)[:-3] time_stamp = datetime.datetime.now().strftime("%Y_%m_%d__%H_%M__%S_%f") try: os.makedirs('results') except OSError as e: if e.errno != errno.EEXIST: raise FLAGS = tf.app.flags.FLAGS # Accessible parameter from the shell tf.app.flags.DEFINE_string('comment', '', 'comment attached to output filenames') tf.app.flags.DEFINE_string('run_id', '', 'comment attached to output filenames') tf.app.flags.DEFINE_string('checkpoint', '', 'optionally load the pre-trained weights from checkpoint') tf.app.flags.DEFINE_string('preproc', 'htk', 'Input preprocessing: fbank, mfccs, cochspec, cochspike, htk') tf.app.flags.DEFINE_string('eprop', None, 'options: [None, symmetric, adaptive, random], None means use BPTT') tf.app.flags.DEFINE_bool('adam', True, 'use Adam optimizer') tf.app.flags.DEFINE_bool('plot', False, 'Interactive plot during training (useful for debugging)') tf.app.flags.DEFINE_bool('reduced_phns', False, 'Use reduced phone set') tf.app.flags.DEFINE_bool('psp_out', True, 'Use accumulated PSP instead of raw spikes of model as output') tf.app.flags.DEFINE_bool('verbose', True, '') tf.app.flags.DEFINE_bool('ramping_learning_rate', True, 'Ramp up the learning rate from 0 to lr_init in first epoch') tf.app.flags.DEFINE_bool('BAglobal', False, 'Enable broadcast alignment with uniform weights to all neurons') tf.app.flags.DEFINE_bool('cell_train', True, 'Train the RNN cell') tf.app.flags.DEFINE_bool('readout_bias', True, 'Use bias variable in readout') tf.app.flags.DEFINE_bool('rec', True, 'Use recurrent weights. Used to provide a baseline.') tf.app.flags.DEFINE_string('dataset', '../datasets/timit_processed', 'Path to dataset to use') tf.app.flags.DEFINE_float('readout_decay', 1e-2, 'Decay readout [and broadcast] weights') tf.app.flags.DEFINE_bool('loss_from_all_layers', True, 'For multi-layer setup, make readout from all layers.') # tf.app.flags.DEFINE_integer('seed', -1, 'seed number') tf.app.flags.DEFINE_integer('n_epochs', 80, 'number of iteration ') tf.app.flags.DEFINE_integer('n_layer', 1, 'number of layers') tf.app.flags.DEFINE_integer('n_regular', 300, 'number of regular spiking units in the recurrent layer.') tf.app.flags.DEFINE_integer('n_adaptive', 100, 'number of adaptive spiking units in the recurrent layer') tf.app.flags.DEFINE_integer('print_every', 100, 'print every and store accuracy') tf.app.flags.DEFINE_integer('lr_decay_every', -1, 'Decay every') tf.app.flags.DEFINE_integer('batch', 32, 'mini_batch size') tf.app.flags.DEFINE_integer('test_batch', 32, 'mini_batch size') tf.app.flags.DEFINE_integer('n_ref', 2, 'Number of refractory steps') tf.app.flags.DEFINE_integer('n_repeat', 5, 'repeat each input time step for this many simulation steps (ms)') tf.app.flags.DEFINE_integer('reg_rate', 10, 'target rate for regularization') tf.app.flags.DEFINE_integer('truncT', -1, 'truncate time to this many input steps (truncT * n_repeat ms)') # tf.app.flags.DEFINE_float('dt', 1., 'Membrane time constant of output readouts') tf.app.flags.DEFINE_float('tau_a', 200, 'Adaptation time constant') tf.app.flags.DEFINE_bool('tau_a_spread', False, 'Spread time constants uniformly from 0 to tau_a') tf.app.flags.DEFINE_float('tau_v', 20, 'Membrane time constant of recurrent neurons') tf.app.flags.DEFINE_bool('tau_v_spread', False, 'Spread time constants uniformly from 0 to tau_v') tf.app.flags.DEFINE_float('beta', 1.8, 'Scaling constant of the adaptive threshold') tf.app.flags.DEFINE_float('clip', 0., 'Proportion of connected synpases at initialization') tf.app.flags.DEFINE_float('l2', 1e-5, '') tf.app.flags.DEFINE_float('lr_decay', .3, '') tf.app.flags.DEFINE_float('lr_init', 0.01, '') tf.app.flags.DEFINE_float('adam_epsilon', 1e-5, '') tf.app.flags.DEFINE_float('momentum', 0.9, '') tf.app.flags.DEFINE_float('gd_noise', 0.06 ** 2 * 10, 'Used only when noise_step_start > 0') tf.app.flags.DEFINE_float('noise_step_start', -1, 'was 1000') tf.app.flags.DEFINE_float('thr', 0.01, 'Baseline threshold voltage') tf.app.flags.DEFINE_float('proportion_excitatory', 0.75, 'proportion of excitatory neurons') tf.app.flags.DEFINE_float('l1', 1e-2, 'l1 regularization that goes with rewiring (irrelevant without rewiring)') tf.app.flags.DEFINE_float('rewiring_temperature', 0., 'regularization coefficient') tf.app.flags.DEFINE_float('dampening_factor', 0.3, 'Parameter necessary to approximate the spike derivative') tf.app.flags.DEFINE_float('tau_out', 3, 'Mikolov: tau for PSP decay at output') tf.app.flags.DEFINE_float('reg', 50, 'regularization coefficient') tf.app.flags.DEFINE_float('drop_out_probability', -1., '') tf.app.flags.DEFINE_integer('cuda_device', -1, '') if FLAGS.plot: import matplotlib.pyplot as plt # key0 = list(dir(FLAGS))[0] getattr(FLAGS, key0) if FLAGS.cuda_device >= 0: os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.cuda_device) filename = time_stamp + '_' + FLAGS.comment + '_' + FLAGS.run_id storage_path = os.path.join('results', script_name, filename) print("STORING EVERYTHING TO: ", storage_path) try: os.makedirs(storage_path) except OSError as e: if e.errno != errno.EEXIST: raise if FLAGS.n_repeat < 1: FLAGS.n_repeat = 1 flagdict = flag_to_dict(FLAGS) assert isinstance(flagdict, dict) # After processing the data, this object loads it and prepare it. dataset = TimitDataset(FLAGS.batch, data_path=FLAGS.dataset, preproc=FLAGS.preproc, use_reduced_phonem_set=FLAGS.reduced_phns) n_in = dataset.n_features # Placeholders loaded from data features = tf.placeholder(shape=(None, None, dataset.n_features), dtype=tf.float32, name='Features') audio = tf.placeholder(shape=(None, None), dtype=tf.float32, name='Audio') phns = tf.placeholder(shape=(None, None), dtype=tf.int64, name='Labels') seq_len = tf.placeholder(dtype=tf.int32, shape=[None], name="SeqLen") keep_prob = tf.placeholder(dtype=tf.float32, shape=(), name="KeepProb") weighted_relevant_mask = tf.placeholder(shape=(None, None), dtype=tf.float32, name="RelevanceMask") batch_size = tf.Variable(0, dtype=tf.int32, trainable=False, name="BatchSize") # Non-trainable variables that are used to implement a decaying learning rate and count the iterations lr = tf.Variable(FLAGS.lr_init, dtype=tf.float32, trainable=False, name="LearningRate") global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name="GlobalStep") lr_update = tf.assign(lr, lr * FLAGS.lr_decay) gd_noise = tf.Variable(0, dtype=tf.float32, trainable=False, name="GDNoise") # Op to ramping learning rate n_iteration_per_epoch = 100 ramping_learning_rate_values = tf.linspace(0., 1., num=n_iteration_per_epoch) clipped_global_step = tf.minimum(global_step, n_iteration_per_epoch - 1) ramping_learning_rate_op = tf.assign(lr, FLAGS.lr_init * ramping_learning_rate_values[clipped_global_step]) # Frequencies regularization_f0 = FLAGS.reg_rate / 1000 def batch_to_feed_dict(batch, is_train): ''' Create the dictionnary that is fed into the Session.run(..) calls. :param batch: :return: ''' features_np, phns_np, seq_len_np, wav_np = batch n_time = max([len(i) for i in wav_np]) wav_np = np.stack([pad_vector(w, n_time) for w in wav_np], axis=0) # print("input max ", np.max(features_np)) n_batch, n_time, n_features = features_np.shape relevance_mask_np = [(np.arange(n_time) < seq_len_np[i]) / seq_len_np[i] for i in range(n_batch)] relevance_mask_np = np.array(relevance_mask_np) if FLAGS.n_repeat > 1: # Extend sequences with the repeat in time features_np = np.repeat(features_np, FLAGS.n_repeat, axis=1) seq_len_np *= FLAGS.n_repeat if FLAGS.truncT > 0 and is_train: in_steps_len = phns_np.shape[1] if in_steps_len <= FLAGS.truncT: print("truncT (", FLAGS.truncT, ") too long! setting to smaller size found = ", in_steps_len - 1) FLAGS.truncT = in_steps_len - 1 max_step_offset = in_steps_len - FLAGS.truncT rnd_step_offset = rd.randint(low=0, high=max_step_offset) features_np = features_np[:, rnd_step_offset * FLAGS.n_repeat:(rnd_step_offset + FLAGS.truncT) * FLAGS.n_repeat, :] phns_np = phns_np[:, rnd_step_offset:rnd_step_offset + FLAGS.truncT] seq_len_np = np.array(seq_len_np) seq_len_np[seq_len_np > FLAGS.truncT] = FLAGS.truncT relevance_mask_np = relevance_mask_np[:, rnd_step_offset:rnd_step_offset + FLAGS.truncT] n_batch, n_time, n_features = features_np.shape phns_labels = phns_np return {features: features_np, phns: phns_labels, seq_len: seq_len_np, weighted_relevant_mask: relevance_mask_np, batch_size: n_batch, keep_prob: FLAGS.drop_out_probability if is_train else 1., audio: wav_np} if FLAGS.tau_a_spread: taua = rd.choice([1, 0.5], size=FLAGS.n_regular + FLAGS.n_adaptive) * FLAGS.tau_a else: taua = FLAGS.tau_a if FLAGS.tau_v_spread: tauv = rd.choice([1, 0.5], size=FLAGS.n_regular + FLAGS.n_adaptive) * FLAGS.tau_v else: tauv = FLAGS.tau_v flagdict['tauas'] = taua.tolist() if type(taua) is not float else taua flagdict['tauvs'] = tauv.tolist() if type(tauv) is not float else tauv with open(os.path.join(storage_path, 'flags.json'), 'w') as f: json.dump(flagdict, f, indent=2) def get_cell(tag, n_input=n_in): # converting thr and beta parameters thr_new = FLAGS.thr / (1 - np.exp(-FLAGS.dt / tauv)) if np.isscalar(tauv) else \ [FLAGS.thr / (1 - np.exp(-FLAGS.dt / tv)) for tv in tauv] if np.isscalar(tauv) and np.isscalar(taua): beta_new = FLAGS.beta * (1 - np.exp(-FLAGS.dt / taua)) / (1 - np.exp(-FLAGS.dt / tauv)) print("565 new threshold = {:.4g}\n565 new beta = {:.4g}".format(thr_new, beta_new)) beta_new = np.concatenate([np.zeros(FLAGS.n_regular), np.ones(FLAGS.n_adaptive) * beta_new]) elif np.isscalar(tauv) and not np.isscalar(taua): beta_new = np.array([FLAGS.beta * (1 - np.exp(-FLAGS.dt / ta)) / (1 - np.exp(-FLAGS.dt / tauv)) for ta in taua]) beta_new[:FLAGS.n_regular] = 0 elif not np.isscalar(tauv) and np.isscalar(taua): beta_new = np.array([FLAGS.beta * (1 - np.exp(-FLAGS.dt / taua)) / (1 - np.exp(-FLAGS.dt / tv)) for tv in tauv]) beta_new[:FLAGS.n_regular] = 0 elif not np.isscalar(tauv) and not np.isscalar(taua): beta_new = np.array( [FLAGS.beta * (1 - np.exp(-FLAGS.dt / ta)) / (1 - np.exp(-FLAGS.dt / tv)) for ta, tv in zip(taua, tauv)]) beta_new[:FLAGS.n_regular] = 0 else: raise NotImplementedError("Nonexistant combination of taua tauv") return CustomALIF(n_in=n_input, n_rec=FLAGS.n_regular + FLAGS.n_adaptive, tau=tauv, dt=FLAGS.dt, tau_adaptation=taua, beta=beta_new, thr=thr_new, dampening_factor=FLAGS.dampening_factor, tag=tag, n_refractory=FLAGS.n_ref, stop_gradients=FLAGS.eprop is not None, rec=FLAGS.rec ) # Cell model used to solve the task, we have two because we used a bi-directional network cell_forward = get_cell("FW") cell_backward = get_cell("BW") # Define the graph for the RNNs processing with tf.variable_scope('RNNs'): def bi_directional_lstm(inputs, layer_number): if FLAGS.drop_out_probability > 0: inputs = tf.nn.dropout(inputs, keep_prob=keep_prob) with tf.variable_scope('BiDirectionalLayer' + str(layer_number)): if layer_number == 0: cell_f = cell_forward cell_b = cell_backward else: cell_f = get_cell("FW" + str(layer_number), n_input=2 * (FLAGS.n_regular + FLAGS.n_adaptive)) cell_b = get_cell("BW" + str(layer_number), n_input=2 * (FLAGS.n_regular + FLAGS.n_adaptive)) outputs_forward, _ = tf.nn.dynamic_rnn(cell_f, inputs, dtype=tf.float32, scope='ForwardRNN') outputs_backward, _ = tf.nn.dynamic_rnn(cell_b, tf.reverse(inputs, axis=[1]), dtype=tf.float32, scope='BackwardRNN') outputs_forward, _, _, _ = outputs_forward outputs_backward, _, _, _ = outputs_backward outputs_backward = tf.reverse(outputs_backward, axis=[1]) outputs = tf.concat([outputs_forward, outputs_backward], axis=2) return outputs inputs = features output_list = [] for k_layer in range(FLAGS.n_layer): outputs = bi_directional_lstm(inputs, k_layer) output_list.append(outputs) inputs = outputs if FLAGS.loss_from_all_layers: outputs = tf.concat(output_list, axis=2) n_outputs = (FLAGS.n_regular + FLAGS.n_adaptive) * 2 * FLAGS.n_layer else: outputs = output_list[-1] n_outputs = (FLAGS.n_regular + FLAGS.n_adaptive) * 2 if FLAGS.drop_out_probability > 0: outputs = tf.nn.dropout(outputs, keep_prob=keep_prob) @tf.custom_gradient def BA_logits(psp, W_out, BA_out): logits = einsum_bij_jk_to_bik(psp, W_out) def grad(dy): dloss_dw_out = tf.einsum('btj,btk->jk', psp, dy) dloss_dba_out = tf.einsum('btj,btk->jk', psp, dy) if FLAGS.eprop == 'adaptive' else tf.zeros_like(BA_out) dloss_dpsp = tf.einsum('bik,jk->bij', dy, BA_out) return [dloss_dpsp, dloss_dw_out, dloss_dba_out] return logits, grad # Define the graph for the output processing with tf.name_scope('Output'): n_neurons = (FLAGS.n_regular + FLAGS.n_adaptive) * 2 if FLAGS.n_repeat > 1: new_shape = tf.convert_to_tensor((batch_size, -1, FLAGS.n_repeat, n_outputs), dtype=tf.int32) outputs_ds = tf.reshape(outputs, shape=new_shape) outputs_ds = tf.reduce_mean(outputs_ds, axis=2) else: outputs_ds = outputs psp_decay_new = FLAGS.psp_out * (1 - np.exp(-FLAGS.dt / taua)) / (1 - np.exp(-FLAGS.dt / tauv)) print("566 psp readout decay = {:.4g}".format(psp_decay_new)) lsnn_out = exp_convolve(outputs_ds, decay=np.exp(-FLAGS.dt / FLAGS.tau_out)) if FLAGS.psp_out else outputs_ds N_output_classes_with_blank = dataset.n_phns + 1 w_out = tf.Variable(rd.randn(n_outputs, N_output_classes_with_blank) / np.sqrt(n_outputs), dtype=tf.float32, name="OutWeights") if FLAGS.eprop in ['adaptive', 'random']: if FLAGS.BAglobal: BA_out = tf.constant(np.ones((n_outputs, N_output_classes_with_blank)) / np.sqrt(n_outputs), dtype=tf.float32, name='BroadcastWeights') else: if FLAGS.eprop == 'adaptive': init_w_out = rd.randn(n_outputs, N_output_classes_with_blank) / np.sqrt(n_outputs) BA_out = tf.Variable(init_w_out, dtype=tf.float32, name='BroadcastWeights') else: init_w_out = rd.randn(n_outputs, N_output_classes_with_blank) BA_out = tf.constant(init_w_out, dtype=tf.float32, name='BroadcastWeights') phn_logits = BA_logits(lsnn_out, w_out, BA_out) else: print("Broadcast alignment disabled!") phn_logits = einsum_bij_jk_to_bik(lsnn_out, w_out) if FLAGS.readout_bias: b_out = tf.Variable(np.zeros(N_output_classes_with_blank), dtype=tf.float32, name="OutBias") phn_logits += b_out if FLAGS.eprop == 'adaptive': weight_decay = tf.constant(FLAGS.readout_decay, dtype=tf.float32) w_out_decay = tf.assign(w_out, w_out - weight_decay * w_out) BA_decay = tf.assign(BA_out, BA_out - weight_decay * BA_out) KolenPollackDecay = [BA_decay, w_out_decay] # Firing rate regularization with tf.name_scope('RegularizationLoss'): av = tf.reduce_mean(outputs, axis=(0, 1)) / FLAGS.dt regularization_coeff = tf.Variable(np.ones(n_outputs) * FLAGS.reg, dtype=tf.float32, trainable=False) loss_reg = tf.reduce_sum(tf.square(av - regularization_f0) * regularization_coeff) # Define the graph for the loss function and the definition of the error with tf.name_scope('Loss'): loss_pred = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=phns, logits=phn_logits) loss_pred = tf.reduce_sum(loss_pred * weighted_relevant_mask, axis=1) loss_pred = tf.reduce_mean(loss_pred) loss = loss_pred + loss_reg if FLAGS.l2 > 0: losses_l2 = [tf.reduce_sum(tf.square(w)) for w in tf.trainable_variables()] loss += FLAGS.l2 * tf.reduce_sum(losses_l2) phn_prediction = tf.argmax(phn_logits, axis=2) is_correct = tf.equal(phns, phn_prediction) is_correct_float = tf.cast(is_correct, dtype=tf.float32) ler = tf.reduce_sum(is_correct_float * weighted_relevant_mask, axis=1) ler = 1. - tf.reduce_mean(ler) decoded = phn_prediction # Define the training step operation with tf.name_scope('Train'): if not FLAGS.adam: opt = tf.train.MomentumOptimizer(lr, momentum=FLAGS.momentum) else: opt = tf.train.AdamOptimizer(lr, epsilon=FLAGS.adam_epsilon, beta1=FLAGS.momentum) get_noise = lambda var: tf.random_normal(shape=tf.shape(var), stddev=gd_noise) grads = opt.compute_gradients(loss) if not FLAGS.cell_train: grads = [(g + get_noise(v), v) for g, v in grads if 'CustomALIF_' not in v.name] else: grads = [(g + get_noise(v), v) for g, v in grads] train_var_list = [var for g, var in grads] train_step = opt.apply_gradients(grads, global_step=global_step) print("NUM OF TRAINABLE", len(train_var_list)) for v in train_var_list: print(v.name) sess = tf.Session() sess.run(tf.global_variables_initializer()) if len(FLAGS.checkpoint) > 0: ckpt_vars = [v[0] for v in tf.train.list_variables(FLAGS.checkpoint[:-11])] var_names = [v.name for v in tf.get_collection_ref(tf.GraphKeys.GLOBAL_VARIABLES)] variables_can_be_restored = [v for v in tf.get_collection_ref(tf.GraphKeys.GLOBAL_VARIABLES) if v.name[:-2] in ckpt_vars] saver = tf.train.Saver(variables_can_be_restored) saver.restore(sess, FLAGS.checkpoint) print("Model restored from ", FLAGS.checkpoint) else: saver = tf.train.Saver() if FLAGS.plot: plt.ion() fig, ax_list = plt.subplots(nrows=3, figsize=(12, 6)) def sparse_tensor_to_string(sp_phn_tensor, i_batch): selection = sp_phn_tensor.indices[:, 0] == i_batch phn_list = sp_phn_tensor.values[selection] str_phn_list = [dataset.vocabulary[k] for k in phn_list] str_phn_list = ['_' if phn == 'sil' else phn for phn in str_phn_list] return ' '.join(str_phn_list) def update_plot(result_plot_values): for k in range(ax_list.shape[0]): ax = ax_list[k] ax.clear() strip_right_top_axis(ax) txt = dataset.meta_data_develop[0]['text'] if FLAGS.preproc == 'cochspike': seq_len = max([i[-1] for i in np.nonzero(result_plot_values['features'][0])]) else: seq_len = np.argmax( (result_plot_values['features'][0] == 0.).all(axis=1)) + 50 # add 50ms to see full net activity ax_list[0].set_title(txt) if "cochspike" in FLAGS.preproc: raster_plot(ax_list[0], result_plot_values['features'][0]) else: ax_list[0].imshow(result_plot_values['features'][0].T, aspect="auto") ax_list[0].set_xticklabels([]) ax_list[0].set_ylabel('Audio features') i = 0 # len(dataset.meta_data_develop[0]) - 1 ind_change = np.where(np.diff(dataset.phonem_stack_develop[i]) != 0)[0] phns_change = dataset.phonem_stack_develop[i][ind_change] if FLAGS.n_repeat > 1: ind_change *= FLAGS.n_repeat ax_list[0].set_xticks(np.concatenate([[0], ind_change])) tick_labels = [dataset.vocabulary[k] for k in phns_change] tick_labels = ['_' if lab == 'sil' else lab for lab in tick_labels] tick_labels.append(' ') ax_list[0].set_xticklabels(tick_labels) # raster_plot(ax_list[1], result_plot_values['outputs'][0][:, 0:(FLAGS.n_regular + FLAGS.n_adaptive):5]) raster_plot(ax_list[1], result_plot_values['outputs'][0]) ax_list[1].set_ylabel('LSNN\nsubsampled') ax_list[1].set_xticklabels([]) logits = result_plot_values['phn_logits'][0].T if FLAGS.n_repeat > 1: logits = np.repeat(logits, repeats=FLAGS.n_repeat, axis=1) # print("logits shape", logits.shape) ax_list[2].imshow(logits, aspect="auto") ax_list[2].set_ylabel('logits') ax_list[2].set_xlabel('time in ms') fig.subplots_adjust(hspace=0.2) for ax in ax_list: ax.set_xlim([0, seq_len]) ax.grid(color='black', alpha=0.4, linewidth=0.4) plt.draw() plt.pause(1) results = { 'loss_list': [], 'ler_list': [], 'ler_test_list': [], 'n_synapse': [], 'iteration_list': [], 'epoch_list': [], 'training_time_list': [], 'fr_max_list': [], 'fr_avg_list': [], } training_time = 0 testing_time = 0 test_result_tensors = {'ler': ler, 'loss': loss, 'loss_pred': loss_pred, 'loss_reg': loss_reg, 'learning_rate': lr, 'av': av, } train_result_tensors = {'train_step': train_step} total_parameters = 0 for variable in tf.trainable_variables(): shape = variable.get_shape() variable_parameters = 1 for dim in shape: variable_parameters *= dim.value total_parameters += variable_parameters print("TOTAL NUM OF PARAMETERS = ", total_parameters) def compute_result(type="validation"): assert type in ["validation", "test"] total_batch_size = dataset.n_develop if type == "validation" else dataset.n_test n_minibatch = total_batch_size // FLAGS.test_batch mini_batch_sizes = [FLAGS.test_batch for _ in range(n_minibatch)] if total_batch_size - (n_minibatch * FLAGS.test_batch) != 0: mini_batch_sizes = mini_batch_sizes + [total_batch_size - (n_minibatch * FLAGS.test_batch)] feed_dict = None collect_results = {k: [] for k in test_result_tensors.keys()} for idx, mb_size in enumerate(mini_batch_sizes): selection = np.arange(mb_size) selection = selection + np.ones_like(selection) * idx * FLAGS.test_batch if type == "validation": data = dataset.get_next_validation_batch(selection) elif type == "test": data = dataset.get_next_test_batch(selection) feed_dict = batch_to_feed_dict(data, is_train=False) run_output = sess.run(test_result_tensors, feed_dict=feed_dict) for k, value in run_output.items(): collect_results[k].append(value) plot_result = None if type == "validation": plot_result = sess.run(result_plot_tensors, feed_dict=feed_dict) mean_result = {key: np.mean(collect_results[key]) for key in collect_results.keys()} return mean_result, plot_result min_valid_err = 1. while dataset.current_epoch <= FLAGS.n_epochs: k_iteration = sess.run(global_step) if k_iteration == FLAGS.noise_step_start: sess.run(tf.assign(gd_noise, FLAGS.gd_noise)) print('Setting gradient noise standard deviation to: {}'.format(sess.run(gd_noise))) if k_iteration < 100 and FLAGS.ramping_learning_rate: old_lr = sess.run(lr) new_lr = sess.run(ramping_learning_rate_op) if k_iteration == 0: print('Ramping learning rate during first epoch: {:.2g} -> {:.2g}'.format(old_lr, new_lr)) if FLAGS.lr_decay_every > 0 and
np.mod(k_iteration, FLAGS.lr_decay_every)
numpy.mod
import numpy as np def ApplyWindowFunction(t,v,WindowFunction=None,Param=None): ''' Apply a window function to a time series. Inputs ====== t : float Time array v : float Time series data to be windowed WindowFunction : None | str If None - no window is applied, otherwise the string names the window function to be applied (see below for list of functions) Param : float Sometimes a window function may be modified by some parameter, setting this keyword to None will force the routine to use a default value where needed. Returns ======= vw : float Time series data, v, with the appropriate window function applied to it. Window Functions ================ Function | Param --------------------|------------- None | N/A 'cosine-bell' | float (percentage) 'hamming' | float (percentage) 'triangle' | float (percentage) 'welch' | float (percentage) 'blackman' | float (percentage) 'nuttall' | float (percentage) 'blackman-nuttall' | float (percentage) 'flat-top' | float (percentage) 'cosine' | float (percentage) 'gaussian' | tuple: (float (width),float (percentage)) ''' WF = { 'none': (_WFNone,0.0), 'cosine-bell': (_WFCosineBell,10.0), 'hamming': (_WFHamming,50.0), 'hann': (_WFHann,50.0), 'triangle': (_WFTriangle,50.0), 'welch': (_WFWelch,50.0), 'blackman': (_WFBlackman,50.0), 'nuttall': (_WFNuttall,50.0), 'blackman-nuttall': (_WFBlackmanNuttall,50.0), 'flat-top': (_WFFlatTop,50.0), 'cosine': (_WFCosine,10.0), 'gaussian': (_WFGaussian,(0.4,50.0))} # get the appropriate window function and parameters Func,Pdef = WF.get(WindowFunction,(_WFNone,0.0)) #check if anycustom parameters are being used if Param is None: P = Pdef else: P = Param #apply to data return Func(t,v,P) def WindowScaleFactor(WindowFunction=None,Param=None): ''' Work out the scaling factor for the amplitude due to the choice of window function. ''' SF = { 'none': (_SFNone,0.0), 'cosine-bell': (_SFCosineBell,10.0), 'hamming': (_SFHamming,50.0), 'hann': (_SFHann,50.0), 'triangle': (_SFTriangle,50.0), 'welch': (_SFWelch,50.0), 'blackman': (_SFBlackman,50.0), 'nuttall': (_SFNuttall,50.0), 'blackman-nuttall': (_SFBlackmanNuttall,50.0), 'flat-top': (_SFFlatTop,50.0), 'cosine': (_SFCosine,10.0), 'gaussian': (_SFGaussian,(0.4,50.0))} # get the appropriate window function and parameters Func,Pdef = SF.get(WindowFunction,(_SFNone,0.0)) #check if anycustom parameters are being used if Param is None: P = Pdef else: P = Param return Func(P) def _WFNone(t,v,P): ''' No window function - just return original array. ''' return v def _SFNone(P): ''' Scaling factor of the uniform window. ''' return 1.0 def _WFCosineBell(t,v,P=10.0): ''' This will multiply the date by the Split cosine bell function. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of time series at each end to be part of the cosine. The remaining 100 - 2*P % is left unchanged (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #first section w[i0] = 0.5 + 0.5*np.cos((ts[i0]/P + 1.0)*np.pi) #last section w[i2] = 0.5 + 0.5*np.cos(np.pi*(ts[i2] - (100 - P))/P) #multiply by v out = v*w return out def _SFCosineBell(P): ''' Scaling factor of the cosine-bell function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.5 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFHamming(t,v,P=50.0): ''' This will multiply the date by the Hamming window function. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #first section w[i0] = 0.53836 - 0.46164*np.cos(np.pi*ts[i0]/P) #last section w[i2] = 0.53836 - 0.46164*np.cos(np.pi*(1.0 + (ts[i2] - (100 - P))/P)) #multiply by v out = v*w return out def _SFHamming(P): ''' Scaling factor of the Hamming function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.53836 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFHann(t,v,P=50.0): ''' This will multiply the date by the Hann window (sometimes erroneously called the "Hanning" window). This is similar to the Hamming window, but is touches zero at each end. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #first section w[i0] = 0.5 - 0.5*np.cos(np.pi*ts[i0]/P) #last section w[i2] = 0.5 - 0.5*np.cos(np.pi*(1.0 + (ts[i2] - (100 - P))/P)) #multiply by v out = v*w return out def _SFHann(P): ''' Scaling factor of the Hann function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.5 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFTriangle(t,v,P=50.0): ''' This will multiply the date by the Triangle window. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #first part w[i0] = 1.0 - np.abs(ts[i0] - P)/P #second part w[i2] = 1.0 - np.abs(ts[i2] - (100 - P))/P out = w*v return out def _SFTriangle(P): ''' Scaling factor of the Triangle function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.5 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFWelch(t,v,P=5.0): ''' This will multiply the date by the Welch window. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #first part w[i0] = 1 - ((ts[i0] - P)/P)**2 #second part w[i2] = 1 - ((ts[i2] - (100 - P))/P)**2 out = w*v return out def _SFWelch(P): ''' Scaling factor of the Welch function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 2.0/3.0 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFBlackman(t,v,P=50.0): ''' This will multiply the date by the Blackman window. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #some constants a0 = 7938.0/18608 a1 = 9240.0/18608 a2 = 1430.0/18608 #first part w[i0] = a0 - a1*np.cos(np.pi*ts[i0]/P) + a2*np.cos(2*np.pi*ts[i0]/P) #second part w[i2] = a0 - a1*np.cos(np.pi*(ts[i2] - (100 - 2*P))/P) + a2*np.cos(2*np.pi*(ts[i2] - (100 - 2*P))/P) out = w*v return out def _SFBlackman(P): ''' Scaling factor of the Blackman function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 7938.0/18608 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFNuttall(t,v,P=50.0): ''' This will multiply the date by the Nuttall window. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #some constants a0 = 0.355768 a1 = 0.487396 a2 = 0.144232 a3 = 0.012604 #first part w[i0] = a0 - a1*np.cos(np.pi*ts[i0]/P) + a2*np.cos(2*np.pi*ts[i0]/P) - a3*np.cos(3*np.pi*ts[i0]/P) #second part w[i2] = a0 - a1*np.cos(np.pi*(ts[i2] - (100 - 2*P))/P) + a2*np.cos(2*np.pi*(ts[i2] - (100 - 2*P))/P) - a3*np.cos(3*np.pi*(ts[i2] - (100 - 2*P))/P) out = w*v return out def _SFNuttall(P): ''' Scaling factor of the Nuttall function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.355768 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFBlackmanNuttall(t,v,P=50.0): ''' This will multiply the date by the Blackman-Nuttall window. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 = np.nanmax(t) tr = t1 - t0 #get a scaled time array ts = 100.0*(t - t0)/tr #work out the indices for each section i0 = np.where(ts < P)[0] i2 = np.where(ts > (100 - P))[0] #calculate the window function w = np.ones(t.size,dtype=v.dtype) #some constants a0 = 0.3635819 a1 = 0.4891775 a2 = 0.1365995 a3 = 0.0106411 #first part w[i0] = a0 - a1*np.cos(np.pi*ts[i0]/P) + a2*np.cos(2*np.pi*ts[i0]/P) - a3*np.cos(3*np.pi*ts[i0]/P) #second part w[i2] = a0 - a1*np.cos(np.pi*(ts[i2] - (100 - 2*P))/P) + a2*np.cos(2*np.pi*(ts[i2] - (100 - 2*P))/P) - a3*np.cos(3*np.pi*(ts[i2] - (100 - 2*P))/P) out = w*v return out def _SFBlackmanNuttall(P): ''' Scaling factor of the Blackman-Nuttall function. ''' #work out the proportions of the window to which the function is #applied #untouched portion p0 = 0.01*(100 - 2*P) #touched portion p1 = 1.0 - p0 #this is the integral of the window function if it were to apply #to the entire window of data Iwind = 0.3635819 #calculate the overall factor sf = p0 + Iwind*p1 return sf def _WFFlatTop(t,v,P=0.0): ''' This will multiply the date by the flat top window. Inputs ====== t : float Time array v : float Time series to be windowed P : float Percentage of window to have the function applied at each end (if you set to 50.0, then the whole window has the function applied to it). Returns ======= out : float Windowed version of v ''' #get the time range t0 = np.nanmin(t) t1 =
np.nanmax(t)
numpy.nanmax
import pygame import sys import numpy pygame.init() FPS = 60 WIN_WIDTH = 600 WIN_HEIGHT = 400 WHITE = (255, 255, 255) BLACK = (0, 0, 0) RUNNING = True RADIUS = 4 EPS = 0.0000001 clock = pygame.time.Clock() sc = pygame.display.set_mode((WIN_WIDTH, WIN_HEIGHT)) FONT = pygame.font.Font(None, 20) def lieInBoardersOfPolinom(dots, p0): #dimensionalTest minx = dots[0][0] miny = dots[0][1] maxx = dots[0][0] maxy = dots[0][0] for i in dots: if i[0] > maxx: maxx = i[0] if i[0] < minx: minx = i[0] if i[1] > maxy: maxy = i[1] if i[1] < miny: miny = i[1] if minx <= p0[0] <= maxx and miny <= p0[1] <= maxy: return True else: return False def isZero(number): return numpy.abs(number) <= EPS def det(p1, p2, p3, p4): return numpy.linalg.det(numpy.array([p2 - p1, p4 - p3])) def dot(p1, p2, p3, p4): return numpy.dot(p2 - p1, p4 - p3) def isIntersected(p1, p2, p3, p4): d1 = det(p1, p2, p1, p4) d2 = det(p1, p2, p1, p3) d3 = det(p3, p4, p3, p1) d4 = det(p3, p4, p3, p2) if d1 * d2 <= 0 and d3 * d4 <= 0: return True else: return False def lieInside(p1, p2, p3, p4): d1 = det(p1, p2, p1, p4) d2 = det(p1, p2, p1, p3) d3 = det(p3, p4, p3, p1) d4 = det(p3, p4, p3, p2) if isZero(d1) and isZero(d2) and isZero(d3) and isZero(d4): c1 = dot(p1, p3, p1, p4) c2 = dot(p1, p3, p1, p4) c3 = dot(p3, p1, p3, p2) c4 = dot(p4, p1, p4, p2) if c1 <= 0 or c2 <= 0 or c3 <= 0 or c4 <= 0: return True else: return False else: return False def next(i, n): return i+1 if i+1 != n else 0 def prev(i, n): return i-1 if i-1 != -1 else n-1 def getSide(p0, p1, p2): det = numpy.linalg.det(numpy.array([p0 - p1, p2 - p1])) return -1 if det > 0 else 1 if det < 0 else 0 def belongToLine(p0, p1, p2): return True if getSide(p0, p1, p2) == 0 else False p0 = numpy.array([200, 200]) DOTS = [numpy.array([100, 100]), numpy.array([150, 200]), numpy.array([150, 220]), numpy.array([120, 200]), numpy.array([100, 200]), numpy.array([250, 280]),
numpy.array([400, 300])
numpy.array
#-*- coding:utf-8 -*- #''' # Created on 19-5-11 下午2:25 # # @Author: <NAME>(laygin) #''' import numpy as np import cv2 def quads_area(quads): ''' :param quads:(n, 4, 2) for quadrilateral points :return: ''' p0, p1, p2, p3 = quads[:, 0], quads[:, 1], quads[:, 2], quads[:, 3] a1 = np.abs(np.cross(p0-p1, p1-p2)) / 2 a2 = np.abs(np.cross(p0-p3, p3-p2)) / 2 return a1+a2 def clip_quads(quads, clip_box, alpha=0.25): ''' :param quads: shape is (n, 4, 2) :param clip_box:[0, 0, w, h] :param alpha: :return: ''' areas_ = quads_area(quads) quads[:,:,0] = np.minimum(np.maximum(quads[:,:,0], clip_box[0]), clip_box[2]) # 0<= x <= w quads[:, :, 1] = np.minimum(np.maximum(quads[:, :, 1], clip_box[1]), clip_box[3]) # 0<= y <= h delta_area = (areas_ - quads_area(quads)) / (areas_ + 1e-6) mask = (delta_area < (1-alpha)) & (quads_area(quads)>0) return quads[mask, :, :] class RandomCrop(object): """Crop randomly the image in a sample. Args: output_size (tuple or int): Desired output size. If int, square crop is made. """ def __init__(self, output_size): assert isinstance(output_size, (int, tuple)) if isinstance(output_size, int): self.output_size = (output_size, output_size) else: assert len(output_size) == 2 self.output_size = output_size def __call__(self, image, coors): h, w = image.shape[:2] new_h, new_w = self.output_size top = np.random.randint(0, h - new_h) left = np.random.randint(0, w - new_w) image = image[top: top + new_h, left: left + new_w] for i in range(len(coors)): coors[i] -= [left, top] coors[i] = clip_quads(coors[i], [0, 0, new_w, new_h], 0.25) return image, coors class CenterCrop(object): def __init__(self, output_size): assert isinstance(output_size, (int, tuple)) if isinstance(output_size, int): self.output_size = (output_size, output_size) else: assert len(output_size) == 2 self.output_size = output_size def __call__(self, image, coors): h, w = image.shape[:2] new_h, new_w = self.output_size top = int((h - new_h) // 2) left = int((w - new_w) // 2) image = image[top: top + new_h, left: left + new_w] for i in range(len(coors)): coors[i] -= [left, top] coors[i] = clip_quads(coors[i], [0, 0, new_w, new_h], 0.25) return image, coors class Resize(object): def __init__(self, output_size): assert isinstance(output_size, (int, tuple)) self.output_size = output_size def __call__(self, image, coors, size=None): h, w = image.shape[:2] if size is not None: self.output_size = size if isinstance(self.output_size, int): if h > w: new_h, new_w = self.output_size * h / w, self.output_size else: new_h, new_w = self.output_size, self.output_size * w / h else: new_h, new_w = self.output_size new_h, new_w = int(new_h), int(new_w) img = cv2.resize(image, (new_w, new_h)) for i in range(len(coors)): coors[i][:, :, 0] = coors[i][:, :, 0] * new_w / w coors[i][:,:,1] = coors[i][:,:,1] * new_h / h return img, coors '''augmentation''' class RandomBrightness(object): def __init__(self, delta=32): assert 255 >= delta >= 0, 'delta is invalid' self.delta = delta def __call__(self, img, coors=None): img = img.astype(np.float32) if np.random.randint(0,2): delta = np.random.uniform(-self.delta, self.delta) img += delta return
np.clip(img, 0, 255)
numpy.clip