prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
''' DESCRIPTION ---------- An assortment of code written for sanity checks on our 2017 TESS GI proposal about difference imaging of clusters. Most of this involving parsing Kharchenko et al (2013)'s table, hence the name `parse_MWSC.py`. The tools here do things like: * Find how many open clusters we could observe * Find how many member stars within those we could observe * Compute TESS mags for everything (mostly via `ticgen`) * Estimate blending effects, mainly through the dilution (computed just by summing magnitudes appropriately) * Using K+13's King profile fits, estimate the surface density of member stars. It turns out that this radically underestimates the actual surface density of stars (because of all the background blends). Moreover, for purposes of motivating our difference imaging, "the number of stars in your aperture" is more relevant than "a surface density", and even more relevant than both of those is dilution. So I settled on the dilution calculation. The plotting scripts here also make the skymap figure of the proposal. (Where are the clusters on the sky?) USAGE ---------- From /src/, select desired functions from __main__ below. Then: >>> python parse_MWSC.py > output.log ''' import matplotlib.pyplot as plt, seaborn as sns import pandas as pd, numpy as np from astropy.table import Table from astropy.io import ascii from astropy.coordinates import SkyCoord import astropy.units as u from math import pi import pickle, os from scipy.interpolate import interp1d global COLORS COLORS = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # cite: # # <NAME>. & <NAME>. 2017, ticgen: A tool for calculating a TESS # magnitude, and an expected noise level for stars to be observed by TESS., # v1.0.0, Zenodo, doi:10.5281/zenodo.888217 # # and Stassun & friends (2017). #import ticgen as ticgen # # These two, from the website # # http://dc.zah.uni-heidelberg.de/mwsc/q/clu/form # # are actually outdated or something. They provided too few resuls.. # close_certain = pd.read_csv('../data/MWSC_search_lt_2000_pc_type_certain.csv') # close_junk = pd.read_csv('../data/MWSC_search_lt_2000_pc_type_certain.csv') def get_cluster_data(): # Downloaded the MWSC from # http://cdsarc.u-strasbg.fr/viz-bin/Cat?cat=J%2FA%2BA%2F558%2FA53&target=http& tab = Table.read('../data/Kharchenko_2013_MWSC.vot', format='votable') df = tab.to_pandas() for colname in ['Type', 'Name', 'n_Type', 'SType']: df[colname] = [e.decode('utf-8') for e in list(df[colname])] # From erratum: # For the Sun-like star, a 4 Re planet produces a transit depth of 0.13%. The # limiting magnitude for transits to be detectable is about I_C = 11.4 . This # also corresponds to K_s ~= 10.6 and a maximum distance of 290 pc, assuming no # extinction. cinds = np.array(df['d']<500) close = df[cinds] finds = np.array(df['d']<1000) far = df[finds] N_c_r0 = int(np.sum(close['N1sr0'])) N_c_r1 = int(np.sum(close['N1sr1'])) N_c_r2 = int(np.sum(close['N1sr2'])) N_f_r0 = int(np.sum(far['N1sr0'])) N_f_r1 = int(np.sum(far['N1sr1'])) N_f_r2 = int(np.sum(far['N1sr2'])) type_d = {'a':'association', 'g':'globular cluster', 'm':'moving group', 'n':'nebulosity/presence of nebulosity', 'r':'remnant cluster', 's':'asterism', '': 'no label'} ntype_d = {'o':'object','c':'candidate','':'no label'} print('*'*50) print('\nMilky Way Star Clusters (close := <500pc)' '\nN_clusters: {:d}'.format(len(close))+\ '\nN_stars (in core): {:d}'.format(N_c_r0)+\ '\nN_stars (in central part): {:d}'.format(N_c_r1)+\ '\nN_stars (in cluster): {:d}'.format(N_c_r2)) print('\n'+'*'*50) print('\nMilky Way Star Clusters (far := <1000pc)' '\nN_clusters: {:d}'.format(len(far))+\ '\nN_stars (in core): {:d}'.format(N_f_r0)+\ '\nN_stars (in central part): {:d}'.format(N_f_r1)+\ '\nN_stars (in cluster): {:d}'.format(N_f_r2)) print('\n'+'*'*50) #################### # Post-processing. # #################### # Compute mean density mean_N_star_per_sqdeg = df['N1sr2'] / (pi * df['r2']**2) df['mean_N_star_per_sqdeg'] = mean_N_star_per_sqdeg # Compute King profiles king_profiles, theta_profiles = [], [] for rt, rc, k, d in zip(np.array(df['rt']), np.array(df['rc']), np.array(df['k']), np.array(df['d'])): sigma, theta = get_king_proj_density_profile(rt, rc, k, d) king_profiles.append(sigma) theta_profiles.append(theta) df['king_profile'] = king_profiles df['theta'] = theta_profiles ra = np.array(df['RAJ2000']) dec = np.array(df['DEJ2000']) c = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs') galactic_long = np.array(c.galactic.l) galactic_lat = np.array(c.galactic.b) ecliptic_long = np.array(c.barycentrictrueecliptic.lon) ecliptic_lat = np.array(c.barycentrictrueecliptic.lat) df['galactic_long'] = galactic_long df['galactic_lat'] = galactic_lat df['ecliptic_long'] = ecliptic_long df['ecliptic_lat'] = ecliptic_lat cinds = np.array(df['d']<500) close = df[cinds] finds = np.array(df['d']<1000) far = df[finds] return close, far, df def distance_histogram(df): plt.close('all') f,ax = plt.subplots(figsize=(4,4)) hist, bin_edges = np.histogram( df['d'], bins=np.append(np.logspace(1,6,1e3), 1e7), normed=False) ax.step(bin_edges[:-1], np.cumsum(hist), 'k-', where='post') ax.set_xlabel('distance [pc]') ax.set_ylabel('cumulative N clusters in MWSC') ax.set_xlim([5e1,1e4]) ax.set_xscale('log') ax.set_yscale('log') f.tight_layout() f.savefig('d_cumdistribn_MWSC.pdf', dpi=300, bbox_inches='tight') def angular_scale_cumdist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() scale_d = {'r0': 'angular radius of the core (0 if no core)', 'r1': '"central" radius', 'r2': 'cluster radius'} ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: for k in ['r2']: hist, bin_edges = np.histogram( dat[k], bins=np.append(np.logspace(-2,1,1e3), 1e7), normed=False) ax.step(bin_edges[:-1], np.cumsum(hist), where='post', label=t+' '+scale_d[k]) ix += 1 def tick_function(angle_deg): tess_px = 21*u.arcsec vals = angle_deg/tess_px.to(u.deg).value return ['%.1f' % z for z in vals] ax.legend(loc='upper left', fontsize='xx-small') ax.set_xlabel('ang scale [deg]') ax.set_ylabel('cumulative N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.array([1e-2, 1e-1, 1e0, 1e1]) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('angular scale [TESS pixels]') f.tight_layout() f.savefig('angscale_cumdistribn_MWSC.pdf', dpi=300, bbox_inches='tight') def angular_scale_hist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() scale_d = {'r0': 'angular radius of the core (0 if no core)', 'r1': '"central" radius', 'r2': 'cluster radius'} ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: for k in ['r2']: hist, bin_edges = np.histogram( dat[k], bins=np.append(np.logspace(-2,1,7), 1e7), normed=False) ax.step(bin_edges[:-1], hist, where='post', label=t+' '+scale_d[k], alpha=0.7) ix += 1 def tick_function(angle_deg): tess_px = 21*u.arcsec vals = angle_deg/tess_px.to(u.deg).value return ['%.1f' % z for z in vals] ax.legend(loc='best', fontsize='xx-small') ax.set_xlabel('ang scale [deg]') ax.set_ylabel('N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.array([1e-2, 1e-1, 1e0, 1e1]) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('angular scale [TESS pixels]') f.tight_layout() f.savefig('angscale_distribn_MWSC.pdf', dpi=300, bbox_inches='tight') def mean_density_hist(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f,ax = plt.subplots(figsize=(4,4)) axt = ax.twiny() ix = 0 for t, dat in [('$d<0.5$ kpc',close), ('$d<1$ kpc',far)]: hist, bin_edges = np.histogram( dat['mean_N_star_per_sqdeg'], bins=np.append(np.logspace(0,4,9), 1e7), normed=False) ax.step(bin_edges[:-1], hist, where='post', label=t, alpha=0.7) ix += 1 def tick_function(N_star_per_sqdeg): tess_px = 21*u.arcsec tess_px_area = tess_px**2 deg_per_tess_px = tess_px_area.to(u.deg**2).value vals = N_star_per_sqdeg * deg_per_tess_px outstrs = ['%.1E'%z for z in vals] outstrs = ['$'+o[0] + r'\! \cdot \! 10^{\mathrm{-}' + o[-1] + r'}$' \ for o in outstrs] return outstrs ax.legend(loc='best', fontsize='xx-small') ax.set_xlabel('mean areal density [stars/$\mathrm{deg}^{2}$]') ax.set_ylabel('N clusters in MWSC') ax.set_xscale('log') #ax.set_yscale('log') axt.set_xscale('log') axt.set_xlim(ax.get_xlim()) new_tick_locations = np.logspace(0,4,5) axt.set_xticks(new_tick_locations) axt.set_xticklabels(tick_function(new_tick_locations)) axt.set_xlabel('mean areal density [stars/$\mathrm{(TESS\ px)}^{2}$]') f.tight_layout() f.savefig('mean_density_distribn_MWSC.pdf', dpi=300, bbox_inches='tight') def plot_king_profiles(close, far): colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] plt.close('all') f, axs = plt.subplots(figsize=(4,7), nrows=2, ncols=1, sharex=True) for theta, profile in zip(close['theta'], close['king_profile']): axs[0].plot(theta, profile, alpha=0.2, c=colors[0]) for theta, profile in zip(far['theta'], far['king_profile']): axs[1].plot(theta, profile, alpha=0.1, c=colors[1]) # Add text in top right. axs[0].text(0.95, 0.95, '$d < 500\ \mathrm{pc}$', verticalalignment='top', horizontalalignment='right', transform=axs[0].transAxes, fontsize='large') axs[1].text(0.95, 0.95, '$d < 1\ \mathrm{kpc}$', verticalalignment='top', horizontalalignment='right', transform=axs[1].transAxes, fontsize='large') xmin, xmax = 1, 1e3 for ax in axs: ax.set_xscale('log') ax.set_xlim([xmin, xmax]) if ax == axs[1]: ax.xaxis.set_ticks_position('both') ax.set_xlabel('angular distance [TESS px]') ax.tick_params(which='both', direction='in', zorder=0) ax.set_ylabel(r'$\Sigma(r)$ [stars/$\mathrm{(TESS\ px)}^{2}$]') f.tight_layout(h_pad=0) f.savefig('king_density_profiles_close_MWSC.pdf', dpi=300, bbox_inches='tight') def get_king_proj_density_profile(r_t, r_c, k, d): ''' r_t: King's tidal radius [pc] r_c: King's core radius [pc] k: normalization [pc^{-2}] d: distance [pc] returns density profile in number per sq tess pixel ''' # Eq 4 of Ernst et al, 2010 https://arxiv.org/pdf/1009.0710.pdf # citing King (1962). r = np.logspace(-2, 2.4, num=int(2e4)) X = 1 + (r/r_c)**2 C = 1 + (r_t/r_c)**2 vals = k * (X**(-1/2) - C**(-1/2))**2 #NOTE: this fails when r_t does not exist. This might be important... vals[r>r_t] = 0 # vals currently in number per square parsec. want in number per TESS px. # first convert to number per square arcsec # N per sq arcsec. First term converts to 1/AU^2. Then the angular surface # density scales as the square of the distance (same number of things, # smaller angle) sigma = vals * 206265**(-2) * d**2 tess_px = 21*u.arcsec arcsec_per_px = 21 sigma_per_sq_px = sigma * arcsec_per_px**2 # N per px^2 # r is in pc. we want the profile vs angular distance. AU_per_pc = 206265 r *= AU_per_pc # r now in AU theta = r / d # angular distance in arcsec tess_px = 21 # arcsec per px theta *= (1/tess_px) # angular distance in px return sigma_per_sq_px, theta def make_wget_script(df): ''' to download stellar data for each cluster, need to run a script of wgets. this function makes the script. ''' # get MWSC ids in "0012", "0007" format mwsc = np.array(df['MWSC']) mwsc_ids = np.array([str(int(f)).zfill(4) for f in mwsc]) names = np.array(df['Name']) f = open('../data/MWSC_stellar_data/get_stellar_data.sh', 'w') outstrs = [] for mwsc_id, name in zip(mwsc_ids, names): startstr = 'wget '+\ 'ftp://cdsarc.u-strasbg.fr/pub/cats/J/A%2BA/558/A53/stars/2m_' middlestr = str(mwsc_id) + '_' + str(name) endstr = '.dat.bz2 ;\n' outstr = startstr + middlestr + endstr outstrs.append(outstr) f.writelines(outstrs) f.close() print('made wget script!') def get_stellar_data_too(df, savstr, p_0=61): ''' args: savstr (str): gets the string used to ID the output pickle p_0: probability for inclusion. See Eqs in Kharchenko+ 2012. p_0=61 (not sure why not 68.27) is 1 sigma members by kinematic and photometric membership probability, also accounting for spatial step function and proximity within stated cluster radius. call after `get_cluster_data`. This function reads the Kharchenko+ 2013 "stars/*" tables for each cluster, and selects the stars that are "most probably cluster members, that is, stars with kinematic and photometric membership probabilities >61%". (See Kharchenko+ 2012 for definitions of these probabilities) It then computes T mags for all of the members. For each cluster, it computes surface density vs angular distance from cluster center. %%%Method 1 (outdated): %%%Interpolating these results over the King profiles, it associates a surface %%% density with each star. %%%(WARNING: how many clusters do not have King profiles?) Method 2 (used): Associate a surface density with each star by counting stars in annuli. This is also not very useful. It then returns "close", "far", and the entire dataframe ''' names = np.array(df['Name']) r2s = np.array(df['r2']) # cluster radius (deg) # get MWSC ids in "0012", "0007" format mwsc = np.array(df['MWSC']) mwsc_ids = np.array([str(int(f)).zfill(4) for f in mwsc]) readme = '../data/stellar_data_README' outd = {} # loop over clusters ix = 0 for mwsc_id, name, r2 in list(zip(mwsc_ids, names, r2s)): print('\n'+50*'*') print('{:d}. {:s}: {:s}'.format(ix, str(mwsc_id), str(name))) outd[name] = {} middlestr = str(mwsc_id) + '_' + str(name) fpath = '../data/MWSC_stellar_data/2m_'+middlestr+'.dat' if name != 'Melotte_20': tab = ascii.read(fpath, readme=readme) else: continue # Select 1-sigma cluster members by photometry & kinematics. # From Kharchenko+ 2012, also require that: # * the 2MASS flag Qflg is "A" (i.e., signal-to-noise ratio # S/N > 10) in each photometric band for stars fainter than # Ks = 7.0; # * the mean errors of proper motions are smaller than 10 mas/yr # for stars with δ ≥ −30deg , and smaller than 15 mas/yr for # δ < −30deg. inds = (tab['Ps'] == 1) inds &= (tab['Pkin'] > p_0) inds &= (tab['PJKs'] > p_0) inds &= (tab['PJH'] > p_0) inds &= (tab['Rcl'] < r2) inds &= ( ((tab['Ksmag']>7) & (tab['Qflg']=='AAA')) | (tab['Ksmag']<7)) pm_inds = ((tab['e_pm'] < 10) & (tab['DEdeg']>-30)) | \ ((tab['e_pm'] < 15) & (tab['DEdeg']<=-30)) inds &= pm_inds members = tab[inds] mdf = members.to_pandas() # Compute T mag and 1-sigma, 1 hour integration noise using Mr Tommy # B's ticgen utility. NB relevant citations are listed at top. # NB I also modified his code to fix the needlessly complicated # np.savetxt formatting. mags = mdf[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_csv('temp.csv', index=False) ticgen.ticgen_csv({'input_fn':'temp.csv'}) temp = pd.read_csv('temp.csv-ticgen.csv') member_T_mags = np.array(temp['Tmag']) noise = np.array(temp['noise_1sig']) mdf['Tmag'] = member_T_mags mdf['noise_1hr'] = noise ######################################################################### ## METHOD #1 to assign surface densities: ## The King profile for the cluster is already known. Assign each member ## star a surface density from the King profile evaluated at the member ## star's angular position. #king_profile = np.array(df.loc[df['Name']==name, 'king_profile'])[0] #king_theta = np.array(df.loc[df['Name']==name, 'theta'])[0] ## theta is saved in units of TESS px. Get each star's distance from the ## center in TESS pixels. #arcsec_per_tesspx = 21 #Rcl = np.array(mdf['Rcl'])*u.deg #dists_from_center = np.array(Rcl.to(u.arcsec).value/arcsec_per_tesspx) ## interpolate over the King profile #func = interp1d(theta, king_profile, fill_value='extrapolate') #try: # density_per_sq_px = func(dists_from_center) #except: # print('SAVED OUTPUT TO ../data/Kharachenko_full.p') # pickle.dump(outd, open('../data/Kharachenko_full.p', 'wb')) # print('interpolation failed. check!') # import IPython; IPython.embed() #mdf['density_per_sq_px'] = density_per_sq_px ######################################################################### ######################################################################### # METHOD #2 for surface densities (because Method #1 only counts # member stars!). # Just count stars in annuli. king_profile = np.array(df.loc[df['Name']==name, 'king_profile'])[0] king_theta = np.array(df.loc[df['Name']==name, 'theta'])[0] inds = (tab['Rcl'] < r2) stars_in_annulus = tab[inds] sia = stars_in_annulus.to_pandas() arcsec_per_tesspx = 21 Rcl = np.array(sia['Rcl'])*u.deg dists_from_center = np.array(Rcl.to(u.arcsec).value/arcsec_per_tesspx) maxdist = ((r2*u.deg).to(u.arcsec).value/arcsec_per_tesspx) n_pts = np.min((50, int(len(sia)/2))) angsep_grid = np.linspace(0, maxdist, num=n_pts) # Attempt to compute Tmags for everything. Only count stars with # T<limiting magnitude as "contaminants" (anything else is probably too # faint to really matter!) mags = sia[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_csv('temp.csv', index=False) ticgen.ticgen_csv({'input_fn':'temp.csv'}) temp = pd.read_csv('temp.csv-ticgen.csv') T_mags = np.array(temp['Tmag']) all_dists = dists_from_center[(T_mags > 0) & (T_mags < 17) & \ (np.isfinite(T_mags))] N_in_bin, edges = np.histogram( all_dists, bins=angsep_grid, normed=False) # compute empirical surface density, defined on the midpoints outer, inner = angsep_grid[1:], angsep_grid[:-1] sigma = N_in_bin / (pi * (outer**2 - inner**2)) midpoints = angsep_grid[:-1] + np.diff(angsep_grid)/2 # interpolate over the empirical surface density as a function of # angular separation to assign surface densities to member stars. func = interp1d(midpoints, sigma, fill_value='extrapolate') member_Rcl = np.array(mdf['Rcl'])*u.deg member_dists_from_center = np.array(member_Rcl.to(u.arcsec).value/\ arcsec_per_tesspx) try: member_density_per_sq_px = func(member_dists_from_center) except: print('SAVED OUTPUT TO ../data/Kharachenko_full_{:s}.p'.format(savstr)) pickle.dump(outd, open( '../data/Kharachenko_full_{:s}.p'.format(savstr), 'wb')) print('interpolation failed. check!') import IPython; IPython.embed() mdf['density_per_sq_px'] = member_density_per_sq_px ######################################################################### N_catalogd = int(df.loc[df['Name']==name, 'N1sr2']) N_my_onesigma = int(len(mdf)) got_Tmag = (np.array(mdf['Tmag']) > 0) N_with_Tmag = len(mdf[got_Tmag]) print('N catalogued as in cluster: {:d}'.format(N_catalogd)) print('N I got as in cluster: {:d}'.format(N_my_onesigma)) print('N of them with Tmag: {:d}'.format(N_with_Tmag)) diff = abs(N_catalogd - N_with_Tmag) if diff > 5: print('\nWARNING: my cuts different from Kharachenko+ 2013!!') lens = np.array([len(member_T_mags), len(noise), len(member_dists_from_center), len(member_density_per_sq_px)]) np.testing.assert_equal(lens, lens[0]*np.ones_like(lens)) # for members outd[name]['Tmag'] = np.array(mdf['Tmag']) outd[name]['noise_1hr'] = np.array(mdf['noise_1hr']) outd[name]['Rcl'] = member_dists_from_center outd[name]['density_per_sq_px'] = member_density_per_sq_px # Ocassionally, do some output plots to compare profiles if ix%50 == 0: plt.close('all') f, ax=plt.subplots() ax.scatter(member_dists_from_center, member_density_per_sq_px) ax.plot(king_theta, king_profile) ax.set_ylim([0,np.max((np.max(member_density_per_sq_px), np.max(king_profile) ) )]) ax.set_xlim([0, 1.02*np.max(member_dists_from_center)]) ax.set_xlabel('angular sep [TESS px]') ax.set_ylabel('surface density (line: King model, dots: empirical' ' [per tess px area]', fontsize='xx-small') f.savefig('king_v_empirical/{:s}_{:d}.pdf'.format(name, ix), bbox_inches='tight') del mdf ix += 1 print(50*'*') print('SAVED OUTPUT TO ../data/Kharchenko_full_{:s}.p'.format(savstr)) pickle.dump(outd, open( '../data/Kharchenko_full_{:s}.p'.format(savstr), 'wb')) print(50*'*') close = df[df['d'] < 500] far = df[df['d'] < 1000] return close, far, df def get_dilutions_and_distances(df, savstr, faintest_Tmag=16, p_0=61): ''' args: savstr (str): gets the string used to ID the output pickle p_0: probability for inclusion. See Eqs in Kharchenko+ 2012. p_0=61 (not sure why not 68.27) is 1 sigma members by kinematic and photometric membership probability, also accounting for spatial step function and proximity within stated cluster radius. call after `get_cluster_data`. This function reads the Kharchenko+ 2013 "stars/*" tables for each cluster, and selects the stars that are "most probably cluster members, that is, stars with kinematic and photometric membership probabilities >61%". (See Kharchenko+ 2012 for definitions of these probabilities) It then computes T mags for all of the members. For each cluster member, it then finds all cataloged stars (not necessarily cluster members) within 2, 3, 4, 5, 6 TESS pixels. It sums the fluxes, and computes a dilution. It saves (for each cluster member): * number of stars in various apertures * dilution for various apertures * distance of cluster member * Tmag of cluster member * noise_1hr for cluster member * ra,dec for cluster member ''' names = np.array(df['Name']) r2s = np.array(df['r2']) # get MWSC ids in "0012", "0007" format mwsc = np.array(df['MWSC']) mwsc_ids = np.array([str(int(f)).zfill(4) for f in mwsc]) readme = '../data/stellar_data_README' outd = {} # loop over clusters ix = 0 start, step = 3, 7 for mwsc_id, name, r2 in list(zip(mwsc_ids, names, r2s))[start::step]: print('\n'+50*'*') print('{:d}. {:s}: {:s}'.format(ix, str(mwsc_id), str(name))) outd[name] = {} outpath = '../data/MWSC_dilution_calc/{:s}.csv'.format(str(name)) if os.path.exists(outpath): print('found {:s}, continue'.format(outpath)) continue middlestr = str(mwsc_id) + '_' + str(name) fpath = '../data/MWSC_stellar_data/2m_'+middlestr+'.dat' if name not in ['Melotte_20', 'Sco_OB4']: tab = ascii.read(fpath, readme=readme) else: continue # Select 1-sigma cluster members by photometry & kinematics. # From Kharchenko+ 2012, also require that: # * the 2MASS flag Qflg is "A" (i.e., signal-to-noise ratio # S/N > 10) in each photometric band for stars fainter than # Ks = 7.0; # * the mean errors of proper motions are smaller than 10 mas/yr # for stars with δ ≥ −30deg , and smaller than 15 mas/yr for # δ < −30deg. inds = (tab['Ps'] == 1) inds &= (tab['Pkin'] > p_0) inds &= (tab['PJKs'] > p_0) inds &= (tab['PJH'] > p_0) inds &= (tab['Rcl'] < r2) inds &= ( ((tab['Ksmag']>7) & (tab['Qflg']=='AAA')) | (tab['Ksmag']<7)) pm_inds = ((tab['e_pm'] < 10) & (tab['DEdeg']>-30)) | \ ((tab['e_pm'] < 15) & (tab['DEdeg']<=-30)) inds &= pm_inds members = tab[inds] mdf = members.to_pandas() # Compute T mag and 1-sigma, 1 hour integration noise using Mr Tommy # B's ticgen utility. NB relevant citations are listed at top. # NB I also modified his code to fix the needlessly complicated # np.savetxt formatting. mags = mdf[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_csv('temp{:s}.csv'.format(name), index=False) ticgen.ticgen_csv({'input_fn':'temp{:s}.csv'.format(name)}) temp = pd.read_csv('temp{:s}.csv-ticgen.csv'.format(name)) member_T_mags = np.array(temp['Tmag']) member_noise = np.array(temp['noise_1sig']) mdf['Tmag'] = member_T_mags mdf['noise_1hr'] = member_noise desired_Tmag_inds = ((member_T_mags > 0) & (member_T_mags < faintest_Tmag) & \ (np.isfinite(member_T_mags)) ) sel_members = mdf[desired_Tmag_inds] # Compute T mag for everything in this cluster field. NOTE this # consistently seems to fail for ~10% of the stars. This is not # precision science (we are getting coarse estimates), so ignore this # likely bug. mags = tab[['Bmag', 'Vmag', 'Jmag', 'Hmag', 'Ksmag']] mags.to_pandas().to_csv('temp{:s}.csv'.format(name), index=False) ticgen.ticgen_csv({'input_fn':'temp{:s}.csv'.format(name)}) temp = pd.read_csv('temp{:s}.csv-ticgen.csv'.format(name)) all_Tmag = np.array(temp['Tmag']) tab['Tmag'] = all_Tmag Tmag_inds = ((all_Tmag>0) & (all_Tmag<28) & (np.isfinite(all_Tmag))) sel_in_field = tab[Tmag_inds] # Want, for all cluster members with T<faintest_Tmag # * distance of cluster member # * Tmag of cluster member # * noise_1hr for cluster member # * ra,dec for cluster member # * number of stars in various apertures # * dilution for various apertures sel_members['dist'] = np.ones_like(np.array(sel_members['RAhour']))*\ float(df.loc[df['Name']==name, 'd']) Nstar_dict, dil_dict = {}, {} arcsec_per_px = 21 for aper_radius in [2,3,4,5,6]: Nstar_str = 'Nstar_{:d}px'.format(aper_radius) dil_str = 'dil_{:d}px'.format(aper_radius) Nstar_dict[Nstar_str] = [] dil_dict[dil_str] = [] # Iterate over members, then over apertures. print('finding all neighbors and computing dilutions') for sm_ra, sm_dec, sm_Tmag in zip(sel_members['RAhour'], sel_members['DEdeg'], sel_members['Tmag']): member_c = SkyCoord(ra=sm_ra*u.hourangle, dec=sm_dec*u.degree) nbhr_RAs = np.array(sel_in_field['RAhour'])*u.hourangle nbhr_DECs = np.array(sel_in_field['DEdeg'])*u.degree c = SkyCoord(ra=nbhr_RAs, dec=nbhr_DECs) seps = c.separation(member_c) # Find neighboring stars in aperture. for aper_radius in [2,3,4,5,6]: Nstar_str = 'Nstar_{:d}px'.format(aper_radius) dil_str = 'dil_{:d}px'.format(aper_radius) aper_radius_in_as = aper_radius * arcsec_per_px * u.arcsecond in_aperture = (seps < aper_radius_in_as) stars_in_aperture = sel_in_field[in_aperture] Nstar_in_aperture = len(stars_in_aperture) # NB this list includes the target star. Tmags_in_aperture = np.array(stars_in_aperture['Tmag']) # Compute dilution. numerator = 10**(-0.4 * sm_Tmag) denominator = np.sum( 10**(-0.4 * Tmags_in_aperture) ) dilution = numerator/denominator Nstar_dict[Nstar_str].append(Nstar_in_aperture) dil_dict[dil_str].append(dilution) for aper_radius in [2,3,4,5,6]: Nstar_str = 'Nstar_{:d}px'.format(aper_radius) dil_str = 'dil_{:d}px'.format(aper_radius) sel_members[Nstar_str] = Nstar_dict[Nstar_str] sel_members[dil_str] = dil_dict[dil_str] print('done computing dilutions') out = sel_members[ ['dist','Tmag','noise_1hr','RAhour','DEdeg', 'Nstar_2px','Nstar_3px','Nstar_4px','Nstar_5px','Nstar_6px', 'dil_2px','dil_3px','dil_4px','dil_5px','dil_6px' ] ] ######################################################################### N_catalogd = int(df.loc[df['Name']==name, 'N1sr2']) N_my_onesigma = len(mdf) N_with_Tmag = len(out) print('N catalogued as in cluster: {:d}'.format(N_catalogd)) print('N I got as in cluster: {:d}'.format(N_my_onesigma)) print('N of them with Tmag: {:d}'.format(N_with_Tmag)) diff = abs(N_catalogd - N_with_Tmag) if diff > 5: print('\nWARNING: my cuts different from Kharachenko+ 2013!!') ######################################################################### fpath = '../data/MWSC_dilution_calc/{:s}.csv'.format(str(name)) print('saving to {:s}'.format(fpath)) out.to_csv(fpath, index=False) print('done with dilution calculation') def plot_King_density_vs_Tmag_scatter(close, far): c_names = np.sort(close['Name']) f_names = np.sort(far['Name']) obj = pickle.load(open('../data/Kharachenko_full.p','rb')) colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # Close clusters Tmags, densities = np.array([]), np.array([]) for c_name in c_names: c = obj[c_name] #XXX FIXME THIS IS WRONG!!!!!!!! Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='hex', color=colors[0], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-6,0]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{King}}\ [\mathrm{member\ stars/TESS\ px}^2]$)') g.savefig('king_density_vs_Tmag_scatter_close.pdf', dpi=300, bbox_inches='tight') # Far clusters Tmags, densities = np.array([]), np.array([]) for f_name in f_names: c = obj[f_name] #XXX FIXME THIS IS WRONG Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='hex', color=colors[1], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-6,0]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{King}}\ [\mathrm{member\ stars/TESS\ px}^2]$)') g.savefig('king_density_vs_Tmag_scatter_far.pdf', dpi=300, bbox_inches='tight') def plot_empirical_density_vs_Tmag_scatter(close, far): c_names = np.sort(close['Name']) f_names = np.sort(far['Name']) obj = pickle.load(open('../data/Kharchenko_full_Tmag_lt_18.p','rb')) colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # Close clusters Tmags, densities = np.array([]), np.array([]) for c_name in c_names: c = obj[c_name] Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='kde', color=colors[0], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-1.5,0.5]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{empirical}}\ [\mathrm{obsd\ stars/TESS\ px}^2]$)') g.savefig('empirical_density_vs_Tmag_scatter_close.pdf', dpi=300, bbox_inches='tight') # Far clusters Tmags, densities = np.array([]), np.array([]) for f_name in f_names: c = obj[f_name] #XXX FIXME THIS IS WRONG!! Tmags = np.concatenate((Tmags, c['Tmag'])) densities = np.concatenate((densities, c['density_per_sq_px'])) inds = (Tmags > 0) & (np.isfinite(densities)) & (densities < 1e10) inds &= (densities > 1e-20) df = pd.DataFrame({'Tmag':Tmags[inds], 'log10_density_per_sq_px':np.log10(densities[inds])}) plt.close('all') g = sns.jointplot(x='Tmag', y='log10_density_per_sq_px', data=df, kind='kde', color=colors[1], size=4, space=0, stat_func=None, xlim=[9,17], ylim=[-1.5,0.5]) g.set_axis_labels('TESS-band magnitude', '$\log_{10}$($\Sigma_{\mathrm{empirical}}\ [\mathrm{obsd\ stars/TESS\ px}^2]$)') g.savefig('empirical_density_vs_Tmag_scatter_far.pdf', dpi=300, bbox_inches='tight') def plot_cluster_positions(close, far): ''' Show the positions on Kavrayskiy VII, a global projection similar to Robinson, used widely in the former Soviet Union. ''' import matplotlib as mpl from mpl_toolkits.basemap import Basemap colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] for coord in ['galactic','ecliptic']: plt.close('all') f, ax = plt.subplots(figsize=(4,4)) m = Basemap(projection='kav7',lon_0=0, resolution='c', ax=ax) lats = np.array(close[coord+'_lat']) lons = np.array(close[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,3,marker='o',color=colors[0], label='$d<0.5$kpc', zorder=4) lats = np.array(far[coord+'_lat']) lons = np.array(far[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,3,marker='o',color=colors[1], label='$0.5<d<1$kpc', zorder=3) parallels = np.arange(-90.,120.,30.) meridians = np.arange(0.,420.,60.) # labels = [left,right,top,bottom] m.drawparallels(parallels, labels=[1,0,0,0], zorder=2, fontsize='small') ms = m.drawmeridians(meridians, labels=[0,0,0,1], zorder=2, fontsize='small') # Shrink current axis's height by 10% on the bottom box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) # Put a legend below current axis ax.legend(loc='upper center', bbox_to_anchor=(0.91, -0.07), fancybox=True, ncol=1, fontsize='x-small') for _m in ms: try: ms[_m][1][0].set_rotation(45) except: pass ax.set_xlabel(coord+' long', labelpad=25, fontsize='small') ax.set_ylabel(coord+' lat', labelpad=25, fontsize='small') #################### # add TESS footprint dat = np.genfromtxt('../data/fig4_bundle/nhemi_shemi.csv', delimiter=',') dat = pd.DataFrame(np.transpose(dat), columns=['icSys', 'tSys', 'teff', 'logg', 'r', 'm', 'eLat', 'eLon', 'micSys', 'mvSys', 'mic', 'mv', 'stat', 'nPntg']) eLon, eLat = np.array(dat.eLon), np.array(dat.eLat) nPntg = np.array(dat.nPntg) if coord=='galactic': c = SkyCoord(lat=eLat*u.degree, lon=eLon*u.degree, frame='barycentrictrueecliptic') lon = np.array(c.galactic.l) lat = np.array(c.galactic.b) elif coord=='ecliptic': lon, lat = eLon, eLat nPntg[nPntg >= 4] = 4 ncolor = 4 cmap1 = mpl.colors.ListedColormap( sns.color_palette("Greys", n_colors=ncolor, desat=1)) bounds= list(np.arange(0.5,ncolor+1,1)) norm1 = mpl.colors.BoundaryNorm(bounds, cmap1.N) x, y = m(lon, lat) out = m.scatter(x,y,s=0.2,marker='s',c=nPntg, zorder=1, cmap=cmap1, norm=norm1, rasterized=True, alpha=0.5) out = m.scatter(x,y,s=0, marker='s',c=nPntg, zorder=-1, cmap=cmap1, norm=norm1, rasterized=True, alpha=1) m.drawmapboundary() cbar = f.colorbar(out, cmap=cmap1, norm=norm1, boundaries=bounds, fraction=0.025, pad=0.05, ticks=np.arange(ncolor)+1, orientation='vertical') ylabels = np.arange(1,ncolor+1,1) cbarlabels = list(map(str, ylabels))[:-1] cbarlabels.append('$\geq 4$') cbar.ax.set_yticklabels(cbarlabels) cbar.set_label('N pointings', rotation=270, labelpad=5) #################### f.savefig('cluster_positions_'+coord+'.pdf', bbox_inches='tight') def plot_cluster_positions_scicase(df): ''' Show the positions of d<2kpc clusters, and highlight those with rotation period measurements & transiting planets. ''' rotn_clusters = ['NGC_1976', # AKA the orion nebula cluster 'NGC_6530', 'NGC_2264', 'Cep_OB3', 'NGC_2362', 'NGC_869', # h Per, one of the double cluster 'NGC_2547', 'IC_2391', 'Melotte_20', # alpha Persei cluster, alpha Per 'Melotte_22', # AKA Pleiades 'NGC_2323', # M 50 'NGC_2168', #M 35 'NGC_2516', 'NGC_1039', #M 34 'NGC_2099', # M 37 #'NGC_2632', #Praesepe, comment out to avoid overlap #'NGC_6811', #comment out to avoid overlap 'NGC_2682' ] #M 67 transiting_planet_clusters = [ 'NGC_6811', 'NGC_2632' #Praesepe ] df = df[df['d'] < 2000] df_rotn = df.loc[df['Name'].isin(rotn_clusters)] df_rotn = df_rotn[ ['ecliptic_lat','ecliptic_long','galactic_lat','galactic_long', 'Name'] ] df_tra = df.loc[df['Name'].isin(transiting_planet_clusters)] # Above rotation lists were from Table 1 of Gallet & Bouvier 2015, # including M67 which was observed by K2. Transiting planets from the few # papers that have them. They are cross-matching MWSC's naming scheme. I # could not find the Hyades or ScoCen OB. They both have transiting # planets, and the former has rotation studies done. c_Hyades = SkyCoord(ra='4h27m', dec=15*u.degree + 52*u.arcminute) df_hyades = pd.DataFrame({ 'Name':'Hyades', 'ecliptic_long':float(c_Hyades.barycentrictrueecliptic.lon.value), 'ecliptic_lat':float(c_Hyades.barycentrictrueecliptic.lat.value), 'galactic_long':float(c_Hyades.galactic.l.value), 'galactic_lat':float(c_Hyades.galactic.b.value)}, index=[0]) c_ScoOB2 = SkyCoord(ra='16h10m14.73s', dec='-19d19m09.38s') # Mann+2016's position df_ScoOB2 = pd.DataFrame({ 'Name':'Sco_OB2', 'ecliptic_long':float(c_ScoOB2.barycentrictrueecliptic.lon.value), 'ecliptic_lat':float(c_ScoOB2.barycentrictrueecliptic.lat.value), 'galactic_long':float(c_ScoOB2.galactic.l.value), 'galactic_lat':float(c_ScoOB2.galactic.b.value)}, index=[0]) df_tra = df_tra.append(df_hyades, ignore_index=True) df_tra = df_tra.append(df_ScoOB2, ignore_index=True) #df_rotn = df_rotn.append(df_hyades, ignore_index=True) #avoid overlap # End of data wrangling. import matplotlib as mpl from mpl_toolkits.basemap import Basemap for coord in ['galactic','ecliptic']: plt.close('all') #f, ax = plt.subplots(figsize=(4,4)) f = plt.figure(figsize=(0.7*5,0.7*4)) ax = plt.gca() m = Basemap(projection='kav7',lon_0=0, resolution='c', ax=ax) lats = np.array(df[coord+'_lat']) lons = np.array(df[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,2,marker='o',facecolor=COLORS[0], zorder=4, alpha=0.9,edgecolors=COLORS[0], lw=0) lats = np.array(df_rotn[coord+'_lat']) lons = np.array(df_rotn[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,42,marker='*',color=COLORS[1],edgecolors='k', label='have rotation studies', zorder=5,lw=0.4) lats = np.array(df_tra[coord+'_lat']) lons = np.array(df_tra[coord+'_long']) x, y = m(lons, lats) m.scatter(x,y,13,marker='s',color=COLORS[1],edgecolors='k', label='also have transiting planets', zorder=6, lw=0.45) parallels = np.arange(-90.,120.,30.) meridians = np.arange(0.,420.,60.) # labels = [left,right,top,bottom] ps = m.drawparallels(parallels, labels=[1,0,0,0], zorder=2, fontsize='x-small') ms = m.drawmeridians(meridians, labels=[0,0,0,1], zorder=2, fontsize='x-small') # Shrink current axis's height by 10% on the bottom box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9]) # Put a legend below current axis #ax.legend(loc='upper center', bbox_to_anchor=(0.01, 0.02), # fancybox=True, ncol=1, fontsize='x-small') for _m in ms: try: #ms[_m][1][0].set_rotation(45) if '60' in ms[_m][1][0].get_text(): ms[_m][1][0].set_text('') except: pass for _p in ps: try: if '30' in ps[_p][1][0].get_text(): ps[_p][1][0].set_text('') except: pass ax.set_xlabel(coord+' long', labelpad=13, fontsize='x-small') ax.set_ylabel(coord+' lat', labelpad=13, fontsize='x-small') ###################### # add TESS footprint # ###################### dat = np.genfromtxt('../data/fig4_bundle/nhemi_shemi.csv', delimiter=',') dat = pd.DataFrame(np.transpose(dat), columns=['icSys', 'tSys', 'teff', 'logg', 'r', 'm', 'eLat', 'eLon', 'micSys', 'mvSys', 'mic', 'mv', 'stat', 'nPntg']) eLon, eLat = np.array(dat.eLon), np.array(dat.eLat) nPntg = np.array(dat.nPntg) if coord=='galactic': c = SkyCoord(lat=eLat*u.degree, lon=eLon*u.degree, frame='barycentrictrueecliptic') lon = np.array(c.galactic.l) lat = np.array(c.galactic.b) elif coord=='ecliptic': lon, lat = eLon, eLat nPntg[nPntg >= 4] = 4 ncolor = 4 cmap1 = mpl.colors.ListedColormap( sns.color_palette("Greys", n_colors=ncolor, desat=1)) bounds= list(np.arange(0.5,ncolor+1,1)) norm1 = mpl.colors.BoundaryNorm(bounds, cmap1.N) x, y = m(lon, lat) out = m.scatter(x,y,s=0.2,marker='s',c=nPntg, zorder=1, cmap=cmap1, norm=norm1, rasterized=True, alpha=0.5) out = m.scatter(x,y,s=0, marker='s',c=nPntg, zorder=-1, cmap=cmap1, norm=norm1, rasterized=True, alpha=1) m.drawmapboundary() #cbar = f.colorbar(out, cmap=cmap1, norm=norm1, boundaries=bounds, # fraction=0.025, pad=0.05, ticks=np.arange(ncolor)+1, # orientation='vertical') #ylabels = np.arange(1,ncolor+1,1) #cbarlabels = list(map(str, ylabels))[:-1] #cbarlabels.append('$\geq\! 4$') #cbar.ax.set_yticklabels(cbarlabels, fontsize='x-small') #cbar.set_label('N pointings', rotation=270, labelpad=5, fontsize='x-small') #################### f.tight_layout() f.savefig('cluster_positions_'+coord+'_scicase.pdf', bbox_inches='tight') def plot_HATS_field_positions(): ''' Show the positions on Kavrayskiy VII, a global projection similar to Robinson, used widely in the former Soviet Union. N.B. we're just markering the HATS field center (13x13 deg each) ''' import matplotlib as mpl from mpl_toolkits.basemap import Basemap colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] df = pd.read_csv('../data/HATPI_field_ids.txt', delimiter='|') ra = df['ra'] dec = df['decl'] fieldnums = df['field_num'] c = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs') lons = np.array(c.barycentrictrueecliptic.lon) lats =
np.array(c.barycentrictrueecliptic.lat)
numpy.array
import copy from typing import Iterable import numpy as np from IPython.core.display import clear_output from rdkit import DataStructs from tqdm import tqdm from synergetic_molecule_generator import molecules def _relativize_vector(vector: np.ndarray): std = vector.std() if std == 0: return np.ones(len(vector)) standard = (vector - vector.mean()) / std standard[standard > 0] = np.log(1 + standard[standard > 0]) + 1 standard[standard <= 0] = np.exp(standard[standard <= 0]) return standard def relativize_vector(vector: np.ndarray): std = vector.std() if std == 0: return np.ones(len(vector)) standard = (vector - vector.mean()) / std return np.exp(standard) class DataStorage: """This is a class for storing the states and the observations of a Swarm. This way is slower than storing it in a numpy array, but it allows to store any kind of states and observations.""" def __init__(self): self.states = {} self.actions = {} self.walker_ids = [] def __getitem__(self, item): states = self.get_states(item) actions = self.get_actions(item) return states, actions def reset(self): self.states = {} self.actions = {} self.walker_ids = [] def get_states(self, labels: Iterable) -> list: return [self.states[label] for label in labels] def get_actions(self, labels: Iterable) -> list: return [self.actions[label] for label in labels] def append(self, walker_ids: [list, np.ndarray], states: Iterable, actions): actions = actions if actions is not None else [None] * len(walker_ids) for w_id, state, action in zip(walker_ids, states, actions): if w_id not in self.walker_ids: self.states[w_id] = copy.deepcopy(state) if actions is not None: self.actions[w_id] = copy.deepcopy(action) self.walker_ids = list(set(self.walker_ids)) self.walker_ids += list(set(walker_ids)) def update_values(self, walker_ids): # This is not optimal, but ensures no memory leak new_states = {} new_actions = {} walker_ids = list(walker_ids) walker_ids.append(0) for w_id in walker_ids: new_states[w_id] = self.states[w_id] new_actions[w_id] = self.actions[w_id] self.states = new_states self.actions = new_actions self.walker_ids = walker_ids class Swarm: """This is the most basic mathematical entity that can be derived from Fractal AI theory. It represents a cloud of points that propagates through an state space. Each walker of the swarm evolves by either cloning to another walker or perturbing the environment. """ def __init__( self, model, scoring_function=None, neural_network=None, n_walkers: int = 100, balance: float = 1.0, render_every: int = 1e10, accumulate_rewards: bool = True, ): """ :param env: Environment that will be sampled. :param model: Model used for sampling actions from observations. :param n_walkers: Number of walkers that the swarm will use :param balance: Balance coefficient for the virtual reward formula. :param render_every: Number of iterations that will be performed before printing the Swarm status. :param accumulate_rewards: Use the accumulated reward when scoring the walkers. False to use instantaneous reward. """ # Parameters of the algorithm self._model = model self.n_walkers = n_walkers self.balance = balance self.render_every = render_every self.accumulate_rewards = accumulate_rewards # Environment information sources self.observations = None self.rewards =
np.ones(self.n_walkers)
numpy.ones
import numpy as np import math from rtree import index from pyneval.model import euclidean_point as euc_p from pyneval.metric.utils import config_utils from pyneval.model import swc_node def get_match_edges(gold_swc_tree=None, test_swc_tree=None, radius_threshold=-1.0, length_threshold=0.2, debug=False): """ get matched edge set Args: gold_swc_tree(SwcTree): test_swc_tree(SwcTree): radius_threshold(float): threshold of key point radius length_threshold(float): threshold of length of the matching edges debug(bool): list debug info ot not Returns: match_edge(set): include all edge that are matched in gold swc tree edge(tuple): every edge is a tuple contains two side nodes of a edge test_match_length(float): it's the total length of matched area on test swc tree Raises: [Error: ] Max id in test swc tree too large the size of vis list is depend on the maximum id of the tree. this number couldn't be too large """ match_edge = set() edge_use_dict = {} id_rootdis_dict = {} test_match_length = 0.0 test_rtree = get_edge_rtree(test_swc_tree) id_edge_dict = get_idedge_dict(test_swc_tree) gold_node_list = gold_swc_tree.get_node_list() test_node_list = test_swc_tree.get_node_list() # node num need to be larger than the max id test_maxum = 0 for node in test_node_list: id_rootdis_dict[node.get_id()] = node.root_length test_maxum = max(test_maxum, node.get_id()) try: vis_list = np.zeros(test_maxum+5, dtype='int8') test_swc_tree.get_lca_preprocess(node_num=test_maxum+5) except: raise Exception("[Error: ] Max id in test swc tree too large") for node in gold_node_list: if node.is_virtual() or node.parent.is_virtual(): continue rad_threshold1, rad_threshold2 = cal_rad_threshold(radius_threshold, node.radius(), node.parent.radius()) line_tuple_a_set = get_nearby_edges(rtree=test_rtree, point=node, id_edge_dict=id_edge_dict, threshold=rad_threshold1, not_self=False, debug=debug) line_tuple_b_set = get_nearby_edges(rtree=test_rtree, point=node.parent, id_edge_dict=id_edge_dict, threshold=rad_threshold2, not_self=False, debug=debug) done = False for line_tuple_a_dis in line_tuple_a_set: if done: break for line_tuple_b_dis in line_tuple_b_set: line_tuple_a = line_tuple_a_dis[0] dis_a = line_tuple_a_dis[1] line_tuple_b = line_tuple_b_dis[0] dis_b = line_tuple_b_dis[1] test_length = get_lca_length(test_swc_tree, \ line_tuple_a, \ line_tuple_b, \ euc_p.Line(e_node_1=node.get_center(), e_node_2=node.parent.get_center()), id_rootdis_dict) gold_length = node.parent_distance() if test_length == config_utils.DINF: continue len_threshold1 = cal_len_threshold(length_threshold, gold_length) if not (dis_a <= rad_threshold1 and dis_b <= rad_threshold2): if debug: print(node.get_id(), dis_a, rad_threshold1, dis_b, rad_threshold2, "error1") continue if not (math.fabs(test_length - gold_length) < len_threshold1): if debug: print(node.get_id(), "error2") continue if not is_route_clean(gold_swc_tree=test_swc_tree, gold_line_tuple_a=line_tuple_a, gold_line_tuple_b=line_tuple_b, node1=node, node2=node.parent, edge_use_dict=edge_use_dict, vis_list= vis_list, debug=debug): if debug: print(node.get_id(), "error3") continue match_edge.add(tuple([node, node.parent])) test_match_length += test_length done = True break if not done: node._type = 9 if debug: print("{} not done".format(node.get_id())) return match_edge, test_match_length def get_edge_rtree(swc_tree=None): """ build a rtree based on the swc tree Args: swc_tree(Swc Tree): Swc_Tree, to build rtree Return: rtree(rtree index) """ swc_tree_list = swc_tree.get_node_list() p = index.Property() p.dimension = 3 rtree = index.Index(properties=p) for node in swc_tree_list: if node.is_virtual() or node.parent.is_virtual(): continue rtree.insert(node.get_id(), get_bounds(node, node.parent, extra=node.radius())) return rtree def get_bounds(point_a, point_b, extra=0): """ get bounding box of a segment Args: point_a: two points to identify the square point_b: extra: float, a threshold Return: res(tuple): """ point_a = np.array(point_a.get_center()._pos) point_b = np.array(point_b.get_center()._pos) res = (np.where(point_a > point_b, point_b, point_a) - extra).tolist() + (
np.where(point_a > point_b, point_a, point_b)
numpy.where
import os import numpy as np from pygeo import DVGeometry, DVGeometryAxi from pyspline import Curve ################## # DVGeometry Tests ################## def setupDVGeo(base_path, rotType=None): # create the Parent FFD FFDFile = os.path.join(base_path, "../inputFiles/outerBoxFFD.xyz") DVGeo = DVGeometry(FFDFile) # create a reference axis for the parent axisPoints = [[-1.0, 0.0, 0.0], [1.5, 0.0, 0.0]] c1 = Curve(X=axisPoints, k=2) if rotType is not None: DVGeo.addRefAxis("mainAxis", curve=c1, axis="y", rotType=rotType) else: DVGeo.addRefAxis("mainAxis", curve=c1, axis="y") # create the child FFD FFDFile = os.path.join(base_path, "../inputFiles/simpleInnerFFD.xyz") DVGeoChild = DVGeometry(FFDFile, child=True) # create a reference axis for the child axisPoints = [[-0.5, 0.0, 0.0], [0.5, 0.0, 0.0]] c1 = Curve(X=axisPoints, k=2) DVGeoChild.addRefAxis("nestedAxis", curve=c1, axis="y") return DVGeo, DVGeoChild def setupDVGeoD8(base_path, isComplex): # create the Parent FFD FFDFile = os.path.join(base_path, "../inputFiles/bodyFFD.xyz") DVGeo = DVGeometry(FFDFile, isComplex=isComplex) # create a reference axis for the parent axisPoints = [[0.0, 0.0, 0.0], [26.0, 0.0, 0.0], [30.5, 0.0, 0.9], [32.5, 0.0, 1.01], [34.0, 0.0, 0.95]] c1 = Curve(X=axisPoints, k=2) DVGeo.addRefAxis("mainAxis", curve=c1, axis="y") # create the child FFD FFDFile = os.path.join(base_path, "../inputFiles/nozzleFFD.xyz") DVGeoChild = DVGeometry(FFDFile, child=True, isComplex=isComplex) # create a reference axis for the child axisPoints = [[32.4, 1.0, 1.0], [34, 1.0, 0.9]] c1 = Curve(X=axisPoints, k=2) DVGeoChild.addRefAxis("nestedAxis", curve=c1, axis="y") return DVGeo, DVGeoChild def setupDVGeoAxi(base_path): FFDFile = os.path.join(base_path, "../inputFiles/axiTestFFD.xyz") DVGeo = DVGeometryAxi(FFDFile, center=(0.0, 0.0, 0.0), collapse_into=("x", "z")) axisPoints = [[0, 0.0, 0.0], [0, 0.0, 1.0]] c1 = Curve(X=axisPoints, k=2) DVGeo.addRefAxis("stretch", curve=c1, axis="z") return DVGeo # define a nested global design variable def childAxisPoints(val, geo): C = geo.extractCoef("nestedAxis") # Set the coefficients C[0, 0] = val[0] geo.restoreCoef(C, "nestedAxis") return # define a nested global design variable def mainAxisPoints(val, geo): C = geo.extractCoef("mainAxis") # Set the coefficients C[0, 0] = val[0] geo.restoreCoef(C, "mainAxis") return # define a nested global design variable def childAxisPointsD8(val, geo): C = geo.extractCoef("nestedAxis") # Set the coefficients for i in range(len(val)): C[i, 0] = val[i] geo.restoreCoef(C, "nestedAxis") return # define a nested global design variable def mainAxisPointsD8(val, geo): C = geo.extractCoef("mainAxis") # Set the coefficients for i in range(len(val)): C[i, 0] = val[i] geo.restoreCoef(C, "mainAxis") return def mainAxisPointAxi(val, DVgeo): C = DVgeo.extractCoef("stretch") C[0, 2] = val[0] DVgeo.restoreCoef(C, "stretch") return def totalSensitivityFD(DVGeo, nPt, ptName, step=1e-1): xDV = DVGeo.getValues() refPoints = DVGeo.update(ptName) # now get FD Sensitivity dIdxFD = {} # step = 1e-1#8 for key in xDV: baseVar = xDV[key].copy() nDV = len(baseVar) dIdxFD[key] = np.zeros([nPt, nDV]) for i in range(nDV): # print('perturbing',key) xDV[key][i] = baseVar[i] + step # print('setting design vars') DVGeo.setDesignVars(xDV) # print('calling top level update') newPoints = DVGeo.update(ptName) deriv = (newPoints - refPoints) / step dIdxFD[key][:, i] = deriv.flatten() # print('Deriv',key, i,deriv) xDV[key][i] = baseVar[i] return dIdxFD def totalSensitivityCS(DVGeo, nPt, ptName): xDV = DVGeo.getValues() # now get CS Sensitivity dIdxCS = {} step = 1e-40j for key in xDV: baseVar = xDV[key].copy() dIdxCS[key] = np.zeros([nPt, len(baseVar)]) for i in range(len(baseVar)): xDV[key][i] = baseVar[i] + step DVGeo.setDesignVars(xDV) newPoints = DVGeo.update(ptName) deriv = np.imag(newPoints) / np.imag(step) dIdxCS[key][:, i] = deriv.flatten() # print 'Deriv',key, i,deriv xDV[key][i] = baseVar[i] # Before we exit make sure we have reset the DVs DVGeo.setDesignVars(xDV) return dIdxCS def testSensitivities(DVGeo, refDeriv, handler, pointset=1): # create test points points = np.zeros([2, 3]) if pointset == 1: points[0, :] = [0.25, 0, 0] points[1, :] = [-0.25, 0, 0] elif pointset == 2: points[0, :] = [0.25, 0.4, 4] points[1, :] = [-0.8, 0.2, 7] else: raise Warning("Enter a valid pointset") # add points to the geometry object ptName = "testPoints" DVGeo.addPointSet(points, ptName) # generate dIdPt nPt = 6 dIdPt =
np.zeros([nPt, 2, 3])
numpy.zeros
""" Utility functions Copyright 2021 <NAME>. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from hyfed_client.util.data_type import DataType import logging logger = logging.getLogger(__name__) # noise values are generated in the range [0, largest_prime) for integers >= 0 largest_prime_non_negative_int54 = 18014398509481951 # largest prime number that can fit in 54 bits # for integers < 0 and floating-point parameters, # the noise is generated by Gaussian distribution with mean=0 and std=gaussian_std def make_noisy(original_value, data_type, gaussian_std): """ Generate noise value with the same shape as the original value, add it to the original value, and return both noise and noisy value integers >= 0 are masked with integer noise integers < 0 or real-valued parameters are masked with Gaussian noise with mean of zero and standard deviation of gaussian_std """ try: if data_type == DataType.NON_NEGATIVE_INTEGER : noise = np.random.randint(low=0, high=largest_prime_non_negative_int54) noisy_value = (original_value + noise) % largest_prime_non_negative_int54 # modular arithmetic return noisy_value, noise if data_type == DataType.NEGATIVE_INTEGER or data_type == DataType.FLOAT: noise = np.random.normal(loc=0, scale=gaussian_std) noisy_value = original_value + noise return noisy_value, noise if data_type == DataType.NUMPY_ARRAY_NON_NEGATIVE_INTEGER: noise = np.random.randint(low=0, high=largest_prime_non_negative_int54, size=original_value.shape) noisy_value = (original_value + noise) % largest_prime_non_negative_int54 # modular arithmetic return noisy_value, noise if data_type == DataType.NUMPY_ARRAY_NEGATIVE_INTEGER or data_type == DataType.NUMPY_ARRAY_FLOAT: noise =
np.random.normal(loc=0, scale=gaussian_std, size=original_value.shape)
numpy.random.normal
import numpy import numpy.matlib import copy import pandas import wave import struct import os import math import ctypes import multiprocessing import warnings import scipy from scipy import ndimage import scipy.stats as stats from scipy.fftpack import fft from scipy.signal import decimate from scipy.signal import lfilter from scipy.fftpack.realtransforms import dct def read_sph(input_file_name, mode='p'): """ Read a SPHERE audio file :param input_file_name: name of the file to read :param mode: specifies the following (\* =default) .. note:: - Scaling: - 's' Auto scale to make data peak = +-1 (use with caution if reading in chunks) - 'r' Raw unscaled data (integer values) - 'p' Scaled to make +-1 equal full scale - 'o' Scale to bin centre rather than bin edge (e.g. 127 rather than 127.5 for 8 bit values, can be combined with n+p,r,s modes) - 'n' Scale to negative peak rather than positive peak (e.g. 128.5 rather than 127.5 for 8 bit values, can be combined with o+p,r,s modes) - Format - 'l' Little endian data (Intel,DEC) (overrides indication in file) - 'b' Big endian data (non Intel/DEC) (overrides indication in file) - File I/O - 'f' Do not close file on exit - 'd' Look in data directory: voicebox('dir_data') - 'w' Also read the annotation file \*.wrd if present (as in TIMIT) - 't' Also read the phonetic transcription file \*.phn if present (as in TIMIT) - NMAX maximum number of samples to read (or -1 for unlimited [default]) - NSKIP number of samples to skip from start of file (or -1 to continue from previous read when FFX is given instead of FILENAME [default]) :return: a tupple such that (Y, FS) .. note:: - Y data matrix of dimension (samples,channels) - FS sample frequency in Hz - WRD{\*,2} cell array with word annotations: WRD{\*,:)={[t_start t_end],'text'} where times are in seconds only present if 'w' option is given - PHN{\*,2} cell array with phoneme annotations: PHN{\*,:)={[t_start t_end],'phoneme'} where times are in seconds only present if 't' option is present - FFX Cell array containing 1. filename 2. header information 1. first header field name 2. first header field value 3. format string (e.g. NIST_1A) 4. 1. file id 2. current position in file 3. dataoff byte offset in file to start of data 4. order byte order (l or b) 5. nsamp number of samples 6. number of channels 7. nbytes bytes per data value 8. bits number of bits of precision 9. fs sample frequency 10. min value 11. max value 12. coding 0=PCM,1=uLAW + 0=no compression, 0=shorten,20=wavpack,30=shortpack 13. file not yet decompressed 5. temporary filename If no output parameters are specified, header information will be printed. The code to decode shorten-encoded files, is not yet released with this toolkit. """ codings = dict([('pcm', 1), ('ulaw', 2)]) compressions = dict([(',embedded-shorten-', 1), (',embedded-wavpack-', 2), (',embedded-shortpack-', 3)]) byteorder = 'l' endianess = dict([('l', '<'), ('b', '>')]) if not mode == 'p': mode = [mode, 'p'] k = list((m >= 'p') & (m <= 's') for m in mode) # scale to input limits not output limits mno = all([m != 'o' for m in mode]) sc = '' if k[0]: sc = mode[0] # Get byte order (little/big endian) if any([m == 'l' for m in mode]): byteorder = 'l' elif any([m == 'b' for m in mode]): byteorder = 'b' ffx = ['', '', '', '', ''] if isinstance(input_file_name, str): if os.path.exists(input_file_name): fid = open(input_file_name, 'rb') elif os.path.exists("".join((input_file_name, '.sph'))): input_file_name = "".join((input_file_name, '.sph')) fid = open(input_file_name, 'rb') else: raise Exception('Cannot find file {}'.format(input_file_name)) ffx[0] = input_file_name elif not isinstance(input_file_name, str): ffx = input_file_name else: fid = input_file_name # Read the header if ffx[3] == '': fid.seek(0, 0) # go to the begining of the file l1 = fid.readline().decode("utf-8") l2 = fid.readline().decode("utf-8") if not (l1 == 'NIST_1A\n') & (l2 == ' 1024\n'): logging.warning('File does not begin with a SPHERE header') ffx[2] = l1.rstrip() hlen = int(l2[3:7]) hdr = {} while True: # Read the header and fill a dictionary st = fid.readline().decode("utf-8").rstrip() if st[0] != ';': elt = st.split(' ') if elt[0] == 'end_head': break if elt[1][0] != '-': logging.warning('Missing ''-'' in SPHERE header') break if elt[1][1] == 's': hdr[elt[0]] = elt[2] elif elt[1][1] == 'i': hdr[elt[0]] = int(elt[2]) else: hdr[elt[0]] = float(elt[2]) if 'sample_byte_format' in list(hdr.keys()): if hdr['sample_byte_format'][0] == '0': bord = 'l' else: bord = 'b' if (bord != byteorder) & all([m != 'b' for m in mode]) \ & all([m != 'l' for m in mode]): byteorder = bord icode = 0 # Get encoding, default is PCM if 'sample_coding' in list(hdr.keys()): icode = -1 # unknown code for coding in list(codings.keys()): if hdr['sample_coding'].startswith(coding): # is the signal compressed # if len(hdr['sample_coding']) > codings[coding]: if len(hdr['sample_coding']) > len(coding): for compression in list(compressions.keys()): if hdr['sample_coding'].endswith(compression): icode = 10 * compressions[compression] \ + codings[coding] - 1 break else: # if the signal is not compressed icode = codings[coding] - 1 break # initialize info of the files with default values info = [fid, 0, hlen, ord(byteorder), 0, 1, 2, 16, 1, 1, -1, icode] # Get existing info from the header if 'sample_count' in list(hdr.keys()): info[4] = hdr['sample_count'] if not info[4]: # if no info sample_count or zero # go to the end of the file fid.seek(0, 2) # Go to te end of the file # get the sample count info[4] = int(math.floor((fid.tell() - info[2]) / (info[5] * info[6]))) # get the sample_count if 'channel_count' in list(hdr.keys()): info[5] = hdr['channel_count'] if 'sample_n_bytes' in list(hdr.keys()): info[6] = hdr['sample_n_bytes'] if 'sample_sig_bits' in list(hdr.keys()): info[7] = hdr['sample_sig_bits'] if 'sample_rate' in list(hdr.keys()): info[8] = hdr['sample_rate'] if 'sample_min' in list(hdr.keys()): info[9] = hdr['sample_min'] if 'sample_max' in list(hdr.keys()): info[10] = hdr['sample_max'] ffx[1] = hdr ffx[3] = info info = ffx[3] ksamples = info[4] if ksamples > 0: fid = info[0] if (icode >= 10) & (ffx[4] == ''): # read compressed signal # need to use a script with SHORTEN raise Exception('compressed signal, need to unpack in a script with SHORTEN') info[1] = ksamples # use modes o and n to determine effective peak pk = 2 ** (8 * info[6] - 1) * (1 + (float(mno) / 2 - int(all([m != 'b' for m in mode]))) / 2 ** info[7]) fid.seek(1024) # jump after the header nsamples = info[5] * ksamples if info[6] < 3: if info[6] < 2: logging.debug('Sphere i1 PCM') y = numpy.fromfile(fid, endianess[byteorder]+"i1", -1) if info[11] % 10 == 1: if y.shape[0] % 2: y = numpy.frombuffer(audioop.ulaw2lin( numpy.concatenate((y, numpy.zeros(1, 'int8'))), 2), numpy.int16)[:-1]/32768. else: y = numpy.frombuffer(audioop.ulaw2lin(y, 2), numpy.int16)/32768. pk = 1. else: y = y - 128 else: logging.debug('Sphere i2') y = numpy.fromfile(fid, endianess[byteorder]+"i2", -1) else: # non verifie if info[6] < 4: y = numpy.fromfile(fid, endianess[byteorder]+"i1", -1) y = y.reshape(nsamples, 3).transpose() y = (numpy.dot(numpy.array([1, 256, 65536]), y) - (numpy.dot(y[2, :], 2 ** (-7)).astype(int) * 2 ** 24)) else: y = numpy.fromfile(fid, endianess[byteorder]+"i4", -1) if sc != 'r': if sc == 's': if info[9] > info[10]: info[9] = numpy.min(y) info[10] = numpy.max(y) sf = 1 / numpy.max(list(list(map(abs, info[9:11]))), axis=0) else: sf = 1 / pk y = sf * y if info[5] > 1: y = y.reshape(ksamples, info[5]) else: y = numpy.array([]) if mode != 'f': fid.close() info[0] = -1 if not ffx[4] == '': pass # VERIFY SCRIPT, WHICH CASE IS HANDLED HERE return y.astype(numpy.float32), int(info[8]), int(info[6]) def read_wav(input_file_name): """ :param input_file_name: :return: """ wfh = wave.open(input_file_name, "r") (nchannels, sampwidth, framerate, nframes, comptype, compname) = wfh.getparams() raw = wfh.readframes(nframes * nchannels) out = struct.unpack_from("%dh" % nframes * nchannels, raw) sig = numpy.reshape(numpy.array(out), (-1, nchannels)).squeeze() wfh.close() return sig.astype(numpy.float32), framerate, sampwidth def read_pcm(input_file_name): """Read signal from single channel PCM 16 bits :param input_file_name: name of the PCM file to read. :return: the audio signal read from the file in a ndarray encoded on 16 bits, None and 2 (depth of the encoding in bytes) """ with open(input_file_name, 'rb') as f: f.seek(0, 2) # Go to te end of the file # get the sample count sample_count = int(f.tell() / 2) f.seek(0, 0) # got to the begining of the file data = numpy.asarray(struct.unpack('<' + 'h' * sample_count, f.read())) return data.astype(numpy.float32), None, 2 def read_audio(input_file_name, framerate=None): """ Read a 1 or 2-channel audio file in SPHERE, WAVE or RAW PCM format. The format is determined from the file extension. If the sample rate read from the file is a multiple of the one given as parameter, we apply a decimation function to subsample the signal. :param input_file_name: name of the file to read from :param framerate: frame rate, optional, if lower than the one read from the file, subsampling is applied :return: the signal as a numpy array and the sampling frequency """ if framerate is None: raise TypeError("Expected sampling frequency required in sidekit.frontend.io.read_audio") ext = os.path.splitext(input_file_name)[-1] if ext.lower() == '.sph': sig, read_framerate, sampwidth = read_sph(input_file_name, 'p') elif ext.lower() == '.wav' or ext.lower() == '.wave': sig, read_framerate, sampwidth = read_wav(input_file_name) elif ext.lower() == '.pcm' or ext.lower() == '.raw': sig, read_framerate, sampwidth = read_pcm(input_file_name) read_framerate = framerate else: raise TypeError("Unknown extension of audio file") # Convert to 16 bit encoding if needed sig *= (2**(15-sampwidth)) if framerate > read_framerate: print("Warning in read_audio, up-sampling function is not implemented yet!") elif read_framerate % float(framerate) == 0 and not framerate == read_framerate: print("downsample") sig = decimate(sig, int(read_framerate / float(framerate)), n=None, ftype='iir', axis=0) return sig.astype(numpy.float32), framerate def rasta_filt(x): """Apply RASTA filtering to the input signal. :param x: the input audio signal to filter. cols of x = critical bands, rows of x = frame same for y but after filtering default filter is single pole at 0.94 """ x = x.T numerator = numpy.arange(.2, -.3, -.1) denominator = numpy.array([1, -0.94]) # Initialize the state. This avoids a big spike at the beginning # resulting from the dc offset level in each band. # (this is effectively what rasta/rasta_filt.c does). # Because Matlab uses a DF2Trans implementation, we have to # specify the FIR part to get the state right (but not the IIR part) y = numpy.zeros(x.shape) zf = numpy.zeros((x.shape[0], 4)) for i in range(y.shape[0]): y[i, :4], zf[i, :4] = lfilter(numerator, 1, x[i, :4], axis=-1, zi=[0, 0, 0, 0]) # .. but don't keep any of these values, just output zero at the beginning y = numpy.zeros(x.shape) # Apply the full filter to the rest of the signal, append it for i in range(y.shape[0]): y[i, 4:] = lfilter(numerator, denominator, x[i, 4:], axis=-1, zi=zf[i, :])[0] return y.T def cms(features, label=None, global_mean=None): """Performs cepstral mean subtraction :param features: a feature stream of dimension dim x nframes where dim is the dimension of the acoustic features and nframes the number of frames in the stream :param label: a logical vector :param global_mean: pre-computed mean to use for feature normalization if given :return: a feature stream """ # If no label file as input: all speech are speech if label is None: label = numpy.ones(features.shape[0]).astype(bool) if label.sum() == 0: mu = numpy.zeros((features.shape[1])) if global_mean is not None: mu = global_mean else: mu = numpy.mean(features[label, :], axis=0) features -= mu def cmvn(features, label=None, global_mean=None, global_std=None): """Performs mean and variance normalization :param features: a feature stream of dimension dim x nframes where dim is the dimension of the acoustic features and nframes the number of frames in the stream :param global_mean: pre-computed mean to use for feature normalization if given :param global_std: pre-computed standard deviation to use for feature normalization if given :param label: a logical verctor :return: a sequence of features """ # If no label file as input: all speech are speech if label is None: label = numpy.ones(features.shape[0]).astype(bool) if global_mean is not None and global_std is not None: mu = global_mean stdev = global_std features -= mu features /= stdev elif not label.sum() == 0: mu = numpy.mean(features[label, :], axis=0) stdev = numpy.std(features[label, :], axis=0) features -= mu features /= stdev def stg(features, label=None, win=301): """Performs feature warping on a sliding window :param features: a feature stream of dimension dim x nframes where dim is the dimension of the acoustic features and nframes the number of frames in the stream :param label: label of selected frames to compute the Short Term Gaussianization, by default, al frames are used :param win: size of the frame window to consider, must be an odd number to get a symetric context on left and right :return: a sequence of features """ # If no label file as input: all speech are speech if label is None: label = numpy.ones(features.shape[0]).astype(bool) speech_features = features[label, :] add_a_feature = False if win % 2 == 1: # one feature per line nframes, dim = numpy.shape(speech_features) # If the number of frames is not enough for one window if nframes < win: # if the number of frames is not odd, duplicate the last frame # if nframes % 2 == 1: if not nframes % 2 == 1: nframes += 1 add_a_feature = True speech_features = numpy.concatenate((speech_features, [speech_features[-1, ]])) win = nframes # create the output feature stream stg_features = numpy.zeros(numpy.shape(speech_features)) # Process first window r = numpy.argsort(speech_features[:win, ], axis=0) r = numpy.argsort(r, axis=0) arg = (r[: (win - 1) / 2] + 0.5) / win stg_features[: (win - 1) / 2, :] = stats.norm.ppf(arg, 0, 1) # process all following windows except the last one for m in range(int((win - 1) / 2), int(nframes - (win - 1) / 2)): idx = list(range(int(m - (win - 1) / 2), int(m + (win - 1) / 2 + 1))) foo = speech_features[idx, :] r = numpy.sum(foo < foo[(win - 1) / 2], axis=0) + 1 arg = (r - 0.5) / win stg_features[m, :] = stats.norm.ppf(arg, 0, 1) # Process the last window r = numpy.argsort(speech_features[list(range(nframes - win, nframes)), ], axis=0) r = numpy.argsort(r, axis=0) arg = (r[(win + 1) / 2: win, :] + 0.5) / win stg_features[list(range(int(nframes - (win - 1) / 2), nframes)), ] = stats.norm.ppf(arg, 0, 1) else: # Raise an exception raise Exception('Sliding window should have an odd length') # wrapFeatures = np.copy(features) if add_a_feature: stg_features = stg_features[:-1] features[label, :] = stg_features def cep_sliding_norm(features, win=301, label=None, center=True, reduce=False): """ Performs a cepstal mean substitution and standard deviation normalization in a sliding windows. MFCC is modified. :param features: the MFCC, a numpy array :param win: the size of the sliding windows :param label: vad label if available :param center: performs mean subtraction :param reduce: performs standard deviation division """ if label is None: label = numpy.ones(features.shape[0]).astype(bool) if numpy.sum(label) <= win: if reduce: cmvn(features, label) else: cms(features, label) else: d_win = win // 2 df = pandas.DataFrame(features[label, :]) r = df.rolling(window=win, center=True) mean = r.mean().values std = r.std().values mean[0:d_win, :] = mean[d_win, :] mean[-d_win:, :] = mean[-d_win-1, :] std[0:d_win, :] = std[d_win, :] std[-d_win:, :] = std[-d_win-1, :] if center: features[label, :] -= mean if reduce: features[label, :] /= std def pre_emphasis(input_sig, pre): """Pre-emphasis of an audio signal. :param input_sig: the input vector of signal to pre emphasize :param pre: value that defines the pre-emphasis filter. """ if input_sig.ndim == 1: return (input_sig - numpy.c_[input_sig[numpy.newaxis, :][..., :1], input_sig[numpy.newaxis, :][..., :-1]].squeeze() * pre) else: return input_sig - numpy.c_[input_sig[..., :1], input_sig[..., :-1]] * pre """Generate a new array that chops the given array along the given axis into overlapping frames. This method has been implemented by <NAME>, as part of the talk box toolkit example:: segment_axis(arange(10), 4, 2) array([[0, 1, 2, 3], ( [2, 3, 4, 5], [4, 5, 6, 7], [6, 7, 8, 9]]) :param a: the array to segment :param length: the length of each frame :param overlap: the number of array elements by which the frames should overlap :param axis: the axis to operate on; if None, act on the flattened array :param end: what to do with the last frame, if the array is not evenly divisible into pieces. Options are: - 'cut' Simply discard the extra values - 'wrap' Copy values from the beginning of the array - 'pad' Pad with a constant value :param endvalue: the value to use for end='pad' :return: a ndarray The array is not copied unless necessary (either because it is unevenly strided and being flattened or because end is set to 'pad' or 'wrap'). """ if axis is None: a = numpy.ravel(a) # may copy axis = 0 l = a.shape[axis] if overlap >= length: raise ValueError("frames cannot overlap by more than 100%") if overlap < 0 or length <= 0: raise ValueError("overlap must be nonnegative and length must" + "be positive") if l < length or (l - length) % (length - overlap): if l > length: roundup = length + (1 + (l - length) // (length - overlap)) * (length - overlap) rounddown = length + ((l - length) // (length - overlap)) * (length - overlap) else: roundup = length rounddown = 0 assert rounddown < l < roundup assert roundup == rounddown + (length - overlap) or (roundup == length and rounddown == 0) a = a.swapaxes(-1, axis) if end == 'cut': a = a[..., :rounddown] l = a.shape[0] elif end in ['pad', 'wrap']: # copying will be necessary s = list(a.shape) s[-1] = roundup b = numpy.empty(s, dtype=a.dtype) b[..., :l] = a if end == 'pad': b[..., l:] = endvalue elif end == 'wrap': b[..., l:] = a[..., :roundup - l] a = b a = a.swapaxes(-1, axis) if l == 0: raise ValueError("Not enough data points to segment array " + "in 'cut' mode; try 'pad' or 'wrap'") assert l >= length assert (l - length) % (length - overlap) == 0 n = 1 + (l - length) // (length - overlap) s = a.strides[axis] new_shape = a.shape[:axis] + (n, length) + a.shape[axis + 1:] new_strides = a.strides[:axis] + ((length - overlap) * s, s) + a.strides[axis + 1:] try: return numpy.ndarray.__new__(numpy.ndarray, strides=new_strides, shape=new_shape, buffer=a, dtype=a.dtype) except TypeError: a = a.copy() # Shape doesn't change but strides does new_strides = a.strides[:axis] + ((length - overlap) * s, s) + a.strides[axis + 1:] return numpy.ndarray.__new__(numpy.ndarray, strides=new_strides, shape=new_shape, buffer=a, dtype=a.dtype) def speech_enhancement(X, Gain, NN): """This program is only to process the single file seperated by the silence section if the silence section is detected, then a counter to number of buffer is set and pre-processing is required. Usage: SpeechENhance(wavefilename, Gain, Noise_floor) :param X: input audio signal :param Gain: default value is 0.9, suggestion range 0.6 to 1.4, higher value means more subtraction or noise redcution :param NN: :return: a 1-dimensional array of boolean that is True for high energy frames. Copyright 2014 <NAME> and <NAME> """ if X.shape[0] < 512: # creer une exception return X num1 = 40 # dsiable buffer number Alpha = 0.75 # original value is 0.9 FrameSize = 32 * 2 # 256*2 FrameShift = int(FrameSize / NN) # FrameSize/2=128 nfft = FrameSize # = FrameSize Fmax = int(numpy.floor(nfft / 2) + 1) # 128+1 = 129 # arising hamming windows Hamm = 1.08 * (0.54 - 0.46 * numpy.cos(2 * numpy.pi * numpy.arange(FrameSize) / (FrameSize - 1))) y0 = numpy.zeros(FrameSize - FrameShift) # 128 zeros Eabsn = numpy.zeros(Fmax) Eta1 = Eabsn ################################################################### # initial parameter for noise min mb = numpy.ones((1 + FrameSize // 2, 4)) * FrameSize / 2 # 129x4 set four buffer * FrameSize/2 im = 0 Beta1 = 0.9024 # seems that small value is better; pxn = numpy.zeros(1 + FrameSize // 2) # 1+FrameSize/2=129 zeros vector ################################################################### old_absx = Eabsn x = numpy.zeros(FrameSize) x[FrameSize - FrameShift:FrameSize] = X[ numpy.arange(numpy.min((int(FrameShift), X.shape[0])))] if x.shape[0] < FrameSize: EOF = 1 return X EOF = 0 Frame = 0 ################################################################### # add the pre-noise estimates for i in range(200): Frame += 1 fftn = fft(x * Hamm) # get its spectrum absn = numpy.abs(fftn[0:Fmax]) # get its amplitude # add the following part from noise estimation algorithm pxn = Beta1 * pxn + (1 - Beta1) * absn # Beta=0.9231 recursive pxn im = (im + 1) % 40 # noise_memory=47; im=0 (init) for noise level estimation if im: mb[:, 0] = numpy.minimum(mb[:, 0], pxn) # 129 by 4 im<>0 update the first vector from PXN else: mb[:, 1:] = mb[:, :3] # im==0 every 47 time shift pxn to first vector of mb mb[:, 0] = pxn # 0-2 vector shifted to 1 to 3 pn = 2 * numpy.min(mb, axis=1) # pn = 129x1po(9)=1.5 noise level estimate compensation # over_sub_noise= oversubtraction factor # end of noise detection algotihm x[:FrameSize - FrameShift] = x[FrameShift:FrameSize] index1 = numpy.arange(FrameShift * Frame, numpy.min((FrameShift * (Frame + 1), X.shape[0]))) In_data = X[index1] # fread(ifp, FrameShift, 'short'); if In_data.shape[0] < FrameShift: # to check file is out EOF = 1 break else: x[FrameSize - FrameShift:FrameSize] = In_data # shift new 128 to position 129 to FrameSize location # end of for loop for noise estimation # end of prenoise estimation ************************ x = numpy.zeros(FrameSize) x[FrameSize - FrameShift:FrameSize] = X[numpy.arange(numpy.min((int(FrameShift), X.shape[0])))] if x.shape[0] < FrameSize: EOF = 1 return X EOF = 0 Frame = 0 X1 = numpy.zeros(X.shape) Frame = 0 while EOF == 0: Frame += 1 xwin = x * Hamm fftx = fft(xwin, nfft) # FrameSize FFT absx = numpy.abs(fftx[0:Fmax]) # Fmax=129,get amplitude of x argx = fftx[:Fmax] / (absx + numpy.spacing(1)) # normalize x spectrum phase absn = absx # add the following part from rainer algorithm pxn = Beta1 * pxn + (1 - Beta1) * absn # s Beta=0.9231 recursive pxn im = int((im + 1) % (num1 * NN / 2)) # original =40 noise_memory=47; im=0 (init) for noise level estimation if im: mb[:, 0] = numpy.minimum(mb[:, 0], pxn) # 129 by 4 im<>0 update the first vector from PXN else: mb[:, 1:] = mb[:, :3] # im==0 every 47 time shift pxn to first vector of mb mb[:, 0] = pxn pn = 2 * numpy.min(mb, axis=1) # pn = 129x1po(9)=1.5 noise level estimate compensation Eabsn = pn Gaina = Gain temp1 = Eabsn * Gaina Eta1 = Alpha * old_absx + (1 - Alpha) * numpy.maximum(absx - temp1, 0) new_absx = (absx * Eta1) / (Eta1 + temp1) # wiener filter old_absx = new_absx ffty = new_absx * argx # multiply amplitude with its normalized spectrum y = numpy.real(numpy.fft.fftpack.ifft(numpy.concatenate((ffty, numpy.conj(ffty[numpy.arange(Fmax - 2, 0, -1)]))))) y[:FrameSize - FrameShift] = y[:FrameSize - FrameShift] + y0 y0 = y[FrameShift:FrameSize] # keep 129 to FrameSize point samples x[:FrameSize - FrameShift] = x[FrameShift:FrameSize] index1 = numpy.arange(FrameShift * Frame, numpy.min((FrameShift * (Frame + 1), X.shape[0]))) In_data = X[index1] # fread(ifp, FrameShift, 'short'); z = 2 / NN * y[:FrameShift] # left channel is the original signal z /= 1.15 z = numpy.minimum(z, 32767) z = numpy.maximum(z, -32768) index0 = numpy.arange(FrameShift * (Frame - 1), FrameShift * Frame) if not all(index0 < X1.shape[0]): idx = 0 while (index0[idx] < X1.shape[0]) & (idx < index0.shape[0]): X1[index0[idx]] = z[idx] idx += 1 else: X1[index0] = z if In_data.shape[0] == 0: EOF = 1 else: x[numpy.arange(FrameSize - FrameShift, FrameSize + In_data.shape[0] - FrameShift)] = In_data X1 = X1[X1.shape[0] - X.shape[0]:] # } # catch{ # } return X1 def vad_percentil(log_energy, percent): """ :param log_energy: :param percent: :return: """ thr = numpy.percentile(log_energy, percent) return log_energy > thr, thr def vad_energy(log_energy, distrib_nb=3, nb_train_it=8, flooring=0.0001, ceiling=1.0, alpha=2): # center and normalize the energy log_energy = (log_energy - numpy.mean(log_energy)) / numpy.std(log_energy) # Initialize a Mixture with 2 or 3 distributions world = Mixture() # set the covariance of each component to 1.0 and the mean to mu + meanIncrement world.cst = numpy.ones(distrib_nb) / (numpy.pi / 2.0) world.det = numpy.ones(distrib_nb) world.mu = -2 + 4.0 * numpy.arange(distrib_nb) / (distrib_nb - 1) world.mu = world.mu[:, numpy.newaxis] world.invcov = numpy.ones((distrib_nb, 1)) # set equal weights for each component world.w = numpy.ones(distrib_nb) / distrib_nb world.cov_var_ctl = copy.deepcopy(world.invcov) # Initialize the accumulator accum = copy.deepcopy(world) # Perform nbTrainIt iterations of EM for it in range(nb_train_it): accum._reset() # E-step world._expectation(accum, log_energy) # M-step world._maximization(accum, ceiling, flooring) # Compute threshold threshold = world.mu.max() - alpha * numpy.sqrt(1.0 / world.invcov[world.mu.argmax(), 0]) # Apply frame selection with the current threshold label = log_energy > threshold return label, threshold def vad_snr(sig, snr, fs=16000, shift=0.01, nwin=256): """Select high energy frames based on the Signal to Noise Ratio of the signal. Input signal is expected encoded on 16 bits :param sig: the input audio signal :param snr: Signal to noise ratio to consider :param fs: sampling frequency of the input signal in Hz. Default is 16000. :param shift: shift between two frames in seconds. Default is 0.01 :param nwin: number of samples of the sliding window. Default is 256. """ overlap = nwin - int(shift * fs) sig /= 32768. sig = speech_enhancement(numpy.squeeze(sig), 1.2, 2) # Compute Standard deviation sig += 0.1 * numpy.random.randn(sig.shape[0]) std2 = segment_axis(sig, nwin, overlap, axis=None, end='cut', endvalue=0).T std2 =
numpy.std(std2, axis=0)
numpy.std
from os import path import numpy as np from numpy.testing import * import datetime class TestDateTime(TestCase): def test_creation(self): for unit in ['Y', 'M', 'W', 'B', 'D', 'h', 'm', 's', 'ms', 'us', 'ns', 'ps', 'fs', 'as']: dt1 = np.dtype('M8[750%s]' % unit) assert dt1 == np.dtype('datetime64[750%s]' % unit) dt2 = np.dtype('m8[%s]' % unit) assert dt2 == np.dtype('timedelta64[%s]' % unit) def test_divisor_conversion_year(self): assert np.dtype('M8[Y/4]') == np.dtype('M8[3M]') assert np.dtype('M8[Y/13]') == np.dtype('M8[4W]') assert np.dtype('M8[3Y/73]') == np.dtype('M8[15D]') def test_divisor_conversion_month(self): assert np.dtype('M8[M/2]') == np.dtype('M8[2W]') assert np.dtype('M8[M/15]') == np.dtype('M8[2D]') assert np.dtype('M8[3M/40]') == np.dtype('M8[54h]') def test_divisor_conversion_week(self): assert np.dtype('m8[W/5]') == np.dtype('m8[B]') assert np.dtype('m8[W/7]') == np.dtype('m8[D]') assert np.dtype('m8[3W/14]') == np.dtype('m8[36h]') assert np.dtype('m8[5W/140]') == np.dtype('m8[360m]') def test_divisor_conversion_bday(self): assert np.dtype('M8[B/12]') == np.dtype('M8[2h]') assert np.dtype('M8[B/120]') == np.dtype('M8[12m]') assert np.dtype('M8[3B/960]') == np.dtype('M8[270s]') def test_divisor_conversion_day(self): assert np.dtype('M8[D/12]') == np.dtype('M8[2h]') assert np.dtype('M8[D/120]') == np.dtype('M8[12m]') assert np.dtype('M8[3D/960]') == np.dtype('M8[270s]') def test_divisor_conversion_hour(self): assert np.dtype('m8[h/30]') == np.dtype('m8[2m]') assert np.dtype('m8[3h/300]') == np.dtype('m8[36s]') def test_divisor_conversion_minute(self): assert np.dtype('m8[m/30]') == np.dtype('m8[2s]') assert np.dtype('m8[3m/300]') == np.dtype('m8[600ms]') def test_divisor_conversion_second(self): assert np.dtype('m8[s/100]') == np.dtype('m8[10ms]') assert np.dtype('m8[3s/10000]') == np.dtype('m8[300us]') def test_divisor_conversion_fs(self): assert np.dtype('M8[fs/100]') == np.dtype('M8[10as]') self.assertRaises(ValueError, lambda : np.dtype('M8[3fs/10000]')) def test_divisor_conversion_as(self): self.assertRaises(ValueError, lambda : np.dtype('M8[as/10]')) def test_creation_overflow(self): date = '1980-03-23 20:00:00' timesteps = np.array([date], dtype='datetime64[s]')[0].astype(np.int64) for unit in ['ms', 'us', 'ns']: timesteps *= 1000 x = np.array([date], dtype='datetime64[%s]' % unit) assert_equal(timesteps, x[0].astype(np.int64), err_msg='Datetime conversion error for unit %s' % unit) assert_equal(x[0].astype(np.int64), 322689600000000000) class TestDateTimeModulo(TestCase): @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_years(self): timesteps = np.array([0,1,2], dtype='datetime64[Y]//10') assert timesteps[0] == np.datetime64('1970') assert timesteps[1] == np.datetime64('1980') assert timesteps[2] == np.datetime64('1990') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_months(self): timesteps = np.array([0,1,2], dtype='datetime64[M]//10') assert timesteps[0] == np.datetime64('1970-01') assert timesteps[1] == np.datetime64('1970-11') assert timesteps[2] == np.datetime64('1971-09') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_weeks(self): timesteps = np.array([0,1,2], dtype='datetime64[W]//3') assert timesteps[0] == np.datetime64('1970-01-01') assert timesteps[1] == np.datetime64('1970-01-22') assert timesteps[2] == np.datetime64('1971-02-12') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_business_days(self): timesteps = np.array([0,1,2], dtype='datetime64[B]//4') assert timesteps[0] == np.datetime64('1970-01-01') assert timesteps[1] == np.datetime64('1970-01-07') assert timesteps[2] == np.datetime64('1971-01-13') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_days(self): timesteps = np.array([0,1,2], dtype='datetime64[D]//17') assert timesteps[0] == np.datetime64('1970-01-01') assert timesteps[1] == np.datetime64('1970-01-18') assert timesteps[2] == np.datetime64('1971-02-04') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_hours(self): timesteps = np.array([0,1,2], dtype='datetime64[h]//17') assert timesteps[0] == np.datetime64('1970-01-01 00') assert timesteps[1] == np.datetime64('1970-01-01 17') assert timesteps[2] == np.datetime64('1970-01-02 10') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_minutes(self): timesteps = np.array([0,1,2], dtype='datetime64[m]//42') assert timesteps[0] == np.datetime64('1970-01-01 00:00') assert timesteps[1] == np.datetime64('1970-01-01 00:42') assert timesteps[2] == np.datetime64('1970-01-01 01:24') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_seconds(self): timesteps = np.array([0,1,2], dtype='datetime64[s]//42') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00') assert timesteps[1] == np.datetime64('1970-01-01 00:00:42') assert timesteps[1] == np.datetime64('1970-01-01 00:01:24') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_milliseconds(self): timesteps = np.array([0,1,2], dtype='datetime64[ms]//42') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.042') assert timesteps[1] == np.datetime64('1970-01-01 00:01:00.084') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_microseconds(self): timesteps = np.array([0,1,2], dtype='datetime64[us]//42') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000042') assert timesteps[1] == np.datetime64('1970-01-01 00:01:00.000084') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_nanoseconds(self): timesteps = np.array([0,1,2], dtype='datetime64[ns]//42') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000000') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000042') assert timesteps[1] == np.datetime64('1970-01-01 00:01:00.000000084') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_picoseconds(self): timesteps = np.array([0,1,2], dtype='datetime64[ps]//42') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000000000') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000000042') assert timesteps[1] == np.datetime64('1970-01-01 00:01:00.000000000084') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_femtoseconds(self): timesteps = np.array([0,1,2], dtype='datetime64[fs]//42') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000000000000') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000000000042') assert timesteps[1] == np.datetime64('1970-01-01 00:01:00.000000000000084') @dec.knownfailureif(True, "datetime modulo fails.") def test_modulo_attoseconds(self): timesteps = np.array([0,1,2], dtype='datetime64[as]//42') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000000000000000') assert timesteps[1] == np.datetime64('1970-01-01 00:00:00.000000000000000042') assert timesteps[1] == np.datetime64('1970-01-01 00:01:00.000000000000000084') class TestTimeDeltaSetters(TestCase): def setUp(self): self.timedeltas = np.ones(3, dtype='m8[ms]') @dec.skipif(True, "timedelta64 takes only 1 arg.") def test_set_timedelta64_from_int(self): self.timedeltas[0] = 12 assert self.timedeltas[0] == np.timedelta64(12, 'ms') @dec.skipif(True, "timedelta64 takes only 1 arg.") def test_set_timedelta64_from_datetime_timedelta(self): self.timedeltas[1] = datetime.timedelta(0, 0, 13000) assert self.timedeltas[1] == np.timedelta64(13, 'ms') @dec.skipif(True, "timedelta64 takes only 1 arg.") def test_set_timedelta64_from_string(self): self.timedeltas[2] = '0:00:00.014' assert self.timedeltas[2] == np.timedelta64(14, 'ms') class TestTimeDeltaGetters(TestCase): def setUp(self): self.timedeltas = np.array([12, 13, 14], 'm8[ms]') @dec.knownfailureif(True, "Fails") def test_get_str_from_timedelta64(self): assert str(self.timedeltas[0]) == '0:00:00.012' assert str(self.timedeltas[1]) == '0:00:00.013' assert str(self.timedeltas[2]) == '0:00:00.014' @dec.knownfailureif(True, "Fails") def test_get_repr_from_timedelta64(self): assert repr(self.timedeltas[0]) == "timedelta64(12, 'ms')" assert repr(self.timedeltas[1]) == "timedelta64(13, 'ms')" assert repr(self.timedeltas[2]) == "timedelta64(14, 'ms')" def test_get_str_from_timedelta64_item(self): assert str(self.timedeltas[0].item()) == '0:00:00.012000' assert str(self.timedeltas[1].item()) == '0:00:00.013000' assert str(self.timedeltas[2].item()) == '0:00:00.014000' def test_get_repr_from_timedelta64_item(self): assert repr(self.timedeltas[0].item()) == 'datetime.timedelta(0, 0, 12000)' assert repr(self.timedeltas[1].item()) == 'datetime.timedelta(0, 0, 13000)' assert repr(self.timedeltas[2].item()) == 'datetime.timedelta(0, 0, 14000)' @dec.knownfailureif(True, "Fails") def test_get_str_from_timedelta64_array(self): assert str(self.timedeltas) == '[0:00:00.012 0:00:00.014 0:00:00.014]' @dec.knownfailureif(True, "Fails") def test_get_repr_from_timedelta64_array(self): assert repr(self.timedeltas) == 'array([12, 13, 14], dtype="timedelta64[ms]")' class TestTimeDeltaComparisons(TestCase): def setUp(self): self.timedeltas = np.array([12, 13, 14], 'm8[ms]') def test_compare_timedelta64_to_timedelta64_array(self): comparison = (self.timedeltas == np.array([12, 13, 13], 'm8[ms]')) assert_equal(comparison, [True, True, False]) @dec.skipif(True, "timedelta64 takes only 1 arg.") def test_compare_timedelta64_to_timedelta64_broadcast(self): comparison = (self.timedeltas == np.timedelta64(13, 'ms')) assert_equal(comparison, [False, True, True]) @dec.knownfailureif(True, "Returns FALSE") def test_compare_timedelta64_to_string_broadcast(self): comparison = (self.timedeltas == '0:00:00.012') assert_equal(comparison, [True, False, True]) class TestDateTimeAstype(TestCase): @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_years(self): datetimes = np.array([0, 40, 15], dtype="datetime64[M]") assert_equal(datetimes.astype('datetime64[Y]'), np.array([0, 3, 2], dtype="datetime64[Y]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_months(self): datetimes = np.array([0, 3, 2], dtype="datetime64[Y]") assert_equal(datetimes.astype('datetime64[M]'), np.array([0, 36, 24], dtype="datetime64[M]")) datetimes = np.array([0, 100, 70], dtype="datetime64[D]") assert_equal(datetimes.astype('datetime64[M]'), np.array([0, 3, 2], dtype="datetime64[M]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_weeks(self): datetimes = np.array([0, 22, 15], dtype="datetime64[D]") assert_equal(datetimes.astype('datetime64[W]'), np.array([0, 3, 2], dtype="datetime64[W]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_business_days(self): # XXX: There will probably be a more direct way to check for # *Not a Time* values. datetimes = np.arange(5, dtype='datetime64[D]') expected_array_str = '[1970-01-01 1970-01-02 NaT NaT 1970-01-05]' assert_equal(datetimes.astype('datetime64[B]'), expected_array_str) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_days(self): datetimes = np.array([0, 3, 2], dtype="datetime64[W]") assert_equal(datetimes.astype('datetime64[D]'), np.array([0, 21, 7], dtype="datetime64[D]")) datetimes = np.array([0, 37, 24], dtype="datetime64[h]") assert_equal(datetimes.astype('datetime64[D]'), np.array([0, 3, 2], dtype="datetime64[D]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_hours(self): datetimes = np.array([0, 3, 2], dtype="datetime64[D]") assert_equal(datetimes.astype('datetime64[h]'), np.array([0, 36, 24], dtype="datetime64[D]")) datetimes = np.array([0, 190, 153], dtype="datetime64[m]") assert_equal(datetimes.astype('datetime64[h]'), np.array([0, 3, 2], dtype="datetime64[h]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_minutes(self): datetimes = np.array([0, 3, 2], dtype="datetime64[h]") assert_equal(datetimes.astype('datetime64[m]'), np.array([0, 180, 120], dtype="datetime64[m]")) datetimes = np.array([0, 190, 153], dtype="datetime64[s]") assert_equal(datetimes.astype('datetime64[m]'), np.array([0, 3, 2], dtype="datetime64[m]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_seconds(self): datetimes = np.array([0, 3, 2], dtype="datetime64[m]") assert_equal(datetimes.astype('datetime64[s]'), np.array([0, 180, 120], dtype="datetime64[s]")) datetimes = np.array([0, 3200, 2430], dtype="datetime64[ms]") assert_equal(datetimes.astype('datetime64[s]'), np.array([0, 3, 2], dtype="datetime64[s]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_milliseconds(self): datetimes = np.array([0, 3, 2], dtype="datetime64[s]") assert_equal(datetimes.astype('datetime64[ms]'), np.array([0, 3000, 2000], dtype="datetime64[ms]")) datetimes = np.array([0, 3200, 2430], dtype="datetime64[us]") assert_equal(datetimes.astype('datetime64[ms]'), np.array([0, 3, 2], dtype="datetime64[ms]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_microseconds(self): datetimes = np.array([0, 3, 2], dtype="datetime64[ms]") assert_equal(datetimes.astype('datetime64[us]'), np.array([0, 3000, 2000], dtype="datetime64[us]")) datetimes = np.array([0, 3200, 2430], dtype="datetime64[ns]") assert_equal(datetimes.astype('datetime64[us]'), np.array([0, 3, 2], dtype="datetime64[us]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_nanoseconds(self): datetimes = np.array([0, 3, 2], dtype="datetime64[us]") assert_equal(datetimes.astype('datetime64[ns]'), np.array([0, 3000, 2000], dtype="datetime64[ns]")) datetimes = np.array([0, 3200, 2430], dtype="datetime64[ps]") assert_equal(datetimes.astype('datetime64[ns]'), np.array([0, 3, 2], dtype="datetime64[ns]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_picoseconds(self): datetimes = np.array([0, 3, 2], dtype="datetime64[ns]") assert_equal(datetimes.astype('datetime64[ps]'), np.array([0, 3000, 2000], dtype="datetime64[ps]")) datetimes = np.array([0, 3200, 2430], dtype="datetime64[ns]") assert_equal(datetimes.astype('datetime64[ps]'), np.array([0, 3, 2], dtype="datetime64[ps]")) @dec.knownfailureif(True, "datetime converions fail.") def test_datetime_astype_femtoseconds(self): datetimes = np.array([0, 3, 2], dtype="datetime64[ps]") assert_equal(datetimes.astype('datetime64[fs]'), np.array([0, 3000, 2000], dtype="datetime64[fs]")) datetimes =
np.array([0, 3200, 2430], dtype="datetime64[ps]")
numpy.array
# ###################################################################### # Copyright (c) 2014, Brookhaven Science Associates, Brookhaven # # National Laboratory. All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Brookhaven Science Associates, Brookhaven # # National Laboratory nor the names of its contributors may be used # # to endorse or promote products derived from this software without # # specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OTHERWISE) ARISING # # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ######################################################################## from __future__ import absolute_import, division, print_function import logging import numpy as np from numpy.testing import assert_array_equal import skbeam.core.mask as mask logger = logging.getLogger(__name__) def test_threshold_mask(): xdim = 10 ydim = 10 stack_size = 10 img_stack = np.random.randint(1, 3, (stack_size, xdim, ydim)) img_stack[0][0, 1] = 100 img_stack[0][9, 1] = 98 img_stack[6][8, 8] = 75 img_stack[7][6, 6] = 80 th = mask.threshold(img_stack, 75) for final in th: pass y = np.ones_like(img_stack[0]) y[0, 1] = 0 y[9, 1] = 0 y[8, 8] = 0 y[6, 6] = 0 assert_array_equal(final, y) def test_bad_to_nan_gen(): xdim = 2 ydim = 2 stack_size = 5 img_stack = np.random.randint(1, 3, (stack_size, xdim, ydim)) bad_list = [1, 3] img = mask.bad_to_nan_gen(img_stack, bad_list) y = [] for im in img: y.append(im) assert np.isnan(np.asarray(y)[1]).all() assert np.isnan(np.asarray(y)[3]).all() assert not np.isnan(np.asarray(y)[4]).all() def test_margin(): size = (10, 10) edge = 1 mask1 = mask.margin(size, edge) mask2 = np.zeros(size) mask2[:, :edge] = 1 mask2[:, -edge:] = 1 mask2[:edge, :] = 1 mask2[-edge:, :] = 1 mask2 = mask2.astype(bool) assert_array_equal(mask1, ~mask2) def test_ring_blur_mask(): from skbeam.core import recip g = recip.geo.Geometry( detector='Perkin', pixel1=.0002, pixel2=.0002, dist=.23, poni1=.209, poni2=.207, # rot1=.0128, rot2=-.015, rot3=-5.2e-8, wavelength=1.43e-11 ) r = g.rArray((2048, 2048)) # make some sample data Z = 100 * np.cos(50 * r) ** 2 + 150 np.random.seed(10) pixels = [] for i in range(0, 100): a, b = np.random.randint(low=0, high=2048), \ np.random.randint(low=0, high=2048) if
np.random.random()
numpy.random.random
from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.cluster.kmeans import KMeansClusterer from scipy.spatial import distance from stemming.porter2 import stem import pandas as pd import numpy as np import re import os import io import math import functools import pdb; pdb.set_trace() # XXX BREAKPOINT def get_max_number_keywords(list_of_keywords): n_keywords = [] for keywords in list_of_keywords: n_keywords.append(len(keywords.split(','))) return max(n_keywords) def get_words_frequency(full_text): # Counting words words_no_symbols = clean_text_and_tokenize(full_text) final_words, count = np.unique(words_no_symbols, return_counts=True) count = map(lambda n: float(n)/len(final_words), count) return zip(final_words, count) def clean_text_and_tokenize(text): words = word_tokenize(text) words_lower = map(lambda w: w.lower(), words) words_no_stop = filter(lambda w: w not in stopwords.words('english'), words_lower) words_no_symbols = filter(re.compile(r'[a-z1-9].*').search, words_no_stop) return map(stem, words_no_symbols) def sum_word_freq(words_in_sentence, word_freq): # Sum the frequency of words in a sentence n_words = len(words_in_sentence) sum_freq = sum([word_freq[w]/n_words for w in words_in_sentence if w in word_freq]) return sum_freq def get_keywords_similarity(words_in_sentence, keywords): keywords_match = [] for words in keywords: matches = map(lambda w: 1 if w in words_in_sentence else 0, words) keywords_match.append(2.0 * sum(matches) / ( len(words) + len(words_in_sentence))) return keywords_match def get_section_similarity(words_in_sentence, words_in_section): matches = map(lambda w: 1 if w in words_in_section else 0, words_in_sentence) if len(matches) <= 0: return 0 return 2.0 * sum(matches)/(len(words_in_sentence) + len(words_in_section)) def get_title(text): return text.split('\n')[0] def get_highlights(file_path): """ Read the txt file with the research highlights of the respective files """ text_file = io.open(file_path, mode='r', encoding='utf-8') highlights = text_file.read().split('\n') # highlights = '^~_'.join(text_file.read().split('\n')) text_file.close() return highlights def get_session_lines(text, session): lines = text.split('\n') if session == 'a': # abstract r_start = re.compile("^Abstract$") r_end = re.compile("Keywords|Abbreviations") elif session == 'i': # introduction r_start = re.compile(r'1.\s+Introduction\s*') r_end = re.compile(r'2.\s+[A-Z0-9][a-zA-Z0-9]+.*') else: # conclusion r_start = re.compile(r'[1-9][0-9]?.\s+(Conclu.*|Discussion.*|Summary' '*|.*conclu.*|.*future.*.|Results.*|Final.*)') r_end = re.compile(r'(Append.*|^1$)') session_lines = [] candidate_sessions = [] found_session = False for i in range(len(lines)): if r_start.match(lines[i]): candidate_sessions.append(i) found_session = True if found_session: session_lines.append(candidate_sessions[-1]) i = session_lines[0] + 1 while i < len(lines) and not(r_end.match(lines[i])): session_lines.append(i) i += 1 return session_lines def extract_keywords(text): """ After finding the string "Keywords", each line is a keyword until an empty line is found """ keywords = list() reading_keywords = False all_lines = text.split('\n') for line in all_lines: if 'Keywords' in line: reading_keywords = True # nothing in line elif not line and reading_keywords: return ','.join(keywords) elif reading_keywords: keywords.append(line) return ','.join(keywords) def extract_content(path): """ Extracts the keywords, highlights and the text in a article 'path': name of the file """ article = io.open(path, mode="r", encoding="utf-8") abstract, introduction, conclusion, final_text = '', '', '', '' full_text = article.read() full_text_split = np.array(full_text.split('\n')) abstract_lines = get_session_lines(full_text, 'a') abstract = '\n'.join(full_text_split[abstract_lines]) # get the lines containing the introduction intro_lines = get_session_lines(full_text, 'i') introduction = '\n'.join(full_text_split[intro_lines]) text_without_intro = '\n'.join(full_text_split[(intro_lines[-1]+1):]) text_without_intro_split = np.array(text_without_intro.split('\n')) conclu_lines = get_session_lines(text_without_intro, 'c') if conclu_lines: conclusion = '\n'.join(text_without_intro_split[conclu_lines]) text_without_conclu_1 = '\n'.join(text_without_intro_split[ 0:conclu_lines[0]]) text_without_conclu_2 = '' if(conclu_lines[-1]+1) >= \ len(text_without_intro_split) else \ '\n'.join(text_without_intro_split[(conclu_lines[-1]+1):]) final_text = text_without_conclu_1 + text_without_conclu_2 else: final_text = text_without_intro return get_title(full_text), extract_keywords(full_text), abstract, \ introduction, conclusion, final_text def create_sentences_table(list_of_files, highlights=False): if highlights: cols = ['title', 'keywords', 'abstract', 'introduction', 'conclusion', 'text', 'highlights'] df = pd.DataFrame([list(extract_content(f)) + [get_highlights(f)] for f in list_of_files], columns=cols) else: cols = ['title', 'keywords', 'abstract', 'introduction', 'conclusion', 'text'] df = pd.DataFrame([list(extract_content(f) ) for f in list_of_files], columns=cols) df.to_csv("articles_highlights.csv", sep='\t', encoding='utf-8', index=False) def calc_df(word, sentences): n_sents_with_word = 0 for sent in sentences: n_sents_with_word += 1 if word in sent else 0 return n_sents_with_word def calc_tf_idf_word(word, sentences): df = calc_df(word, sentences) N = len(sentences) tfidf_vals = [] for sent in sentences: tf = float(sent.count(word)) / len(sent) idf = math.log(float(N) / df) tfidf_vals.append(tf * idf) return
np.array(tfidf_vals)
numpy.array
"""DataArray provides a thin wrapper around multidimensional arrays and metadata """ from logging import getLogger import numpy as np # type: ignore from smif.exception import SmifDataError, SmifDataMismatchError from smif.metadata.spec import Spec # Import pandas, xarray if available (optional dependencies) try: import pandas # type: ignore import xarray # type: ignore except ImportError: pass INSTALL_WARNING = """\ Please install pandas and xarray to access smif.DataArray data as pandas.DataFrame or xarray.DataArray. Try running: pip install smif[data] or: conda install pandas xarray """ class DataArray(): """DataArray provides access to input/parameter/results data, with conversions to common python data libraries (for example: numpy, pandas, xarray). Attributes ---------- spec: smif.metadata.spec.Spec data: numpy.ndarray """ def __init__(self, spec: Spec, data: np.ndarray): self.logger = getLogger(__name__) if not hasattr(data, 'shape'): self.logger.debug("Data is not an numpy.ndarray") data =
np.array(data)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from typing import Any, Iterable import numpy __author__ = "<NAME>" __all__ = ["PrioritisedBuffer"] __doc__ = r""" """ import random from neodroidagent.common.memory.data_structures.sum_tree import SumTree class PrioritisedBuffer: """ """ def __init__( self, capacity: int, per_epsilon: float = 0.01, per_alpha: float = 0.6, per_beta: float = 0.4, per_beta_increment_per_sampling: float = 0.000, max_abs_dist: float = 1.0, ): """ @param capacity: @param per_epsilon: @param per_alpha: @param per_beta: @param per_beta_increment_per_sampling: @param max_abs_dist: """ self._epsilon = per_epsilon self._alpha = per_alpha self._beta = per_beta self._beta_increment_per_sampling = per_beta_increment_per_sampling self._max_abs_dist = max_abs_dist self._tree = SumTree(capacity) def _get_priority(self, dist: float) -> float: """ @param dist: @return: """ abs_dist = numpy.abs(dist) + self._epsilon if self._max_abs_dist: abs_dist = min(abs_dist, self._max_abs_dist) return abs_dist ** self._alpha def add(self, sample: Any, dist: float) -> None: """ @param sample: @param error: @return: """ self._tree.push(sample, self._get_priority(dist)) def sample(self, num: int) -> Iterable: """ @param num: @return: """ segment = self._tree.total / num data = [] leaf_indices = [] # priorities = [] self._beta = numpy.min([1.0, self._beta + self._beta_increment_per_sampling]) for i in range(num): (leaf_index, _, _, data_) = self._tree.get( random.uniform(segment * i, segment * (i + 1)), normalised_sum=False ) # priorities.append(priority) data.append(data_) leaf_indices.append(leaf_index) """ sampling_probabilities = priorities / self._tree.total weights = numpy.power(self._tree._num_entries * sampling_probabilities, -self._beta) weights /= (weights.max() + 1e-10) # Normalize for stability """ self._last_leaf_indices = leaf_indices return data def update_last_batch(self, errors: Iterable) -> None: """ @param errors: @return: """ for leaf_index, error in zip(self._last_leaf_indices, errors): self.update(leaf_index, error) def update(self, leaf_index: int, error: float) -> None: """ @param leaf_index: @param error: @return: """ self._tree.update_leaf(leaf_index, self._get_priority(error)) def __len__(self) -> int: """ @return: """ return len(self._tree) @property def capacity(self) -> int: """ @return: @rtype: """ return self._tree.capacity if __name__ == "__main__": def stest_experience_buffer(): """ """ capacity = 2 ** 8 batch_size = 4 rb = PrioritisedBuffer(capacity) for i in range(capacity): a = (i, i, i, i, i) rb.add(a, sum(a)) print(rb.sample(batch_size)) rb.update_last_batch(
numpy.random.rand(capacity)
numpy.random.rand
from utils.image_utils import concatenate_images_by_width import numpy as np import cv2 class Image: def __init__(self, config, input_imgs, label=None, logit=None): self.config = config self.baseline_img = input_imgs[:, :, :3] self.current_img = input_imgs[:, :, 3:] self.label = label self.logit = logit def apply_box(self, image, bounding_box, color): """ :param image: :param bounding_box: (left_x, top_y, right_x, bottom_y) :param color: :return: """ line_width = self.config.figure.line_width left_x, top_y, right_x, bottom_y = bounding_box try: mid_x = int((left_x + right_x) / 2) mid_y = int((top_y + bottom_y) / 2) image[mid_y - line_width:mid_y + line_width, mid_x - line_width + mid_x + line_width] = color image[top_y - line_width:top_y, left_x:right_x] = color image[top_y:bottom_y, left_x:left_x + line_width] = color image[bottom_y - line_width:bottom_y, left_x:right_x] = color image[top_y:bottom_y, right_x:right_x + line_width] = color except Exception as exception: pass return image def get_bounding_box(self, y_idx, x_idx, yxhw): num_grid_cells_width = self.config.model.model_output_size[1] num_grid_cells_height = self.config.model.model_output_size[0] image_width = self.config.model.input_shape[1] image_height = self.config.model.input_shape[0] grid_cell_width = image_width / num_grid_cells_width grid_cell_height = image_height / num_grid_cells_height my, mx, h, w = yxhw[0], yxhw[1], yxhw[2], yxhw[3] # print(yxhw) mx = (mx * grid_cell_width) + (x_idx * grid_cell_width) my = (my * grid_cell_height) + (y_idx * grid_cell_height) h = h * grid_cell_height w = w * grid_cell_width # print(mx, my, h, w) lx = mx - (w / 2) rx = mx + (w / 2) ty = my - (h / 2) by = my + (h / 2) # print(lx, rx, ty, by) ret = int(lx), int(ty), int(rx), int(by) return ret def get_color(self, categories): category = np.argmax(categories) return self.config.figure.color_map[category] def apply_label(self, image, label): for _y in range(label.shape[0]): for _x in range(label.shape[1]): has_defect = label[_y, _x, 0] if has_defect > 0.5: bounding_box = self.get_bounding_box(_y, _x, label[_y, _x, 5:]) color = self.get_color(label[_y, _x, 1:5]) image = self.apply_box(image, bounding_box, color) return image def get_has_defect_graph(self, grid): white_space = np.transpose([Image.sigmoid(grid[:, :, 0]) * 255] * 3, [1, 2, 0]) new_size = (self.current_img.shape[1], self.current_img.shape[0]) return cv2.resize(white_space, new_size, interpolation=cv2.INTER_NEAREST) def get_log_image(self): first_image = self.baseline_img second_image = self.apply_label(np.copy(self.current_img), self.label) if self.label is not None else None third_image = self.apply_label(
np.copy(self.current_img)
numpy.copy
# Copyright 2021 Jij Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import numpy as np import openjij import openjij.model from openjij.sampler import BaseSampler from openjij.utils.decorator import deprecated_alias from openjij.utils.graph_utils import qubo_to_ising import cxxjij import dimod import cimod """ This module contains Simulated Annealing sampler. """ class SASampler(BaseSampler): """Sampler with Simulated Annealing (SA). Args: beta_min (float): Minmum beta (inverse temperature). You can overwrite in methods .sample_*. beta_max (float): Maximum beta (inverse temperature). You can overwrite in methods .sample_*. num_reads (int): number of sampling (algorithm) runs. defaults None. You can overwrite in methods .sample_*. num_sweeps (int): number of MonteCarlo steps during SA. defaults None. You can overwrite in methods .sample_*. schedule_info (dict): Information about an annealing schedule. Raises: ValueError: If schedules or variables violate as below. - not list or numpy.array. - not list of tuple (beta : float, step_length : int). - beta is less than zero. """ @property def parameters(self): return { 'beta_min': ['parameters'], 'beta_max': ['parameters'], } def __init__(self, beta_min=None, beta_max=None, num_sweeps=1000, schedule=None, num_reads=1): self.default_params = { 'beta_min': beta_min, 'beta_max': beta_max, 'num_sweeps': num_sweeps, 'schedule': schedule, 'num_reads': num_reads } self.params = { 'beta_min': beta_min, 'beta_max': beta_max, 'num_sweeps': num_sweeps, 'schedule': schedule, 'num_reads': num_reads } self._make_system = { 'singlespinflip': cxxjij.system.make_classical_ising, 'singlespinflippolynomial': cxxjij.system.make_classical_ising_polynomial, 'swendsenwang': cxxjij.system.make_classical_ising } self._algorithm = { 'singlespinflip': cxxjij.algorithm.Algorithm_SingleSpinFlip_run, 'singlespinflippolynomial': cxxjij.algorithm.Algorithm_SingleSpinFlip_run, 'swendsenwang': cxxjij.algorithm.Algorithm_SwendsenWang_run } def _convert_validation_schedule(self, schedule): """Checks if the schedule is valid and returns cxxjij schedule """ if not isinstance(schedule, (list, np.array)): raise ValueError("schedule should be list or numpy.array") if isinstance(schedule[0], cxxjij.utility.ClassicalSchedule): return schedule if len(schedule[0]) != 2: raise ValueError( "schedule is list of tuple or list (beta : float, step_length : int)") # schedule validation 0 <= beta beta = np.array(schedule).T[0] if not np.all(0 <= beta): raise ValueError("schedule beta range is '0 <= beta'.") # convert to cxxjij.utility.ClassicalSchedule cxxjij_schedule = [] for beta, step_length in schedule: _schedule = cxxjij.utility.ClassicalSchedule() _schedule.one_mc_step = step_length _schedule.updater_parameter.beta = beta cxxjij_schedule.append(_schedule) return cxxjij_schedule def sample(self, bqm, beta_min=None, beta_max=None, num_sweeps=None, num_reads=None, schedule=None, initial_state=None, updater=None, sparse=False, reinitialize_state=True, seed=None, ): """sample Ising model. Args: bqm (oj.BinaryQuadraticModel) binary quadratic model beta_min (float): minimal value of inverse temperature beta_max (float): maximum value of inverse temperature num_sweeps (int): number of sweeps num_reads (int): number of reads schedule (list): list of inverse temperature initial_state (dict): initial state updater(str): updater algorithm reinitialize_state (bool): if true reinitialize state for each run seed (int): seed for Monte Carlo algorithm Returns: :class:`openjij.sampler.response.Response`: results Examples: for Ising case:: >>> h = {0: -1, 1: -1, 2: 1, 3: 1} >>> J = {(0, 1): -1, (3, 4): -1} >>> sampler = oj.SASampler() >>> res = sampler.sample_ising(h, J) for QUBO case:: >>> Q = {(0, 0): -1, (1, 1): -1, (2, 2): 1, (3, 3): 1, (4, 4): 1, (0, 1): -1, (3, 4): 1} >>> sampler = oj.SASampler() >>> res = sampler.sample_qubo(Q) """ #Set default updater if updater is None: updater='single spin flip' _updater_name = updater.lower().replace('_', '').replace(' ', '') # swendsen wang algorithm runs only on sparse ising graphs. if _updater_name == 'swendsenwang' or sparse: sparse = True else: sparse = False if type(bqm) == dimod.BinaryQuadraticModel: bqm = openjij.BinaryQuadraticModel(dict(bqm.linear), dict(bqm.quadratic), bqm.offset, bqm.vartype, sparse=sparse) if sparse and bqm.sparse == False: # convert to sparse bqm bqm = openjij.BinaryQuadraticModel(bqm.linear, bqm.quadratic, bqm.offset, bqm.vartype, sparse=True) # alias model = bqm ising_graph, offset = model.get_cxxjij_ising_graph() self._set_params( beta_min=beta_min, beta_max=beta_max, num_sweeps=num_sweeps, num_reads=num_reads, schedule=schedule ) # set annealing schedule ------------------------------- if self.params['schedule'] is None: self.params['schedule'], beta_range = geometric_ising_beta_schedule( model=model, beta_max=self.params['beta_max'], beta_min=self.params['beta_min'], num_sweeps=self.params['num_sweeps'] ) self.schedule_info = { 'beta_max': beta_range[0], 'beta_min': beta_range[1], 'num_sweeps': self.params['num_sweeps'] } else: self.params['schedule'] = self._convert_validation_schedule(self.params['schedule']) self.schedule_info = {'schedule': 'custom schedule'} # ------------------------------- set annealing schedule # make init state generator -------------------------------- if initial_state is None: def _generate_init_state(): return ising_graph.gen_spin(seed) if seed != None else ising_graph.gen_spin() else: if isinstance(initial_state, dict): initial_state = [initial_state[k] for k in model.variables] _init_state = np.array(initial_state) # validate initial_state size if len(initial_state) != ising_graph.size(): raise ValueError( "the size of the initial state should be {}" .format(ising_graph.size())) def _generate_init_state(): return np.array(_init_state) # -------------------------------- make init state generator # choose updater ------------------------------------------- _updater_name = updater.lower().replace('_', '').replace(' ', '') if _updater_name not in self._make_system: raise ValueError('updater is one of "single spin flip or swendsen wang"') algorithm = self._algorithm[_updater_name] sa_system = self._make_system[_updater_name](_generate_init_state(), ising_graph) # ------------------------------------------- choose updater response = self._cxxjij_sampling( model, _generate_init_state, algorithm, sa_system, reinitialize_state, seed ) response.info['schedule'] = self.schedule_info return response def sample_hubo(self, J, vartype=None, beta_min=None, beta_max=None, num_sweeps=None, num_reads=None, schedule=None, initial_state=None, updater=None, reinitialize_state=True, seed=None): """sampling from higher order unconstrainted binary optimization. Args: J (dict): Interactions. vartype (str, openjij.VarType): "SPIN" or "BINARY". beta_min (float, optional): Minimum beta (initial inverse temperature). Defaults to None. beta_max (float, optional): Maximum beta (final inverse temperature). Defaults to None. schedule (list, optional): schedule list. Defaults to None. num_sweeps (int, optional): number of sweeps. Defaults to None. num_reads (int, optional): number of reads. Defaults to 1. init_state (list, optional): initial state. Defaults to None. reinitialize_state (bool): if true reinitialize state for each run seed (int, optional): seed for Monte Carlo algorithm. Defaults to None. Returns: :class:`openjij.sampler.response.Response`: results Examples:: for Ising case:: >>> sampler = oj.SASampler() >>> J = {(0,): -1, (0, 1): -1, (0, 1, 2): 1} >>> response = sampler.sample_hubo(J, "SPIN") for Binary case:: >>> sampler = oj.SASampler() >>> J = {(0,): -1, (0, 1): -1, (0, 1, 2): 1} >>> response = sampler.sample_hubo(J, "BINARY") """ if str(type(J)) == str(type(openjij.BinaryPolynomialModel({}, "SPIN"))): if vartype is not None: raise ValueError("vartype must not be specified") model = J elif str(type(J)) == str(type(cimod.BinaryPolynomialModel({}, "SPIN"))): if vartype is not None: raise ValueError("vartype must not be specified") model = J else: model = openjij.BinaryPolynomialModel(J, vartype) # make init state generator -------------------------------- if initial_state is None: if model.vartype == openjij.SPIN: def _generate_init_state(): return cxxjij.graph.Polynomial(model.num_variables).gen_spin(seed) if seed != None else cxxjij.graph.Polynomial(model.num_variables).gen_spin() elif model.vartype == openjij.BINARY: def _generate_init_state(): return cxxjij.graph.Polynomial(model.num_variables).gen_binary(seed) if seed != None else cxxjij.graph.Polynomial(model.num_variables).gen_binary() else: raise ValueError("Unknown vartype detected") else: if isinstance(initial_state, dict): initial_state = [initial_state[k] for k in model.indices] def _generate_init_state(): return np.array(initial_state) # -------------------------------- make init state generator # determine system class and algorithm -------------------------------- if model.vartype == openjij.SPIN: if updater is None or updater == "single spin flip": sa_system = cxxjij.system.make_classical_ising_polynomial(_generate_init_state(), model.to_serializable()) algorithm = cxxjij.algorithm.Algorithm_SingleSpinFlip_run elif updater == "k-local": raise ValueError("k-local update is only supported for binary variables") else: raise ValueError("Unknown updater name") elif model.vartype == openjij.BINARY: if updater == "k-local" or updater is None: sa_system = cxxjij.system.make_k_local_polynomial(_generate_init_state(), model.to_serializable()) algorithm = cxxjij.algorithm.Algorithm_KLocal_run elif updater == "single spin flip": sa_system = cxxjij.system.make_classical_ising_polynomial(_generate_init_state(), model.to_serializable()) algorithm = cxxjij.algorithm.Algorithm_SingleSpinFlip_run else: raise ValueError("Unknown updater name") else: raise ValueError("Unknown vartype detected") # -------------------------------- determine system class and algorithm self._set_params( beta_min=beta_min, beta_max=beta_max, num_sweeps=num_sweeps, num_reads=num_reads, schedule=schedule ) # set annealing schedule ------------------------------- if self.params['schedule'] is None: self.params['schedule'], beta_range = geometric_hubo_beta_schedule( sa_system, self.params['beta_max'], self.params['beta_min'], self.params['num_sweeps'] ) self.schedule_info = { 'beta_max': beta_range[0], 'beta_min': beta_range[1], 'num_sweeps': self.params['num_sweeps'] } else: self.schedule_info = {'schedule': 'custom schedule'} # ------------------------------- set annealing schedule response = self._cxxjij_sampling( model, _generate_init_state, algorithm, sa_system, reinitialize_state, seed ) response.info['schedule'] = self.schedule_info return response def geometric_ising_beta_schedule(model: openjij.model.BinaryQuadraticModel, beta_max=None, beta_min=None, num_sweeps=1000): """make geometric cooling beta schedule Args: model (openjij.BinaryQuadraticModel) beta_max (float, optional): [description]. Defaults to None. beta_min (float, optional): [description]. Defaults to None. num_sweeps (int, optional): [description]. Defaults to 1000. Returns: list of cxxjij.utility.ClassicalSchedule, list of beta range [max, min] """ if beta_min is None or beta_max is None: # generate Ising matrix ising_interaction = model.interaction_matrix() # set the right-bottom element zero (see issue #209) mat_size = ising_interaction.shape[0] ising_interaction[mat_size-1, mat_size-1] = 0 if (model.vartype == openjij.BINARY): # convert to ising matrix qubo_to_ising(ising_interaction) abs_ising_interaction = np.abs(ising_interaction) max_abs_ising_interaction = np.max(abs_ising_interaction) #automatical setting of min, max delta energy abs_bias = np.sum(abs_ising_interaction, axis=1) #apply threshold to avoid extremely large beta_max THRESHOLD = 1e-8 min_delta_energy =
np.min(abs_ising_interaction[abs_ising_interaction > max_abs_ising_interaction*THRESHOLD])
numpy.min
""" A module containing LCPrimitive and its subclasses. They implement components of a pulsar light curve. Includes primitives (Gaussian, Lorentzian), etc. as well as more sophisticated holistic templates that provide single-parameter (location) representations of the light curve. $Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/pulsar/lcprimitives.py,v 1.35 2017/03/17 21:37:52 kerrm Exp $ author: <NAME> <<EMAIL>> """ # NB -- big TODO -- I don't think wrapped primitives quite correctly return # Monte Carlo variables because they don't account for the uniform approx. # perhaps this isn't a big deal import numpy as np from scipy.special import erf,i0,i1 from scipy.integrate import simps,quad from scipy.interpolate import interp1d from scipy.stats import norm,cauchy from math import sin,cos,sinh,cosh,atan,tan ROOT2PI = (2*np.pi)**0.5 R2DI = (2/np.pi)**0.5 ROOT2 = 2**0.5 TWOPI = (2*np.pi) PI = np.pi*1 MAXWRAPS = 15 MINWRAPS = 3 WRAPEPS = 1e-8 # TODO -- possible "LCBase" class with certain method common to LCPrimitive and LCTemplate def two_comp_mc(n,w1,w2,loc,func): """ Helper function to generate MC photons from a two-sided distribution. NB -- this should work as is if w1,w2,loc are vectors. n -- total number of photons w1 -- scale parameter for func, lefthand peak w2 -- scale parameter for func, righthand peak loc -- position of peak func -- an 'rvs' function from scipy """ frac1 = w1/(w1+w2) # number of photons required from left side n1 = (np.random.rand(n) < frac1).sum() r1 = func(loc=0,scale=w1,size=n1) # reflect and relocate photons to right or lef side r1 = loc + np.where(r1<=0,r1,-r1) r2 = func(loc=0,scale=w2,size=n-n1) r2 = loc + np.where(r2>0,r2,-r2) return np.mod(np.append(r1,r2),1) def approx_gradient(func,phases,log10_ens,eps=1e-6): """ Return a numerical gradient. This works for both LCPrimitive and LCTemplate objects. HOW AWESOME! """ orig_p = func.get_parameters(free=False).copy() g = np.zeros([len(orig_p),len(phases)]) weights = np.asarray([-1,8,-8,1])/(12*eps) def do_step(which,eps): p0 = orig_p.copy() p0[which] += eps func.set_parameters(p0,free=False) return func(phases,log10_ens) for i in range(len(orig_p)): # use a 4th-order central difference scheme for j,w in zip([2,1,-1,-2],weights): g[i,:] += w*do_step(i,j*eps) func.set_parameters(orig_p,free=False) return g def check_gradient(func,atol=1e-8,rtol=1e-5,quiet=False): """ Test gradient function with a set of MC photons. This works with either LCPrimitive or LCTemplate objects. TODO -- there is trouble with the numerical gradient when a for the location-related parameters when the finite step causes the peak to shift from one side of an evaluation phase to the other.""" en = np.random.rand(1000)*2 + 1 # 100 MeV to 10 GeV ph = func.random(en) if hasattr(func,'closest_to_peak'): eps = min(1e-6,0.2*func.closest_to_peak(ph)) else: eps = 1e-6 g1 = func.gradient(ph,en,free=False) g2 = func.approx_gradient(ph,en,eps=eps) anyfail = False for i in range(g1.shape[0]): d1 = np.abs(g1[i]-g2[i]) a = np.argmax(d1) fail = np.any(d1 > (atol + rtol*np.abs(g2))) if not quiet: pass_string = 'FAILED' if fail else 'passed' print ('%02d (%s) %.3g (abs)'%(i,pass_string,d1.max())) anyfail = anyfail or fail return not anyfail class Fittable(object): # TODO """ Base class for any object with fittable parameters. Handle parameter names, etc. here?""" def get_parameters(self): pass def set_parameters(self): pass def get_bounds(self): pass def __call__(self,*args): return self._call(*args)[self.free] def _call(self,*args): raise NotImplementedError('Child class instantiates.') def grad(self,*args): return self._grad(*args)[self.free] def _grad(self,*args): raise NotImplementedError('Child class instantiates.') class LCPrimitive(object): """ Base class for various components of a light curve. All "analytic" light curve models must inherit and must implement the three 'virtual' functions below.""" def is_energy_dependent(self): return False def is_two_sided(self): """ True if primitive is asymmetric. Default is False, two-sided child classes should override.""" return False def copy(self): from copy import deepcopy return deepcopy(self) def __call__(self,phases): raise NotImplementedError('Virtual function must be implemented by child class.') def integrate(self,x1=0,x2=1,log10_ens=3): """ Base implemention with scipy quad.""" f = lambda ph: self(ph,log10_ens) return quad(f,x1,x2)[0] def cdf(self,x,log10_ens=3): return self.integrate(x1=0,x2=x,log10_ens=3) def fwhm(self): """Return the full-width at half-maximum of the light curve model.""" return self.hwhm(0)+self.hwhm(1) def hwhm(self,right=False): """Return the half-width at half-maximum of the light curve model.""" raise NotImplementedError('Virtual function must be implemented by child class.') def init(self): self.p = np.asarray([1]) self.pnames = [] self.name = 'Default' self.shortname = 'None' def _asarrays(self): for key in ['p','free','bounds','errors','slope','slope_free']: if hasattr(self,key): v = self.__dict__[key] if v is not None: self.__dict__[key] = np.asarray(v,dtype=bool if 'free' in key else float) def _default_bounds(self): bounds = [[]] *len(self.p) # this order works for LCHarmonic, too bounds[0] = [0.005,0.5] # width bounds[-1] = [-1,1] # position if len(bounds) > 2: bounds[1] = [0.005,0.5] # width return bounds def _default_priors(self): loc = self.p.copy() width = np.asarray([0.1]*len(self.p)) enable = np.asarray([False]*len(self.p)) return loc,width,enable def __init__(self,**kwargs): """ Generally, class-specific setup work is performed in init. Here, init is called and certain guaranteed default members are established.""" self.init() if not hasattr(self,'bounds'): self.bounds = self._default_bounds() # default self.errors = np.zeros_like(self.p) self.free = np.asarray([True]*len(self.p)) self.__dict__.update(kwargs) self._asarrays() self.gauss_prior_loc, self.gauss_prior_width, self.gauss_prior_enable = self._default_priors() self.shift_mode = False def _make_p(self,log10_ens=3): """ Internal method to return parameters appropriate for use in functional form.""" return [None] + list(self.p) def set_parameters(self,p,free=True): if free: self.p[self.free] = p else: self.p[:] = p # adjust position to be between 0 and 1 self.p[-1] = self.p[-1] % 1 return np.all(self.p >= 0) def get_parameters(self,free=True): if free: return self.p[self.free] return self.p def get_parameter_names(self,free=True): return [p for (p,b) in zip(self.pnames,self.free) if b] def set_errors(self,errs): n = self.free.sum() self.errors[:] = 0. self.errors[self.free] = errs[:n] return n def get_errors(self,free=True): return self.errors[self.free] def get_bounds(self): return self.bounds[self.free] def get_gauss_prior_parameters(self): mod_array = [False]*(len(self.p)-1)+[True] return ( self.gauss_prior_loc[self.free], self.gauss_prior_width[self.free], np.asarray(mod_array)[self.free], self.gauss_prior_enable[self.free], ) def enable_gauss_prior(self,enable=True): """ [Convenience] Turn on gaussian prior.""" self.gauss_prior_enable[:] = enable def center_gauss_prior(self,enable=False): """ [Convenience] Set gauss mode to current params.""" self.gauss_prior_loc[:] = self.p[:] if enable: self.enable_gauss_prior() def get_location(self,error=False): if error: return np.asarray([self.p[-1],self.errors[-1]]) return self.p[-1] def set_location(self,loc): self.p[-1] = loc def get_norm(self,error=False): #if error: return np.asarray([self.p[0],self.errors[0]]) #return self.p[0] return 1 def get_width(self,error=False,hwhm=False,right=False): """ Return the width of the distribution. Keyword arguments: ----------------- error [False] if True, return tuple with value and error hwhm [False] if True, scale width to be HWHM right [False] if True, return "right" component, else "left". There is no distinction for symmetric dists. """ scale = self.hwhm(right=right)/self.p[int(right)] if hwhm else 1 if error: return np.asarray([self.p[int(right)],self.errors[int(right)]])*scale return self.p[int(right)]*scale def get_gradient(self,phases,log10_ens=3): raise DeprecationWarning() return self.gradient(phases,log10_ens,free=True) def gradient(self,phases,log10_ens=3,free=False): raise NotImplementedError('No gradient function found for this object.') def random(self,n): """ Default is accept/reject.""" if n < 1: return 0 M = self(np.asarray([self.p[-1]])) # peak amplitude rvals = np.empty(n) position = 0 rfunc = np.random.rand while True: cand_phases = rfunc(n) cand_phases = cand_phases[rfunc(n) < self(cand_phases)/M] ncands = len(cand_phases) if ncands == 0: continue rvals[position:position + ncands] = cand_phases[:n-position] position += ncands if position >= n: break return rvals def __str__(self): m=max([len(n) for n in self.pnames]) l = [] errors = self.errors if hasattr(self,'errors') else [0]*len(self.pnames) for i in range(len(self.pnames)): fstring = '' if self.free[i] else ' [FIXED]' n=self.pnames[i][:m] t_n = n+(m-len(n))*' ' l += [t_n + ': %.4f +\- %.4f%s'%(self.p[i],errors[i],fstring)] l = [self.name+'\n------------------'] + l return '\n'.join(l) def approx_gradient(self,phases,log10_ens=3,eps=1e-5): return approx_gradient(self,phases,log10_ens,eps=eps) def check_gradient(self,atol=1e-8,rtol=1e-5,quiet=False): return check_gradient(self,atol=atol,rtol=rtol,quiet=quiet) def sanity_checks(self,eps=1e-6): """ A few checks on normalization, integration, etc. """ errfac = 1 # Normalization test y,ye = quad(self,0,1) #t1 = abs(self.p[0]-y)<(ye*errfac) t1 = abs(1-y)<(ye*errfac) # integrate method test #t2 = abs(self.p[0]-self.integrate(0,1))<eps t2 = abs(1-self.integrate(0,1))<eps # FWHM test t3 = (self(self.p[-1])*0.5-self(self.p[-1]-self.fwhm()/2))<eps # gradient test try: t4 = self.check_gradient(quiet=True) except: t4 = False # boundary conditions t5 = abs(self(0)-self(1-eps))<eps if not t1: print ('Failed Normalization test') if not t2: print ('Failed integrate method test') if not t3: print ('Failed FWHM test') if not t4: print ('Failed gradient test') if not t5: print ('Did not pass boundary conditions') return np.all([t1,t2,t3,t4,t5]) def eval_string(self): """ Return a string that can be evaled to instantiate a nearly- identical object.""" return '%s(p=%s,free=%s,slope=%s,slope_free=%s)'%( self.__class__.__name__,str(list(self.p)),str(list(self.free)), str(list(self.slope)) if hasattr(self,'slope') else None, str(list(self.slope_free)) if hasattr(self,'slope_free') else None) def dict_string(self): """ Return a string to express the object as a dictionary that can be easily instantiated using its keys.""" def pretty_list(l,places=5): fmt = '%.'+'%d'%places+'f' s = ', '.join([fmt%x for x in l]) return '['+s+']' t = ['name = %s'%self.__class__.__name__, 'p = %s'%(pretty_list(self.p)), 'free = %s'%(str(list(self.free))), 'slope = %s'%(pretty_list(self.slope) if hasattr(self,'slope') else None), 'slope_free = %s'%(str(list(self.slope_free)) if hasattr(self,'slope_free') else None), ] #return 'dict(\n'+'\n '.join(t)+'\n return t def closest_to_peak(self,phases): """ Return the minimum distance between a member of the array of phases and the position of the mode of the primitive.""" return np.abs(phases-self.get_location()).min() def get_fixed_energy_version(self,log10_en=3): return self class LCWrappedFunction(LCPrimitive): """ Super-class for profiles derived from wrapped functions. While some distributions (e.g. the wrapped normal) converge quickly, others (e.g. the wrapped Lorentzian) converge very slowly and must be truncated before machine precision is reached. In order to preserve normalization, the pdf is slightly adjusted: f(phi) = sum_(i,-N,N,g(phi+i)) + (1 - int(phi,-N,N,g(phi)) ). This introduces an additional parameteric dependence which must be accounted for by computation of the gradient. """ def _norm(self,nwraps,log10_ens=3): """ Compute the truncated portion of the template.""" #return self.p[0]-self.base_int(-nwraps,nwraps+1) return 1-self.base_int(-nwraps,nwraps+1,log10_ens) def _grad_norm(self,nwraps,log10_ens=3): """ Compute the gradient terms due to truncated portion. That is, since we add on a uniform component beyond nwraps, the amplitude of this component depends on the CDF and hence on the parameters. Default implementation is to ignore these terms, applicable for rapidly-converging distributions (e.g. wrapped normal with small width parameter). On the other hand, it is not negligible for long-tailed distributions, e.g. Lorentzians.""" return None def __call__(self,phases,log10_ens=3): """ Return wrapped template + DC component corresponding to truncation.""" results = self.base_func(phases,log10_ens) for i in range(1,MAXWRAPS+1): t = self.base_func(phases,log10_ens,index= i) t += self.base_func(phases,log10_ens,index=-i) results += t if (i>=MINWRAPS) and (np.all(t < WRAPEPS)): break return results+self._norm(i,log10_ens) def gradient(self,phases,log10_ens=3,free=False): """ Return the gradient evaluated at a vector of phases. output : a num_parameter x len(phases) ndarray, the num_parameter-dim gradient at each phase """ results = self.base_grad(phases,log10_ens) for i in range(1,MAXWRAPS+1): t = self.base_grad(phases,log10_ens,index=i) t += self.base_grad(phases,log10_ens,index=-i) results += t if (i >= MINWRAPS) and (np.all(t < WRAPEPS)): break gn = self._grad_norm(i,log10_ens) if gn is not None: for i in range(len(gn)): results[i,:] += gn[i] if free: return results[self.free] return results def integrate(self,x1,x2,log10_ens=3): #if(x1==0) and (x2==0): return 1. # NB -- this method is probably overkill now. results = self.base_int(x1,x2,log10_ens,index=0) for i in range(1,MAXWRAPS+1): t = self.base_int(x1,x2,log10_ens,index=i) t += self.base_int(x1,x2,log10_ens,index=-i) results += t if np.all(t < WRAPEPS): break return results+(x2-x1)*self._norm(i,log10_ens) def base_func(self,phases,log10_ens=3,index=0): raise NotImplementedError( 'No base_func function found for this object.') def base_grad(self,phases,log10_ens=3,index=0): raise NotImplementedError( 'No base_grad function found for this object.') def base_int(self,phases,log10_ens=3,index=0): raise NotImplementedError( 'No base_int function found for this object.') class LCGaussian(LCWrappedFunction): """ Represent a (wrapped) Gaussian peak. Parameters Width the standard deviation parameter of the norm dist. Location the mode of the Gaussian distribution """ def init(self): self.p = np.asarray([0.03,0.5]) self.pnames = ['Width','Location'] self.name = 'Gaussian' self.shortname = 'G' def hwhm(self,right=False): return self.p[0]*(2 * np.log(2))**0.5 def base_func(self,phases,log10_ens=3,index=0): e,width,x0 = self._make_p(log10_ens) z = (phases + index - x0)/width return (1./(width*ROOT2PI))*np.exp(-0.5*z**2 ) def base_grad(self,phases,log10_ens=3,index=0): e,width,x0 = self._make_p(log10_ens) z = (phases + index - x0)/width f = (1./(width*ROOT2PI))*np.exp(-0.5*z**2 ) return np.asarray([f/width*(z**2 - 1.),f/width*z]) def base_int(self,x1,x2,log10_ens=3,index=0): e,width,x0 = self._make_p(log10_ens) z1 = (x1 + index - x0)/width z2 = (x2 + index - x0)/width return 0.5*(erf(z2/ROOT2)-erf(z1/ROOT2)) def random(self,n): if hasattr(n,'__len__'): n = len(n) return np.mod(norm.rvs(loc=self.p[-1],scale=self.p[0],size=n),1) class LCGaussian2(LCWrappedFunction): """ Represent a (wrapped) two-sided Gaussian peak. Parameters Width1 the standard deviation parameter of the norm dist. Width2 the standard deviation parameter of the norm dist. Location the mode of the distribution """ def init(self): self.p = np.asarray([0.03,0.03,0.5]) self.pnames = ['Width1','Width2','Location'] self.name = 'Gaussian2' self.shortname = 'G2' def is_two_sided(self): return True def hwhm(self,right=False): return (self.p[int(right)])*(2 * np.log(2))**0.5 def base_func(self,phases,log10_ens=3,index=0): e,width1,width2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) z *= np.where(z <= 0, 1./width1, 1./width2) return (R2DI/(width1+width2)) * np.exp(-0.5*z**2 ) def base_grad(self,phases,log10_ens=3,index=0): e,width1,width2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) m = (z <= 0) w = np.where(m, width1, width2) z /= w f = (R2DI/(width1+width2)) * np.exp(-0.5*z**2 ) k = 1./(width1+width2) z2w = z**2/w t = f*(z2w-k) g1 = f*(z2w*( m)-k) g2 = f*(z2w*(~m)-k) g3 = f*z/w return np.asarray([g1,g2,g3]) def base_int(self,x1,x2,log10_ens=3,index=0): e,width1,width2,x0 = self._make_p(log10_ens) if index==0 and (x1 < x0) and (x2 > x0): z1 = (x1 + index - x0)/width1 z2 = (x2 + index - x0)/width2 k1 = 2*width1/(width1+width2) k2 = 2*width2/(width1+width2) return 0.5*(k2*erf(z2/ROOT2)-k1*erf(z1/ROOT2)) w = width1 if ((x1+index) < x0) else width2 z1 = (x1 + index - x0)/w z2 = (x2 + index - x0)/w k = 2*w/(width1+width2) return 0.5*k*(erf(z2/ROOT2)-erf(z1/ROOT2)) def random(self,n): """ Use multinomial technique to return random photons from both components.""" if hasattr(n,'__len__'): n = len(n) return two_comp_mc(n,self.p[0],self.p[1],self.p[-1],norm.rvs) class LCLorentzian(LCPrimitive): """ Represent a (wrapped) Lorentzian peak. Parameters Width the width paramater of the wrapped Cauchy distribution, namely HWHM*2PI for narrow distributions Location the center of the peak in phase """ def init(self): self.p = np.asarray([0.1,0.5]) self.pnames = ['Width','Location'] self.name = 'Lorentzian' self.shortname = 'L' def hwhm(self,right=False): # NB -- bounds on p[1] set such that this is well-defined return np.arccos( 2-cosh(self.p[0]) )/TWOPI def __call__(self,phases,log10_ens=3): e,gamma,loc = self._make_p(log10_ens) z = TWOPI*(phases-loc) # NB -- numpy call not as efficient as math.sinh etc. # but this allows easy inheritance for the energy-dependence return np.sinh(gamma)/(np.cosh(gamma)-np.cos(z)) def gradient(self,phases,log10_ens=3,free=False): e,gamma,loc = self._make_p(log10_ens) z = TWOPI*(phases-loc) s1 = np.sinh(gamma); c1 = np.cosh(gamma) c = np.cos(z); s = np.sin(z) f = s1/(c1-c) f2 = f**2 g1 = f*(c1/s1) - f2 g2 = f2*(TWOPI/s1)*s if free: return np.asarray([g1,g2])[self.free] return np.asarray([g1,g2]) def random(self,n): if hasattr(n,'__len__'): n = len(n) return np.mod(cauchy.rvs(loc=self.p[-1],scale=self.p[0]/TWOPI,size=n),1) def integrate(self,x1,x2,log10_ens=3): # NB -- due to the use of tans below, must be careful to use an angle # range of -pi/2 to pi/2 rather than 0 to pi as one would want # I haven't carefully tested this solution e,gamma,loc = self._make_p(log10_ens) x1 = PI*(x1-loc) x2 = PI*(x2-loc) t = 1./np.tanh(0.5*gamma) # coth(gamma/2) v2 = np.arctan(t*tan(x2))/PI v1 = np.arctan(t*tan(x1))/PI return (v2<=v1) + v2 - v1 # correction for tan wrapping class LCLorentzian2(LCWrappedFunction): """ Represent a (wrapped) two-sided Lorentzian peak. Parameters Width1 the HWHM of the distribution (left) Width2 the HWHM of the distribution (right) Location the mode of the distribution """ def init(self): self.p = np.asarray([0.03,0.03,0.5]) self.pnames = ['Width1','Width2','Location'] self.name = 'Lorentzian2' self.shortname = 'L2' def is_two_sided(self): return True def hwhm(self,right=False): return self.p[int(right)] def _grad_norm(self,nwraps,log10_ens=3): e,gamma1,gamma2,x0 = self._make_p(log10_ens) z1 = (-nwraps-x0)/gamma1 z2 = (nwraps+1-x0)/gamma2 t = gamma2*np.arctan(z2)-gamma1*np.arctan(z1) t1 = 1./(1+z1**2) t2 = 1./(1+z2**2) k = 2/(gamma1+gamma2)/PI f = k*t g1 = -1./(gamma1+gamma2)-(np.arctan(z1)-z1*t1)/t g2 = -1./(gamma1+gamma2)+(np.arctan(z2)-z2*t2)/t g3 = (t1-t2)/t return [-f*g1,-f*g2,-f*g3] def base_func(self,phases,log10_ens=3,index=0): e,gamma1,gamma2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) z *= np.where(z<=0, 1./gamma1, 1./gamma2) k = 2/(gamma1+gamma2)/PI return k/(1+z**2) def base_grad(self,phases,log10_ens=3,index=0): e,gamma1,gamma2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) m = z < 0 g = np.where(m,1./gamma1,1./gamma2) t1 = 1+(z*g)**2 t2 = 2*(z*g)/t1 g1 = -1/(gamma1+gamma2)+t2*((m*z)/gamma1**2) g2 = -1/(gamma1+gamma2)+t2*((~m*z)/gamma2**2) g3 = t2*g f = (2./(gamma1+gamma2)/PI)/t1 return np.asarray([f*g1,f*g2,f*g3]) def base_int(self,x1,x2,log10_ens=3,index=0): gamma1,gamma2,x0 = self.p # the only case where g1 and g2 can be different is if we're on the # 0th wrap, i.e. index=0; this also includes the case when we want # to use base_int to do a "full" integral if index==0 and (x1 < x0) and (x2 > x0): g1,g2 = gamma1,gamma2 else: g1,g2 = [gamma1]*2 if ((x1+index) < x0) else [gamma2]*2 z1 = (x1 + index - x0)/g1 z2 = (x2 + index - x0)/g2 k = (2./(gamma1+gamma2)/PI) return k*(g2*atan(z2)-g1*atan(z1)) def random(self,n): """ Use multinomial technique to return random photons from both components.""" return two_comp_mc(n,self.p[0],self.p[1],self.p[-1],cauchy.rvs) class LCVonMises(LCPrimitive): """ Represent a peak from the von Mises distribution. This function is used in directional statistics and is naturally wrapped. Parameters: Width inverse of the 'kappa' parameter in the std. def. Location the center of the peak in phase """ def init(self): self.p = np.asarray([0.05,0.5]) self.pnames = ['Width','Location'] self.name = 'VonMises' self.shortname = 'VM' def hwhm(self,right=False): return 0.5*np.arccos(self.p[0]*np.log(0.5)+1)/TWOPI def __call__(self,phases,log10_ens=3): e,width,loc = self._make_p(log10_ens) z = TWOPI*(phases-loc) return np.exp(np.cos(z)/width)/i0(1./width) def gradient(self,phases,log10_ens=3,free=False): e,width,loc = self._make_p(log10_ens) my_i0 = i0(1./width) my_i1 = i1(1./width) z = TWOPI*(phases-loc) cz = np.cos(z) sz = np.sin(z) f = (np.exp(cz)/width)/my_i0 return np.asarray([-cz/width**2*f,TWOPI*(sz/width+my_i1/my_i0)*f]) class LCKing(LCWrappedFunction): """ Represent a (wrapped) King function peak. Parameters Sigma the width parameter Gamma the tail parameter Location the mode of the distribution """ # NOTES -- because we don't integrate over solid angle, the norm # integral / jacobean for the usual King function isn't trivial; # need to see if this is a show stopper def init(self): self.p = np.asarray([0.03,0.5]) self.pnames = ['Sigma','Gamma','Location'] self.name = 'King' self.shortname = 'K' def hwhm(self,right=False): raise NotImplementedError() return self.p[0]*(2 * np.log(2))**0.5 def base_func(self,phases,log10_ens=3,index=0): e,s,g,x0 = self._make_p(log10_ens) z = phases+index-x0 u = 0.5*(z/s)**2 return (g-1)/g*(1.+u/g)**-g def base_grad(self,phases,log10_ens=3,index=0): raise NotImplementedError() e,width,x0 = self._make_p(log10_ens) z = (phases + index - x0)/width f = (1./(width*ROOT2PI))*np.exp(-0.5*z**2 ) return np.asarray([f/width*(z**2 - 1.),f/width*z]) def base_int(self,x1,x2,log10_ens=3,index=0): e,s,g,x0 = self._make_p(log10_ens) z1 = x1 + index - x0 z2 = x2 + index - x0 u1 = 0.5*((x1 + index - x0)/s)**2 u2 = 0.5*((x2 + index - x0)/s)**2 f1 = 1-(1.+u1/g)**(1-g) f2 = 1-(1.+u2/g)**(1-g) if (z1*z2<0): # span the peak return 0.5*(f1+f2) if z1 < 0: return 0.5*(f1-f2) return 0.5*(f2-f1) def random(self,n): raise NotImplementedError() if hasattr(n,'__len__'): n = len(n) return np.mod(norm.rvs(loc=self.p[-1],scale=self.p[0],size=n),1) class LCTopHat(LCPrimitive): """ Represent a top hat function. Parameters: Width right edge minus left edge Location center of top hat """ def init(self): self.p = np.asarray([0.03,0.5]) self.pnames = ['Width','Location'] self.name = 'TopHat' self.shortname = 'TH' self.fwhm_scale = 1 def hwhm(self,right=False): return self.p[0]/2 def __call__(self,phases,wrap=True): width,x0 = self.p return np.where(np.mod(phases - x0 + width/2,1) < width,1./width,0) def random(self,n): if hasattr(n,'__len__'): n = len(n) return np.mod( np.random.rand(n)*self.p[0]+self.p[-1]-self.p[0]/2,1) class LCHarmonic(LCPrimitive): """Represent a sinusoidal shape corresponding to a harmonic in a Fourier expansion. Parameters: Location the phase of maximum """ def init(self): self.p = np.asarray([0.]) self.order = 1 self.pnames = ['Location'] self.name = 'Harmonic' self.shortname = 'H' def __call__(self,phases,log10_ens=3): e,x0 = self._make_p(log10_ens) return 1+np.cos( (TWOPI*self.order) * (phases - x0 ) ) def integrate(self,x1,x2,log10_ens=3): e,x0 = self._make_p(log10_ens) t = self.order*TWOPI return (x2-x1)+(np.sin(t*(x2-x0))-np.sin(t*(x1-x0)))/t class LCEmpiricalFourier(LCPrimitive): """ Calculate a Fourier representation of the light curve. The only parameter is an overall shift. Cannot be used with other LCPrimitive objects! Parameters: Shift : overall shift from original template phase """ def init(self): self.nharm = 20 self.p =
np.asarray([0.])
numpy.asarray
# -*- coding: # Project: Linear Regression import pandas as pd import numpy as np import math import pylab import statsmodels.api as sm from statsmodels.formula.api import ols from sklearn.model_selection import train_test_split import scipy.stats as spstats import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error as MSE house = pd.read_csv('HousePrices.csv') # check the dimension house.shape # check columns name house.columns # Check Datatypes d_types = house.dtypes # summarised the data set desc = house.describe() # NULL Check d_null = house.isnull().sum() # check 0 d_zeros = house[house==0].count() # split the dataset into numeric to factor columns numColumn = house.select_dtypes(include=['int32','int64','float32','float64']).columns.values factorColumn = house.select_dtypes(include=['object']).columns.values # LotFrontage set null value to 0 house.LotFrontage[house.LotFrontage.isnull()] = 0 # setting the garage related columns from null # since there is no garage for the given rows cols = ['GarageType','GarageYrBlt','GarageFinish','GarageCars','GarageArea','GarageQual','GarageCond'] for i in cols: house[i][house[i].isnull()] = "No" # Alley Columns NA converts to No value house.Alley[house.Alley.isnull()] = "No" # MasVnrType object columns none converts to No value house.MasVnrType[house.MasVnrType.isnull()] = "No" # MasVnrArea columns " " converts to 0 value house.MasVnrArea[house.MasVnrArea.isnull()] = 0 # Basement basement_cols = ['BsmtQual','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2'] for i in basement_cols: house[i][house[i].isnull()] = "No" # FireplaceQu house.FireplaceQu[house.FireplaceQu.isnull()] = "No" # Electrical house.Electrical[house.Electrical.isnull()] = "Mix" # PoolQC house.PoolQC[house.PoolQC.isnull()] = "No" # Fence house.Fence[house.Fence.isnull()] = "No" # MiscFeature house.MiscFeature[house.MiscFeature.isnull()] = "No" # Drop ID column house = house.drop('Id', axis=1) # Rename 3 columns house = house.rename(columns = {'1stFlrSF' : 'FirststFlrSF', '2ndFlrSF' : 'SecondndFlrSF', '3SsnPorch' : 'ThirdSsnPorch'}, inplace = False) # 9 numeric columns remove # BsmtFinSF2 available singulariti 0.8822 house.BsmtFinSF2.value_counts() house = house.drop('BsmtFinSF2', axis=1) # LowQualFinSF available singulariti 0.9811 house.LowQualFinSF.value_counts() house = house.drop('LowQualFinSF', axis=1) # BsmtHalfBath available singulariti 0.9450 house.BsmtHalfBath.value_counts() house = house.drop('BsmtHalfBath', axis=1) # KitchenAbvGr available singulariti 0.9479 house.KitchenAbvGr.value_counts() house = house.drop('KitchenAbvGr', axis=1) # EnclosedPorch available singulariti 0.8634 house.EnclosedPorch.value_counts() house = house.drop('EnclosedPorch', axis=1) # ScreenPorch available singulariti 0.9223 house.ScreenPorch.value_counts() house = house.drop('ScreenPorch', axis=1) # PoolArea available singulariti 0.9961 house.PoolArea.value_counts() house = house.drop('PoolArea', axis=1) # MiscVal available singulariti 0.9628 house.MiscVal.value_counts() house = house.drop('MiscVal', axis=1) # ThirdSsnPorch available singulariti 0.9845 house.ThirdSsnPorch.value_counts() house = house.drop('ThirdSsnPorch', axis=1) # 21 factor columns remove # Road_Type available singulariti 0.9951 house.Road_Type.value_counts() house = house.drop('Road_Type', axis=1) # Alley available singulariti 0.9377 house.Alley.value_counts() house = house.drop('Alley', axis=1) # LandContour available singulariti 0.8943 house.LandContour.value_counts() house = house.drop('LandContour', axis=1) # Utilities available singulariti 0.9985 house.Utilities.value_counts() house = house.drop('Utilities', axis=1) # LandSlope available singulariti 0.9445 house.LandSlope.value_counts() house = house.drop('LandSlope', axis=1) # Condition1 available singulariti 0.8654 house.Condition1.value_counts() house = house.drop('Condition1', axis=1) # Condition2 available singulariti 0.9908 house.Condition2.value_counts() house = house.drop('Condition2', axis=1) # RoofMatl available singulariti 0.9821 house.RoofMatl.value_counts() house = house.drop('RoofMatl', axis=1) # ExterCond available singulariti 0.8755 house.ExterCond.value_counts() house = house.drop('ExterCond', axis=1) # BsmtCond available singulariti 0.8929 house.BsmtCond.value_counts() house = house.drop('BsmtCond', axis=1) # BsmtFinType2 available singulariti 0.8538 house.BsmtFinType2.value_counts() house = house.drop('BsmtFinType2', axis=1) # Heating available singulariti 0.9768 house.Heating.value_counts() house = house.drop('Heating', axis=1) # CentralAir available singulariti 0.9334 house.CentralAir.value_counts() house = house.drop('CentralAir', axis=1) # Electrical available singulariti 0.9170 house.Electrical.value_counts() house = house.drop('Electrical', axis=1) # Functional available singulariti 0.9343 house.Functional.value_counts() house = house.drop('Functional', axis=1) # GarageQual available singulariti 0.9020 house.GarageQual.value_counts() house = house.drop('GarageQual', axis=1) # GarageCond available singulariti 0.9093 house.GarageCond.value_counts() house = house.drop('GarageCond', axis=1) # PavedDrive available singulariti 0.9228 house.PavedDrive.value_counts() house = house.drop('PavedDrive', axis=1) # PoolQC available singulariti 0.9961 house.PoolQC.value_counts() house = house.drop('PoolQC', axis=1) # MiscFeature available singulariti 0.9614 house.MiscFeature.value_counts() house = house.drop('MiscFeature', axis=1) # SaleType available singulariti 0.8668 house.SaleType.value_counts() house = house.drop('SaleType', axis=1) # ANOVA Test colsObject = list(house.select_dtypes(include=['object']).columns.values) for i in colsObject: model = ols('Property_Sale_Price ~ '+i+' ', data=house).fit() anovaValue = sm.stats.anova_lm(model, typ=2) pcritical = 0.05 pvalue = anovaValue["PR(>F)"][0] if pvalue > pcritical: print(i) house = house.drop(i, axis=1) # find correlation numCols = house.select_dtypes(include=['int32','int64','float32','float64']).columns.values # delete y variable numCols = np.delete(numCols,26) # find correlation cor = house[numCols].corr() # trill the correlation dataframe cor = np.tril(cor) # heatmap for correlation sns.heatmap(cor,xticklabels=numCols,yticklabels=numCols,vmin=-1,vmax=1,annot=True) # copy for original dataset housePrices_d = house.copy() # create for dummy columns for factor columns for c in colsObject: dummy = pd.get_dummies(housePrices_d[c],drop_first=True, prefix=c) housePrices_d = housePrices_d.join(dummy) # original columns are drop in dataset housePrices_d = housePrices_d.drop(colsObject, axis=1) # split the data train and test train,test = train_test_split(housePrices_d, test_size=0.3) # train split in trainx and trainy # first drop the y column trainx = train.drop('Property_Sale_Price',axis=1) # add y column in trainy trainy = train['Property_Sale_Price'] # test split in testx and testy # first drop the y column testx = train.drop('Property_Sale_Price', axis=1) # add y column in testy testy = train['Property_Sale_Price'] # add a constant term to the trainx and testx trainx = sm.add_constant(trainx) testx = sm.add_constant(testx) # 1 OLS MODEL build mo = sm.OLS(trainy,trainx).fit() # summary of OLS model # mo.summary() # Predict value trainx value pre = mo.predict(trainx) err1 = trainy - pre np.mean(err1) # check the normal distrubution sns.distplot(err1) # predict value testx value pre = mo.predict(testx) # create Dataframe for testx results = pd.DataFrame({'Property_Sale_Price':testy, 'Predict_Property_Sale_Price':np.round(pre,2)}) # error find for prediction value and actual value results['err'] = results['Property_Sale_Price'] - results['Predict_Property_Sale_Price'] # square error results['sqerr'] = results['err']**2 # find Sum Of Square Error sse = np.sum(results.sqerr) # find Mean Of Squared Error mse = sse/len(testy) # Model 2 # transform y to boxcox y bcy = spstats.boxcox(housePrices_d.Property_Sale_Price) # lambda value lamda = bcy[1] # transform array include in dataframe housePrices_d['Property_Sale_Price_BCT'] = bcy[0] # split the data in train2 and test2 train2, test2 = train_test_split(housePrices_d, test_size=0.3) # drop the old y variable train2 = train2.drop('Property_Sale_Price', axis=1) test2 = test2.drop('Property_Sale_Price', axis=1) # train2 data split in 2 variables train2x and train2y train2x = train2.drop('Property_Sale_Price_BCT', axis=1) train2y = train2['Property_Sale_Price_BCT'] # test2 data split in 2 variables test2x and test2y test2x = test2.drop('Property_Sale_Price_BCT', axis=1) test2y = test2['Property_Sale_Price_BCT'] # add to constant value train2x and test2x train2x = sm.add_constant(train2x) test2x = sm.add_constant(test2x) # 2 OLS MODEL build mo2 = sm.OLS(train2y,train2x).fit() # predict train2x value pre1 = mo2.predict(train2x) err1 = train2y - pre1 np.mean(err1) # predict test2x value pre1 = mo2.predict(test2x) # convert the predicted values to the actual format acty2 = np.exp(np.log(test2y*lamda+1)/lamda) predy2 = np.round(np.exp(
np.log(pre1*lamda+1)
numpy.log
from __future__ import print_function import sys sys.path.append('..') from Game import Game from .KindoLogic import Board import numpy as np ''' Author: <NAME> (https://github.com/scalettar/) Date: March, 2020 ''' class KindoGame(Game): ''' This class specifies the Kindo game. It interacts with the Board class which controls the game state. ''' # For displaying board in text format display_owner = { 1: "x", 0: " ", -1: "o" } display_wallDirection = { 1: ".", 2: ":", 3: ".", 4: ":" } display_hasDot = { True: "-", False: " " } display_isKing = { True: "K", False: " " } display_isUnwallable = { True: ".", False: " " } def __init__(self, n=5): # Board dimensions n x n self.n = n # Number of different types of tiles a player can have # 0: No wall # 1: Wall facing up # 2: Wall facing right # 3: Wall facing down # 4: Wall facing left self.tileTypes = 5 def getInitBoard(self): """ Returns: startBoard: a representation of the board (ideally this is the form that will be the input to your neural network) """ b = Board(self.n) return np.array(b.tiles) def getBoardSize(self): """ Returns: (x,y): a tuple of board dimensions """ return (self.n, self.n) def getActionSize(self): """ Returns: actionSize: number of all possible actions """ # 5 different tile placement options, 4 walls or a neutral placement # Add 1 action to total; This final index represents no other legal actions # e.g. for n = 5 (5 x 5 board): # STARTING INDICES FOR TILE PLACEMENT ACTIONS FOR EACH TILE (5 actions per tile) # 0 1 2 3 4 # ----------------------- # 0 | 0 5 10 15 20 # 1 | 25 30 35 40 45 # 2 | 50 55 60 65 70 # 3 | 75 80 85 90 95 # 4 | 100 105 110 115 120 # Actions 0 - 124 represent a move of form (x, y, w) flattened into a single index # Action 125 is only true if actions 0 - 124 are all invalid # EXAMPLE 1. # A move (x, y, w) = (3, 2, 4) would mean placing a left facing wall # in space with x-coordinate = 3 and y-coordinate = 2 # This move cooresponds with action 85 + 4 = 89 # EXAMPLE 2. # Action 90 would coorespond with move (3, 3, 0) # This means capturing tile with x-coordinate = 3 and y-coordinate = 3 # without placing any walls return self.n * self.n * self.tileTypes + 1 def getNextState(self, board, player, action): """ Input: board: current board player: current player (1 or -1) action: action taken by current player Returns: nextBoard: board after applying action nextPlayer: player who plays in the next turn (should be -player) """ # Check if no valid actions if action == self.getActionSize() - 1: # No valid actions, in Kindo this means the game must be over so make no changes return (board, player) # Create a copy of the current board b = Board(self.n) b.tiles = np.copy(board) # Get move (x, y, w) from flattened action index x = int(action / (self.n * self.tileTypes)) y = int((action % (self.n * self.tileTypes)) / self.tileTypes) w = (action % (self.n * self.tileTypes)) % self.tileTypes move = (x, y, w) # Execute move currentPlayerID = b.execute_move(move, player) # Return updated state and current player return (b.tiles, currentPlayerID) def getValidMoves(self, board, player): """ Input: board: current board player: current player Returns: validMoves: a binary vector of length self.getActionSize(), 1 for moves that are valid from the current board and player, 0 for invalid moves """ # Array of valid moves to return, initialize to all false (0) validMoves = [0] * self.getActionSize() # Create a copy of the current board b = Board(self.n) b.tiles = np.copy(board) # Find the legal (valid) moves legalMoves = b.get_legal_moves(player) # No legal moves found (in Kindo this should only occur when the game is over) if len(legalMoves) == 0: validMoves[-1] = 1 # last move (action) index means no other moves are valid return np.array(validMoves) # Create flattened array of valid moves (actions) from legalMoves list for x, y, w in legalMoves: validMoves[(x * self.n * self.tileTypes) + (y * self.tileTypes) + w] = 1 # Convert to np array for performance return np.array(validMoves) def getGameEnded(self, board, player): """ Input: board: current board player: current player (1 or -1) Returns: r: 0 if game has not ended. 1 if player won, -1 if player lost, small non-zero value for draw. """ # Create a copy of the current board b = Board(self.n) b.tiles =
np.copy(board)
numpy.copy
"""Functions for manipulating the skeleton object (These could be moved to wkskel repo if not already there)""" import os from typing import Sequence import numpy as np import pandas as pd from tqdm import tqdm import wkskel from wkskel import Skeleton from genEM3.data.wkwdata import WkwData from genEM3.util.path import get_data_dir def getAllTreeCoordinates(skel): """Get the coordinates of all the nodes in trees within a skeleton object""" # Get the coordinate of the nodes as numpy array coordsList = [skel.nodes[x].position.values for x in range(skel.num_trees())] # Concatenate into a single array of coordinates return np.vstack(coordsList) def get_volume_df(skeletons: Sequence[Skeleton]): """Function to return a table containing the information from test box annotations Arguments: skeletons: a list of skeletons of the annotated test boxes Returns: volume_df: pandas data frame which contains the skeleton id, tree_idx and id, coordinate of the center of the patches and their relative location (xi, yi). Finally, it contains the class of the annotated patch(debris(0, False) vs. clean(1, True)) """ volume_df = pd.DataFrame(columns=['skel_idx', 'tree_idx', 'tree_id', 'x', 'y', 'z', 'xi', 'yi', 'class', 'explicit']) for skel_idx, skel in enumerate(skeletons): group_ids = np.array(skel.group_ids) for plane_group in skel.groups: plane_group_id = plane_group.id plane_group_class = bool(int(plane_group.name[-1])) plane_tree_inds = np.where(group_ids == plane_group_id)[0] plane_matrix = np.zeros((5, 5), dtype=np.bool) plane_df = pd.DataFrame(columns=['skel_idx', 'tree_idx', 'tree_id', 'x', 'y', 'z', 'xi', 'yi', 'class', 'explicit']) for tree_idx in plane_tree_inds: patch_class = skel.names[tree_idx][-1] if patch_class.isnumeric(): patch_class = bool(int(patch_class)) explicit = True else: patch_class = plane_group_class explicit = False patch_xi = int(skel.names[tree_idx][5:7]) patch_yi = int(skel.names[tree_idx][8:10]) plane_matrix[patch_xi, patch_yi] = patch_class c_id = np.argmax(np.bincount(skel.edges[tree_idx].flatten())) c_abs = skel.nodes[tree_idx].loc[skel.nodes[tree_idx]['id'] == c_id, 'position'].values[0].astype(int) plane_df = plane_df.append({ 'skel_idx': skel_idx, 'tree_idx': tree_idx, 'tree_id': skel.tree_ids[tree_idx], 'x': c_abs[0], 'y': c_abs[1], 'z': c_abs[2], 'xi': patch_xi, 'yi': patch_yi, 'class': patch_class, 'explicit': explicit }, ignore_index=True) volume_df = volume_df.append(plane_df) return volume_df def add_bbox_tree_from_center(coord_center, input_shape, tree_name, skel): """Adds a bbox skeleton at specified coordinate to skeleton""" cx, cy, cz = coord_center positions = np.array([ [cx, cy, cz], [cx - input_shape[0]/2, cy - input_shape[1]/2, cz], [cx - input_shape[0]/2, cy + input_shape[1]/2, cz], [cx + input_shape[0]/2, cy - input_shape[1]/2, cz], [cx + input_shape[0]/2, cy + input_shape[1]/2, cz], [cx + input_shape[0]/2, cy + input_shape[1]/2 - 1, cz] ]) min_id = skel.max_node_id() + 1 max_id = min_id + positions.shape[0] - 1 nodes = skel.define_nodes( position_x=positions[:, 0].tolist(), position_y=positions[:, 1].tolist(), position_z=positions[:, 2].tolist(), id=list(range(min_id, max_id + 1)) ) edges = np.array([ [1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [3, 5], [4, 6] ]) + skel.max_node_id() skel.add_tree( nodes=nodes, edges=edges, name=tree_name) def make_skel_from_json(json_path: str): """ Creates a skeleton object from the binary targets of the data sources in json Args: json_path: the path of the data source json file Returns: skel: the skeleton object """ data_sources_dict = WkwData.convert_ds_to_dict(WkwData.read_short_ds_json(json_path=json_path)) # Init with empty skeleton empty_skel_name = os.path.join(get_data_dir(), 'NML', 'empty_skel.nml') skel = wkskel.Skeleton(nml_path=empty_skel_name) # Loop over each bbox keys = list(data_sources_dict.keys()) num_nodes_perTree = 5 for idx, key in tqdm(enumerate(keys), desc='Making bbox nml', total=len(keys)): # Get minimum and maximum node id min_id = (num_nodes_perTree * idx) + 1 max_id = num_nodes_perTree * (idx + 1) # Encode the target in the tree name cur_target = data_sources_dict[key]['target_class'] cur_name = f'{key}, Debris: {cur_target[0]}, Myelin: {cur_target[1]}' # add current tree add_bbox_tree(skel=skel, bbox=data_sources_dict[key]['input_bbox'], tree_name=cur_name, node_id_min_max=[min_id, max_id]) return skel def add_bbox_tree(skel, bbox: list, tree_name: str, node_id_min_max: list): """ Get the nodes and edges of a bounding box tree """ corners = corners_from_bbox(bbox=bbox) min_id, max_id = node_id_min_max # Nodes nodes = skel.define_nodes( position_x=corners[:, 0].tolist(), position_y=corners[:, 1].tolist(), position_z=corners[:, 2].tolist(), id=list(range(min_id, max_id + 1)) ) # Edges edges = np.array([ [1, 2], [2, 4], [4, 3], [3, 5] ]) + min_id - 1 # Add tree # Note: There's no need to return the object since the change is not limited to the scope of the function skel.add_tree(nodes=nodes, edges=edges, name=tree_name) def corners_from_bbox(bbox: list): """ Get the coordinates of the corners given a webknossos style bounding box Args: bbox: 1 x 6 vector of webknossos bbox: upper left corner + bbox shape Returns: corners: 5 x 3 coordinates of the corners of the 2D image patch. Upper left corner is repeated to close the loop """ # Get upper left corner and shape of bbox upper_left =
np.asarray(bbox[0:3])
numpy.asarray
"""Test keras.layers.core.Layer.__call__""" import pytest import numpy as np from numpy.testing import assert_allclose from keras import backend as K from keras.layers.core import Dense from keras.models import Sequential, Graph def test_layer_call(): """Test keras.layers.core.Layer.__call__""" nb_samples, input_dim, output_dim = 3, 10, 5 layer = Dense(output_dim, input_dim=input_dim) W = np.asarray(K.eval(layer.W)).astype(K.floatx()) X = K.placeholder(ndim=2) Y = layer(X) f = K.function([X], [Y]) x = np.ones((nb_samples, input_dim)).astype(K.floatx()) y = f([x])[0].astype(K.floatx()) t = np.dot(x, W).astype(K.floatx()) assert_allclose(t, y, rtol=.2) def test_sequential_call(): """Test keras.models.Sequential.__call__""" nb_samples, input_dim, output_dim = 3, 10, 5 model = Sequential() model.add(Dense(output_dim=output_dim, input_dim=input_dim)) model.compile('sgd', 'mse') # test flat model X = K.placeholder(ndim=2) Y = model(X) f = K.function([X], [Y]) x = np.ones((nb_samples, input_dim)).astype(K.floatx()) y1 = f([x])[0].astype(K.floatx()) y2 = model.predict(x) # results of __call__ should match model.predict assert_allclose(y1, y2) # test nested model model2 = Sequential() model2.add(model) model2.compile('sgd', 'mse') Y2 = model2(X) f = K.function([X], [Y2]) y1 = f([x])[0].astype(K.floatx()) y2 = model2.predict(x) # results of __call__ should match model.predict assert_allclose(y1, y2) def test_graph_call(): """Test keras.models.Graph.__call__""" nb_samples, input_dim, output_dim = 3, 10, 5 model = Graph() model.add_input('input', input_shape=(input_dim, )) model.add_node(Dense(output_dim=output_dim, input_dim=input_dim), input='input', name='output', create_output=True) model.compile('sgd', {'output': 'mse'}) # test flat model X = K.placeholder(ndim=2) Y = model(X) f = K.function([X], [Y]) x = np.ones((nb_samples, input_dim)).astype(K.floatx()) y1 = f([x])[0].astype(K.floatx()) y2 = model.predict({'input': x})['output'] # results of __call__ should match model.predict assert_allclose(y1, y2) # test nested Graph models model2 = Graph() model2.add_input('input', input_shape=(input_dim, )) model2.add_node(model, input='input', name='output', create_output=True) # need to turn off cache because we're reusing model model2.cache_enabled = False model2.compile('sgd', {'output': 'mse'}) Y2 = model2(X) f = K.function([X], [Y2]) y1 = f([x])[0].astype(K.floatx()) y2 = model2.predict({'input': x})['output'] # results of __call__ should match model.predict
assert_allclose(y1, y2)
numpy.testing.assert_allclose
import numpy as np import math import random class Ai(): def __init__(self, resolution, all_pos: list, all_ids, options: list): self.board_resolution = resolution self.all_pos = all_pos self.player_option, self.ai_option = options self.available_tiles = self.all_pos[:] self.ai_move = [] self.id_array = np.array(all_ids) self.id_array =
np.reshape(self.id_array, (3, 3))
numpy.reshape
""" Handles multidimensional huge data. since it requires huge size memory: - we use the mean from different cell types instead of just using samples. - we use PCA to reduce the number of cell types There are two approaches: 1. Discrete - discretization for words for each sequence, and then building words by combining them 2. Continuous - Use the real values of the channel with multi dimensional gaussian and covariance matrix to evaluate Assumptions: Just as an estimation for the size: 242 cells x 2492506 chromosome 1 size (bins of size 100) requires 4.5Gb see also: multichannel_classify - script for multichannel classifications """ import numpy as np from models.ClassifierStrategy import ClassifierStrategy from models.PcaTransformer import PcaTransformer from hmm.HMMModel import GaussianHMM, DiscreteHMM from hmm.bwiter import bw_iter, IteratorCondition, DiffCondition __author__ = 'eranroz' def continuous_state_selection(data, num_states): """ Heuristic creation of emission for states/selecting number of stats. Instead of random selection of the emission matrix we find clusters of co-occurring values, and use those clusters as means for states and the close values as estimation for covariance matrix Nubmer of clusters/states is subject to pruning if not pre-selected @param num_states: number of states in model @param data: dense data for specific chromosome @return: initial emission for gaussian mixture model HMM (array of (mean, covariance) """ def soft_k_means_step(clustered_data, clusters_means): """ Soft k means @param clustered_data: data to cluster @param clusters_means: number of clusters @return: new clusters means """ w = np.array([np.sum(np.power(clustered_data - c, 2), axis=1) for c in clusters_means]) w /= ((np.max(w) + np.mean(w)) / 1000) # scale w w = np.minimum(w, 500) # 500 is enough (to eliminate underflow) w = np.exp(-w) w = w / np.sum(w, 0) # normalize for each point w = w / np.sum(w, 1)[:, None] # normalize for all cluster return np.dot(w, clustered_data) data = data.T num_sub_samples = 2 sub_indics = np.random.permutation(np.arange(data.shape[0] - data.shape[0] % num_sub_samples)) n_clusters = num_states or data.shape[1] * 2 # number of clustering will be subject to pruning clusters = np.random.random((n_clusters, data.shape[1])) * np.max(data, 0) # once we have assumption for clusters work with real sub batches of the data sub_indics = sub_indics.reshape(num_sub_samples, -1) different_clusters = False step = 0 while not different_clusters: diff = np.ones(1) iter_count = 0 while np.any(diff > 1e-1) and iter_count < 10: sub_data = data[sub_indics[step % num_sub_samples], :] new_clusters = soft_k_means_step(sub_data, clusters) diff = np.sum((new_clusters - clusters) ** 2, axis=1) clusters = new_clusters iter_count += 1 step += 1 if num_states: different_clusters = True else: dist_matrix = np.array([np.sum(np.power(clusters - c, 2), axis=1) for c in clusters]) np.fill_diagonal(dist_matrix, 1000) closest_cluster = np.min(dist_matrix) threshold = 2 * np.mean(dist_matrix) / np.var(dist_matrix) # or to just assign 0.1? if closest_cluster < threshold: # pruning the closest point and add random to close points subject_to_next_prune = list(set(np.where(dist_matrix < threshold)[0])) clusters[subject_to_next_prune, :] += 0.5 * clusters[subject_to_next_prune, :] * np.random.random( (len(subject_to_next_prune), data.shape[1])) clusters = clusters[np.arange(n_clusters) != np.where(dist_matrix == closest_cluster)[0][0], :] n_clusters -= 1 else: different_clusters = True # now assign points to clusters # and add some random clusters += clusters * np.random.random(clusters.shape) * 0.1 clusters = clusters[np.argsort(np.sum(clusters ** 2, 1))] # to give some meaning weight = np.array([np.sum(np.power(data - c, 2), axis=1) for c in clusters]) weight /= (np.mean(weight) / 500) # scale w weight = np.minimum(weight, 500) weight = np.exp(-weight) weight /= np.sum(weight, 0) # normalize for each point weight /= np.sum(weight, 1)[:, None] # normalize for all cluster means = np.dot(weight, data) covs = [] min_std = 10 * np.finfo(float).tiny for mu, p in zip(means, weight): seq_min_mean = data - mu new_cov = np.dot((seq_min_mean.T * p), seq_min_mean) new_cov = np.maximum(new_cov, min_std) covs.append(new_cov) means_covs = list(zip(means, covs)) return means_covs class GMMClassifier(ClassifierStrategy): """ multivariate version of HMMClassifier for multichannel data * It uses PCA to reduce number of learned channels * It adds some functions for smart selection of the initial state """ def __init__(self, model=None, pca_reduction=None, train_chromosome='chr1', study_diff=True): """ @type model: GaussianHMM @param model: GaussianHMM to model the multichannel data """ self.model = model self.pca_reduction = pca_reduction self.train_chromosome = train_chromosome self.study_diff = study_diff # whether we should reduce the mean from each location before PCA def pca_ndims(self): """ number of dimensions @return: number of dimensions """ return self.pca_reduction.w.shape def training_chr(self, chromosome): """ Specifies on which chromosome we want to train or fit the model @param chromosome: chromosome name for training @return: None """ self.train_chromosome = chromosome def fit(self, data, iterations=None, energy=0.9, pca_components=None): """ fits the classifiers to training sequences and returns the log likelihood after fitting @param pca_components: number of dimensions to use for PCA (set energy to None) @param energy: cumulative energy to use for pca (set pca_components to None) @param data: data to use for PCA reduction matrix selection @param iterations: number of iterations number of iteration @return: likelihood for the model based on the model """ old_model = self.model print("Starting fitting") training_seqs = data[self.train_chromosome] if self.pca_reduction is None: print('Fitting PCA') self.pca_reduction = PcaTransformer() self.pca_reduction.fit(training_seqs[0], min_energy=energy, ndim=pca_components) transformer = self.pca_reduction training_seqs = transformer(training_seqs) # TODO: use different sequences? bw_stop_condition = IteratorCondition(iterations) if iterations is not None else DiffCondition() self.model, p = bw_iter(training_seqs, self.model, bw_stop_condition) print("Model fitting finished. likelihood", p) print("Old model") print(old_model) print("New model") print(self.model) fit_params = { 'likelihoods': bw_stop_condition.prev_likelihoods } return p, fit_params def classify(self, sequence_dict): """ Classifies chromosomes across samples (such as different tissues) @param sequence_dict: dict like object with keys as chromosomes and values as matrix @return: viterbi state assignment for the genome """ classified = dict() transformer = self.pca_reduction for chromosome, sequence in sequence_dict.items(): print('Classifying chromosome', chromosome) # reduce dimensions sequence = transformer(sequence) # fit classified[chromosome] = self.model.viterbi(sequence) return classified def data_transform(self): """ get associated data transformation pre-processing @return: log(x+1) """ def log_diff(data): log_data = np.log(np.array(data) + 1) return log_data - np.mean(log_data, 0) if self.study_diff: return log_diff else: return lambda x: np.log(np.array(x) + 1) def init_pca_clustering(self, data, train_chromosome='chr8', num_states=10, pca_energy=None): """ Default initialization for GMM classifier with PCA and then clustering (before actual training) * "training" for PCA (based on train chromosome covar) * heuristic selection of number of state and their emission (soft k means) * state transition - random initialization with some prior assumptions @param pca_energy: minimum energy for PCA (to select number of dimensions). @type train_chromosome: str @type num_states: int @param data: data (or partial data) to use for selection of pca transformation, and k-means for states (initial guess). dictionary like object @param train_chromosome: chromosome to use for training (must be in data. eg data[train_chromosome] @param num_states: number of states in HMM """ chrom_data = data[train_chromosome] transformer = PcaTransformer() transformer.fit(chrom_data, min_energy=pca_energy) chrom_data = transformer(chrom_data) self.init_by_clustering({train_chromosome: chrom_data}, train_chromosome, num_states) self.pca_reduction = transformer # override if PCA reduction with the trained PCA def init_by_clustering(self, data, train_chromosome='chr8', num_states=10): """ Default initialization for GMM classifier with clustering (before actual training) @param data: data (or partial data) to use for selection of pca transformation, and k-means for states (initial guess). dictionary like object @param train_chromosome: chromosome to use for training (must be in data. eg data[train_chromosome] @param num_states: number of states in HMM """ chrom_data = data[train_chromosome] emission = continuous_state_selection(chrom_data, num_states=num_states) n_states = len(emission) + 1 # number of states plus begin state print('Number of states selected %i' % (n_states - 1)) state_transition = np.random.random((n_states, n_states)) # fill diagonal with higher values np.fill_diagonal(state_transition, np.sum(state_transition, 1)) state_transition[:, 0] = 0 # set transition to begin state to zero # normalize state_transition /= np.sum(state_transition, 1)[:, np.newaxis] # initial guess initial_model = GaussianHMM(state_transition, emission) self.model = initial_model self.pca_reduction = PcaTransformer.empty() self.train_chromosome = train_chromosome @staticmethod def default_strategy(data, train_chromosome='chr8', num_states=10): """ Creates a default GMM classifier with heuristic guess (see default) @type train_chromosome: str @type num_states: int @param data: data (or partial data) to use for selection of pca transformation, and k-means for states (initial guess). dictionary like object @param train_chromosome: chromosome to use for training (must be in data. eg data[train_chromosome] @param num_states: number of states in HMM @return: a GMM classifier """ classifier = GMMClassifier() classifier.init_pca_clustering(data, train_chromosome, num_states) return classifier def __str__(self): return str(self.model) def states_html(self, input_labels=None, column_title='Data/State'): """ Creates a nice html table with some description/meaning for the states @param column_title: title for the columns @param input_labels: labels for the input (original dimensions before PCA) @return: table with html representation of the states """ import matplotlib as mpl import matplotlib.cm as cm mean_vars_states = [state[0] for state in self.model.emission.mean_vars] mean_states = np.array([mean[0] for mean, var in mean_vars_states]) mean_states = self.pca_reduction.recover(mean_states) n_states = mean_states.shape[0] norm = mpl.colors.Normalize(vmin=0, vmax=n_states + 1) cmap = cm.spectral m = cm.ScalarMappable(norm=norm, cmap=cmap) color_schema = dict() for i in range(0, n_states + 1): rgb = list(m.to_rgba(i)[:3]) for j in range(0, 3): rgb[j] = str("%i" % (255 * rgb[j])) color_schema[i] = ','.join(rgb) states_ths = ''.join( ['<th style=\"color:rgb(%s)\">%i</th>' % (color_schema[i], i) for i in np.arange(1, n_states + 1)]) states_trs = [] """ max_v = np.max(mean_states) backgrounds = cm.ScalarMappable(norm=mpl.colors.Normalize(vmin=np.min(mean_states), vmax=np.max(mean_states)), cmap=cm.Blues) mean_to_color = lambda x: 'rgb(%i, %i, %i)' % backgrounds.to_rgba(x, bytes=True)[:3] for cell_i, cell_means in enumerate(mean_states.T): cell_description = "<td>%s</td>" % (str(cell_i+1) if input_labels is None else input_labels[cell_i]) # add mean values cell_description += ''.join(['<td style="font-size: %i%%;color:#fff;background:%s">%.2f</td>' % (mean/max_v * 100, mean_to_color(mean), mean) for mean in cell_means]) # wrap in tr cell_description = '<tr>%s</tr>' % cell_description states_trs.append(cell_description) """ template = """ <table style="font-size:85%;text-align:center;border-collapse:collapse;border:1px solid #aaa;" cellpadding="5" border="1"> <tr style="font-size:larger; font-weight: bold;"> <th>{column_title}</th> {states_ths} </tr> {states_trs} </table> """ # rewrite backgrounds = [ cm.ScalarMappable(norm=mpl.colors.Normalize(vmin=np.min(data_type), vmax=np.max(data_type)), cmap=cm.Blues) for data_type in mean_states.T] mean_to_color = lambda x, y: 'rgb(%i, %i, %i)' % backgrounds[y].to_rgba(x, bytes=True)[:3] for cell_i, data_type_means in enumerate(mean_states.T): cell_description = "<td>%s</td>" % (str(cell_i + 1) if input_labels is None else input_labels[cell_i]) # add mean values cell_description += ''.join(['<td style="font-size: 85%%;color:#fff;background:%s">%.2f</td>' % (mean_to_color(mean, cell_i), mean) for mean in data_type_means]) # wrap in tr cell_description = '<tr>%s</tr>' % cell_description states_trs.append(cell_description) template = """ <table style="font-size:85%;text-align:center;border-collapse:collapse;border:1px solid #aaa;" cellpadding="5" border="1"> <tr style="font-size:larger; font-weight: bold;"> <th>{column_title}</th> {states_ths} </tr> {states_trs} </table> """ return template.format(**({'states_ths': states_ths, 'states_trs': '\n'.join(states_trs), 'column_title': column_title })) class DiscreteMultichannelHMM(ClassifierStrategy): """ A model for discrete multichannel HMM: data [position x tissue] =(PCA)> data [position x tissue combination] => discretization => word encoding => HMM """ def __init__(self): self.model = None self.pca_reduction = None def classify(self, sequence): raise NotImplementedError def fit(self, data): # TODO: only partially implemented here not tested... raise NotImplementedError from scipy.stats import norm as gaussian min_alpha = 0 n_words = np.max(data) # init hmm model n_states = 5 state_transition = np.zeros(n_states + 1) # begin state state_transition[0, 1:] = np.random.rand(n_states) # real states - random with some constraints. state 1 is most closed, and n is most opened real_states = np.random.rand((n_states, n_states)) # set strong diagonal diagonal_selector = np.eye(n_states, dtype='bool') real_states[diagonal_selector] = np.sum(real_states, 1) * 9 real_states /= np.sum(real_states, 1)[:, None] state_transition[1:, 1:] = real_states # normalize # emission emission = np.zeros((n_states + 1, n_words)) real_emission = np.random.random((n_states, n_words)) for i in np.arange(0, n_states): mean = i * (n_words / n_states) variance = (n_words / n_states) real_emission[i, :] = gaussian(mean, variance).pdf(np.arange(n_words)) real_emission /= np.sum(real_emission, 1)[:, None] emission[1:, 1:] = real_emission # init hmm print('Creating model') self.model = DiscreteHMM(state_transition, emission, min_alpha=min_alpha) print('Training model') def data_transform(self): """ get associated data transformation prepossessing """ if self.pca_reduction is None: return lambda x: x else: return lambda x: DiscreteMultichannelHMM.preprocess(self.pca_reduction(x)) @staticmethod def preprocess(data): discrete = DiscreteMultichannelHMM.multichannel_discrete_transform(data) multichannel_data = DiscreteMultichannelHMM.encode_discrete_words(discrete) return multichannel_data @staticmethod def encode_discrete_words(data): """ Transforms a discrete matrix to one dimensional words @param data: discrete matrix @return: words array """ new_data = np.zeros(data.shape[1]) alphbet = np.power(2, np.arange(data.shape[0] * np.max(data))) alphbet_assign = enumerate(alphbet) # transform to powers of 2 for i in np.arange(0, np.max(data) + 1): for j in np.arange(0, new_data.shape[0]): selector = (data[j, :] == i) data[j, selector] = next(alphbet_assign) for cell in data: # bitwise or new_data |= cell return new_data @staticmethod def multichannel_discrete_transform(data, percentiles=[60, 75, 90]): """ Transforms a matrix from continuous values to discrete values @param percentiles: percentiles used for discretization @param data: continuous values matrix @return: discrete values """ data = np.log(data + 1) prec_values = np.percentile(data, q=percentiles) max_val = np.max(data) + 1 min_val =
np.min(data)
numpy.min
# Copyright (c) 2011-2016 by California Institute of Technology # Copyright (c) 2016 by The Regents of the University of Michigan # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder(s) nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDERS OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # """ Algorithms related to discretization of continuous dynamics. See Also ======== L{find_controller} """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging logger = logging.getLogger(__name__) import os import warnings import pprint from copy import deepcopy import multiprocessing as mp import numpy as np from scipy import sparse as sp import polytope as pc from polytope.plot import plot_partition, plot_transition_arrow from tulip import transys as trs from tulip.hybrid import LtiSysDyn, PwaSysDyn from .prop2partition import (PropPreservingPartition, pwa_partition, part2convex) from .feasible import is_feasible, solve_feasible from .plot import plot_ts_on_partition # inline imports: # # inline: import matplotlib.pyplot as plt debug = False class AbstractSwitched(object): """Abstraction of SwitchedSysDyn, with mode-specific and common info. Attributes: - ppp: merged partition, if any Preserves both propositions and dynamics - ts: common TS, if any - ppp2ts: map from C{ppp.regions} to C{ts.states} - modes: dict of {mode: AbstractPwa} - ppp2modes: map from C{ppp.regions} to C{modes[mode].ppp.regions} of the form: {mode: list} where C{list} has same indices as C{ppp.regions} and elements in each C{list} are indices of regions in each C{modes[mode].ppp.regions}. type: dict Each partition corresponds to some mode. (for switched systems) In each mode a L{PwaSysDyn} is active. """ def __init__( self, ppp=None, ts=None, ppp2ts=None, modes=None, ppp2modes=None ): if modes is None: modes = dict() self.ppp = ppp self.ts = ts self.ppp2ts = ppp2ts self.modes = modes self.ppp2modes = ppp2modes def __str__(self): s = 'Abstraction of switched system\n' s += str('common PPP:\n') + str(self.ppp) s += str('common ts:\n') + str(self.ts) for mode, ab in self.modes.items(): s += 'mode: ' + str(mode) s += ', with abstraction:\n' + str(ab) return s def ppp2pwa(self, mode, i): """Return original C{Region} containing C{Region} C{i} in C{mode}. @param mode: key of C{modes} @param i: Region index in common partition C{ppp.regions}. @return: tuple C{(j, region)} of: - index C{j} of C{Region} and - C{Region} object in C{modes[mode].ppp.regions} """ region_idx = self.ppp2modes[mode][i] ab = self.modes[mode] return ab.ppp2pwa(region_idx) def ppp2sys(self, mode, i): """Return index of active PWA subsystem in C{mode}, @param mode: key of C{modes} @param i: Region index in common partition C{ppp.regions}. @return: tuple C{(j, subsystem)} of: - index C{j} of PWA C{subsystem} - L{LtiSysDyn} object C{subsystem} """ region_idx = self.ppp2modes[mode][i] ab = self.modes[mode] return ab.ppp2sys(region_idx) def plot(self, show_ts=False, only_adjacent=False): """Plot mode partitions and merged partition, if one exists. For details see L{AbstractPwa.plot}. """ axs = [] color_seed = 0 # merged partition exists ? if self.ppp is not None: for mode in self.modes: env_mode, sys_mode = mode edge_label = {'env_actions':env_mode, 'sys_actions':sys_mode} ax = _plot_abstraction( self, show_ts=False, only_adjacent=False, color_seed=color_seed ) plot_ts_on_partition( self.ppp, self.ts, self.ppp2ts, edge_label, only_adjacent, ax ) axs += [ax] # plot mode partitions for mode, ab in self.modes.items(): ax = ab.plot(show_ts, only_adjacent, color_seed) ax.set_title('Abstraction for mode: ' + str(mode)) axs += [ax] #if isinstance(self.ts, dict): # for ts in self.ts: # ax = ts.plot() # axs += [ax] return axs class AbstractPwa(object): """Discrete abstraction of PWA dynamics, with attributes: - ppp: Partition into Regions. Each Region corresponds to a discrete state of the abstraction type: L{PropPreservingPartition} - ts: Finite transition system abstracting the continuous system. Each state corresponds to a Region in C{ppp.regions}. It can be fed into discrete synthesis algorithms. type: L{FTS} - ppp2ts: bijection between C{ppp.regions} and C{ts.states}. Has common indices with C{ppp.regions}. Elements are states in C{ts.states}. (usually each state is a str) type: list of states - pwa: system dynamics type: L{PwaSysDyn} - pwa_ppp: partition preserving both: - propositions and - domains of PWA subsystems Used for non-conservative planning. If just L{LtiSysDyn}, then the only difference of C{pwa_ppp} from C{orig_ppp} is convexification. type: L{PropPreservingPartition} - orig_ppp: partition preserving only propositions i.e., agnostic of dynamics type: L{PropPreservingPartition} - disc_params: parameters used in discretization that should be passed to the controller refinement to ensure consistency type: dict If any of the above is not given, then it is initialized to None. Notes ===== 1. There could be some redundancy in ppp and ofts, in that they are both decorated with propositions. This might be useful to keep each of them as functional units on their own (possible to change later). 2. The 'Pwa' in L{AbstractPwa} includes L{LtiSysDyn} as a special case. """ def __init__( self, ppp=None, ts=None, ppp2ts=None, pwa=None, pwa_ppp=None, ppp2pwa=None, ppp2sys=None, orig_ppp=None, ppp2orig=None, disc_params=None ): if disc_params is None: disc_params = dict() self.ppp = ppp self.ts = ts self.ppp2ts = ppp2ts self.pwa = pwa self.pwa_ppp = pwa_ppp self._ppp2pwa = ppp2pwa self._ppp2sys = ppp2sys self.orig_ppp = orig_ppp self._ppp2orig = ppp2orig # original_regions -> pwa_ppp # ppp2orig -> ppp2pwa_ppp # ppp2pwa -> ppp2pwa_sys self.disc_params = disc_params def __str__(self): s = str(self.ppp) s += str(self.ts) s += 30 * '-' + '\n' s += 'Map PPP Regions ---> TS states:\n' s += self._ppp2other_str(self.ppp2ts) + '\n' s += 'Map PPP Regions ---> PWA PPP Regions:\n' s += self._ppp2other_str(self._ppp2pwa) + '\n' s += 'Map PPP Regions ---> PWA Subsystems:\n' s += self._ppp2other_str(self._ppp2sys) + '\n' s += 'Map PPP Regions ---> Original PPP Regions:\n' s += self._ppp2other_str(self._ppp2orig) + '\n' s += 'Discretization Options:\n\t' s += pprint.pformat(self.disc_params) +'\n' return s def ts2ppp(self, state): region_index = self.ppp2ts.index(state) region = self.ppp[region_index] return (region_index, region) def ppp2trans(self, region_index): """Return the transition set constraint and active subsystem, for non-conservative planning. """ reg_idx, pwa_region = self.ppp2pwa(region_index) sys_idx, sys = self.ppp2sys(region_index) return pwa_region, sys def ppp2pwa(self, region_index): """Return dynamics and predicate-preserving region and its index for PWA subsystem active in given region. The returned region is the C{trans_set} used for non-conservative planning. @param region_index: index in C{ppp.regions}. @rtype: C{(i, pwa.pwa_ppp[i])} """ j = self._ppp2pwa[region_index] pwa_region = self.pwa_ppp[j] return (j, pwa_region) def ppp2sys(self, region_index): """Return index and PWA subsystem active in indexed region. Semantics: j-th sub-system is active in i-th Region, where C{j = ppp2pwa[i]} @param region_index: index in C{ppp.regions}. @rtype: C{(i, pwa.list_subsys[i])} """ # LtiSysDyn ? if self._ppp2sys is None: return (0, self.pwa) subsystem_idx = self._ppp2sys[region_index] subsystem = self.pwa.list_subsys[subsystem_idx] return (subsystem_idx, subsystem) def ppp2orig(self, region_index): """Return index and region of original partition. The original partition is w/o any dynamics, not even the PWA domains, only the polytopic predicates. @param region_index: index in C{ppp.regions}. @rtype: C{(i, orig_ppp.regions[i])} """ j = self._ppp2orig[region_index] orig_region = self.orig_ppp[j] return (j, orig_region) def _ppp2other_str(self, ppp2other): if ppp2other is None: return '' s = '' for i, other in enumerate(ppp2other): s += '\t\t' + str(i) + ' -> ' + str(other) + '\n' return s def _debug_str_(self): s = str(self.ppp) s += str(self.ts) s += '(PWA + Prop)-Preserving Partition' s += str(self.pwa_ppp) s += 'Original Prop-Preserving Partition' s += str(self.orig_ppp) return s def plot(self, show_ts=False, only_adjacent=False, color_seed=None): """Plot partition and optionally feasible transitions. @param show_ts: plot feasible transitions on partition @type show_ts: bool @param only_adjacent: plot feasible transitions only between adjacent regions. This reduces clutter, but if horizon > 1 and not all horizon used, then some transitions could be hidden. @param only_adjacent: bool """ ax = _plot_abstraction(self, show_ts, only_adjacent, color_seed) return ax def verify_transitions(self): logger.info('verifying transitions...') for from_state, to_state in self.ts.transitions(): i, from_region = self.ts2ppp(from_state) j, to_region = self.ts2ppp(to_state) trans_set, sys = self.ppp2trans(i) params = {'N', 'close_loop', 'use_all_horizon'} disc_params = {k:v for k,v in self.disc_params.items() if k in params} s0 = solve_feasible(from_region, to_region, sys, trans_set=trans_set, **disc_params) msg = str(i) + ' ---> ' + str(j) if not from_region <= s0: logger.error('incorrect transition: ' + msg) isect = from_region.intersect(s0) ratio = isect.volume /from_region.volume logger.error('intersection volume: ' + str(ratio) + ' %') else: logger.info('correct transition: ' + msg) def _plot_abstraction(ab, show_ts, only_adjacent, color_seed): if ab.ppp is None or ab.ts is None: warnings.warn('Either ppp or ts is None.') return if show_ts: ts = ab.ts ppp2ts = ab.ppp2ts else: ts = None ppp2ts = None ax = ab.ppp.plot( ts, ppp2ts, only_adjacent=only_adjacent, color_seed=color_seed ) #ax = self.ts.plot() return ax def discretize( part, ssys, N=10, min_cell_volume=0.1, closed_loop=True, conservative=False, max_num_poly=5, use_all_horizon=False, trans_length=1, remove_trans=False, abs_tol=1e-7, plotit=False, save_img=False, cont_props=None, plot_every=1, simu_type='bi' ): """Refine the partition via bisimulation or dual-simulation algorithms, and establish transitions based on reachability analysis. Reference ========= U{[NOTM12] <https://tulip-control.sourceforge.io/doc/bibliography.html#notm12>} See Also ======== L{prop2partition.pwa_partition}, L{prop2partition.part2convex} @param part: L{PropPreservingPartition} object @param ssys: L{LtiSysDyn} or L{PwaSysDyn} object @param N: horizon length @param min_cell_volume: the minimum volume of cells in the resulting partition. @param closed_loop: boolean indicating whether the `closed loop` algorithm should be used. default True. @param conservative: if true, force sequence in reachability analysis to stay inside starting cell. If false, safety is ensured by keeping the sequence inside a convexified version of the original proposition preserving cell. @param max_num_poly: maximum number of polytopes in a region to use in reachability analysis. @param use_all_horizon: in closed loop algorithm: if we should look for reachability also in less than N steps. @param trans_length: the number of polytopes allowed to cross in a transition. a value of 1 checks transitions only between neighbors, a value of 2 checks neighbors of neighbors and so on. @param remove_trans: if True, remove found transitions between non-neighbors. @param abs_tol: maximum volume for an "empty" polytope @param plotit: plot partitioning as it evolves @type plotit: boolean, default = False @param save_img: save snapshots of partitioning to PDF files, requires plotit=True @type save_img: boolean, default = False @param cont_props: continuous propositions to plot @type cont_props: list of C{Polytope} @param simu_type: if 'bi', use bisimulation partition; if 'dual', use dual-simulation partition @type simu_type: string, default = 'bi' @rtype: L{AbstractPwa} """ if simu_type == 'bi': AbstractPwa = _discretize_bi( part, ssys, N, min_cell_volume, closed_loop, conservative, max_num_poly, use_all_horizon, trans_length, remove_trans, abs_tol, plotit, save_img, cont_props, plot_every) elif simu_type == 'dual': AbstractPwa = _discretize_dual( part, ssys, N, min_cell_volume, closed_loop, conservative, max_num_poly, use_all_horizon, trans_length, remove_trans, abs_tol, plotit, save_img, cont_props, plot_every) else: raise ValueError( 'Unknown simulation type: "{st}"'.format( st=simu_type)) return AbstractPwa def _discretize_bi( part, ssys, N=10, min_cell_volume=0.1, closed_loop=True, conservative=False, max_num_poly=5, use_all_horizon=False, trans_length=1, remove_trans=False, abs_tol=1e-7, plotit=False, save_img=False, cont_props=None, plot_every=1 ): """Refine the partition and establish transitions based on reachability analysis. Use bi-simulation algorithm. Reference ========= 1. U{[NOTM12] <https://tulip-control.sourceforge.io/doc/bibliography.html#notm12>} 2. <NAME>.; <NAME>. "A Bisimulation-like Algorithm for Abstracting Control Systems." 54th Annual Allerton Conference on CCC 2016 See Also ======== L{prop2partition.pwa_partition}, L{prop2partition.part2convex} @param part: L{PropPreservingPartition} object @param ssys: L{LtiSysDyn} or L{PwaSysDyn} object @param N: horizon length @param min_cell_volume: the minimum volume of cells in the resulting partition. @param closed_loop: boolean indicating whether the `closed loop` algorithm should be used. default True. @param conservative: if true, force sequence in reachability analysis to stay inside starting cell. If false, safety is ensured by keeping the sequence inside a convexified version of the original proposition preserving cell. @param max_num_poly: maximum number of polytopes in a region to use in reachability analysis. @param use_all_horizon: in closed loop algorithm: if we should look for reachability also in less than N steps. @param trans_length: the number of polytopes allowed to cross in a transition. a value of 1 checks transitions only between neighbors, a value of 2 checks neighbors of neighbors and so on. @param remove_trans: if True, remove found transitions between non-neighbors. @param abs_tol: maximum volume for an "empty" polytope @param plotit: plot partitioning as it evolves @type plotit: boolean, default = False @param save_img: save snapshots of partitioning to PDF files, requires plotit=True @type save_img: boolean, default = False @param cont_props: continuous propositions to plot @type cont_props: list of C{Polytope} @rtype: L{AbstractPwa} """ start_time = os.times()[0] orig_ppp = part min_cell_volume = (min_cell_volume /np.finfo(np.double).eps *np.finfo(np.double).eps) ispwa = isinstance(ssys, PwaSysDyn) islti = isinstance(ssys, LtiSysDyn) if ispwa: (part, ppp2pwa, part2orig) = pwa_partition(ssys, part) else: part2orig = range(len(part)) # Save original polytopes, require them to be convex if conservative: orig_list = None orig = [0] else: (part, new2old) = part2convex(part) # convexify part2orig = [part2orig[i] for i in new2old] # map new regions to pwa subsystems if ispwa: ppp2pwa = [ppp2pwa[i] for i in new2old] remove_trans = False # already allowed in nonconservative orig_list = [] for poly in part: if len(poly) == 0: orig_list.append(poly.copy()) elif len(poly) == 1: orig_list.append(poly[0].copy()) else: raise Exception("discretize: " "problem in convexification") orig = list(range(len(orig_list))) # Cheby radius of disturbance set # (defined within the loop for pwa systems) if islti: if len(ssys.E) > 0: rd = ssys.Wset.chebR else: rd = 0. # Initialize matrix for pairs to check IJ = part.adj.copy() IJ = IJ.todense() IJ = np.array(IJ) logger.debug("\n Starting IJ: \n" + str(IJ) ) # next line omitted in discretize_overlap IJ = reachable_within(trans_length, IJ, np.array(part.adj.todense()) ) # Initialize output num_regions = len(part) transitions = np.zeros( [num_regions, num_regions], dtype = int ) sol = deepcopy(part.regions) adj = part.adj.copy() adj = adj.todense() adj = np.array(adj) # next 2 lines omitted in discretize_overlap if ispwa: subsys_list = list(ppp2pwa) else: subsys_list = None ss = ssys # init graphics if plotit: try: import matplotlib.pyplot as plt plt.ion() fig, (ax1, ax2) = plt.subplots(1, 2) ax1.axis('scaled') ax2.axis('scaled') file_extension = 'pdf' except: logger.error('failed to import matplotlib') plt = None else: plt = None iter_count = 0 # List of how many "new" regions # have been created for each region # and a list of original number of neighbors #num_new_reg = np.zeros(len(orig_list)) #num_orig_neigh = np.sum(adj, axis=1).flatten() - 1 progress = list() # Do the abstraction while np.sum(IJ) > 0: ind = np.nonzero(IJ) # i,j swapped in discretize_overlap i = ind[1][0] j = ind[0][0] IJ[j, i] = 0 si = sol[i] sj = sol[j] si_tmp = deepcopy(si) sj_tmp = deepcopy(sj) if ispwa: ss = ssys.list_subsys[subsys_list[i]] if len(ss.E) > 0: rd, xd = pc.cheby_ball(ss.Wset) else: rd = 0. if conservative: # Don't use trans_set trans_set = None else: # Use original cell as trans_set trans_set = orig_list[orig[i]] S0 = solve_feasible( si, sj, ss, N, closed_loop, use_all_horizon, trans_set, max_num_poly ) msg = '\n Working with partition cells: {i}, {j}'.format(i=i, j=j) logger.info(msg) msg = '\t{i} (#polytopes = {num}), and:\n'.format(i=i, num=len(si)) msg += '\t{j} (#polytopes = {num})\n'.format(j=j, num=len(sj)) if ispwa: msg += '\t with active subsystem: ' msg += '{sys}\n'.format(sys=subsys_list[i]) msg += '\t Computed reachable set S0 with volume: ' msg += '{vol}\n'.format(vol=S0.volume) logger.debug(msg) #logger.debug('si \cap s0') isect = si.intersect(S0) vol1 = isect.volume risect, xi = pc.cheby_ball(isect) #logger.debug('si \ s0') diff = si.diff(S0) vol2 = diff.volume rdiff, xd = pc.cheby_ball(diff) # if pc.is_fulldim(pc.Region([isect]).intersect(diff)): # logging.getLogger('tulip.polytope').setLevel(logging.DEBUG) # diff = pc.mldivide(si, S0, save=True) # # ax = S0.plot() # ax.axis([0.0, 1.0, 0.0, 2.0]) # ax.figure.savefig('./img/s0.pdf') # # ax = si.plot() # ax.axis([0.0, 1.0, 0.0, 2.0]) # ax.figure.savefig('./img/si.pdf') # # ax = isect.plot() # ax.axis([0.0, 1.0, 0.0, 2.0]) # ax.figure.savefig('./img/isect.pdf') # # ax = diff.plot() # ax.axis([0.0, 1.0, 0.0, 2.0]) # ax.figure.savefig('./img/diff.pdf') # # ax = isect.intersect(diff).plot() # ax.axis([0.0, 1.0, 0.0, 2.0]) # ax.figure.savefig('./img/diff_cap_isect.pdf') # # logger.error('Intersection \cap Difference != \emptyset') # # assert(False) if vol1 <= min_cell_volume: logger.warning('\t too small: si \cap Pre(sj), ' 'so discard intersection') if vol1 <= min_cell_volume and isect: logger.warning('\t discarded non-empty intersection: ' 'consider reducing min_cell_volume') if vol2 <= min_cell_volume: logger.warning('\t too small: si \ Pre(sj), so not reached it') # We don't want our partitions to be smaller than the disturbance set # Could be a problem since cheby radius is calculated for smallest # convex polytope, so if we have a region we might throw away a good # cell. if (vol1 > min_cell_volume) and (risect > rd) and \ (vol2 > min_cell_volume) and (rdiff > rd): # Make sure new areas are Regions and add proposition lists if len(isect) == 0: isect = pc.Region([isect], si.props) else: isect.props = si.props.copy() if len(diff) == 0: diff = pc.Region([diff], si.props) else: diff.props = si.props.copy() # replace si by intersection (single state) isect_list = pc.separate(isect) sol[i] = isect_list[0] # cut difference into connected pieces difflist = pc.separate(diff) difflist += isect_list[1:] # n_isect = len(isect_list) -1 num_new = len(difflist) # add each piece, as a new state for region in difflist: sol.append(region) # keep track of PWA subsystems map to new states if ispwa: subsys_list.append(subsys_list[i]) n_cells = len(sol) new_idx = range(n_cells-1, n_cells-num_new-1, -1) """Update transition matrix""" transitions = np.pad(transitions, (0,num_new), 'constant') transitions[i, :] = np.zeros(n_cells) for r in new_idx: #transitions[:, r] = transitions[:, i] # All sets reachable from start are reachable from both part's # except possibly the new part transitions[i, r] = 0 transitions[j, r] = 0 # sol[j] is reachable from intersection of sol[i] and S0 if i != j: transitions[j, i] = 1 # sol[j] is reachable from each piece os S0 \cap sol[i] #for k in range(n_cells-n_isect-2, n_cells): # transitions[j, k] = 1 """Update adjacency matrix""" old_adj = np.nonzero(adj[i, :])[0] # reset new adjacencies adj[i, :] = np.zeros([n_cells -num_new]) adj[:, i] = np.zeros([n_cells -num_new]) adj[i, i] = 1 adj = np.pad(adj, (0, num_new), 'constant') for r in new_idx: adj[i, r] = 1 adj[r, i] = 1 adj[r, r] = 1 if not conservative: orig = np.hstack([orig, orig[i]]) # adjacencies between pieces of isect and diff for r in new_idx: for k in new_idx: if r is k: continue if pc.is_adjacent(sol[r], sol[k]): adj[r, k] = 1 adj[k, r] = 1 msg = '' if logger.getEffectiveLevel() <= logging.DEBUG: msg += '\t\n Adding states {i} and '.format(i=i) for r in new_idx: msg += '{r} and '.format(r=r) msg += '\n' logger.debug(msg) for k in np.setdiff1d(old_adj, [i,n_cells-1]): # Every "old" neighbor must be the neighbor # of at least one of the new if pc.is_adjacent(sol[i], sol[k]): adj[i, k] = 1 adj[k, i] = 1 elif remove_trans and (trans_length == 1): # Actively remove transitions between non-neighbors transitions[i, k] = 0 transitions[k, i] = 0 for r in new_idx: if pc.is_adjacent(sol[r], sol[k]): adj[r, k] = 1 adj[k, r] = 1 elif remove_trans and (trans_length == 1): # Actively remove transitions between non-neighbors transitions[r, k] = 0 transitions[k, r] = 0 """Update IJ matrix""" IJ = np.pad(IJ, (0,num_new), 'constant') adj_k = reachable_within(trans_length, adj, adj) sym_adj_change(IJ, adj_k, transitions, i) for r in new_idx: sym_adj_change(IJ, adj_k, transitions, r) if logger.getEffectiveLevel() <= logging.DEBUG: msg = '\n\n Updated adj: \n{adj}'.format(adj=adj) msg += '\n\n Updated trans: \n{trans}'.format(trans= transitions) msg += '\n\n Updated IJ: \n{IJ}'.format(IJ=IJ) logger.debug(msg) logger.info('Divided region: {i}\n'.format(i=i)) elif vol2 < abs_tol: logger.info('Found: {i} ---> {j}\n'.format(i=i, j=j)) transitions[j,i] = 1 else: if logger.level <= logging.DEBUG: msg = '\t Unreachable: {i} --X--> {j}\n'.format(i=i, j=j) msg += '\t\t diff vol: {vol2}\n'.format(vol2=vol2) msg += '\t\t intersect vol: {vol1}\n'.format(vol1=vol1) logger.debug(msg) else: logger.info('\t unreachable\n') transitions[j,i] = 0 # check to avoid overlapping Regions if debug: tmp_part = PropPreservingPartition( domain=part.domain, regions=sol, adj=sp.lil_matrix(adj), prop_regions=part.prop_regions ) assert(tmp_part.is_partition() ) n_cells = len(sol) progress_ratio = 1 - float(np.sum(IJ) ) /n_cells**2 progress += [progress_ratio] msg = '\t total # polytopes: {n_cells}\n'.format(n_cells=n_cells) msg += '\t progress ratio: {pr}\n'.format(pr=progress_ratio) logger.info(msg) iter_count += 1 # no plotting ? if not plotit: continue if plt is None or plot_partition is None: continue if iter_count % plot_every != 0: continue tmp_part = PropPreservingPartition( domain=part.domain, regions=sol, adj=sp.lil_matrix(adj), prop_regions=part.prop_regions ) # plot pair under reachability check ax2.clear() si_tmp.plot(ax=ax2, color='green') sj_tmp.plot(ax2, color='red', hatch='o', alpha=0.5) plot_transition_arrow(si_tmp, sj_tmp, ax2) S0.plot(ax2, color='none', hatch='/', alpha=0.3) fig.canvas.draw() # plot partition ax1.clear() plot_partition(tmp_part, transitions.T, ax=ax1, color_seed=23) # plot dynamics ssys.plot(ax1, show_domain=False) # plot hatched continuous propositions part.plot_props(ax1) fig.canvas.draw() # scale view based on domain, # not only the current polytopes si, sj l,u = part.domain.bounding_box ax2.set_xlim(l[0,0], u[0,0]) ax2.set_ylim(l[1,0], u[1,0]) if save_img: fname = 'movie' +str(iter_count).zfill(3) fname += '.' + file_extension fig.savefig(fname, dpi=250) plt.pause(1) new_part = PropPreservingPartition( domain=part.domain, regions=sol, adj=sp.lil_matrix(adj), prop_regions=part.prop_regions ) # check completeness of adjacency matrix if debug: tmp_part = deepcopy(new_part) tmp_part.compute_adj() # Generate transition system and add transitions ofts = trs.FTS() adj = sp.lil_matrix(transitions.T) n = adj.shape[0] ofts_states = range(n) ofts.states.add_from(ofts_states) ofts.transitions.add_adj(adj, ofts_states) # Decorate TS with state labels atomic_propositions = set(part.prop_regions) ofts.atomic_propositions.add_from(atomic_propositions) for state, region in zip(ofts_states, sol): state_prop = region.props.copy() ofts.states.add(state, ap=state_prop) param = { 'N':N, 'trans_length':trans_length, 'closed_loop':closed_loop, 'conservative':conservative, 'use_all_horizon':use_all_horizon, 'min_cell_volume':min_cell_volume, 'max_num_poly':max_num_poly } ppp2orig = [part2orig[x] for x in orig] end_time = os.times()[0] msg = 'Total abstraction time: {time}[sec]'.format(time= end_time - start_time) print(msg) logger.info(msg) if save_img and plt is not None: fig, ax = plt.subplots(1, 1) plt.plot(progress) ax.set_xlabel('iteration') ax.set_ylabel('progress ratio') ax.figure.savefig('progress.pdf') return AbstractPwa( ppp=new_part, ts=ofts, ppp2ts=ofts_states, pwa=ssys, pwa_ppp=part, ppp2pwa=orig, ppp2sys=subsys_list, orig_ppp=orig_ppp, ppp2orig=ppp2orig, disc_params=param ) def _discretize_dual( part, ssys, N=10, min_cell_volume=0.1, closed_loop=True, conservative=False, max_num_poly=5, use_all_horizon=False, trans_length=1, remove_trans=False, abs_tol=1e-7, plotit=False, save_img=False, cont_props=None, plot_every=1 ): """Refine the partition and establish transitions based on reachability analysis. Use dual-simulation algorithm. Reference ========= 1. U{[NOTM12] <https://tulip-control.sourceforge.io/doc/bibliography.html#notm12>} 2. <NAME>.; <NAME>. "A Bisimulation-like Algorithm for Abstracting Control Systems." 54th Annual Allerton Conference on CCC 2016 See Also ======== L{prop2partition.pwa_partition}, L{prop2partition.part2convex} @param part: L{PropPreservingPartition} object @param ssys: L{LtiSysDyn} or L{PwaSysDyn} object @param N: horizon length @param min_cell_volume: the minimum volume of cells in the resulting partition. @param closed_loop: boolean indicating whether the `closed loop` algorithm should be used. default True. @param conservative: if true, force sequence in reachability analysis to stay inside starting cell. If false, safety is ensured by keeping the sequence inside a convexified version of the original proposition preserving cell. @param max_num_poly: maximum number of polytopes in a region to use in reachability analysis. @param use_all_horizon: in closed loop algorithm: if we should look for reachability also in less than N steps. @param trans_length: the number of polytopes allowed to cross in a transition. a value of 1 checks transitions only between neighbors, a value of 2 checks neighbors of neighbors and so on. @param remove_trans: if True, remove found transitions between non-neighbors. @param abs_tol: maximum volume for an "empty" polytope @param plotit: plot partitioning as it evolves @type plotit: boolean, default = False @param save_img: save snapshots of partitioning to PDF files, requires plotit=True @type save_img: boolean, default = False @param cont_props: continuous propositions to plot @type cont_props: list of C{Polytope} @param simu_type: flag used to choose abstraction algorithm (bisimulation or dual-simulation). @type simu_type: string, 'bi' or 'dual' default = 'bi' @rtype: L{AbstractPwa} """ start_time = os.times()[0] orig_ppp = part min_cell_volume = (min_cell_volume /np.finfo(np.double).eps *np.finfo(np.double).eps) ispwa = isinstance(ssys, PwaSysDyn) islti = isinstance(ssys, LtiSysDyn) if ispwa: (part, ppp2pwa, part2orig) = pwa_partition(ssys, part) else: part2orig = range(len(part)) # Save original polytopes, require them to be convex if conservative: orig_list = None orig = [0] else: (part, new2old) = part2convex(part) # convexify part2orig = [part2orig[i] for i in new2old] # map new regions to pwa subsystems if ispwa: ppp2pwa = [ppp2pwa[i] for i in new2old] remove_trans = False # already allowed in nonconservative orig_list = [] for poly in part: if len(poly) == 0: orig_list.append(poly.copy()) elif len(poly) == 1: orig_list.append(poly[0].copy()) else: raise Exception("discretize: " "problem in convexification") orig = list(range(len(orig_list))) # Cheby radius of disturbance set # (defined within the loop for pwa systems) if islti: if len(ssys.E) > 0: rd = ssys.Wset.chebR else: rd = 0. # Initialize matrix for pairs to check IJ = part.adj.copy() IJ = IJ.todense() IJ =
np.array(IJ)
numpy.array
#! /usr/bin/env python from __future__ import print_function, division import numpy as np import pickle from read_input import read_input def main(filename, x=None, y=None, z=None, sep=0.01): import pyscf from matplotlib import pyplot as plt import os from matplotlib.colors import LogNorm import matplotlib.colors as colors from matplotlib import cm from .intor import intor, k2real, real2k import chem # get input inp = read_input(filename, build=False) inp.nao = np.array([inp.cell[i].nao_nr() for i in range(inp.nsub)]) nao = inp.sSCF.cell.nao_nr() # get kpoints inp.band = read_band(inp.filename) kpts1 = np.copy(inp.kpts) print ('Initial kpts: ', repr(kpts1)) B = inp.sSCF.cell.reciprocal_vectors() kpts2 = np.dot(inp.band.kpts, B) print ('Final kpts: ' , repr(kpts2)) pi2 = np.pi * 2. # get real-space lattice vectors Ls = inp.sSCF.cell.get_lattice_Ls() print ('Ls: ', repr(Ls)) # get overlap matrix in real-space lattice vectors Sm_T = np.zeros((len(Ls), nao, nao)) mA = inp.sSCF.cell.to_mol() for i in range(len(Ls)): mB = mA.copy() atm = [] for j in range(mA.natm): coord = mA.atom_coord(j) * 0.52917720859 - Ls[i] * 0.52917720859 atm.append([mA.atom_symbol(j), coord]) mB.atom = atm mB.unit = 'A' mB.build(dump_input=False) Sm_T[i] = intor(mA, mB, 'cint1e_ovlp_sph') # read fock matrices from file if inp.read and os.path.isfile(inp.read+'.fock'): print ('Reading supermolecular Fock matrix from file: '+inp.read+'.fock') FS = pickle.load(open(inp.read+'.fock', 'r')) print ('Reading supermolecular Smat matrix from file: '+inp.read+'.smat') Smat = pickle.load(open(inp.read+'.smat', 'r')) E_k1 = diagonalize(FS, Smat) x = np.arange(len(E_k1)) / len(E_k1) E_k1 = E_k1.transpose() for i in range(len(E_k1)): plt.plot(x,E_k1[i],'b-') # transform into real space FS_T = k2real(FS, kpts1, Ls) Sm_T2 = k2real(Smat, kpts1, Ls) print ('SMAT DIFF: ', np.abs(Sm_T - Sm_T2).max()) # transform back into k-space FS_k = real2k(FS_T, kpts2, Ls) Sm_k = real2k(Sm_T, kpts2, Ls) # print (repr(FS.reshape(len(kpts1), nao, nao)[0])) # print (FS_k[0]) print (np.abs(FS.reshape(len(kpts1), nao, nao)[0] - FS_k[0]).max()) E_k2 = diagonalize(FS_k, Sm_k, kpts2) x = np.arange(len(E_k2)) / len(E_k2) E_k2 = E_k2.transpose() for i in range(len(E_k2)): plt.plot(x,E_k2[i],'r-') plt.show() def diagonalize(Fock, Smat, kpts=None): '''Diagonalize k-points fock matrix and returns matrix of E vectors.''' import scipy as sp nk = Fock.shape[0] na = Fock.shape[1] E = np.zeros((nk, na)) for k in range(nk): if kpts is not None: print (kpts[k]) E[k], C = sp.linalg.eigh(Fock[k], Smat[k]) return E def read_band(filename): '''Reads a formatted input file.''' from input_reader import InputReader import sys from pyscf import gto, dft, pbc from pyscf.pbc import gto as pbcgto, dft as pbcdft, df as pbcdf, scf as pbcscf import numpy as np from mole import concatenate_cells # initialize reader for a pySCF input reader = InputReader(comment=['!', '#', '::', '//'], case=False, ignoreunknown=True) # define "band" block rband = reader.add_block_key('band', required=True) rband.add_line_key('npoints', type=int, required=True) rband.add_regex_line('points', '\s*(\d+\.?\d*)\s+(\d+\.?\d*)\s+(\d+\.?\d*)', repeat=True) # read the input file inp = reader.read_input(filename) inp.nskpts = len(inp.band.points) # get each special k-point skpts = np.zeros((inp.nskpts,3)) for i in range(inp.nskpts): skpts[i][0] = inp.band.points[i].group(1) skpts[i][1] = inp.band.points[i].group(2) skpts[i][2] = inp.band.points[i].group(3) # get distance between spcial kpoints dkpts = np.zeros((inp.nskpts-1)) for i in range(inp.nskpts-1): temp = skpts[i+1] - skpts[i] dkpts[i] = np.sqrt(np.dot(temp,temp)) # kpoints spacing kspace = dkpts.sum() / float(inp.band.npoints) # get kpoint coordinates x = np.array([], dtype=float) for i in range(inp.nskpts-1): vec = skpts[i+1] - skpts[i] lvec = np.sqrt(np.dot(vec,vec)) temp = np.arange(0, lvec, kspace) / lvec temp = np.outer(temp, vec) + skpts[i] x = np.append(x, temp.flatten()) x = np.array(x).flatten() lx = len(x) x = x.reshape(int(lx/3.),3) if not (x[-1] == skpts[-1]).all(): x =
np.append(x, [skpts[-1]], axis=0)
numpy.append
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 28 10:42:20 2019 @author: berend """ ## sesfunctions: wraps the dll in pure python from ses_dll import SESdll from ses_error import SESError import ctypes from structs import AnalyzerRegion, DetectorRegion, DetectorInfo import numpy as np class SESFunctions: def __init__(self, dllpath, verbose = False): self.sesdll = SESdll(dllpath) ## note: close this dll self.verbose = verbose self.e = SESError(verbose = self.verbose) self.acq_funcs = { 'acq_channels' : (self.sesdll.GetAcquiredDataInteger,ctypes.c_int), 'acq_slices' : (self.sesdll.GetAcquiredDataInteger,ctypes.c_int), 'acq_iterations' : (self.sesdll.GetAcquiredDataInteger,ctypes.c_int), 'acq_intensity_unit':(self.sesdll.GetAcquiredDataString,ctypes.c_char_p), 'acq_channel_unit':(self.sesdll.GetAcquiredDataString,ctypes.c_char_p), 'acq_slice_unit':(self.sesdll.GetAcquiredDataString,ctypes.c_char_p), 'acq_spectrum' : (self.sesdll.GetAcquiredDataVectorDouble, ctypes.c_double), 'acq_slice' : (self.sesdll.GetAcquiredDataVectorDouble, ctypes.c_double), 'acq_image' : (self.sesdll.GetAcquiredDataVectorDouble, ctypes.c_double), 'acq_channel_scale':(self.sesdll.GetAcquiredDataVectorDouble, ctypes.c_double), 'acq_slice_scale':(self.sesdll.GetAcquiredDataVectorDouble, ctypes.c_double), 'acq_raw_image':(self.sesdll.GetAcquiredDataVectorInt32, ctypes.c_int), 'acq_current_step':(self.sesdll.GetAcquiredDataInteger,ctypes.c_int), 'acq_elapsed_time':(self.sesdll.GetAcquiredDataDouble, ctypes.c_double), 'acq_current_point':(self.sesdll.GetAcquiredDataInteger,ctypes.c_int), 'acq_point_intensity':(self.sesdll.GetAcquiredDataDouble, ctypes.c_double), 'acq_channel_intensity':(self.sesdll.GetAcquiredDataVectorDouble, ctypes.c_double), } self.property_funcs = { 'lib_description' :(self.sesdll.GetPropertyString,ctypes.c_char_p), 'lib_version' : (self.sesdll.GetPropertyString,ctypes.c_char_p), 'lib_error' : (self.sesdll.GetPropertyString,ctypes.c_char_p), 'lib_working_dir':(self.sesdll.GetPropertyString,ctypes.c_char_p), 'instrument_library':(self.sesdll.GetPropertyString,ctypes.c_char_p), 'instrument_status':(self.sesdll.GetPropertyInteger,ctypes.c_int), 'always_delay_region' : (self.sesdll.GetPropertyBool, ctypes.c_bool), 'allow_io_with_detector' : (self.sesdll.GetPropertyBool, ctypes.c_bool), 'instrument_model' : (self.sesdll.GetPropertyString, ctypes.c_char_p), 'instrument_serial_no':(self.sesdll.GetPropertyString, ctypes.c_char_p), # 'detector_info':(self.sesdll.GetPropertyDouble, ctypes.c_double), ## Not mapped, use GetDetectorInfo # 'detector_region':(self.sesdll.GetPropertyDouble, ctypes.c_double), ##Not mapped, use GetDetectorRegion 'element_set_count':(self.sesdll.GetPropertyInteger,ctypes.c_int), 'element_set':(self.sesdll.GetPropertyString,ctypes.c_char_p), 'element_name_count':(self.sesdll.GetPropertyInteger,ctypes.c_int), 'element_name':(self.sesdll.GetPropertyString,ctypes.c_char_p), 'lens_mode_count':(self.sesdll.GetPropertyInteger,ctypes.c_int), 'lens_mode':(self.sesdll.GetPropertyString,ctypes.c_char_p), 'pass_energy_count':(self.sesdll.GetPropertyInteger,ctypes.c_int), 'pass_energy':(self.sesdll.GetPropertyDouble,ctypes.c_double), # 'analyzer_region':(self.sesdll.GetPropertyDouble,ctypes.c_double), ###Not mapped: use GetAnalyzerRegion 'use_external_io' : (self.sesdll.GetPropertyBool, ctypes.c_bool), 'use_detector' : (self.sesdll.GetPropertyBool, ctypes.c_bool), 'use_spin' : (self.sesdll.GetPropertyBool, ctypes.c_bool), 'region_name' : (self.sesdll.GetPropertyString, ctypes.c_char_p), 'temp_file_name' : (self.sesdll.GetPropertyString, ctypes.c_char_p), 'reset_data_between_iterations' : (self.sesdll.GetPropertyBool, ctypes.c_bool), 'use_binding_energy' : (self.sesdll.GetPropertyBool, ctypes.c_bool), } def Initialize(self): """Initialize the SES software Args: None Returns: None """ self.e.error(self.sesdll.Initialize(0)) ##0 is a standard parameter def GetProperty(self, name): """Get property data Args: name: parameter name Returns: value of paramter """ if self.verbose: print('Getting property') func, returntype = self.property_funcs[name] if returntype == ctypes.c_char_p: if self.verbose: print('Getting property ',name, ' of string type') returnarray = ctypes.create_string_buffer(2000) returnsize = ctypes.c_int(2000) nameb = name.encode('ASCII') self.e.error(func(nameb, 0, returnarray, ctypes.byref(returnsize))) return returnarray.value.decode('ASCII') else: if self.verbose: print('Getting property ', name, ' of type ', returntype) returnvar = returntype(0) returnsize = ctypes.c_int(0) nameb = name.encode('ASCII') self.e.error(func(nameb, 0, ctypes.byref(returnvar), ctypes.byref(returnsize))) return returnvar.value def SetProperty(self, pname, value): """Set a property Args: pname: property name pvalue: value Returns: None """ if type(value) == int: if self.verbose: print('Setting int property') value = ctypes.c_int(value) pname = pname.encode('ASCII') #Note: not sure about the -1 for size, using what is in the tutorial for SESwrapper self.e.error(self.sesdll.SetPropertyInteger(pname, -1, ctypes.byref(value))) ##middle argument is size, if type(value) == float: if self.verbose: print('Setting double/float property') value = ctypes.c_double(value) pname = pname.encode('ASCII') self.e.error(self.sesdll.SetPropertyDouble(pname, -1, ctypes.byref(value))) ##middle argument is size if type(value) == str: if self.verbose: print('Setting string property') value = value.encode('ASCII') pname = pname.encode('ASCII') self.e.error(self.sesdll.SetPropertyString(pname, 0, value)) ##middle argument is size def Validate(self, element_set, lens_mode, pass_energy, kinetic_energy): """Validate the selected parameters, raise error if wrong Args: element_set: element set (string) lens_mode: lens mode (string) pass_energy: pass energy (float) kinetic_energy: kinetic energy (float) Returns: None """ if self.verbose: print(self.verbose('Validating')) element_set = element_set.encode('ASCII') lens_mode = lens_mode.encode('ASCII') self.e.error(self.sesdll.Validate(element_set, lens_mode, pass_energy, kinetic_energy)) if self.verbose: print(self.verbose('Validation OK')) def ResetHW(self): """Reset the hardware. Args: None Returns: None """ if self.verbose: print('Resetting hardware') self.e.error(self.sesdll.ResetHW()) def TestHW(self): """Test the hardware. Args: None Returns: None """ if self.verbose: print('Testing hardware') self.e.error(self.sesdll.TestHW()) def LoadInstrument(self, instrumentpath): """Load the instrument dat file Args: path to the instrument Returns: None""" if self.verbose: print('Laoding Instrument') instrumentpath = instrumentpath.encode('ASCII') self.e.error(self.sesdll.LoadInstrument(instrumentpath)) def ZeroSupplies(self): """Zero supplies. Args: None Returns: None """ if self.verbose: print('Zeroing supplies') self.e.error(self.sesdll.ZeroSupplies()) def GetBindingEnergy(self): """Get the binding energy. Returns: binding energy """ if self.verbose: print(self.verbose('Getting binding energy')) returnvar = ctypes.c_double(0) self.e.error(self.sesdll.GetBindingEnergy(ctypes.byref(returnvar))) return returnvar.value def SetBindingEnergy(self, binding_energy): """Get the binding energy. Args: binding_energy: float with binding energy """ if self.verbose: print(self.verbose('Setting binding energy')) self.e.error(self.sesdll.SetBindingEnergy(binding_energy)) def GetKineticEnergy(self): """Get the kinetic energy. Returns: kinetic energy """ if self.verbose: print(self.verbose('Getting kinetic energy')) returnvar = ctypes.c_double(0) self.e.error(self.sesdll.GetKineticEnergy(ctypes.byref(returnvar))) return returnvar.value def SetKineticEnergy(self, kinetic_energy): """Get the kinetic energy. Args: kinetic_energy: float with kinetic energy """ if self.verbose: print(self.verbose('Setting kinetic energy')) self.e.error(self.sesdll.SetKineticEnergy(kinetic_energy)) def GetExcitationEnergy(self): """Get the excitation energy. Returns: excitation energy """ if self.verbose: print(self.verbose('Getting excitation energy')) returnvar = ctypes.c_double(0) self.e.error(self.sesdll.GetExcitationEnergy(ctypes.byref(returnvar))) return returnvar.value def SetExcitationEnergy(self, excitation_energy): """Get the excitation energy. Args: excitation_energy: float with excitation energy """ if self.verbose: print(self.verbose('Setting excitation energy')) self.e.error(self.sesdll.SetExcitationEnergy(excitation_energy)) def GetElementVoltage(self, element_name): """Get the element voltage. Args: element_name: name of the element Returns: element voltage """ if self.verbose: print(self.verbose('Getting element voltage ', element_name)) element_name = element_name.encode('ASCII') returnvar = ctypes.c_double(0) self.e.error(self.sesdll.GetElementVoltage(element_name, ctypes.byref(returnvar))) return returnvar.value def SetElementVoltage(self,element_name, element_voltage): """Get the element voltage. Args: element_voltage: float with excitation energy element_name: name of the element """ if self.verbose: print(self.verbose('Setting element voltage of ', element_name)) element_name = element_name.encode('ASCII') self.e.error(self.sesdll.SetElementVoltage(element_name,element_voltage)) def CheckAnalyzerRegion(self, analyzer_dict): """Take a dictionary of analyzer parameters, check the region, return the number of steps taken, minimum dwell time per step, minimum energy step. Args: analyzer_dict: dictionary of parameters Returns: (tuple of:) nsteps time_ms min_energy_step_ev """ if self.verbose: print('Checking Analyzer region') analyzer = AnalyzerRegion(paramdict = analyzer_dict) nsteps = ctypes.c_int(0) time_ms = ctypes.c_double(0) min_energy_step_ev = ctypes.c_double(0) self.e.error(self.sesdll.CheckAnalyzerRegion(analyzer, ctypes.byref(nsteps),ctypes.byref(time_ms),ctypes.byref(min_energy_step_ev))) return nsteps.value,time_ms.value,min_energy_step_ev.value def GetDetectorInfo(self): """Get the detector info Args: None Returns: dictionary with detector properties""" if self.verbose: print('Getting Detector info') info = DetectorInfo() self.e.error(self.sesdll.GetDetectorInfo(info)) return dict(info) def SetAnalyzerRegion(self, analyzer_dict): """Take a dictionary of parameters and set the region Args: analyzer: dictionary of parameters""" if self.verbose: print('Setting Analyzer region') analyzer = AnalyzerRegion(paramdict = analyzer_dict) self.e.error(self.sesdll.SetAnalyzerRegion(analyzer)) def GetAnalyzerRegion(self): """Get the current analyzer region Args: None Returns: Analyzer dictionary paramter""" if self.verbose: print('Getting Analyzer region') analyzer = AnalyzerRegion() self.e.error(self.sesdll.GetAnalyzerRegion(analyzer)) return dict(analyzer) def SetDetectorRegion(self, detector_dict): """Take a dictionary of parameters and set the region Args: detector_dict: dictionary of parameters describing detector region""" if self.verbose: print('Setting Detector region') detector = DetectorRegion(paramdict = detector_dict) self.e.error(self.sesdll.SetDetectorRegion(detector)) def GetDetectorRegion(self): """Get the current detector region Args: None Returns: Detector dictionary paramter""" if self.verbose: print('Getting Detector region') detector = DetectorRegion() self.e.error(self.sesdll.SetDetectorRegion(detector)) return dict(detector) def InitAcquisition(self, blockpointready, blockregionready): """Initialize the acquisition. Args: blockpointready: If true, this parameter tells the acquisition thread to wait for confirmation between each step taken in a swept mode acquisition. blockregionready: If true, this parameter tells the acquisition thread to wait for confirmation once the acquisition is finished. Returns: None """ if self.verbose: print('Initializing acquisition') self.e.error(self.sesdll.InitAcquisition(blockpointready, blockregionready)) def StartAcquisition(self): """Start the acquisition. Args: None Returns: None """ if self.verbose: print('Starting acquisition') self.e.error(self.sesdll.StartAcquisition()) def WaitForRegionReady(self, timeout_time): """Returns when the region is ready. Args: timeout_time: -1 is infinite Returns: None """ if self.verbose: print('Waiting for region') timeout_time = ctypes.c_int(timeout_time) self.e.error(self.sesdll.WaitForRegionReady(timeout_time)) def WaitForPointReady(self, timeout_time): """Wait for point to be ready. When used in fixed mode, this will not return until time_out time is reached. Args: timeout_time: -1 is infinite Returns: None """ if self.verbose: print('Waiting for point') timeout_time = ctypes.c_int(timeout_time) self.e.error(self.sesdll.WaitForPointReady(timeout_time)) def ContinueAcquisition(self): """Start the acquisition. Args: None Returns: None """ if self.verbose: print('Continuing acquisition') self.e.error(self.sesdll.ContinueAcquisition()) def StopAcquisition(self): """Stop the acquisition. Args: None Returns: None """ if self.verbose: print('Stopping acquisition') self.e.error(self.sesdll.StopAcquisition()) def GetAcquiredData(self, name): """Get acquired data Args: name: parameter name Returns: value of paramter """ if self.verbose: print('Getting data') func, returntype = self.acq_funcs[name] if returntype == ctypes.c_char_p: if self.verbose: print('Getting data ',name, ' of string type') returnarray = ctypes.create_string_buffer(2000) returnsize = ctypes.c_int(2000) nameb = name.encode('ASCII') self.e.error(func(nameb, 0, returnarray, ctypes.byref(returnsize))) return returnarray.value.decode('ASCII') else: if self.verbose: print('Getting data ', name, ' of type ', returntype) returnvar = returntype(0) returnsize = ctypes.c_int(0) nameb = name.encode('ASCII') self.e.error(func(nameb, 0, ctypes.byref(returnvar), ctypes.byref(returnsize))) return returnvar.value def GetAcquiredDataArray(self, name, size, data = None, index = 0): """Get acquired data Args: name: parameter name size: size for the data data: optional pointer to data holding object (numpy array) index: for parameters that require an index """ if self.verbose: print('Getting data array') func, returntype = self.acq_funcs[name] returnarray = (returntype * size)() returnsize = ctypes.c_int(size) nameb = name.encode('ASCII') self.e.error(func(nameb, index, returnarray, ctypes.byref(returnsize))) if data is None: data =
np.array(returnarray)
numpy.array
""" Replicate "Very Deep Convolutional Networks for Natural Language Processing" by <NAME>, <NAME>, <NAME>, <NAME>, 2016 New NLP architecture: 1. Operate at lowest atomic representation of text (characters) 2. Use deep-stack of local operations to learn high-level hierarchical representation attribution: https://github.com/ilkarman/NLP-Sentiment/ """ import numpy as np import pandas as pd import mxnet as mx import wget import time import functools import threading import os.path import Queue import pickle from mxnet.io import DataBatch ctx = mx.gpu(0) AZ_ACC = "amazonsentimenik" AZ_CONTAINER = "textclassificationdatasets" ALPHABET = list("abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'\"/\\|_@#$%^&*~`+ =<>()[]{}") FEATURE_LEN = 1014 BATCH_SIZE = 128 EPOCHS = 10 SD = 0.05 # std for gaussian distribution NOUTPUT = 2 DATA_SHAPE = (BATCH_SIZE, 1, FEATURE_LEN, 1) def download_file(url): # Create file-name local_filename = url.split('/')[-1] if os.path.isfile(local_filename): pass # print("The file %s already exist in the current directory\n" % local_filename) else: # Download print("downloading ...\n") wget.download(url) print('saved data\n') def load_file(infile): """ Takes .csv and returns loaded data along with labels """ print("processing data frame: %s" % infile) # Get data from windows blob download_file('https://%s.blob.core.windows.net/%s/%s' % (AZ_ACC, AZ_CONTAINER, infile)) # load data into dataframe df = pd.read_csv(infile, header=None, names=['sentiment', 'summary', 'text']) # concat summary, review; trim to 1014 char; reverse; lower df['rev'] = df.apply(lambda x: "%s %s" % (x['summary'], x['text']), axis=1) df.rev = df.rev.str[:FEATURE_LEN].str[::-1].str.lower() # store class as nparray df.sentiment -= 1 y_split = np.asarray(df.sentiment, dtype='bool') print("finished processing data frame: %s" % infile) print("data contains %d obs, each epoch will contain %d batches" % (df.shape[0], df.shape[0] // BATCH_SIZE)) return df.rev, y_split def load_data_frame(X_data, y_data, batch_size=128, shuffle=False): """ For low RAM this methods allows us to keep only the original data in RAM and calculate the features (which are orders of magnitude bigger on the fly). This keeps only 10 batches worth of features in RAM using asynchronous programing and yields one DataBatch() at a time. """ if shuffle: idx = X_data.index assert len(idx) == len(y_data) rnd = np.random.permutation(idx) X_data = X_data.reindex(rnd) y_data = y_data[rnd] # Dictionary to create character vectors char_index = dict((c, i + 2) for i, c in enumerate(ALPHABET)) # Yield processed batches asynchronously # Buffy 'batches' at a time def async_prefetch_wrp(iterable, buffy=30): poison_pill = object() def worker(q, it): for item in it: q.put(item) q.put(poison_pill) queue = Queue.Queue(buffy) it = iter(iterable) thread = threading.Thread(target=worker, args=(queue, it)) thread.daemon = True thread.start() while True: item = queue.get() if item == poison_pill: return else: yield item # Async wrapper around def async_prefetch(func): @functools.wraps(func) def wrapper(*args, **kwds): return async_prefetch_wrp(func(*args, **kwds)) return wrapper @async_prefetch def feature_extractor(dta, val): # Yield mini-batch amount of character vectors # X_split = np.zeros([batch_size, 1, FEATURE_LEN, len(ALPHABET)], dtype='bool') X_split = np.zeros([batch_size, 1, FEATURE_LEN, 1], dtype='int') for ti, tx in enumerate(dta): chars = list(tx) for ci, ch in enumerate(chars): if ch in ALPHABET: X_split[ti % batch_size][0][ci] = char_index[ch] # X_split[ti % batch_size][0][ci] = np.array(character_hash[ch], dtype='bool') # No padding -> only complete batches processed if (ti + 1) % batch_size == 0: yield mx.nd.array(X_split), mx.nd.array(val[ti + 1 - batch_size:ti + 1]) # X_split = np.zeros([batch_size, 1, FEATURE_LEN, len(ALPHABET)], dtype='bool') X_split = np.zeros([batch_size, 1, FEATURE_LEN, 1], dtype='int') # Yield one mini-batch at a time and asynchronously process to keep 4 in queue for Xsplit, ysplit in feature_extractor(X_data, y_data): yield DataBatch(data=[Xsplit], label=[ysplit]) class k_max_pool(mx.operator.CustomOp): """ https://github.com/CNevd/DeepLearning-Mxnet/blob/master/DCNN/dcnn_train.py#L15 """ def __init__(self, k): super(k_max_pool, self).__init__() self.k = int(k) def forward(self, is_train, req, in_data, out_data, aux): x = in_data[0].asnumpy() # assert(4 == len(x.shape)) ind = np.argsort(x, axis=2) sorted_ind = np.sort(ind[:, :, -(self.k):, :], axis=2) dim0, dim1, dim2, dim3 = sorted_ind.shape self.indices_dim0 = np.arange(dim0).repeat(dim1 * dim2 * dim3) self.indices_dim1 = np.transpose( np.arange(dim1).repeat(dim2 * dim3).reshape((dim1 * dim2 * dim3, 1)).repeat(dim0, axis=1)).flatten() self.indices_dim2 = sorted_ind.flatten() self.indices_dim3 = np.transpose(
np.arange(dim3)
numpy.arange
# Copyright 2021, Blue Brain Project, EPFL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Volume interpolation based on pairwise interpolation between slices.""" from __future__ import annotations import logging import warnings from abc import ABC, abstractmethod from math import ceil, log2 import numpy as np import torch from torchvision.transforms import ToTensor from atlinter.data import GeneDataset from atlinter.utils import find_closest logger = logging.getLogger(__name__) class PairInterpolationModel(ABC): """Base class for pair-interpolation models. Subclasses of this class implement an interpolation between two given images `img1` and `img2` to produce and intermediate image `img_mid`. This class and its subclasses are used by the PairInterpolate class, which applies a given interpolation model to concrete data. """ def before_interpolation(self, img1, img2): """Run initialization and pre-processing steps before interpolation. Typical applications of this method are padding and cropping of input images to fit the model requirements, as well as initialisation of any internal state, should one be necessary. Parameters ---------- img1 : np.ndarray The left image of shape (width, height) img2 : np.ndarray The right image of shape (width, height). Returns ------- img1 : np.ndarray The pre-processed left image. img2 : np.ndarray The pre-processed right image. """ return img1, img2 @abstractmethod def interpolate(self, img1, img2): """Interpolate two images. In the typical setting the input images are going to be of the format as returned by the `before_interpolation`. Parameters ---------- img1 : np.ndarray The left image. img2 : np.ndarray The right image. Returns ------- img_mid : np.ndarray The interpolated image. """ def after_interpolation(self, interpolated_images): """Run any post-processing after all interpolation is done. Typical applications are padding and cropping of the image stack, as well as any clean-up of the model state. Parameters ---------- interpolated_images : np.ndarray The stacked interpolated images. The array will include the input images as the first and the last items respectively and will therefore have the shape (n_interpolated + 2, height, width) Returns ------- np.ndarray The post-processed interpolated images. """ return interpolated_images class LinearPairInterpolationModel(PairInterpolationModel): """Linear pairwise interpolation. This is the simplest possible interpolation model where the middle image is the average of the left and right images. """ def interpolate(self, img1, img2): """Interpolate two images using linear interpolation. Parameters ---------- img1 : np.ndarray The left image. img2 : np.ndarray The right image. Returns ------- img_mid : np.ndarray The interpolated image. """ img_mid = np.mean([img1, img2], axis=0) return img_mid class RIFEPairInterpolationModel(PairInterpolationModel): """Pairwise image interpolation using the RIFE model. The typical use is >>> from atlinter.vendor.rife.RIFE_HD import Model as RifeModel >>> from atlinter.vendor.rife.RIFE_HD import device as rife_device >>> rife_model = RifeModel() >>> rife_model.load_model("/path/to/train_log", -1) >>> rife_model.eval() >>> rife_interpolation_model = RIFEPairInterpolationModel(rife_model, rife_device) Parameters ---------- rife_model : atlinter.vendor.rife.RIFE_HD.Model The RIFE model instance. rife_device : from atlinter.vendor.rife.RIFE_HD.device The RIFE device. """ def __init__(self, rife_model, rife_device): # The behaviour of torch.nn.functional.interpolate has slightly changed, # which leads to this warning. It doesn't seem to have an impact on the # results, but if the authors of RIFE decide to update their code base # by either specifying the `recompute_scale_factor` parameter or by # some other means, then this warning filter should be removed. # TODO: check the RIFE code for updates and remove the filter if necessary. warnings.filterwarnings( "ignore", "The default behavior for interpolate/upsample with float scale_factor", UserWarning, ) self.rife_model = rife_model self.rife_device = rife_device self.shape = (0, 0) def before_interpolation(self, img1, img2): """Pad input images to a multiple of 32 pixels. Parameters ---------- img1 : np.ndarray The left image of shape. img2 : np.ndarray The right image of shape. Returns ------- img1 : np.ndarray The padded left image. img2 : np.ndarray The padded right image. """ image_shape = img1.shape if len(image_shape) == 3 and image_shape[-1] == 3: rgb = True image_shape = image_shape[:-1] else: rgb = False self.shape = np.array(image_shape) pad_x, pad_y = ((self.shape - 1) // 32 + 1) * 32 - self.shape if rgb: img1 = np.pad(img1, ((0, pad_x), (0, pad_y), (0, 0))) img2 = np.pad(img2, ((0, pad_x), (0, pad_y), (0, 0))) else: img1 = np.pad(img1, ((0, pad_x), (0, pad_y))) img2 = np.pad(img2, ((0, pad_x), (0, pad_y))) return img1, img2 def interpolate(self, img1, img2): """Interpolate two images using RIFE. Note: img1 and img2 needs to have the same shape. If img1, img2 are grayscale, the dimension should be (height, width). If img1, img2 are RGB image, the dimension should be (height, width, 3). Parameters ---------- img1 : np.ndarray The left image. img2 : np.ndarray The right image. Returns ------- img_mid : np.ndarray The interpolated image. """ # Add batch and RGB dimensions (if not already), set device if len(img1.shape) == 2: rgb = False img1 = ( torch.tensor(img1, dtype=torch.float32) .repeat((1, 3, 1, 1)) .to(self.rife_device) ) img2 = ( torch.tensor(img2, dtype=torch.float32) .repeat((1, 3, 1, 1)) .to(self.rife_device) ) else: rgb = True img1 = np.transpose(img1, (2, 0, 1))[np.newaxis] img2 = np.transpose(img2, (2, 0, 1))[np.newaxis] img1 = torch.tensor(img1, dtype=torch.float32).to(self.rife_device) img2 = torch.tensor(img2, dtype=torch.float32).to(self.rife_device) # The actual interpolation img_mid = self.rife_model.inference(img1, img2).detach().cpu().numpy() img_mid = img_mid.squeeze() if rgb: # Put the RGB channel at the end img_mid = np.transpose(img_mid, (1, 2, 0)) else: # Average out the RGB dimension img_mid = img_mid.mean(axis=0) return img_mid def after_interpolation(self, interpolated_images): """Undo the padding added in `before_interpolation`. Parameters ---------- interpolated_images : np.ndarray The stacked interpolated images. If input images are grayscale, the dimension should be (n_img, height, width) or (height, width). If input images are RGB image, the dimension should be (n_img, height, width, 3) or (height, width, 3). Returns ------- np.ndarray The stacked interpolated images with padding removed. """ # No n_img dimension: (height, width) or (height, width, 3) if len(interpolated_images.shape) == 2 or ( len(interpolated_images.shape) == 3 and interpolated_images.shape[-1] == 3 ): return interpolated_images[: self.shape[0], : self.shape[1]] # n_img dimension: (n_img, height, width) or (n_img, height, width, 3) else: return interpolated_images[:, : self.shape[0], : self.shape[1]] class CAINPairInterpolationModel(PairInterpolationModel): """Pairwise image interpolation using the CAIN model. The typical use is >>> from atlinter.vendor.cain.cain import CAIN >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> cain_model = CAIN().to(device) >>> cain_checkpoint = torch.load("pretrained_cain.pth", map_location=device) >>> cain_model.load_state_dict(cain_checkpoint) >>> cain_interpolation_model = CAINPairInterpolationModel(cain_model) Parameters ---------- cain_model : atlinter.vendor.cain.cain.CAIN or torch.nn.DataParallel The CAIN model instance. """ def __init__(self, cain_model): self.cain_model = cain_model self.to_tensor = ToTensor() def interpolate(self, img1, img2): """Interpolate two images using CAIN. Note: img1 and img2 needs to have the same shape. If img1, img2 are grayscale, the dimension should be (height, width). If img1, img2 are RGB image, the dimension should be (height, width, 3). Parameters ---------- img1 : np.ndarray The left image. img2 : np.ndarray The right image. Returns ------- img_mid : np.ndarray The interpolated image. """ # Add batch and RGB dimensions if len(img1.shape) == 2: rgb = False img1 = self.to_tensor(img1).repeat((1, 3, 1, 1)) img2 = self.to_tensor(img2).repeat((1, 3, 1, 1)) else: rgb = True img1 = self.to_tensor(np.transpose(img1, (2, 0, 1)))[None] img2 = self.to_tensor(np.transpose(img2, (2, 0, 1)))[None] # The actual interpolation img_mid, _ = self.cain_model(img1, img2) img_mid = img_mid.detach().cpu().numpy() img_mid = img_mid.squeeze() if rgb: # Put the RGB channel at the end img_mid = np.transpose(img_mid, (1, 2, 0)) else: # Average out the RGB dimension img_mid = img_mid.mean(axis=0) return img_mid class AntsPairInterpolationModel(PairInterpolationModel): """Pairwise image interpolation using AntsPy registration. Typical use is >>> from atlannot.ants import register, transform >>> ants_interpolation_model = AntsPairInterpolationModel(register, transform) Parameters ---------- register_fn : atlannot.ants.register The AntsPy registration function transform_fn : atlannot.ants.transform The AntsPy transformation function """ def __init__(self, register_fn, transform_fn): self.register_fn = register_fn self.transform_fn = transform_fn def interpolate(self, img1, img2): """Interpolate two images using AntsPy registration. Parameters ---------- img1 : np.ndarray The left image. img2 : np.ndarray The right image. Returns ------- img_mid : np.ndarray The interpolated image. """ # Ensure the correct d-type img1 = img1.astype(np.float32) img2 = img2.astype(np.float32) # The actual interpolation nii_data = self.register_fn(fixed=img2, moving=img1) img_mid = self.transform_fn(img1, nii_data / 2) return img_mid class PairInterpolate: """Runner for pairwise interpolation using different models. Parameters ---------- n_repeat : int (optional) The number of times the interpolation should be iterated. For each iteration an interpolated image is inserted between each pair of images from the previous iteration. Therefore n_{i+1} = n_i + (n_i + 1). For example, for n_repeat=3 the progression of the number of images will be the following: input = 0 -> 1 -> 3 -> 7 """ def __init__(self, n_repeat=1): self.n_repeat = n_repeat def repeat(self, n_repeat): """Set the number of interpolation iterations. Parameters ---------- n_repeat : int The new number of interpolation iterations. See `__init__` for more details. """ self.n_repeat = n_repeat return self def __call__(self, img1, img2, model: PairInterpolationModel): """Run the interpolation with the given interpolation model. Parameters ---------- img1 : np.ndarray The left input image. img2 : np.ndarray The right input image. model : PairInterpolationModel The interpolation model. Returns ------- interpolated_images : np.ndarray A stack of interpolation images. The input images are not included in this stack. """ img1, img2 = model.before_interpolation(img1, img2) interpolated_images = self._repeated_interpolation( img1, img2, model, self.n_repeat ) interpolated_images = np.stack(interpolated_images) interpolated_images = model.after_interpolation(interpolated_images) return interpolated_images def _repeated_interpolation(self, img1, img2, model, n_repeat): # End of recursion if n_repeat <= 0: return [] # Recursion step img_mid = model.interpolate(img1, img2) left_images = self._repeated_interpolation(img1, img_mid, model, n_repeat - 1) right_images = self._repeated_interpolation(img_mid, img2, model, n_repeat - 1) return [*left_images, img_mid, *right_images] class GeneInterpolate: """Interpolation of a gene dataset. Parameters ---------- gene_data : GeneData Gene Dataset to interpolate. It contains a `volume` of reference shape with all known places located at the right place and a `metadata` dictionary containing information about the axis of the dataset and the section numbers. model : PairInterpolationModel Pair-interpolation model. """ def __init__( self, gene_data: GeneDataset, model: PairInterpolationModel, ): self.gene_data = gene_data self.model = model self.axis = self.gene_data.axis self.gene_volume = self.gene_data.volume.copy() # If sagittal axis, put the sagittal dimension first if self.axis == "sagittal": self.gene_volume = np.moveaxis(self.gene_volume, 2, 0) def get_interpolation( self, left: int, right: int ) -> tuple[np.ndarray | None, np.ndarray | None]: """Compute the interpolation for a pair of images. Parameters ---------- left Slice number of the left image to consider. right Slice number of the right image to consider. Returns ------- interpolated_images : np.array or None Interpolated image for the given pair of images. Array of shape (N, dim1, dim2, 3) with N the number of interpolated images. predicted_section_numbers : np.array or None Slice value of the predicted images. Array of shape (N, 1) with N the number of interpolated images. """ diff = right - left if diff == 0: return None, None n_repeat = self.get_n_repeat(diff) pair_interpolate = PairInterpolate(n_repeat=n_repeat) interpolated_images = pair_interpolate( self.gene_volume[left], self.gene_volume[right], self.model ) predicted_section_numbers = self.get_predicted_section_numbers( left, right, n_repeat ) return interpolated_images, predicted_section_numbers def get_all_interpolation(self) -> tuple[np.ndarray, np.ndarray]: """Compute pair interpolation for the entire volume. Returns ------- all_interpolated_images : np.array Interpolated image for the entire volume. Array of shape (N, dim1, dim2, 3) with N the number of interpolated images. all_predicted_section_numbers : np.array Slice value of the predicted images. Array of shape (N, 1) with N the number of interpolated images. """ # TODO: Try to change the implementation of the prediction so that # we do not predict slices that are not needed. logger.info("Start predicting interpolation between two known slices") known_slices = sorted(self.gene_data.known_slices) all_interpolated_images = [] all_predicted_section_numbers = [] for i in range(len(known_slices) - 1): left, right = known_slices[i], known_slices[i + 1] ( interpolated_images, predicted_section_numbers, ) = self.get_interpolation(left, right) if interpolated_images is None: continue all_interpolated_images.append(interpolated_images) all_predicted_section_numbers.append(predicted_section_numbers) if i % 5 == 0: logger.info(f"{i} / {len(known_slices) - 1} interpolations predicted") all_interpolated_images = np.concatenate(all_interpolated_images) all_predicted_section_numbers = np.concatenate(all_predicted_section_numbers) return all_interpolated_images, all_predicted_section_numbers def predict_slice(self, slice_number: int) -> np.ndarray: """Predict one gene slice. Parameters ---------- slice_number Slice section to predict. Returns ------- np.ndarray Predicted gene slice. Array of shape (dim1, dim2, 3) being (528, 320) for sagittal dataset and (320, 456) for coronal dataset. """ left, right = self.gene_data.get_surrounding_slices(slice_number) if left is None: return self.gene_volume[right] elif right is None: return self.gene_volume[left] else: interpolated_images, predicted_section_numbers = self.get_interpolation( left, right ) index = find_closest(slice_number, predicted_section_numbers)[0] return interpolated_images[index] def predict_volume(self) -> np.ndarray: """Predict entire volume with known gene slices. This function might be slow. """ volume_shape = self.gene_data.volume_shape volume = np.zeros(volume_shape, dtype="float32") logger.info(f"Start predicting the volume of shape {volume_shape}") if self.gene_data.axis == "sagittal": volume =
np.moveaxis(volume, 2, 0)
numpy.moveaxis
import pickle import os import numpy as np def unpickle(file): with open(file, 'rb') as fo: d = pickle.load(fo, encoding='bytes') return d def get(): path, _ = os.path.split(__file__) files = ['data_batch_'+str(i) for i in range(1, 6)] files.append('test_batch') labels_list = [] data_list = [] for file in files: f = os.path.join(path, file) d = unpickle(f) labels =
np.array(d[b'labels'])
numpy.array
# coding: utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Dataset for 3D object detection on SUN RGB-D (with support of vote supervision). A sunrgbd oriented bounding box is parameterized by (cx,cy,cz), (l,w,h) -- (dx,dy,dz) in upright depth coord (Z is up, Y is forward, X is right ward), heading angle (from +X rotating to -Y) and semantic class Point clouds are in **upright_depth coordinate (X right, Y forward, Z upward)** Return heading class, heading residual, size class and size residual for 3D bounding boxes. Oriented bounding box is parameterized by (cx,cy,cz), (l,w,h), heading_angle and semantic class label. (cx,cy,cz) is in upright depth coordinate (l,h,w) are length of the object sizes The heading angle is a rotation rad from +X rotating towards -Y. (+X is 0, -Y is pi/2) Author: <NAME> Date: 2019 """ import os import sys import numpy as np from torch.utils.data import Dataset BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import pc_util import sunrgbd_utils from sunrgbd_utils import extract_pc_in_box3d from model_util_sunrgbd import SunrgbdDatasetConfig DC = SunrgbdDatasetConfig() # dataset specific config MAX_NUM_OBJ = 64 # maximum number of objects allowed per scene MEAN_COLOR_RGB = np.array([0.5,0.5,0.5]) # sunrgbd color is in 0~1 DIST_THRESH = 0.1#0.2 VAR_THRESH = 5e-3 CENTER_THRESH = 0.1 LOWER_THRESH = 1e-6 NUM_POINT = 50 NUM_POINT_LINE = 10 LINE_THRESH = 0.1#0.2 MIND_THRESH = 0.1 NUM_POINT_SEM_THRESHOLD = 1 def check_upright(para_points): return (para_points[0][-1] == para_points[1][-1]) and (para_points[1][-1] == para_points[2][-1]) and (para_points[2][-1] == para_points[3][-1]) def check_z(plane_equ, para_points): return np.sum(para_points[:,2] + plane_equ[-1]) / 4.0 < LOWER_THRESH def clockwise2counter(angle): ''' @Args: angle: clockwise from x axis, from 0 to 2*pi, @Returns: theta: counter clockwise, -pi / 2 ~ pi / 2, +x~+y: (0, pi/2), +x~-y: (0, -pi/2) ''' return -((angle + np.pi / 2) % np.pi) + np.pi / 2; def point2line_dist(points, a, b): ''' @Args: points: (N, 3) a / b: (3,) @Returns: distance: (N,) ''' x = b - a t = np.dot(points - a, x) / np.dot(x, x) c = a + t[:, None] * np.tile(x, (t.shape[0], 1)) return np.linalg.norm(points - c, axis=1) def get_linesel(points, corners, direction): ''' corners: [[xmin, ymin, zmin], [xmin, ymin, zmax], [xmin, ymax, zmin], [xmin, ymax, zmax], [xmax, ymin, zmin], [xmax, ymin, zmax], [xmax, ymax, zmin], [xmax, ymax, zmax]] ''' if direction == 'lower': sel1 = point2line_dist(points, corners[0], corners[2]) < LINE_THRESH sel2 = point2line_dist(points, corners[4], corners[6]) < LINE_THRESH sel3 = point2line_dist(points, corners[0], corners[4]) < LINE_THRESH sel4 = point2line_dist(points, corners[2], corners[6]) < LINE_THRESH return sel1, sel2, sel3, sel4 elif direction == 'upper': sel1 = point2line_dist(points, corners[1], corners[3]) < LINE_THRESH sel2 = point2line_dist(points, corners[5], corners[7]) < LINE_THRESH sel3 = point2line_dist(points, corners[1], corners[5]) < LINE_THRESH sel4 = point2line_dist(points, corners[3], corners[7]) < LINE_THRESH return sel1, sel2, sel3, sel4 elif direction == 'left': sel1 = point2line_dist(points, corners[0], corners[1]) < LINE_THRESH sel2 = point2line_dist(points, corners[2], corners[3]) < LINE_THRESH return sel1, sel2 elif direction == 'right': sel1 = point2line_dist(points, corners[4], corners[5]) < LINE_THRESH sel2 = point2line_dist(points, corners[6], corners[7]) < LINE_THRESH return sel1, sel2 else: AssertionError('direction = lower / upper / left') def get_linesel2(points, ymin, ymax, zmin, zmax, axis=0): #sel3 = sweep(points, axis, ymax, 2, zmin, zmax) #sel4 = sweep(points, axis, ymax, 2, zmin, zmax) sel3 = np.abs(points[:,axis] - ymin) < LINE_THRESH sel4 = np.abs(points[:,axis] - ymax) < LINE_THRESH return sel3, sel4 ''' ATTENTION: SUNRGBD, size_label is only half the actual size ''' def params2bbox(center, size, angle): ''' from bbox_center, angle and size to bbox @Args: center: (3,) size: (3,) angle: -pi ~ pi, +x~+y: (0, pi/2), +x~-y: (0, -pi/2) @Returns: bbox: 8 x 3, order: [[xmin, ymin, zmin], [xmin, ymin, zmax], [xmin, ymax, zmin], [xmin, ymax, zmax], [xmax, ymin, zmin], [xmax, ymin, zmax], [xmax, ymax, zmin], [xmax, ymax, zmax]] ''' xsize = size[0] ysize = size[1] zsize = size[2] vx = np.array([np.cos(angle), np.sin(angle), 0]) vy = np.array([-np.sin(angle), np.cos(angle), 0]) vx = vx * np.abs(xsize) / 2 vy = vy * np.abs(ysize) / 2 vz = np.array([0, 0, np.abs(zsize) / 2]) bbox = np.array([\ center - vx - vy - vz, center - vx - vy + vz, center - vx + vy - vz, center - vx + vy + vz, center + vx - vy - vz, center + vx - vy + vz, center + vx + vy - vz, center + vx + vy + vz]) return bbox class SunrgbdDetectionVotesDataset(Dataset): def __init__(self, data_path=None, split_set='train', num_points=20000, use_color=False, use_height=False, use_v1=False, augment=False, scan_idx_list=None): assert(num_points<=50000) self.use_v1 = use_v1 if use_v1: self.data_path = os.path.join(data_path, 'sunrgbd_pc_bbox_votes_50k_v1_' + split_set) # self.data_path = os.path.join('/scratch/cluster/yanght/Dataset/sunrgbd/sunrgbd_pc_bbox_votes_50k_v1_' + split_set) else: AssertionError("v2 data is not prepared") self.raw_data_path = os.path.join(ROOT_DIR, 'sunrgbd/sunrgbd_trainval') self.scan_names = sorted(list(set([os.path.basename(x)[0:6] \ for x in os.listdir(self.data_path)]))) if scan_idx_list is not None: self.scan_names = [self.scan_names[i] for i in scan_idx_list] self.num_points = num_points self.augment = augment self.use_color = use_color self.use_height = use_height def __len__(self): return len(self.scan_names) def __getitem__(self, idx): """ Returns a dict with following keys: point_clouds: (N,3+C) center_label: (MAX_NUM_OBJ,3) for GT box center XYZ heading_class_label: (MAX_NUM_OBJ,) with int values in 0,...,NUM_HEADING_BIN-1 heading_residual_label: (MAX_NUM_OBJ,) size_classe_label: (MAX_NUM_OBJ,) with int values in 0,...,NUM_SIZE_CLUSTER size_residual_label: (MAX_NUM_OBJ,3) sem_cls_label: (MAX_NUM_OBJ,) semantic class index box_label_mask: (MAX_NUM_OBJ) as 0/1 with 1 indicating a unique box vote_label: (N,9) with votes XYZ (3 votes: X1Y1Z1, X2Y2Z2, X3Y3Z3) if there is only one vote than X1==X2==X3 etc. vote_label_mask: (N,) with 0/1 with 1 indicating the point is in one of the object's OBB. scan_idx: int scan index in scan_names list max_gt_bboxes: unused """ scan_name = self.scan_names[idx] point_color_sem = np.load(os.path.join(self.data_path, scan_name)+'_pc.npz')['pc'] # Nx6 bboxes = np.load(os.path.join(self.data_path, scan_name)+'_bbox.npy') # K,8 point_votes = np.load(os.path.join(self.data_path, scan_name)+'_votes.npz')['point_votes'] # Nx10 semantics37 = point_color_sem[:, 6] semantics10 = np.array([DC.class37_2_class10[k] for k in semantics37]) semantics10_multi = [DC.class37_2_class10_multi[k] for k in semantics37] if not self.use_color: point_cloud = point_color_sem[:, 0:3] else: point_cloud = point_color_sem[:,0:6] point_cloud[:,3:6] = (point_color_sem[:,3:6]-MEAN_COLOR_RGB) if self.use_height: floor_height = np.percentile(point_cloud[:,2],0.99) height = point_cloud[:,2] - floor_height point_cloud = np.concatenate([point_cloud, np.expand_dims(height, 1)],1) # (N,4) or (N,7) # ------------------------------- DATA AUGMENTATION ------------------------------ if self.augment: if np.random.random() > 0.5: # Flipping along the YZ plane point_cloud[:,0] = -1 * point_cloud[:,0] bboxes[:,0] = -1 * bboxes[:,0] bboxes[:,6] = np.pi - bboxes[:,6] point_votes[:,[1,4,7]] = -1 * point_votes[:,[1,4,7]] # Rotation along up-axis/Z-axis rot_angle = (np.random.random()*np.pi/3) - np.pi/6 # -30 ~ +30 degree rot_mat = sunrgbd_utils.rotz(rot_angle) point_votes_end = np.zeros_like(point_votes) point_votes_end[:,1:4] = np.dot(point_cloud[:,0:3] + point_votes[:,1:4], np.transpose(rot_mat)) point_votes_end[:,4:7] = np.dot(point_cloud[:,0:3] + point_votes[:,4:7], np.transpose(rot_mat)) point_votes_end[:,7:10] = np.dot(point_cloud[:,0:3] + point_votes[:,7:10], np.transpose(rot_mat)) point_cloud[:,0:3] = np.dot(point_cloud[:,0:3], np.transpose(rot_mat)) bboxes[:,0:3] = np.dot(bboxes[:,0:3], np.transpose(rot_mat)) bboxes[:,6] -= rot_angle point_votes[:,1:4] = point_votes_end[:,1:4] - point_cloud[:,0:3] point_votes[:,4:7] = point_votes_end[:,4:7] - point_cloud[:,0:3] point_votes[:,7:10] = point_votes_end[:,7:10] - point_cloud[:,0:3] # Augment RGB color if self.use_color: rgb_color = point_cloud[:,3:6] + MEAN_COLOR_RGB rgb_color *= (1+0.4*np.random.random(3)-0.2) # brightness change for each channel rgb_color += (0.1*np.random.random(3)-0.05) # color shift for each channel rgb_color += np.expand_dims((0.05*np.random.random(point_cloud.shape[0])-0.025), -1) # jittering on each pixel rgb_color = np.clip(rgb_color, 0, 1) # randomly drop out 30% of the points' colors rgb_color *= np.expand_dims(np.random.random(point_cloud.shape[0])>0.3,-1) point_cloud[:,3:6] = rgb_color - MEAN_COLOR_RGB # Augment point cloud scale: 0.85x-1.15x scale_ratio = np.random.random()*0.3+0.85 scale_ratio = np.expand_dims(np.tile(scale_ratio,3),0) point_cloud[:,0:3] *= scale_ratio bboxes[:,0:3] *= scale_ratio bboxes[:,3:6] *= scale_ratio point_votes[:,1:4] *= scale_ratio point_votes[:,4:7] *= scale_ratio point_votes[:,7:10] *= scale_ratio if self.use_height: point_cloud[:,-1] *= scale_ratio[0,0] # ------------------------------- LABELS ------------------------------ box3d_centers = np.zeros((MAX_NUM_OBJ, 3)) box3d_sizes = np.zeros((MAX_NUM_OBJ, 3)) angle_classes = np.zeros((MAX_NUM_OBJ,)) angle_residuals = np.zeros((MAX_NUM_OBJ,)) size_classes = np.zeros((MAX_NUM_OBJ,)) size_residuals = np.zeros((MAX_NUM_OBJ, 3)) label_mask = np.zeros((MAX_NUM_OBJ)) label_mask[0:bboxes.shape[0]] = 1 max_bboxes = np.zeros((MAX_NUM_OBJ, 8)) max_bboxes[0:bboxes.shape[0],:] = bboxes # new items box3d_angles = np.zeros((MAX_NUM_OBJ,)) point_boundary_mask_z = np.zeros(self.num_points) point_boundary_mask_xy = np.zeros(self.num_points) point_boundary_offset_z = np.zeros([self.num_points, 3]) point_boundary_offset_xy = np.zeros([self.num_points, 3]) point_boundary_sem_z = np.zeros([self.num_points, 3+2+1]) point_boundary_sem_xy = np.zeros([self.num_points, 3+1+1]) point_line_mask = np.zeros(self.num_points) point_line_offset = np.zeros([self.num_points, 3]) point_line_sem = np.zeros([self.num_points, 3+1]) for i in range(bboxes.shape[0]): bbox = bboxes[i] semantic_class = bbox[7] box3d_center = bbox[0:3] angle_class, angle_residual = DC.angle2class(bbox[6]) # NOTE: The mean size stored in size2class is of full length of box edges, # while in sunrgbd_data.py data dumping we dumped *half* length l,w,h.. so have to time it by 2 here box3d_size = bbox[3:6]*2 size_class, size_residual = DC.size2class(box3d_size, DC.class2type[semantic_class]) box3d_centers[i,:] = box3d_center angle_classes[i] = angle_class angle_residuals[i] = angle_residual size_classes[i] = size_class size_residuals[i] = size_residual box3d_sizes[i,:] = box3d_size box3d_angles[i] = bbox[6] target_bboxes_mask = label_mask target_bboxes = np.zeros((MAX_NUM_OBJ, 6)) for i in range(bboxes.shape[0]): bbox = bboxes[i] corners_3d = sunrgbd_utils.my_compute_box_3d(bbox[0:3], bbox[3:6], bbox[6]) # compute axis aligned box xmin = np.min(corners_3d[:,0]) ymin = np.min(corners_3d[:,1]) zmin = np.min(corners_3d[:,2]) xmax = np.max(corners_3d[:,0]) ymax = np.max(corners_3d[:,1]) zmax = np.max(corners_3d[:,2]) target_bbox = np.array([(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2, xmax-xmin, ymax-ymin, zmax-zmin]) target_bboxes[i,:] = target_bbox point_cloud, choices = pc_util.random_sampling(point_cloud, self.num_points, return_choices=True) semantics37 = semantics37[choices] semantics10 = semantics10[choices] semantics10_multi = [semantics10_multi[i] for i in choices] point_votes_mask = point_votes[choices,0] point_votes = point_votes[choices,1:] # box angle is -pi to pi for i in range(bboxes.shape[0]): bbox = bboxes[i] corners = params2bbox(bbox[:3], 2 * bbox[3:6], clockwise2counter(bbox[6])) # corners_votenet = sunrgbd_utils.my_compute_box_3d(bbox[:3], bbox[3:6], bbox[6]) try: x_all_cls, ind_all_cls = extract_pc_in_box3d(point_cloud, corners) except: continue ind_all_cls = np.where(ind_all_cls)[0] # T/F to index # find point with same semantic as bbox, note semantics is 37 cls in sunrgbd # ind = ind_all_cls[np.where(semantics10[ind_all_cls] == bbox[7])[0]] ind = [] for j in ind_all_cls: if bbox[7] in semantics10_multi[j]: ind.append(j) ind = np.array(ind) if ind.shape[0] < NUM_POINT_SEM_THRESHOLD: pass else: x = point_cloud[ind, :3] ###Get bb planes and boundary points plane_lower_temp = np.array([0,0,1,-corners[6,-1]]) para_points = np.array([corners[1], corners[3], corners[5], corners[7]]) newd = np.sum(para_points * plane_lower_temp[:3], 1) if check_upright(para_points) and plane_lower_temp[0]+plane_lower_temp[1] < LOWER_THRESH: plane_lower = np.array([0,0,1,plane_lower_temp[-1]]) plane_upper = np.array([0,0,1,-np.mean(newd)]) else: import pdb;pdb.set_trace() print ("error with upright") if check_z(plane_upper, para_points) == False: import pdb;pdb.set_trace() ### Get the boundary points here #alldist = np.abs(np.sum(point_cloud[:,:3]*plane_lower[:3], 1) + plane_lower[-1]) alldist = np.abs(np.sum(x*plane_lower[:3], 1) + plane_lower[-1]) mind = np.min(alldist) #[count, val] = np.histogram(alldist, bins=20) #mind = val[np.argmax(count)] sel = np.abs(alldist - mind) < DIST_THRESH #sel = (np.abs(alldist - mind) < DIST_THRESH) & (point_cloud[:,0] >= xmin) & (point_cloud[:,0] <= xmax) & (point_cloud[:,1] >= ymin) & (point_cloud[:,1] <= ymax) ## Get lower four lines line_sel1, line_sel2, line_sel3, line_sel4 = get_linesel(x[sel], corners, 'lower') if np.sum(line_sel1) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel1]] = 1.0 linecenter = (corners[0] + corners[2]) / 2.0 point_line_offset[ind[sel][line_sel1]] = linecenter - x[sel][line_sel1] point_line_sem[ind[sel][line_sel1]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel2) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel2]] = 1.0 linecenter = (corners[4] + corners[6]) / 2.0 point_line_offset[ind[sel][line_sel2]] = linecenter - x[sel][line_sel2] point_line_sem[ind[sel][line_sel2]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel3) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel3]] = 1.0 linecenter = (corners[0] + corners[4]) / 2.0 point_line_offset[ind[sel][line_sel3]] = linecenter - x[sel][line_sel3] point_line_sem[ind[sel][line_sel3]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel4) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel4]] = 1.0 linecenter = (corners[2] + corners[6]) / 2.0 point_line_offset[ind[sel][line_sel4]] = linecenter - x[sel][line_sel4] point_line_sem[ind[sel][line_sel4]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(sel) > NUM_POINT and np.var(alldist[sel]) < VAR_THRESH: # center = np.array([(xmin+xmax)/2.0, (ymin+ymax)/2.0, np.mean(x[sel][:,2])]) center = (corners[0] + corners[6]) / 2.0 center[2] = np.mean(x[sel][:,2]) sel_global = ind[sel] point_boundary_mask_z[sel_global] = 1.0 point_boundary_sem_z[sel_global] = np.array([center[0], center[1], center[2], np.linalg.norm(corners[4] - corners[0]), np.linalg.norm(corners[2] - corners[0]), bbox[7]]) point_boundary_offset_z[sel_global] = center - x[sel] ''' ### Check for middle z surfaces [count, val] = np.histogram(alldist, bins=20) mind_middle = val[np.argmax(count)] sel_pre = np.copy(sel) sel = np.abs(alldist - mind_middle) < DIST_THRESH if np.abs(np.mean(x[sel_pre][:,2]) - np.mean(x[sel][:,2])) > MIND_THRESH: ### Do not use line for middle surfaces if np.sum(sel) > NUM_POINT and np.var(alldist[sel]) < VAR_THRESH: center = (corners[0] + corners[6]) / 2.0 center[2] = np.mean(x[sel][:,2]) # center = np.array([(xmin+xmax)/2.0, (ymin+ymax)/2.0, np.mean(x[sel][:,2])]) sel_global = ind[sel] point_boundary_mask_z[sel_global] = 1.0 point_boundary_sem_z[sel_global] = np.array([center[0], center[1], center[2], np.linalg.norm(corners[4] - corners[0]), np.linalg.norm(corners[2] - corners[0]), bbox[7]]) point_boundary_offset_z[sel_global] = center - x[sel] ''' ### Get the boundary points here alldist = np.abs(np.sum(x*plane_upper[:3], 1) + plane_upper[-1]) mind = np.min(alldist) #[count, val] = np.histogram(alldist, bins=20) #mind = val[np.argmax(count)] sel = np.abs(alldist - mind) < DIST_THRESH #sel = (np.abs(alldist - mind) < DIST_THRESH) & (point_cloud[:,0] >= xmin) & (point_cloud[:,0] <= xmax) & (point_cloud[:,1] >= ymin) & (point_cloud[:,1] <= ymax) ## Get upper four lines line_sel1, line_sel2, line_sel3, line_sel4 = get_linesel(x[sel], corners, 'upper') if np.sum(line_sel1) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel1]] = 1.0 linecenter = (corners[1] + corners[3]) / 2.0 point_line_offset[ind[sel][line_sel1]] = linecenter - x[sel][line_sel1] point_line_sem[ind[sel][line_sel1]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel2) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel2]] = 1.0 linecenter = (corners[5] + corners[7]) / 2.0 point_line_offset[ind[sel][line_sel2]] = linecenter - x[sel][line_sel2] point_line_sem[ind[sel][line_sel2]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel3) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel3]] = 1.0 linecenter = (corners[1] + corners[5]) / 2.0 point_line_offset[ind[sel][line_sel3]] = linecenter - x[sel][line_sel3] point_line_sem[ind[sel][line_sel3]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel4) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel4]] = 1.0 linecenter = (corners[3] + corners[7]) / 2.0 point_line_offset[ind[sel][line_sel4]] = linecenter - x[sel][line_sel4] point_line_sem[ind[sel][line_sel4]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(sel) > NUM_POINT and np.var(alldist[sel]) < VAR_THRESH: # center = np.array([(xmin+xmax)/2.0, (ymin+ymax)/2.0, np.mean(x[sel][:,2])]) center = (corners[1] + corners[7]) / 2.0 center[2] = np.mean(x[sel][:,2]) sel_global = ind[sel] point_boundary_mask_z[sel_global] = 1.0 point_boundary_sem_z[sel_global] = np.array([center[0], center[1], center[2], np.linalg.norm(corners[5] - corners[1]), np.linalg.norm(corners[3] - corners[1]), bbox[7]]) point_boundary_offset_z[sel_global] = center - x[sel] v1 = corners[3] - corners[2] v2 = corners[2] - corners[0] cp = np.cross(v1, v2) d = -np.dot(cp,corners[0]) a,b,c = cp plane_left_temp = np.array([a, b, c, d]) para_points = np.array([corners[4], corners[5], corners[6], corners[7]]) ### Normalize xy here plane_left_temp /= np.linalg.norm(plane_left_temp[:3]) newd = np.sum(para_points * plane_left_temp[:3], 1) if plane_left_temp[2] < LOWER_THRESH: plane_left = plane_left_temp#np.array([cls,res,tempsign,plane_left_temp[-1]]) plane_right = np.array([plane_left_temp[0], plane_left_temp[1], plane_left_temp[2], -np.mean(newd)]) else: import pdb;pdb.set_trace() print ("error with upright") ### Get the boundary points here alldist = np.abs(np.sum(x*plane_left[:3], 1) + plane_left[-1]) mind = np.min(alldist) #[count, val] = np.histogram(alldist, bins=20) #mind = val[np.argmax(count)] sel = np.abs(alldist - mind) < DIST_THRESH #sel = (np.abs(alldist - mind) < DIST_THRESH) & (point_cloud[:,2] >= zmin) & (point_cloud[:,2] <= zmax) & (point_cloud[:,1] >= ymin) & (point_cloud[:,1] <= ymax) ## Get upper four lines line_sel1, line_sel2 = get_linesel(x[sel], corners, 'left') if np.sum(line_sel1) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel1]] = 1.0 linecenter = (corners[0] + corners[1]) / 2.0 point_line_offset[ind[sel][line_sel1]] = linecenter - x[sel][line_sel1] point_line_sem[ind[sel][line_sel1]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel2) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel2]] = 1.0 linecenter = (corners[2] + corners[3]) / 2.0 point_line_offset[ind[sel][line_sel2]] = linecenter - x[sel][line_sel2] point_line_sem[ind[sel][line_sel2]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(sel) > NUM_POINT and np.var(alldist[sel]) < VAR_THRESH: # center = np.array([np.mean(x[sel][:,0]), np.mean(x[sel][:,1]), (zmin+zmax)/2.0]) center = np.array([np.mean(x[sel][:,0]), np.mean(x[sel][:,1]), (corners[0, 2] + corners[1, 2])/2.0]) sel_global = ind[sel] point_boundary_mask_xy[sel_global] = 1.0 # point_boundary_sem_xy[sel_global] = np.array([center[0], center[1], center[2], zmax - zmin, np.where(DC.nyu40ids == meta_vertices[ind[0],-1])[0][0]]) point_boundary_sem_xy[sel_global] = np.array([center[0], center[1], center[2], corners[1, 2] - corners[0, 2], bbox[7]]) point_boundary_offset_xy[sel_global] = center - x[sel] ''' [count, val] = np.histogram(alldist, bins=20) mind_middle = val[np.argmax(count)] #sel = (np.abs(alldist - mind) < DIST_THRESH) & (point_cloud[:,2] >= zmin) & (point_cloud[:,2] <= zmax) & (point_cloud[:,1] >= ymin) & (point_cloud[:,1] <= ymax) ## Get upper four lines sel_pre = np.copy(sel) sel = np.abs(alldist - mind_middle) < DIST_THRESH if np.abs(np.mean(x[sel_pre][:,0]) - np.mean(x[sel][:,0])) > MIND_THRESH: ### Do not use line for middle surfaces if np.sum(sel) > NUM_POINT and np.var(alldist[sel]) < VAR_THRESH: # center = np.array([np.mean(x[sel][:,0]), np.mean(x[sel][:,1]), (zmin+zmax)/2.0]) center = np.array([np.mean(x[sel][:,0]), np.mean(x[sel][:,1]), (corners[0, 2] + corners[1, 2])/2.0]) sel_global = ind[sel] point_boundary_mask_xy[sel_global] = 1.0 point_boundary_sem_xy[sel_global] = np.array([center[0], center[1], center[2], corners[1, 2] - corners[0, 2], bbox[7]]) point_boundary_offset_xy[sel_global] = center - x[sel] ''' ### Get the boundary points here alldist = np.abs(np.sum(x*plane_right[:3], 1) + plane_right[-1]) mind = np.min(alldist) #[count, val] = np.histogram(alldist, bins=20) #mind = val[np.argmax(count)] sel = np.abs(alldist - mind) < DIST_THRESH #sel = (np.abs(alldist - mind) < DIST_THRESH) & (point_cloud[:,2] >= zmin) & (point_cloud[:,2] <= zmax) & (point_cloud[:,1] >= ymin) & (point_cloud[:,1] <= ymax) line_sel1, line_sel2 = get_linesel(x[sel], corners, 'right') if np.sum(line_sel1) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel1]] = 1.0 linecenter = (corners[4] + corners[5]) / 2.0 point_line_offset[ind[sel][line_sel1]] = linecenter - x[sel][line_sel1] point_line_sem[ind[sel][line_sel1]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(line_sel2) > NUM_POINT_LINE: point_line_mask[ind[sel][line_sel2]] = 1.0 linecenter = (corners[6] + corners[7]) / 2.0 point_line_offset[ind[sel][line_sel2]] = linecenter - x[sel][line_sel2] point_line_sem[ind[sel][line_sel2]] = np.array([linecenter[0], linecenter[1], linecenter[2], bbox[7]]) if np.sum(sel) > NUM_POINT and np.var(alldist[sel]) < VAR_THRESH: # center = np.array([np.mean(x[sel][:,0]), np.mean(x[sel][:,1]), (zmin+zmax)/2.0]) center = np.array([np.mean(x[sel][:,0]), np.mean(x[sel][:,1]), (corners[4, 2] + corners[5, 2])/2.0]) sel_global = ind[sel] point_boundary_mask_xy[sel_global] = 1.0 point_boundary_sem_xy[sel_global] = np.array([center[0], center[1], center[2], corners[5, 2] - corners[4, 2], bbox[7]]) point_boundary_offset_xy[sel_global] = center - x[sel] #plane_front_temp = leastsq(residuals, [0,1,0,0], args=(None, np.array([corners[0], corners[1], corners[4], corners[5]]).T))[0] v1 = corners[0] - corners[4] v2 = corners[4] - corners[5] cp = np.cross(v1, v2) d = -np.dot(cp,corners[5]) a,b,c = cp plane_front_temp = np.array([a, b, c, d]) para_points = np.array([corners[2], corners[3], corners[6], corners[7]]) plane_front_temp /= np.linalg.norm(plane_front_temp[:3]) newd =
np.sum(para_points * plane_front_temp[:3], 1)
numpy.sum
import numpy as np import random import itertools from dataflow import ( DataFlow) # def group_data(data, group_func): # keys = [] # groups = [] # # for k, g in itertools.groupby(sorted(data, key=group_func), group_func): # klist = list(k) # keys.append(klist[0]) # groups.append((list(g))) # return list(keys), list(groups) # # # def Splitrandom(ratios, seed=None, group_func=None): # def f(data): # if (group_func is not None): # idx, groups = group_data(data, group_func) # #print (idx) # #print(groups) # dict_idx_group = dict(zip(idx, groups)) # # # else: # idx = np.arange(len(data)) # # if (seed is not None): # random.Random(seed).shuffle(idx) # else: # random.shuffle(idx) # N = len(idx) # # splits_idx = [] # #print(idx) # start = 0 # for i, r in enumerate(ratios): # n = int(N * r) # # end = start + n # #print(i, n, start, end) # # if (i == len(ratios) - 1): # splits_idx.append(idx[start:]) # else: # splits_idx.append(idx[start:end]) # start = end # # # splits = [] # for si in splits_idx: # asplit = [] # #print ('S',si) # for k in si: # if (group_func is not None): # asplit.extend(dict_idx_group[k]) # else: # asplit.append(data[k]) # splits.append(asplit) # # return splits # # return f from sklearn.model_selection import GroupShuffleSplit def Splitrandom (ratios, seed=None, group_func=None): def get_group(data): if (group_func is not None): groups = [group_func(d) for d in data] else: groups = np.arange(len(data)) return groups def slice(data, idx): return [data[id] for id in idx] def f(data): def group_two(data, ratio_pair): groups = get_group(data) gss = GroupShuffleSplit(n_splits=1, train_size=ratio_pair[0], test_size=ratio_pair[1], random_state=seed) train_idx, test_idx = next(gss.split(data, groups=groups)) return slice(data,train_idx) , slice(data,test_idx) ratio_new = (ratios[0], np.sum(ratios[1:])) train, valtest = group_two(data, ratio_new) ratio_new =(ratios[1]/np.sum(ratios[1:]),ratios[2]/np.sum(ratios[1:])) val, test = group_two(valtest, ratio_new) return train, val, test return f class LabelMap2ProbabilityMap(DataFlow): """ Convert label map to probability map """ def __init__(self, ds, label_map_index, num_classes): self.ds = ds self.label_map_index = label_map_index self.n_class = num_classes def size(self): return self.ds.size() @staticmethod def labelmap2probmap_( label_map, n_class): s = label_map.shape # convert label map to probability map pmap =
np.zeros((s[0], s[1], n_class))
numpy.zeros
import numpy as np import pytest # pylint: disable=line-too-long from tensornetwork.block_sparse.charge import BaseCharge, intersect, fuse_ndarrays, U1Charge, fuse_degeneracies, fuse_charges def test_BaseCharge_charges(): D = 100 B = 6 np.random.seed(10) charges = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) q1 = BaseCharge(charges) np.testing.assert_allclose(q1.charges, charges) def test_BaseCharge_generic(): D = 300 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) unique = np.unique(q, axis=1) Q = BaseCharge(charges=q) assert Q.dim == 300 assert Q.num_symmetries == 2 assert Q.num_unique == unique.shape[1] def test_BaseCharge_len(): D = 300 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) Q = BaseCharge(charges=q) assert len(Q) == 300 def test_BaseCharge_copy(): D = 300 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) Q = BaseCharge(charges=q) Qcopy = Q.copy() assert Q.charge_labels is not Qcopy.charge_labels assert Q.unique_charges is not Qcopy.unique_charges np.testing.assert_allclose(Q.charge_labels, Qcopy.charge_labels) np.testing.assert_allclose(Q.unique_charges, Qcopy.unique_charges) def test_BaseCharge_unique(): D = 3000 B = 5 np.random.seed(10) q = np.random.randint(-B // 2, B // 2 + 1, (2, D)).astype(np.int16) Q = BaseCharge(charges=q, charge_types=[U1Charge, U1Charge]) expected = np.unique( q, return_index=True, return_inverse=True, return_counts=True, axis=1) actual = Q.unique(return_index=True, return_inverse=True, return_counts=True) assert np.all(actual[0].charges == expected[0]) assert np.all(actual[1] == expected[1]) assert np.all(actual[2] == expected[2]) assert np.all(actual[3] == expected[3]) def test_BaseCharge_unique_sort(): np.random.seed(10) unique = np.array([1, 0, -1]) labels = np.random.randint(0, 3, 100) Q = U1Charge(charges=unique, charge_labels=labels) actual = Q.unique( return_index=True, return_inverse=True, return_counts=True, sort=False) np.testing.assert_allclose(actual[0].unique_charges, [[1, 0, -1]]) def test_intersect_1(): a = np.array([[0, 1, 2], [2, 3, 4]]) b = np.array([[0, -2, 6], [2, 3, 4]]) out = intersect(a, b, axis=1) np.testing.assert_allclose(np.array([[0], [2]]), out) def test_intersect_2(): a = np.array([[0, 1, 2], [2, 3, 4]]) b = np.array([[0, -2, 6, 2], [2, 3, 4, 4]]) out, la, lb = intersect(a, b, axis=1, return_indices=True) np.testing.assert_allclose(np.array([[0, 2], [2, 4]]), out) np.testing.assert_allclose(la, [0, 2]) np.testing.assert_allclose(lb, [0, 3]) def test_intersect_3(): a = np.array([0, 1, 2, 3, 4]) b = np.array([0, -1, 4]) out = intersect(a, b) np.testing.assert_allclose([0, 4], out) def test_intersect_4(): a = np.array([0, 1, 2, 3, 4]) b = np.array([0, -1, 4]) out, la, lb = intersect(a, b, return_indices=True) np.testing.assert_allclose([0, 4], out) np.testing.assert_allclose(la, [0, 4]) np.testing.assert_allclose(lb, [0, 2]) def test_intersect_raises(): np.random.seed(10) a = np.random.randint(0, 10, (4, 5)) b = np.random.randint(0, 10, (4, 6)) with pytest.raises(ValueError): intersect(a, b, axis=0) c = np.random.randint(0, 10, (3, 7)) with pytest.raises(ValueError): intersect(a, c, axis=1) with pytest.raises(NotImplementedError): intersect(a, c, axis=2) d = np.random.randint(0, 10, (3, 7, 3)) e = np.random.randint(0, 10, (3, 7, 3)) with pytest.raises(NotImplementedError): intersect(d, e, axis=1) def test_fuse_ndarrays(): d1 = np.asarray([0, 1]) d2 = np.asarray([2, 3, 4]) fused = fuse_ndarrays([d1, d2]) np.testing.assert_allclose(fused, [2, 3, 4, 3, 4, 5]) def test_fuse_degeneracies(): d1 = np.asarray([0, 1]) d2 = np.asarray([2, 3, 4]) fused_degeneracies = fuse_degeneracies(d1, d2) np.testing.assert_allclose(fused_degeneracies, np.kron(d1, d2)) def test_U1Charge_charges(): D = 100 B = 6 np.random.seed(10) charges = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) q1 = U1Charge(charges) assert np.all(q1.charges == charges) def test_U1Charge_dual(): D = 100 B = 6 np.random.seed(10) charges = np.random.randint(-B // 2, B // 2 + 1, D).astype(np.int16) q1 = U1Charge(charges) assert np.all(q1.dual(True).charges == -charges) def get_charges(B0, B1, D, num_charges): return [ np.random.randint(B0, B1 + 1, D).astype(np.int16) for _ in range(num_charges) ] def fuse_many_charges(num_charges, num_charge_types, seed, D, B, use_flows=False): np.random.seed(seed) if use_flows: flows = np.random.choice([True, False], num_charges, replace=True) else: flows =
np.asarray([False] * num_charges)
numpy.asarray
# -*- coding: utf-8 -*- """ Created on Sat Jul 6 15:00:21 2019 @author: agarwal.270a """ # Import Libraries import numpy as np import matplotlib.pyplot as plt from scipy import signal as sig from scipy.signal import windows as win import pandas as pd from scipy import io import pickle from scipy.stats import norm # Import CC functions #from cerebralcortex.core.datatypes import DataStream #from cerebralcortex.core.metadata_manager.stream.metadata import Metadata, DataDescriptor, ModuleMetadata #from cerebralcortex.core.util.spark_helper import get_or_create_sc # Declare constants and load data Fs=25 #Hz len_in_s=20.48 #s len_out=4 len_in=Fs*len_in_s #arr_t=np.arange(250,290,len_in_s) #change time duration when longer noise exists arr_t=np.arange(250,900,len_in_s) #change time duration when longer noise exists path_prefix= 'E:/Box Sync/' #'C:/Users/agarwal.270/Box/' path=path_prefix+'SU19/Research/PPG_ECG_Proj/py_code/MA_function/' mdict=pickle.load(open(path+'data/sim_data.dat','rb')) RR_distro=mdict['RR_distro'] HR_clusters=mdict['HR_clusters'] del mdict #peak_data=mdict['peaks'] #led_id=mdict['led_id'] #verify after meeting list_pdf_RR_joint=[RR_distro[j,0] for j in range(len(RR_distro))] list_pdf_RR_row_sum=[np.sum(arr,axis=0) for arr in list_pdf_RR_joint] list_pdf_RR_col_sum=[np.sum(arr,axis=1) for arr in list_pdf_RR_joint] diff_arr=np.array([np.linalg.norm(list_pdf_RR_row_sum[k]-list_pdf_RR_col_sum[k])\ for k in range(len(list_pdf_RR_row_sum))]).round(4) # ============================================================================= # plt.figure(); # for j in range(len(list_pdf_RR_row_sum)): # plt.subplot(7,2,j+1);plt.plot(list_pdf_RR_row_sum[j],'b-o') # plt.plot(list_pdf_RR_col_sum[j],'r--x');plt.legend(['row','col']) # plt.grid(True);plt.title('z={}, rmse={}'.format(j+1,diff_arr[j])) # # ============================================================================= #%% Helper funcs # ============================================================================= # def sample_RR(HR,RR_prev): # #get cluster # HR_up=(HR_clusters>HR).astype(int) # z=(np.arange(len(HR_clusters)-1))[(np.diff(HR_up)).astype(bool)][0] # #RR_z=RR_distro[z] # RR_z_distro=RR_distro[z,0];RR_z_vals=RR_distro[z,1].reshape(-1) # if RR_prev==0: #beginning of sampling. sample uniform randomly # RR_next=RR_z_vals[np.random.randint(len(RR_z_vals))] # else: # idx_Rp=np.arange(len(RR_z_vals))[RR_z_vals==RR_prev] # RR_z_Rp=RR_z_distro[idx_Rp,:] #conditional distro given z, RR_p # idx_Rn=np.random.choice(len(RR_z_vals),p=RR_z_Rp/np.sum(RR_z_Rp)) #sample RR_next idx # RR_next=RR_z_vals[idx_Rn] # return RR_next # ============================================================================= def sample_RR(HR,RR_prev): #get cluster HR_up=(HR_clusters>HR).astype(int) z=(np.arange(len(HR_clusters)-1))[(np.diff(HR_up)).astype(bool)][0] #get distros RR_z_distro=list_pdf_RR_row_sum[z] RR_z_vals=RR_distro[z,1].reshape(-1) #sample idx_Rn=np.random.choice(len(RR_z_vals),p=RR_z_distro) #sample RR_next idx RR_next=RR_z_vals[idx_Rn] return RR_next def sinusoid(t,w,phi,Fs=25): ''' Takes in inputs as numpy arrays of same size. Returns the sinewave with desired characteristics. t: array of time values in seconds. If a scalar is supplied, it is considered as duration of the time series in seconds starting from 0. It is divided into t*Fs divisions. w: array of angular frequencies in radians/seconds. If a scalar is supplied, it is made into a constant array of same shape as t and value w. phi: array of phase values in radians. If a scalar is supplied, it is made into a constant array of same shape as t and value phi. Fs= Sampling frequency in Hz. Only needed in case t is not an array. returns: t, s=np.sin(w*t+phi) ''' # Handle Scalar inputs if not(hasattr(t, "__len__")): t=np.linspace(0,t,num=t*Fs,endpoint=False) if not(hasattr(w, "__len__")): w=w*np.ones(t.shape) if not(hasattr(phi, "__len__")): phi=phi*np.ones(t.shape) # Check shapes are same if (w.shape!=t.shape and phi.shape!=t.shape): raise TypeError('Dimensional mismatch between input arrays. Please check the dimensions are same') s=np.sin(w*t+phi) return t,s def HR_func_generator(t1): arr_HR=np.arange(50,180) # Possible heart rates # make a array of functions f1=lambda B,D:((D*win.triang(len(t1))).astype(int)+B).astype(np.float32) #triang f2=lambda B,D:((D*win.triang(2*len(t1))).astype(int)+B).astype(np.float32)\ [:len(t1)] # 1st half of triang f3=lambda B,D:((D*win.tukey(len(t1),alpha=(0.3*np.random.rand()+0.7))).astype(int)+B).astype(np.float32) #tukey f4=lambda B,D:((D*win.tukey(2*len(t1),alpha=(0.3*np.random.rand()+0.7))).astype(int)+B)\ .astype(np.float32)[:len(t1)] # 1st half of tukey arr_f=np.array(1*[f1]+1*[f2]+1*[f3]+1*[f4]) # possible to change the proportion of functions #randomly select elements D_HR=0;HRs=[];D_HR_max=50 while D_HR==0: # we don't want D_HR to be zero so keep resampling HRs+=[arr_HR[np.random.randint(len(arr_HR))]] HR_range=np.arange(HRs[0]+1,min([HRs[0]+D_HR_max,180])+1) HRs+=[HR_range[np.random.randint(len(HR_range))]] B_HR,D_HR=HRs[0],HRs[1]-HRs[0] #B_HR,D_HR=arr_B_HR[np.random.randint(len(arr_B_HR))],arr_D_HR[np.random.randint(len(arr_D_HR))] HR_curve_f=arr_f[np.random.randint(len(arr_f))](B_HR,D_HR) #trend return HR_curve_f,D_HR def filtr(X0,Fs=25,filt=True): nyq=Fs/2;flag=False if len(X0.shape)==1: X0=X0.reshape(-1,1) flag=True X1 = sig.detrend(X0,type='constant',axis=0); # Subtract mean if filt: # filter design used from Ju's code with slight changes for python syntax b = sig.firls(219,np.array([0,0.3,0.5,4.5,5,nyq]),np.array([0,0,1,1,0,0]),np.array([10,1,1]),nyq=nyq); X=np.zeros(X1.shape) for i in range(X1.shape[1]): #X[:,i] = sig.convolve(X1[:,i],b,mode='same'); # filtering using convolution, mode='same' returns the centered signal without any delay X[:,i] = sig.filtfilt(b, [1], X1[:,i]) else: X=X1 if flag: X=X.reshape(-1) #X=sig.detrend(X,type='constant',axis=0); # subtracted mean again to center around x=0 just in case things changed during filtering return X def filtr_HR(X0,Fs=25,filt=True): nyq=Fs/2;flag=False if len(X0.shape)==1: X0=X0.reshape(-1,1) flag=True X1 = np.copy(X0)#sig.detrend(X0,type='constant',axis=0); # Subtract mean if filt: # filter design used from Ju's code with slight changes for python syntax b = sig.firls(219,np.array([0,0.5,1,nyq]),np.array([1,1,0,0]),np.array([1,1]),nyq=nyq); X=np.zeros(X1.shape) for i in range(X1.shape[1]): #X[:,i] = sig.convolve(X1[:,i],b,mode='same'); # filtering using convolution, mode='same' returns the centered signal without any delay X[:,i] = sig.filtfilt(b, [1], X1[:,i]) else: X=X1 if flag: X=X.reshape(-1) #X=sig.detrend(X,type='constant',axis=0); # subtracted mean again to center around x=0 just in case things changed during filtering return X def normalize_AC(data_left_filt,Fn=25,c=0,make_plots=False): ''' data_left_filt: filtered ppg data Fn: Sampling frequency in Hz c: Column (Channel) in the array to be normalized ''' data_left_filt=1*data_left_filt flag=False if len(data_left_filt.shape)==1: data_left_filt=data_left_filt.reshape((-1,1)) flag=True prc_l=50 pk_idx_start=2*Fn;pk_idx_end=29*Fn; y=data_left_filt[pk_idx_start:pk_idx_end,c] locs,pk_props = sig.find_peaks(y,distance=8,height=0); pks_l=y[locs] locs=locs+pk_idx_start; if make_plots: plt.figure(); plt.subplot(211); plt.plot(data_left_filt[:pk_idx_end,c]);plt.plot(locs,pks_l,'r+') temp_mins_l=[]; #for j=[-5,-4,-3,-2,-1,1,2,3,4,5] for j in range(-7,0): temp_mins_l+=[data_left_filt[locs+j,c]]; temp_min_l=np.min(np.array(temp_mins_l),axis=0); amp_left=np.nanpercentile(pks_l-temp_min_l,prc_l); #amp_left=np.mean(pks_l-temp_min_l); data_left_filt[:,c]=data_left_filt[:,c]/amp_left; if flag: data_left_filt=data_left_filt.reshape(-1) return data_left_filt def form_data(X,Y,len_in,len_out): ''' X:timeseries with inputs Y:timeseries with outputs ''' in_size=int(len_in) out_size=int(len_out) step_size=int(len_out/4)#np.max([out_size,4]) #change this as desired #clip timeseries to nearest multiple of step_size #lenth1=(((len(X)-in_size)//step_size)*step_size)+in_size lenth=len(X) #print(lenth1,lenth) X,Y=X.T,Y.T # Transpose to make it look like time-series X,Y=X.reshape(X.shape+(1,)),Y.reshape(Y.shape+(1,)) # add a dimension for concatenation #print(X.shape,Y.shape) #idx=np.arange(0,lenth-in_size,step_size)+in_size idx=step_size*np.arange(0,1+((lenth-in_size)//step_size))+in_size #print(idx[-1]) #print(lenth,X.shape[1],len(idx),(X.shape[1]-in_size+1)//step_size) #print(X.shape,Y.shape,HR.shape) data_X=np.concatenate([X[:,i-in_size:i,:] for i in idx],axis=-1).T data_Y=np.concatenate([Y[i-out_size:i,:] for i in idx],axis=-1).T #kernel_size=100;stride=1 #idxHR=np.arange(i-out_size+kernel_size,i,stride) return data_X,data_Y def pd_ffill(arr): df = pd.DataFrame(arr) df.fillna(method='ffill', axis=0, inplace=True) out = df.values.reshape(arr.shape) return out def add_motion_noise(ppg1,flag=True): # Noise for SNR=10log10(P_s/P_n)=20 dB => sigma=(ppg_pow**0.5)/10 acc1=0.00*np.random.standard_normal(ppg1.shape) # random normal noise with (0,0.1^2) if flag: #extreme motion artefacts to be added or not acc1=acc1+(2*np.random.random_sample(ppg1.shape)-1) # [-2,2] random uniform #f=lambda z: (3 / (1 + np.exp(-10*z))) # A saturating sigmoid f=lambda z: 2*np.tanh(2*z) ppg1=ppg1+f(acc1) #noise added making values [-2,2] or [-4,4] depending on mode return ppg1,acc1 def extract_rand_noise(noiz_list,lenth): ''' noiz_list: Available components to choose from lenth: Desired length of the noise signal ''' noiz_list=[n for n in noiz_list if len(n)>lenth] if len(noiz_list)==0: raise AssertionError('Please use a smaller duration of ppg.') noiz=noiz_list[np.random.randint(len(noiz_list))] idx_start=np.random.randint(len(noiz)-lenth) noiz=noiz[idx_start:idx_start+lenth] return noiz def gen_ppg_from_HR(t1,HR_curve_f,D_HR,peak_id,make_plots=False): ''' mode={0:basic sinusoid, 1:mixture of sinusoids, 2:mixture of sinusoids with a lot of motion artifacts} ''' # Randomly insert consecutive Nan's and then ffill perc_change=5;cons_reps=len(t1)//(np.abs(D_HR*2)) #idx=1+np.random.RandomState(seed=seed1).permutation(len(t1)-2-cons_reps)[:int((len(t1)-2)/cons_reps*perc_change/100)] idx=1+np.random.permutation(len(t1)-2-cons_reps)[:int((len(t1)-2)/cons_reps*perc_change/100)] try: idx=np.concatenate([np.arange(i,i+cons_reps) for i in idx]) HR_curve_f[idx]=np.nan HR_curve1=pd_ffill(HR_curve_f) except ValueError: HR_curve1=1*HR_curve_f # TODO: Removed 0.1 Hz and 0.4 Hz in HRV #HRV_w1=2*np.pi*0.1;HRV_w2=2*np.pi*0.4 #rand_mix=np.repeat(np.random.random_sample(1+(len(t1)//1500)),1500)[:len(t1)] #rand_mix=0.55 #print(len(t1),rand_mix) #gain_list=np.array([0,1,2,2,1,1,1,1]) #HR_curve1+=0.03*((rand_mix*sinusoid(t1,HRV_w1,phi=0)[-1])+\ # ((1-rand_mix)*sinusoid(t1,HRV_w2,phi=0)[-1]))#*gain_list[(300/HR_curve1).astype(int)] #plt.figure();plt.plot(t1,sinusoid(t1,HRV_w1,phi=0)[-1],t1,sinusoid(t1,HRV_w2,phi=0)[-1]) #HR_curve1,_=add_motion_noise(HR_curve1,flag=False) #print(HR_curve1.shape,t1.shape) # ============================================================================= # w1=2*np.pi*(HR_curve1/60) # #phi_PTT=(0.5*np.pi)/(HR_curve1/60) # phi_PTT=0 # _,ppg0=sinusoid(t1,w1,phi=phi_PTT) # # ppg1=ppg0*2 # PTT=np.random.randint(4,6) #sample a PTT value # ppg1=np.concatenate([np.zeros(PTT),ppg1[:-1*PTT]]) # # # # Peak Detection & check figure for its accuracy # #out = ecg.ecg(signal=ppg01, sampling_rate=25,show=False) # #ind=out['rpeaks'] # #arr_peaks=np.zeros(len(ppg01));arr_peaks[ind]=1 # #arr_peaks=(ppg01==np.max(ppg01)).astype(int) # ind,_=find_peaks(ppg1,distance=6,height=0.9) # # ============================================================================= w_l=12;w_pk=25;w_r=w_pk-w_l-1 n_peaks=int(len(HR_curve1)/5) #remove terminal pk_locs #ind=ind[ind>=w_l] #ind=ind[ind<(len(ppg1)-w_r)] #sample bunch of peaks using PCA components path2base='E:/Box Sync/'+\ 'AU19/Research/PPG_ECG_proj/data/Wen_data_28_Sep/clean_lrsynced\\' base_dict = io.loadmat(path2base+"green_ppg_basis.mat") #base_dict=mdict[peak_id+'_G']['peaks'] eig_vec=base_dict['eig_vec'];eig_val=base_dict['eig_val'].reshape((-1,1)) avg=base_dict['mean'].reshape((-1,1)) k=10;eig_vec=eig_vec[:,:k];eig_val=eig_val[:k] l_peaks,n_coeff=eig_vec.shape weights=
np.random.random_sample((n_coeff,n_peaks))
numpy.random.random_sample
# # DeMoN - Depth Motion Network # Copyright (C) 2017 <NAME>, <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import numpy as np import math from minieigen import Quaternion, Vector3 # implements error metrics from Eigen et al. https://arxiv.org/pdf/1406.2283.pdf def compute_valid_depth_mask(d1, d2=None): """Computes the mask of valid values for one or two depth maps Returns a valid mask that only selects values that are valid depth value in both depth maps (if d2 is given). Valid depth values are >0 and finite. """ if d2 is None: valid_mask = np.isfinite(d1) valid_mask[valid_mask] = (d1[valid_mask] > 0) else: valid_mask = np.isfinite(d1) & np.isfinite(d2) valid_mask[valid_mask] = (d1[valid_mask] > 0) & (d2[valid_mask] > 0) return valid_mask def l1(depth1, depth2): """ Computes the l1 errors between the two depth maps. Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: L1(log) """ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) diff = depth1 - depth2 num_pixels = float(diff.size) if num_pixels == 0: return np.nan else: return np.sum(np.absolute(diff)) / num_pixels def l1_inverse(depth1, depth2): """ Computes the l1 errors between inverses of two depth maps. Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: L1(log) """ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) diff = np.reciprocal(depth1) - np.reciprocal(depth2) num_pixels = float(diff.size) if num_pixels == 0: return np.nan else: return np.sum(np.absolute(diff)) / num_pixels def rmse_log(depth1, depth2): """ Computes the root min square errors between the logs of two depth maps. Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: RMSE(log) """ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) log_diff = np.log(depth1) - np.log(depth2) num_pixels = float(log_diff.size) if num_pixels == 0: return np.nan else: return np.sqrt(np.sum(np.square(log_diff)) / num_pixels) def rmse(depth1, depth2): """ Computes the root min square errors between the two depth maps. Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: RMSE(log) """ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) diff = depth1 - depth2 num_pixels = float(diff.size) if num_pixels == 0: return np.nan else: return np.sqrt(np.sum(np.square(diff)) / num_pixels) def scale_invariant(depth1, depth2): """ Computes the scale invariant loss based on differences of logs of depth maps. Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: scale_invariant_distance """ # sqrt(Eq. 3) assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) log_diff = np.log(depth1) - np.log(depth2) num_pixels = float(log_diff.size) if num_pixels == 0: return np.nan else: return np.sqrt(np.sum(np.square(log_diff)) / num_pixels - np.square(np.sum(log_diff)) / np.square(num_pixels)) def abs_relative(depth_pred, depth_gt): """ Computes relative absolute distance. Takes preprocessed depths (no nans, infs and non-positive values) depth_pred: depth map prediction depth_gt: depth map ground truth Returns: abs_relative_distance """ assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred > 0) & (depth_gt > 0))) diff = depth_pred - depth_gt num_pixels = float(diff.size) if num_pixels == 0: return np.nan else: return np.sum(np.absolute(diff) / depth_gt) / num_pixels def avg_log10(depth1, depth2): """ Computes average log_10 error (Liu, Neural Fields, 2015). Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: abs_relative_distance """ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) log_diff = np.log10(depth1) - np.log10(depth2) num_pixels = float(log_diff.size) if num_pixels == 0: return np.nan else: return np.sum(np.absolute(log_diff)) / num_pixels def sq_relative(depth_pred, depth_gt): """ Computes relative squared distance. Takes preprocessed depths (no nans, infs and non-positive values) depth_pred: depth map prediction depth_gt: depth map ground truth Returns: squared_relative_distance """ assert (np.all(np.isfinite(depth_pred) & np.isfinite(depth_gt) & (depth_pred > 0) & (depth_gt > 0))) diff = depth_pred - depth_gt num_pixels = float(diff.size) if num_pixels == 0: return np.nan else: return np.sum(np.square(diff) / depth_gt) / num_pixels def ratio_threshold(depth1, depth2, threshold): """ Computes the percentage of pixels for which the ratio of the two depth maps is less than a given threshold. Takes preprocessed depths (no nans, infs and non-positive values) depth1: one depth map depth2: another depth map Returns: percentage of pixels with ratio less than the threshold """ assert (threshold > 0.) assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) log_diff = np.log(depth1) - np.log(depth2) num_pixels = float(log_diff.size) if num_pixels == 0: return np.nan else: return float(np.sum(np.absolute(log_diff) < np.log(threshold))) / num_pixels def compute_errors(depth_pred, depth_gt, distances_to_compute=None): """ Computes different distance measures between two depth maps. depth_pred: depth map prediction depth_gt: depth map ground truth distances_to_compute: which distances to compute Returns: a dictionary with computed distances, and the number of valid pixels """ valid_mask = compute_valid_depth_mask(depth_pred, depth_gt) depth_pred = depth_pred[valid_mask] depth_gt = depth_gt[valid_mask] num_valid = np.sum(valid_mask) if distances_to_compute is None: distances_to_compute = ['l1', 'l1_inverse', 'scale_invariant', 'abs_relative', 'sq_relative', 'avg_log10', 'rmse_log', 'rmse', 'ratio_threshold_1.25', 'ratio_threshold_1.5625', 'ratio_threshold_1.953125'] results = {'num_valid': num_valid} for dist in distances_to_compute: if dist.startswith('ratio_threshold'): threshold = float(dist.split('_')[-1]) results[dist] = ratio_threshold(depth_pred, depth_gt, threshold) else: results[dist] = globals()[dist](depth_pred, depth_gt) return results def compute_depth_scale_factor(depth1, depth2, depth_scaling='abs'): """ Computes the scale factor for depth1 to minimize the least squares error to depth2 """ assert (np.all(np.isfinite(depth1) & np.isfinite(depth2) & (depth1 > 0) & (depth2 > 0))) if depth_scaling == 'abs': # minimize MSE on depth d1d1 = np.multiply(depth1, depth1) d1d2 = np.multiply(depth1, depth2) mask = compute_valid_depth_mask(d1d2) sum_d1d1 = np.sum(d1d1[mask]) sum_d1d2 = np.sum(d1d2[mask]) if sum_d1d1 > 0.: scale = sum_d1d2 / sum_d1d1 else: print('compute_depth_scale_factor: Norm=0 during scaling') scale = 1. elif depth_scaling == 'log': # minimize MSE on log depth log_diff = np.log(depth2) - np.log(depth1) scale = np.exp(np.mean(log_diff)) elif depth_scaling == 'inv': # minimize MSE on inverse depth d1d1 = np.multiply(np.reciprocal(depth1), np.reciprocal(depth1)) d1d2 = np.multiply(np.reciprocal(depth1), np.reciprocal(depth2)) mask = compute_valid_depth_mask(d1d2) sum_d1d1 = np.sum(d1d1[mask]) sum_d1d2 = np.sum(d1d2[mask]) if sum_d1d1 > 0.: scale = np.reciprocal(sum_d1d2 / sum_d1d1) else: print('compute_depth_scale_factor: Norm=0 during scaling') scale = 1. else: raise Exception('Unknown depth scaling method') return scale def evaluate_depth(translation_gt, depth_gt_in, depth_pred_in, distances_to_compute=None, inverse_gt=True, inverse_pred=True, depth_scaling='abs', depth_pred_max=np.inf): """ Computes different error measures for the inverse depth map without scaling and with scaling. translation_gt: 1d numpy array with [tx,ty,tz] The translation that corresponds to the ground truth depth depth_gt: 2d numpy array This is the ground truth depth depth_pred: depth prediction being evaluated distances_to_compute: which distances to compute returns (err, err_after_scaling) errs is the dictionary of errors without optimally scaling the prediction errs_pred_scaled is the dictionary of errors after minimizing the least squares error by scaling the prediction """ valid_mask = compute_valid_depth_mask(depth_pred_in, depth_gt_in) depth_pred = depth_pred_in[valid_mask] depth_gt = depth_gt_in[valid_mask] if inverse_gt: depth_gt = np.reciprocal(depth_gt) if inverse_pred: depth_pred = np.reciprocal(depth_pred) # if depth_pred_max < np.inf: # depth_pred[depth_pred>depth_pred_max] = depth_pred_max # we need to scale the ground truth depth if the translation is not normalized translation_norm = np.sqrt(translation_gt.dot(translation_gt)) scale_gt_depth = not np.isclose(1.0, translation_norm) if scale_gt_depth: depth_gt_scaled = depth_gt / translation_norm else: depth_gt_scaled = depth_gt errs = compute_errors(depth_pred, depth_gt_scaled, distances_to_compute) # minimize the least squares error and compute the errors again scale = compute_depth_scale_factor(depth_pred, depth_gt_scaled, depth_scaling=depth_scaling) depth_pred_scaled = depth_pred * scale errs_pred_scaled = compute_errors(depth_pred_scaled, depth_gt_scaled, distances_to_compute) return errs, errs_pred_scaled def compute_flow_epe(flow1, flow2): """Computes the average endpoint error between the two flow fields""" diff = flow1 - flow2 epe =
np.sqrt(diff[0, :, :] ** 2 + diff[1, :, :] ** 2)
numpy.sqrt
# Reference Source: https://github.com/llSourcell/linear_regression_live/blob/master/demo.py import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_score, mean_squared_log_error, average_precision_score class LinearRegression: def __init__(self, filename): df = pd.read_csv(filename, header = None) self.X = np.array(df.drop([0], axis=1)) self.y = np.array(df[0]) self.learning_rate = 0.1 self.num_iterations = 100 self.cv_splits = 5 self.l1_lambda = 1e-6 self.division = 463715 def hypothesis(self, b, W, X): return np.matmul(X, W) + b def compute_cost(self, b, W, X, y): total_cost = np.sum(np.square(y - self.hypothesis(b, W, X)))/(2*X.shape[0]) + self.l1_lambda*(np.sum(np.fabs(W)) + abs(b)) return total_cost def gradient_descent_runner(self, X, y, b, W): cost_graph = [] for i in range(self.num_iterations): cost_graph.append(self.compute_cost(b, W, X, y)) b, W = self.step_gradient(b, W, X, y) return [b, W, cost_graph] def step_gradient(self, b, W, X, y): #Calculate Gradient W_gradient = ((self.hypothesis(b, W, X) - y).dot(X))/X.shape[0] + self.l1_lambda b_gradient = (np.sum(X.dot(W) + b - y))/X.shape[0] + self.l1_lambda #Update current W and b W -= self.learning_rate * W_gradient b -= self.learning_rate * b_gradient #Return updated parameters return b, W if __name__ == "__main__": lr = LinearRegression("YearPredictionMSD/YearPredictionMSD.txt") #X_train, X_test, y_train, y_test = train_test_split(lr.X, lr.y, test_size = 0.2, random_state = 1) # This split is provided by the repository. It avoids the 'producer effect' by making sure no song from a given artist ends up in both the train and test set. X_train, y_train = StandardScaler().fit_transform(lr.X[:lr.division]), lr.y[:lr.division] X_test, y_test = StandardScaler().fit_transform(lr.X[lr.division:]), lr.y[lr.division:] split_size = X_train.shape[0]//lr.cv_splits ev = [] mae = [] rmse = [] msle = [] r2 = [] global_mae = [] lambdas = [] best_mae = 10 best_l1 = 0 b, W = None, None df = pd.DataFrame(np.concatenate((X_train,y_train[:, None]), axis = 1), columns = list(range(90, -1, -1))) df = shuffle(df) X_train = df.drop([0], axis = 1) y_train = df[0] for _ in range(8): ev = [] mae = [] rmse = [] msle = [] r2 = [] print("Training and Testing for Lambda ", lr.l1_lambda) for i in range(lr.cv_splits): print("Cross Validation for Split ", i+1) start = i * split_size end = (i+1) * split_size X = np.concatenate((X_train[:start], X_train[end:]), axis = 0) y = np.concatenate((y_train[:start], y_train[end:]), axis=0) b = np.random.normal() W =
np.random.normal(size=lr.X.shape[1])
numpy.random.normal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ High level functions for multiresolution analysis of spectrograms Code licensed under both GPL and BSD licenses Authors: <NAME> <<EMAIL>> <NAME> <<EMAIL>> """ # Load required modules from __future__ import print_function import numpy as np import pandas as pd from scipy import ndimage as ndi import itertools as it import matplotlib.pyplot as plt from skimage.io import imsave from skimage import transform, measure from scipy import ndimage from maad import sound from skimage.filters import gaussian from maad.util import format_rois, rois_to_imblobs, normalize_2d def _sigma_prefactor(bandwidth): """ Function from skimage. Parameters ---------- Returns ------- """ b = bandwidth # See http://www.cs.rug.nl/~imaging/simplecell.html return 1.0 / np.pi * np.sqrt(np.log(2) / 2.0) * \ (2.0 ** b + 1) / (2.0 ** b - 1) def gabor_kernel_nodc(frequency, theta=0, bandwidth=1, gamma=1, n_stds=3, offset=0): """ Return complex 2D Gabor filter kernel with no DC offset. This function is a modification of the gabor_kernel function of scikit-image Gabor kernel is a Gaussian kernel modulated by a complex harmonic function. Harmonic function consists of an imaginary sine function and a real cosine function. Spatial frequency is inversely proportional to the wavelength of the harmonic and to the standard deviation of a Gaussian kernel. The bandwidth is also inversely proportional to the standard deviation. Parameters ---------- frequency : float Spatial frequency of the harmonic function. Specified in pixels. theta : float, optional Orientation in radians. If 0, the harmonic is in the x-direction. bandwidth : float, optional The bandwidth captured by the filter. For fixed bandwidth, `sigma_x` and `sigma_y` will decrease with increasing frequency. This value is ignored if `sigma_x` and `sigma_y` are set by the user. gamma : float, optional gamma changes the aspect ratio (ellipsoidal) of the gabor filter. By default, gamma=1 which means no aspect ratio (circle) if gamma>1, the filter is larger (x-dir) if gamma<1, the filter is higher (y-dir) This value is ignored if `sigma_x` and `sigma_y` are set by the user. sigma_x, sigma_y : float, optional Standard deviation in x- and y-directions. These directions apply to the kernel *before* rotation. If `theta = pi/2`, then the kernel is rotated 90 degrees so that `sigma_x` controls the *vertical* direction. n_stds : scalar, optional The linear size of the kernel is n_stds (3 by default) standard deviations offset : float, optional Phase offset of harmonic function in radians. Returns ------- g_nodc : complex 2d array A single gabor kernel (complex) with no DC offset References ---------- .. [1] http://en.wikipedia.org/wiki/Gabor_filter .. [2] http://mplab.ucsd.edu/tutorials/gabor.pdf Examples -------- >>> from skimage.filters import gabor_kernel >>> from skimage import io >>> from matplotlib import pyplot as plt # doctest: +SKIP >>> gk = gabor_kernel(frequency=0.2) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP >>> # more ripples (equivalent to increasing the size of the >>> # Gaussian spread) >>> gk = gabor_kernel(frequency=0.2, bandwidth=0.1) >>> plt.figure() # doctest: +SKIP >>> io.imshow(gk.real) # doctest: +SKIP >>> io.show() # doctest: +SKIP """ # set gaussian parameters b = bandwidth sigma_pref = 1.0 / np.pi * np.sqrt(np.log(2) / 2.0) * (2.0 ** b + 1) / (2.0 ** b - 1) sigma_y = sigma_pref / frequency sigma_x = sigma_y/gamma # meshgrid x0 = np.ceil(max(np.abs(n_stds * sigma_x * np.cos(theta)), np.abs(n_stds * sigma_y * np.sin(theta)), 1)) y0 = np.ceil(max(np.abs(n_stds * sigma_y * np.cos(theta)), np.abs(n_stds * sigma_x * np.sin(theta)), 1)) y, x = np.mgrid[-y0:y0 + 1, -x0:x0 + 1] # rotation matrix rotx = x * np.cos(theta) + y * np.sin(theta) roty = -x * np.sin(theta) + y * np.cos(theta) # combine gambor and g = np.zeros(y.shape, dtype=np.complex) g[:] = np.exp(-0.5 * (rotx ** 2 / sigma_x ** 2 + roty ** 2 / sigma_y ** 2)) g /= 2 * np.pi * sigma_x * sigma_y # gaussian envelope oscil = np.exp(1j * (2 * np.pi * frequency * rotx + offset)) # harmonic / oscilatory function g_dc = g*oscil # remove dc component by subtracting the envelope weighted by K K = np.sum(g_dc)/np.sum(g) g_nodc = g_dc - K*g return g_nodc def _plot_filter_bank(kernels, frequency, ntheta, bandwidth, gamma, **kwargs): """ Display filter bank Parameters ---------- kernels: list List of kernels from filter_bank_2d_nodc() frequency: 1d ndarray of scalars Spatial frequencies used to built the Gabor filters. Values should be in [0;1] ntheta: int Number of angular steps between 0° to 90° bandwidth: scalar, optional, default is 1 This parameter modifies the frequency of the Gabor filter gamma: scalar, optional, default is 1 This parameter change the Gaussian window that modulates the continuous sine. 1 => same gaussian window in x and y direction (circle) <1 => elongation of the filter size in the y direction (elipsoid) >1 => reduction of the filter size in the y direction (elipsoid) **kwargs, optional. This parameter is used by plt.plot and savefig functions figsize : tuple of integers, optional, default: (13,13) width, height in inches. dpi : integer, optional Dot per inch. For printed version, choose high dpi (i.e. dpi=300) => slow For screen version, choose low dpi (i.e. dpi=96) => fast interpolation : string, optional, default is 'nearest' Pixels interpolation aspect : string, optional, default is 'auto' fontsize : scalar, optional, default is 8/0.22*hmax*100/dpi) size of the font use to print the parameters of each filter ... and more, see matplotlib Returns ------- fig : Figure The Figure instance ax : Axis The Axis instance """ params = [] for theta in range(ntheta): theta = theta/ntheta * np.pi for freq in frequency: params.append([freq, theta, bandwidth, gamma]) w = [] h = [] for kernel in kernels: ylen, xlen = kernel.shape w.append(xlen) h.append(ylen) plt.gray() fig = plt.figure() dpi =kwargs.pop('dpi',fig.get_dpi()) figsize =kwargs.pop('figsize',(13,13)) interpolation =kwargs.pop('interpolation','nearest') aspect =kwargs.pop('aspect','auto') fig.set_figwidth(figsize[0]) fig.set_figheight(figsize[1]) w = np.asarray(w)/dpi h = np.asarray(h)/dpi wmax = np.max(w)*1.25 hmax = np.max(h)*1.05 fontsize =kwargs.pop('fontsize',8/0.22*hmax*100/dpi) params_label = [] for param in params: params_label.append('theta=%d f=%.2f \n bandwidth=%.1f \n gamma=%.1f' % (param[1] * 180 / np.pi, param[0], param[2], param[3])) n = len(frequency) for ii, kernel in enumerate(kernels): ax = plt.axes([(ii%n)*wmax + (wmax-w[ii])/2,(ii//n)*hmax + (hmax-h[ii])/2,w[ii],h[ii]]) ax.imshow(np.real(kernel),interpolation=interpolation, aspect =aspect, **kwargs) ax.set_xticks([]) ax.set_yticks([]) ax.set_ylabel(params_label[ii],fontsize=fontsize) ax.axis('tight') plt.show() return ax, fig def _plot_filter_results(im_ref, im_list, kernels, params, m, n): """ Display the result after filtering Parameters ---------- im_ref : 2D array Reference image im_list : list List of filtered images kernels: list List of kernels from filter_bank_2d_nodc() m: int number of columns n: int number of rows Returns ------- Returns ------- fig : Figure The Figure instance ax : Axis The Axis instance """ ncols = m nrows = n fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(15, 5)) plt.gray() fig.suptitle('Image responses for Gabor filter kernels', fontsize=12) axes[0][0].axis('off') # Plot original images axes[0][1].imshow(im_ref, origin='lower') axes[0][1].set_title('spectrogram', fontsize=9) axes[0][1].axis('off') plt.tight_layout params_label = [] for param in params: params_label.append('theta=%d,\nf=%.2f' % (param[1] * 180 / np.pi, param[0])) ii = 0 for ax_row in axes[1:]: plotGabor = True for ax in ax_row: if plotGabor == True: # Plot Gabor kernel print(params_label[ii]) ax.imshow(np.real(kernels[ii]), interpolation='nearest') ax.set_ylabel(params_label[ii], fontsize=7) ax.set_xticks([]) ax.set_yticks([]) plotGabor = False else: im_filtered = im_list[ii] ax.imshow(im_filtered, origin='lower') ax.axis('off') plotGabor = True ii=ii+1 plt.show() return ax, fig def filter_mag(im, kernel): """ Normalizes the image and computes im and real part of filter response using the complex kernel and the modulus operation Parameters ---------- im: 2D array Input image to process kernel: 2D array Complex kernel (or filter) Returns ------- im_out: Modulus operand on filtered image """ im = (im - im.mean()) / im.std() im_out = np.sqrt(ndi.convolve(im, np.real(kernel), mode='reflect')**2 + ndi.convolve(im, np.imag(kernel), mode='reflect')**2) return im_out def filter_multires(im_in, kernels, npyr=4, rescale=True): """ Computes 2D wavelet coefficients at multiple octaves/pyramids Parameters ---------- im_in: list of 2D arrays List of input images to process kernels: list of 2D arrays List of 2D wavelets to filter the images npyr: int Number of pyramids to compute rescale: boolean Indicates if the reduced images should be rescaled Returns ------- im_out: list of 2D arrays List of images filtered by each 2D kernel """ # Downscale image using gaussian pyramid if npyr<2: print('Warning: npyr should be int and larger than 2 for multiresolution') im_pyr = tuple(transform.pyramid_gaussian(im_in, downscale=2, max_layer=1, multichannel=False)) else: im_pyr = tuple(transform.pyramid_gaussian(im_in, downscale=2, max_layer=npyr-1, multichannel=False)) # filter 2d array at multiple resolutions using gabor kernels im_filt=[] for im in im_pyr: # for each pyramid for kernel, param in kernels: # for each kernel im_filt.append(filter_mag(im, kernel)) # magnitude response of filter # Rescale image using gaussian pyramid if rescale: dims_raw = im_in.shape im_out=[] for im in im_filt: ratio = np.array(dims_raw)/np.array(im.shape) if ratio[0] > 1: im = transform.rescale(im, scale = ratio, mode='reflect', multichannel=False, anti_aliasing=True) else: pass im_out.append(im) else: pass return im_out def filter_bank_2d_nodc(frequency, ntheta, bandwidth=1, gamma=1, display=False, savefig=None, **kwargs): """ Build a Gabor filter bank with no offset component Parameters ---------- frequency: 1d ndarray of scalars Spatial frequencies used to built the Gabor filters. Values should be in [0;1] ntheta: int Number of angular steps between 0° to 90° bandwidth: scalar, optional, default is 1 This parameter modifies the frequency of the Gabor filter gamma: scalar, optional, default is 1 This parameter change the Gaussian window that modulates the continuous sine. 1 => same gaussian window in x and y direction (circle) <1 => elongation of the filter size in the y direction (elipsoid) >1 => reduction of the filter size in the y direction (elipsoid) Returns ------- params: 2d structured array Parameters used to calculate 2D gabor kernels. Params array has 4 fields (theta, freq, bandwidth, gamma) kernels: 2d ndarray of scalars Gabor kernels """ theta = np.arange(ntheta) theta = theta / ntheta * np.pi params=[i for i in it.product(theta,frequency)] kernels = [] for param in params: kernel = gabor_kernel_nodc(frequency=param[1], theta=param[0], bandwidth=bandwidth, gamma=gamma, offset=0, n_stds=3) kernels.append((kernel, param)) if display: _, fig = _plot_filter_bank(kernels, frequency, ntheta, bandwidth, gamma, **kwargs) if savefig is not None : dpi =kwargs.pop('dpi',96) format=kwargs.pop('format','png') filename = savefig+'_filter_bank2D.'+format fig.savefig(filename, bbox_inches='tight', dpi=dpi, format=format, **kwargs) return params, kernels def shape_features(im, im_blobs=None, resolution='low', opt_shape=None): """ Computes shape of 2D signal (image or spectrogram) at multiple resolutions using 2D Gabor filters Parameters ---------- im: 2D array Input image to process im_blobs: 2D array, optional Optional binary array with '1' on the region of interest and '0' otherwise opt: dictionary options for the filter bank (kbank_opt) and the number of scales (npyr) Returns ------- shape: 1D array Shape coeficients of each filter params: 2D numpy structured array Corresponding parameters of the 2D fileters used to calculate the shape coefficient. Params has 4 fields (theta, freq, pyr_level, scale) bbox: If im_blobs provided, corresponding bounding box """ # unpack settings opt_shape = opt_shape_presets(resolution, opt_shape) npyr = opt_shape['npyr'] # build filterbank params, kernels = filter_bank_2d_nodc(ntheta=opt_shape['ntheta'], bandwidth=opt_shape['bandwidth'], frequency=opt_shape['frequency'], gamma=opt_shape['gamma']) # filter images im_rs = filter_multires(im, kernels, npyr, rescale=True) # Get mean intensity shape = [] if im_blobs is None: for im in im_rs: shape.append(np.mean(im)) rois_bbox=None shape = [shape] # for dataframe formating below else: for im in im_rs: labels = measure.label(im_blobs) rprops = measure.regionprops(labels, intensity_image=im) roi_mean = [roi.mean_intensity for roi in rprops] shape.append(roi_mean) rois_bbox = [roi.bbox for roi in rprops] shape = list(map(list, zip(*shape))) # transpose shape # organise parameters params =
np.asarray(params)
numpy.asarray
# Imports packages from gensim.models import KeyedVectors import numpy as np import os import pickle as pk import re import sklearn as sk from sklearn.preprocessing import LabelEncoder import sys import tensorflow as tf # Declares paths # Location where all data is stored DATA_PATH = "/home/accts/gfs22/DiachronicPOSTagger/Data/" # Location where embedding data is stored EMBED_PATH = os.path.join(DATA_PATH, "Given_Data/Embeddings/word2vec/data") # Location where corpus data is stored CORPUS_PATH = os.path.join(DATA_PATH, "Given_Data/Corpus") # Location where lexicon data is stored LEX_PATH = os.path.join(DATA_PATH, "Given_Data/Embeddings/lexicon.txt") # Location where processed data is saved SAVE_PATH = os.path.join(DATA_PATH, "Processed_Data") # Sets constants # Number of most common words for which embeddings are stored NUM_COMMON_WORDS = 600000 # Total number of words in the original data set vocabulary NUM_VOCAB_WORDS = 3954340 # Maximum length of any sentence MAX_SENT_LENGTH = 50 # Size of input embedding vectors EMBED_DIM = 300 # Number of sentences in corpus that exceed 50 words NUM_SENT_EXCEED_MAX_LEN = 0 # Number of total sentences in corpus NUM_SENT_TOTAL = 0 # Formats POS by taking all information before the first underscore -- generates 423 unique POS tags format_POS = lambda pos: pos.split("_")[0] def load_embeddings(): """Loads and returns word2vec embeddings :return: model: a matrix of floats, word2vec GoogleNews embeddings :rtype: object """ embeddings = KeyedVectors.load_word2vec_format(EMBED_PATH, binary=True) return embeddings def format_word(word): """Returns input "word" with dashes removed and in lower case. :param word: word as string, a word in the corpus :type word: string :return: modified_word as string, modified version of "word" that is lower case and does not include dashes :rtype: string """ dashes = r"[- ]*" modified_word = re.sub(dashes, "", word.lower()) return modified_word def read_lex(embeddings): """Uses lexicon to initialize a label encoder for POS, a list of POS tags, a dictionary that maps words to their embeddings, and a matrix of all embeddings :param embeddings: embeddings or matrix of floats, word2vec GoogleNews embeddings (KeyedVectors object) :type embeddings: object :returns: - le - as label encoder, the label encoder for POS tags (LabelEncoder object after fitting with POS_tags) - POS_tags - as list of strings, the list of all POS tags - word_dict - as dictionary with string keys and integer values to maps word strings (keys) to actual embeddings through embedding IDs (values) - embed_mat - as matrix of integers (a matrix of the word embeddings where each row corresponds to a unique word) :rtypes: - le - sklearn.preprocessing.label.LabelEncoder - POS_tags - list - word_dict - dictionary - embed_mat - numpy.ndarray """ # Opens lexicon with open(LEX_PATH) as fh: lines = fh.readlines() # Initializes embedding matrix to random normally distributed numbers embed_mat = np.random.normal(size=(NUM_VOCAB_WORDS, EMBED_DIM)) # 3954340 x 300 # Initializes list of all POS tags POS_tags = [] # Initializes dictionary that maps words to embeddings word_dict = {} # Fills in embed_mat, POS_tags, and word_dict appropriately for line in lines: word_list = line.strip().split("\t") if len(word_list) == 5: wid, _, word, _, pos = word_list[:5] # wid as word id word = format_word(word) wid = int(wid) pos = format_POS(pos) if word not in word_dict: word_dict[word] = wid POS_tags.append(pos) if word in embeddings: embed_mat[wid, :] = embeddings[word] else: POS_tags.append("N/A") # Fits label encoder to POS tags le = LabelEncoder() le.fit(POS_tags) return le, POS_tags, word_dict, embed_mat def read_single_file(file_name, le, POS_tags, word_dict): """For a given document generates matrix corresponding to indices for word embeddings (X_word), list corresponding to year of composition of each sentence (X_year_array), and matrix of label encoded POS tags of each word in a sentence in the document (Y_array) :param file_name: a string, the name of the file under examination :type file_name: string :param le: a label encoder, the label encoder for POS tags :type le: sklearn.preprocessing.label.LabelEncoder :param POS_tags: a list of strings, the list of all POS tags :type POS_tags: list :param word_dict: a dictionary with string keys and integer values, maps word strings (keys) to actual embeddings through :type word_dict: dictionary :returns: - X_word_array - a matrix of integers, each row corresponds to a list of the indices of the embeddings of each word in a sentence in the document - X_year_array - a list of integers, repeats the year of composition for each word in the sentence for each sentence in the document - Y_array - a matrix of integers, each row corresponds to a list of the label encoded POS tags of each word in a sentence in the document :rtypes: - X_word_array - numpy.ndarray - X_year_array - numpy.ndarray - Y_array - numpy.ndarray """ # Variable corresponding to number of sentences that contain more than 50 words global NUM_SENT_EXCEED_MAX_LEN # Number of total sentences in corpus global NUM_SENT_TOTAL # Words to ignore ignore = {"@", "--", "-- ", " --"} # Extracts the Year split_fn = file_name.split("_") X_year = int(split_fn[-2]) # Opens file with open(file_name) as fh: lines = fh.readlines() # Variables to store embedding indices and label encoded POS tags sent_X_word = [] sent_Y = [] X_word = np.zeros(shape=(MAX_SENT_LENGTH,), dtype=np.int32) # 50 Y = np.zeros(shape=(MAX_SENT_LENGTH, ), dtype=np.int32) # Number of words in current sentence num_words_cur_sent = 0 # Loops through line of document for i, line in enumerate(lines): word_list = line.strip().split("\t") if len(word_list)==3 and word_list[0] not in ignore: # Extracts and formats word and POS word, lemma, pos = word_list[:3] pos = format_POS(pos) word = format_word(word) # Removes words that begin with @ and words not in vocabulary if word.startswith("@") or word not in word_dict: continue # Fills X_word with indices for word embeddings and Y with POS tags for each word if num_words_cur_sent < MAX_SENT_LENGTH: X_word[num_words_cur_sent] = word_dict[word] Y[num_words_cur_sent] = le.transform([pos])[0] # Begins a new sentence if lemma == '.': sent_X_word.append(X_word) X_word = np.zeros(shape=(MAX_SENT_LENGTH,), dtype=np.int32) sent_Y.append(Y) Y = np.zeros(shape=(MAX_SENT_LENGTH, ), dtype=np.int32) num_words_cur_sent = 0 # Iterates num_words_cur_sent if we are not beginning a new sentence else: num_words_cur_sent += 1 # Checks if sentence exceeds maximum sentence length if num_words_cur_sent == MAX_SENT_LENGTH: NUM_SENT_EXCEED_MAX_LEN = NUM_SENT_EXCEED_MAX_LEN + 1 # If we have sentences in a document, joins data from all sentences to make combined arrays if sent_X_word != []: X_word_array = np.stack(sent_X_word, axis=0) X_year_array = np.repeat(X_year, len(sent_X_word)) Y_array = np.stack(sent_Y, axis=0) print(X_word_array.shape[0]) print(NUM_SENT_TOTAL) NUM_SENT_TOTAL = NUM_SENT_TOTAL + X_word_array.shape[0] print(NUM_SENT_TOTAL) return X_word_array, X_year_array, Y_array # If there are no sentences in a document returns all None values. else: return None, None, None def read_all_files(le, POS_tags, word_dict): """From all documents selects 1,000,000 sentences. Generates matrix corresponding to indices for word embeddings (X_word), list corresponding to year of composition of each sentence (X_year_array), and matrix of label encoded POS tags (Y_array) for each word for each of these sentences. :param le: a label encoder, the label encoder for POS tags :type le: sklearn.preprocessing.label.LabelEncoder :param POS_tags: a list of strings, the list of all POS tags :type POS_tags: list :param word_dict: a dictionary with string keys and integer values, maps word strings (keys) to actual embeddings through embedding IDs (values) :type word_dict: dictionary :returns: - X_word_array - a matrix of integers, each row corresponds to a list of the indices of the embeddings of each word in a sentence; there is a row for each of the 1,000,000 final sentences - X_year_array - a list of integers, each entry corresponds to the year of composition of a sentence; there is an entry for each of the 1,000,000 final sentences - Y_array - a matrix of integers, each row corresponds to a list of the label encoded POS tags of each word in a sentence; there is a row for each of the 1,000,000 final sentences :rtypes: - X_word_array - numpy.ndarray - X_year_array - numpy.ndarray - Y_array - numpy.ndarray """ # Variable corresponding to number of sentences that contain more than 50 words global NUM_SENT_EXCEED_MAX_LEN # 0 # Variable corresponding to total number of sentences global NUM_SENT_TOTAL # 0 # Initializes intermediate variables to store data from all files X_word_arrays_total, X_year_arrays_total, Y_arrays_total = [], [], [] # Loops through all files for dirpath, dirnames, filenames in os.walk(CORPUS_PATH): # /Users/yurio/Kuliah/semester_2/text_analytics/POS_tagging # Prints directory and number of files in directory print(dirpath) print(len(filenames)) sys.stdout.flush() if len(filenames)!=0: X_word_arrays, X_year_arrays, Y_arrays = [], [], [] # Calls "read_single_file" function on each file # Appends results from each file to X_word_arrays, X_year_arrays, and Y_arrays for i, file in enumerate(filenames): if i%100 == 0: print(i) sys.stdout.flush() X_word_array, X_year_array, Y_array = read_single_file(os.path.join(dirpath, file), le, POS_tags, word_dict) if X_word_array is not None and X_year_array is not None and Y_array is not None: X_word_arrays.append(X_word_array) X_year_arrays.append(X_year_array) Y_arrays.append(Y_array) # Appropriately reshapes X_word_arrays_total, X_year_arrays_total, Y_arrays_total into numpy arrays X_word_array_int = np.concatenate(X_word_arrays, axis=0) X_year_array_int = np.concatenate(X_year_arrays, axis=0) Y_array_int =
np.concatenate(Y_arrays, axis=0)
numpy.concatenate
################################################################################ # Copyright (C) 2013-2014 <NAME> # # This file is licensed under the MIT License. ################################################################################ """ Unit tests for gaussian_markov_chain module. """ import numpy as np from ..gaussian_markov_chain import GaussianMarkovChain from ..gaussian_markov_chain import VaryingGaussianMarkovChain from ..gaussian import Gaussian, GaussianMoments from ..gaussian import GaussianARD from ..gaussian import GaussianGamma from ..wishart import Wishart, WishartMoments from ..gamma import Gamma, GammaMoments from bayespy.utils import random from bayespy.utils import linalg from bayespy.utils import misc from bayespy.utils.misc import TestCase def kalman_filter(y, U, A, V, mu0, Cov0, out=None): """ Perform Kalman filtering to obtain filtered mean and covariance. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- y : (N,D) array "Normalized" noisy observations of the states, that is, the observations multiplied by the precision matrix U (and possibly other transformation matrices). U : (N,D,D) array or N-list of (D,D) arrays Precision matrix (i.e., inverse covariance matrix) of the observation noise for each time instance. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Filtered mean of the states. Cov : array Filtered covariance of the states. See also -------- rts_smoother """ mu = mu0 Cov = Cov0 # Allocate memory for the results (N,D) = np.shape(y) X = np.empty((N,D)) CovX = np.empty((N,D,D)) # Update step for t=0 M = np.dot(np.dot(Cov, U[0]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[0]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) X[0,:] = mu CovX[0,:,:] = Cov #for (yn, Un, An, Vn) in zip(y, U, A, V): for n in range(len(y)-1): #(yn, Un, An, Vn) in zip(y, U, A, V): # Prediction step mu = np.dot(A[n], mu) Cov = np.dot(np.dot(A[n], Cov), A[n].T) + V[n] # Update step M = np.dot(np.dot(Cov, U[n+1]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[n+1]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) # Force symmetric covariance (for numeric inaccuracy) Cov = 0.5*Cov + 0.5*Cov.T # Store results X[n+1,:] = mu CovX[n+1,:,:] = Cov return (X, CovX) def rts_smoother(mu, Cov, A, V, removethis=None): """ Perform Rauch-Tung-Striebel smoothing to obtain the posterior. The function returns the posterior mean and covariance of each state. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- mu : (N,D) array Mean of the states from Kalman filter. Cov : (N,D,D) array Covariance of the states from Kalman filter. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Posterior mean of the states. Cov : array Posterior covariance of the states. See also -------- kalman_filter """ N = len(mu) #n = N-1 # Start from the last time instance and smoothen backwards x = mu[-1,:] Covx = Cov[-1,:,:] for n in reversed(range(N-1)):#(An, Vn) in zip(reversed(A), reversed(V)): #n = n - 1 #if n <= 0: # break # The predicted value of n x_p = np.dot(A[n], mu[n,:]) Cov_p = np.dot(np.dot(A[n], Cov[n,:,:]), A[n].T) + V[n] # Temporary variable S = np.linalg.solve(Cov_p, np.dot(A[n], Cov[n,:,:])) # Smoothed value of n x = mu[n,:] + np.dot(S.T, x-x_p) Covx = Cov[n,:,:] + np.dot(np.dot(S.T, Covx-Cov_p), S) # Force symmetric covariance (for numeric inaccuracy) Covx = 0.5*Covx + 0.5*Covx.T # Store results mu[n,:] = x Cov[n,:] = Covx return (mu, Cov) class TestGaussianMarkovChain(TestCase): def create_model(self, N, D): # Construct the model Mu = Gaussian(np.random.randn(D), np.identity(D)) Lambda = Wishart(D, random.covariance(D)) A = Gaussian(np.random.randn(D,D), np.identity(D)) V = Gamma(D, np.random.rand(D)) X = GaussianMarkovChain(Mu, Lambda, A, V, n=N) Y = Gaussian(X, np.identity(D)) return (Y, X, Mu, Lambda, A, V) def test_plates(self): """ Test that plates are handled correctly. """ def test_message_to_mu0(self): pass def test_message_to_Lambda0(self): pass def test_message_to_A(self): pass def test_message_to_v(self): pass def test_message_to_parents(self): """ Check gradient passed to inputs parent node """ N = 3 D = 2 Mu = Gaussian(np.random.randn(D), random.covariance(D)) Lambda = Wishart(D, random.covariance(D)) A = Gaussian(np.random.randn(D,D), random.covariance(D)) V = Gamma(D, np.random.rand(D)) X = GaussianMarkovChain(Mu, Lambda, A, V, n=N+1) Y = Gaussian(X, random.covariance(D)) self.assert_moments( X, postprocess=lambda u: [ u[0], u[1] + linalg.transpose(u[1], ndim=1), u[2] ] ) Y.observe(np.random.randn(N+1, D)) self.assert_message_to_parent(X, Mu, eps=1e-8) self.assert_message_to_parent( X, Lambda, eps=1e-8, postprocess=lambda u: [ u[0] + linalg.transpose(u[0], ndim=1), u[1], ] ) self.assert_message_to_parent(X, A) self.assert_message_to_parent(X, V, eps=1e-10, atol=1e-5) pass def test_message_to_parents_with_inputs(self): """ Check gradient passed to inputs parent node """ def check(Mu, Lambda, A, V, U): X = GaussianMarkovChain(Mu, Lambda, A, V, inputs=U) Y = Gaussian(X, random.covariance(D)) # Check moments self.assert_moments( X, postprocess=lambda u: [ u[0], u[1] + linalg.transpose(u[1], ndim=1), u[2] ] ) Y.observe(np.random.randn(N+1, D)) X.update() # Check gradient messages to parents self.assert_message_to_parent(X, Mu) self.assert_message_to_parent( X, Lambda, postprocess=lambda phi: [ phi[0] + linalg.transpose(phi[0], ndim=1), phi[1] ] ) self.assert_message_to_parent( X, A, postprocess=lambda phi: [ phi[0], phi[1] + linalg.transpose(phi[1], ndim=1), ] ) self.assert_message_to_parent(X, V) self.assert_message_to_parent(X, U) N = 4 D = 2 K = 3 check( Gaussian( np.random.randn(D), random.covariance(D) ), Wishart( D, random.covariance(D) ), Gaussian( np.random.randn(D,D+K), random.covariance(D+K) ), Gamma( D, np.random.rand(D) ), Gaussian( np.random.randn(N,K), random.covariance(K) ) ) check( Gaussian( np.random.randn(D), random.covariance(D) ), Wishart( D, random.covariance(D) ), GaussianGamma( np.random.randn(D,D+K), random.covariance(D+K), D, np.random.rand(D), ndim=1 ), Gamma( D, np.random.rand(D) ), Gaussian( np.random.randn(N,K), random.covariance(K) ) ) pass def test_message_to_child(self): """ Test the updating of GaussianMarkovChain. Check that the moments and the lower bound contribution are computed correctly. """ # TODO: Add plates and missing values! # Dimensionalities D = 3 N = 5 (Y, X, Mu, Lambda, A, V) = self.create_model(N, D) # Inference with arbitrary observations y = np.random.randn(N,D) Y.observe(y) X.update() (x_vb, xnxn_vb, xpxn_vb) = X.get_moments() # Get parameter moments (mu0, mumu0) = Mu.get_moments() (icov0, logdet0) = Lambda.get_moments() (a, aa) = A.get_moments() (icov_x, logdetx) = V.get_moments() icov_x = np.diag(icov_x) # Prior precision Z = np.einsum('...kij,...kk->...ij', aa, icov_x) U_diag = [icov0+Z] + (N-2)*[icov_x+Z] + [icov_x] U_super = (N-1) * [-np.dot(a.T, icov_x)] U = misc.block_banded(U_diag, U_super) # Prior mean mu_prior = np.zeros(D*N) mu_prior[:D] =
np.dot(icov0,mu0)
numpy.dot
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 14 21:31:56 2017 @author: Franz """ import scipy.signal import numpy as np import scipy.io as so import os.path import re import matplotlib.pylab as plt import h5py import matplotlib.patches as patches import numpy.random as rand import seaborn as sns import pandas as pd from functools import reduce import random import pdb class Mouse : def __init__(self, idf, list=None, typ='') : self.recordings = [] self.recordings.append(list) self.typ = typ self.idf = idf def add(self, rec) : self.recordings.append(rec) def __len__(self) : return len(self.recordings) def __repr__(self) : return ", ".join(self.recordings) ### PROCESSING OF RECORDING DATA ############################################## def load_stateidx(ppath, name, ann_name=''): """ load the sleep state file of recording (folder) $ppath/$name @Return: M,K sequence of sleep states, sequence of 0'1 and 1's indicating non- and annotated states """ ddir = os.path.join(ppath, name) ppath, name = os.path.split(ddir) if ann_name == '': ann_name = name sfile = os.path.join(ppath, name, 'remidx_' + ann_name + '.txt') f = open(sfile, 'r') lines = f.readlines() f.close() n = 0 for l in lines: if re.match('\d', l): n += 1 M = np.zeros(n, dtype='int') K = np.zeros(n, dtype='int') i = 0 for l in lines : if re.search('^\s+$', l) : continue if re.search('\s*#', l) : continue if re.match('\d+\s+-?\d+', l) : a = re.split('\s+', l) M[i] = int(a[0]) K[i] = int(a[1]) i += 1 return M,K def load_recordings(ppath, rec_file) : """ load_recordings(ppath, rec_file) load recording listing with syntax: [E|C] \s+ recording_name #COMMENT @RETURN: (list of controls, lis of experiments) """ exp_list = [] ctr_list = [] rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() for l in lines : if re.search('^\s+$', l) : continue if re.search('^\s*#', l) : continue a = re.split('\s+', l) if re.search('E', a[0]) : exp_list.append(a[1]) if re.search('C', a[0]) : ctr_list.append(a[1]) return ctr_list, exp_list def load_dose_recordings(ppath, rec_file): """ load recording list with following syntax: A line is either control or experiments; Control recordings look like: C \s recording_name Experimental recordings also come with an additional dose parameter (allowing for comparison of multiple doses with controls) E \s recording_name \s dose_1 E \s recording_name \s dose_2 """ rfile = os.path.join(ppath, rec_file) f = open(rfile, newline=None) lines = f.readlines() f.close() # first get all potential doses doses = {} ctr_list = [] for l in lines : if re.search('^\s+$', l): continue if re.search('^\s*#', l): continue a = re.split('\s+', l) if re.search('E', a[0]): if a[2] in doses: doses[a[2]].append(a[1]) else: doses[a[2]] = [a[1]] if re.search('C', a[0]): ctr_list.append(a[1]) return ctr_list, doses def get_snr(ppath, name): """ read and return sampling rate (SR) from file $ppath/$name/info.txt """ fid = open(os.path.join(ppath, name, 'info.txt'), newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + 'SR' + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return float(values[0]) def get_infoparam(ifile, field): """ NOTE: field is a single string and the function does not check for the type of the values for field. In fact, it just returns the string following field """ fid = open(ifile, newline=None) lines = fid.readlines() fid.close() values = [] for l in lines : a = re.search("^" + field + ":" + "\s+(.*)", l) if a : values.append(a.group(1)) return values def add_infoparam(ifile, field, vals): """ :param ifile: info file :param field: Parameters specifier, e.g. 'SR' :param vals: list with parameters """ fid = open(ifile, 'a') vals = [str(s) for s in vals] param = " ".join(vals) fid.write('%s:\t%s' % (field, param)) fid.write(os.linesep) fid.close() def laser_start_end(laser, SR=1525.88, intval=5): """laser_start_end(ppath, name) print start and end index of laser stimulation trains: For example, if you was stimulated for 2min every 20 min with 20 Hz, return the start and end index of the each 2min stimulation period (train) returns the tuple (istart, iend), both indices are inclusive, i.e. part of the sequence @Param: laser - laser, vector of 0s and 1s intval - minimum time separation [s] between two laser trains @Return: (istart, iend) - tuple of two np.arrays with laser start and end indices """ idx = np.where(laser > 0.5)[0] if len(idx) == 0 : return ([], []) idx2 = np.nonzero(np.diff(idx)*(1./SR) > intval)[0] istart = np.hstack([idx[0], idx[idx2+1]]) iend = np.hstack([idx[idx2], idx[-1]]) return (istart, iend) def load_laser(ppath, name): """ load laser from recording ppath/name @RETURN: @laser, vector of 0's and 1's """ # laser might be .mat or h5py file # perhaps we could find a better way of testing that file = os.path.join(ppath, name, 'laser_'+name+'.mat') try: laser = np.array(h5py.File(file,'r').get('laser')) except: laser = so.loadmat(file)['laser'] return np.squeeze(laser) def laser_protocol(ppath, name): """ What was the stimulation frequency and the inter-stimulation interval for recording $ppath/$name? @Return: iinter-stimulation intervals, avg. inter-stimulation interval, frequency """ laser = load_laser(ppath, name) SR = get_snr(ppath, name) # first get inter-stimulation interval (istart, iend) = laser_start_end(laser, SR) intv = np.diff(np.array(istart/float(SR))) d = intv/60.0 print("The laser was turned on in average every %.2f min," % (np.mean(d))) print("with a min. interval of %.2f min and max. interval of %.2f min." % (np.min(d), np.max(d))) print("Laser stimulation lasted for %f s." % (np.mean(np.array(iend/float(SR)-istart/float(SR)).mean()))) # print laser start times print("Start time of each laser trial:") j=1 for t in istart: print("trial %d: %.2f" % (j, (t / float(SR)) / 60)) j += 1 # for each laser stimulation interval, check laser stimulation frequency dt = 1/float(SR) freq = [] laser_up = [] laser_down = [] for (i,j) in zip(istart, iend): part = laser[i:j+1] (a,b) = laser_start_end(part, SR, 0.005) dur = (j-i+1)*dt freq.append(len(a) / dur) up_dur = (b-a+1)*dt*1000 down_dur = (a[1:]-b[0:-1]-1)*dt*1000 laser_up.append(np.mean(up_dur)) laser_down.append(np.mean(down_dur)) print(os.linesep + "Laser stimulation freq. was %.2f Hz," % np.mean(np.array(freq))) print("with laser up and down duration of %.2f and %.2f ms." % (np.mean(np.array(laser_up)), np.mean(np.array(laser_down)))) return d, np.mean(d), np.mean(np.array(freq)) def swap_eeg(ppath, rec, ch='EEG'): """ swap EEG and EEG2 or EMG with EMG2 if $ch='EMG' """ if ch == 'EEG': name = 'EEG' else: name = ch EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'))[name] EEG2 = so.loadmat(os.path.join(ppath, rec, name+'2.mat'))[name + '2'] tmp = EEG EEG = EEG2 EEG2 = tmp file_eeg1 = os.path.join(ppath, rec, '%s.mat' % name) file_eeg2 = os.path.join(ppath, rec, '%s2.mat' % name) so.savemat(file_eeg1, {name : EEG}) so.savemat(file_eeg2, {name+'2' : EEG2}) def eeg_conversion(ppath, rec, conv_factor=0.195): """ multiply all EEG and EMG channels with the given conversion factor and write the conversion factor as parameter (conversion:) into the info file. Only if there's no conversion factor in the info file specified, the conversion will be executed :param ppath: base filder :param rec: recording :param conv_factor: conversion factor :return: n/s """ ifile = os.path.join(ppath, rec, 'info.txt') conv = get_infoparam(ifile, 'conversion') if len(conv) > 0: print("found conversion: parameter in info file") print("returning: no conversion necessary!!!") return else: files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EEG', f)] for f in files: name = re.split('\.', f)[0] EEG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EEG[0].dtype == 'int16': EEG = EEG * conv_factor file_eeg = os.path.join(ppath, rec, '%s.mat' % name) print(file_eeg) so.savemat(file_eeg, {name: EEG}) else: print('Wrong datatype! probably already converted; returning...') return files = os.listdir(os.path.join(ppath, rec)) files = [f for f in files if re.match('^EMG', f)] for f in files: name = re.split('\.', f)[0] EMG = so.loadmat(os.path.join(ppath, rec, name+'.mat'), squeeze_me=True)[name] if EMG[0].dtype == 'int16': EMG = EMG * conv_factor file_emg = os.path.join(ppath, rec, '%s.mat' % name) print(file_emg) so.savemat(file_emg, {name: EMG}) else: print('Wrong datatype! probably already converted; returning...') return add_infoparam(ifile, 'conversion', [conv_factor]) calculate_spectrum(ppath, rec) ### DEPRICATED ############################################ def video_pulse_detection(ppath, rec, SR=1000, iv = 0.01): """ return index of each video frame onset ppath/rec - recording @Optional SR - sampling rate of EEG(!) recording iv - minimum time inverval (in seconds) between two frames @Return index of each video frame onset """ V = np.squeeze(so.loadmat(os.path.join(ppath, rec, 'videotime_' + rec + '.mat'))['video']) TS = np.arange(0, len(V)) # indices where there's a jump in the signal t = TS[np.where(V<0.5)]; if len(t) == 0: idx = [] return idx # time points where the interval between jumps is longer than iv t2 = np.where(np.diff(t)*(1.0/SR)>=iv)[0] idx = np.concatenate(([t[0]],t[t2+1])) return idx # SIGNAL PROCESSING ########################################################### def my_lpfilter(x, w0, N=4): """ create a lowpass Butterworth filter with a cutoff of w0 * the Nyquist rate. The nice thing about this filter is that is has zero-phase distortion. A conventional lowpass filter would introduce a phase lag. w0 - filter cutoff; value between 0 and 1, where 1 corresponds to nyquist frequency. So if you want a filter with cutoff at x Hz, the corresponding w0 value is given by w0 = 2 * x / sampling_rate N - order of filter @Return: low-pass filtered signal See also my hp_filter, or my_bpfilter """ from scipy import signal b,a = signal.butter(N, w0) y = signal.filtfilt(b,a, x) return y def my_hpfilter(x, w0, N=4): """ create an N-th order highpass Butterworth filter with cutoff frequency w0 * sampling_rate/2 """ from scipy import signal # use scipy.signal.firwin to generate filter #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) b,a = signal.butter(N, w0, 'high') y = signal.filtfilt(b,a, x, padlen = x.shape[0]-1) return y def my_bpfilter(x, w0, w1, N=4,bf=True): """ create N-th order bandpass Butterworth filter with corner frequencies w0*sampling_rate/2 and w1*sampling_rate/2 """ #from scipy import signal #taps = signal.firwin(numtaps, w0, pass_zero=False) #y = signal.lfilter(taps, 1.0, x) #return y from scipy import signal b,a = signal.butter(N, [w0, w1], 'bandpass') if bf: y = signal.filtfilt(b,a, x) else: y = signal.lfilter(b,a, x) return y def my_notchfilter(x, sr=1000, band=5, freq=60, ripple=10, order=3, filter_type='butter'): from scipy.signal import iirfilter,lfilter fs = sr nyq = fs/2.0 low = freq - band/2.0 high = freq + band/2.0 low = low/nyq high = high/nyq b, a = iirfilter(order, [low, high], rp=ripple, btype='bandstop', analog=False, ftype=filter_type) filtered_data = lfilter(b, a, x) return filtered_data def downsample_vec(x, nbin): """ y = downsample_vec(x, nbin) downsample the vector x by replacing nbin consecutive \ bin by their mean \ @RETURN: the downsampled vector """ n_down = int(np.floor(len(x) / nbin)) x = x[0:n_down*nbin] x_down = np.zeros((n_down,)) # 0 1 2 | 3 4 5 | 6 7 8 for i in range(nbin) : idx = list(range(i, int(n_down*nbin), int(nbin))) x_down += x[idx] return x_down / nbin def smooth_data(x, sig): """ y = smooth_data(x, sig) smooth data vector @x with gaussian kernel with standard deviation $sig """ sig = float(sig) if sig == 0.0: return x # gaussian: gauss = lambda x, sig : (1/(sig*np.sqrt(2.*np.pi)))*np.exp(-(x*x)/(2.*sig*sig)) bound = 1.0/10000 L = 10. p = gauss(L, sig) while (p > bound): L = L+10 p = gauss(L, sig) #F = map(lambda x: gauss((x, sig)), np.arange(-L, L+1.)) # py3: F = [gauss(x, sig) for x in np.arange(-L, L+1.)] F = F / np.sum(F) return scipy.signal.fftconvolve(x, F, 'same') def power_spectrum(data, length, dt): """ scipy's implementation of Welch's method using hanning window to estimate the power spectrum The function returns power density with units V**2/Hz see also https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html The label on the y-axis should say PSD [V**2/Hz] @Parameters data - time series; float vector! length - length of hanning window, even integer! @Return: power density, frequencies The function returns power density in units V^2 / Hz Note that np.var(data) ~ np.sum(power density) * (frequencies[1]-frequencies[0]) """ f, pxx = scipy.signal.welch(data, fs=1.0/dt, window='hanning', nperseg=int(length), noverlap=int(length/2)) return pxx, f def spectral_density(data, length, nfft, dt): """ calculate the spectrogram for the time series given by data with time resolution dt The powerspectrum for each window of length $length is computed using Welch's method. The windows for the powerspectrum calculation are half-overlapping. If length contains 5s of data, then the first windows goes from 0s to 5s, the second window from 2.5 to 7.5s, ... The last window ends at ceil(len(data)/length)*5s Another example, assume we have 13 s of data, with 5 s windows, the the powerdensity is calculated for the following time windows: 0 -- 5, 2.5 -- 7.5, 5 -- 10, 7.5 -- 12.5, 10 -- 15 In total there are thus 2*ceil(13/5)-1 = 5 windows The last window starts at 2*3-2 * (5/2) = 10 s Note: the returned time axis starts at time point goes from 0 to 10s in 2.5s steps @Parameters: data - time series length - window length of data used to calculate powerspectrum. Note that the time resolution of the spectrogram is length/2 nfft - size of the window used to calculate the powerspectrum. determines the frequency resolution. @Return: Powspectrum, frequencies, time axis """ n = len(data) k = int(np.ceil((1.0*n)/length)) data = np.concatenate((data, np.zeros((length*k-n,)))) fdt = length*dt/2 # time step for spectrogram t = np.arange(0, fdt*(2*k-2)+fdt/2.0, fdt) # frequency axis of spectrogram f = np.linspace(0, 1, int(np.ceil(nfft/2.0))+1) * (0.5/dt) # the power spectrum is calculated for 2*k-1 time points Pow = np.zeros((len(f), k*2-1)) j = 0 for i in range(0, k-2+1): w1=data[(length*i):(i+1)*length] w2=data[length*i+int(length/2):(i+1)*length+int(length/2)] Pow[:,j] = power_spectrum(w1, nfft, dt)[0] Pow[:,j+1] = power_spectrum(w2, nfft, dt)[0] j += 2 # last time point Pow[:,j],f = power_spectrum(data[length*(k-1):k*length], nfft, dt) return Pow, f, t def calculate_spectrum(ppath, name, fres=0.5): """ calculate EEG and EMG spectrogram used for sleep stage detection. Function assumes that data vectors EEG.mat and EMG.mat exist in recording folder ppath/name; these are used to calculate the powerspectrum fres - resolution of frequency axis all data saved in "true" mat files :return EEG Spectrogram, EMG Spectrogram, frequency axis, time axis """ SR = get_snr(ppath, name) swin = round(SR)*5 fft_win = round(swin/5) # approximate number of data points per second if (fres == 1.0) or (fres == 1): fft_win = int(fft_win) elif fres == 0.5: fft_win = 2*int(fft_win) else: print("Resolution %f not allowed; please use either 1 or 0.5" % fres) (peeg2, pemg2) = (False, False) # Calculate EEG spectrogram EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) Pxx, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EEG2.mat')): peeg2 = True EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG2.mat'))['EEG2']) Pxx2, f, t = spectral_density(EEG, int(swin), int(fft_win), 1/SR) #save the stuff to a .mat file spfile = os.path.join(ppath, name, 'sp_' + name + '.mat') if peeg2 == True: so.savemat(spfile, {'SP':Pxx, 'SP2':Pxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'SP':Pxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) # Calculate EMG spectrogram EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) Qxx, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) if os.path.isfile(os.path.join(ppath, name, 'EMG2.mat')): pemg2 = True EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG2.mat'))['EMG2']) Qxx2, f, t = spectral_density(EMG, int(swin), int(fft_win), 1/SR) # save the stuff to .mat file spfile = os.path.join(ppath, name, 'msp_' + name + '.mat') if pemg2 == True: so.savemat(spfile, {'mSP':Qxx, 'mSP2':Qxx2, 'freq':f, 'dt':t[1]-t[0],'t':t}) else: so.savemat(spfile, {'mSP':Qxx, 'freq':f, 'dt':t[1]-t[0],'t':t}) return Pxx, Qxx, f, t def whiten_spectrogram(ppath, name, fmax=50): """ experimental :param ppath: :param name: :param fmax: :return: """ P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] ifreq = np.where(freq <= fmax)[0] SPE = SPE[ifreq,:] nfilt = 5 filt = np.ones((nfilt, nfilt)) filt = np.divide(filt, filt.sum()) #SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') m = np.mean(SPE,axis=1) SPE -= np.tile(m, (SPE.shape[1], 1)).T SPE = SPE.T C = np.dot(SPE.T, SPE) [evals, L] = np.linalg.eigh(C) idx = np.argsort(evals) D = np.diag(np.sqrt(evals[idx])) L = L[:,idx] W = np.dot(L, np.dot(np.linalg.inv(D),np.dot(L.T,SPE.T))) nfilt = 2 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) W = scipy.signal.convolve2d(W, filt, boundary='symm', mode='same') return W, D, L def normalize_spectrogram(ppath, name, fmax=0, band=[], vm=5, pplot=True, sptype='', filt_dim=[]): """ Normalize EEG spectrogram by deviding each frequency band by its average value. :param ppath, name: base folder, recording name :param fmax: maximum frequency; frequency axis of spectrogram goes from 0 to fmax if fmax=0, use complete frequency axis :param band: list or tuple, define lower and upper range of a frequency band, if pplot=True, plot band, along with spectrogram; if band=[], disregard :param vm: color range for plotting spectrogram :pplot: if True, plot spectrogram along with power band :sptype: if sptype='fine' plot 'special' spectrogram, save under sp_fine_$name.mat; otherwise plot 'normal' spectrogram sp_$name.mat :filt_dim: list or tuple; the two values define the dimensions of box filter used to filter the normalized spectrogram; if filt_dim=[], then no filtering :return SPE, t, freq: normalized spectrogram (np.array), time axis, frequency axis """ if (len(sptype) == 0) or (sptype=='std'): P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat'), squeeze_me=True) elif sptype == 'fine': P = so.loadmat(os.path.join(ppath, name, 'sp_fine_' + name + '.mat'), squeeze_me=True) SPE = P['SP'] freq = P['freq'] t = P['t'] if fmax > 0: ifreq = np.where(freq <= fmax)[0] else: ifreq = np.arange(0, len(freq)) freq = freq[ifreq] nfilt = 4 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) SPE = SPE[ifreq,:] # before #SPE = SPE[ifreq] #W = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') #sp_mean = W.mean(axis=1) sp_mean = SPE.mean(axis=1) SPE = np.divide(SPE, np.tile(sp_mean, (SPE.shape[1], 1)).T) if len(filt_dim) > 0: filt = np.ones(filt_dim) filt = np.divide(filt, filt.sum()) SPE = scipy.signal.convolve2d(SPE, filt, boundary='symm', mode='same') # get high gamma peaks if len(band) > 0: iband = np.where((freq >= band[0]) & (freq <= band[-1]))[0] pow_band = SPE[iband,:].mean(axis=0) thr = pow_band.mean() + pow_band.std() idx = np.where(pow_band > thr)[0] # plot normalized spectrogram, along with band if pplot: plt.ion() plt.figure() if len(band) > 0: med = np.median(SPE.mean(axis=0)) ax1 = plt.subplot(211) plt.pcolormesh(t, freq, SPE, vmin=0, vmax=vm*med, cmap='jet') plt.subplot(212, sharex=ax1) plt.plot(t,SPE[iband,:].mean(axis=0)) plt.plot(t[idx], pow_band[idx], '.') plt.draw() return SPE, t, freq[ifreq] def recursive_spectrogram(ppath, name, sf=0.3, alpha=0.3, pplot=True): """ calculate EEG/EMG spectrogram in a way that can be implemented by a closed-loop system. The spectrogram is temporally filtered using a recursive implementation of a lowpass filter @Parameters: ppath/name - mouse EEG recording sf - smoothing factor along frequency axis alpha - temporal lowpass filter time constant pplot - if pplot==True, plot figure @Return: SE, SM - EEG, EMG spectrogram """ EEG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EEG.mat'))['EEG']) EMG = np.squeeze(so.loadmat(os.path.join(ppath, name, 'EMG.mat'))['EMG']) len_eeg = len(EEG) fdt = 2.5 SR = get_snr(ppath, name) # we calculate the powerspectrum for 5s windows swin = int(np.round(SR) * 5.0) # but we sample new data each 2.5 s swinh = int(swin/2.0) fft_win = int(swin / 5.0) # number of 2.5s long samples spoints = int(np.floor(len_eeg / swinh)) SE = np.zeros((int(fft_win/2+1), spoints)) SM = np.zeros((int(fft_win/2+1), spoints)) print("Starting calculating spectrogram for %s..." % name) for i in range(2, spoints): # we take the last two swinh windows (the new 2.5 s long sample and the one from # the last iteration) x = EEG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) # recursive low pass filtering of spectrogram: # the current state is an estimate of the current sample and the previous state SE[:,i] = alpha*p + (1-alpha) * SE[:,i-1] # and the same of EMG x = EMG[(i-2)*swinh:i*swinh] [p, f] = power_spectrum(x.astype('float'), fft_win, 1.0/SR) p = smooth_data(p, sf) SM[:,i] = alpha*p + (1-alpha) * SM[:,i-1] if pplot: # plot EEG spectrogram t = np.arange(0, SM.shape[1])*fdt plt.figure() ax1 = plt.subplot(211) im = np.where((f>=0) & (f<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.xticks(()) ix = list(range(0, 30, 10)) fi = f[im][::-1] plt.yticks(ix, list(map(int, fi[ix]))) box_off(ax1) plt.axis('tight') plt.ylabel('Freq (Hz)') # plot EMG amplitude ax2 = plt.subplot(212) im = np.where((f>=10) & (f<100))[0] df = np.mean(np.diff(f)) # amplitude is the square root of the integral ax2.plot(t, np.sqrt(SM[im,:].sum(axis=0)*df)/1000.0) plt.xlim((0, t[-1])) plt.ylabel('EMG Ampl (mV)') plt.xlabel('Time (s)') box_off(ax2) plt.show(block=False) return SE, SM, f def recursive_sleepstate_rem(ppath, recordings, sf=0.3, alpha=0.3, past_mu=0.2, std_thdelta = 1.5, past_len=120, sdt=2.5, psave=False, xemg=False): """ predict a REM period only based on EEG/EMG history; the same algorithm is also used for closed-loop REM sleep manipulation. The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings sf smoothing factor for each powerspectrum alpha smoothing factor along time dimension past_mu percentage (0 .. 1) of brain states that are allowed to have EMG power larger than threshold during the last $past_len seconds past_len window to calculate $past_mu std_thdelta the hard theta/delta threshold is given by, mean(theta/delta) + $std_thdelta * std(theta/delta) sdt time bin for brain sttate, typically 2.5s psave if True, save threshold parameters to file. """ idf = re.split('_', recordings[0])[0] # 02/05/2020 changed from int to float: past_len = float(np.round(past_len/sdt)) # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_delta = pow_delta.mean() thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = int(i-past_len) else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum( np.where(pow_mu[sstart:i]>thr_mu)[0] ) / (past_len*1.0) if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 else: prem = 0 #turn laser off # for loop ends # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='blue') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # write config file if psave: cfile = os.path.join(ppath, idf + '_rem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s'+os.linesep) % idf) fid.write(('ch_alloc: %s'+os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f'+os.linesep) % thr_delta) fid.write(('THR_MU: %.2f'+os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f'+os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f'+os.linesep) % std_thdelta) fid.write(('PAST_MU: %.2f'+os.linesep) % past_mu) fid.write(('SF: %.2f'+os.linesep) % sf) fid.write(('ALPHA: %.2f'+os.linesep) % alpha) fid.write(('Bern: %.2f' + os.linesep) % 0.5) if xemg: fid.write(('XEMG: %d'+os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def recursive_sleepstate_rem_control(ppath, recordings, past_len=120, sdt=2.5, delay=120): """ algorithm running laser control for REM sleep dependent activation/inhibtion. $delay s after a detected REM sleep period, the laser is turned on for the same duration. If a new REM period starts, the laser stops, but we keep track of the missing time. The next time is laser turns on again, it stays on for the duration of the most recent REM period + the remaining time. The algorithm for REM detection is the same as used forclosed-loop REM sleep manipulation. The function reads in the required parameters from the configuration file (MOUSEID_rem.txt) The algorithm uses for REM sleep detection a threshold on delta power, EMG power, and theta/delta power. For theta/delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a REM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. @Parameters: ppath base folder with recordings recordings list of recordings past_len window to calculate $past_mu sdt time bin for brain sttate, typically 2.5s delay delay to wait after a REM sleep periods ends, till the laser is turned on. """ idf = re.split('_', recordings[0])[0] past_len = int(np.round(past_len/sdt)) # load parameters cfile = os.path.join(ppath, idf + '_rem.txt') params = load_sleep_params(ppath, cfile) thr_th_delta1 = params['THR_TH_DELTA'][0] thr_th_delta2 = params['THR_TH_DELTA'][1] thr_delta = params['THR_DELTA'][0] thr_mu = params['THR_MU'][0] alpha = params['ALPHA'][0] sf = params['SF'][0] past_mu = params['PAST_MU'][0] xemg = params['XEMG'][0] # calculate spectrogram (SE, SM) = ([], []) for rec in recordings: A, B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x, y: np.concatenate((x, y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5, 12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta, :], axis=0) pow_theta = np.sum(SE[i_theta, :], axis=0) pow_mu = np.sum(SM[i_mu, :], axis=0) th_delta = np.divide(pow_theta, pow_delta) ### The actual algorithm for REM detection rem_idx = np.zeros((ntbins,)) prem = 0 # whether or not we are in REM # NEW variables: laser_idx = np.zeros((ntbins,)) delay = int(np.round(delay/sdt)) delay_count = 0 curr_rem_dur = 0 dur_count = 0 on_delay = False laser_on = False for i in range(ntbins): if prem == 0 and pow_delta[i] < thr_delta and pow_mu[i] < thr_mu: ### could be REM if th_delta[i] > thr_th_delta1: ### we are potentially entering REM if (i - past_len) >= 0: sstart = i - past_len else: sstart = 0 # count the percentage of brainstate bins with elevated EMG power c_mu = np.sum(np.where(pow_mu[sstart:i] > thr_mu)[0]) / past_len if c_mu < past_mu: ### we are in REM prem = 1 # turn laser on rem_idx[i] = 1 curr_rem_dur += 1 #NEW # We are currently in REM; do we stay there? if prem == 1: ### REM continues, if theta/delta is larger than soft threshold and if there's ### no EMG activation if (th_delta[i] > thr_th_delta2) and (pow_mu[i] < thr_mu): rem_idx[i] = 1 curr_rem_dur += 1 else: prem = 0 # turn laser off dur_count += curr_rem_dur #NEW delay_count = delay #NEW curr_rem_dur = 0 #NEW on_delay = True #NEW # NEW: if on_delay: if prem == 0: delay_count -=1 if delay_count == 0: laser_on = True on_delay = False if laser_on: if prem == 0: if dur_count >= 0: dur_count -= 1 laser_idx[i] = 1 else: laser_on = False else: laser_on = False # plot the whole stuff: # (1) spectrogram # (2) EMG Power # (3) Delta # (4) TH_Delta plt.figure() t = np.arange(0, sdt*(ntbins-1)+sdt/2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq>=0) & (freq<=30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im,:]), vmin=0, vmax=med*2) plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),))*thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),))*thr_delta, color='red') plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),))*thr_th_delta1, color='red') ax4.plot(t, np.ones((len(t),))*thr_th_delta2, color='pink') ax4.plot(t, rem_idx*thr_th_delta1, color='green', label='REM') ax4.plot(t, laser_idx * thr_th_delta1, color='blue', label='Laser') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.legend() plt.show(block=False) def load_sleep_params(path, param_file): """ load parameter file generated by &recursive_sleepstate_rem || &recursive_sleepstate_nrem @Return: Dictionary: Parameter --> Value """ fid = open(os.path.join(path, param_file), 'r') lines = fid.readlines() params = {} for line in lines: if re.match('^[\S_]+:', line): a = re.split('\s+', line) key = a[0][:-1] params[key] = a[1:-1] # transform number strings to floats for k in params: vals = params[k] new_vals = [] for v in vals: if re.match('^[\d\.]+$', v): new_vals.append(float(v)) else: new_vals.append(v) params[k] = new_vals return params def recursive_sleepstate_nrem(ppath, recordings, sf=0.3, alpha=0.3, std_thdelta = 1.5, sdt=2.5, psave=False, xemg=False): """ predict NREMs period only based on EEG/EMG history; the same algorithm is also used for closed-loop NREM sleep manipulation. The algorithm uses for NREM sleep detection thresholds for delta power, EMG power, and theta/delta power. For delta I use two thresholds: A hard (larger) threshold and a soft (lower) threshold. Initially, theta/delta has to cross the hard threshold to initiate a NREM period. Then, as long as, theta/delta is above the soft threshold (and EMG power stays low) REM sleep continues. The values for hard and soft threshold are fitted using a Gaussian mixture model :param ppath: base folder :param recordings: list of recordings :param sf: smoothing factor for each powerspectrum :param alpha: spatial smoothing factor :param std_thdelta: factor to set threshold for theta/delta :param sdt: time step of brain state classification, typically 2.5 s :param psave: save parameters to text file? :param xemg: use EEG instead of EMG? """ # to fit Gaussian mixture model to delta power distributino from sklearn import mixture idf = re.split('_', recordings[0])[0] # calculate spectrogram (SE, SM) = ([],[]) for rec in recordings: A,B, freq = recursive_spectrogram(ppath, rec, sf=sf, alpha=alpha) SE.append(A) SM.append(B) # fuse lists SE and SM SE = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SE)) if not xemg: SM = np.squeeze(reduce(lambda x,y: np.concatenate((x,y)), SM)) else: SM = SE # EEG, EMG bands ntbins = SE.shape[1] r_delta = [0.5, 4] r_theta = [5,12] # EMG band r_mu = [300, 500] i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] pow_delta = np.sum(SE[i_delta,:], axis=0) pow_theta = np.sum(SE[i_theta,:], axis=0) pow_mu = np.sum(SM[i_mu,:], axis=0) # theta/delta th_delta = np.divide(pow_theta, pow_delta) thr_th_delta1 = np.nanmean(th_delta) + std_thdelta*np.nanstd(th_delta) thr_th_delta2 = np.nanmean(th_delta) + 0.0*np.nanstd(th_delta) thr_mu = pow_mu.mean() + 0.5*np.nanstd(pow_mu) med_delta = np.median(pow_delta) pow_delta_fit = pow_delta[np.where(pow_delta<=3*med_delta)] # fit Gaussian mixture model to delta power # see http://www.astroml.org/book_figures/chapter4/fig_GMM_1D.html gm = mixture.GaussianMixture(n_components=2) fit = gm.fit(pow_delta_fit.reshape(-1, 1)) means = np.squeeze(fit.means_) x = np.arange(0, med_delta*3, 100) plt.figure() plt.hist(pow_delta_fit, 100, normed=True, histtype='stepfilled', alpha=0.4) logprob = fit.score_samples(x.reshape(-1,1)) responsibilities = fit.predict_proba(x.reshape((-1,1))) pdf = np.exp(logprob) pdf_individual = responsibilities * pdf[:, np.newaxis] plt.plot(x, pdf, '-k') plt.plot(x, pdf_individual, '--k') plt.xlim((0, med_delta*3)) plt.ylabel('p(x)') plt.xlabel('x = Delta power') # get point where curves cut each other if means[0] < means[1]: idx = np.where((x>= means[0]) & (x<= means[1]))[0] else: idx = np.where((x >= means[1]) & (x <= means[0]))[0] imin = np.argmin(pdf[idx]) xcut = x[idx[0]+imin] plt.plot(xcut, pdf[idx[0]+imin], 'ro') ilow = np.argmin(np.abs(x-means[0])) plt.plot(x[ilow], pdf[ilow], 'bo') ihigh = np.argmin(np.abs(x-means[1])) plt.plot(x[ihigh], pdf[ihigh], 'go') plt.show(block=False) # set parameters for hard and soft delta thresholds tmp = np.array([x[ihigh], xcut, x[ilow]]) tmp.sort() thr_delta1 = tmp[-1] # x[ihigh]; right peak of distribution thr_delta2 = tmp[1] # trough of distribution # NREM yes or no according to thresholds # However, this variable does not directly control whether laser should # be on or off; whether NREM sleep is really on or off is determined # by nrem_idx; if pnrem_hidden == 1, then all threshold critera, but not # sleep history criteria are fulfilled pnrem_hidden = 0 # if nrem_idx[i] == 1, time point i is NREM nrem_idx = np.zeros((ntbins,), dtype='int8') # NREM stays on after thresholds are NOT fulfilled to avoid interruptions by microarousals grace_period = int(20 / sdt) # nrem_delay: NREM only starts with some delay nrem_delay = int(10 / sdt) grace_count = grace_period delay_count = nrem_delay for i in range(ntbins): if pnrem_hidden == 0: ### Entering NREM: # Delta power laser than high threshold if pow_delta[i] > thr_delta1 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: ### NOT-NREM -> NREM pnrem_hidden = 1 nrem_idx[i] = 0 delay_count -= 1 # we are fully in NREM, that's why grace_count is reset: grace_count = grace_period else: ### NOT-NREM -> NOT-NREM if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 else: nrem_idx[i] = 0 else: ### pnrem_hidden == 1 if pow_delta[i] > thr_delta2 and pow_mu[i] < thr_mu and th_delta[i] < thr_th_delta1: if delay_count > 0: delay_count -= 1 nrem_idx[i] = 0 else : nrem_idx[i] = 1 else: ### Exit NREM -> NOT-NREM # were are fully out of NREM, so delay_count can be reset: delay_count = nrem_delay pnrem_hidden = 0 if grace_count > 0: grace_count -= 1 nrem_idx[i] = 1 #### figure ############################################## plt.figure() t = np.arange(0, sdt * (ntbins - 1) + sdt / 2.0, sdt) ax1 = plt.subplot(411) im = np.where((freq >= 0) & (freq <= 30))[0] med = np.median(SE.max(axis=0)) ax1.imshow(np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') ax1.pcolorfast(t, freq[im], np.flipud(SE[im, :]), vmin=0, vmax=med * 2, cmap='jet') plt.yticks(list(range(0, 31, 10)), list(range(30, -1, -10))) plt.ylabel('Freq. (Hz)') plt.axis('tight') ax2 = plt.subplot(412, sharex=ax1) ax2.plot(t, pow_mu, color='black') ax2.plot(t, np.ones((len(t),)) * thr_mu, color='red') plt.ylabel('EMG Pow.') plt.xlim((t[0], t[-1])) ax3 = plt.subplot(413, sharex=ax2) ax3.plot(t, pow_delta, color='black') ax3.plot(t, np.ones((len(t),)) * thr_delta1, color='red') ax3.plot(t, np.ones((len(t),)) * thr_delta2, color=[1, 0.6, 0.6]) ax3.plot(t, nrem_idx * thr_delta1, color=[0.6, 0.6, 0.6]) plt.ylabel('Delta Pow.') plt.xlim((t[0], t[-1])) ax4 = plt.subplot(414, sharex=ax3) ax4.plot(t, th_delta, color='black') ax4.plot(t, np.ones((len(t),)) * thr_th_delta1, color='red') plt.ylabel('Theta/Delta') plt.xlabel('Time (s)') plt.xlim((t[0], t[-1])) plt.show(block=False) # Determine which channel is EEG, EMG ch_alloc = get_infoparam(os.path.join(ppath, recordings[0], 'info.txt'), 'ch_alloc')[0] # write config file if psave: cfile = os.path.join(ppath, idf + '_nrem.txt') fid = open(cfile, 'w') fid.write(('IDF: %s' + os.linesep) % idf) fid.write(('ch_alloc: %s' + os.linesep) % ch_alloc) fid.write(('THR_DELTA: %.2f %.2f' + os.linesep) % (thr_delta1, thr_delta2)) fid.write(('THR_MU: %.2f' + os.linesep) % thr_mu) fid.write(('THR_TH_DELTA: %.2f %.2f' + os.linesep) % (thr_th_delta1, thr_th_delta2)) fid.write(('STD_THDELTA: %.2f' + os.linesep) % std_thdelta) fid.write(('SF: %.2f' + os.linesep) % sf) fid.write(('ALPHA: %.2f' + os.linesep) % alpha) if xemg: fid.write(('XEMG: %d' + os.linesep) % 1) else: fid.write(('XEMG: %d' + os.linesep) % 0) fid.close() print('wrote file %s' % cfile) def rem_online_analysis(ppath, recordings, backup='', single_mode=False, fig_file='', overlap=0): """ analyze results from closed-loop experiments :param ppath: base folder :param recordings: list of strings, recordinds :param backup: string, potential second backup folder with recordings :param single_mode: boolean, if True, average across all REM periods (irrespective of mouse) and plot each single REM period as dot :param overlap: float between 0 and 100; specifices percentage by which the online detected REM period has to overlap with real (annotated) REM period to be further consided for analysis; if overlap == 0, then any overlap counts, i.e. this parameter has no influence :return: df, pd.DataFrame, with control and experimental REM durations as data columns """ if type(recordings) != list: recordings = [recordings] overlap = overlap / 100.0 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True dur_exp = {m:[] for m in mice} dur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M,S = load_stateidx(paths[rec], rec) sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat'%rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for s in seq: # check true REM sequences overlapping with online detected sequences isect = np.intersect1d(s, rem_idx) #print(len(isect)/ len(s)) # test if real REM period s overlaps with online detected REM periods and, # if yes, make sure that the overlap is at least overlap *100 percent if len(np.intersect1d(s, rem_idx)) > 0 and float(len(isect)) / len(s) >= overlap: drn = (s[-1]-s[0]+1)*dt # does the sequence overlap with laser? if len(np.intersect1d(isect, laser_idx))>0: dur_exp[idf].append(drn) else: dur_ctr[idf].append(drn) data = {'exp':[], 'ctr':[]} # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: for m in mice: data['exp'] += dur_exp[m] data['ctr'] += dur_ctr[m] else: for idf in dur_ctr: dur_ctr[idf] = np.array(dur_ctr[idf]).mean() dur_exp[idf] = np.array(dur_exp[idf]).mean() data['exp'] = np.array(list(dur_exp.values())) data['ctr'] = np.array(list(dur_ctr.values())) df = pd.DataFrame({'ctr':pd.Series(data['ctr']), 'exp' : pd.Series(data['exp'])}) # plot everything if not single_mode: plt.ion() plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey', label='W/o Laser') plt.bar([2], [df_mean['exp']], color='blue', label='With laser') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') for (a,b) in zip(df['ctr'], df['exp']): plt.plot([1,2], [a,b], color='black') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) else: plt.figure() ax = plt.axes([0.2, 0.15, 0.3, 0.7]) df_mean = df.mean() plt.bar([1], [df_mean['ctr']], color='grey') plt.bar([2], [df_mean['exp']], color='blue') plt.xticks([1,2]) box_off(ax) #ax.set_xticklabels(['ctr', 'exp'], rotation=30) plt.ylabel('REM duration (s)') a = df['ctr'] b = df['exp'] plt.plot(np.ones((len(a),)), a, '.', color='black', label='W/o Laser') plt.plot(2*np.ones((len(b),)), b, '.', color='black', label='With laser') plt.legend(bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=1, frameon=False) plt.show() if len(fig_file) > 0: save_figure(fig_file) return df def online_homeostasis(ppath, recordings, backup='', mode=0, single_mode=False, pplot=True, overlap=0, ma_thr=0): """ Further analysis of data obtained from closed loop stimulation Assume the sleep structure looks like this R R R R W W N N N N N W W N N N N R R R R R REM_pre -- inter REM ---- REM_post REM_pre is the duration of the first REM period, inter-REM is everything between REM_pre and the next REM period REM_post. The function calculates the inter REM duration after REM periods with laser and after REM periods w/o laser :param ppath: base folder :param recordings: list of recording, or file listing :param backup: backup folder for $ppath :param mode: mode == 0, calculate complete inter REM duration mode == 2, only calculate duration of wake in inter REM periods mode == 3, only calculate duration of NREM in inter REM periods :param single_mode: consider each single recording, instead of mice :param overlap: percentage (number between 0 and 100). Defines the percentage how much a true (offline annotated) REM period should overlap with laser to be considered as REM sleep with laser. Of note, REM periods w/o laser have to have 0 overlap with laser. All remaining REM periods are discarded. :param pplot: if True, plot figure; errorbars show 95% confidence intervals, calculated using bootstrapping :param ma: :return: df, if single_mode == True $df is a pandas DataFrame: REM iREM laser mouse - mouse ID REM - REM duration iREM - inter REM duration after REM periods with laser laser - 'y' or 'n'; depending on whether laser was on during REM sleep period (for "REM") or during the preceding REM sleep period (for "iREM") if single_mode == False, mouse is the data frame index """ if type(recordings) != list: recordings = [recordings] if overlap > 0: overlap = overlap / 100 paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): paths[rec] = ppath else: paths[rec] = backup mice = dict() for rec in recordings: idf = re.split('_', rec)[0] if not idf in mice: mice[idf] = 1 mice = list(mice.keys()) if len(mice) == 1: single_mode=True remdur_exp = {m:[] for m in mice} remdur_ctr = {m:[] for m in mice} itdur_exp = {m:[] for m in mice} itdur_ctr = {m:[] for m in mice} for rec in recordings: idf = re.split('_', rec)[0] M = load_stateidx(paths[rec], rec)[0] sr = get_snr(paths[rec], rec) nbin = int(np.round(sr)*2.5) dt = (1.0/sr)*nbin if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 laser = load_laser(paths[rec], rec) rem_trig = so.loadmat(os.path.join(paths[rec], rec, 'rem_trig_%s.mat' % rec), squeeze_me=True)['rem_trig'] laser = downsample_vec(laser, nbin) laser[np.where(laser>0)] = 1 rem_trig = downsample_vec(rem_trig, nbin) rem_trig[np.where(rem_trig>0)] = 1 laser_idx = np.where(laser==1)[0] rem_idx = np.where(rem_trig==1)[0] # REM sequences from offline analysis (assumed to be the # "ground truth" seq = get_sequences(np.where(M==1)[0]) for (p,q) in zip(seq[0:-1], seq[1:]): # check if true REM sequences do overlap with online detected sequences # and only continue working with those: if len(np.intersect1d(p, rem_idx)) > 0: drn = (p[-1]-p[0]+1)*dt it_M = M[p[-1]+1:q[0]] if mode == 0: it_drn = len(it_M)*dt elif mode == 2: it_drn = len(np.where(it_M==2)[0]) * dt else: it_drn = len(np.where(it_M == 3)[0]) * dt # does the true REM sequence overlap with laser? # by setting overlap to a value > 0, you can # set a percentage how much the REM period should overlap with laser # NEW 08/26/21 if len(np.intersect1d(p, laser_idx)) / len(p) > overlap: remdur_exp[idf].append(drn) itdur_exp[idf].append(it_drn) elif len(np.intersect1d(p, laser_idx)) == 0: remdur_ctr[idf].append(drn) itdur_ctr[idf].append(it_drn) else: pass # if single_mode put all REM periods together, # otherwise average across REM periods for each mouse if len(mice) == 1 or single_mode==True: data = {'itexp':[], 'itctr':[], 'remexp':[], 'remctr':[]} for m in mice: data['itexp'] += itdur_exp[m] data['itctr'] += itdur_ctr[m] data['remexp'] += remdur_exp[m] data['remctr'] += remdur_ctr[m] df = pd.DataFrame({'REM': data['remexp']+data['remctr'], 'iREM':data['itexp']+data['itctr'], 'laser': ['y']*len(data['remexp']) + ['n']*len(data['remctr'])}) else: for idf in mice: itdur_ctr[idf] = np.array(itdur_ctr[idf]).mean() itdur_exp[idf] = np.array(itdur_exp[idf]).mean() remdur_ctr[idf] = np.array(remdur_ctr[idf]).mean() remdur_exp[idf] = np.array(remdur_exp[idf]).mean() data = {} for s in ['itexp', 'itctr', 'remexp', 'remctr']: data[s] = np.zeros((len(mice),)) i = 0 for m in mice: data['itexp'][i] = itdur_exp[m] data['itctr'][i] = itdur_ctr[m] data['remexp'][i] = remdur_exp[m] data['remctr'][i] = remdur_ctr[m] i += 1 df = pd.DataFrame({'REM': np.concatenate((data['remexp'], data['remctr'])), 'iREM': np.concatenate((data['itexp'], data['itctr'])), 'laser': ['y']*len(mice) + ['n']*len(mice), 'mouse': mice+mice}) if pplot and not single_mode: dfm = pd.melt(df, id_vars=['laser', 'mouse'], var_name='state') sns.set_style('whitegrid') plt.ion() plt.figure() sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') if pplot and single_mode: dfm = pd.melt(df, id_vars=['laser'], var_name='state') plt.ion() plt.figure() sns.set(style="whitegrid") #sns.swarmplot(data=df[['itctr', 'itexp']], color='black') #sns.barplot(data=df[['itctr', 'itexp']], palette=['gray', 'blue'], errcolor='black') sns.barplot(data=dfm, hue='laser', x='state', y='value', palette=['blue', 'gray']) sns.swarmplot(data=dfm, hue='laser', x='state', y='value', dodge=True, color='black') sns.despine() plt.ylabel('Duration (s)') return df ### FUNCTIONS USED BY SLEEP_STATE ##################################################### def get_sequences(idx, ibreak=1) : """ get_sequences(idx, ibreak=1) idx - np.vector of indices @RETURN: seq - list of np.vectors """ diff = idx[1:] - idx[0:-1] breaks = np.nonzero(diff>ibreak)[0] breaks = np.append(breaks, len(idx)-1) seq = [] iold = 0 for i in breaks: r = list(range(iold, i+1)) seq.append(idx[r]) iold = i+1 return seq def threshold_crossing(data, th, ilen, ibreak, m): """ seq = threshold_crossing(data, th, ilen, ibreak, m) """ if m>=0: idx = np.where(data>=th)[0] else: idx = np.where(data<=th)[0] # gather sequences j = 0 seq = [] while (j <= len(idx)-1): s = [idx[j]] for k in range(j+1,len(idx)): if (idx[k] - idx[k-1]-1) <= ibreak: # add j to sequence s.append(idx[k]) else: break if (s[-1] - s[0]+1) >= ilen and not(s[0] in [i[1] for i in seq]): seq.append((s[0], s[-1])) if j == len(idx)-1: break j=k return seq def closest_precessor(seq, i): """ find the preceding element in seq which is closest to i helper function for sleep_state """ tmp = seq-i; d = np.where(tmp<0)[0] if len(d)>0: id = seq[d[-1]]; else: id = 0; return id def write_remidx(M, K, ppath, name, mode=1) : """ rewrite_remidx(idx, states, ppath, name) replace the indices idx in the remidx file of recording name with the assignment given in states """ if mode == 0 : outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') else : outfile = os.path.join(ppath, name, 'remidx_' + name + '_corr.txt') f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M[0,:],K)] f.writelines(s) f.close() ####################################################################################### ### MANIPULATING FIGURES ############################################################## def set_fontsize(fs): import matplotlib matplotlib.rcParams.update({'font.size': fs}) def set_fontarial(): """ set Arial as default font """ import matplotlib matplotlib.rcParams['font.sans-serif'] = "Arial" def save_figure(fig_file): # alternative way of setting nice fonts: #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 #matplotlib.pylab.savefig(fig_file, dpi=300) #matplotlib.rcParams['text.usetex'] = False #matplotlib.rcParams['text.usetex'] = True plt.savefig(fig_file, bbox_inches="tight", dpi=200) #matplotlib.rcParams['text.usetex'] = False def box_off(ax): """ similar to Matlab's box off """ ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ####################################################################################### def sleep_state(ppath, name, th_delta_std=1, mu_std=0, sf=1, sf_delta=3, pwrite=0, pplot=True, pemg=True, vmax=2.5, pspec_norm=False, use_idx=[]): """ automatic sleep state detection based on delta, theta, sigma, gamma and EMG power. New: use also sigma band: that's very helpful to classify pre-REM periods as NREM; otherwise they tend to be classified as wake. Gamma peaks nicely pick up during microarousals. My strategy is the following: I smooth delta band a lot to avoid strong fragmentation of sleep; but to still pick up microarousals I use the gamma power. spectrogram data has to be calculated before using calculate_spectrum Each bin in the spectrogram gets assigned one of four states: 1-REM 2-Wake 3-NREM 0-undef :param ppath: base folder :param name: recording name :param th_delta_std: threshold for theta/delta band is calculated as mean(theta/delta) + th_delta_std*std(theta/delta) :param mu_std: threshold for EMG power is calculate as "mean(EMG) + mu_std * mean(EMG) :param sf: smoothing factor for gamma and sigma power :param sf_delta: smoothing factor for delta power :param pwrite: if True, save sleep classification to file remidx_$name.txt :param pplot: if True, plot figures :param pemg: if True, use EMG as EMG, otherwise use EEG gamma power instead :param vmax: float, set maximum of color range of EEG heatmap. :param pspec_norm: boolean, if True, normalized EEG spectrogram by deviding each frequency band by its mean; only affects plotting, no effect on sleep state calculation :param use_idx: list, if not empty, use only given indices to calculate sleep state :return: """ PRE_WAKE_REM = 30.0 # Minimum Duration and Break in # high theta/delta, high emg, high delta, high sigma and gamma sequences # # duration[i,0] is the minimum duration of sequence of state i # duration[i,1] is maximal break duration allowed in a sequence of state i duration = np.zeros((5,2)) # high theta/delta duration[0,:] = [5,15] # high emg duration[1,:] = [0, 5] # high delta duration[2,:] = [10, 10] # high sigma duration[3,:] = [10, 10] # gamma duration[4,:] = [0, 5] # Frequency Bands/Ranges for delta, theta, and, gamma r_delta = [0.5, 4] r_sigma = [12, 20] r_theta = [5,12] # EMG band r_mu = [50, 500] if not pemg: r_mu = [250, 500] # high gamma power r_gamma = [100, 150] #load EEG and EMG spectrum, calculated by calculate_spectrum P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) if pemg: Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) else: Q = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) SPEEG = np.squeeze(P['SP']) if pemg == 1: SPEMG = np.squeeze(Q['mSP']) else: SPEMG = np.squeeze(P['SP']) if use_idx == []: use_idx = range(0, SPEEG.shape[1]) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) N = len(t) duration = np.divide(duration,dt) # get indices for frequency bands i_delta = np.where((freq >= r_delta[0]) & (freq <= r_delta[1]))[0] i_theta = np.where((freq >= r_theta[0]) & (freq <= r_theta[1]))[0] i_mu = np.where((freq >= r_mu[0]) & (freq <= r_mu[1]))[0] i_sigma = np.where((freq >= r_sigma[0]) & (freq <= r_sigma[1]))[0] i_gamma = np.where((freq >= r_gamma[0]) & (freq <= r_gamma[1]))[0] p_delta = smooth_data( SPEEG[i_delta,:].mean(axis=0), sf_delta ) p_theta = smooth_data( SPEEG[i_theta,:].mean(axis=0), 0 ) # now filtering for EMG to pick up microarousals p_mu = smooth_data( SPEMG[i_mu,:].mean(axis=0), sf ) p_sigma = smooth_data( SPEEG[i_sigma,:].mean(axis=0), sf ) p_gamma = smooth_data( SPEEG[i_gamma,:].mean(axis=0), 0 ) th_delta = np.divide(p_theta, p_delta) #th_delta = smooth_data(th_delta, 2); seq = {} seq['high_theta'] = threshold_crossing(th_delta, np.nanmean(th_delta[use_idx])+th_delta_std*np.nanstd(th_delta[use_idx]), duration[0,1], duration[0,1], 1) seq['high_emg'] = threshold_crossing(p_mu, np.nanmean(p_mu[use_idx])+mu_std*np.nanstd(p_mu[use_idx]), duration[1,0], duration[1,1], 1) seq['high_delta'] = threshold_crossing(p_delta, np.nanmean(p_delta[use_idx]), duration[2,0], duration[2,1], 1) seq['high_sigma'] = threshold_crossing(p_sigma, np.nanmean(p_sigma[use_idx]), duration[3,0], duration[3,1], 1) seq['high_gamma'] = threshold_crossing(p_gamma, np.nanmean(p_gamma[use_idx]), duration[4,0], duration[4,1], 1) # Sleep-State Rules idx = {} for k in seq: tmp = [list(range(i,j+1)) for (i,j) in seq[k]] # now idea why this works to flatten a list # idx[k] = sum(tmp, []) # alternative that I understand: if len(tmp) == 0: idx[k] = np.array([]) else: idx[k] = np.array(reduce(lambda x,y: x+y, tmp)) idx['low_emg'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_emg'])) idx['low_delta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_delta'])) idx['low_theta'] = np.setdiff1d(np.arange(0,N), np.array(idx['high_theta'])) #REM Sleep: thdel up, emg down, delta down a = np.intersect1d(idx['high_theta'], idx['low_delta']) # non high_emg phases b = np.setdiff1d(a, idx['high_emg']) rem = get_sequences(b, duration[0,1]) rem_idx = reduce(lambda x,y: np.concatenate((x,y)), rem) # SWS Sleep # delta high, no theta, no emg a = np.setdiff1d(idx['high_delta'], idx['high_emg']) # no emg activation b = np.setdiff1d(a, idx['high_theta']) # no theta; sws = get_sequences(b) sws_idx = reduce(lambda x,y: np.concatenate((x,y)), sws) #print a # Wake # low delta + high emg and not rem a = np.unique(np.union1d(idx['low_delta'], idx['high_emg'])) b = np.setdiff1d(a, rem_idx) wake = get_sequences(b) wake_idx = reduce(lambda x,y: np.concatenate((x,y)), wake) # sequences with low delta, high sigma and low emg are NREM a = np.intersect1d(np.intersect1d(idx['high_sigma'], idx['low_delta']), idx['low_emg']) a = np.setdiff1d(a, rem_idx) sws_idx = np.unique(np.union1d(a, sws_idx)) wake_idx = np.setdiff1d(wake_idx, a) #NREM sequences with high gamma are wake a = np.intersect1d(sws_idx, idx['high_gamma']) sws_idx = np.setdiff1d(sws_idx, a) wake_idx = np.unique(np.union1d(wake_idx,a)) # Wake and Theta wake_motion_idx = np.intersect1d(wake_idx, idx['high_theta']) # Wake w/o Theta wake_nomotion_idx = np.setdiff1d(wake_idx, idx['low_theta']) # Are there overlapping sequences? a = np.intersect1d(np.intersect1d(rem_idx, wake_idx), sws_idx) # Are there undefined sequences? undef_idx = np.setdiff1d(np.setdiff1d(np.setdiff1d(np.arange(0,N), rem_idx), wake_idx), sws_idx) # Wake wins over SWS sws_idx = np.setdiff1d(sws_idx, wake_idx) # Special rules # if there's a REM sequence directly following a short wake sequence (PRE_WAKE_REM), # this wake sequence goes to SWS # NREM to REM transitions are sometimes mistaken as quite wake periods for rem_seq in rem: if len(rem_seq) > 0: irem_start = rem_seq[0] # is there wake in the preceding bin? if irem_start-1 in wake_idx: # get the closest sws bin in the preceding history isws_end = closest_precessor(sws_idx, irem_start) if (irem_start - isws_end)*dt < PRE_WAKE_REM: new_rem = np.arange(isws_end+1,irem_start) rem_idx = np.union1d(rem_idx, new_rem) wake_idx = np.setdiff1d(wake_idx, new_rem) else: new_wake = rem_seq wake_idx = np.union1d(wake_idx, new_wake) rem_idx = np.setdiff1d(rem_idx, new_wake) # two different representations for the results: S = {} S['rem'] = rem_idx S['nrem'] = sws_idx S['wake'] = wake_idx S['awake'] = wake_motion_idx S['qwake'] = wake_nomotion_idx M = np.zeros((N,)) if len(rem_idx) > 0: M[rem_idx] = 1 if len(wake_idx) > 0: M[wake_idx] = 2 if len(sws_idx) > 0: M[sws_idx] = 3 if len(undef_idx) > 0: M[undef_idx] = 0 # write sleep annotation to file if pwrite: outfile = os.path.join(ppath, name, 'remidx_' + name + '.txt') print("writing annotation to %s" % outfile) f = open(outfile, 'w') s = ["%d\t%d\n" % (i,j) for (i,j) in zip(M,np.zeros((N,)))] f.writelines(s) f.close() # nice plotting plt.ion() if pplot: plt.figure(figsize=(18,9)) axes1=plt.axes([0.1, 0.9, 0.8, 0.05]) A = np.zeros((1,len(M))) A[0,:] = M cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,0,0], [0,1,1],[0.5,0,1], [0.8, 0.8, 0.8]], 4) #tmp = axes1.imshow(A, vmin=0, vmax=3) tmp = axes1.pcolorfast(t, [0,1], A, vmin=0, vmax=3) tmp.set_cmap(my_map) axes1.axis('tight') tmp.axes.get_xaxis().set_visible(False) tmp.axes.get_yaxis().set_visible(False) box_off(axes1) # show spectrogram axes2=plt.axes([0.1, 0.75, 0.8, 0.1], sharex=axes1) ifreq = np.where(freq <= 30)[0] med = np.median(SPEEG.max(axis=0)) if pspec_norm: ifreq = np.where(freq <= 80)[0] filt = np.ones((6, 1)) filt = filt / np.sum(filt) SPEEG = scipy.signal.convolve2d(SPEEG, filt, mode='same') spec_mean = SPEEG.mean(axis=1) SPEEG = np.divide(SPEEG, np.repeat([spec_mean], SPEEG.shape[1], axis=0).T) med = np.median(SPEEG.max(axis=0)) axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax = med*vmax, cmap='jet') else: axes2.pcolorfast(t, freq[ifreq], SPEEG[ifreq, :], vmax=med * vmax, cmap='jet') axes2.axis('tight') plt.ylabel('Freq (Hz)') box_off(axes2) # show delta power axes3=plt.axes([0.1, 0.6, 0.8, 0.1], sharex=axes2) axes3.plot(t,p_delta, color='gray') plt.ylabel('Delta (a.u.)') plt.xlim((t[0], t[-1])) seq = get_sequences(S['nrem']) #for s in seq: # plt.plot(t[s],p_delta[s], color='red') s = idx['high_delta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_delta[s], color='red') box_off(axes3) axes4=plt.axes([0.1, 0.45, 0.8, 0.1], sharex=axes3) axes4.plot(t,p_sigma, color='gray') plt.ylabel('Sigma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_sigma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_sigma[s], color='red') box_off(axes4) axes5=plt.axes([0.1, 0.31, 0.8, 0.1], sharex=axes4) axes5.plot(t,th_delta, color='gray') plt.ylabel('Th/Delta (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_theta'] seq = get_sequences(s) for s in seq: plt.plot(t[s],th_delta[s], color='red') box_off(axes5) axes6=plt.axes([0.1, 0.17, 0.8, 0.1], sharex=axes5) axes6.plot(t,p_gamma, color='gray') plt.ylabel('Gamma (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_gamma'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_gamma[s], color='red') box_off(axes6) axes7=plt.axes([0.1, 0.03, 0.8, 0.1], sharex=axes6) axes7.plot(t,p_mu, color='gray') plt.xlabel('Time (s)') plt.ylabel('EMG (a.u.)') plt.xlim((t[0], t[-1])) s = idx['high_emg'] seq = get_sequences(s) for s in seq: plt.plot(t[s],p_mu[s], color='red') box_off(axes7) plt.show() # 2nd figure showing distribution of different bands plt.figure(figsize=(20,3)) axes1 = plt.axes([0.05, 0.1, 0.13, 0.8]) plt.hist(p_delta, bins=100) plt.plot(np.nanmean(p_delta), 10, 'ro') plt.title('delta') plt.ylabel('# Occurances') box_off(axes1) axes1 = plt.axes([0.25, 0.1, 0.13, 0.8]) plt.hist(th_delta, bins=100) plt.plot(np.nanmean(th_delta)+th_delta_std*np.nanstd(th_delta), 10, 'ro') plt.title('theta/delta') box_off(axes1) axes1 = plt.axes([0.45, 0.1, 0.13, 0.8]) plt.hist(p_sigma, bins=100) plt.plot(np.nanmean(p_sigma), 10, 'ro') plt.title('sigma') box_off(axes1) axes1 = plt.axes([0.65, 0.1, 0.13, 0.8]) plt.hist(p_gamma, bins=100) plt.plot(np.nanmean(p_gamma), 10, 'ro') plt.title('gamma') box_off(axes1) axes1 = plt.axes([0.85, 0.1, 0.13, 0.8]) plt.hist(p_mu, bins=100) plt.plot(np.nanmean(p_mu)+np.nanstd(p_mu), 10, 'ro') plt.title('EMG') plt.show(block=False) box_off(axes1) plt.show() return M,S def plot_hypnograms(ppath, recordings, tbin=0, unit='h', ma_thr=20, title='', tstart=0, tend=-1): """ plot all hypnograms specified in @recordings :param ppath: base folder :param recordings: list of recordings :param tbin: tbin for xticks :param unit: time unit; h - hour, min - minute, s - second :param ma_thr: float, wake periods shorter than $ma_thr are considered as microarousals and further converted to NREM :param tstart: float, start time point (in seconds!) of hypnograms :param tend: float, last shown time point (in seconds!) :param title: optional title for figure """ recordings = recordings[::-1] sr = get_snr(ppath, recordings[0]) nbin = int(np.round(sr) * 2.5) dt_sec = (1.0 / sr) * nbin istart = int(np.round(tstart/dt_sec)) dt = dt_sec if unit == 'h': dt /= 3600 elif unit == 'min': dt /= 60 rec_len = dict() irec = 0 ny = (1.0-0.2) / len(recordings) dy = ny * 0.75 cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.5, 0, 1], [0.8, 0.8, 0.8]], 4) plt.ion() plt.figure(figsize=(9,4)) axes = [] for rec in recordings: M,K = load_stateidx(ppath, rec) #kcut = np.where(K<0)[0] #M = M[kcut] #M[kcut] = 0 if tend == -1: iend = len(M) else: iend = int(tend/dt_sec) M = M[istart:iend] if ma_thr>0: seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt_sec <= ma_thr: M[s] = 3 rec_len[rec] = len(M)*dt t = np.arange(0, len(M))*dt ax = plt.axes([0.05, ny*irec+0.15, 0.75, dy]) tmp = ax.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3, cmap=my_map) box_off(ax) ax.axis('tight') tmp.axes.get_yaxis().set_visible(False) if irec > 0: tmp.axes.get_xaxis().set_visible(False) if irec == 0: plt.xlabel('Time (%s)' % unit) irec += 1 axes.append(ax) if len(title) > 0: plt.title(title) max_dur = max(rec_len.values()) if tbin > 0: xtick = np.arange(0, max_dur, tbin) for (ax, rec) in zip(axes, recordings): ax.set_xlim([0, max_dur]) if tbin > 0: ax.set_xticks(xtick) ax.text(max_dur+max_dur*0.01, 0.5, rec) plt.show() def plot_swa(ppath, name, delta_win, alpha, band=[0.5, 4.5], swa_yrange=[]): """ plot slow wave (delta) activity during NREM The top plot shows the hynogram. The middle plot shows the delta power (irrespective of brain state) as line plot The bottom plot shows for consecutive $delta_win seconds long bins, the median delta power (SWA) during NREM, if the ration of NREM during the corresponding bin >= $alpha Example call: dm=plot_swa(ppath, name, 30, 0.5, swa_yrange=[0, 0.012]) :param ppath, name: basefolder, recording name :param delta_win: plot median swa value for each consecutive $delta_win seconds long window, if :param alpha: the ratio of NREM in this window is larger than alpha (value between 0 and 1) :param swa_yrange: tuple, minimun and maximum value of yrange for SWA :return df: pd.DataFrame with SWA time points and corresponding median SWA values """ r_delta = band sr = get_snr(ppath, name) nbin = int(np.round(2.5*sr)) dt = nbin*(1.0/sr) M,_ = load_stateidx(ppath, name) t = np.arange(0, len(M))*dt P = so.loadmat(os.path.join(ppath, name, 'sp_%s.mat' % name), squeeze_me=True) SP = P['SP'] freq = P['freq'] df = freq[1]-freq[0] idelta = np.where((freq>=r_delta[0]) & (freq<=r_delta[1]))[0] pow_delta = SP[idelta,:].sum(axis=0)*df # get NREM sequences contributing points for fitting iwin = int(delta_win/dt) #seq = get_sequences(nrem_idx, ibreak=int((delta_win/dt)*0.1)) delta_med = [] for j in range(0, len(M)-iwin, iwin): s = range(j, j+iwin) sc = j+int(iwin/2) Mcut = M[s] if (1.0*len(np.where(Mcut==3)[0])) / len(s) >= alpha: i = np.where(Mcut==3)[0] i = i+s[0] a = np.median(pow_delta[i]) delta_med.append((t[sc],a)) df = pd.DataFrame(columns=['time', 'pow'], data=delta_med) # generate figure # show brainstate plt.ion() plt.figure(figsize=(10, 4)) axes_brs = plt.axes([0.1, 0.85, 0.8, 0.1]) cmap = plt.cm.jet my_map = cmap.from_list('brs', [[0, 0, 0], [0, 1, 1], [0.6, 0, 1], [0.8, 0.8, 0.8]], 4) tmp = axes_brs.pcolorfast(t, [0, 1], np.array([M]), vmin=0, vmax=3) tmp.set_cmap(my_map) axes_brs.axis('tight') axes_brs.axes.get_xaxis().set_visible(False) axes_brs.axes.get_yaxis().set_visible(False) axes_brs.spines["top"].set_visible(False) axes_brs.spines["right"].set_visible(False) axes_brs.spines["bottom"].set_visible(False) axes_brs.spines["left"].set_visible(False) # plot delta power as function of time c = 1000**2 axes_tdelta = plt.axes([0.1, 0.55, 0.8, 0.2], sharex=axes_brs) plt.plot(t, pow_delta/c, 'k') box_off(axes_tdelta) axes_tdelta.axes.get_xaxis().set_visible(False) axes_tdelta.spines["bottom"].set_visible(False) plt.ylabel('SWA (mV$\mathrm{^2}$)') # plot delta power medians axes_delta = plt.axes([0.1, 0.12, 0.8, 0.35], sharex=axes_brs) for (s,delta) in delta_med: plt.plot(s, delta/c, 'ko') print(t) plt.xlim((t[0], t[-1])) box_off(axes_delta) plt.xlabel('Time (s)') plt.ylabel('NREM SWA (mV$\mathrm{^2}$)') if swa_yrange == []: ymax = df['pow'].max()/c plt.ylim([0, ymax+0.1*ymax]) else: plt.ylim(swa_yrange) plt.show() return df def laser_triggered_eeg(ppath, name, pre, post, f_max, pnorm=2, pplot=False, psave=False, tstart=0, tend=-1, peeg2=False, vm=2.5, prune_trials=True, mu=[10, 200], trig_state=0, harmcs=0, iplt_level=1): """ calculate laser triggered, averaged EEG and EMG spectrum :param ppath: base folder containing mouse recordings :param name: recording :param pre: time before laser :param post: time after laser :param f_max: calculate/plot frequencies up to frequency f_max :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param vm: float to set saturation level of colormap :param pplot: plot figure yes=True, no=False :param psave: save the figure, yes=True, no = False :param tstart: float, starting time point. Only lasers trials after tstart will be considered :param tend: float, only laser trials up to tend will be considered; if tend==-1, use whole recording :param peeg2: if True, use EEG channel 2 :param prune_trials: if True, throw out trials with EEG or EMG artifacts :param mu: tuple; range used for EMG amplitude calculation :param trig_state: int; if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively """ def _interpolate_harmonics(SP, freq, f_max, harmcs, iplt_level): df = freq[2]-freq[1] for h in np.arange(harmcs, f_max, harmcs): i = np.argmin(np.abs(freq - h)) if np.abs(freq[i] - h) < df and h != 60: if iplt_level == 2: SP[i,:] = (SP[i-2:i,:] + SP[i+1:i+3,:]).mean(axis=0) * 0.5 else: SP[i,:] = (SP[i-1,:] + SP[i+1,:]) * 0.5 return SP SR = get_snr(ppath, name) NBIN = np.round(2.5*SR) lsr = load_laser(ppath, name) idxs, idxe = laser_start_end(lsr) laser_dur = np.mean((idxe-idxs)/SR) print('%s: Average laser duration: %f; Number of trials %d' % (name, laser_dur, len(idxs))) # downsample EEG time to spectrogram time idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] #load EEG and EMG P = so.loadmat(os.path.join(ppath, name, 'sp_' + name + '.mat')) Q = so.loadmat(os.path.join(ppath, name, 'msp_' + name + '.mat')) if not peeg2: SPEEG = np.squeeze(P['SP']) else: SPEEG = np.squeeze(P['SP2']) SPEMG = np.squeeze(Q['mSP']) freq = np.squeeze(P['freq']) t = np.squeeze(P['t']) dt = float(np.squeeze(P['dt'])) ifreq = np.where(freq<=f_max)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) speeg_mean = SPEEG.mean(axis=1) spemg_mean = SPEMG.mean(axis=1) # interpolate frequencies corresponding to harmonics of $harmcs if harmcs > 0: SPEEG = _interpolate_harmonics(SPEEG, freq, f_max, harmcs) SPEMG = _interpolate_harmonics(SPEMG, freq, f_max, harmcs) if tend > -1: i = np.where((np.array(idxs)*dt >= tstart) & (np.array(idxs)*dt <= tend))[0] else: i = np.where(np.array(idxs)*dt >= tstart)[0] idxs = [idxs[j] for j in i] idxe = [idxe[j] for j in i] skips = [] skipe = [] if prune_trials: for (i,j) in zip(idxs, idxe): A = SPEEG[0,i-ipre:i+ipost+1] / speeg_mean[0] B = SPEMG[0,i-ipre:i+ipost+1] / spemg_mean[0] k = np.where(A >= np.median(A)*50)[0] l = np.where(B >= np.median(B)*500)[0] if len(k) > 0 or len(l) > 0: skips.append(i) skipe.append(j) print("%s: kicking out %d trials" % (name, len(skips))) idxs_new = [] idxe_new = [] for (i,j) in zip(idxs, idxe): if not i in skips: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # select trials where brain state is right before laser in trig_state if trig_state > 0: idxs_new = [] idxe_new = [] M = load_stateidx(ppath, name)[0] for (i,j) in zip(idxs, idxe): if i < len(M) and M[i] == trig_state: idxs_new.append(i) idxe_new.append(j) idxs = idxs_new idxe = idxe_new # Spectrogram for EEG and EMG normalized by average power in each frequency band if pnorm == 1: SPEEG = np.divide(SPEEG, np.repeat(speeg_mean, len(t)).reshape(len(speeg_mean), len(t))) SPEMG = np.divide(SPEMG, np.repeat(spemg_mean, len(t)).reshape(len(spemg_mean), len(t))) speeg_parts = [] spemg_parts = [] for (i,j) in zip(idxs, idxe): if i>=ipre and j+ipost < len(t): eeg_part = SPEEG[ifreq,i-ipre:i+ipost+1] speeg_parts.append(eeg_part) spemg_parts.append(SPEMG[ifreq,i-ipre:i+ipost+1]) EEGLsr = np.array(speeg_parts).mean(axis=0) EMGLsr = np.array(spemg_parts).mean(axis=0) # smooth spectrogram nfilt = 3 filt = np.ones((nfilt,nfilt)) filt = np.divide(filt, filt.sum()) EEGLsr = scipy.signal.convolve2d(EEGLsr, filt, boundary='symm', mode='same') if pnorm == 2: for i in range(EEGLsr.shape[0]): EEGLsr[i,:] = np.divide(EEGLsr[i,:], np.sum(np.abs(EEGLsr[i,0:ipre]))/(1.0*ipre)) EMGLsr[i,:] = np.divide(EMGLsr[i,:], np.sum(np.abs(EMGLsr[i,0:ipre]))/(1.0*ipre)) # get time axis dt = (1.0/SR)*NBIN t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) f = freq[ifreq] if pplot: # get rid of boxes around matplotlib plots def box_off(ax): ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() plt.ion() plt.figure(figsize=(10,8)) ax = plt.axes([0.1, 0.55, 0.4, 0.35]) plt.pcolormesh(t,f,EEGLsr, vmin=0, vmax=np.median(EEGLsr)*vm, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EEG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.62, 0.55, 0.35, 0.35]) ilsr = np.where((t>=0) & (t<=120))[0] plt.plot(f,EEGLsr[:,0:ipre].mean(axis=1), color='gray', label='baseline', lw=2) plt.plot(f,EEGLsr[:,ilsr].mean(axis=1), color='blue', label='laser', lw=2) box_off(ax) plt.xlabel('Freq. (Hz)') plt.ylabel('Power (uV^2)') #plt.legend(loc=0) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, borderaxespad=0.) ax = plt.axes([0.1, 0.1, 0.4, 0.35]) plt.pcolormesh(t,f,EMGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EMG', fontsize=12) cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power (uV^2s)') ax = plt.axes([0.62, 0.1, 0.35, 0.35]) mf = np.where((f>=mu[0]) & (f <= mu[1]))[0] df = f[1]-f[0] # amplitude is square root of (integral over each frequency) avg_emg = np.sqrt(EMGLsr[mf,:].sum(axis=0)*df) m = np.max(avg_emg)*1.5 plt.plot([0,0], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.plot([laser_dur,laser_dur], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.xlim((t[0], t[-1])) plt.ylim((0,m)) plt.plot(t,avg_emg, color='black', lw=2) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. (uV)') plt.show() if psave: img_file = os.path.join(ppath, name, 'fig_'+name+'_spec.png') save_figure(img_file) return EEGLsr, EMGLsr, freq[ifreq], t def laser_triggered_eeg_avg(ppath, recordings, pre, post, f_max, laser_dur, pnorm=1, pplot=1, tstart=0, tend=-1, vm=[], cb_ticks=[], mu=[10, 100], trig_state=0, harmcs=0, iplt_level=1, peeg2=False, fig_file=''): """ calculate average spectrogram for all recordings listed in @recordings; for averaging take mouse identity into account :param ppath: base folder :param recordings: list of recordings :param pre: time before laser onset :param post: time after laser onset :param f_max: maximum frequency shown for EEG spectrogram :param laser_dur: duration of laser stimulation :param pnorm: normalization, pnorm = 0, no normalization pnorm = 1, normalize each frequency band by its average power pnorm = 2, normalize each frequency band by the average power during the preceding baseline period :param pplot: pplot==0 - no figure; pplot==1 - conventional figure; pplot==2 - pretty figure showing EEG spectrogram along with EMG amplitude note: the errorbar for the EMG amplitude is the S.E.M. :param tstart: only consider laser trials with laser onset after tstart seconds :param tend: only consider laser trials with laser onset before tend seconds :param vm: saturation of heatmap for EEG spectrogram :param cb_ticks: ticks for colorbar (only applies for pplot==2) :param mu: frequencies for EMG amplitude calculation :param trig_state: if > 0, only use trials where brain is at laser onset in brainstate trig_state 1=REM, 2=Wake, 3=NREM :param peeg2: if True, use EEG2 instead of EEG :param harmcs: if >0, interpolate all frequencies corresponding to multiples of harmcs by the average power of the two neighboring frequencies. :param iplt_level: options - 1 or 2. If 1 only take one neighboring frequency above and below the harmonic; if 2, take 2 neighbors above and below, respectively :param fig_file: if specified, save figure to given file :return: t, f, EEGSpec, EMGSpec, EEGLsr t - time axis f - frequency axis EEGSpec - dict with mouse id -> 2D np.array(frequency x time) EMGSpec - dict with mouse id -> 2D np.array(frequency x time) EEGLsr - 2D np.array(frequency x time) """ EEGSpec = {} EMGSpec = {} mice = [] for rec in recordings: idf = re.split('_', rec)[0] if not(idf in mice): mice.append(idf) EEGSpec[idf] = [] EMGSpec[idf] = [] for rec in recordings: idf = re.split('_', rec)[0] EEG, EMG, f, t = laser_triggered_eeg(ppath, rec, pre, post, f_max, mu=mu, pnorm=pnorm, pplot=False, psave=False, tstart=tstart, tend=tend, trig_state=trig_state, peeg2=peeg2, harmcs=harmcs, iplt_level=iplt_level) EEGSpec[idf].append(EEG) EMGSpec[idf].append(EMG) for idf in mice: EEGSpec[idf] = np.array(EEGSpec[idf]).mean(axis=0) EMGSpec[idf] = np.array(EMGSpec[idf]).mean(axis=0) EEGLsr = np.array([EEGSpec[k] for k in mice]).mean(axis=0) EMGLsr = np.array([EMGSpec[k] for k in mice]).mean(axis=0) mf = np.where((f >= mu[0]) & (f <= mu[1]))[0] if harmcs > 0: harm_freq = np.arange(0, f.max(), harmcs) for h in harm_freq: mf = np.setdiff1d(mf, mf[np.where(f[mf]==h)[0]]) df = f[1] - f[0] EMGAmpl = np.zeros((len(mice), EEGLsr.shape[1])) i=0 for idf in mice: # amplitude is square root of (integral over each frequency) if harmcs == 0: EMGAmpl[i,:] = np.sqrt(EMGSpec[idf][mf,:].sum(axis=0)*df) else: tmp = 0 for qf in mf: tmp += EMGSpec[idf][qf,:] * (f[qf] - f[qf-1]) EMGAmpl[i,:] = np.sqrt(tmp) i += 1 avg_emg = EMGAmpl.mean(axis=0) sem_emg = EMGAmpl.std(axis=0) / np.sqrt(len(mice)) if pplot==1: plt.ion() plt.figure(figsize=(12,10)) ax = plt.axes([0.1, 0.55, 0.4, 0.4]) if len(vm) == 2: plt.pcolormesh(t,f,EEGLsr, cmap='jet', vmin=vm[0], vmax=vm[1]) else: plt.pcolormesh(t, f, EEGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EEG') cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.6, 0.55, 0.3, 0.4]) ipre = np.where(t<0)[0] ilsr = np.where((t>=0) & (t<=120))[0] plt.plot(f,EEGLsr[:,ipre].mean(axis=1), color='gray', label='baseline', lw=2) plt.plot(f,EEGLsr[:,ilsr].mean(axis=1), color='blue', label='laser', lw=2) box_off(ax) plt.xlabel('Freq. (Hz)') plt.ylabel('Power (uV^2)') #plt.legend(loc=0) #plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, borderaxespad=0.) ax = plt.axes([0.1, 0.05, 0.4, 0.4]) plt.pcolormesh(t,f,EMGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) plt.title('EMG') cbar = plt.colorbar() if pnorm >0: cbar.set_label('Rel. Power') else: cbar.set_label('Power uV^2s') ax = plt.axes([0.6, 0.05, 0.3, 0.4]) m = np.max(avg_emg)*1.5 plt.plot([0,0], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.plot([laser_dur,laser_dur], [0,np.max(avg_emg)*1.5], color=(0,0,0)) plt.xlim((t[0], t[-1])) plt.ylim((0,m)) plt.plot(t,avg_emg, color='black', lw=2) plt.fill_between(t, avg_emg-sem_emg, avg_emg+sem_emg) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. (uV)') plt.show() elif pplot==2: # pretty figure plt.figure() if len(vm) > 0: cb_ticks = vm # plot EEG spectrogram axes_cbar = plt.axes([0.8, 0.75, 0.1, 0.2]) ax = plt.axes([0.1, 0.55, 0.75, 0.4]) if len(vm) == 2: im=ax.pcolorfast(t, f, EEGLsr, cmap='jet', vmin=vm[0], vmax=vm[1]) else: im = ax.pcolorfast(t, f, EEGLsr, cmap='jet') plt.plot([0,0], [0,f[-1]], color=(1,1,1)) plt.plot([laser_dur,laser_dur], [0,f[-1]], color=(1,1,1)) plt.axis('tight') plt.xlabel('Time (s)') plt.ylabel('Freq (Hz)') box_off(ax) # colorbar for EEG spectrogram cb = plt.colorbar(im, ax=axes_cbar, pad=0.0, aspect=10.0, orientation='vertical') if pnorm > 0: cb.set_label('Rel. Power') else: cb.set_label('Power (uV^2s)') cb.ax.xaxis.set_ticks_position("bottom") cb.ax.xaxis.set_label_position('top') if len(cb_ticks) > 0: cb.set_ticks(cb_ticks) axes_cbar.set_alpha(0.0) axes_cbar.spines["top"].set_visible(False) axes_cbar.spines["right"].set_visible(False) axes_cbar.spines["bottom"].set_visible(False) axes_cbar.spines["left"].set_visible(False) axes_cbar.axes.get_xaxis().set_visible(False) axes_cbar.axes.get_yaxis().set_visible(False) # EMG amplitude ax = plt.axes([0.1, 0.1, 0.75, 0.3]) m = np.max(avg_emg) * 1.5 ax.add_patch(patches.Rectangle((0, 0), laser_dur, np.max(avg_emg)*1.5, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) plt.xlim((t[0], t[-1])) plt.ylim((0, m)) plt.fill_between(t, avg_emg-sem_emg, avg_emg+sem_emg, color='gray', zorder=2) plt.plot(t, avg_emg, color='black', lw=2) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('EMG ampl. ($\mathrm{\mu V}$)') plt.show() if len(fig_file) > 0: save_figure(fig_file) return t, f, EEGSpec, EMGSpec, EEGLsr def laser_brainstate(ppath, recordings, pre, post, pplot=True, fig_file='', start_time=0, end_time=-1, ma_thr=0, edge=0, sf=0, cond=0, single_mode=False, ci=95, backup='', csv_file=''): """ calculate laser triggered probability of REM, Wake, NREM ppath - base folder holding all recording recordings - list of recording pre - time before laser onset post - time after laser onset @Optional: pplot - pplot==True: plot figure fig_file - specify filename including ending, if you wish to save figure start_time - in [s], only consider laser onsets starting after $start_time end_time - in [s], only consider laset onsets starting before $end_time sf - smoothing factor for Gaussian kernel; if sf=0, no filtering edge - only use if $sf > 0: to avoid smoothing artifacts, set edge to a value > 0, e.g. 20 ma_thr - if > 0, smooth out microarousals with duration < $ma_thr cond - cond==0: consider all trials; cond==[1,2,3] only plot trials, where mouse was in REM, Wake, or NREM as laser turned on single_mode - if True, plot every single mouse backup - optional backup folder; if specified each single recording folder can be either on $ppath or $backup; if it's on both folders, the version in ppath is used ci - string; possible values: 'sem', 'sd', or value betwen 0 and 100, corresponding to the bootstrapped confidence interval. The default is ci=95 csv_file - if filename (without or including full file path) is provided, save pd.DataFrame df (see @Return) to csv file @Return: df_timecourse: pd.DataFrame with columns: mouse, time, perc, state. df: pd.DataFrame with columns mouse_id, REM, NREM, Wake, Lsr Lsr has three values: 0 - before laser, 1 - during laser, 2 - after laser if laser was on for laser_dur s, then df[df['Lsr'] == 0]['REM'] is the average % of REM sleep during laser stimulation for each mouse df[df['Lsr'] == 0]['REM'] is the average % of REM sleep during the laser_dur s long time interval preceding laser onset. df[df['Lsr'] == 2]['REM'] is the average during the time inverval of duration laser_dur that directly follows laser stimulation """ if type(recordings) != list: recordings = [recordings] rec_paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): rec_paths[rec] = ppath else: rec_paths[rec] = backup pre += edge post += edge BrainstateDict = {} mouse_order = [] for rec in recordings: idf = re.split('_', rec)[0] BrainstateDict[idf] = [] if not idf in mouse_order: mouse_order.append(idf) nmice = len(BrainstateDict) for rec in recordings: ppath = rec_paths[rec] SR = get_snr(ppath, rec) NBIN = np.round(2.5*SR) dt = NBIN * 1.0/SR istart_time = int(np.round(start_time / dt)) M = load_stateidx(ppath, rec)[0] if end_time == -1: iend_time = len(M) else: iend_time = int(np.round(end_time / dt)) seq = get_sequences(np.where(M==2)[0]) for s in seq: if len(s)*dt <= ma_thr: M[s] = 3 (idxs, idxe) = laser_start_end(load_laser(ppath, rec)) idf = re.split('_', rec)[0] ipre = int(np.round(pre/dt)) ipost = int(np.round(post/dt)) idxs = [int(i/NBIN) for i in idxs] idxe = [int(i/NBIN) for i in idxe] laser_dur = np.mean((np.array(idxe) - np.array(idxs))) * dt for (i,j) in zip(idxs, idxe): if i>=ipre and i+ipost<=len(M)-1 and i>istart_time and i < iend_time: bs = M[i-ipre:i+ipost+1] BrainstateDict[idf].append(bs) # I assume here that every recording has same dt t = np.linspace(-ipre*dt, ipost*dt, ipre+ipost+1) # first time point where the laser was fully on (during the complete bin). izero = np.where(t>0)[0][0] # the first time bin overlapping with laser is then izero -= 1 # @BS: mouse x time x state BS = np.zeros((nmice, len(t), 3)) Trials = [] imouse = 0 for mouse in mouse_order: if cond==0: M = np.array(BrainstateDict[mouse]) Trials.append(M) for state in range(1,4): C = np.zeros(M.shape) C[np.where(M==state)] = 1 BS[imouse,:,state-1] = C.mean(axis=0) if cond>0: M = BrainstateDict[mouse] Msel = [] for trial in M: if trial[izero] == cond: Msel.append(trial) M = np.array(Msel) Trials.append(M) for state in range(1,4): C = np.zeros(M.shape) C[np.where(M==state)] = 1 BS[imouse,:,state-1] = C.mean(axis=0) imouse += 1 # flatten Trials Trials = reduce(lambda x,y: np.concatenate((x,y), axis=0), Trials) BS = BS*100 if sf > 0: for state in [2, 1, 0]: for i in range(nmice): BS[i, :, state] = smooth_data(BS[i, :, state], sf) df_timecourse = pd.DataFrame() state_map = {1: 'REM', 2: 'Wake', 3: 'NREM'} for s in state_map: df = nparray2df(BS[:, :, s - 1], mouse_order, t, 'perc', 'mouse', 'time') df['state'] = state_map[s] df_timecourse = df_timecourse.append(df) nmice = imouse if pplot: state_label = {0:'REM', 1:'Wake', 2:'NREM'} it = np.where((t >= -pre + edge) & (t <= post - edge))[0] plt.ion() if not single_mode: plt.figure() ax = plt.axes([0.15, 0.15, 0.6, 0.7]) colors = [[0, 1, 1 ],[0.5, 0, 1],[0.6, 0.6, 0.6]] if ci == 'sem': for state in [2,1,0]: tmp = BS[:, :, state].mean(axis=0) plt.plot(t[it], tmp[it], color=colors[state], lw=3, label=state_label[state]) if nmice > 1: smp = BS[:,:,state].std(axis=0) / np.sqrt(nmice) plt.fill_between(t[it], tmp[it]-smp[it], tmp[it]+smp[it], color=colors[state], alpha=0.4, zorder=3) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) ax.add_patch(patches.Rectangle((0,0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('Probability') #plt.legend(bbox_to_anchor=(0., 1.02, 0.5, .102), loc=3, ncol=3, borderaxespad=0.) plt.draw() else: bs_colors = {'REM': [0, 1, 1], 'Wake': [0.5, 0, 1], 'NREM': [0.6, 0.6, 0.6]} dfm = df_timecourse.groupby(['mouse', 'state', 'time']).mean().reset_index() for s in [3, 2, 1]: sns.lineplot(data=dfm[dfm.state == state_map[s]], ci=ci, x='time', y='perc', color=bs_colors[state_map[s]], err_kws={'alpha': 0.8, 'zorder': 3}) plt.xlim([-pre+edge, post-edge]) plt.ylim([0,100]) ax.add_patch(patches.Rectangle((0,0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1])) box_off(ax) plt.xlabel('Time (s)') plt.ylabel('Probability') else: plt.figure(figsize=(7,7)) clrs = sns.color_palette("husl", nmice) for state in [2,1,0]: ax = plt.subplot('31' + str(3-state)) for i in range(nmice): plt.plot(t[it], BS[i,it,state], color=clrs[i], label=mouse_order[i]) ax.add_patch(patches.Rectangle((0, 0), laser_dur, 100, facecolor=[0.6, 0.6, 1], edgecolor=[0.6, 0.6, 1], alpha=0.8)) plt.xlim((t[it][0], t[it][-1])) plt.ylim((0,100)) plt.ylabel('% ' + state_label[state]) if state==0: plt.xlabel('Time (s)') else: ax.set_xticklabels([]) if state==2: ax.legend(mouse_order, bbox_to_anchor=(0., 1.0, 1., .102), loc=3, mode='expand', ncol=len(mouse_order), frameon=False) box_off(ax) # figure showing all trials plt.figure(figsize=(4,6)) set_fontarial() plt.ion() ax = plt.axes([0.15, 0.1, 0.8, 0.8]) cmap = plt.cm.jet my_map = cmap.from_list('ha', [[0,1,1],[0.5,0,1], [0.6, 0.6, 0.6]], 3) x = list(range(Trials.shape[0])) plt.pcolormesh(t,np.array(x), np.flipud(Trials), cmap=my_map, vmin=1, vmax=3) plt.plot([0,0], [0, len(x)-1], color='white') plt.plot([laser_dur,laser_dur], [0, len(x)-1], color='white') ax.axis('tight') plt.draw() plt.xlabel('Time (s)') plt.ylabel('Trial No.') box_off(ax) plt.show() if len(fig_file)>0: plt.savefig(fig_file) # compile dataframe with all baseline and laser values ilsr = np.where((t>=0) & (t<=laser_dur))[0] ibase = np.where((t>=-laser_dur) & (t<0))[0] iafter = np.where((t>=laser_dur) & (t<laser_dur*2))[0] df = pd.DataFrame(columns = ['Mouse', 'REM', 'NREM', 'Wake', 'Lsr']) mice = mouse_order + mouse_order + mouse_order lsr = np.concatenate((np.ones((nmice,), dtype='int'), np.zeros((nmice,), dtype='int'), np.ones((nmice,), dtype='int')*2)) df['Mouse'] = mice df['Lsr'] = lsr df['REM'] = np.concatenate((BS[:,ilsr,0].mean(axis=1), BS[:,ibase,0].mean(axis=1), BS[:,iafter,0].mean(axis=1))) df['NREM'] = np.concatenate((BS[:,ilsr,2].mean(axis=1), BS[:,ibase,2].mean(axis=1), BS[:,iafter,2].mean(axis=1))) df['Wake'] = np.concatenate((BS[:,ilsr,1].mean(axis=1), BS[:,ibase,1].mean(axis=1), BS[:,iafter,1].mean(axis=1))) if len(csv_file) > 0: df.to_csv(csv_file, index=False) return df_timecourse, df, Trials def laser_brainstate_bootstrap(ppath, recordings, pre, post, edge=0, sf=0, nboots=1000, alpha=0.05, backup='', start_time=0, ma_thr=20, bootstrap_mode=0, fig_file=''): """ Align brain state with laser stimulation and calculate two-sided 1-$alpha confidence intervals using bootstrapping. :param ppath: base folder :param recordings: list of recordings :param pre: time before laser :param post: time after laser onset :param edge: add $edge seconds add beginning and end (that are not shown in the plot) to avoid filtering artifacts :param sf: smoothing factor for Gaussian filter; better do not use :param nboots: int, how many times the whole data set is resampled for boot-strapping :param alpha: plot shows 1-$alpha confidence interval :param backup: optional backup folder where recordings are stored :param start_time: start time of recordding used for analysis :param ma_thr: sleep periods < ma_thr are thrown away :param bootstrap_mode: default=0 bootstrap_mode == 0: Take inter-mouse variance and inter-trial variance (of each mouse) into account. That is, bootstrapping re-models the variance expected when re-doing the same experimental design (same mouse number and total trial number). To account for potentially different number of trials per mouse, resample the data during each iteration the following way: Assume that there are n laser trials from m mice; randomly select (with replacment) ntrial mice; then select from each mouse randomly one trial. bootstrap_mode == 1: Only take inter-trial variance (of each mouse) into account. That is, bootstrapping models the variance expected when redoing the experiment with exactly the same mice. :param fig_file, if file name is specified, the figure will be saved :return: P - p-values for NREM, REM, Wake Mod - by how much the percentage of NREM, REM, Wake is increased compared to baseline """ pre += edge post += edge rec_paths = dict() for rec in recordings: if os.path.isdir(os.path.join(ppath, rec)): rec_paths[rec] = ppath else: rec_paths[rec] = backup # dict: mouse_id --> laser trials, R W N sequence BrainstateDict = {} for rec in recordings: idf = re.split('_', rec)[0] BrainstateDict[idf] = [] mice = list(BrainstateDict.keys()) nmice = len(BrainstateDict) for rec in recordings: ppath = rec_paths[rec] SR = get_snr(ppath, rec) NBIN = np.round(2.5 * SR) dt = NBIN * 1 / SR istart_time = int(
np.round(start_time / dt)
numpy.round
import gym import numpy as np import matplotlib.pyplot as plt import os from scipy.io import savemat, loadmat import re, seaborn as sns import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import ListedColormap file ="data_21-04-08-06-09.mat" data = loadmat(file) STATES = data['STATES'] ACTIONS = data['ACTIONS'] REWARDS = data['REWARDS'] NSTATES = data['NSTATES'] # generate data n = 200 S = STATES[:,0] E = STATES[:,1] I = STATES[:,2] COSTS = -np.array(REWARDS) COSTS -= np.mean(COSTS) COSTS /= (np.std(COSTS) + 1e-10) # normalizing the result COSTS = COSTS*20 # axes instance fig = plt.figure(figsize=(6,6)) ax = Axes3D(fig) # get colormap from seaborn cmap = ListedColormap(sns.color_palette("husl", 256).as_hex()) # plot sc = ax.scatter(S, E, I, s=5, c=ACTIONS, marker='o', alpha=1) ax.set_xlabel('S') ax.set_ylabel('E') ax.set_zlabel('I') # legend plt.legend(*sc.legend_elements(), bbox_to_anchor=(1.05, 1), loc=2) ax.view_init(azim=0, elev=0) plt.show() # rotate the axes and update # for angle in range(0, 360): # ax.view_init(30, angle) # plt.draw() # plt.pause(.001) # save # plt.savefig("scatter_hue", bbox_inches='tight') a_map = {0:'O', 1:'S', 2:'C'} # POL = [a_map[a] for a in ACTIONS[0].tolist()] fig, ax = plt.subplots(nrows=1, ncols=1, figsize = (20,20)) ax.scatter(S, E, c=ACTIONS, s=60, alpha=1, edgecolors='none') ax.set_ylabel('S', fontsize=40) ax.set_xlabel('E', fontsize=40) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) ax.set_ylim(0,1e5) ax.set_xlim(0,1e5) plt.legend(*sc.legend_elements(), bbox_to_anchor=(0.9, 1), loc=1) # plt.show() plt.xticks(fontsize=30) plt.yticks(fontsize=30) plt.savefig("SE", bbox_inches='tight') fig, ax = plt.subplots(nrows=1, ncols=1, figsize = (20,20)) ax.scatter(S, I, c=ACTIONS, s=60, alpha=1, edgecolors='none') ax.set_ylabel('S', fontsize=40) ax.set_xlabel('I', fontsize=40) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) ax.set_ylim(0,1e5) ax.set_xlim(0,1e5) plt.legend(*sc.legend_elements(), bbox_to_anchor=(0.9, 1), loc=1) # plt.show() plt.xticks(fontsize=30) plt.yticks(fontsize=30) plt.savefig("SI", bbox_inches='tight') fig, ax = plt.subplots(nrows=1, ncols=1, figsize = (20,20)) ax.scatter(E, I, c=ACTIONS, s=60, alpha=1, edgecolors='none') ax.set_ylabel('E', fontsize=40) ax.set_xlabel('I', fontsize=40) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) ax.set_ylim(0,1e5) ax.set_xlim(0,1e5) plt.legend(*sc.legend_elements(), bbox_to_anchor=(0.9, 1), loc=1) # plt.show() plt.xticks(fontsize=30) plt.yticks(fontsize=30) plt.savefig("EI", bbox_inches='tight') def plot_fig(STATES, ACTIONS, fig_name): S = STATES[:,0] E = STATES[:,1] I = STATES[:,2] fig, ax = plt.subplots(nrows=1, ncols=1, figsize = (20,20)) ax.scatter(S, E, c=ACTIONS, s=60, alpha=1, edgecolors='none') ax.set_xlabel('S', fontsize=40) ax.set_ylabel('E', fontsize=40) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) ax.set_ylim(0,1e5) ax.set_xlim(0,1e5) plt.legend(*sc.legend_elements(), bbox_to_anchor=(0.9, 1), loc=1) # plt.show() plt.xticks(fontsize=30) plt.yticks(fontsize=30) plt.savefig(fig_name + '_' + "SE", bbox_inches='tight') fig, ax = plt.subplots(nrows=1, ncols=1, figsize = (20,20)) ax.scatter(S, I, c=ACTIONS, s=60, alpha=1, edgecolors='none') ax.set_xlabel('S', fontsize=40) ax.set_ylabel('I', fontsize=40) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) ax.set_ylim(0,1e5) ax.set_xlim(0,1e5) plt.legend(*sc.legend_elements(), bbox_to_anchor=(0.9, 1), loc=1) # plt.show() plt.xticks(fontsize=30) plt.yticks(fontsize=30) plt.savefig(fig_name + '_' + "SI", bbox_inches='tight') fig, ax = plt.subplots(nrows=1, ncols=1, figsize = (20,20)) ax.scatter(E, I, c=ACTIONS, s=60, alpha=1, edgecolors='none') ax.set_xlabel('E', fontsize=40) ax.set_ylabel('I', fontsize=40) ax.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) ax.ticklabel_format(style='sci', axis='x', scilimits=(0,0)) ax.set_ylim(0,1e5) ax.set_xlim(0,1e5) plt.legend(*sc.legend_elements(), bbox_to_anchor=(0.9, 1), loc=1) # plt.show() plt.xticks(fontsize=30) plt.yticks(fontsize=30) plt.savefig(fig_name + '_' + "EI", bbox_inches='tight') STATES_0, STATES_1, STATES_2 = [], [], [] ACTIONS_0, ACTIONS_1, ACTIONS_2 = [], [], [] for i, a in enumerate(ACTIONS[0]): if a==0: STATES_0.append(STATES[i].tolist()) ACTIONS_0.append(a) elif a==1: STATES_1.append(STATES[i].tolist()) ACTIONS_1.append(a) elif a==2: STATES_2.append(STATES[i].tolist()) ACTIONS_2.append(a) else: pass pol_dict = {0:'Lockdown', 1:'SocialDist', 2:'Open'} plot_fig(np.array(STATES_0), ACTIONS_0, pol_dict[0]) plot_fig(np.array(STATES_1), ACTIONS_1, pol_dict[1]) plot_fig(np.array(STATES_2), ACTIONS_2, pol_dict[2]) fig, ax = plt.subplots(nrows=3, ncols=3, figsize = (20,20)) for i in range(3): for j in range(3): if j==0: data_S, data_A = STATES_0, ACTIONS_0 elif j==1: data_S, data_A = STATES_1, ACTIONS_1 elif j==2: data_S, data_A = STATES_2, ACTIONS_2 S = np.array(data_S)[:,0] E =
np.array(data_S)
numpy.array
# -*- coding: utf-8 -*- import numpy as np import time import unittest # Allows relative imports when run locally as script # https://docs.python-guide.org/writing/structure/ #if __name__ == "__main__": # sys.path.insert(0, os.path.abspath( # os.path.join(os.path.dirname(__file__), '..'))) #import fractalshades.numpy_utils.xrange as fsx from fractalshades.numpy_utils.xrange import ( Xrange_array, Xrange_polynomial, Xrange_SA) def _matching(res, expected, almost=False, dtype=None, cmp_op=False, ktol=1.5): if not cmp_op: res = res.to_standard() if almost: np.testing.assert_allclose(res, expected, rtol= ktol * np.finfo(dtype).eps) else: np.testing.assert_array_equal(res, expected) def _test_op1(ufunc, almost=False, cmp_op=False, ktol=1.0): """ General framework for testing unary operators on Xrange arrays """ # print("testing function", ufunc) rg = np.random.default_rng(100) n_vec = 500 max_bin_exp = 20 # testing binary operation of reals extended arrays for dtype in [np.float64, np.float32]: # print("dtype", dtype) op1 = rg.random([n_vec], dtype=dtype) op1 *= 2.**rg.integers(low=-max_bin_exp, high=max_bin_exp, size=[n_vec]) expected = ufunc(op1) res = ufunc(Xrange_array(op1)) _matching(res, expected, almost, dtype, cmp_op, ktol) # Checking datatype assert res._mantissa.dtype == dtype # with non null shift array # culprit exp_shift_array = rg.integers(low=-max_bin_exp, high=max_bin_exp, size=[n_vec]) expected = ufunc(op1 * (2.**exp_shift_array).astype(dtype)) _matching(ufunc(Xrange_array(op1, exp_shift_array)), expected, almost, dtype, cmp_op, ktol) # test "scalar" _matching(ufunc(Xrange_array(op1, exp_shift_array)[0]), expected[0], almost, dtype, cmp_op, ktol) # print("c2") # testing binary operation of reals extended arrays for dtype in [np.float32, np.float64]: op1 = (rg.random([n_vec], dtype=dtype) + 1j*rg.random([n_vec], dtype=dtype)) op1 *= 2.**rg.integers(low=-max_bin_exp, high=max_bin_exp, size=[n_vec]) expected = ufunc(op1) res = ufunc(Xrange_array(op1)) _matching(res, expected, almost, dtype, cmp_op, ktol) # Checking datatype to_complex = {np.float32: np.complex64, np.float64: np.complex128} if ufunc in [np.abs]: assert res._mantissa.dtype == dtype else: assert res._mantissa.dtype == to_complex[dtype] # with non null shift array exp_shift_array = rg.integers(low=-max_bin_exp, high=max_bin_exp, size=[n_vec]) expected = ufunc(op1 * (2.**exp_shift_array)) _matching(ufunc(Xrange_array(op1, exp_shift_array)), expected, almost, dtype, cmp_op, ktol) def _test_op2(ufunc, almost=False, cmp_op=False): """ General framework for testing operations between 2 Xrange arrays. """ # print("testing operation", ufunc) rg = np.random.default_rng(100) # ea_type = (Xrange_array._FLOAT_DTYPES + # Xrange_array._COMPLEX_DTYPES) n_vec = 500 max_bin_exp = 20 exp_shift = 2 # testing binary operation of reals extended arrays for dtype in [np.float32, np.float64]: op1 = rg.random([n_vec], dtype=dtype) op2 = rg.random([n_vec], dtype=dtype) op1 *= 2.**rg.integers(low=-max_bin_exp, high=max_bin_exp, size=[n_vec]) op2 *= 2.**rg.integers(low=-max_bin_exp, high=max_bin_exp, size=[n_vec]) # testing operation between 2 Xrange_arrays OR between ER_A and # a standard np.array expected = ufunc(op1, op2) res = ufunc(Xrange_array(op1), Xrange_array(op2)) _matching(res, expected, almost, dtype, cmp_op) # # testing operation between 2 Xrange_arrays OR between ER_A and # # a standard np.array xith dim 2 expected_2d = ufunc(op1.reshape(50, 10), op2.reshape(50, 10)) res_2d = ufunc(Xrange_array(op1.reshape(50, 10)), Xrange_array(op2.reshape(50, 10))) _matching(res_2d, expected_2d, almost, dtype, cmp_op) # Checking datatype if ufunc in [np.add, np.multiply, np.subtract, np.divide]: assert res._mantissa.dtype == dtype if ufunc not in [np.equal, np.not_equal]: _matching(ufunc(op1, Xrange_array(op2)), expected, almost, dtype, cmp_op) _matching(ufunc(Xrange_array(op1), op2), expected, almost, dtype, cmp_op) # Testing with non-null exponent exp_shift_array = rg.integers(low=-exp_shift, high=exp_shift, size=[n_vec]) expected = ufunc(op1 * 2.**exp_shift_array, op2 * 2.**-exp_shift_array) _matching(ufunc(Xrange_array(op1, exp_shift_array), Xrange_array(op2, -exp_shift_array)), expected, almost, dtype, cmp_op) # testing operation of an Xrange_array with a scalar if ufunc not in [np.equal, np.not_equal]: expected = ufunc(op1[0], op2) _matching(ufunc(op1[0], Xrange_array(op2)), expected, almost, dtype, cmp_op) expected = ufunc(op2, op1[0]) _matching(ufunc(Xrange_array(op2), op1[0]), expected, almost, dtype, cmp_op) # testing operation of an Xrange_array with a "Xrange" scalar if ufunc not in [np.equal, np.not_equal]: expected = ufunc(op1[0], op2) _matching(ufunc(Xrange_array(op1)[0], Xrange_array(op2)), expected, almost, dtype, cmp_op) expected = ufunc(op2, op1[0]) _matching(ufunc(Xrange_array(op2), Xrange_array(op1)[0]), expected, almost, dtype, cmp_op) if cmp_op and (ufunc not in [np.equal, np.not_equal]): return if ufunc in [np.maximum]: return # testing binary operation of complex extended arrays for dtype in [np.float32, np.float64]: n_vec = 20 max_bin_exp = 20 rg =
np.random.default_rng(1)
numpy.random.default_rng
""" Class to construct parabolas from 3 points. ADW: Need to move all of the plotting stuff """ import numpy import scipy.stats import scipy.interpolate ############################################################ class Parabola: def __init__(self, x, y): """ INPUTS x = variable of interest y = 2 * log(likelihood) """ # Sort the input argsort = numpy.argsort(x) self.x = numpy.array(x)[argsort] self.y = numpy.array(y)[argsort] index = numpy.argmax(self.y) if index == 0: index_0 = 0 index_1 = 1 index_2 = 2 elif index == len(self.y) - 1: index_0 = len(self.y) - 3 index_1 = len(self.y) - 2 index_2 = len(self.y) - 1 else: index_0 = index - 1 index_1 = index index_2 = index + 1 x_0 = self.x[index_0] x_1 = self.x[index_1] x_2 = self.x[index_2] y_0 = self.y[index_0] y_1 = self.y[index_1] y_2 = self.y[index_2] # Invert matrix a = numpy.matrix([[x_0**2, x_0, 1.], [x_1**2, x_1, 1.], [x_2**2, x_2, 1.]]) a_inverse = numpy.linalg.inv(a) b = numpy.array([y_0, y_1, y_2]) p = numpy.dot(numpy.array(a_inverse), b) self.p_2 = p[0] self.p_1 = p[1] self.p_0 = p[2] # Vertex self.vertex_x = -self.p_1 / (2. * self.p_2) self.vertex_y = self.p_0 - (self.p_1**2 / (4. * self.p_2)) def __eq__(self,other): return numpy.allclose([self.p_0,self.p_1,self.p_2],[other.p_0,other.p_1,other.p_2]) def __ne__(self,other): return not self.__eq__(other) def __repr__(self): return "y = %.2g * x**2 + %.2g * x + %.2g"%(self.p_2, self.p_1, self.p_0) def __str__(self): return self.__repr__() def __call__(self, x): """ Evaluate the parabola. """ return (self.p_2 * x**2) + (self.p_1 * x) + self.p_0 def densify(self, factor=10): """ Increase the density of points along the parabolic curve. """ x = [] y = [] for ii in range(0, len(self.x) - 2): p = Parabola(self.x[ii: ii + 3], self.y[ii: ii + 3]) x.append(numpy.linspace(self.x[ii], self.x[ii + 1], factor)[0: -1]) y.append(p(x[-1])) p = Parabola(self.x[len(self.x) - 3:], self.y[len(self.y) - 3:]) x.append(numpy.linspace(self.x[-2], self.x[-1], factor)[0: -1]) y.append(p(x[-1])) x.append([self.x[-1]]) y.append([self.y[-1]]) #f = scipy.interpolate.interp1d(numpy.concatenate(x), numpy.concatenate(y)) #x = numpy.linspace(self.x[0], self.x[-1], len(x) * factor) #return x, f(x) return numpy.concatenate(x), numpy.concatenate(y) def profileUpperLimit(self, delta = 2.71): """ Compute one-sided upperlimit via profile method. """ a = self.p_2 b = self.p_1 if self.vertex_x < 0: c = self.p_0 + delta else: c = self.p_0 - self.vertex_y + delta if b**2 - 4. * a * c < 0.: print('WARNING') print(a, b, c) #pylab.figure() #pylab.scatter(self.x, self.y) #raw_input('WAIT') return 0. return max((numpy.sqrt(b**2 - 4. * a * c) - b) / (2. * a), (-1. * numpy.sqrt(b**2 - 4. * a * c) - b) / (2. * a)) #def bayesianUpperLimit3(self, alpha, steps = 1.e5): # """ # Compute one-sided upper limit using Bayesian Method of Helene. # """ # # Need a check to see whether limit is reliable # pdf = scipy.interpolate.interp1d(self.x, numpy.exp(self.y / 2.)) # Convert from 2 * log(likelihood) to likelihood # x_pdf = numpy.linspace(self.x[0], self.x[-1], steps) # cdf = numpy.cumsum(pdf(x_pdf)) # cdf /= cdf[-1] # cdf_reflect = scipy.interpolate.interp1d(cdf, x_pdf) # return cdf_reflect(alpha) # #return self.x[numpy.argmin((cdf - alpha)**2)] def bayesianUpperLimit(self, alpha, steps=1.e5, plot=False): """ Compute one-sided upper limit using Bayesian Method of Helene. Several methods of increasing numerical stability have been implemented. """ x_dense, y_dense = self.densify() y_dense -= numpy.max(y_dense) # Numeric stability f = scipy.interpolate.interp1d(x_dense, y_dense, kind='linear') x = numpy.linspace(0., numpy.max(x_dense), steps) pdf = numpy.exp(f(x) / 2.) cut = (pdf / numpy.max(pdf)) > 1.e-10 x = x[cut] pdf = pdf[cut] #pdf /= pdf[0] #forbidden = numpy.nonzero(pdf < 1.e-10)[0] #if len(forbidden) > 0: # index = forbidden[0] # Numeric stability # x = x[0: index] # pdf = pdf[0: index] cdf = numpy.cumsum(pdf) cdf /= cdf[-1] cdf_reflect = scipy.interpolate.interp1d(cdf, x) #if plot: # pylab.figure() # pylab.plot(x, f(x)) # pylab.scatter(self.x, self.y, c='red') # # pylab.figure() # pylab.plot(x, pdf) # # pylab.figure() # pylab.plot(cdf, x) return cdf_reflect(alpha) def bayesianUpperLimit2(self, alpha, steps=1.e5, plot=False): """ Compute one-sided upper limit using Bayesian Method of Helene. """ cut = ((self.y / 2.) > -30.) # Numeric stability try: f = scipy.interpolate.interp1d(self.x[cut], self.y[cut], kind='cubic') except: f = scipy.interpolate.interp1d(self.x[cut], self.y[cut], kind='linear') x = numpy.linspace(0., numpy.max(self.x[cut]), steps) y = numpy.exp(f(x) / 2.) #forbidden = numpy.nonzero((y / numpy.exp(self.vertex_y / 2.)) < 1.e-10)[0] forbidden = numpy.nonzero((y / self.vertex_y) < 1.e-10)[0] if len(forbidden) > 0: index = forbidden[0] # Numeric stability x = x[0: index] y = y[0: index] cdf = numpy.cumsum(y) cdf /= cdf[-1] cdf_reflect = scipy.interpolate.interp1d(cdf, x) #if plot: # pylab.figure() # pylab.scatter(self.x, self.y) # # pylab.figure() # pylab.plot(x, f(x)) # # pylab.figure() # pylab.plot(x, y) # # pylab.figure() # pylab.plot(cdf, x) return cdf_reflect(alpha) """ if numpy.isnan(result): import pylab for ii in range(0, len(self.x)): print '%.3f %.3f'%(self.x[ii], self.y[ii]) pylab.figure() pylab.scatter(self.x, self.y) pylab.figure() pylab.scatter(cdf, x) raw_input('WAIT') return result """ def confidenceInterval(self, alpha=0.6827, steps=1.e5, plot=False): """ Compute two-sided confidence interval by taking x-values corresponding to the largest PDF-values first. """ x_dense, y_dense = self.densify() y_dense -= numpy.max(y_dense) # Numeric stability f = scipy.interpolate.interp1d(x_dense, y_dense, kind='linear') x = numpy.linspace(0., numpy.max(x_dense), steps) # ADW: Why does this start at 0, which often outside the input range? # Wouldn't starting at xmin be better: #x = numpy.linspace(numpy.min(x_dense), numpy.max(x_dense), steps) pdf = numpy.exp(f(x) / 2.) cut = (pdf / numpy.max(pdf)) > 1.e-10 x = x[cut] pdf = pdf[cut] sorted_pdf_indices = numpy.argsort(pdf)[::-1] # Indices of PDF in descending value cdf =
numpy.cumsum(pdf[sorted_pdf_indices])
numpy.cumsum
# Authors: # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD 3 clause from .assembling import buildElasticityMatrix from .bc import bcApplyWestMat, bcApplyWest_vec from .cg import cg from .projection import projection, GenEO_V0, minimal_V0, coarse_operators from petsc4py import PETSc from slepc4py import SLEPc import mpi4py.MPI as mpi import numpy as np import scipy as sp import os class PCBNN(object): #Neumann-Neumann and Additive Schwarz with no overlap def __init__(self, A_IS): """ Initialize the domain decomposition preconditioner, multipreconditioner and coarse space with its operators Parameters ========== A_IS : petsc.Mat The matrix of the problem in IS format. A must be a symmetric positive definite matrix with symmetric positive semi-definite submatrices PETSc.Options ============= PCBNN_switchtoASM :Bool Default is False If True then the domain decomposition preconditioner is the BNN preconditioner. If false then the domain decomposition precondition is the Additive Schwarz preconditioner with minimal overlap. PCBNN_kscaling : Bool Default is True. If true then kscaling (partition of unity that is proportional to the diagonal of the submatrices of A) is used when a partition of unity is required. Otherwise multiplicity scaling is used when a partition of unity is required. This may occur in two occasions: - to scale the local BNN matrices if PCBNN_switchtoASM=True, - in the GenEO eigenvalue problem for eigmin if PCBNN_switchtoASM=False and PCBNN_GenEO=True with PCBNN_GenEO_eigmin > 0 (see projection.__init__ for the meaning of these options). PCBNN_verbose : Bool If True, some information about the preconditioners is printed when the code is executed. PCBNN_GenEO : Bool Default is False. If True then the coarse space is enriched by solving local generalized eigenvalue problems. PCBNN_CoarseProjection : Bool Default is True. If False then there is no coarse projection: Two level Additive Schwarz or One-level preconditioner depending on PCBNN_addCoarseSolve. If True, the coarse projection is applied: Projected preconditioner of hybrid preconditioner depending on PCBNN_addCoarseSolve. PCBNN_addCoarseSolve : Bool Default is True. If True then (R0t A0\R0 r) is added to the preconditioned residual. False corresponds to the projected preconditioner (need to choose initial guess accordingly) (or the one level preconditioner if PCBNN_CoarseProjection = False). True corresponds to the hybrid preconditioner (or the fully additive preconditioner if PCBNN_CoarseProjection = False). """ OptDB = PETSc.Options() self.switchtoASM = OptDB.getBool('PCBNN_switchtoASM', False) #use Additive Schwarz as a preconditioner instead of BNN self.kscaling = OptDB.getBool('PCBNN_kscaling', True) #kscaling if true, multiplicity scaling if false self.verbose = OptDB.getBool('PCBNN_verbose', False) self.GenEO = OptDB.getBool('PCBNN_GenEO', True) self.addCS = OptDB.getBool('PCBNN_addCoarseSolve', True) self.projCS = OptDB.getBool('PCBNN_CoarseProjection', True) self.viewPC = OptDB.getBool('PCBNN_view', True) self.viewV0 = OptDB.getBool('PCBNN_viewV0', False) self.viewGenEOV0 = OptDB.getBool('PCBNN_viewGenEO', False) self.viewminV0 = OptDB.getBool('PCBNN_viewminV0', False) self.test_case = OptDB.getString('test_case', 'default') #extract Neumann matrix from A in IS format Ms = A_IS.copy().getISLocalMat() # convert A_IS from matis to mpiaij A_mpiaij = A_IS.convert('mpiaij') r, _ = A_mpiaij.getLGMap() #r, _ = A_IS.getLGMap() is_A = PETSc.IS().createGeneral(r.indices) # extract exact local solver As = A_mpiaij.createSubMatrices(is_A)[0] vglobal, _ = A_mpiaij.getVecs() vlocal, _ = Ms.getVecs() scatter_l2g = PETSc.Scatter().create(vlocal, None, vglobal, is_A) #compute the multiplicity of each degree vlocal.set(1.) vglobal.set(0.) scatter_l2g(vlocal, vglobal, PETSc.InsertMode.ADD_VALUES) scatter_l2g(vglobal, vlocal, PETSc.InsertMode.INSERT_VALUES, PETSc.ScatterMode.SCATTER_REVERSE) NULL,mult_max = vglobal.max() if self.viewPC: _, self.ns = vlocal.getSizes() _, self.nglob = vglobal.getSizes() tempglobal = vglobal.getArray(readonly=True) templocal = vlocal.getArray(readonly=True) self.nints = np.count_nonzero(tempglobal == 1) #interor dofs in this subdomain self.nGammas = np.count_nonzero(templocal -1) #interor dofs in this subdomain # k-scaling or multiplicity scaling of the local (non-assembled) matrix if self.kscaling == False: Ms.diagonalScale(vlocal,vlocal) else: v1 = As.getDiagonal() v2 = Ms.getDiagonal() Ms.diagonalScale(v1/v2, v1/v2) # the default local solver is the scaled non assembled local matrix (as in BNN) if self.switchtoASM: Atildes = As if mpi.COMM_WORLD.rank == 0: print('The user has chosen to switch to Additive Schwarz instead of BNN.') else: #(default) Atildes = Ms ksp_Atildes = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes.setOptionsPrefix("ksp_Atildes_") ksp_Atildes.setOperators(Atildes) ksp_Atildes.setType('preonly') pc_Atildes = ksp_Atildes.getPC() pc_Atildes.setType('cholesky') pc_Atildes.setFactorSolverType('mumps') ksp_Atildes.setFromOptions() ksp_Atildes_forSLEPc = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes_forSLEPc.setOptionsPrefix("ksp_Atildes_") ksp_Atildes_forSLEPc.setOperators(Atildes) ksp_Atildes_forSLEPc.setType('preonly') pc_Atildes_forSLEPc = ksp_Atildes_forSLEPc.getPC() pc_Atildes_forSLEPc.setType('cholesky') pc_Atildes_forSLEPc.setFactorSolverType('mumps') ksp_Atildes_forSLEPc.setFromOptions() self.A = A_mpiaij self.Ms = Ms self.As = As self.ksp_Atildes = ksp_Atildes self.ksp_Atildes_forSLEPc = ksp_Atildes_forSLEPc self.work = vglobal.copy() self.works_1 = vlocal.copy() self.works_2 = self.works_1.copy() self.scatter_l2g = scatter_l2g self.mult_max = mult_max self.minV0 = minimal_V0(self.ksp_Atildes) if self.viewminV0 == True: self.minV0.view() if self.GenEO == True: self.GenEOV0 = GenEO_V0(self.ksp_Atildes_forSLEPc,self.Ms,self.As,self.mult_max,self.minV0.V0s, self.minV0.labs) self.V0s = self.GenEOV0.V0s self.labs = self.GenEOV0.labs if self.viewGenEOV0 == True: self.GenEOV0.view() else: self.V0s = self.minV0.V0s self.labs = self.minV0.labs self.proj = coarse_operators(self.V0s,self.A,self.scatter_l2g,vlocal,self.work) #TODO implement better the case where no coarse projection is performed by not computing V0 at all if self.addCS == False and self.projCS == False: #no coarse operation so set the size of V0 to zero self.GenEO = False self.minV0.nrb = 0 self.minV0.labs = [] self.minV0.mumpsCntl3= [] self.proj.gathered_dimV0s= mpi.COMM_WORLD.gather(self.minV0.nrb, root=0) if self.viewV0 == True: self.proj.view() if self.viewPC == True: self.view() def mult(self, x, y): """ Applies the domain decomposition preconditioner followed by the projection preconditioner to a vector. Parameters ========== x : petsc.Vec The vector to which the preconditioner is to be applied. y : petsc.Vec The vector that stores the result of the preconditioning operation. """ ######################## ######################## xd = x.copy() if self.projCS == True: self.proj.project_transpose(xd) self.scatter_l2g(xd, self.works_1, PETSc.InsertMode.INSERT_VALUES, PETSc.ScatterMode.SCATTER_REVERSE) self.ksp_Atildes.solve(self.works_1, self.works_2) y.set(0.) self.scatter_l2g(self.works_2, y, PETSc.InsertMode.ADD_VALUES) if self.projCS == True: self.proj.project(y) if self.addCS == True: xd = x.copy() ytild = self.proj.coarse_init(xd) # I could save a coarse solve by combining this line with project_transpose y += ytild def MP_mult(self, x, y): """ Applies the domain decomposition multipreconditioner followed by the projection preconditioner to a vector. Parameters ========== x : petsc.Vec The vector to which the preconditioner is to be applied. y : FIX The list of ndom vectors that stores the result of the multipreconditioning operation (one vector per subdomain). """ self.scatter_l2g(x, self.works_1, PETSc.InsertMode.INSERT_VALUES, PETSc.ScatterMode.SCATTER_REVERSE) self.ksp_Atildes.solve(self.works_1, self.works_2) for i in range(mpi.COMM_WORLD.size): self.works_1.set(0) if mpi.COMM_WORLD.rank == i: self.works_1 = self.works_2.copy() y[i].set(0.) self.scatter_l2g(self.works_1, y[i], PETSc.InsertMode.ADD_VALUES) self.proj.project(y[i]) def apply(self,pc, x, y): """ Applies the domain decomposition preconditioner followed by the projection preconditioner to a vector. This is just a call to PCBNN.mult with the function name and arguments that allow PCBNN to be passed as a preconditioner to PETSc.ksp. Parameters ========== pc: This argument is not called within the function but it belongs to the standard way of calling a preconditioner. x : petsc.Vec The vector to which the preconditioner is to be applied. y : petsc.Vec The vector that stores the result of the preconditioning operation. """ self.mult(x,y) def view(self): self.gathered_ns = mpi.COMM_WORLD.gather(self.ns, root=0) self.gathered_nints = mpi.COMM_WORLD.gather(self.nints, root=0) self.gathered_Gammas = mpi.COMM_WORLD.gather(self.nGammas, root=0) self.minV0.gathered_dim = mpi.COMM_WORLD.gather(self.minV0.nrb, root=0) self.gathered_labs = mpi.COMM_WORLD.gather(self.labs, root=0) if self.GenEO == True: self.GenEOV0.gathered_nsharp = mpi.COMM_WORLD.gather(self.GenEOV0.n_GenEO_eigmax, root=0) self.GenEOV0.gathered_nflat = mpi.COMM_WORLD.gather(self.GenEOV0.n_GenEO_eigmin, root=0) self.GenEOV0.gathered_dimKerMs = mpi.COMM_WORLD.gather(self.GenEOV0.dimKerMs, root=0) self.GenEOV0.gathered_Lambdasharp = mpi.COMM_WORLD.gather(self.GenEOV0.Lambda_GenEO_eigmax, root=0) self.GenEOV0.gathered_Lambdaflat = mpi.COMM_WORLD.gather(self.GenEOV0.Lambda_GenEO_eigmin, root=0) if mpi.COMM_WORLD.rank == 0: print('#############################') print(f'view of PCBNN') print(f'{self.switchtoASM=}') print(f'{self.kscaling= }') print(f'{self.verbose= }') print(f'{self.GenEO= }') print(f'{self.addCS= }') print(f'{self.projCS= }') print(f'{self.viewPC= }') print(f'{self.viewV0= }') print(f'{self.viewGenEOV0= }') print(f'{self.viewminV0= }') print(f'{self.mult_max=}') print(f'### info about the subdomains ###') self.nint = np.sum(self.gathered_nints) self.nGamma = self.nglob - self.nint print(f'{self.gathered_ns =}') print(f'{self.gathered_nints =}') print(f'{self.gathered_Gammas=}') print(f'{self.nGamma=}') print(f'{self.nint=}') print(f'{self.nglob=}') print(f'{self.gathered_labs=}') print(f'### info about minV0.V0s = (Ker(Atildes)) ###') print(f'{self.minV0.mumpsCntl3=}') if (self.ksp_Atildes.pc.getFactorSolverType() == 'mumps'): print(f'dim(Ker(Atildes)) = {self.minV0.gathered_dim}') else: print(f'Ker(Atildes) not computed because pc is not mumps') if self.GenEO == True: print(f'### info about GenEOV0.V0s ###') print(f'{self.GenEOV0.tau_eigmax=}') print(f'{self.GenEOV0.tau_eigmin=}') print(f'{self.GenEOV0.eigmax=}') print(f'{self.GenEOV0.eigmin=}') print(f'{self.GenEOV0.nev=}') print(f'{self.GenEOV0.maxev=}') print(f'{self.GenEOV0.mumpsCntl3=}') print(f'{self.GenEOV0.verbose=}') print(f'{self.GenEOV0.gathered_nsharp=}') print(f'{self.GenEOV0.gathered_nflat=}') print(f'{self.GenEOV0.gathered_dimKerMs=}') #print(f'{np.array(self.GenEOV0.gathered_Lambdasharp)=}') #print(f'{np.array(self.GenEOV0.gathered_Lambdaflat)=}') print(f'### info about the coarse space ###') print(f'{self.proj.V0_is_global=}') print(f'{self.proj.gathered_dimV0s=}') if self.GenEO == True: print(f'global dim V0 = {np.sum(self.proj.gathered_dimV0s)} = ({np.sum(self.minV0.gathered_dim)} from Ker(Atildes)) + ({np.sum(self.GenEOV0.gathered_nsharp)} from GenEO_eigmax) + ({np.sum(self.GenEOV0.gathered_nflat)+np.sum(self.GenEOV0.gathered_dimKerMs)} from GenEO_eigmin)') else: print(f'global dim V0 = {np.sum(self.proj.gathered_dimV0s)} = ({np.sum(self.minV0.gathered_dim)} from Ker(Atildes))') print('#############################') self.savetofile() def savetofile(self): if mpi.COMM_WORLD.rank == 0: if not os.path.exists(self.test_case): os.mkdir(self.test_case) np.savez(f'{self.test_case}/init', switchtoASM= self.switchtoASM, kscaling = self.kscaling, verbose = self.verbose, GenEO = self.GenEO, addCS = self.addCS, projCS = self.projCS, viewPC = self.viewPC, viewV0 = self.viewV0, viewGenEOV0= self.viewGenEOV0, viewminV0 = self.viewminV0, mult_max = self.mult_max , gathered_ns = np.asarray(self.gathered_ns), gathered_nints = np.asarray(self.gathered_nints), gathered_Gammas = np.asarray(self.gathered_Gammas), nGamma = self.nGamma, nint = self.nint, nglob = self.nglob, minV0_mumpsCntl3 = self.minV0.mumpsCntl3, V0_is_global= self.proj.V0_is_global, gathered_dimV0s= np.asarray(self.proj.gathered_dimV0s), minV0_gathered_dim = np.asarray(self.minV0.gathered_dim), V0dim = np.sum(self.proj.gathered_dimV0s), minV0dim = np.sum(self.minV0.gathered_dim), gathered_labs= np.asarray(self.gathered_labs), ) if self.GenEO == True: np.savez(f'{self.test_case}/GenEO', tau_eigmax = self.GenEOV0.tau_eigmax, tau_eigmin = self.GenEOV0.tau_eigmin, eigmax = self.GenEOV0.eigmax, eigmin = self.GenEOV0.eigmin, nev = self.GenEOV0.nev, maxev = self.GenEOV0.maxev, mumpsCntl3 = self.GenEOV0.mumpsCntl3, verbose = self.GenEOV0.verbose, gathered_nsharp = self.GenEOV0.gathered_nsharp, gathered_nflat = self.GenEOV0.gathered_nflat, gathered_dimKerMs = self.GenEOV0.gathered_dimKerMs, gathered_Lambdasharp = np.asarray(self.GenEOV0.gathered_Lambdasharp,dtype='object'), gathered_Lambdaflat = np.asarray(self.GenEOV0.gathered_Lambdaflat,dtype='object'), sum_nsharp = np.sum(self.GenEOV0.gathered_nsharp), sum_nflat = np.sum(self.GenEOV0.gathered_nflat), sum_dimKerMs = np.sum(self.GenEOV0.gathered_dimKerMs) ) class PCNew: def __init__(self, A_IS): OptDB = PETSc.Options() self.switchtoASM = OptDB.getBool('PCNew_switchtoASM', False) #use Additive Schwarz as a preconditioner instead of BNN self.switchtoASMpos = OptDB.getBool('PCNew_switchtoASMpos', False) #use Additive Schwarz as a preconditioner instead of BNN self.verbose = OptDB.getBool('PCNew_verbose', False) self.GenEO = OptDB.getBool('PCNew_GenEO', True) #self.H2addCS = OptDB.getBool('PCNew_H2addCoarseSolve', True) self.H2projCS = OptDB.getBool('PCNew_H2CoarseProjection', True) self.H3addCS = OptDB.getBool('PCNew_H3addCoarseSolve', True) self.H3projCS = OptDB.getBool('PCNew_H3CoarseProjection', True) self.compute_ritz_apos = OptDB.getBool('PCNew_ComputeRitzApos', False) self.nev = OptDB.getInt('PCNew_Bs_nev', 20) #number of vectors asked to SLEPc for cmputing negative part of Bs self.viewPC = OptDB.getBool('PCNew_view', True) self.viewV0 = OptDB.getBool('PCNew_viewV0', False) self.viewGenEOV0 = OptDB.getBool('PCNew_viewGenEO', False) self.viewminV0 = OptDB.getBool('PCNew_viewminV0', False) self.viewnegV0 = OptDB.getBool('PCNew_viewnegV0', False) self.test_case = OptDB.getString('test_case', 'default') self.H2addCS = True #OptDB.getBool('PCNew_H2addCoarseSolve', True) (it is currently not an option to use a projected preconditioner for H2) # Compute Bs (the symmetric matrix in the algebraic splitting of A) # TODO: implement without A in IS format ANeus = A_IS.getISLocalMat() #only the IS is used for the algorithm, Mu = A_IS.copy() Mus = Mu.getISLocalMat() #the IS format is used to compute Mu (multiplicity of each pair of dofs) for i in range(ANeus.getSize()[0]): col, _ = ANeus.getRow(i) Mus.setValues([i], col, np.ones_like(col)) Mu.restoreISLocalMat(Mus) Mu.assemble() Mu = Mu.convert('mpiaij') A_mpiaij = A_IS.convert('mpiaij') B = A_mpiaij.duplicate() for i in range(*A_mpiaij.getOwnershipRange()): a_cols, a_values = A_mpiaij.getRow(i) _, b_values = Mu.getRow(i) B.setValues([i], a_cols, a_values/b_values, PETSc.InsertMode.INSERT_VALUES) B.assemble() # B.view() # A_mpiaij.view() # (A_mpiaij - B).view() # data = ANeus.getArray() # if mpi.COMM_WORLD.rank == 0: # print(dir(ANeus)) # print(type(ANeus), ANeus.getType()) ###################@ # convert A_IS from matis to mpiaij #A_mpiaij = A_IS.convertISToAIJ() r, _ = A_mpiaij.getLGMap() #r, _ = A_IS.getLGMap() is_A = PETSc.IS().createGeneral(r.indices) # extract exact local solver As = A_mpiaij.createSubMatrices(is_A)[0] Bs = B.createSubMatrices(is_A)[0] #mumps solver for Bs Bs_ksp = PETSc.KSP().create(comm=PETSc.COMM_SELF) Bs_ksp.setOptionsPrefix("Bs_ksp_") Bs_ksp.setOperators(Bs) Bs_ksp.setType('preonly') Bs_pc = Bs_ksp.getPC() Bs_pc.setType('cholesky') Bs_pc.setFactorSolverType('mumps') Bs_pc.setFactorSetUpSolverType() Bs_pc.setUp() Bs_ksp.setFromOptions() #temp = Bs.getValuesCSR() work, _ = A_mpiaij.getVecs() work_2 = work.duplicate() works, _ = As.getVecs() works_2 = works.duplicate() mus = works.duplicate() scatter_l2g = PETSc.Scatter().create(works, None, work, is_A) #compute the multiplicity of each dof work = Mu.getDiagonal() NULL,mult_max = work.max() scatter_l2g(work, mus, PETSc.InsertMode.INSERT_VALUES, PETSc.ScatterMode.SCATTER_REVERSE) if self.viewPC: _, self.ns = mus.getSizes() _, self.nglob = work.getSizes() tempglobal = work.getArray(readonly=True) templocal = mus.getArray(readonly=True) self.nints = np.count_nonzero(tempglobal == 1) #interor dofs in this subdomain self.nGammas = np.count_nonzero(templocal -1) #interor dofs in this subdomain invmus = mus.duplicate() invmus = 1/mus if mpi.COMM_WORLD.rank == 0: print(f'multmax: {mult_max}') DVnegs = [] Vnegs = [] invmusVnegs = [] #BEGIN diagonalize Bs #Eigenvalue Problem for smallest eigenvalues eps = SLEPc.EPS().create(comm=PETSc.COMM_SELF) eps.setDimensions(nev=self.nev) eps.setProblemType(SLEPc.EPS.ProblemType.HEP) eps.setOperators(Bs) #print(f'dimension of Bs : {Bs.getSize()}') #OPTION 1: works but dense algebra eps.setType(SLEPc.EPS.Type.LAPACK) eps.setWhichEigenpairs(SLEPc.EPS.Which.SMALLEST_REAL) #with lapack this just tells slepc how to order the eigenpairs ##END OPTION 1 ##OPTION 2: default solver (Krylov Schur) but error with getInertia - is there a MUMPS mattype - Need to use MatCholeskyFactor #if Which eigenpairs is set to SMALLEST_REAL, some are computed but not all ##Bs.setOption(PETSc.Mat.Option.SYMMETRIC, True) ##Bs.convert('sbaij') ##IScholBs = is_A.duplicate() ##Bs.factorCholesky(IScholBs) #not implemented #tempksp = PETSc.KSP().create(comm=PETSc.COMM_SELF) #tempksp.setOperators(Bs) #tempksp.setType('preonly') #temppc = tempksp.getPC() #temppc.setType('cholesky') #temppc.setFactorSolverType('mumps') #temppc.setFactorSetUpSolverType() #tempF = temppc.getFactorMatrix() #tempF.setMumpsIcntl(13, 1) #needed to compute intertia according to slepcdoc, inertia computation still doesn't work though #temppc.setUp() ##eps.setOperators(tempF) #eps.setWhichEigenpairs(SLEPc.EPS.Which.ALL) #eps.setInterval(PETSc.NINFINITY,0.0) #eps.setUp() ##eps.setWhichEigenpairs(SLEPc.EPS.Which.TARGET_REAL) ##eps.setTarget(0.) ##if len(Vnegs) > 0 : ## eps.setDeflationSpace(Vnegs) ##if mpi.COMM_WORLD.rank == 0: ## eps.view() ##END OPTION 2 eps.solve() if eps.getConverged() < self.nev: PETSc.Sys.Print('for Bs in subdomain {}: {} eigenvalues converged (less that the {} requested)'.format(mpi.COMM_WORLD.rank, eps.getConverged(), self.nev), comm=PETSc.COMM_SELF) Dnegs = [] Dposs = [] for i in range(eps.getConverged()): tempscalar = np.real(eps.getEigenvalue(i)) if tempscalar < 0. : Dnegs.append(-1.*tempscalar) Vnegs.append(works.duplicate()) eps.getEigenvector(i,Vnegs[-1]) DVnegs.append(Dnegs[-1] * Vnegs[-1]) invmusVnegs.append(invmus * Vnegs[-1]) else : Dposs.append(tempscalar) if self.verbose: PETSc.Sys.Print('for Bs in subdomain {}: ncv= {} with {} negative eigs'.format(mpi.COMM_WORLD.rank, eps.getConverged(), len(Vnegs), self.nev), comm=PETSc.COMM_SELF) print(f'values of Dnegs {np.array(Dnegs)}') nnegs = len(Dnegs) #print(f'length of Dnegs {nnegs}') #END diagonalize Bs if self.viewnegV0: print('###') print(f'view of Vneg in Subdomain {mpi.COMM_WORLD.rank}') print(f'ncv = {eps.getConverged()} eigenvalues converged') print(f'{nnegs=}') print(f'values of Dnegs: {np.array(Dnegs)}') works.set(0.) RsVnegs = [] Vneg = [] Dneg = [] RsDVnegs = [] RsDnegs = [] for i in range(mpi.COMM_WORLD.size): nnegi = len(Vnegs) if i == mpi.COMM_WORLD.rank else None nnegi = mpi.COMM_WORLD.bcast(nnegi, root=i) for j in range(nnegi): Vneg.append(Vnegs[j].copy() if i == mpi.COMM_WORLD.rank else works.copy()) dnegi = Dnegs[j] if i == mpi.COMM_WORLD.rank else None dnegi = mpi.COMM_WORLD.bcast(dnegi, root=i) Dneg.append(dnegi) #print(f'i Dneg[i] = {i} {Dneg[i]}') for i, vec in enumerate(Vneg): work.set(0) scatter_l2g(vec, work, PETSc.InsertMode.ADD_VALUES) scatter_l2g(work, works, PETSc.InsertMode.INSERT_VALUES, PETSc.ScatterMode.SCATTER_REVERSE) if works.norm() != 0: RsVnegs.append(works.copy()) RsDVnegs.append(Dneg[i]*works.copy()) RsDnegs.append(Dneg[i]) #TO DO: here implement RsVnegs and RsDVnegs #self.Vneg = Vneg # self.Vnegs = Vnegs # self.DVnegs = DVnegs # self.scatterl #Local Apos and Aneg Aneg = PETSc.Mat().createPython([work.getSizes(), work.getSizes()], comm=PETSc.COMM_WORLD) Aneg.setPythonContext(Aneg_ctx(Vnegs, DVnegs, scatter_l2g, works, works_2)) Aneg.setUp() Apos = PETSc.Mat().createPython([work.getSizes(), work.getSizes()], comm=PETSc.COMM_WORLD) Apos.setPythonContext(Apos_ctx(A_mpiaij, Aneg )) Apos.setUp() #A pos = A_mpiaij + Aneg so it could be a composite matrix rather than Python type Anegs = PETSc.Mat().createPython([works.getSizes(), works.getSizes()], comm=PETSc.COMM_SELF) Anegs.setPythonContext(Anegs_ctx(Vnegs, DVnegs)) Anegs.setUp() Aposs = PETSc.Mat().createPython([works.getSizes(), works.getSizes()], comm=PETSc.COMM_SELF) Aposs.setPythonContext(Aposs_ctx(Bs, Anegs )) Aposs.setUp() projVnegs = PETSc.Mat().createPython([works.getSizes(), works.getSizes()], comm=PETSc.COMM_SELF) projVnegs.setPythonContext(projVnegs_ctx(Vnegs)) projVnegs.setUp() projVposs = PETSc.Mat().createPython([works.getSizes(), works.getSizes()], comm=PETSc.COMM_SELF) projVposs.setPythonContext(projVposs_ctx(projVnegs)) projVposs.setUp() #TODO Implement RsAposRsts, this is the restriction of Apos to the dofs in this subdomain. So it applies to local vectors but has non local operations RsAposRsts = PETSc.Mat().createPython([works.getSizes(), works.getSizes()], comm=PETSc.COMM_SELF) #or COMM_WORLD ? RsAposRsts.setPythonContext(RsAposRsts_ctx(As,RsVnegs,RsDVnegs)) RsAposRsts.setUp() invAposs = PETSc.Mat().createPython([works.getSizes(), works.getSizes()], comm=PETSc.COMM_SELF) invAposs.setPythonContext(invAposs_ctx(Bs_ksp, projVposs )) invAposs.setUp() ksp_Aposs = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Aposs.setOperators(Aposs) ksp_Aposs.setType('preonly') pc_Aposs = ksp_Aposs.getPC() pc_Aposs.setType('python') pc_Aposs.setPythonContext(invAposs_ctx(Bs_ksp,projVposs)) ksp_Aposs.setUp() work.set(1.) Ms = PETSc.Mat().createPython([works.getSizes(), works.getSizes()], comm=PETSc.COMM_SELF) Ms.setPythonContext(scaledmats_ctx(Aposs, mus, mus)) Ms.setUp() ksp_Ms = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Ms.setOptionsPrefix("ksp_Ms_") ksp_Ms.setOperators(Ms) ksp_Ms.setType('preonly') pc_Ms = ksp_Ms.getPC() pc_Ms.setType('python') pc_Ms.setPythonContext(scaledmats_ctx(invAposs,invmus,invmus) ) ksp_Ms.setFromOptions() #once a ksp has been passed to SLEPs it cannot be used again so we use a second, identical, ksp for SLEPc as a temporary fix ksp_Ms_forSLEPc = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Ms_forSLEPc.setOptionsPrefix("ksp_Ms_") ksp_Ms_forSLEPc.setOperators(Ms) ksp_Ms_forSLEPc.setType('preonly') pc_Ms_forSLEPc = ksp_Ms_forSLEPc.getPC() pc_Ms_forSLEPc.setType('python') pc_Ms_forSLEPc.setPythonContext(scaledmats_ctx(invAposs,invmus,invmus) ) ksp_Ms_forSLEPc.setFromOptions() # the default local solver is the scaled non assembled local matrix (as in BNN) if self.switchtoASM: Atildes = As if mpi.COMM_WORLD.rank == 0: print('Switch to Additive Schwarz instead of BNN.') ksp_Atildes = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes.setOptionsPrefix("ksp_Atildes_") ksp_Atildes.setOperators(Atildes) ksp_Atildes.setType('preonly') pc_Atildes = ksp_Atildes.getPC() pc_Atildes.setType('cholesky') pc_Atildes.setFactorSolverType('mumps') ksp_Atildes.setFromOptions() #once a ksp has been passed to SLEPs it cannot be used again so we use a second, identical, ksp for SLEPc as a temporary fix ksp_Atildes_forSLEPc = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes_forSLEPc.setOptionsPrefix("ksp_Atildes_") ksp_Atildes_forSLEPc.setOperators(Atildes) ksp_Atildes_forSLEPc.setType('preonly') pc_Atildes_forSLEPc = ksp_Atildes_forSLEPc.getPC() pc_Atildes_forSLEPc.setType('cholesky') pc_Atildes_forSLEPc.setFactorSolverType('mumps') ksp_Atildes_forSLEPc.setFromOptions() if self.switchtoASMpos: if mpi.COMM_WORLD.rank == 0: print('switchtoASMpos has been ignored in favour of switchtoASM.') elif self.switchtoASMpos: Atildes = RsAposRsts if mpi.COMM_WORLD.rank == 0: print('Switch to Apos Additive Schwarz instead of BNN.') ksp_Atildes = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes.setOptionsPrefix("ksp_Atildes_") ksp_Atildes.setOperators(Atildes) ksp_Atildes.setType('preonly') pc_Atildes = ksp_Atildes.getPC() pc_Atildes.setType('python') pc_Atildes.setPythonContext(invRsAposRsts_ctx(As,RsVnegs,RsDnegs,works)) ksp_Atildes.setFromOptions() #once a ksp has been passed to SLEPs it cannot be used again so we use a second, identical, ksp for SLEPc as a temporary fix ksp_Atildes_forSLEPc = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes_forSLEPc.setOptionsPrefix("ksp_Atildes_") ksp_Atildes_forSLEPc.setOperators(Atildes) ksp_Atildes_forSLEPc.setType('preonly') pc_Atildes_forSLEPc = ksp_Atildes_forSLEPc.getPC() pc_Atildes_forSLEPc.setType('python') pc_Atildes_forSLEPc.setPythonContext(invRsAposRsts_ctx(As,RsVnegs,RsDnegs,works)) ksp_Atildes_forSLEPc.setFromOptions() else: #(default) Atildes = Ms ksp_Atildes = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes.setOptionsPrefix("ksp_Atildes_") ksp_Atildes.setOperators(Atildes) ksp_Atildes.setType('preonly') pc_Atildes = ksp_Atildes.getPC() pc_Atildes.setType('python') pc_Atildes.setPythonContext(scaledmats_ctx(invAposs,invmus,invmus) ) ksp_Atildes.setFromOptions() #once a ksp has been passed to SLEPs it cannot be used again so we use a second, identical, ksp for SLEPc as a temporary fix ksp_Atildes_forSLEPc = PETSc.KSP().create(comm=PETSc.COMM_SELF) ksp_Atildes_forSLEPc.setOptionsPrefix("ksp_Atildes_") ksp_Atildes_forSLEPc.setOperators(Atildes) ksp_Atildes_forSLEPc.setType('preonly') pc_Atildes_forSLEPc = ksp_Atildes_forSLEPc.getPC() pc_Atildes_forSLEPc.setType('python') pc_Atildes_forSLEPc.setPythonContext(scaledmats_ctx(invAposs,invmus,invmus) ) ksp_Atildes_forSLEPc.setFromOptions() labs=[] for i, tmp in enumerate(Dnegs): labs.append(f'(\Lambda_-^s)_{i} = {-1.*tmp}') minV0 = minimal_V0(ksp_Atildes,invmusVnegs,labs) #won't compute anything more vecause the solver for Atildes is not mumps minV0s = minV0.V0s labs = minV0.labs if self.viewminV0 == True: minV0.view() self.A = A_mpiaij self.Apos = Apos self.Aneg = Aneg self.Ms = Ms self.As = As self.RsAposRsts = RsAposRsts self.ksp_Atildes = ksp_Atildes self.ksp_Ms = ksp_Ms self.ksp_Atildes_forSLEPc = ksp_Atildes_forSLEPc self.ksp_Ms_forSLEPc = ksp_Ms_forSLEPc self.work = work self.work_2 = work_2 self.works_1 = works self.works_2 = works_2 self.scatter_l2g = scatter_l2g self.mult_max = mult_max self.ksp_Atildes = ksp_Atildes self.minV0 = minV0 self.labs = labs self.Dnegs = Dnegs self.nnegs = nnegs self.works_1.set(1.) self.RsAposRsts.mult(self.works_1,self.works_2) if self.GenEO == True: print(f'{labs=}') self.GenEOV0 = GenEO_V0(self.ksp_Atildes_forSLEPc,self.Ms,self.RsAposRsts,self.mult_max,minV0s,labs,self.ksp_Ms_forSLEPc) self.V0s = self.GenEOV0.V0s if self.viewGenEOV0 == True: self.GenEOV0.view() print(f'{self.GenEOV0.labs=}') else: self.V0s = minV0s self.proj2 = coarse_operators(self.V0s,self.Apos,self.scatter_l2g,self.works_1,self.work) if self.viewV0 == True: self.proj2.view() # work.set(1.) # test = work.copy() # test = self.proj2.coarse_init(work) # testb = work.copy() # self.proj2.project(testb) # testc = work.copy() # self.proj2.project_transpose(testc) # testd = work.copy() # self.apply([], work,testd) self.H2 = PETSc.Mat().createPython([work.getSizes(), work.getSizes()], comm=PETSc.COMM_WORLD) self.H2.setPythonContext(H2_ctx(self.H2projCS, self.H2addCS, self.proj2, self.scatter_l2g, self.ksp_Atildes, self.works_1, self.works_2 )) self.H2.setUp() self.ksp_Apos = PETSc.KSP().create(comm=PETSc.COMM_WORLD) self.ksp_Apos.setOptionsPrefix("ksp_Apos_") self.ksp_Apos.setOperators(Apos) self.ksp_Apos.setType("cg") if self.compute_ritz_apos: self.ksp_Apos.setComputeEigenvalues(True) self.pc_Apos = self.ksp_Apos.getPC() self.pc_Apos.setType('python') self.pc_Apos.setPythonContext(H2_ctx(self.H2projCS, self.H2addCS, self.proj2, self.scatter_l2g, self.ksp_Atildes, self.works_1, self.works_2 )) self.ksp_Apos.setFromOptions() self.pc_Apos.setFromOptions() #At this point the preconditioner for Apos is ready if self.verbose: if mpi.COMM_WORLD.rank == 0: print(f'#V0(H2) = rank(Ker(Pi2)) = {len(self.proj2.V0)}') Vneg = [] for i in range(mpi.COMM_WORLD.size): nnegi = len(Vnegs) if i == mpi.COMM_WORLD.rank else None nnegi = mpi.COMM_WORLD.bcast(nnegi, root=i) for j in range(nnegi): if i == mpi.COMM_WORLD.rank: works = Vnegs[j].copy() else: works.set(0.) self.work.set(0) self.scatter_l2g(works, self.work, PETSc.InsertMode.ADD_VALUES) Vneg.append(self.work.copy()) AposinvV0 = [] self.ritz_eigs_apos = None for vec in Vneg: self.ksp_Apos.solve(vec,self.work_2) if self.compute_ritz_apos and self.ritz_eigs_apos is None: self.ritz_eigs_apos = self.ksp_Apos.computeEigenvalues() self.ksp_Apos.setComputeEigenvalues(False) AposinvV0.append(self.work_2.copy()) self.AposinvV0 = AposinvV0 self.proj3 = coarse_operators(self.AposinvV0,self.A,self.scatter_l2g,self.works_1,self.work,V0_is_global=True) self.proj = self.proj3 #this name is consistent with the proj in PCBNN ############################### # ###Alternative to assembling the second coarse operators # # ### # self.Id = PETSc.Mat().createPython([work.getSizes(), work.getSizes()], comm=PETSc.COMM_WORLD) # self.Id.setPythonContext(Id_ctx()) # self.Id.setUp() # # #self.Id = PETSc.Mat().create(comm=PETSc.COMM_SELF) # #self.Id.setType("constantdiagonal") #I don't know how to set the value to 1 # # #self.N = PETSc.Mat().createPython([work.getSizes(), work.getSizes()], comm=PETSc.COMM_WORLD) # #self.N.setPythonContext(N_ctx(self.Aneg,self.A,self.ksp_Apos,self.work,self.work_2)) # #self.N.setUp() # # #self.ksp_N = PETSc.KSP().create(comm=PETSc.COMM_WORLD) # #self.ksp_N.setOptionsPrefix("ksp_N_") # #self.ksp_N.setOperators(self.N) # #self.ksp_N.setType("gmres") # #self.ksp_N.setGMRESRestart(151) ## # if self.compute_ritz_N: # #self.ksp_N.setComputeEigenvalues(True) # ##self.pc_N = self.ksp_N.getPC() # ##self.pc_N.setType('python') # ##self.pc_N.setPythonContext( # #self.ksp_N.setFromOptions() # self.proj4 = coarse_operators(Vneg,self.Id,self.scatter_l2g,self.works_1,self.work,V0_is_global=True) # # self.ProjA = PETSc.Mat().createPython([work.getSizes(), work.getSizes()], comm=PETSc.COMM_WORLD) # self.ProjA.setPythonContext(ProjA_ctx(self.proj4,self.A)) # self.ProjA.setUp() # self.work.set(1.) # #test = self.work.duplicate() # #self.ProjA.mult(self.work,test) # #print('self.ProjA works ok') # # self.ksp_ProjA = PETSc.KSP().create(comm=PETSc.COMM_WORLD) # self.ksp_ProjA.setOptionsPrefix("ksp_ProjA_") # self.ksp_ProjA.setOperators(self.ProjA) # self.ksp_ProjA.setType("gmres") # self.ksp_ProjA.setGMRESRestart(151) # self.ksp_ProjA.setComputeEigenvalues(True) # #self.pc_ProjA = self.ksp_N.getPC() # #self.pc_ProjA.setType('python') # #self.pc_ProjA.setPythonContext( # self.ksp_ProjA.setFromOptions() ############################### ## if self.viewV0 == True: self.proj.view() if self.viewPC == True: self.view() ##Debug DEBUG # works_3 = works.copy() ##projVnegs is a projection # #works.setRandom() # works.set(1.) # projVnegs.mult(works,works_2) # projVnegs.mult(works_2,works_3) # print(f'check that projVnegs is a projection {works_2.norm()} = {works_3.norm()} < {works.norm()}') ##projVposs is a projection ##Pythagoras ok # works.setRandom() # #works.set(1.) # projVnegs.mult(works,works_2) # projVposs.mult(works,works_3) # print(f'{works_2.norm()**2} + {works_3.norm()**2}= {works_2.norm()**2 + works_3.norm()**2} = {(works.norm())**2}') # print(f'0 = {(works - works_2 - works_3).norm()} if the two projections sum to identity') ##Aposs = projVposs Bs projVposs = Bs projVposs (it is implemented as Bs + Anegs) # works_4 = works.copy() # works.setRandom() # #works.set(1.) # projVposs.mult(works,works_2) # Bs.mult(works_2,works_3) # projVposs.mult(works_3,works_2) # Aposs.mult(works,works_4) # print(f'check Aposs = projVposs Bs projVposs = Bs projVposs: {works_2.norm()} = {works_3.norm()} = {works_4.norm()}') # print(f'norms of diffs (should be zero): {(works_2 - works_3).norm()}, {(works_2 - works_4).norm()}, {(works_3 - works_4).norm()}') ###check that Aposs > 0 and Anegs >0 but Bs is indefinite + "Pythagoras" # works_4 = works.copy() # works.set(1.) #(with vector full of ones I get a negative Bs semi-norm) # Bs.mult(works,works_4) # Aposs.mult(works,works_2) # Anegs.mult(works,works_3) # print(f'|.|_Bs {works_4.dot(works)} (can be neg or pos); |.|_Aposs {works_2.dot(works)} > 0; |.|_Anegs {works_3.dot(works)} >0') # print(f' |.|_Bs^2 = |.|_Aposs^2 - |.|_Anegs ^2 = {works_2.dot(works)} - {works_3.dot(works)} = {works_2.dot(works) - works_3.dot(works)} = {works_4.dot(works)} ')## ###check that ksp_Aposs.solve(Aposs * x) = projVposs x # works_4 = works.copy() # works.setRandom() # #works.set(1.) # projVposs.mult(works,works_2) # Aposs(works,works_3) # ksp_Aposs.solve(works_3,works_4) # works_5 = works_2 - works_4 # print(f'norm x = {works.norm()}; norm projVposs x = {works_2.norm()} = norm Aposs\Aposs*x = {works_4.norm()}; normdiff = {works_5.norm()}') ####check that mus*invmus = vec of ones # works.set(1.0) # works_2 = invmus*mus # works_3 = works - works_2 # print(f'0 = norm(vec of ones - mus*invmus) = {works_3.norm()}, mus in [{mus.min()}, {mus.max()}], invmus in [{invmus.min()}, {invmus.max()}]') ###check that Ms*ksp_Ms.solve(Ms*x) = Ms*x # works_4 = works.copy() # works.setRandom() # Atildes.mult(works,works_3) # self.ksp_Atildes.solve(works_3,works_4) # Atildes.mult(works_4,works_2) # works_5 = works_2 - works_3 # print(f'norm x = {works.norm()}; Atilde*x = {works_3.norm()} = norm Atilde*(Atildes\Atildes)*x = {works_2.norm()}; normdiff = {works_5.norm()}') ###check Apos by implementing it a different way in Apos_debug # Apos_debug = PETSc.Mat().createPython([work.getSizes(), work.getSizes()], comm=PETSc.COMM_WORLD) # Apos_debug.setPythonContext(Apos_debug_ctx(projVposs, Aposs, scatter_l2g, works, work)) # Apos_debug.setUp() # work.setRandom() # test = work.duplicate() # test2 = work.duplicate() # Apos.mult(work,test) # Apos_debug.mult(work,test2) # testdiff = test-test2 # print(f'norm of |.|_Apos = {np.sqrt(test.dot(work))} = |.|_Apos_debug = {np.sqrt(test2.dot(work))} ; norm of diff = {testdiff.norm()}') ### ###check that the projection in proj2 is a self.proj2.A orth projection #work.setRandom() # work.set(1.) # test = work.copy() # self.proj2.project(test) # test2 = test.copy() # self.proj2.project(test2) # testdiff = test-test2 # print(f'norm(Pi x - Pi Pix) = {testdiff.norm()} = 0') # self.proj2.A.mult(test,test2) # test3 = work.duplicate() # self.proj2.A.mult(work,test3) # print(f'|Pi x|_A^2 - |x|_A^2 = {test.dot(test2)} - {work.dot(test3)} = {test.dot(test2) - work.dot(test3)} < 0 ') # #test2 = A Pi x ( = Pit A Pi x) # test3 = test2.copy() # self.proj2.project_transpose(test3) # test = test3.copy() # self.proj2.project_transpose(test) # testdiff = test3 - test2 # print(f'norm(A Pi x - Pit A Pix) = {testdiff.norm()} = 0 = {(test - test3).norm()} = norm(Pit Pit A Pi x - Pit A Pix); compare to norm(A Pi x) = {test2.norm()} ') # #work.setRandom() # work.set(1.) # test2 = work.copy() # self.proj2.project_transpose(test2) # test2 = -1*test2 # test2 += work # # test = work.copy() # test = self.proj2.coarse_init(work) # test3 = work.duplicate() # self.proj2.A.mult(test,test3) ###check that the projection in proj3 is a self.proj3.A orth projection whose image includes Ker(Aneg) # #work.setRandom() # work.set(1.) # test = work.copy() # self.proj3.project(test) # test2 = test.copy() # self.proj3.project(test2) # testdiff = test-test2 # print(f'norm(Pi x - Pi Pix) = {testdiff.norm()} = 0') # self.proj3.A.mult(test,test2) # test3 = work.duplicate() # self.proj3.A.mult(work,test3) # print(f'|Pi x|_A^2 - |x|_A^2 = {test.dot(test2)} - {work.dot(test3)} = {test.dot(test2) - work.dot(test3)} < 0 ') # #test2 = A Pi x ( = Pit A Pi x) # test3 = test2.copy() # self.proj3.project_transpose(test3) # test = test3.copy() # self.proj3.project_transpose(test) # testdiff = test3 - test2 # print(f'norm(A Pi x - Pit A Pix) = {testdiff.norm()} = 0 = {(test - test3).norm()} = norm(Pit Pit A Pi x - Pit A Pix); compare to norm(A Pi x) = {test2.norm()} ') # #work.setRandom() # work.set(1.) # test2 = work.copy() # self.proj3.project_transpose(test2) # test2 = -1*test2 # test2 += work # # test = work.copy() # test = self.proj3.coarse_init(work) # test3 = work.duplicate() # self.proj3.A.mult(test,test3) # # print(f'norm(A coarse_init(b)) = {test3.norm()} = {test2.norm()} = norm((I-Pit b)); norm diff = {(test2 - test3).norm()}') # # work.set(1.) # test = work.copy() # test2 = work.copy() # self.proj3.project(test2) # test3 = work.copy() # self.proj3.project(test3) # test = work.copy() # self.Apos.mult(test2,test) # test2 = work.copy() # self.A.mult(test3,test2) # print(f'norm(Apos Pi3 x) = {test.norm()} = {test2.norm()} = norm(A Pi3 x); norm diff = {(test - test2).norm()}') # for vec in self.AposinvV0: # test = vec.copy() # self.proj3.project(test) # print(f'norm(Pi3 AposinvV0[i]) = {test.norm()} compare to norm of the non projected vector norm ={(vec).norm()}') # ### END Debug DEBUG def mult(self, x, y): """ Applies the domain decomposition preconditioner followed by the projection preconditioner to a vector. Parameters ========== x : petsc.Vec The vector to which the preconditioner is to be applied. y : petsc.Vec The vector that stores the result of the preconditioning operation. """ ######################## ######################## xd = x.copy() if self.H3projCS == True: self.proj3.project_transpose(xd) self.H2.mult(xd,y) if self.H3projCS == True: self.proj3.project(y) if self.H3addCS == True: xd = x.copy() ytild = self.proj3.coarse_init(xd) # I could save a coarse solve by combining this line with project_transpose if ytild.dot(xd) < 0: print(f'x.dot(coarse_init(x)) = {ytild.dot(xd)} < 0 ') y += ytild def MP_mult(self, x, y): """ Applies the domain decomposition multipreconditioner followed by the projection preconditioner to a vector. Parameters ========== x : petsc.Vec The vector to which the preconditioner is to be applied. y : FIX The list of ndom vectors that stores the result of the multipreconditioning operation (one vector per subdomain). """ print('not implemented') def apply(self, pc, x, y): """ Applies the domain decomposition preconditioner followed by the projection preconditioner to a vector. This is just a call to PCNew.mult with the function name and arguments that allow PCNew to be passed as a preconditioner to PETSc.ksp. Parameters ========== pc: This argument is not called within the function but it belongs to the standard way of calling a preconditioner. x : petsc.Vec The vector to which the preconditioner is to be applied. y : petsc.Vec The vector that stores the result of the preconditioning operation. """ self.mult(x,y) def view(self): self.gathered_ns = mpi.COMM_WORLD.gather(self.ns, root=0) self.gathered_nints = mpi.COMM_WORLD.gather(self.nints, root=0) self.gathered_Gammas = mpi.COMM_WORLD.gather(self.nGammas, root=0) self.minV0.gathered_dim = mpi.COMM_WORLD.gather(self.minV0.nrb, root=0) self.gathered_labs = mpi.COMM_WORLD.gather(self.labs, root=0) self.gathered_nneg = mpi.COMM_WORLD.gather(self.nnegs, root=0) self.gathered_Dneg = mpi.COMM_WORLD.gather(self.Dnegs, root=0) if self.GenEO == True: self.GenEOV0.gathered_nsharp = mpi.COMM_WORLD.gather(self.GenEOV0.n_GenEO_eigmax, root=0) self.GenEOV0.gathered_nflat = mpi.COMM_WORLD.gather(self.GenEOV0.n_GenEO_eigmin, root=0) self.GenEOV0.gathered_dimKerMs = mpi.COMM_WORLD.gather(self.GenEOV0.dimKerMs, root=0) self.GenEOV0.gathered_Lambdasharp = mpi.COMM_WORLD.gather(self.GenEOV0.Lambda_GenEO_eigmax, root=0) self.GenEOV0.gathered_Lambdaflat = mpi.COMM_WORLD.gather(self.GenEOV0.Lambda_GenEO_eigmin, root=0) if mpi.COMM_WORLD.rank == 0: print('#############################') print(f'view of PCNew') print(f'{self.switchtoASM=}') print(f'{self.verbose= }') print(f'{self.GenEO= }') print(f'{self.H3addCS= }') print(f'{self.H3projCS= }') print(f'{self.H2projCS= }') print(f'{self.viewPC= }') print(f'{self.viewV0= }') print(f'{self.viewGenEOV0= }') print(f'{self.viewnegV0= }') print(f'{self.viewminV0= }') print(f'{self.compute_ritz_apos=}') print(f'{self.mult_max=}') print(f'### info about the subdomains ###') self.nint = np.sum(self.gathered_nints) self.nGamma = self.nglob - self.nint print(f'{self.gathered_ns =}') print(f'{self.gathered_nints =}') print(f'{self.gathered_Gammas=}') print(f'{self.nGamma=}') print(f'{self.nint=}') print(f'{self.nglob=}') print(f'{self.gathered_labs=}') print(f'### info about minV0.V0s = (Ker(Atildes)) ###') print(f'{self.minV0.mumpsCntl3=}') print(f'###info about Vnegs = rank(Anegs) = coarse components for proj3') print(f'{self.gathered_nneg=}') print(f'{np.sum(self.gathered_nneg)=}') if (self.ksp_Atildes.pc.getFactorSolverType() == 'mumps'): print(f'dim(Ker(Atildes)) = {self.minV0.gathered_dim}') else: print(f'Ker(Atildes) not computed because pc is not mumps') if self.GenEO == True: print(f'### info about GenEOV0.V0s ###') print(f'{self.GenEOV0.tau_eigmax=}') print(f'{self.GenEOV0.tau_eigmin=}') print(f'{self.GenEOV0.eigmax=}') print(f'{self.GenEOV0.eigmin=}') print(f'{self.GenEOV0.nev=}') print(f'{self.GenEOV0.maxev=}') print(f'{self.GenEOV0.mumpsCntl3=}') print(f'{self.GenEOV0.verbose=}') print(f'{self.GenEOV0.gathered_nsharp=}') print(f'{self.GenEOV0.gathered_nflat=}') #print(f'{self.GenEOV0.gathered_dimKerMs=}') #print(f'{np.array(self.GenEOV0.gathered_Lambdasharp)=}') #print(f'{np.array(self.GenEOV0.gathered_Lambdaflat)=}') print(f'### info about the preconditioner for Apos ###') print(f'{self.proj2.V0_is_global=}') if(self.proj2.V0_is_global == False): print(f'{self.proj2.gathered_dimV0s=}') if self.GenEO == True: print(f'global dim V0 for Apos = {self.proj2.dim} = ({np.sum(self.gathered_nneg)} from Vneg ) + ({np.sum(self.minV0.gathered_dim)} from Ker(Atildes)) + ({np.sum(self.GenEOV0.gathered_nsharp)} from GenEO_eigmax) + ({np.sum(self.GenEOV0.gathered_nflat) } from GenEO_eigmin)') else: print(f'global dim V0 for Apos = {np.sum(self.proj2.gathered_dimV0s)} = ({np.sum(self.minV0.gathered_dim)} from Ker(Atildes))') if self.compute_ritz_apos and self.ritz_eigs_apos is not None: print(f'Estimated kappa(H2 Apos) = {self.ritz_eigs_apos.max()/self.ritz_eigs_apos.min() }; with lambdamin = {self.ritz_eigs_apos.min()} and lambdamax = {self.ritz_eigs_apos.max()}') print('#############################') self.savetofile() def savetofile(self): if mpi.COMM_WORLD.rank == 0: if not os.path.exists(self.test_case): os.mkdir(self.test_case) np.savez(f'{self.test_case}/init', switchtoASM = self.switchtoASM, verbose = self.verbose, GenEO = self.GenEO, H3addCS = self.H3addCS, H3projCS = self.H3projCS, H2projCS = self.H2projCS, viewPC = self.viewPC, viewV0 = self.viewV0, viewGenEOV0 = self.viewGenEOV0, viewnegV0 = self.viewnegV0, viewminV0 = self.viewminV0, compute_ritz_apos = self.compute_ritz_apos, mult_max = self.mult_max, gathered_ns = self.gathered_ns, gathered_nints = self.gathered_nints, gathered_Gammas = self.gathered_Gammas, nGamma = self.nGamma, nint = self.nint, nglob = self.nglob, minV0_mumpsCntl3 = self.minV0.mumpsCntl3, gathered_labs=
np.asarray(self.gathered_labs,dtype='object')
numpy.asarray
import numpy as np import pytest from doctr.utils import metrics @pytest.mark.parametrize( "gt, pred, raw, caseless, unidecode, unicase", [ [['grass', '56', 'True', 'EUR'], ['grass', '56', 'true', '€'], .5, .75, .75, 1], [['éléphant', 'ça'], ['elephant', 'ca'], 0, 0, 1, 1], ], ) def test_text_match(gt, pred, raw, caseless, unidecode, unicase): metric = metrics.TextMatch() with pytest.raises(AssertionError): metric.summary() with pytest.raises(AssertionError): metric.update(['a', 'b'], ['c']) metric.update(gt, pred) assert metric.summary() == dict(raw=raw, caseless=caseless, unidecode=unidecode, unicase=unicase) metric.reset() assert metric.raw == metric.caseless == metric.unidecode == metric.unicase == metric.total == 0 @pytest.mark.parametrize( "box1, box2, iou, abs_tol", [ [[[0, 0, .5, .5]], [[0, 0, .5, .5]], 1, 0], # Perfect match [[[0, 0, .5, .5]], [[.5, .5, 1, 1]], 0, 0], # No match [[[0, 0, 1, 1]], [[.5, .5, 1, 1]], 0.25, 0], # Partial match [[[.2, .2, .6, .6]], [[.4, .4, .8, .8]], 4 / 28, 1e-7], # Partial match [[[0, 0, .1, .1]], [[.9, .9, 1, 1]], 0, 0], # Boxes far from each other [np.zeros((0, 4)), [[0, 0, .5, .5]], 0, 0], # Zero-sized inputs [[[0, 0, .5, .5]], np.zeros((0, 4)), 0, 0], # Zero-sized inputs ], ) def test_box_iou(box1, box2, iou, abs_tol): iou_mat = metrics.box_iou(np.asarray(box1), np.asarray(box2)) assert iou_mat.shape == (len(box1), len(box2)) if iou_mat.size > 0: assert abs(iou_mat - iou) <= abs_tol @pytest.mark.parametrize( "mask1, mask2, iou, abs_tol", [ [ [[[True, True, False], [True, True, False]]], [[[True, True, False], [True, True, False]]], 1, 0 ], # Perfect match [ [[[True, False, False], [False, False, False]]], [[[True, True, False], [True, True, False]]], 0.25, 0 ], # Partial match ], ) def test_mask_iou(mask1, mask2, iou, abs_tol): iou_mat = metrics.mask_iou(np.asarray(mask1), np.asarray(mask2)) assert iou_mat.shape == (len(mask1), len(mask2)) if iou_mat.size > 0: assert abs(iou_mat - iou) <= abs_tol # Incompatible spatial shapes with pytest.raises(AssertionError): metrics.mask_iou(np.zeros((2, 3, 5), dtype=bool), np.ones((3, 2, 5), dtype=bool)) @pytest.mark.parametrize( "rbox1, rbox2, iou, abs_tol", [ [[[.25, .25, .5, .5, 0.]], [[.25, .25, .5, .5, 0.]], 1, 0], # Perfect match [[[.25, .25, .5, .5, 0.]], [[.75, .75, .5, .5, 0.]], 0, 1e-4], # No match [[[.5, .5, 1, 1, 0.]], [[.75, .75, .5, .5, 0.]], 0.25, 0], # Partial match [[[.4, .4, .4, .4, 0.]], [[.6, .6, .4, .4, 0.]], 4 / 28, 5e-3], # Partial match [[[.05, .05, .1, .1, 0.]], [[.95, .95, .1, .1, 0.]], 0, 0], # Boxes far from each other [np.zeros((0, 5)), [[.25, .25, .5, .5, 0.]], 0, 0], # Zero-sized inputs [[[.25, .25, .5, .5, 0.]], np.zeros((0, 5)), 0, 0], # Zero-sized inputs ], ) def test_rbox_iou(rbox1, rbox2, iou, abs_tol): mask_shape = (256, 256) iou_mat = metrics.rbox_iou(np.asarray(rbox1), np.asarray(rbox2), mask_shape) assert iou_mat.shape == (len(rbox1), len(rbox2)) if iou_mat.size > 0: assert abs(iou_mat - iou) <= abs_tol # Ensure broadcasting doesn't change the result iou_matbis = metrics.rbox_iou(np.asarray(rbox1), np.asarray(rbox2), mask_shape, use_broadcasting=False) assert np.all((iou_mat - iou_matbis) <= 1e-7) # Incorrect boxes with pytest.raises(AssertionError): metrics.rbox_iou(np.zeros((2, 5), dtype=float), np.ones((3, 4), dtype=float), mask_shape) @pytest.mark.parametrize( "box, shape, mask", [ [ [0, 0, .5, .5, 0], (2, 2), [[True, False], [False, False]], ], ], ) def test_rbox_to_mask(box, shape, mask): masks = metrics.rbox_to_mask(np.asarray(box)[None, ...], shape) assert masks.shape == (1, *shape) assert np.all(masks[0] == np.asarray(mask, dtype=bool)) @pytest.mark.parametrize( "gts, preds, iou_thresh, recall, precision, mean_iou", [ [[[[0, 0, .5, .5]]], [[[0, 0, .5, .5]]], 0.5, 1, 1, 1], # Perfect match [[[[0, 0, 1, 1]]], [[[0, 0, .5, .5], [.6, .6, .7, .7]]], 0.2, 1, 0.5, 0.125], # Bad match [[[[0, 0, 1, 1]]], [[[0, 0, .5, .5], [.6, .6, .7, .7]]], 0.5, 0, 0, 0.125], # Bad match [[[[0, 0, .5, .5]], [[0, 0, .5, .5]]], [[[0, 0, .5, .5]], None], 0.5, 0.5, 1, 1], # No preds on 2nd sample ], ) def test_localization_confusion(gts, preds, iou_thresh, recall, precision, mean_iou): metric = metrics.LocalizationConfusion(iou_thresh) for _gts, _preds in zip(gts, preds): metric.update(np.asarray(_gts), np.zeros((0, 4)) if _preds is None else np.asarray(_preds)) assert metric.summary() == (recall, precision, mean_iou) metric.reset() assert metric.num_gts == metric.num_preds == metric.matches == metric.tot_iou == 0 @pytest.mark.parametrize( "gts, preds, iou_thresh, recall, precision, mean_iou", [ [[[[.1, .1, .1, .1, 0]]], [[[.1, .1, .1, .1, 0]]], 0.5, 1, 1, 1], # Perfect match [[[[.15, .1, .1, .1, 0]]], [[[.2, .1, .2, .1, 0], [.7, .7, .2, .2, 0]]], 0.2, 1, 0.5, 0.25], # Bad match [[[[.1, .1, .1, .1, 0]], [[.3, .3, .1, .1, 0]]], [[[.1, .1, .1, .1, 0]], None], 0.5, 0.5, 1, 1], # Empty ], ) def test_r_localization_confusion(gts, preds, iou_thresh, recall, precision, mean_iou): metric = metrics.LocalizationConfusion(iou_thresh, rotated_bbox=True, mask_shape=(1000, 1000)) for _gts, _preds in zip(gts, preds): metric.update(np.asarray(_gts), np.zeros((0, 5)) if _preds is None else np.asarray(_preds)) assert metric.summary()[:2] == (recall, precision) assert abs(metric.summary()[2] - mean_iou) <= 5e-3 metric.reset() assert metric.num_gts == metric.num_preds == metric.matches == metric.tot_iou == 0 @pytest.mark.parametrize( "gt_boxes, gt_words, pred_boxes, pred_words, iou_thresh, recall, precision, mean_iou", [ [ # Perfect match [[[0, 0, .5, .5]]], [["elephant"]], [[[0, 0, .5, .5]]], [["elephant"]], 0.5, {"raw": 1, "caseless": 1, "unidecode": 1, "unicase": 1}, {"raw": 1, "caseless": 1, "unidecode": 1, "unicase": 1}, 1, ], [ # Bad match [[[0, 0, .5, .5]]], [["elefant"]], [[[0, 0, .5, .5]]], [["elephant"]], 0.5, {"raw": 0, "caseless": 0, "unidecode": 0, "unicase": 0}, {"raw": 0, "caseless": 0, "unidecode": 0, "unicase": 0}, 1, ], [ # Good match [[[0, 0, 1, 1]]], [["EUR"]], [[[0, 0, .5, .5], [.6, .6, .7, .7]]], [["€", "e"]], 0.2, {"raw": 0, "caseless": 0, "unidecode": 1, "unicase": 1}, {"raw": 0, "caseless": 0, "unidecode": .5, "unicase": .5}, 0.125, ], [ # No preds on 2nd sample [[[0, 0, .5, .5]], [[0, 0, .5, .5]]], [["Elephant"], ["elephant"]], [[[0, 0, .5, .5]], None], [["elephant"], []], 0.5, {"raw": 0, "caseless": .5, "unidecode": 0, "unicase": .5}, {"raw": 0, "caseless": 1, "unidecode": 0, "unicase": 1}, 1, ], ], ) def test_ocr_metric( gt_boxes, gt_words, pred_boxes, pred_words, iou_thresh, recall, precision, mean_iou ): metric = metrics.OCRMetric(iou_thresh) for _gboxes, _gwords, _pboxes, _pwords in zip(gt_boxes, gt_words, pred_boxes, pred_words): metric.update( np.asarray(_gboxes), np.zeros((0, 4)) if _pboxes is None else np.asarray(_pboxes), _gwords, _pwords ) _recall, _precision, _mean_iou = metric.summary() assert _recall == recall assert _precision == precision assert _mean_iou == mean_iou metric.reset() assert metric.num_gts == metric.num_preds == metric.tot_iou == 0 assert metric.raw_matches == metric.caseless_matches == metric.unidecode_matches == metric.unicase_matches == 0 # Shape check with pytest.raises(AssertionError): metric.update( np.asarray(_gboxes), np.zeros((0, 4)), _gwords, ["I", "have", "a", "bad", "feeling", "about", "this"], ) @pytest.mark.parametrize( "gt_boxes, gt_classes, pred_boxes, pred_classes, iou_thresh, recall, precision, mean_iou", [ [ # Perfect match [[[0, 0, .5, .5]]], [[0]], [[[0, 0, .5, .5]]], [[0]], 0.5, 1, 1, 1, ], [ # Bad match [[[0, 0, .5, .5]]], [[0]], [[[0, 0, .5, .5]]], [[1]], 0.5, 0, 0, 1, ], [ # No preds on 2nd sample [[[0, 0, .5, .5]], [[0, 0, .5, .5]]], [[0], [1]], [[[0, 0, .5, .5]], None], [[0], []], 0.5, .5, 1, 1, ], ], ) def test_detection_metric( gt_boxes, gt_classes, pred_boxes, pred_classes, iou_thresh, recall, precision, mean_iou ): metric = metrics.DetectionMetric(iou_thresh) for _gboxes, _gclasses, _pboxes, _pclasses in zip(gt_boxes, gt_classes, pred_boxes, pred_classes): metric.update( np.asarray(_gboxes), np.zeros((0, 4)) if _pboxes is None else np.asarray(_pboxes), np.array(_gclasses, dtype=np.int64), np.array(_pclasses, dtype=np.int64), ) _recall, _precision, _mean_iou = metric.summary() assert _recall == recall assert _precision == precision assert _mean_iou == mean_iou metric.reset() assert metric.num_gts == metric.num_preds == metric.tot_iou == 0 assert metric.num_matches == 0 # Shape check with pytest.raises(AssertionError): metric.update( np.asarray(_gboxes), np.zeros((0, 4)),
np.array(_gclasses, dtype=np.int64)
numpy.array
import os from datetime import datetime import numpy as np import pandas as pd import pytest import mikeio from mikeio import Dataset, Dfsu, Dfs2, Dfs0 from mikeio.eum import EUMType, ItemInfo, EUMUnit @pytest.fixture def ds1(): nt = 10 ne = 7 d1 = np.zeros([nt, ne]) + 0.1 d2 = np.zeros([nt, ne]) + 0.2 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] return Dataset(data, time, items) @pytest.fixture def ds2(): nt = 10 ne = 7 d1 = np.zeros([nt, ne]) + 1.0 d2 = np.zeros([nt, ne]) + 2.0 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] return Dataset(data, time, items) def test_create_wrong_data_type_error(): data = ["item 1", "item 2"] nt = 2 time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) with pytest.raises(TypeError, match="numpy"): Dataset(data=data, time=time) def test_get_names(): data = [] nt = 100 d = np.zeros([nt, 100, 30]) + 1.0 data.append(d) time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo")] ds = Dataset(data, time, items) assert ds.items[0].name == "Foo" assert ds.items[0].type == EUMType.Undefined assert repr(ds.items[0].unit) == "undefined" def test_select_subset_isel(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d1[0, 10, :] = 2.0 d2[0, 10, :] = 3.0 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) selds = ds.isel(10, axis=1) assert len(selds.items) == 2 assert len(selds.data) == 2 assert selds["Foo"].shape == (100, 30) assert selds["Foo"][0, 0] == 2.0 assert selds["Bar"][0, 0] == 3.0 def test_select_subset_isel_axis_out_of_range_error(ds2): assert len(ds2.shape) == 2 dss = ds2.isel(idx=0) # After subsetting there is only one dimension assert len(dss.shape) == 1 with pytest.raises(ValueError): dss.isel(idx=0, axis="spatial") def test_select_temporal_subset_by_idx(): nt = 100 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 d1[0, 10, :] = 2.0 d2[0, 10, :] = 3.0 data = [d1, d2] time = pd.date_range(start=datetime(2000, 1, 1), freq="S", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) selds = ds.isel([0, 1, 2], axis=0) assert len(selds) == 2 assert selds["Foo"].shape == (3, 100, 30) def test_temporal_subset_fancy(): nt = (24 * 31) + 1 d1 = np.zeros([nt, 100, 30]) + 1.5 d2 = np.zeros([nt, 100, 30]) + 2.0 data = [d1, d2] time = pd.date_range("2000-1-1", freq="H", periods=nt) items = [ItemInfo("Foo"), ItemInfo("Bar")] ds = Dataset(data, time, items) assert ds.time[0].hour == 0 assert ds.time[-1].hour == 0 selds = ds["2000-01-01 00:00":"2000-01-02 00:00"] assert len(selds) == 2 assert selds["Foo"].shape == (25, 100, 30) selds = ds[:"2000-01-02 00:00"] assert selds["Foo"].shape == (25, 100, 30) selds = ds["2000-01-31 00:00":] assert selds["Foo"].shape == (25, 100, 30) selds = ds["2000-01-30":] assert selds["Foo"].shape == (49, 100, 30) def test_subset_with_datetime_is_not_supported(): nt = (24 * 31) + 1 d1 =
np.zeros([nt, 100, 30])
numpy.zeros
#!/usr/bin/env python __copyright__ = """ Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import argparse import os import numpy as np import tensorflow as tf from detection_3d.parameters import Parameters from detection_3d.tools.training_helpers import setup_gpu from detection_3d.detection_dataset import DetectionDataset from detection_3d.tools.visualization_tools import visualize_2d_boxes_on_top_image from detection_3d.tools.file_io import save_bboxes_to_file from detection_3d.tools.detection_helpers import ( make_eight_points_boxes, get_boxes_from_box_grid, get_bboxes_parameters_from_points, ) from PIL import Image from tqdm import tqdm import timeit def validation_inference(param_settings, dataset_file, model_dir, output_dir): setup_gpu() # Load model model = tf.keras.models.load_model(model_dir) bbox_voxel_size = np.asarray(param_settings["bbox_voxel_size"], dtype=np.float32) lidar_coord = np.array(param_settings["lidar_offset"], dtype=np.float32) grid_meters = param_settings["grid_meters"] val_dataset = DetectionDataset(param_settings, dataset_file, shuffle=False) param_settings["val_size"] = val_dataset.num_samples for val_samples in tqdm( val_dataset.dataset, desc=f"val_inference", total=val_dataset.num_it_per_epoch, ): top_view, gt_boxes, lidar_filenames = val_samples predictions = model(top_view, training=False) for image, predict, gt, filename in zip( top_view, predictions, gt_boxes, lidar_filenames ): filename = str(filename.numpy()) seq_folder = filename.split("/")[-3] name = os.path.splitext(os.path.basename(filename))[0] # Ensure that output dir exists or create it top_view_dir = os.path.join(output_dir, "top_view", seq_folder) bboxes_dir = os.path.join(output_dir, "bboxes", seq_folder) os.makedirs(top_view_dir, exist_ok=True) os.makedirs(bboxes_dir, exist_ok=True) p_top_view = ( visualize_2d_boxes_on_top_image( [predict], [image], grid_meters, bbox_voxel_size, prediction=True, ) * 255 ) gt_top_view = ( visualize_2d_boxes_on_top_image( [gt], [image], grid_meters, bbox_voxel_size, prediction=False, ) * 255 ) result =
np.vstack((p_top_view[0], gt_top_view[0]))
numpy.vstack
import numpy as np from time import time import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib import cm import env_utils as envu import pylab import matplotlib import render_traj_sensor class Env(object): def __init__(self, ic_gen, lander, dynamics, logger, render_func=render_traj_sensor.render_traj, glideslope_constraint=None, attitude_constraint=None, debug_steps=False, w_constraint=None, rh_constraint=None, reward_object=None, debug_done=False, nav_period=10, tf_limit=5000.0, allow_plotting=True, print_every=1,): self.nav_period = nav_period self.debug_done = debug_done self.debug_steps = debug_steps self.logger = logger self.lander = lander self.rl_stats = RL_stats(lander,logger,render_func, print_every=print_every,allow_plotting=allow_plotting) self.tf_limit = tf_limit self.display_errors = False self.dynamics = dynamics self.allow_plotting = allow_plotting self.ic_gen = ic_gen self.episode = 0 self.glideslope_constraint = glideslope_constraint self.attitude_constraint = attitude_constraint self.w_constraint = w_constraint self.rh_constraint = rh_constraint self.reward_object = reward_object if allow_plotting: plt.clf() plt.cla() print('lander env RHL') def reset(self): self.lander.sensor.reset() self.ic_gen.set_ic(self.lander, self.dynamics) self.glideslope_constraint.reset(self.lander.state) #self.lander.sensor.reset(self.lander.state) self.rh_constraint.reset() self.steps = 0 self.t = 0.0 self.lander.clear_trajectory() image, state = self.lander.get_state_agent(self.t) self.lander.update_trajectory(False, self.t) return image, state def check_for_done(self,lander): done = False vc = envu.get_vc(lander.state['position'], lander.state['velocity']) if self.attitude_constraint.get_margin(lander.state) < 0.0 and self.attitude_constraint.terminate_on_violation: done = True if self.debug_done: print('Attitude: ', self.attitude_constraint.get_margin(lander.state) , self.steps) if self.w_constraint.get_margin(lander.state) < 0.0 and self.w_constraint.terminate_on_violation: done = True if self.debug_done: print('Rot Vel: ', self.w_constraint.get_margin(lander.state) , self.steps) if self.rh_constraint.get_margin(lander.state) < 0.0 and self.rh_constraint.terminate_on_violation: done = True if self.debug_done: print('RH Const: ', self.rh_constraint.get_margin(lander.state) , self.steps) if self.t > self.tf_limit: done = True if self.debug_done: print('Timeout: ', self.steps) return done def step(self,action): action = action.copy() if len(action.shape) > 1: action = action[0] steps_to_sim = int(np.round(self.nav_period / self.dynamics.h)) self.lander.prev_state = self.lander.state.copy() BT, F, L, mdot = self.lander.thruster_model.thrust(action) for i in range(steps_to_sim): self.dynamics.next(self.t, BT, F, L, mdot, self.lander) self.t += self.dynamics.h done = self.check_for_done(self.lander) if done: break self.steps+=1 self.glideslope_constraint.calculate(self.lander.state) self.rh_constraint.step(self.lander.state) ####################### # this is expensive, so only do it once per step # 1.) update the sensor state # 2.) check for sensor violation # 3.) get reward # 4.) update lander trajectory # image, state = self.lander.get_state_agent(self.t) if self.lander.state['sensor_miss']: done = True if self.debug_done: print('FOV VIO') if self.steps <= 5 and self.debug_steps: print('FEW STEPS: ') print(self.lander.trajectory['position']) print(self.lander.trajectory['velocity']) print(self.lander.trajectory['thrust']) ######################## reward,reward_info = self.reward_object.get( self.lander, action, done, self.steps, self.glideslope_constraint, self.attitude_constraint, self.w_constraint, self.rh_constraint) self.lander.update_trajectory(done, self.t) if done: self.episode += 1 return image, state ,reward,done,reward_info def test_policy_batch(self, agent , n, print_every=100, use_ts=False, keys=None, test_mode=True): t0 = time() if keys is None: keys1 = ['norm_vf', 'norm_rf', 'position', 'velocity', 'fuel', 'attitude_321', 'w' ] keys2 = ['thrust'] keys = keys1 + keys2 all_keys = self.lander.get_engagement_keys() print('worked 1') agent.policy.test_mode = test_mode self.lander.use_trajectory_list = True self.episode = 0 self.lander.trajectory_list = [] self.display_errors = True for i in range(n): agent.run_episode() for k in all_keys: if not k in keys: self.lander.trajectory_list[-1][k] = None #self.test_policy_episode(policy, input_normalizer,use_ts=use_ts) if i % print_every == 0 and i > 0: print('i (et): %d (%16.0f)' % (i,time()-t0 ) ) t0 = time() self.lander.show_cum_stats() print(' ') self.lander.show_final_stats(type='final') print('') self.lander.show_cum_stats() print('') self.lander.show_final_stats(type='final') print('') self.lander.show_final_stats(type='ic') def test_policy_batch_notm(self, agent , n, print_every=100, use_ts=False): print('worked') self.lander.use_trajectory_list = True self.episode = 0 self.lander.trajectory_list = [] self.display_errors = True for i in range(n): agent.run_episode() #self.test_policy_episode(policy, input_normalizer,use_ts=use_ts) if i % print_every == 0 and i > 0: print('i : ',i) self.lander.show_cum_stats() print('') self.lander.show_final_stats(type='final') print('') self.lander.show_cum_stats() print('') self.lander.show_final_stats(type='final') print('') self.lander.show_final_stats(type='ic') class RL_stats(object): def __init__(self,lander,logger,render_func,allow_plotting=True,print_every=1, vf=None, scaler=None): self.logger = logger self.render_func = render_func self.lander = lander self.scaler = scaler self.vf = vf self.keys = ['r_f', 'v_f', 'r_i', 'v_i', 'norm_rf', 'norm_vf', 'thrust', 'norm_thrust','fuel', 'rewards', 'fuel_rewards', 'norm_af', 'norm_wf', 'rh_penalty', 'att_rewards', 'att_penalty', 'attitude', 'attitude_error', 'w', 'a_f', 'w_f', 'w_rewards', 'w_penalty', 'pos_error', 'alt_error', 'alt_vc', 'landing_rewards','landing_margin', 'tracking_rewards', 'steps'] self.formats = {} for k in self.keys: self.formats[k] = '{:8.2f}' self.formats['steps'] = '{:8.0f}' self.formats['alt_vc'] = '{:8.4f}' self.formats['alt_error'] = '{:8.4f}' self.stats = {} self.history = { 'Episode' : [] , 'MeanReward' : [], 'StdReward' : [] , 'MinReward' : [], 'Policy_KL' : [], 'Policy_Beta' : [], 'Variance' : [], 'Policy_Entropy' : [], 'ExplainedVarNew' : [] , 'Norm_rf' : [], 'Norm_vf' : [], 'SD_rf' : [], 'SD_vf' : [], 'Max_rf' : [], 'Max_vf' : [], 'Model ExpVarOld' : [], 'Model P Loss Old' : [], 'Norm_af' : [], 'Norm_wf' : [], 'SD_af' : [], 'SD_wf' : [], 'Max_af' : [], 'Max_wf' : [], 'MeanSteps' : [], 'MaxSteps' : []} self.plot_learning = self.plot_agent_learning self.clear() self.allow_plotting = allow_plotting self.last_time = time() self.update_cnt = 0 self.episode = 0 self.print_every = print_every if allow_plotting: plt.clf() plt.cla() self.fig2 = plt.figure(2,figsize=plt.figaspect(0.5)) self.fig3 = plt.figure(3,figsize=plt.figaspect(0.5)) self.fig4 = plt.figure(4,figsize=plt.figaspect(0.5)) self.fig5 = plt.figure(5,figsize=plt.figaspect(0.5)) self.fig6 = plt.figure(6,figsize=plt.figaspect(0.5)) self.fig7 = plt.figure(7,figsize=plt.figaspect(0.5)) def save_history(self,fname): np.save(fname + "_history", self.history) def load_history(self,fname): self.history = np.load(fname + ".npy") def clear(self): for k in self.keys: self.stats[k] = [] def update_episode(self,sum_rewards,steps): self.stats['rewards'].append(sum_rewards) self.stats['fuel_rewards'].append(np.sum(self.lander.trajectory['fuel_reward'])) self.stats['tracking_rewards'].append(np.sum(self.lander.trajectory['tracking_reward'])) self.stats['att_penalty'].append(np.sum(self.lander.trajectory['att_penalty'])) self.stats['attitude_error'].append(np.sum(self.lander.trajectory['attitude_error'])) self.stats['rh_penalty'].append(np.sum(self.lander.trajectory['rh_penalty'])) self.stats['pos_error'].append(self.lander.trajectory['pos_error']) self.stats['alt_error'].append(self.lander.trajectory['alt_error']) self.stats['alt_vc'].append(self.lander.trajectory['alt_vc']) self.stats['att_rewards'].append(np.sum(self.lander.trajectory['att_reward'])) #self.stats['att_rewards'].append(np.asarray(self.lander.trajectory['tracking_reward'])) self.stats['w_penalty'].append(np.sum(self.lander.trajectory['w_penalty'])) self.stats['w_rewards'].append(np.sum(self.lander.trajectory['w_reward'])) self.stats['landing_rewards'].append(np.sum(self.lander.trajectory['landing_reward'])) self.stats['attitude'].append(self.lander.trajectory['attitude_321']) self.stats['w'].append(self.lander.trajectory['w']) self.stats['landing_margin'].append(np.sum(self.lander.trajectory['landing_margin'])) self.stats['r_f'].append(self.lander.trajectory['position'][-1]) self.stats['v_f'].append(self.lander.trajectory['velocity'][-1]) self.stats['w_f'].append(self.lander.trajectory['w'][-1]) self.stats['a_f'].append(self.lander.trajectory['attitude_321'][-1][1:3]) self.stats['w_f'].append(self.lander.trajectory['w'][-1]) self.stats['r_i'].append(self.lander.trajectory['position'][0]) self.stats['v_i'].append(self.lander.trajectory['velocity'][0]) self.stats['norm_rf'].append(self.lander.trajectory['norm_rf'][-1]) self.stats['norm_vf'].append(self.lander.trajectory['norm_vf'][-1]) self.stats['norm_af'].append(np.linalg.norm(self.lander.trajectory['attitude_321'][-1][1:3])) # don't care about yaw self.stats['norm_wf'].append(np.linalg.norm(self.lander.trajectory['w'][-1])) self.stats['norm_thrust'].append(np.linalg.norm(self.lander.trajectory['thrust'],axis=1)) self.stats['thrust'].append(self.lander.trajectory['thrust']) self.stats['fuel'].append(np.linalg.norm(self.lander.trajectory['fuel'][-1])) self.stats['steps'].append(steps) self.episode += 1 def check_and_append(self,key): if key not in self.logger.log_entry.keys(): val = 0.0 else: val = self.logger.log_entry[key] self.history[key].append(val) # called by render at policy update def show(self): self.history['MeanReward'].append(np.mean(self.stats['rewards'])) self.history['StdReward'].append(np.std(self.stats['rewards'])) self.history['MinReward'].append(np.min(self.stats['rewards'])) self.check_and_append('Policy_KL') self.check_and_append('Policy_Beta') self.check_and_append('Variance') self.check_and_append('Policy_Entropy') self.check_and_append('ExplainedVarNew') self.check_and_append('Model ExpVarOld') self.check_and_append('Model P Loss Old') self.history['Episode'].append(self.episode) self.history['Norm_rf'].append(np.mean(self.stats['norm_rf'])) self.history['SD_rf'].append(np.mean(self.stats['norm_rf']+np.std(self.stats['norm_rf']))) self.history['Max_rf'].append(np.max(self.stats['norm_rf'])) self.history['Norm_vf'].append(np.mean(self.stats['norm_vf'])) self.history['SD_vf'].append(np.mean(self.stats['norm_vf']+np.std(self.stats['norm_vf']))) self.history['Max_vf'].append(np.max(self.stats['norm_vf'])) self.history['Norm_af'].append(np.mean(self.stats['norm_af'])) self.history['SD_af'].append(np.mean(self.stats['norm_af']+np.std(self.stats['norm_af']))) self.history['Max_af'].append(np.max(self.stats['norm_af'])) self.history['Norm_wf'].append(np.mean(self.stats['norm_wf'])) self.history['SD_wf'].append(np.mean(self.stats['norm_wf']+np.std(self.stats['norm_wf']))) self.history['Max_wf'].append(np.max(self.stats['norm_wf'])) self.history['MeanSteps'].append(np.mean(self.stats['steps'])) self.history['MaxSteps'].append(np.max(self.stats['steps'])) if self.allow_plotting: self.render_func(self.lander.trajectory,vf=self.vf,scaler=self.scaler) self.plot_rewards() self.plot_learning() self.plot_rf() self.plot_vf() self.plot_af() self.plot_wf() if self.update_cnt % self.print_every == 0: self.show_stats() self.clear() self.update_cnt += 1 def show_stats(self): et = time() - self.last_time self.last_time = time() r_f = np.linalg.norm(self.stats['r_f'],axis=1) v_f = np.linalg.norm(self.stats['v_f'],axis=1) f = '{:6.2f}' print('Update Cnt = %d ET = %8.1f Stats: Mean, Std, Min, Max' % (self.update_cnt,et)) for k in self.keys: f = self.formats[k] v = self.stats[k] if k == 'thrust' or k=='tracking_error' or k=='norm_thrust' or k=='attitude' or k=='w' or k=='alt_vc' or k=='pos_error' or k=='alt_error': v = np.concatenate(v) v =
np.asarray(v)
numpy.asarray
from unittest import TestCase import os import os.path as osp import shutil import textwrap import numpy as np from datumaro.components.annotation import Bbox, Label from datumaro.components.config_model import Model, Source from datumaro.components.dataset import DEFAULT_FORMAT, Dataset from datumaro.components.errors import ( DatasetMergeError, EmptyCommitError, ForeignChangesError, MismatchingObjectError, MissingObjectError, MissingSourceHashError, OldProjectError, PathOutsideSourceError, ReadonlyProjectError, SourceExistsError, SourceUrlInsideProjectError, ) from datumaro.components.extractor import DatasetItem, Extractor, ItemTransform from datumaro.components.launcher import Launcher from datumaro.components.project import DiffStatus, Project from datumaro.util.scope import scope_add, scoped from datumaro.util.test_utils import TestDir, compare_datasets, compare_dirs from .requirements import Requirements, mark_requirement class ProjectTest(TestCase): @mark_requirement(Requirements.DATUM_GENERAL_REQ) @scoped def test_can_init_and_load(self): test_dir = scope_add(TestDir()) scope_add(Project.init(test_dir)).close() scope_add(Project(test_dir)) self.assertTrue('.datumaro' in os.listdir(test_dir)) @mark_requirement(Requirements.DATUM_GENERAL_REQ) @scoped def test_can_find_project_in_project_dir(self): test_dir = scope_add(TestDir()) scope_add(Project.init(test_dir)) self.assertEqual(osp.join(test_dir, '.datumaro'), Project.find_project_dir(test_dir)) @mark_requirement(Requirements.DATUM_GENERAL_REQ) @scoped def test_cant_find_project_when_no_project(self): test_dir = scope_add(TestDir()) self.assertEqual(None, Project.find_project_dir(test_dir)) @mark_requirement(Requirements.DATUM_GENERAL_REQ) @scoped def test_can_add_local_model(self): class TestLauncher(Launcher): pass source_name = 'source' config = Model({ 'launcher': 'test', 'options': { 'a': 5, 'b': 'hello' } }) test_dir = scope_add(TestDir()) project = scope_add(Project.init(test_dir)) project.env.launchers.register('test', TestLauncher) project.add_model(source_name, launcher=config.launcher, options=config.options) added = project.models[source_name] self.assertEqual(added.launcher, config.launcher) self.assertEqual(added.options, config.options) @mark_requirement(Requirements.DATUM_GENERAL_REQ) @scoped def test_can_run_inference(self): class TestLauncher(Launcher): def launch(self, inputs): for inp in inputs: yield [ Label(inp[0, 0, 0]) ] expected = Dataset.from_iterable([ DatasetItem(0, image=np.zeros([2, 2, 3]), annotations=[Label(0)]), DatasetItem(1, image=np.ones([2, 2, 3]), annotations=[Label(1)]) ], categories=['a', 'b']) launcher_name = 'custom_launcher' model_name = 'model' test_dir = scope_add(TestDir()) source_url = osp.join(test_dir, 'source') source_dataset = Dataset.from_iterable([ DatasetItem(0, image=np.ones([2, 2, 3]) * 0), DatasetItem(1, image=np.ones([2, 2, 3]) * 1), ], categories=['a', 'b']) source_dataset.save(source_url, save_images=True) project = scope_add(Project.init(osp.join(test_dir, 'proj'))) project.env.launchers.register(launcher_name, TestLauncher) project.add_model(model_name, launcher=launcher_name) project.import_source('source', source_url, format=DEFAULT_FORMAT) dataset = project.working_tree.make_dataset() model = project.make_model(model_name) inference = dataset.run_model(model) compare_datasets(self, expected, inference) @mark_requirement(Requirements.DATUM_GENERAL_REQ) @scoped def test_can_import_local_source(self): test_dir = scope_add(TestDir()) source_base_url = osp.join(test_dir, 'test_repo') source_file_path = osp.join(source_base_url, 'x', 'y.txt') os.makedirs(osp.dirname(source_file_path), exist_ok=True) with open(source_file_path, 'w') as f: f.write('hello') project = scope_add(Project.init(osp.join(test_dir, 'proj'))) project.import_source('s1', url=source_base_url, format='fmt') source = project.working_tree.sources['s1'] self.assertEqual('fmt', source.format) compare_dirs(self, source_base_url, project.source_data_dir('s1')) with open(osp.join(test_dir, 'proj', '.gitignore')) as f: self.assertTrue('/s1' in [line.strip() for line in f]) @mark_requirement(Requirements.DATUM_GENERAL_REQ) @scoped def test_can_import_local_source_with_relpath(self): # This form must copy all the data in URL, but read only # specified files. Required to support subtasks and subsets. test_dir = scope_add(TestDir()) source_url = osp.join(test_dir, 'source') source_dataset = Dataset.from_iterable([ DatasetItem(0, subset='a', image=np.ones((2, 3, 3)), annotations=[ Bbox(1, 2, 3, 4, label=0) ]), DatasetItem(1, subset='b', image=np.zeros((10, 20, 3)), annotations=[ Bbox(1, 2, 3, 4, label=1) ]), ], categories=['a', 'b']) source_dataset.save(source_url, save_images=True) expected_dataset = Dataset.from_iterable([ DatasetItem(1, subset='b', image=
np.zeros((10, 20, 3))
numpy.zeros
import tequila as tq import qpfas import numpy as np from typing import List, Dict ######################################## General Workflow Functions ################################################## def create_molecule(molecule_tag: str, basis: str, active_space, path: str = None, mol_index=None) -> qpfas.chemistry.Molecule: """ Create a qpfas Molecule object from one of the default molecules in the default_molecules directory or from the directory specified by path """ # load structure if mol_index: molecule_qpfas = qpfas.chemistry.Molecule.from_mult_xyz(molecule_tag, path=path, distortion_index=mol_index) else: molecule_qpfas = qpfas.chemistry.Molecule.from_xyz(molecule_tag, path=path) # assign basis molecule_qpfas.basis = basis # get active space if isinstance(active_space, list): molecule_qpfas.active_orbitals = active_space else: if (not active_space) or (active_space == "None") or (active_space == "full"): molecule_qpfas.active_orbitals = list(range(qpfas.chemistry.number_of_orbitals(molecule_qpfas))) elif active_space == 'frozen_core': molecule_qpfas.active_orbitals = qpfas.chemistry.get_frozen_core_active_orbitals(molecule_qpfas) elif "noons" in active_space: tol = float(active_space.split("_")[1]) nat_orbitals = qpfas.chemistry.NaturalOccupations(molecule_qpfas) molecule_qpfas.active_orbitals = nat_orbitals.split_space(tol) else: raise Exception(f"Active Space Method{active_space} not recognised") return molecule_qpfas def get_molecule_tq(molecule_qpfas: qpfas.chemistry.Molecule, transformation: str, ) -> tq.chemistry.Molecule: """ Generate the second quantisation from a qpfas molecule object """ return tq.chemistry.Molecule(molecule_qpfas.to_tequila(), basis_set=molecule_qpfas.basis, transformation=transformation, active_orbitals=molecule_qpfas.active_orbitals) def molecule_make_hamiltonian(molecule: tq.chemistry.Molecule): """ Make the Qubitized Hamiltonian """ return molecule.make_hamiltonian() def compute_benchmark_energies(molecule: tq.chemistry.Molecule, benchmarks: List[str]) -> Dict: """ This uses psi4 to perforom the classical benchmarks. """ energy_benchmarks = {} for method in ["hf", "mp2", "ccsd", "fci"]: if method in benchmarks: energy_benchmarks[method + "_energy"] = molecule.compute_energy(method=method) return energy_benchmarks def compute_benchmark_energies_pyscf(molecule_qpfas: qpfas.chemistry.Molecule, benchmarks: List[str]) -> Dict: """ This is an alternative to compute_benchmark_energies. Instead of using psi4 it uses pyscf to perforom the classical benchmarks. """ full_space = list(range(qpfas.chemistry.number_of_orbitals(molecule_qpfas))) frozen_orbitals = list(set(full_space) - set(molecule_qpfas.active_orbitals)) frozen_orbitals.sort() print("Frozen orbitals:", frozen_orbitals) return qpfas.chemistry.run_pyscf(molecule_qpfas, benchmarks, frozen_orbitals) def get_n_qubits(molecule: tq.chemistry.Molecule): if molecule.active_space is not None: return 2*len(molecule.active_space.active_orbitals) else: return 2*molecule.n_orbitals def get_ansatz(molecule_tq: tq.chemistry.Molecule, ansatz_method: str, ansatz_depth: int ) -> tq.circuit.circuit.QCircuit: """ Generates - UCCSD variants - hardware efficient variants Ansatz for inputted Tequila molecule """ if ansatz_method == "uccsd": return molecule_tq.make_uccsd_ansatz(trotter_steps=ansatz_depth) elif ansatz_method == "kupccgsd": return molecule_tq.make_upccgsd_ansatz(order=ansatz_depth) elif ansatz_method == "hardware": return qpfas.chemistry.hardware_ansatz(get_n_qubits(molecule_tq), ansatz_depth) elif ansatz_method == "hardwareconserving": return qpfas.chemistry.hardware_pc_ansatz(get_n_qubits(molecule_tq), molecule_tq.n_electrons, ansatz_depth) else: raise Exception("Method '%s' not in available ansatzes" % ansatz_method) def get_ansatz_list_convention(molecule_tq: tq.chemistry.Molecule, ansatz_name_depth: List): """A helper function if one wants to create an ansatz from a list convention. i.e. [<ansatz_name>, <ansatz+depth>] """ return get_ansatz(molecule_tq, ansatz_name_depth[0], ansatz_name_depth[1]) #def num ######################################## VQE Functions ############################################################### def vqe_wrapper(ansatz: list, qubit_hamiltonian_tq: tq.QubitHamiltonian, molecule_tq: tq.chemistry.Molecule, optimizer: str, samples, backend: str = "qulacs"): """ A wrapper functions for the different VQE workflows """ ansatz_method, ansatz_depth = ansatz result_dict = {"n_hamiltonian_terms": get_number_of_terms(qubit_hamiltonian_tq)} if "adapt" in ansatz_method: _, pool = ansatz_method.split("-") run_output = run_adapt_vqe(qubit_hamiltonian_tq, ansatz_depth, molecule_tq, optimizer, pool, samples, backend) ansatz_circuit = run_output.U result_dict["vqe_output"] = {"converged_energy": run_output.energy, "energy_history": list(np.concatenate([i.energies for i in run_output.histories])), "n_iterations": len(run_output.histories), "n_params": len(run_output.variables), "converged_params": {str(i): run_output.variables[i] for i in run_output.variables}} elif ansatz_method == "tapering": ansatz_circuit, result, tapering_dict = run_tapering_vqe(qubit_hamiltonian_tq, ansatz_depth, optimizer, samples, backend, "best") result_dict["vqe_output"] = {"converged_energy": result.energy, "energy_history": list(result.history.energies), "n_iterations": len(result.history.energies), "n_params": len(result.variables), "converged_params": {str(i): result.variables[i] for i in result.variables}} result_dict["tapering_data"] = tapering_dict else: ansatz_circuit = get_ansatz(molecule_tq, ansatz_method, ansatz_depth) run_output = run_vqe(qubit_hamiltonian_tq, ansatz_circuit, optimizer, ansatz_method, samples, backend) result_dict["vqe_output"] = {"converged_energy": run_output.energy, "energy_history": list(run_output.history.energies), "n_iterations": len(run_output.history.energies), "n_params": len(run_output.variables), "converged_params": {str(i): run_output.variables[i] for i in run_output.variables}} return result_dict, ansatz_circuit def run_vqe(qubit_hamiltonian_tq: tq.QubitHamiltonian, ansatz_circuit: tq.circuit.circuit.QCircuit, optimizer: str = "COBYLA", initialization: str = "zeros", samples: int = 0, backend: str = "qulacs" ) -> tq.optimizers.optimizer_scipy.SciPyResults: """ Runs the supplied minimization algorithm on the supplied objective function and returns Tequila's SciPyResults object storing the result. """ if initialization in ["zeros", "uccsd", "kupccgsd"]: initial_values = {k: 0.0 for k in ansatz_circuit.extract_variables()} elif initialization in ["random", "hardware", "hardwareconserving"]: tau = 2.*np.pi initial_values = {k: tau*np.random.rand() for k in ansatz_circuit.extract_variables()} else: raise Exception("initialization '%s' not recognized" % initialization) if samples == 0: samples = None energy_objective = _energy_objective_function(qubit_hamiltonian_tq, ansatz_circuit, samples) return tq.optimizer_scipy.minimize(objective=energy_objective, method=optimizer, backend=backend, samples=samples, initial_values=initial_values, tol=1e-3) def run_tapering_vqe(qubit_hamiltonian_tq: tq.QubitHamiltonian, depth: int, optimizer: str, samples: int = 0, backend: str = "qulacs", return_type: str = "best"): """ Runs the VQE algorithm with tapering """ taper = qpfas.chemistry.TaperQubits(qubit_hamiltonian_tq.to_openfermion()) taper.compute_generators() taper.transform_hamiltonian() n_qubits = taper.num_qubits - taper.nullity ansatz_circuit = qpfas.chemistry.hardware_ansatz(n_qubits, depth) # must use ansatz that can generate arbitrary states results = [] sectors = [] for i in range(2**taper.nullity): sec = bin(i)[2:] sec = "0" * (taper.nullity - len(sec)) + sec sec = [int(j) for j in sec] taper.remove_qubits(sec) qubit_hamiltonian_tq = tq.QubitHamiltonian.from_openfermion(taper.tapered_hamiltonian) vqe_run = run_vqe(qubit_hamiltonian_tq, ansatz_circuit, optimizer, "random", samples, backend) results.append(vqe_run) sectors.append(sec) if return_type == "best": indx = np.argmin([i.energy for i in results]) tapering_dict = {"sector": sectors[indx], "qubit_set": taper.qubit_set, "qubits_removed": len(taper.qubit_set)} return ansatz_circuit, results[indx], tapering_dict elif return_type == "all": return results else: raise Exception("Return type must be either 'best' or 'all'") def run_adapt_vqe(qubit_hamiltonian_tq: tq.QubitHamiltonian, norm_tolerance, molecule: tq.chemistry.Molecule, optimizer: str, pool: str = "UpCCSD", samples: int = 0, backend: str = "qulacs"): """ Method based on "An adaptive variational algorithm for exact molecular simulations on a quantum computer" https://www.nature.com/articles/s41467-019-10988-2 """ if samples == 0: samples = None operator_pool = tq.adapt.MolecularPool(molecule=molecule, indices=pool) solver = tq.adapt.Adapt(H=qubit_hamiltonian_tq, Upre=molecule.prepare_reference(), operator_pool=operator_pool, optimizer_args={"method": optimizer}, compile_args={"samples": samples, "backend": backend}, gradient_convergence=norm_tolerance, energy_convergence=1e-3) return solver(operator_pool=operator_pool, label=0) ######################################## Results Gathering ########################################################### def split_vqe_wrapper_results(results): """A helper function for workflow""" return results[0] def split_vqe_wrapper_ansatz(results): """A helper function for workflow""" return results[1] def get_gate_dict(ansatz): variables = {i: np.random.rand() for i in ansatz.extract_variables()} # necessary for qasm conversion qasm_str = tq.export_open_qasm(ansatz, variables=variables) qasm_str = qasm_str.split("\n")[4:-1] qasm_str =
np.array([i[:2] for i in qasm_str])
numpy.array
# Authors: <NAME> <<EMAIL>> """ ---------------------------------------------------------------------- --- jumeg.decompose.fourier_ica -------------------------------------- ---------------------------------------------------------------------- author : <NAME> email : <EMAIL> last update: 09.11.2016 version : 1.2 ---------------------------------------------------------------------- This simple implementation of ICASSO is based on the following publication: ---------------------------------------------------------------------- <NAME>, <NAME>, and <NAME>. 'Validating the independent components of neuroimaging time-series via clustering and visualization', Neuroimage, 22:3(1214-1222), 2004. Should you use this code, we kindly request you to cite the aforementioned publication. <http://research.ics.aalto.fi/ica/icasso/about+download.shtml DOWNLOAD ICASSO from here> ---------------------------------------------------------------------- Overview ---------------------------------------------------------------------- Perform ICASSO estimation. ICASSO is based on running ICA multiple times with slightly different conditions and clustering the obtained components. Note, here FourierICA is applied 1. Runs ICA with given parameters M times on data X. 2. Clusters the estimates and computes other statistics. 3. Returns (and visualizes) the best estimates. ---------------------------------------------------------------------- How to use ICASSO? ---------------------------------------------------------------------- from jumeg.decompose import icasso icasso_obj = = JuMEG_icasso() W, A, quality, fourier_ica_obj = icasso_obj.fit(fn_raw, stim_name='STI 013', event_id=1, tmin_stim=-0.5, tmax_stim=0.5, flow=4.0, fhigh=34.0) --> for further comments we refer directly to the functions or to fourier_ica_test.py ---------------------------------------------------------------------- """ # ------------------------------------------ # import necessary modules # ------------------------------------------ import numpy as np ######################################################## # # # JuMEG_icasso class # # # ######################################################## class JuMEG_icasso(object): def __init__(self, ica_method='fourierica', average=False, nrep=50, fn_inv=None, src_loc_method='dSPM', snr=1.0, morph2fsaverage=True, stim_name=None, event_id=1, flow=4.0, fhigh=34.0, tmin_win=0.0, tmax_win=1.0, pca_dim=None, dim_reduction='MDL', conv_eps=1e-9, max_iter=2000, tICA=False, lrate=1.0, cost_function=None, decim_epochs=False): """ Generate ICASSO object. Parameters ---------- ica_method: string which ICA method should be used default: ica_method='FourierICA' average: should ICA be performed on data averaged above subjects? default: average=False nrep: number of repetitions ICA should be performed default: nrep=50 fn_inv: file name of inverse operator. If given FourierICA is applied on data transformed to source space src_loc_method: method used for source localization. Only of interest if 'fn_inv' is set default: src_loc_method='dSPM' snr: signal-to-noise ratio for performing source localization default: snr=1.0 morph2fsaverage: should data be morphed to the 'fsaverage' brain? default: morph2fsaverage=True stim_name: string which contains the name of the stimulus channel. Only necessary if ICA should be applied to evoked data. event_id: integer of list of integer containing the event IDs which should be used to generate epochs default: event_id=1 flow: lower frequency border for estimating the optimal de-mixing matrix using FourierICA default: flow=4.0 fhigh: upper frequency border for estimating the optimal de-mixing matrix using FourierICA default: fhigh=34.0 Note: here default flow and fhigh are choosen to contain: - theta (4-7Hz) - low (7.5-9.5Hz) and high alpha (10-12Hz), - low (13-23Hz) and high beta (24-34Hz) tmin_win: time of interest prior to stimulus onset. Important for generating epochs to apply FourierICA default=0.0 tmax_win: time of interest after stimulus onset. Important for generating epochs to apply FourierICA default=1.0 dim_reduction: {'', 'AIC', 'BIC', 'GAP', 'MDL', 'MIBS', 'explVar'} Method for dimension selection. For further information about the methods please check the script 'dimension_selection.py'. pca_dim: Integer. The number of components used for PCA decomposition. conv_eps: iteration stops when weight changes are smaller then this number default: conv_eps = 1e-9 max_iter: integer containing the maximal number of iterations to be performed in ICA estimation default: max_iter=2000 tICA: bool if temporal ICA should be applied (and not) FourierICA default: tICA=False lrate: float containg the learning rate which should be used in the applied ICA algorithm default: lrate=1.0 cost_function: string containg the cost-function to use in the appled ICA algorithm. For further information look in fourier_ica.py default: cost_funtion=None decim_epochs: integer. If set the number of epochs used to estimate the optimal demixing matrix is decimated to the given number. default: decim_epochs=False Returns ------- object: ICASSO object """ self._ica_method = ica_method self.average = average self._nrep = nrep self.fn_inv = fn_inv self.src_loc_method = src_loc_method self.snr = snr self.morph2fsaverage = morph2fsaverage self.whitenMat = [] # whitening matrix self.dewhitenMat = [] # de-whitening matrix self.W_est = [] # de-mixing matrix self.A_est = [] # mixing matrix self.dmean = [] # data mean self.dstd = [] # data standard-deviation self.stim_name = stim_name self.event_id = event_id self.flow = flow self.fhigh = fhigh self._sfreq = 0.0 self.tmin_win = tmin_win self.tmax_win = tmax_win # ICA parameter self.conv_eps = conv_eps # stopping threshold self.max_iter = max_iter self.lrate = lrate # learning rate for the ICA algorithm self.tICA = tICA # should temporal ICA be performed? self.pca_dim = pca_dim self.dim_reduction= dim_reduction self.cost_function = cost_function self.decim_epochs = decim_epochs # make sure to chose meaningful parameters # when not FourierICA is used if self.ica_method != 'fourierica': if conv_eps == 1e-9: self.conv_eps = 1e-12 # stopping threshold if max_iter == 2000: self.max_iter = 200 if lrate == 1: self.lrate = None # learning rate for the ICA algorithm # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # set/get maximum number of repetitions # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _set_nrep(self, nrep): self._nrep = nrep def _get_nrep(self): return int(self._nrep) nrep = property(_get_nrep, _set_nrep) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # set/get ICA method # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _set_ica_method(self, ica_method): possible_methods = ['extended-infomax', 'fastica', 'fourierica', 'infomax'] if ica_method in possible_methods: self._ica_method = ica_method else: print('WARNING: chosen ICA method does not exist!') print('Must be one of the following methods: ', possible_methods) print('But your choice was: ', ica_method) print('Programm stops!') import pdb pdb.set_trace() def _get_ica_method(self): return self._ica_method ica_method = property(_get_ica_method, _set_ica_method) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate linkage between components # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _linkage(self, dis): # initialize some variables dlen, dim = dis.shape Md = dis.copy() Md += np.diag(np.ones(dlen)*np.inf) # ------------------------------------------ # estimate clusters # ------------------------------------------ # --> each vector is at first in its own cluster Z = np.zeros((dlen-1, 3)) + np.NaN clusters = np.arange(dlen) Cdist = Md.copy() for idx in np.arange(dlen-1): d_min = np.min(Cdist) if np.isinf(d_min): break # no more connected clusters else: min_idx = np.argmin(np.min(Cdist, axis=0)) c1 = np.argmin(Cdist[:, min_idx]) # cluster1 c2 = clusters[min_idx] # cluster2 # combine the two clusters c1_inds = (clusters == c1).nonzero()[0] # vectors belonging to c1 c2_inds = (clusters == c2).nonzero()[0] # vectors belonging to c2 c_inds = np.concatenate((c1_inds, c2_inds)) # members of the new cluster nc_inds = len(c_inds) # find bigger cluster if len(c2_inds) > len(c1_inds): c, k = c2, c1 else: c, k = c1, c2 clusters[c_inds] = c # update cluster info Z[idx, :] = [c, k, d_min] # save info into Z # ------------------------------------------ # update cluster distances # ------------------------------------------ # remove the subclusters from the cdist table for idxC in c_inds: Cdist[idxC, c_inds] = np.Inf # distance of clusters to its members = Inf k_inds = c_inds[c_inds != c] # vector of the smallest cluster Cdist[k_inds, :] = np.Inf # set distance of the subcluster to Cdist[:, k_inds] = np.Inf # other clusters = Inf # update the distance of this cluster to the other clusters idxC = (clusters != c).nonzero()[0] if len(idxC) > 0: cl = np.unique(clusters[idxC]) for l in cl: o_inds = (clusters == l).nonzero()[0] # indices belonging to cluster k no_inds = len(o_inds) vd = np.zeros((nc_inds, no_inds)) for ivd in range(nc_inds): vd[ivd, :] = Md[c_inds[ivd], o_inds] vd = vd.flatten() idxvd = np.isfinite(vd).nonzero()[0] nidxvd = len(idxvd) sd = np.Inf if nidxvd == 0 else np.sum(vd[idxvd])/nidxvd Cdist[c, l] = sd Cdist[l, c] = sd last = Z[idx, 0] if np.isnan(last): last = Z[idx-1, 0] rest = np.setdiff1d(np.unique(clusters), last) Z[idx:dlen-2, 0] = rest.transpose() Z[idx:dlen-2, 1] = last Z[idx:dlen-2, 2] = np.Inf idx -= 1 else: rest = [] # ------------------------------------------ # return values # ------------------------------------------ # calculate the order of the samples order = np.array([last]) # go through the combination matrix from top to down for k in range(idx, -1, -1): c_var = Z[k, 0] k_var = np.array([Z[k, 1]]) idx_var = np.where(order == c_var)[0] if len(idx_var) == 0: order = np.concatenate((k_var, order)) else: order = np.concatenate((order[:idx_var[0]], k_var, order[idx_var[0]:])) order = np.concatenate((rest, order))[::-1] # to maintain compatibility with Statistics Toolbox, the values # in Z must be yet transformed so that they are similar to the # output of the LINKAGE function Zs = Z.copy() current_cluster = np.array(list(range(dlen))) iter_stop = len(Z[:, 0]) for idx in range(iter_stop): Zs[idx, 0] = current_cluster[int(Z[idx, 0])] Zs[idx, 1] = current_cluster[int(Z[idx, 1])] current_cluster[int(Z[idx, 0])] = dlen + idx current_cluster[int(Z[idx, 1])] = dlen + idx return Zs, order # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate similarities # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _corrw(self): # get some dimension information npc = int(self.W_est[0].shape[0]) nchan = int(self.W_est[0].shape[1]) ntimes = int(len(self.W_est)) # save estimated demixing matrices W in one matrix weight = np.zeros((ntimes*npc, nchan), dtype=np.complex) for idx in range(ntimes): weight[(idx*npc):((idx+1)*npc), :] = self.W_est[idx] weight = np.dot(weight, self.dewhitenMat) # normalize rows to unit length weight_norm = np.abs(np.sqrt(np.sum(weight*weight.conj(), axis=1))).reshape((npc*ntimes, 1)) weight /= np.repeat(weight_norm, npc, axis=1) # compute similarities similarities = np.abs(np.dot(weight, weight.conj().transpose())) similarities[similarities > 1] = 1 similarities[similarities < 0] = 0 return similarities # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # generate partitions from Z # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _z_to_partition(self, Z): nz = Z.shape[0] + 1 C = np.zeros((nz, nz)) C[0, :] = np.arange(nz) for ic in range(1, nz): C[ic, :] = C[ic-1, :] idx = (C[ic, :] == Z[ic-1, 0]) + (C[ic, :] == Z[ic-1, 1]) C[ic, idx == 1] = nz - 1 + ic for ic in range(nz): uniqC = np.unique(C[ic, :]) newidx = [] for elemC in C[ic, :]: newidx = np.concatenate((newidx, (uniqC == elemC).nonzero()[0])) C[ic, :] = newidx idx = list(range(nz-1, -1, -1)) partition = C[idx, :] return partition # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # compute cluster statistics # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _clusterstat(self, S, partitions): # number of clusters Ncluster = int(np.max(partitions) + 1) # initialize dictionary stat = {'internal_sum': np.zeros(Ncluster) * np.NaN, 'internal_min': np.zeros(Ncluster) * np.NaN, 'internal_avg': np.zeros(Ncluster) * np.NaN, 'internal_max': np.zeros(Ncluster) * np.NaN, 'external_sum': np.zeros(Ncluster) * np.NaN, 'external_min': np.zeros(Ncluster) * np.NaN, 'external_avg': np.zeros(Ncluster) * np.NaN, 'external_max': np.zeros(Ncluster) * np.NaN, 'between_min': np.zeros((Ncluster, Ncluster)), 'between_avg': np.zeros((Ncluster, Ncluster)), 'between_max': np.zeros((Ncluster, Ncluster))} for cluster in range(Ncluster): thisPartition = np.where(partitions == cluster)[0] nthisPartition = len(thisPartition) S_ = np.zeros((nthisPartition, nthisPartition)) for i in range(nthisPartition): S_[i, :] = S[thisPartition[i], thisPartition] S_[list(range(nthisPartition)), list(range(nthisPartition))] = np.NaN S_ = S_[np.isfinite(S_)] if len(S_) > 0: stat['internal_sum'][cluster] = np.sum(S_) stat['internal_min'][cluster] = np.min(S_) stat['internal_avg'][cluster] = np.mean(S_) stat['internal_max'][cluster] = np.max(S_) if Ncluster > 1: cthisPartition = np.where(partitions != cluster)[0] ncthisPartition = len(cthisPartition) S_ = np.zeros((nthisPartition, ncthisPartition)) for i in range(nthisPartition): S_[i, :] = S[thisPartition[i], cthisPartition] stat['external_sum'][cluster] = np.sum(S_) stat['external_min'][cluster] = np.min(S_) stat['external_avg'][cluster] = np.mean(S_) stat['external_max'][cluster] = np.max(S_) for i in range(Ncluster): Pi = np.where(i == partitions)[0] for j in range(i+1, Ncluster): Pj = np.where(j == partitions)[0] d_ = np.zeros((len(Pi), len(Pj))) for iPi in range(len(Pi)): d_[iPi, :] = S[Pi[iPi], Pj] stat['between_min'][i, j] = np.min(d_) stat['between_avg'][i, j] = np.mean(d_) stat['between_max'][i, j] = np.max(d_) stat['between_min'] += stat['between_min'].transpose() stat['between_avg'] += stat['between_avg'].transpose() stat['between_max'] += stat['between_max'].transpose() return stat # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate the R-index as defined in # <NAME>., <NAME>., 2001. 'Resampling method for # unsupervised estimation of cluster validity'. # Neural Comput. 13 (11), 2573-2593. # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _rindex(self, dissimilarities, partitions, verbose=True): nPart = partitions.shape[0] # number of clusters in each partition Ncluster = np.max(partitions, axis=1) ri = np.zeros(nPart) if verbose: print(">>> Computing R-index...") for k in range(nPart): hist, bin_edges = np.histogram(partitions[k, :], bins=np.arange(1, Ncluster[k]+2)) if any(hist == 1): # contains one-item clusters (index very doubtful) ri[k] = np.NaN elif Ncluster[k] == 0: # degenerate partition (all in the same cluster) ri[k] = np.NaN else: # compute cluster statistics stat = self._clusterstat(dissimilarities, partitions[k, :]) between = stat['between_avg'] between[list(range(len(between))), list(range(len(between)))] = np.Inf internal = stat['internal_avg'].transpose() ri[k] = np.mean(internal/np.min(between, axis=0)) return ri # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate clusters # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _cluster(self, verbose=True): # ------------------------------------------ # compute dissimilarities # ------------------------------------------ similarities = self._corrw() dissimilarities = 1.0 - similarities # ------------------------------------------ # generate partitions # ------------------------------------------ Z, order = self._linkage(dissimilarities) partitions = self._z_to_partition(Z) # ------------------------------------------ # compute cluster validity # ------------------------------------------ npc = int(self.W_est[0].shape[0]) indexR = self._rindex(dissimilarities, partitions[:npc, :], verbose=verbose) return Z, order, partitions, indexR, dissimilarities, similarities # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate curve that decreases from v0 to vn with a # rate that is somewhere between linear and 1/t # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _potency_curve(self, v0, vn, t): return v0 * ((1.0*vn/v0)**(np.arange(t)/(t-1.0))) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # compute principal coordinates (using linear # Metric Multi-Dimensional Scaling) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _mmds(self, D): nD = D.shape[0] # square dissimilarities D2 = D**2 # center matrix Z = np.identity(nD) - np.ones((nD, nD))/(1.0 * nD) # double centered inner product B = -0.5 * np.dot(Z, np.dot(D2, Z)) # SVD U, sing, V = np.linalg.svd(B) # coordinates X = np.dot(U, np.diag(np.sqrt(sing))) return X # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # projects data vectors using Curvilinear Component # Analysis # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _cca(self, D, P, epochs, Mdist, alpha0, lambda0): # check input data noc, dim = D.shape noc_x_1 = np.zeros(noc, dtype=np.int) me =
np.zeros(dim)
numpy.zeros
#!/opt/anaconda/bin/python # -*- coding: utf-8 -*- # Unfortunately the `which` way of calling python can't accept command-line arguments. """ Created on Mon Nov 03 16:13:48 2014 @author: <NAME> @email: <EMAIL> OR <EMAIL> A selection of alignment routines designed for registering and summing stacks of images or diffraction patterns in the field of electron microscopy. """ from __future__ import division, print_function, absolute_import, unicode_literals import numpy as np if np.version.version.split('.')[1] == 7: print( "WARNING: NUMPY VERSION 1.7 DETECTED, ZORRO IS DESIGNED FOR >1.10" ) print( "CHECK YOUR ENVIRONMENT VARIABLES TO SEE IF EMAN2 HAS HIJACKED YOUR PYTHON DISTRIBUTION" ) import numexprz as nz # Now see which numexpr we have, by the dtype of float (whether it casts or not) try: # Now see which numexpr we have, by the dtype of float (whether it casts or not) tdata = np.complex64( 1.0 + 2.0j ) fftw_dtype = nz.evaluate( 'tdata + tdata' ).dtype float_dtype = nz.evaluate( 'real(tdata+tdata)' ).dtype except: fftw_dtype = 'complex128' float_dtype = 'float64' import scipy.optimize import scipy.ndimage import scipy.stats import time try: import ConfigParser as configparser except: import configparser # Python 3 # Here we have to play some games depending on where the file was called from # with the use of absolute_import # print( "__name__ of zorro: " + str(__name__) ) try: import zorro_util as util import zorro_plotting as plot except ImportError: from . import zorro_util as util from . import zorro_plotting as plot import mrcz import os, os.path, tempfile, sys import subprocess # Should we disable Multiprocessing on Windows due to general bugginess in the module? import multiprocessing as mp try: import pyfftw except: print( "Zorro did not find pyFFTW package: get it at https://pypi.python.org/pypi/pyFFTW" ) try: import tables except: print( "Zorro did not find pyTables installation for HDF5 file support" ) import matplotlib.pyplot as plt # Numpy.pad is bad at dealing with interpreted strings if sys.version_info >= (3,0): symmetricPad = u'symmetric' constantPad = u'constant' else: symmetricPad = b'symmetric' constantPad = b'constant' #### OBJECT-ORIENTED INTERFACE #### class ImageRegistrator(object): # Should be able to handle differences in translation, rotation, and scaling # between images def __init__( self ): # Declare class members self.verbose = 0 self.umask = 2 # Meta-information for processing, not saved in configuration files. self.METApriority = 0.0 self.METAstatus = u'new' self.METAmtime = 0.0 self.METAsize = 0 self.xcorrMode = 'zorro' # 'zorro', 'unblur v1.02', 'motioncorr v2.1' # FFTW_PATIENT is bugged for powers of 2, so use FFTW_MEASURE as default self.fftw_effort = u"FFTW_MEASURE" # TODO: change this to drop into cachePath self.n_threads = nz.nthreads # Number of cores to limit FFTW to, if None uses all cores self.cachePath = tempfile.gettempdir() # CALIBRATIONS self.pixelsize = None # Typically we use nanometers, the same units as Digital Micrograph self.voltage = 300.0 # Accelerating voltage, kV self.C3 = 2.7 # Spherical aberration of objective, mm self.gain = None self.detectorPixelSize = None # Physical dimensions of detector pixel (5 um for K2) # Timings self.bench = {} # Dict holds various benchmark times for the code self.saveC = False # Save the cross-correlation within +/- maxShift # INFORMATION REDUCTION # The SNR at high spatial frequencies tends to be lower due to how information transfer works, so # removing/filtering those frequencies can improve stability of the registration. YMMV, IMHO, etc. self.Brad = 512 # Gaussian low-pass applied to data before registration, units are radius in Fourier space, or equivalent point-spread function in real-space self.Bmode = u'opti' # can be a real-space Gaussian convolution, 'conv' or Fourier filter, 'fourier', or 'opti' for automatic Brad # For Bmode = 'fourier', a range of available filters can be used: gaussian, gauss_trunc, butterworth.order (order is an int), hann, hamming self.BfiltType = u'gaussian' self.fouCrop = [3072,3072] # Size of FFT in frequency-space to crop to (e.g. [2048,2048]) self.reloadData = True # Data self.images = None self.imageSum = None self.filtSum = None # Dose-filtered, Wiener-filtered, etc. representations go here self.gainRef = None # For application of gain reference in Zorro rather than Digital Micrograph/TIA/etc. self.gainInfo = { "Horizontal": True, "Vertical": True, "Diagonal":False, "GammaParams": [ 0.12035633, -1.04171635, -0.03363192, 1.03902726], } # One of None, 'dose', 'dose,background', 'dosenorm', 'gaussLP', 'gaussLP,background' # also 'hot' can be in the comma-seperated list for pre-filtering of hot pixels self.filterMode = None # Dose filt param = [dosePerFrame, critDoseA, critDoseB, critDoseC, cutoffOrder, missingStartFrame] self.doseFiltParam = [None, 0.24499, -1.6649, 2.8141, 32, 0] # for 'hot' in filterMode self.hotpixInfo = { u"logisticK":6.0, u"relax":0.925, u"maxSigma":8.0, u"psf": u"K2", u"guessHotpix":0, u"guessDeadpix":0, u"decorrOutliers":False, u"cutoffLower":-4.0, u"cutoffUpper":3.25, u"neighborPix":0 } self.FFTSum = None # If you want to use one mask, it should have dims [1,N_Y,N_X]. This is # to ensure Cythonized code can interact safely with Numpy self.incohFouMag = None # Incoherent Fourier magnitude, for CTF determination, resolution checks self.masks = None self.maskSum = None self.C = None # Results self.translations = None self.transEven = None # For even-odd tiled FRC, the half-stack translations self.transOdd = None # For even-odd tiled FRC, the half-stack translations self.velocities = None # pixel velocity, in pix/frame, to find frames that suffer from excessive drift self.rotations = None # rotations, for polar-transformed data self.scales = None # scaling, for polar-transformed data self.errorDictList = [] # A list of dictionaries of errors and such from different runs on the same data. self.trackCorrStats = False self.corrStats = None self.doLazyFRC = True self.doEvenOddFRC = False self.FRC = None # A Fourier ring correlation # Filtering # TODO: add more fine control over filtering options # CTF currently supports CTFFIND4.1 or GCTF self.CTFProgram = None # None, "ctffind4.1", or "gctf", 'ctffind4.1,sum' works on (aligned) sum, same for 'gctf,sum' self.CTFInfo = { u'DefocusU':None, u'DefocusV': None, u'DefocusAngle':None, u'CtfFigureOfMerit':None, u'FinalResolution': None, u'AmplitudeContrast':0.07, u'AdditionalPhaseShift':None, } self.CTFDiag = None # Diagnostic image from CTFFIND4.1 or GCTF # DEPRICATED ctf stuff #self.doCTF = False #self.CTF4Results = None # Micrograph number, DF1, DF2, Azimuth, Additional Phase shift, CC, and max spacing fit-to #self.CTF4Diag = None # Registration parameters self.shapePadded = [4096,4096] self.shapeOriginal = None self.shapeBinned = None self.subPixReg = 16 # fraction of a pixel to REGISTER image shift to # Subpixel alignment method: None (shifts still registered subpixally), lanczos, or fourier # lanczos is cheaper computationally and has fewer edge artifacts self.shiftMethod = u'lanczos' self.maxShift = 100 # Generally should be 1/2 distance to next lattice spacing # Pre-shift every image by that of the previous frame, useful for high-resolution where one can jump a lattice # i.e. should be used with small values for maxShift self.preShift = False # Solver weighting can be raw max correlation coeffs (None), normalized to [0,1] by the # min and max correlations ('norm'), or 'logistic' function weighted which # requires corrThres to be set. self.peakLocMode = u'interpolated' # interpolated (oversampled), or a RMS-best fit like fitlaplacian self.weightMode = u'autologistic' # autologistic, normalized, unweighted, logistic, or corr self.peaksigThres = 6.0 self.logisticK = 5.0 self.logisticNu = 0.15 self.originMode = u'centroid' # 'centroid' or None self.suppressOrigin = True # Delete the XC pixel at (0,0). Only necessary if gain reference is bad, but defaults to on. # Triangle-matrix indexing parameters self.triMode = u'diag' # Can be: tri, diag, auto, first self.startFrame = 0 self.endFrame = 0 self.diagStart = 0 # XC to neighbour frame on 0, next-nearest neighbour on +1, etc. self.diagWidth = 5 self.autoMax = 10 self.corrThres = None # Use with 'auto' mode to stop doing cross-correlations if the values drop below the threshold self.velocityThres = None # Pixel velocity threshold (pix/frame), above which to throw-out frames with too much motion blur. #### INPUT/OUTPUT #### self.files = { u"config":None, u"stack":None, u"mask":None, u"sum":None, u"align":None, u"figurePath":None, u"xc":None, u"moveRawPath":None, u"original":None, u"gainRef":None, u"stdout": None, u"automatch":None, u"rejected":None, u"compressor": None, u"clevel": 1 } #self.savePDF = False self.savePNG = True self.saveMovie = True self.doCompression = False self.compress_ext = ".bz2" #### PLOTTING #### self.plotDict = { u"imageSum":True, u"imageFirst":False, u"FFTSum":True, u"polarFFTSum":True, u"filtSum":True, u'stats': False, u"corrTriMat":False, u"peaksigTriMat": True, u"translations":True, u"pixRegError":True, u"CTFDiag":True, u"logisticWeights": True, u"FRC": True, u'Transparent': True, u'plot_dpi':144, u'image_dpi':250, u'image_cmap':u'gray', u'graph_cmap':u'gnuplot', u'fontsize':12, u'fontstyle': u'serif', u'colorbar': True, u'backend': u'Qt4Agg', u'multiprocess':True, u'show':False } pass def initDefaultFiles( self, stackName ): self.files[u'stack'] = stackName self.files[u'config'] = stackName + u".zor" stackPath, stackFront = os.path.split( stackName ) stackFront = os.path.splitext( stackFront )[0] if not 'compressor' in self.files or not bool(self.files['compressor']): mrcExt = ".mrc" mrcsExt = ".mrcs" else: mrcExt = ".mrcz" mrcsExt = ".mrcsz" self.files[u'align'] = os.path.relpath( os.path.join( u"./align", "%s_zorro_movie%s" %(stackFront, mrcsExt) ), start=stackPath ) self.files[u'sum'] = os.path.relpath( stackPath, os.path.join( u"./sum", "%s_zorro%s" %(stackFront, mrcExt) ), start=stackPath ) self.files[u'figurePath'] = os.path.relpath( os.path.join(stackPath, u"./figs"), start=stackPath ) def xcorr2_mc2_1( self, gpu_id = 0, loadResult=True, clean=True ): """ This makes an external operating system call to the Cheng's lab GPU-based B-factor multireference executable. It and CUDA libraries must be on the system path and libary path respectively. NOTE: Spyder looks loads PATH and LD_LIBRARY_PATH from .profile, not .bashrc """ dosef_cmd = util.which("dosefgpu_driftcorr") if dosef_cmd is None: print( "Error: dosefgpu_driftcorr not found in system path." ) return #tempFileHash = str(uuid.uuid4() ) # Key let's us multiprocess safely stackBase = os.path.basename( os.path.splitext( self.files['stack'] )[0] ) if self.cachePath is None: self.cachePath = "." InName = os.path.join( self.cachePath, stackBase + u"_mcIn.mrc" ) # Unfortunately these files may as well be in the working directory. OutAvName = os.path.join( self.cachePath, stackBase + u"_mcOutAv.mrc" ) OutStackName = os.path.join( self.cachePath, stackBase + u"_mcOut.mrc" ) logName = os.path.join( self.cachePath, stackBase + u"_mc.zor" ) mrcz.writeMRC( self.images, InName ) # Force binning to 1, as performance with binning is poor binning = 1 if self.Brad is not None: # Li masking is in MkPosList() in cufunc.cu (line 413) # Their r2 is normalized and mine isn't # Li has mask = exp( -0.5 * bfactor * r_norm**2 ) # r_norm**2 = x*x/Nx*Nx + y*y/Ny*Ny = r**2 / (Nx**2 + Ny**2) # For non-square arrays they have a non-square (but constant frequency) filter # RAM has mask = exp( -(r/brad)**2 ) # We can only get Bfactor approximately then but it's close enough for 3710x3838 bfac = 2.0 * (self.images.shape[1]**2 + self.images.shape[2]**2) / (self.Brad**2) print( "Using B-factor of " + str(bfac) + " for dosefgpu_driftcorr" ) else: bfac = 1000 # dosef default 'safe' bfactor for mediocre gain reference # Consider: Dosef suffers at the ends of the sequence, so make the middle frame zero drift? # align_to = np.floor( self.images.shape[0]/2 ) # This seems to cause more problems then it's worth. align_to = 0 if self.diagWidth != None: fod = self.diagWidth else: fod = 0 # Dosef can limit search to a certain box size if self.maxShift == None: maxshift = 96 else: maxshift = self.maxShift * 2 if self.startFrame == None: self.startFrame = 0 if self.endFrame == None: self.endFrame = 0 motion_flags = ( " " + InName + " -gpu " + str(gpu_id) + " -nss " + str(self.startFrame) + " -nes " + str(self.endFrame) + " -fod " + str(fod) + " -bin " + str(binning) + " -bft " + str(bfac) + " -atm -" + str(align_to) + " -pbx " + str(maxshift) + " -ssc 1 -fct " + OutStackName + " -fcs " + OutAvName + " -flg " + logName ) sub = subprocess.Popen( dosef_cmd + motion_flags, shell=True ) sub.wait() self.loadMCLog( logName ) time.sleep(0.5) if bool(clean): try: os.remove(InName) except: pass try: os.remove(OutStackName) except: pass try: os.remove(OutAvName) except: pass try: os.remove(logName) except: pass def loadMCLog( self, logName ): """ Load and part a MotionCorr log from disk using regular expressions. """ import re # Parse to get the translations fhMC = open( logName ) MClog = fhMC.readlines() fhMC.close() # Number of footer lines changes with the options you use. # I would rather find Sum Frame #000 for linenumber, line in enumerate(MClog): try: test = re.findall( "Sum Frame #000", line) if bool(test): frameCount = np.int( re.findall( "\d\d\d", line )[1] ) + 1 break except: pass MClog_crop = MClog[linenumber+1:linenumber+frameCount+1] MCdrifts = np.zeros( [frameCount,2] ) for J in np.arange(0,frameCount): MCdrifts[J,:] = re.findall( r"([+-]?\d+.\d+)", MClog_crop[J] )[1:] # Zorro saves translations, motioncorr saves shifts. self.translations = -np.fliplr( MCdrifts ) if self.originMode == u'centroid': centroid = np.mean( self.translations, axis=0 ) self.translations -= centroid def xcorr2_unblur1_02( self, dosePerFrame = None, minShift = 2.0, terminationThres = 0.1, maxIteration=10, verbose=False, loadResult=True, clean=True ): """ Calls UnBlur by <NAME> Rohou using the Zorro interface. """ self.bench['unblur0'] = time.time() unblur_exename = "unblur_openmp_7_17_15.exe" if util.which( unblur_exename ) is None: print( "UnBlur not found in system path" ) return print( "Calling UnBlur for " + self.files['stack'] ) print( " written by <NAME> and <NAME>: http://grigoriefflab.janelia.org/unblur" ) print( " http://grigoriefflab.janelia.org/node/4900" ) import os try: os.umask( self.umask ) # Why is Python not using default umask from OS? except: pass if self.cachePath is None: self.cachePath = "." # Force trailing slashes onto cachePatch stackBase = os.path.basename( os.path.splitext( self.files[u'stack'] )[0] ) frcOutName = os.path.join( self.cachePath, stackBase + u"_unblur_frc.txt" ) shiftsOutName = os.path.join( self.cachePath, stackBase + u"_unblur_shifts.txt" ) outputAvName = os.path.join( self.cachePath, stackBase + u"_unblur.mrc" ) outputStackName = os.path.join( self.cachePath, stackBase + u"_unblur_movie.mrc" ) ps = self.pixelsize * 10.0 if 'dose' in self.filterMode: doDoseFilter = True if dosePerFrame == None: # We have to guesstimate the dose per frame in e/A^2 if it's not provided dosePerFrame = np.mean( self.images ) / (ps*ps) preExposure = 0.0 if 'dosenorm' in self.filterMode: restoreNoise=True else: restoreNoise=False else: doDoseFilter = False if self.Brad is not None: # Li masking is in MkPosList() in cufunc.cu (line 413) # Their r2 is normalized and mine isn't # Li has mask = exp( -0.5 * bfactor * r_norm**2 ) # r_norm**2 = x*x/Nx*Nx + y*y/Ny*Ny = r**2 / (Nx**2 + Ny**2) # For non-square arrays they have a non-square (but constant frequency) filter # RAM has mask = exp( -(r/brad)**2 ) # We can only get Bfactor approximately then but it's close enough for 3710x3838 bfac = 2.0 * (self.images.shape[1]**2 + self.images.shape[2]**2) / (self.Brad**2) print( "Using B-factor of " + str(bfac) + " for UnBlur" ) else: bfac = 1500 # dosef default 'safe' bfactor for mediocre gain reference outerShift = self.maxShift * ps # RAM: I see no reason to let people change the Fourier cross masking vertFouMaskHW = 1 horzFouMaskHW = 1 try: mrcName = os.path.join( self.cachePath, stackBase + "_unblurIN.mrc" ) mrcz.writeMRC( self.images, mrcName ) except: print( "Error in exporting MRC file to UnBlur" ) return # Are there flags for unblur? Check the source code. flags = "" # Not using any flags unblurexec = ( unblur_exename + " " + flags + " << STOP_PARSING \n" + mrcName ) unblurexec = (unblurexec + "\n" + str(self.images.shape[0]) + "\n" + outputAvName + "\n" + shiftsOutName + "\n" + str(ps) + "\n" + str(doDoseFilter) ) if bool(doDoseFilter): unblurexec += "\n" + str(dosePerFrame) + "\n" + str(self.voltage) + "\n" + str(preExposure) unblurexec += ("\n yes \n" + outputStackName + "\n yes \n" + frcOutName + "\n" + str(minShift) + "\n" + str(outerShift) + "\n" + str(bfac) + "\n" + str( np.int(vertFouMaskHW) ) + "\n" + str( np.int(horzFouMaskHW) ) + "\n" + str(terminationThres) + "\n" + str(maxIteration) ) if bool(doDoseFilter): unblurexec += "\n" + str(restoreNoise) unblurexec += "\n" + str(verbose) unblurexec = unblurexec + "\nSTOP_PARSING" print( unblurexec ) sub = subprocess.Popen( unblurexec, shell=True ) sub.wait() try: # Their FRC is significantly different from mine. self.FRC = np.loadtxt(frcOutName, comments='#', skiprows=0 ) self.translations = np.loadtxt( shiftsOutName, comments='#', skiprows=0 ).transpose() # UnBlur uses Fortran ordering, so we need to swap y and x for Zorro C-ordering self.translations = np.fliplr( self.translations ) # UnBlur returns drift in Angstroms self.translations /= ps # UnBlur registers to middle frame self.translations -= self.translations[0,:] if bool( loadResult ): print( "Loading UnBlur aligned frames into ImageRegistrator.images" ) if 'dose' in self.filterMode: # TODO: WHow to get both filtered images and unfiltered? self.imageSum = mrcz.readMRC( outputAvName )[0] else: self.imageSum = mrcz.readMRC( outputAvName )[0] # TODO: We have a bit of an issue, this UnBlur movie is dose filtered... self.images = mrcz.readMRC( outputStackName )[0] except IOError: print( "UnBlur likely core-dumped, try different input parameters?" ) finally: time.sleep(0.5) # DEBUG: try and see if temporary files are deleteable now. frcOutName = os.path.join( self.cachePath, stackBase + "_unblur_frc.txt" ) shiftsOutName = os.path.join( self.cachePath, stackBase + "_unblur_shifts.txt" ) outputAvName = os.path.join( self.cachePath, stackBase + "_unblur.mrc" ) outputStackName = os.path.join( self.cachePath, stackBase + "_unblur_movie.mrc" ) pass if self.originMode == 'centroid': centroid = np.mean( self.translations, axis=0 ) self.translations -= centroid time.sleep(0.5) if bool(clean): try: os.remove( mrcName ) except: print( "Could not remove Unblur MRC input file" ) try: os.remove( frcOutName ) except: print( "Could not remove Unblur FRC file" ) try: os.remove( shiftsOutName ) except: print( "Could not remove Unblur Shifts file" ) try: os.remove( outputAvName ) except: print( "Could not remove Unblur MRC average" ) try: os.remove( outputStackName ) except: print( "Could not remove Unblur MRC stack" ) self.bench['unblur1'] = time.time() def __init_xcorrnm2( self, triIndices=None ): """ """ self.bench['xcorr0'] = time.time() shapeImage = np.array( [self.images.shape[1], self.images.shape[2]] ) self.__N = np.asarray( self.images.shape )[0] if self.preShift: print( "Warning: Preshift will break if there are skipped frames in a triIndices row." ) # Test to see if triIndices is a np.array or use self.triMode if hasattr( triIndices, "__array__" ): # np.array # Ensure triIndices is a square array of the right size if triIndices.shape[0] != self.__N or triIndices.shape[1] != self.__N: raise IndexError("triIndices is wrong size, should be of length: " + str(self.__N) ) elif triIndices is None: [xmesh, ymesh] = np.meshgrid( np.arange(0,self.__N), np.arange(0,self.__N) ) trimesh = xmesh - ymesh # Build the triMat if it wasn't passed in as an array if( self.triMode == 'first' ): print( "Correlating in template mode to first image" ) triIndices = np.ones( [1,self.__N], dtype='bool' ) triIndices[0,0] = False # Don't autocorrelate the first frame. elif( self.triMode == u'diag' ): if (self.diagWidth is None) or (self.diagWidth < 0): # For negative numbers, align the entire triangular matrix self.diagWidth = self.__N triIndices = (trimesh <= self.diagWidth + self.diagStart ) * (trimesh > self.diagStart ) print( "Correlating in diagonal mode with width " + str(self.diagWidth) ) elif( self.triMode == u'autocorr' ): triIndices = (trimesh == 0) elif( self.triMode == u'refine' ): triIndices = trimesh == 0 else: # 'tri' or 'auto' ; default is an upper triangular matrix triIndices = trimesh >= 1 pass else: raise TypeError( "Error: triIndices not recognized as valid: " + str(triIndices) ) if self.masks is None or self.masks == []: print( "Warning: No mask not recommened with MNXC-style correlation" ) self.masks = np.ones( [1,shapeImage[0],shapeImage[1]], dtype = self.images.dtype ) if( self.masks.ndim == 2 ): self.masks = np.reshape( self.masks.astype(self.images.dtype), [1,shapeImage[0],shapeImage[1]] ) # Pre-loop allocation self.__shiftsTriMat = np.zeros( [self.__N,self.__N,2], dtype=float_dtype ) # Triagonal matrix of shifts in [I,J,(y,x)] self.__corrTriMat = np.zeros( [self.__N,self.__N], dtype=float_dtype ) # Triagonal matrix of maximum correlation coefficient in [I,J] self.__peaksigTriMat = np.zeros( [self.__N,self.__N], dtype=float_dtype ) # Triagonal matrix of correlation peak contrast level self.__originTriMat= np.zeros( [self.__N,self.__N], dtype=float_dtype ) # Triagonal matrix of origin correlation coefficient in [I,J] # Make pyFFTW objects if not bool( np.any( self.fouCrop ) ): self.__tempFullframe = np.empty( shapeImage, dtype=fftw_dtype ) self.__FFT2, self.__IFFT2 = util.pyFFTWPlanner( self.__tempFullframe, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ), effort = self.fftw_effort, n_threads=self.n_threads ) self.__shapeCropped = shapeImage self.__tempComplex = np.empty( self.__shapeCropped, dtype=fftw_dtype ) else: self.__tempFullframe = np.empty( shapeImage, dtype=fftw_dtype ) self.__FFT2, _ = util.pyFFTWPlanner( self.__tempFullframe, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doReverse=False ) # Force fouCrop to multiple of 2 self.__shapeCropped = 2 * np.floor( np.array( self.fouCrop ) / 2.0 ).astype('int') self.__tempComplex = np.empty( self.__shapeCropped, dtype=fftw_dtype ) _, self.__IFFT2 = util.pyFFTWPlanner( self.__tempComplex, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doForward=False ) self.__shapeCropped2 = (np.array( self.__shapeCropped) / 2.0).astype('int') self.__templateImageFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype ) self.__templateSquaredFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype ) self.__templateMaskFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype ) self.__tempComplex2 = np.empty( self.__shapeCropped, dtype=fftw_dtype ) # Subpixel initialization # Ideally subPix should be a power of 2 (i.e. 2,4,8,16,32) self.__subR = 8 # Sampling range around peak of +/- subR if self.subPixReg is None: self.subPixReg = 1; if self.subPixReg > 1.0: # hannfilt = np.fft.fftshift( ram.apodization( name='hann', size=[subR*2,subR*2], radius=[subR,subR] ) ).astype( fftw_dtype ) # Need a forward transform that is [subR*2,subR*2] self.__Csub = np.empty( [self.__subR*2,self.__subR*2], dtype=fftw_dtype ) self.__CsubFFT = np.empty( [self.__subR*2,self.__subR*2], dtype=fftw_dtype ) self.__subFFT2, _ = util.pyFFTWPlanner( self.__Csub, fouMage=self.__CsubFFT, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doReverse = False ) # and reverse transform that is [subR*2*subPix, subR*2*subPix] self.__CpadFFT = np.empty( [self.__subR*2*self.subPixReg,self.__subR*2*self.subPixReg], dtype=fftw_dtype ) self.__Csub_over = np.empty( [self.__subR*2*self.subPixReg,self.__subR*2*self.subPixReg], dtype=fftw_dtype ) _, self.__subIFFT2 = util.pyFFTWPlanner( self.__CpadFFT, fouMage=self.__Csub_over, wisdomFile=os.path.join( self.cachePath, "fftw_wisdom.pkl" ) , effort = self.fftw_effort, n_threads=self.n_threads, doForward = False ) self.__maskProduct = np.zeros( self.__shapeCropped, dtype=float_dtype ) self.__normConst2 = np.float32( 1.0 / ( np.float64(self.__shapeCropped[0])*np.float64(self.__shapeCropped[1]))**2.0 ) self.bench['xcorr1'] = time.time() return triIndices def xcorrnm2_speckle( self, triIndices=None ): """ <NAME> <EMAIL> October 1, 2016 With data recorded automatically from SerialEM, we no long have access to the gain reference normalization step provided by Gatan. With the K2 detector, gain normalization is no longer a simple multiplication. Therefore we see additional, multiplicative (or speckle) noise in the images compared to those recorded by Gatan Microscopy Suite. Here we want to use a different approach from the Padfield algorithm, which is useful for suppressing additive noise, and In general Poisson noise should be speckle noise, especially at the dose rates commonly seen in cryo-EM. """ triIndices = self.__init_xcorrnm2( triIndices = triIndices) # Pre-compute forward FFTs (template will just be copied conjugate Fourier spectra) self.__imageFFT = np.empty( [self.__N, self.shapePadded[0], self.shapePadded[1]], dtype=fftw_dtype ) self.__autocorrHalfs = np.empty( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=float_dtype ) currIndex = 0 self.__originC = []; self.C = [] print( "Pre-computing forward Fourier transforms and autocorrelations" ) # For even-odd and noise estimates, we often skip many rows # precompIndices = np.unique( np.vstack( [np.argwhere( np.sum( triIndices, axis=1 ) > 0 ), np.argwhere( np.sum( triIndices, axis=0 ) > 0 ) ] ) ) precompIndices = np.unique( np.vstack( [np.argwhere( np.sum( triIndices, axis=1 ) >= 0 ), np.argwhere( np.sum( triIndices, axis=0 ) >= 0 ) ] ) ) for I in precompIndices: if self.verbose >= 2: print( "Precomputing forward FFT frame: " + str(I) ) # Apply masks to images if self.masks.shape[0] == 1: masks_block = self.masks[0,:,:] images_block = self.images[I,:,:] else: masks_block = self.masks[I,:,:] images_block = self.images[I,:,:] self.__tempComplex = nz.evaluate( "masks_block * images_block" ).astype( fftw_dtype ) self.__FFT2.update_arrays( self.__tempComplex, self.__imageFFT[I,:,:]); self.__FFT2.execute() print( "TODO: FOURIER CROPPING" ) # Compute autocorrelation imageFFT = self.__imageFFT[I,:,:] # Not sure if numexpr is useful for such a simple operation? self.__tempComplex = nz.evaluate( "imageFFT * conj(imageFFT)" ) self.__IFFT2.update_arrays( self.__tempComplex, self.__tempComplex2 ) tempComplex2 = self.__tempComplex2 nz.evaluate( "0.5*abs(tempComplex2)", out=self.__autocorrHalfs[I,:,:] ) self.bench['xcorr2'] = time.time() ########### COMPUTE PHASE CORRELATIONS ############# print( "Starting correlation calculations, mode: " + self.triMode ) if self.triMode == u'refine': # Find FFT sum (it must be reduced by the current frame later) # FIXME: Is there some reason this might not be linear after FFT? # FIXME: is it the complex conjugate operation below??? self.__sumFFT = np.sum( self.__baseImageFFT, axis = 0 ) self.__sumSquaredFFT = np.sum( self.__baseSquaredFFT, axis = 0 ) print( "In refine" ) for I in np.arange(self.images.shape[0] - 1): # In refine mode we have to build the template on the fly from imageSum - currentImage self.__templateImageFFT = np.conj( self.__sumFFT - self.__baseImageFFT[I,:,:] ) / self.images.shape[0] self.__templateSquaredFFT = np.conj( self.__sumSquaredFFT - self.__baseSquaredFFT[I,:,:] ) / self.images.shape[0] tempComplex2 = None self.mnxc2_SPECKLE( I, I, self.__shapeCropped, refine=True ) #### Find maximum positions #### self.locatePeak( I, I ) if self.verbose: print( "Refine # " + str(I) + " shift: [%.2f"%self.__shiftsTriMat[I,I,0] + ", %.2f"%self.__shiftsTriMat[I,I,1] + "], cc: %.6f"%self.__corrTriMat[I,I] + ", peak sig: %.3f"%self.__peaksigTriMat[I,I] ) else: # For even-odd and noise estimates, we often skip many rows rowIndices = np.unique( np.argwhere( np.sum( triIndices, axis=1 ) > 0 ) ) #print( "rowIndices: " + str(rowIndices) ) for I in rowIndices: # I is the index of the template image tempComplex = self.__baseImageFFT[I,:,:] self.__templateImageFFT = nz.evaluate( "conj(tempComplex)") # Now we can start looping through base images columnIndices = np.unique( np.argwhere( triIndices[I,:] ) ) #print( "columnIndices: " + str(columnIndices) ) for J in columnIndices: ####### MNXC2 revisement with private variable to make the code more manageable. self.mnxc2_speckle( I, J, self.__shapeCropped ) #### Find maximum positions #### self.locatePeak( I, J ) if self.verbose: print( "# " + str(I) + "->" + str(J) + " shift: [%.2f"%self.__shiftsTriMat[I,J,0] + ", %.2f"%self.__shiftsTriMat[I,J,1] + "], cc: %.6f"%self.__corrTriMat[I,J] + ", peak sig: %.3f"%self.__peaksigTriMat[I,J] ) # Correlation stats is for establishing correlation scores for fixed-pattern noise. if bool( self.trackCorrStats ): self.calcCorrStats( currIndex, triIndices ) # triMode 'auto' diagonal mode if self.triMode == u'auto' and (self.__peaksigTriMat[I,J] <= self.peaksigThres or J-I >= self.autoMax): if self.verbose: print( "triMode 'auto' stopping at frame: " + str(J) ) break currIndex += 1 pass # C max position location if bool( np.any( self.fouCrop ) ): self.__shiftsTriMat[:,:,0] *= self.shapePadded[0] / self.__shapeCropped[0] self.__shiftsTriMat[:,:,1] *= self.shapePadded[1] / self.__shapeCropped[1] self.bench['xcorr3'] = time.time() # Pointer reference house-keeping del images_block, masks_block, imageFFT, tempComplex2 def xcorrnm2_tri( self, triIndices=None ): """ <NAME> <EMAIL> April 16, 2015 triIndices is the index locations to correlate to. If None, self.triMode is used to build one. Normally you should use self.triMode for the first iteration, and pass in a triIndice from the errorDict if you want to repeat. returns : [shiftsTriMat, corrTriMat, peaksTriMat] This is an evolution of the Padfield cross-correlation algorithm to take advantage of the Cheng multi-reference approach for cross-correlation alignment of movies. Padfield, "Masked object registration in the Fourier domain," IEEE Transactions on Image Processing 21(5) (2012): 3706-2718. <NAME> al. Nature Methods, 10 (2013): 584-590. It cross-correlates every frame to every other frame to build a triangular matrix of shifts and then does a functional minimization over the set of equations. This means the computational cost grows with a power law with the number of frames but it is more noise resistant. triIndices can be an arbitrary boolean N x N matrix of frames to correlate Alternatively it can be a string which will generate an appropriate matrix: 'tri' (default) correlates all frames to eachother 'first' is correlate to the first frame as a template 'diag' correlates to the next frame (i.e. a diagonal ) 'auto' is like diag but automatically determines when to stop based on corrcoeffThes diagWidth is for 'diag' and the number of frames to correlate each frame to, default is None, which does the entire triangular matrix diagWidth = 1 correlates to each preceding frame NOTE: only calculates FFTs up to Nyquist/2. """ triIndices = self.__init_xcorrnm2( triIndices = triIndices) if self.masks.shape[0] == 1 : # tempComplex = self.masks[0,:,:].astype( fftw_dtype ) self.__baseMaskFFT = np.empty( self.__shapeCropped, dtype=fftw_dtype ) self.__FFT2.update_arrays( self.masks[0,:,:].squeeze().astype( fftw_dtype ), self.__tempFullframe ); self.__FFT2.execute() # FFTCrop sC2 = self.__shapeCropped2 self.__baseMaskFFT[0:sC2[0],0:sC2[1]] = self.__tempFullframe[0:sC2[0],0:sC2[1]] self.__baseMaskFFT[0:sC2[0],-sC2[1]:] = self.__tempFullframe[0:sC2[0],-sC2[1]:] self.__baseMaskFFT[-sC2[0]:,0:sC2[1]] = self.__tempFullframe[-sC2[0]:,0:sC2[1]] self.__baseMaskFFT[-sC2[0]:,-sC2[1]:] = self.__tempFullframe[-sC2[0]:,-sC2[1]:] self.__templateMaskFFT = np.conj( self.__baseMaskFFT ) # maskProduct term is M1^* .* M2 templateMaskFFT = self.__templateMaskFFT; baseMaskFFT = self.__baseMaskFFT # Pointer assignment self.__tempComplex2 = nz.evaluate( "templateMaskFFT * baseMaskFFT" ) self.__IFFT2.update_arrays( self.__tempComplex2, self.__tempComplex ); self.__IFFT2.execute() tempComplex = self.__tempComplex normConst2 = self.__normConst2 self.__maskProduct = nz.evaluate( "normConst2*real(tempComplex)" ) else: # Pre-allocate only self.__baseMaskFFT = np.zeros( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=fftw_dtype ) if bool( self.maxShift ) or self.Bmode is u'fourier': if self.maxShift is None or self.preShift is True: [xmesh,ymesh] = np.meshgrid( np.arange(-self.__shapeCropped2[0], self.__shapeCropped2[0]), np.arange(-self.__shapeCropped2[1], self.__shapeCropped2[1]) ) else: [xmesh,ymesh] = np.meshgrid( np.arange(-self.maxShift, self.maxShift), np.arange(-self.maxShift, self.maxShift) ) rmesh2 = nz.evaluate( "xmesh*xmesh + ymesh*ymesh" ) # rmesh2 = xmesh*xmesh + ymesh*ymesh if bool( self.maxShift ): self.__mask_maxShift = ( rmesh2 < self.maxShift**2.0 ) if self.Bmode is u'fourier': self.__Bfilter = np.fft.fftshift( util.apodization( name=self.BfiltType, size=self.__shapeCropped, radius=[self.Brad,self.Brad] ) ) self.bench['xcorr1'] = time.time() # Pre-compute forward FFTs (template will just be copied conjugate Fourier spectra) self.__imageFFT = np.empty( [self.__N, self.shapePadded[0], self.shapePadded[1]], dtype=fftw_dtype ) self.__baseImageFFT = np.empty( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=fftw_dtype ) self.__baseSquaredFFT = np.empty( [self.__N, self.__shapeCropped[0], self.__shapeCropped[1]], dtype=fftw_dtype ) # Looping for triagonal matrix # For auto this is wrong, so make these lists instead currIndex = 0 self.__originC = []; self.C = [] print( "Pre-computing forward Fourier transforms" ) # For even-odd and noise estimates, we often skip many rows # precompIndices = np.unique( np.vstack( [np.argwhere( np.sum( triIndices, axis=1 ) > 0 ), np.argwhere( np.sum( triIndices, axis=0 ) > 0 ) ] ) ) precompIndices = np.unique( np.vstack( [np.argwhere( np.sum( triIndices, axis=1 ) >= 0 ), np.argwhere( np.sum( triIndices, axis=0 ) >= 0 ) ] ) ) for I in precompIndices: if self.verbose >= 2: print( "Precomputing forward FFT frame: " + str(I) ) # Apply masks to images if self.masks.shape[0] == 1: masks_block = self.masks[0,:,:] images_block = self.images[I,:,:] else: masks_block = self.masks[I,:,:] images_block = self.images[I,:,:] tempReal = nz.evaluate( "masks_block * images_block" ).astype( fftw_dtype ) self.__FFT2.update_arrays( tempReal, self.__tempFullframe ); self.__FFT2.execute() if self.shiftMethod == u"fourier": self.__imageFFT[I,:,:] = self.__tempFullframe.copy(order='C') # FFTCrop self.__baseImageFFT[I,0:sC2[0],0:sC2[1]] = self.__imageFFT[I,0:sC2[0],0:sC2[1]] self.__baseImageFFT[I,0:sC2[0],-sC2[1]:] = self.__imageFFT[I,0:sC2[0],-self.__sC2[1]:] self.__baseImageFFT[I,-sC2[0]:,0:sC2[1]] = self.__imageFFT[I,-sC2[0]:,0:self.__sC2[1]] self.__baseImageFFT[I,-sC2[0]:,-sC2[1]:] = self.__imageFFT[I,-sC2[0]:,-sC2[1]:] print( "TODO: check memory consumption" ) else: # FFTCrop self.__baseImageFFT[I,0:sC2[0],0:sC2[1]] = self.__tempFullframe[0:sC2[0],0:sC2[1]] self.__baseImageFFT[I,0:sC2[0],-sC2[1]:] = self.__tempFullframe[0:sC2[0],-sC2[1]:] self.__baseImageFFT[I,-sC2[0]:,0:sC2[1]] = self.__tempFullframe[-sC2[0]:,0:sC2[1]] self.__baseImageFFT[I,-sC2[0]:,-sC2[1]:] = self.__tempFullframe[-sC2[0]:,-sC2[1]:] self.__FFT2.update_arrays( nz.evaluate( "tempReal*tempReal" ).astype( fftw_dtype ), self.__tempFullframe ); self.__FFT2.execute() # FFTCrop self.__baseSquaredFFT[I,0:sC2[0],0:sC2[1]] = self.__tempFullframe[0:sC2[0],0:sC2[1]] self.__baseSquaredFFT[I,0:sC2[0],-sC2[1]:] = self.__tempFullframe[0:sC2[0],-sC2[1]:] self.__baseSquaredFFT[I,-sC2[0]:,0:sC2[1]] = self.__tempFullframe[-sC2[0]:,0:sC2[1]] self.__baseSquaredFFT[I,-sC2[0]:,-sC2[1]:] = self.__tempFullframe[-sC2[0]:,-sC2[1]:] if not self.masks.shape[0] == 1: self.__FFT2.update_arrays( self.masks[I,:,:].squeeze().astype( fftw_dtype), self.__tempFullframe ); self.__FFT2.execute() # FFTCrop self.__baseMaskFFT[I,0:sC2[0],0:sC2[1]] = self.__tempFullframe[0:sC2[0],0:sC2[1]] self.__baseMaskFFT[I,0:sC2[0],-sC2[1]:] = self.__tempFullframe[0:sC2[0],-sC2[1]:] self.__baseMaskFFT[I,-sC2[0]:,0:sC2[1]] = self.__tempFullframe[-sC2[0]:,0:sC2[1]] self.__baseMaskFFT[I,-sC2[0]:,-sC2[1]:] = self.__tempFullframe[-sC2[0]:,-sC2[1]:] pass del masks_block, images_block self.bench['xcorr2'] = time.time() print( "Starting correlation calculations, mode: " + self.triMode ) if self.triMode == u'refine': # Find FFT sum (it must be reduced by the current frame later) # FIXME: Is there some reason this might not be linear after FFT? # FIXME: is it the complex conjugate operation below??? self.__sumFFT = np.sum( self.__baseImageFFT, axis = 0 ) self.__sumSquaredFFT = np.sum( self.__baseSquaredFFT, axis = 0 ) print( "In refine" ) for I in np.arange(self.images.shape[0] - 1): # In refine mode we have to build the template on the fly from imageSum - currentImage self.__templateImageFFT = np.conj( self.__sumFFT - self.__baseImageFFT[I,:,:] ) / self.images.shape[0] self.__templateSquaredFFT = np.conj( self.__sumSquaredFFT - self.__baseSquaredFFT[I,:,:] ) / self.images.shape[0] tempComplex2 = None self.mnxc2( I, I, self.__shapeCropped, refine=True ) #### Find maximum positions #### self.locatePeak( I, I ) if self.verbose: print( "Refine # " + str(I) + " shift: [%.2f"%self.__shiftsTriMat[I,I,0] + ", %.2f"%self.__shiftsTriMat[I,I,1] + "], cc: %.6f"%self.__corrTriMat[I,I] + ", peak sig: %.3f"%self.__peaksigTriMat[I,I] ) else: # For even-odd and noise estimates, we often skip many rows rowIndices = np.unique( np.argwhere( np.sum( triIndices, axis=1 ) > 0 ) ) #print( "rowIndices: " + str(rowIndices) ) for I in rowIndices: # I is the index of the template image tempComplex = self.__baseImageFFT[I,:,:] self.__templateImageFFT = nz.evaluate( "conj(tempComplex)") tempComplex2 = self.__baseSquaredFFT[I,:,:] self.__templateSquaredFFT = nz.evaluate( "conj(tempComplex2)") if not self.masks.shape[0] == 1: tempComplex = baseMaskFFT[I,:,:] self.__templateMaskFFT = nz.evaluate( "conj(tempComplex)") # Now we can start looping through base images columnIndices = np.unique( np.argwhere( triIndices[I,:] ) ) #print( "columnIndices: " + str(columnIndices) ) for J in columnIndices: ####### MNXC2 revisement with private variable to make the code more manageable. self.mnxc2( I, J, self.__shapeCropped ) #### Find maximum positions #### self.locatePeak( I, J ) if self.verbose: print( "# " + str(I) + "->" + str(J) + " shift: [%.2f"%self.__shiftsTriMat[I,J,0] + ", %.2f"%self.__shiftsTriMat[I,J,1] + "], cc: %.6f"%self.__corrTriMat[I,J] + ", peak sig: %.3f"%self.__peaksigTriMat[I,J] ) # Correlation stats is for establishing correlation scores for fixed-pattern noise. if bool( self.trackCorrStats ): # Track the various statistics about the correlation map, mean, std, max, skewness self.calcCorrStats( currIndex, triIndices ) # triMode 'auto' diagonal mode if self.triMode == u'auto' and (self.__peaksigTriMat[I,J] <= self.peaksigThres or J-I >= self.autoMax): if self.verbose: print( "triMode 'auto' stopping at frame: " + str(J) ) break currIndex += 1 pass # C max position location if bool( np.any( self.fouCrop ) ): self.__shiftsTriMat[:,:,0] *= self.shapePadded[0] / self.__shapeCropped[0] self.__shiftsTriMat[:,:,1] *= self.shapePadded[1] / self.__shapeCropped[1] self.bench['xcorr3'] = time.time() # Pointer reference house-keeping del templateMaskFFT, tempComplex, tempComplex2 # Pointer return def mnxc2( self, I, J, shapeCropped, refine=False ): """ 2-D Masked, Intensity Normalized, Cross-correlation """ tempComplex = self.__tempComplex # Pointer re-assignment tempComplex2 = self.__tempComplex2 # Pointer re-assignment maskProduct = self.__maskProduct normConst2 = self.__normConst2 if not self.masks.shape[0] == 1: # Compute maskProduct, term is M1^* .* M2 baseMask_block = self.__baseMaskFFT[J,:,:]; templateMaskFFT = self.__templateMaskFFT # Pointer re-assignment tempComplex2 = nz.evaluate( "templateMaskFFT * baseMask_block" ) self.__IFFT2.update_arrays( tempComplex2, tempComplex ); self.__IFFT2.execute() # maskProduct = np.clip( np.round( np.real( tempComplex ) ), eps, np.Inf ) self.__maskProduct = nz.evaluate( "real(tempComplex)*normConst2" ) # Compute mask correlation terms if self.masks.shape[0] == 1: templateImageFFT = self.__templateImageFFT; baseMask_block = self.__baseMaskFFT # Pointer re-assignment self.__IFFT2.update_arrays( nz.evaluate( "baseMask_block * templateImageFFT"), tempComplex ); self.__IFFT2.execute() Corr_templateMask = nz.evaluate( "real(tempComplex)*normConst2" ) # Normalization baseImageFFT_block = self.__baseImageFFT[J,:,:]; templateMaskFFT = self.__templateMaskFFT self.__IFFT2.update_arrays( nz.evaluate( "templateMaskFFT * baseImageFFT_block"), tempComplex ); self.__IFFT2.execute() # These haven't been normalized, so let's do so. They are FFT squared, so N*N # This reduces the strain on single-precision range. Corr_baseMask = nz.evaluate( "real(tempComplex)*normConst2" ) # Normalization # Compute the intensity normalzaiton for the template if self.masks.shape[0] == 1: baseMaskFFT = self.__baseMaskFFT; templateSquaredFFT = self.__templateSquaredFFT self.__IFFT2.update_arrays( nz.evaluate( "baseMaskFFT * templateSquaredFFT"), tempComplex ); self.__IFFT2.execute() else: self.__IFFT2.update_arrays( nz.evaluate( "baseMaskFFT_block * templateSquaredFFT"), tempComplex ); self.__IFFT2.execute() # DenomTemplate = nz.evaluate( "real(tempComplex)*normConst2 - real( Corr_templateMask * (Corr_templateMask / maskProduct) )" ) # Compute the intensity normalzaiton for the base Image baseSquared_block = self.__baseSquaredFFT[J,:,:] self.__IFFT2.update_arrays( nz.evaluate( "templateMaskFFT * baseSquared_block"), tempComplex2 ); self.__IFFT2.execute() # Compute Denominator intensity normalization # DenomBase = nz.evaluate( "real(tempComplex2)*normConst2- real( Corr_baseMask * (Corr_baseMask / maskProduct) )" ) Denom = nz.evaluate( "sqrt( (real(tempComplex2)*normConst2- real( Corr_baseMask * (Corr_baseMask / maskProduct)))" + "* (real(tempComplex)*normConst2 - real( Corr_templateMask * (Corr_templateMask / maskProduct)) ) )" ) # What happened to numexpr clip? Denom = np.clip( Denom, 1, np.Inf ) # print( "Number of small Denominator values: " + str(np.sum(DenomTemplate < 1.0)) ) # Compute Numerator (the phase correlation) tempComplex2 = nz.evaluate( "baseImageFFT_block * templateImageFFT" ) self.__IFFT2.update_arrays( tempComplex2, tempComplex ); self.__IFFT2.execute() # Numerator = nz.evaluate( "real(tempComplex)*normConst2 - real( Corr_templateMask * Corr_baseMask / maskProduct)" ) # Compute final correlation self.__C = nz.evaluate( "(real(tempComplex)*normConst2 - real( Corr_templateMask * Corr_baseMask / maskProduct)) / Denom" ) # print( "%%%% mnxc2.Denom.dtype = " + str(Denom.dtype) ) self.__originTriMat[I,J] = self.__C[0,0] if bool(self.suppressOrigin): # If gain reference is quite old we can still get one bright pixel at the center. # The hot pixel filter has mitigated this but it's still a minor source of bias. self.__C[0,0] = 0.125 * ( self.__C[1,0] + self.__C[0,1] + self.__C[-1,0] + self.__C[-1,0] + self.__C[1,1] + self.__C[-1,1] + self.__C[-1,1] + self.__C[-1,-1] ) # We have everything in normal FFT order until here; Some speed-up could be found by its removal. # Pratically we don't have to do this fftshift, but it makes plotting easier to understand self.__C = np.fft.ifftshift( self.__C ) # We can crop C if maxShift is not None and preShift is False if self.maxShift is not None and self.preShift is False: shapeCropped2 = (np.array(shapeCropped)/2.0).astype('int') self.__C = self.__C[shapeCropped2[0]-self.maxShift:shapeCropped2[0]+self.maxShift, shapeCropped2[1]-self.maxShift:shapeCropped2[1]+self.maxShift] del normConst2, baseMask_block, templateMaskFFT, templateImageFFT, Corr_templateMask, baseImageFFT_block del Corr_baseMask, baseSquared_block, baseMaskFFT, templateSquaredFFT, maskProduct del tempComplex, tempComplex2 def locatePeak( self, I, J ): """ Subpixel peak location by Fourier interpolation. """ tempComplex = self.__tempComplex; tempComplex2 = self.__tempComplex2 # Apply B-factor low-pass filter to correlation function if self.Bmode == 'opti': self.bench['opti0'] = time.time() # Want to define this locally so it inherits scope variables. def inversePeakContrast( Bsigma ): self.__C_filt = scipy.ndimage.gaussian_filter( self.__C, Bsigma ) return np.std(self.__C_filt ) / (np.max(self.__C_filt ) - np.mean(self.__C_filt ) ) # B_opti= scipy.optimize.fminbound( inversePeakContrast, 0.0, 10.0, xtol=1E-3 ) sigmaOptiMax = 7.0 sigmaOptiMin = 0.0 maxIter = 15 # Let's apply some more constraints to speed this up tolerance = 0.01 result = scipy.optimize.minimize_scalar( inversePeakContrast, bounds=[sigmaOptiMin,sigmaOptiMax], method="bounded", options={'maxiter':maxIter, 'xatol':tolerance } ) self.__C_filt = scipy.ndimage.gaussian_filter( self.__C, result.x ) self.bench['opti0'] = time.time() if self.verbose >= 2: print( "Found optimum B-sigma: %.3f"%result.x + ", with peak sig: %.3f"%(1.0/result.fun)+" in %.1f"%(1E3*(self.bench['opti1']-self.bench['opti0']))+" ms" ) elif bool(self.Brad) and self.Bmode =='fourier': tempComplex = self.__C.astype(fftw_dtype) self.__FFT2.update_arrays( tempComplex, tempComplex2 ); self.__FFT2.execute() Bfilter = self.__Bfilter self.__IFFT2.update_arrays( nz.evaluate( "tempComplex2*Bfilter" ), tempComplex ); self.__IFFT2.execute() # Conservation of counts with Fourier filtering is not # very straight-forward. C_filt = nz.evaluate( "real( tempComplex )/sqrt(normConst)" ) elif bool(self.Brad) and self.Bmode == u'conv' or self.Bmode == u'convolution': # Convert self.Brad as an MTF to an equivalent sigma for a PSF # TODO: Check that Bsigma is correct with Fourier cropping" Bsigma = self.shapePadded / (np.sqrt(2) * np.pi * self.Brad) # Scipy's gaussian filter conserves total counts self.__C_filt = scipy.ndimage.gaussian_filter( self.__C, Bsigma ) else: # No filtering self.__C_filt = self.__C # Apply maximum shift max mask, if present if bool( self.maxShift ): # for previous frame alignment compensation, we need to shift the mask around... C_filt = self.__C_filt if bool( self.preShift ): # print( "In pre-shift" ) # This isn't working with 'refine' if self.triMode != u'refine': rolledMask = np.roll( np.roll( self.__mask_maxShift, np.round(self.__shiftsTriMat[I,J-1,0]).astype('int'), axis=0 ), np.round(self.__shiftsTriMat[I,J-1,1]).astype('int'), axis=1 ) elif self.triMode == u'refine': # With refine the matrix is populated like an autocorrelation function. rolledMask = np.roll( np.roll( self.__mask_maxShift, np.round(self.__shiftsTriMat[I-1,I-1,0]).astype('int'), axis=0 ), np.round(self.__shiftsTriMat[I-1,I-1,1]).astype('int'), axis=1 ) pass C_masked = nz.evaluate("C_filt*rolledMask") cmaxpos = np.unravel_index( np.argmax( C_masked ), C_masked.shape ) self.__peaksigTriMat[I,J] = (C_masked[cmaxpos] - np.mean(C_filt[rolledMask]))/
np.std(C_filt[rolledMask])
numpy.std
import numpy as np import sklearn.metrics def pr_global( y_hat, y_obs, threshold=0.5 ): """ :param y_hat: :param y_obs: :param threshold: :return: (data sets, 1) for each metric """ for i in range(len(y_hat)): if len(y_hat[i].shape) == 1: y_hat[i] = np.expand_dims(y_hat[i], axis=1) if len(y_obs[i].shape) == 1: y_obs[i] = np.expand_dims(y_obs[i], axis=1) is_multiclass = y_obs[0].shape[1] > 1 if is_multiclass: y_hat_disc = [np.zeros_like(y_hat[i]) for i in range(len(y_hat))] for i in range(len(y_hat)): y_hat_disc[i][np.arange(0, y_hat[i].shape[0]), np.argmax(y_hat[i], axis=1)] = 1 true_call = [ np.all((y_obs[i] >= threshold) == (y_hat_disc[i] > 0.5), axis=1) for i in range(len(y_hat)) ] tp = [ np.logical_and( true_call[i], np.any(y_obs[i][:, :-1] >= threshold, axis=1) ).flatten() for i in range(len(y_hat_disc)) ] tn = [ np.logical_and( true_call[i], y_obs[i][:, -1] >= threshold ).flatten() for i in range(len(y_hat_disc)) ] fp = [ np.logical_and( np.logical_not(true_call[i]), np.any(y_hat_disc[i][:, :-1] >= threshold, axis=1) ).flatten() for i in range(len(y_hat_disc)) ] fn = [ np.logical_and( np.logical_not(true_call[i]), y_hat_disc[i][:, -1] >= threshold ).flatten() for i in range(len(y_hat_disc)) ] else: tp = [ np.logical_and(y_obs[i] >= threshold, y_hat[i] >= threshold).flatten() for i in range(len(y_hat)) ] tn = [ np.logical_and(y_obs[i] < threshold, y_hat[i] < threshold).flatten() for i in range(len(y_hat)) ] fp = [ np.logical_and(y_obs[i] < threshold, y_hat[i] >= threshold).flatten() for i in range(len(y_hat)) ] fn = [ np.logical_and(y_obs[i] >= threshold, y_hat[i] < threshold).flatten() for i in range(len(y_hat)) ] for i, y in enumerate(y_hat): assert np.sum(np.sum(np.vstack([tp[i], tn[i], fp[i], fn[i]]).T, axis=1) != 1) == 0, \ "tp %i, fp %i, tn %i, fn %i, all %i" % \ (np.sum(tp[i]), np.sum(tn[i]), np.sum(fp[i]), np.sum(fn[i]), y.shape[0]) tp = np.expand_dims(np.array([np.sum(x) for x in tp]), axis=-1) tn = np.expand_dims(np.array([np.sum(x) for x in tn]), axis=-1) fp = np.expand_dims(np.array([np.sum(x) for x in fp]), axis=-1) fn = np.expand_dims(np.array([np.sum(x) for x in fn]), axis=-1) precision = tp / (tp + fp + 1e-10) recall = tp / (tp + fn + 1e-10) tpr = tp / np.expand_dims(np.array([x.shape[0] for x in y_obs]), axis=-1) tnr = tn / np.expand_dims(np.array([x.shape[0] for x in y_obs]), axis=-1) fpr = fp / np.expand_dims(np.array([x.shape[0] for x in y_obs]), axis=-1) fnr = fn / np.expand_dims(np.array([x.shape[0] for x in y_obs]), axis=-1) return precision, recall, tpr, tnr, fpr, fnr def pr_label( y_hat, y_obs, labels, labels_unique, threshold=0.5 ): """ :param y_hat: :param y_obs: :param labels: :param threshold: :return: (data sets, labels_unique) for each metric """ assert len(y_hat) == len(y_obs) assert len(y_hat) == len(labels) assert np.all([y_hat[i].shape == y_obs[i].shape for i in range(len(y_hat))]) for i in range(len(y_hat)): if len(y_hat[i].shape) == 1: y_hat[i] = np.expand_dims(y_hat[i], axis=1) if len(y_obs[i].shape) == 1: y_obs[i] = np.expand_dims(y_obs[i], axis=1) if labels[i] is not None: if len(labels[i]) == 0: labels[i] = None for i in range(len(y_hat)): if labels[i] is not None: assert y_hat[i].shape[0] == len(labels[i]), \ "%i, %i \n %s" % (y_hat[i].shape[0], len(labels[i]), str(labels[i])) is_multiclass = y_obs[0].shape[1] > 1 if is_multiclass: y_hat_bool = [np.ones_like(y_hat[i]) == 0 for i in range(len(y_hat))] for i in range(len(y_hat)): for j in range(y_hat[i].shape[0]): y_hat_bool[i][j, np.argmax(y_hat[i][j, :])] = True else: y_hat_bool = [x >= threshold for x in y_hat] tp = [ np.logical_and(y_obs[i] >= threshold, y_hat_bool[i]) for i in range(len(y_obs)) ] tn = [ np.logical_and(y_obs[i] < threshold, np.logical_not(y_hat_bool[i])) for i in range(len(y_obs)) ] fp = [ np.logical_and(y_obs[i] < threshold, y_hat_bool[i]) for i in range(len(y_obs)) ] fn = [ np.logical_and(y_obs[i] >= threshold, np.logical_not(y_hat_bool[i])) for i in range(len(y_obs)) ] if labels[0] is None or y_obs[0].shape[1] > 1: # labels are grouped in columns of y and confusion table arrays. tp = np.concatenate([np.sum(x, axis=0, keepdims=True) for x in tp], axis=0) tn = np.concatenate([np.sum(x, axis=0, keepdims=True) for x in tn], axis=0) fp = np.concatenate([np.sum(x, axis=0, keepdims=True) for x in fp], axis=0) fn = np.concatenate([np.sum(x, axis=0, keepdims=True) for x in fn], axis=0) elif labels[0] is not None and y_obs[0].shape[1] == 1: assert labels_unique is not None, "supply labels_unique" # y and confusion table arrays all have a single column and labels correspond to sets of rows. tp = np.concatenate([ np.concatenate([ np.sum(x[labels[i] == y, :], axis=0, keepdims=True) if np.sum(labels[i] == y) > 0 else np.array([[np.nan]]) for y in labels_unique ], axis=-1) for i, x in enumerate(tp) ], axis=0) tn = np.concatenate([ np.concatenate([ np.sum(x[labels[i] == y, :], axis=0, keepdims=True) if np.sum(labels[i] == y) > 0 else np.array([[np.nan]]) for y in labels_unique ], axis=-1) for i, x in enumerate(tn) ], axis=0) fp = np.concatenate([ np.concatenate([ np.sum(x[labels[i] == y, :], axis=0, keepdims=True) if np.sum(labels[i] == y) > 0 else np.array([[np.nan]]) for y in labels_unique ], axis=-1) for i, x in enumerate(fp) ], axis=0) fn = np.concatenate([ np.concatenate([ np.sum(x[labels[i] == y, :], axis=0, keepdims=True) if np.sum(labels[i] == y) > 0 else
np.array([[np.nan]])
numpy.array
# Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause import sys import unittest import numpy as np import torch import torch.nn.functional as F import lava.lib.dl.slayer as slayer verbose = True if (('-v' in sys.argv) or ('--verbose' in sys.argv)) else False seed = np.random.randint(1000) # seed = 902
np.random.seed(seed)
numpy.random.seed
import cv2 import numpy as np import os cam = cv2.VideoCapture(0) classifier = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") input = input("enter the name: ") frames = [] outputs = [] while(True): ret, Image = cam.read(0) if (ret): faces = classifier.detectMultiScale(Image) for i in faces: x, y, w, h = i rec = cv2.rectangle(Image, (x, y), (x+w, y+h), (255, 0, 0), 2) rec_win = Image[y:y + h, x:x + w] fix = cv2.resize(rec_win, (100, 100)) opt = cv2.cvtColor(fix, cv2.COLOR_BGR2GRAY) cv2.imshow("My Camera", Image) cv2.imshow("Frame", opt) key = cv2.waitKey(1) if(key == ord("q") or key == ord("Q") or key == ord("E")): break if (key == ord("c") or key == ord("C")): #cv2.imwrite("cam.jpg", Image) frames.append(opt.flatten()) outputs.append([input]) hly = np.array(frames) vly = np.array(outputs) print(type(vly)) save =
np.hstack([vly, hly])
numpy.hstack
import numpy as np from aerosandbox import ExplicitAnalysis from aerosandbox.geometry import * from aerosandbox.performance import OperatingPoint from aerosandbox.aerodynamics.aero_3D.singularities.uniform_strength_horseshoe_singularities import \ calculate_induced_velocity_horseshoe from typing import Dict, Any ### Define some helper functions that take a vector and make it a Nx1 or 1xN, respectively. # Useful for broadcasting with matrices later. def tall(array): return np.reshape(array, (-1, 1)) def wide(array): return np.reshape(array, (1, -1)) class VortexLatticeMethod(ExplicitAnalysis): """ An explicit (linear) vortex-lattice-method aerodynamics analysis. Usage example: >>> analysis = asb.VortexLatticeMethod( >>> airplane=my_airplane, >>> op_point=asb.OperatingPoint( >>> velocity=100, # m/s >>> alpha=5, # deg >>> beta=4, # deg >>> p=0.01, # rad/sec >>> q=0.02, # rad/sec >>> r=0.03, # rad/sec >>> ) >>> ) >>> aero_data = analysis.run() >>> analysis.draw() """ def __init__(self, airplane: Airplane, op_point: OperatingPoint, run_symmetric_if_possible: bool = False, verbose: bool = False, spanwise_resolution: int = 10, spanwise_spacing: str = "cosine", chordwise_resolution: int = 10, chordwise_spacing: str = "cosine", vortex_core_radius: float = 1e-8, align_trailing_vortices_with_wind: bool = False, ): super().__init__() self.airplane = airplane self.op_point = op_point self.verbose = verbose self.spanwise_resolution = spanwise_resolution self.spanwise_spacing = spanwise_spacing self.chordwise_resolution = chordwise_resolution self.chordwise_spacing = chordwise_spacing self.vortex_core_radius = vortex_core_radius self.align_trailing_vortices_with_wind = align_trailing_vortices_with_wind ### Determine whether you should run the problem as symmetric self.run_symmetric = False if run_symmetric_if_possible: raise NotImplementedError("VLM with symmetry detection not yet implemented!") # try: # self.run_symmetric = ( # Satisfies assumptions # self.op_point.beta == 0 and # self.op_point.p == 0 and # self.op_point.r == 0 and # self.airplane.is_entirely_symmetric() # ) # except RuntimeError: # Required because beta, p, r, etc. may be non-numeric (e.g. opti variables) # pass def run(self) -> Dict[str, Any]: if self.verbose: print("Meshing...") ##### Make Panels front_left_vertices = [] back_left_vertices = [] back_right_vertices = [] front_right_vertices = [] is_trailing_edge = [] for wing in self.airplane.wings: points, faces = wing.mesh_thin_surface( method="quad", chordwise_resolution=self.chordwise_resolution, chordwise_spacing=self.chordwise_spacing, spanwise_resolution=self.spanwise_resolution, spanwise_spacing=self.spanwise_spacing, add_camber=True ) front_left_vertices.append(points[faces[:, 0], :]) back_left_vertices.append(points[faces[:, 1], :]) back_right_vertices.append(points[faces[:, 2], :]) front_right_vertices.append(points[faces[:, 3], :]) is_trailing_edge.append( (np.arange(len(faces)) + 1) % self.chordwise_resolution == 0 ) front_left_vertices = np.concatenate(front_left_vertices) back_left_vertices = np.concatenate(back_left_vertices) back_right_vertices = np.concatenate(back_right_vertices) front_right_vertices = np.concatenate(front_right_vertices) is_trailing_edge = np.concatenate(is_trailing_edge) ### Compute panel statistics diag1 = front_right_vertices - back_left_vertices diag2 = front_left_vertices - back_right_vertices cross = np.cross(diag1, diag2) cross_norm = np.linalg.norm(cross, axis=1) normal_directions = cross / tall(cross_norm) areas = cross_norm / 2 # Compute the location of points of interest on each panel left_vortex_vertices = 0.75 * front_left_vertices + 0.25 * back_left_vertices right_vortex_vertices = 0.75 * front_right_vertices + 0.25 * back_right_vertices vortex_centers = (left_vortex_vertices + right_vortex_vertices) / 2 vortex_bound_leg = right_vortex_vertices - left_vortex_vertices collocation_points = ( 0.5 * (0.25 * front_left_vertices + 0.75 * back_left_vertices) + 0.5 * (0.25 * front_right_vertices + 0.75 * back_right_vertices) ) ### Save things to the instance for later access self.front_left_vertices = front_left_vertices self.back_left_vertices = back_left_vertices self.back_right_vertices = back_right_vertices self.front_right_vertices = front_right_vertices self.is_trailing_edge = is_trailing_edge self.normal_directions = normal_directions self.areas = areas self.left_vortex_vertices = left_vortex_vertices self.right_vortex_vertices = right_vortex_vertices self.vortex_centers = vortex_centers self.vortex_bound_leg = vortex_bound_leg self.collocation_points = collocation_points ##### Setup Operating Point if self.verbose: print("Calculating the freestream influence...") steady_freestream_velocity = self.op_point.compute_freestream_velocity_geometry_axes() # Direction the wind is GOING TO, in geometry axes coordinates steady_freestream_direction = steady_freestream_velocity / np.linalg.norm(steady_freestream_velocity) rotation_freestream_velocities = self.op_point.compute_rotation_velocity_geometry_axes( collocation_points) freestream_velocities = np.add(wide(steady_freestream_velocity), rotation_freestream_velocities) # Nx3, represents the freestream velocity at each panel collocation point (c) freestream_influences = np.sum(freestream_velocities * normal_directions, axis=1) ### Save things to the instance for later access self.steady_freestream_velocity = steady_freestream_velocity self.steady_freestream_direction = steady_freestream_direction self.freestream_velocities = freestream_velocities ##### Setup Geometry ### Calculate AIC matrix if self.verbose: print("Calculating the collocation influence matrix...") u_collocations_unit, v_collocations_unit, w_collocations_unit = calculate_induced_velocity_horseshoe( x_field=tall(collocation_points[:, 0]), y_field=tall(collocation_points[:, 1]), z_field=tall(collocation_points[:, 2]), x_left=wide(left_vortex_vertices[:, 0]), y_left=wide(left_vortex_vertices[:, 1]), z_left=wide(left_vortex_vertices[:, 2]), x_right=wide(right_vortex_vertices[:, 0]), y_right=wide(right_vortex_vertices[:, 1]), z_right=wide(right_vortex_vertices[:, 2]), trailing_vortex_direction=steady_freestream_direction if self.align_trailing_vortices_with_wind else np.array([1, 0, 0]), gamma=1, vortex_core_radius=self.vortex_core_radius ) AIC = ( u_collocations_unit * tall(normal_directions[:, 0]) + v_collocations_unit * tall(normal_directions[:, 1]) + w_collocations_unit * tall(normal_directions[:, 2]) ) ##### Calculate Vortex Strengths if self.verbose: print("Calculating vortex strengths...") self.vortex_strengths = np.linalg.solve(AIC, -freestream_influences) ##### Calculate forces ### Calculate Near-Field Forces and Moments # Governing Equation: The force on a straight, small vortex filament is F = rho * cross(V, l) * gamma, # where rho is density, V is the velocity vector, cross() is the cross product operator, # l is the vector of the filament itself, and gamma is the circulation. if self.verbose: print("Calculating forces on each panel...") # Calculate the induced velocity at the center of each bound leg V_centers = self.get_velocity_at_points(vortex_centers) # Calculate forces_inviscid_geometry, the force on the ith panel. Note that this is in GEOMETRY AXES, # not WIND AXES or BODY AXES. Vi_cross_li = np.cross(V_centers, vortex_bound_leg, axis=1) forces_geometry = self.op_point.atmosphere.density() * Vi_cross_li * tall(self.vortex_strengths) moments_geometry = np.cross( np.add(vortex_centers, -wide(self.airplane.xyz_ref)), forces_geometry ) # Calculate total forces and moments force_geometry = np.sum(forces_geometry, axis=0) moment_geometry = np.sum(moments_geometry, axis=0) force_wind = self.op_point.convert_axes( force_geometry[0], force_geometry[1], force_geometry[2], from_axes="geometry", to_axes="wind" ) moment_wind = self.op_point.convert_axes( moment_geometry[0], moment_geometry[1], moment_geometry[2], from_axes="geometry", to_axes="wind" ) ### Save things to the instance for later access self.forces_geometry = forces_geometry self.moments_geometry = moments_geometry self.force_geometry = force_geometry self.force_wind = force_wind self.moment_geometry = moment_geometry self.moment_wind = moment_wind # Calculate dimensional forces L = -force_wind[2] D = -force_wind[0] Y = force_wind[1] l = moment_wind[0] # TODO review axes m = moment_wind[1] n = moment_wind[2] # Calculate nondimensional forces q = self.op_point.dynamic_pressure() s_ref = self.airplane.s_ref b_ref = self.airplane.b_ref c_ref = self.airplane.c_ref CL = L / q / s_ref CD = D / q / s_ref CY = Y / q / s_ref Cl = l / q / s_ref / b_ref Cm = m / q / s_ref / c_ref Cn = n / q / s_ref / b_ref return { "L" : L, "D" : D, "Y" : Y, "l" : l, "m" : m, "n" : n, "CL" : CL, "CD" : CD, "CY" : CY, "Cl" : Cl, "Cm" : Cm, "Cn" : Cn, "F_g": force_geometry, "F_w": force_wind, "M_g": moment_geometry, "M_w": moment_wind } def get_induced_velocity_at_points(self, points: np.ndarray) -> np.ndarray: """ Computes the induced velocity at a set of points in the flowfield. Args: points: A Nx3 array of points that you would like to know the induced velocities at. Given in geometry axes. Returns: A Nx3 of the induced velocity at those points. Given in geometry axes. """ u_induced, v_induced, w_induced = calculate_induced_velocity_horseshoe( x_field=tall(points[:, 0]), y_field=tall(points[:, 1]), z_field=tall(points[:, 2]), x_left=wide(self.left_vortex_vertices[:, 0]), y_left=wide(self.left_vortex_vertices[:, 1]), z_left=wide(self.left_vortex_vertices[:, 2]), x_right=wide(self.right_vortex_vertices[:, 0]), y_right=wide(self.right_vortex_vertices[:, 1]), z_right=wide(self.right_vortex_vertices[:, 2]), trailing_vortex_direction=self.steady_freestream_direction if self.align_trailing_vortices_with_wind else np.array([1, 0, 0]), gamma=wide(self.vortex_strengths), vortex_core_radius=self.vortex_core_radius ) u_induced = np.sum(u_induced, axis=1) v_induced = np.sum(v_induced, axis=1) w_induced =
np.sum(w_induced, axis=1)
numpy.sum
from numpy.testing import (assert_allclose, assert_almost_equal, assert_array_equal, assert_array_almost_equal_nulp) import numpy as np import pytest import matplotlib.mlab as mlab from matplotlib.cbook.deprecation import MatplotlibDeprecationWarning def _stride_repeat(*args, **kwargs): with pytest.warns(MatplotlibDeprecationWarning): return mlab.stride_repeat(*args, **kwargs) class TestStride: def get_base(self, x): y = x while y.base is not None: y = y.base return y def calc_window_target(self, x, NFFT, noverlap=0, axis=0): """ This is an adaptation of the original window extraction algorithm. This is here to test to make sure the new implementation has the same result. """ step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) result = np.zeros((NFFT, n)) # do the ffts of the slices for i in range(n): result[:, i] = x[ind[i]:ind[i]+NFFT] if axis == 1: result = result.T return result @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D']) def test_stride_windows_invalid_input_shape(self, shape): x = np.arange(np.prod(shape)).reshape(shape) with pytest.raises(ValueError): mlab.stride_windows(x, 5) @pytest.mark.parametrize('n, noverlap', [(0, None), (11, None), (2, 2), (2, 3)], ids=['n less than 1', 'n greater than input', 'noverlap greater than n', 'noverlap equal to n']) def test_stride_windows_invalid_params(self, n, noverlap): x = np.arange(10) with pytest.raises(ValueError): mlab.stride_windows(x, n, noverlap) @pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D']) def test_stride_repeat_invalid_input_shape(self, shape): x = np.arange(
np.prod(shape)
numpy.prod
#!/bin/python import binascii import codecs import json import logging import os import time from shutil import copyfile import numpy as np import csv from configs.alignerconfig import directory_path import uuid from anuvaad_auditor.errorhandler import post_error from anuvaad_auditor.errorhandler import post_error_wf from anuvaad_auditor.loghandler import log_exception log = logging.getLogger('file') two_files = True no_of_words = 200 file_encoding = 'utf-16' class AlignmentUtils: def __init__(self): pass # Utility to parse input files. def parse_input_file(self, path_eng, path_indic): source = [] target_corp = [] if two_files: with codecs.open(path_indic, 'r',file_encoding) as txt_file: for row in txt_file: if len(row.rstrip()) != 0: source.append(row.rstrip()) with codecs.open(path_eng, 'r',file_encoding) as txt_file: for row in txt_file: if len(row.rstrip()) != 0: target_corp.append(row.rstrip()) else: with codecs.open(path_eng, 'r',file_encoding) as csv_file: csv_reader = csv.reader((l.replace('\0', '') for l in csv_file)) for row in csv_reader: if len(row) != 0: source.append(row[0]) target_corp.append(row[1]) return source, target_corp def parse_json(self, path_eng, path_indic): source = [] target_corp = [] f = open(path_indic) response = json.load(f) for page in response['result']: for block in page['text_blocks']: for sentence in block['tokenized_sentences'] : source.append(sentence['src']) f = open(path_eng) response = json.load(f) for page in response['result']: for block in page['text_blocks']: for sentence in block['tokenized_sentences'] : target_corp.append(sentence['src']) return source, target_corp # Utility to write the output to a file def write_output(self, list, path): with codecs.open(path, 'w', file_encoding) as txt_file: for row in list: txt_file.write(row + "\r\n") # Utility to write the JSON output to a file def write_json_output(self, df, path): with open(path, 'w', encoding = file_encoding) as json_file: df.to_json(json_file, force_ascii=False,orient='records') # Utility to calculate cosine distances between 2 vectors def cscalc(self, vector_one, vector_two): vector_one = np.squeeze(vector_one) vector_two = np.squeeze(vector_two) dot = np.dot(vector_one, vector_two) norma = np.linalg.norm(vector_one) normb =
np.linalg.norm(vector_two)
numpy.linalg.norm
from control import tf from matplotlib import pyplot as plt from numpy import abs, arccos, arctan2, array, count_nonzero, cos, delete, imag, linspace, log10, meshgrid, polymul, \ polyval, rad2deg, real, roots, sqrt, tan from scipy.signal import tf2zpk def bode_alt(sys, title=''): mag, phase, omega = frequency_response(sys) plt.subplot(2, 1, 1) plt.plot(omega, mag) plt.xscale('log') plt.ylabel('Magnitude [dB]') plt.grid() plt.title('Bode' + title) plt.subplot(2, 1, 2) plt.plot(omega, phase) plt.xscale('log') plt.ylabel('Phase [deg]') plt.xlabel('frequency [rps]') plt.grid() plt.show() def frequency_response(tf, w_in=[0.01, 100], plot=0): w = linspace(w_in[0], w_in[1], 10000) wi = w*1j g = 20 * log10(abs(polyval(tf.num[0][0], wi))) - 20 * log10(abs(
polyval(tf.den[0][0], wi)
numpy.polyval
# Author : <NAME> [https://github.com/vstark21] import os import numpy as np # This function builds a CNN model. def build_model(): files = os.listdir() if "mnist_model.h5" not in files: from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow import keras from keras.datasets import mnist from keras.models import load_model import pandas as pd (feat_tkeras, lab_tkeras), (feat_val, lab_val) = mnist.load_data() train_data = pd.read_csv("train.csv") lab_train = train_data["label"] feat_train = np.array(train_data.drop("label", axis=1)).reshape((-1, 28, 28, 1)) features_train = np.concatenate((np.expand_dims(feat_tkeras, axis=-1), feat_train), axis=0) labels_train =
np.concatenate((lab_tkeras, lab_train), axis=0)
numpy.concatenate
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. from .parameterized_spline import ParameterizedSpline import numpy as np import math from transformations import quaternion_from_euler, euler_from_quaternion REF_VECTOR = [0.0,1.0] def get_tangent_at_parameter(spline, u, eval_range=0.5): """ Returns ------ * dir_vector : np.ndarray The normalized direction vector * start : np.ndarry start of the tangent line / the point evaluated at arc length """ tangent = [1.0,0.0] magnitude = 0 while magnitude == 0: # handle cases where the granularity of the spline is too low l1 = u - eval_range l2 = u + eval_range p1 = spline.query_point_by_absolute_arc_length(l1) p2 = spline.query_point_by_absolute_arc_length(l2) tangent = p2 - p1 magnitude = np.linalg.norm(tangent) eval_range += 0.1 if magnitude != 0: tangent /= magnitude return tangent def get_angle_between_vectors(a,b): a /= np.linalg.norm(a) b /= np.linalg.norm(b) angle = math.acos((a[0] * b[0] + a[1] * b[1])) return angle def get_tangents2d(translation, eval_range=0.5): """ Create a list of tangents for a list of translations to be used for an AnnotatedSpline""" """ TODO fix """ steps = len(translation) spline = ParameterizedSpline(translation) parameters = np.linspace(0, 1, steps)# this is not correct tangents = [] for u in parameters: tangent = get_tangent_at_parameter(spline, u, eval_range) tangents.append(tangent) return tangents def complete_tangents(translation, given_tangents, eval_range=0.5): steps = len(translation) spline = ParameterizedSpline(translation) parameters = [spline.get_absolute_arc_length_of_point(t)[0] for t in translation] #parameters = np.linspace(0, 1, steps) tangents = given_tangents for idx, u in enumerate(parameters): if tangents[idx] is None: tangents[idx] = get_tangent_at_parameter(spline, u, eval_range) return tangents def complete_orientations_from_tangents(translation, given_orientations, eval_range=0.5, ref_vector=REF_VECTOR): steps = len(translation) spline = ParameterizedSpline(translation) parameters = np.linspace(0, 1, steps) orientations = given_orientations for idx, u in enumerate(parameters): if orientations[idx] is None: tangent = get_tangent_at_parameter(spline, u, eval_range) print("estimate tangent",idx, tangent) orientations[idx] = tangent_to_quaternion(tangent, ref_vector) return orientations def tangent_to_quaternion(tangent, ref_vector=REF_VECTOR): a = ref_vector b = np.array([tangent[0], tangent[2]]) angle = get_angle_between_vectors(a, b) return quaternion_from_euler(0, angle, 0) def quaternion_to_tangent(q, ref_vector=REF_VECTOR): e = euler_from_quaternion(q) angle = e[1] sa = math.sin(angle) ca = math.cos(angle) m = np.array([[ca, -sa], [sa, ca]]) return np.dot(m, ref_vector) def tangents_to_quaternions(tangents, ref_vector=REF_VECTOR): quaternions = [] for tangent in tangents: q = tangent_to_quaternion(tangent, ref_vector) quaternions.append(q) return quaternions def get_orientations_from_tangents2d(translation, ref_vector=REF_VECTOR): """ Create a list of orientations for a list of translations to be used for an AnnotatedSpline. Note it seems that as long as the number of points are the same, the same spline parameters can be used for the query of the spline. """ """ TODO fix """ ref_vector = np.array(ref_vector) steps = len(translation) spline = ParameterizedSpline(translation) parameters = np.linspace(0,1, steps) orientation = [] for u in parameters: tangent = get_tangent_at_parameter(spline, u, eval_range=0.1) a = ref_vector b = np.array([tangent[0], tangent[2]]) angle = get_angle_between_vectors(a, b) orientation.append(quaternion_from_euler(*np.radians([0, angle, 0]))) return orientation def get_tangents(points, length): spline = ParameterizedSpline(points) x = np.linspace(0, spline.full_arc_length, length) new_points = [] tangents = [] for v in x: s, t = spline.get_tangent_at_arc_length(v) new_points.append(s) tangents.append(t) return new_points, tangents def plot_annotated_spline(spline,root_motion, filename, scale_factor=0.7): from matplotlib import pyplot as plt def plot_annotated_tangent(ax, spline, x, length): p = spline.query_point_by_absolute_arc_length(x)*scale_factor t = spline.query_orientation_by_absolute_arc_length(x)*scale_factor start = -p[0], p[2] p_prime = [-p[0] + -t[0] * length, p[2] + t[2] * length] # p_prime = [p[0] + t[0] * length, p[2] + t[2] * length] points = np.array([start, p_prime]).T # t = tangent.T.tolist() # # print "tangent", t ax.plot(*points) fig = plt.figure() sub_plot_coordinate = (1, 1, 1) ax = fig.add_subplot(*sub_plot_coordinate) control_points = spline.spline.control_points control_points =
np.array(control_points)
numpy.array
ENABLE_MULTIPROCESSING = True from dsl import cpp_trace_param_automata def generate_public_submission(): import numpy as np import pandas as pd import os import json from pathlib import Path import matplotlib.pyplot as plt from matplotlib import colors import numpy as np from xgboost import XGBClassifier import pdb # data_path = Path('.') data_path = Path('.') if not (data_path / 'test').exists(): data_path = Path('../input/abstraction-and-reasoning-challenge') training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' def plot_result(test_input, test_prediction, input_shape): """ Plots the first train and test pairs of a specified task, using same color scheme as the ARC app """ cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) fig, axs = plt.subplots(1, 2, figsize=(15, 15)) test_input = test_input.reshape(input_shape[0], input_shape[1]) axs[0].imshow(test_input, cmap=cmap, norm=norm) axs[0].axis('off') axs[0].set_title('Actual Target') test_prediction = test_prediction.reshape(input_shape[0], input_shape[1]) axs[1].imshow(test_prediction, cmap=cmap, norm=norm) axs[1].axis('off') axs[1].set_title('Model Prediction') plt.tight_layout() plt.show() def plot_test(test_prediction, task_name): """ Plots the first train and test pairs of a specified task, using same color scheme as the ARC app """ cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) fig, axs = plt.subplots(1, 1, figsize=(15, 15)) axs.imshow(test_prediction, cmap=cmap, norm=norm) axs.axis('off') axs.set_title(f'Test Prediction {task_name}') plt.tight_layout() plt.show() # https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook def flattener(pred): str_pred = str([row for row in pred]) str_pred = str_pred.replace(', ', '') str_pred = str_pred.replace('[[', '|') str_pred = str_pred.replace('][', '|') str_pred = str_pred.replace(']]', '|') return str_pred sample_sub1 = pd.read_csv(data_path / 'sample_submission.csv') sample_sub1 = sample_sub1.set_index('output_id') sample_sub1.head() def get_moore_neighbours(color, cur_row, cur_col, nrows, ncols): if cur_row <= 0: top = -1 else: top = color[cur_row - 1][cur_col] if cur_row >= nrows - 1: bottom = -1 else: bottom = color[cur_row + 1][cur_col] if cur_col <= 0: left = -1 else: left = color[cur_row][cur_col - 1] if cur_col >= ncols - 1: right = -1 else: right = color[cur_row][cur_col + 1] return top, bottom, left, right def get_tl_tr(color, cur_row, cur_col, nrows, ncols): if cur_row == 0: top_left = -1 top_right = -1 else: if cur_col == 0: top_left = -1 else: top_left = color[cur_row - 1][cur_col - 1] if cur_col == ncols - 1: top_right = -1 else: top_right = color[cur_row - 1][cur_col + 1] return top_left, top_right def make_features(input_color, nfeat): nrows, ncols = input_color.shape feat = np.zeros((nrows * ncols, nfeat)) cur_idx = 0 for i in range(nrows): for j in range(ncols): feat[cur_idx, 0] = i feat[cur_idx, 1] = j feat[cur_idx, 2] = input_color[i][j] feat[cur_idx, 3:7] = get_moore_neighbours(input_color, i, j, nrows, ncols) feat[cur_idx, 7:9] = get_tl_tr(input_color, i, j, nrows, ncols) feat[cur_idx, 9] = len(np.unique(input_color[i, :])) feat[cur_idx, 10] = len(np.unique(input_color[:, j])) feat[cur_idx, 11] = (i + j) feat[cur_idx, 12] = len(np.unique(input_color[i - local_neighb:i + local_neighb, j - local_neighb:j + local_neighb])) cur_idx += 1 return feat def features(task, mode='train'): num_train_pairs = len(task[mode]) feat, target = [], [] global local_neighb for task_num in range(num_train_pairs): input_color = np.array(task[mode][task_num]['input']) target_color = task[mode][task_num]['output'] nrows, ncols = len(task[mode][task_num]['input']), len(task[mode][task_num]['input'][0]) target_rows, target_cols = len(task[mode][task_num]['output']), len(task[mode][task_num]['output'][0]) if (target_rows != nrows) or (target_cols != ncols): print('Number of input rows:', nrows, 'cols:', ncols) print('Number of target rows:', target_rows, 'cols:', target_cols) not_valid = 1 return None, None, 1 imsize = nrows * ncols # offset = imsize*task_num*3 #since we are using three types of aug feat.extend(make_features(input_color, nfeat)) target.extend(np.array(target_color).reshape(-1, )) return np.array(feat), np.array(target), 0 # mode = 'eval' mode = 'test' if mode == 'eval': task_path = evaluation_path elif mode == 'train': task_path = training_path elif mode == 'test': task_path = test_path all_task_ids = sorted(os.listdir(task_path)) nfeat = 13 local_neighb = 5 valid_scores = {} model_accuracies = {'ens': []} pred_taskids = [] for task_id in all_task_ids: task_file = str(task_path / task_id) with open(task_file, 'r') as f: task = json.load(f) feat, target, not_valid = features(task) if not_valid: print('ignoring task', task_file) print() not_valid = 0 continue xgb = XGBClassifier(n_estimators=10, n_jobs=-1) xgb.fit(feat, target, verbose=-1) # training on input pairs is done. # test predictions begins here num_test_pairs = len(task['test']) for task_num in range(num_test_pairs): cur_idx = 0 input_color = np.array(task['test'][task_num]['input']) nrows, ncols = len(task['test'][task_num]['input']), len( task['test'][task_num]['input'][0]) feat = make_features(input_color, nfeat) print('Made predictions for ', task_id[:-5]) preds = xgb.predict(feat).reshape(nrows, ncols) if (mode == 'train') or (mode == 'eval'): ens_acc = (np.array(task['test'][task_num]['output']) == preds).sum() / (nrows * ncols) model_accuracies['ens'].append(ens_acc) pred_taskids.append(f'{task_id[:-5]}_{task_num}') # print('ensemble accuracy',(np.array(task['test'][task_num]['output'])==preds).sum()/(nrows*ncols)) # print() preds = preds.astype(int).tolist() # plot_test(preds, task_id) sample_sub1.loc[f'{task_id[:-5]}_{task_num}', 'output'] = flattener(preds) if (mode == 'train') or (mode == 'eval'): df = pd.DataFrame(model_accuracies, index=pred_taskids) print(df.head(10)) print(df.describe()) for c in df.columns: print(f'for {c} no. of complete tasks is', (df.loc[:, c] == 1).sum()) df.to_csv('ens_acc.csv') sample_sub1.head() training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' training_tasks = sorted(os.listdir(training_path)) eval_tasks = sorted(os.listdir(evaluation_path)) T = training_tasks Trains = [] for i in range(400): task_file = str(training_path / T[i]) task = json.load(open(task_file, 'r')) Trains.append(task) E = eval_tasks Evals = [] for i in range(400): task_file = str(evaluation_path / E[i]) task = json.load(open(task_file, 'r')) Evals.append(task) cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) # 0:black, 1:blue, 2:red, 3:greed, 4:yellow, # 5:gray, 6:magenta, 7:orange, 8:sky, 9:brown plt.figure(figsize=(5, 2), dpi=200) plt.imshow([list(range(10))], cmap=cmap, norm=norm) plt.xticks(list(range(10))) plt.yticks([]) # plt.show() def plot_task(task): n = len(task["train"]) + len(task["test"]) fig, axs = plt.subplots(2, n, figsize=(4 * n, 8), dpi=50) plt.subplots_adjust(wspace=0, hspace=0) fig_num = 0 for i, t in enumerate(task["train"]): t_in, t_out = np.array(t["input"]), np.array(t["output"]) axs[0][fig_num].imshow(t_in, cmap=cmap, norm=norm) axs[0][fig_num].set_title(f'Train-{i} in') axs[0][fig_num].set_yticks(list(range(t_in.shape[0]))) axs[0][fig_num].set_xticks(list(range(t_in.shape[1]))) axs[1][fig_num].imshow(t_out, cmap=cmap, norm=norm) axs[1][fig_num].set_title(f'Train-{i} out') axs[1][fig_num].set_yticks(list(range(t_out.shape[0]))) axs[1][fig_num].set_xticks(list(range(t_out.shape[1]))) fig_num += 1 for i, t in enumerate(task["test"]): t_in, t_out = np.array(t["input"]), np.array(t["output"]) axs[0][fig_num].imshow(t_in, cmap=cmap, norm=norm) axs[0][fig_num].set_title(f'Test-{i} in') axs[0][fig_num].set_yticks(list(range(t_in.shape[0]))) axs[0][fig_num].set_xticks(list(range(t_in.shape[1]))) axs[1][fig_num].imshow(t_out, cmap=cmap, norm=norm) axs[1][fig_num].set_title(f'Test-{i} out') axs[1][fig_num].set_yticks(list(range(t_out.shape[0]))) axs[1][fig_num].set_xticks(list(range(t_out.shape[1]))) fig_num += 1 plt.tight_layout() plt.show() def plot_picture(x): plt.imshow(np.array(x), cmap=cmap, norm=norm) plt.show() def Defensive_Copy(A): n = len(A) k = len(A[0]) L = np.zeros((n, k), dtype=int) for i in range(n): for j in range(k): L[i, j] = 0 + A[i][j] return L.tolist() def Create(task, task_id=0): n = len(task['train']) Input = [Defensive_Copy(task['train'][i]['input']) for i in range(n)] Output = [Defensive_Copy(task['train'][i]['output']) for i in range(n)] Input.append(Defensive_Copy(task['test'][task_id]['input'])) return Input, Output def Recolor(task): Input = task[0] Output = task[1] Test_Picture = Input[-1] Input = Input[:-1] N = len(Input) for x, y in zip(Input, Output): if len(x) != len(y) or len(x[0]) != len(y[0]): return -1 Best_Dict = -1 Best_Q1 = -1 Best_Q2 = -1 Best_v = -1 # v ranges from 0 to 3. This gives an extra flexibility of measuring distance from any of the 4 corners Pairs = [] for t in range(15): for Q1 in range(1, 8): for Q2 in range(1, 8): if Q1 + Q2 == t: Pairs.append((Q1, Q2)) for Q1, Q2 in Pairs: for v in range(4): if Best_Dict != -1: continue possible = True Dict = {} for x, y in zip(Input, Output): n = len(x) k = len(x[0]) for i in range(n): for j in range(k): if v == 0 or v == 2: p1 = i % Q1 else: p1 = (n - 1 - i) % Q1 if v == 0 or v == 3: p2 = j % Q2 else: p2 = (k - 1 - j) % Q2 color1 = x[i][j] color2 = y[i][j] if color1 != color2: rule = (p1, p2, color1) if rule not in Dict: Dict[rule] = color2 elif Dict[rule] != color2: possible = False if possible: # Let's see if we actually solve the problem for x, y in zip(Input, Output): n = len(x) k = len(x[0]) for i in range(n): for j in range(k): if v == 0 or v == 2: p1 = i % Q1 else: p1 = (n - 1 - i) % Q1 if v == 0 or v == 3: p2 = j % Q2 else: p2 = (k - 1 - j) % Q2 color1 = x[i][j] rule = (p1, p2, color1) if rule in Dict: color2 = 0 + Dict[rule] else: color2 = 0 + y[i][j] if color2 != y[i][j]: possible = False if possible: Best_Dict = Dict Best_Q1 = Q1 Best_Q2 = Q2 Best_v = v if Best_Dict == -1: return -1 # meaning that we didn't find a rule that works for the traning cases # Otherwise there is a rule: so let's use it: n = len(Test_Picture) k = len(Test_Picture[0]) answer = np.zeros((n, k), dtype=int) for i in range(n): for j in range(k): if Best_v == 0 or Best_v == 2: p1 = i % Best_Q1 else: p1 = (n - 1 - i) % Best_Q1 if Best_v == 0 or Best_v == 3: p2 = j % Best_Q2 else: p2 = (k - 1 - j) % Best_Q2 color1 = Test_Picture[i][j] rule = (p1, p2, color1) if (p1, p2, color1) in Best_Dict: answer[i][j] = 0 + Best_Dict[rule] else: answer[i][j] = 0 + color1 return answer.tolist() sample_sub2 = pd.read_csv(data_path / 'sample_submission.csv') sample_sub2.head() def flattener(pred): str_pred = str([row for row in pred]) str_pred = str_pred.replace(', ', '') str_pred = str_pred.replace('[[', '|') str_pred = str_pred.replace('][', '|') str_pred = str_pred.replace(']]', '|') return str_pred example_grid = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # display(example_grid) print(flattener(example_grid)) Solved = [] Problems = sample_sub2['output_id'].values Proposed_Answers = [] test_paths_my = {task.stem: json.load(task.open()) for task in test_path.iterdir()} test_task_ids = np.sort(list(test_paths_my.keys())) print(Problems, len(Problems)) task_number_my = dict(zip(test_task_ids, np.arange(100))) for i in range(len(Problems)): output_id = Problems[i] task_id = output_id.split('_')[0] pair_id = int(output_id.split('_')[1]) f = str(test_path / str(task_id + '.json')) with open(f, 'r') as read_file: task = json.load(read_file) n = len(task['train']) Input = [Defensive_Copy(task['train'][j]['input']) for j in range(n)] Output = [Defensive_Copy(task['train'][j]['output']) for j in range(n)] Input.append(Defensive_Copy(task['test'][pair_id]['input'])) solution = Recolor([Input, Output]) pred = '' if solution != -1: Solved.append(i) pred1 = flattener(solution) pred = pred + pred1 + ' ' if pred == '': pred = flattener(example_grid) Proposed_Answers.append(pred) sample_sub2['output'] = Proposed_Answers sample_sub1 = sample_sub1.reset_index() sample_sub1 = sample_sub1.sort_values(by="output_id") sample_sub2 = sample_sub2.sort_values(by="output_id") out1 = sample_sub1["output"].astype(str).values out2 = sample_sub2["output"].astype(str).values merge_output = [] for o1, o2 in zip(out1, out2): o = o1.strip().split(" ")[:1] + o2.strip().split(" ")[:2] o = " ".join(o[:3]) merge_output.append(o) sample_sub1["output"] = merge_output sample_sub1["output"] = sample_sub1["output"].astype(str) # test_paths_my = { task.stem: json.load(task.open()) for task in test_path.iterdir() } # test_task_ids = np.sort(list(test_paths_my.keys())) # task_number_my = dict(zip(test_task_ids, np.arange(100))) submission = sample_sub1.copy() submission.to_csv("public_submission.csv", index=False) #generate_public_submission() import numpy as np from tqdm.notebook import tqdm from PIL import Image, ImageDraw import time from collections import defaultdict import os import json import random import copy import networkx as nx from pathlib import Path import matplotlib.colors as colors import matplotlib.pyplot as plt from itertools import product import pandas as pd import multiprocessing import subprocess # from moviepy.editor import ImageSequenceClip # from moviepy.editor import clips_array, CompositeVideoClip # from moviepy.video.io.html_tools import html_embed, HTML2 # def display_vid(vid, verbose=False, **html_kw): # """ # Display a moviepy video clip, useful for removing loadbars # """ # rd_kwargs = { # 'fps': 10, 'verbose': verbose # } # if not verbose: # rd_kwargs['logger'] = None # return HTML2(html_embed(vid, filetype=None, maxduration=60, # center=True, rd_kwargs=rd_kwargs, **html_kw)) data_path = Path('../input/abstraction-and-reasoning-challenge/') # data_path = Path('.') # Artyom: it's better use symlinks locally cmap_lookup = [ '#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25' ] cmap_lookup = [np.array([int(x[1:3], 16), int(x[3:5], 16), int(x[5:], 16)]) for x in cmap_lookup] def cmap(x): """ Translate a task matrix to a color coded version arguments x : a h x w task matrix returns a h x w x 3 matrix with colors instead of numbers """ y = np.zeros((*x.shape, 3)) y[x < 0, :] = np.array([112, 128, 144]) y[x > 9, :] = np.array([255, 248, 220]) for i, c in enumerate(cmap_lookup): y[x == i, :] = c return y def draw_one(x, k=20): """ Create a PIL image from a task matrix, the task will be drawn using the default color coding with grid lines arguments x : a task matrix k = 20 : an up scaling factor returns a PIL image """ img = Image.fromarray(cmap(x).astype(np.uint8)).resize((x.shape[1] * k, x.shape[0] * k), Image.NEAREST) draw = ImageDraw.Draw(img) for i in range(x.shape[0]): draw.line((0, i * k, img.width, i * k), fill=(80, 80, 80), width=1) for j in range(x.shape[1]): draw.line((j * k, 0, j * k, img.height), fill=(80, 80, 80), width=1) return img def vcat_imgs(imgs, border=10): """ Concatenate images vertically arguments: imgs : an array of PIL images border = 10 : the size of space between images returns: a PIL image """ h = max(img.height for img in imgs) w = sum(img.width for img in imgs) res_img = Image.new('RGB', (w + border * (len(imgs) - 1), h), color=(255, 255, 255)) offset = 0 for img in imgs: res_img.paste(img, (offset, 0)) offset += img.width + border return res_img def plot_task(task): n = len(task["train"]) + len(task["test"]) fig, axs = plt.subplots(2, n, figsize=(n * 4, 8)) plt.subplots_adjust(wspace=0, hspace=0) fig_num = 0 def go(ax, title, x): ax.imshow(draw_one(x), interpolation='nearest') ax.set_title(title) ax.set_yticks([]) ax.set_xticks([]) for i, t in enumerate(task["train"]): go(axs[0][fig_num], f'Train-{i} in', t["input"]) go(axs[1][fig_num], f'Train-{i} out', t["output"]) fig_num += 1 for i, t in enumerate(task["test"]): go(axs[0][fig_num], f'Test-{i} in', t["input"]) try: go(axs[1][fig_num], f'Test-{i} out', t["output"]) except: go(axs[1][fig_num], f'Test-{i} out', np.zeros_like(t["input"])) fig_num += 1 plt.tight_layout() plt.show() def real_trace_param_automata(input, params, n_iter, n_hidden): """ Execute an automata and return all the intermediate states arguments: step_fn : transition rule function, should take two arguments `input` and `hidden_i`, should return an output grid an a new hidden hidden grid n_iter : num of iteration to perform n_hidden: number of hidden grids, if set to 0 `hidden_i` will be set to None laodbar = True: weather display loadbars returns: an array of tuples if output and hidden grids """ # hidden = np.zeros((n_hidden, *input.shape)) if n_hidden > 0 else None # # global_rules, ca_rules = params # # trace = [(input, hidden)] # # for rule in global_rules: # # output, hidden = apply_rule(input, hidden, rule) # trace.append((output, hidden)) # input = output # # its = range(n_iter) # # for i_it in its: # output, hidden = compute_parametrized_automata(input, hidden, ca_rules) # trace.append((output, hidden)) # # if (input.shape == output.shape) and (output == input).all(): # break # input = output hidden = np.zeros((n_hidden, *input.shape)) if n_hidden > 0 else None global_rules, ca_rules, split_rule, merge_rule = params grids = apply_split_rule(input, hidden, split_rule) #print(grids[0][0]) for rule in global_rules: for i, (inp, hid) in enumerate(grids): if rule['macro_type'] == 'global_rule': if rule['apply_to'] == 'all' or \ (rule['apply_to'] == 'index' and i == rule['apply_to_index']%len(grids) or (rule['apply_to'] == 'last' and i == len(grids) - 1)): grids[i] = apply_rule(inp, hid, rule) elif rule['macro_type'] == 'global_interaction_rule': grids = apply_interaction_rule(grids, rule) #print(grids[0][0]) #1/0 for i, (input, hidden) in enumerate(grids): for _ in range(n_iter): output, hidden = compute_parametrized_automata(input, hidden, ca_rules) if np.array_equal(input, output): break input = output grids[i] = (output, hidden) output = apply_merge_rule(grids, merge_rule, split_rule) return output def apply_interaction_rule(grids, rule): if rule['type'] == 'align_pattern': # index_from = rule['index_from'] % len(grids) # index_to = rule['index_to'] % len(grids) # allow_rotation = rule['allow_rotation'] if len(grids) > 5: return grids for index_from in range(len(grids)): for index_to in range(index_from+1, len(grids)): input_i = grids[index_from][0] input_j = grids[index_to][0] # print(np.max(input_i>0, axis=1)) # print(np.max(input_i>0, axis=1).shape) # print(np.arange(input_i.shape[0]).shape) #1/0 i_nonzero_rows = np.arange(input_i.shape[0])[np.max(input_i>0, axis=1)] i_nonzero_columns = np.arange(input_i.shape[1])[np.max(input_i>0, axis=0)] j_nonzero_rows = np.arange(input_j.shape[0])[np.max(input_j>0, axis=1)] j_nonzero_columns = np.arange(input_j.shape[1])[np.max(input_j>0, axis=0)] if i_nonzero_rows.shape[0] == 0 or i_nonzero_columns.shape[0] == 0 or \ j_nonzero_rows.shape[0] == 0 or j_nonzero_columns.shape[0] == 0: continue i_minrow = np.min(i_nonzero_rows) i_mincol = np.min(i_nonzero_columns) i_maxrow = np.max(i_nonzero_rows) + 1 i_maxcol = np.max(i_nonzero_columns) + 1 j_minrow = np.min(j_nonzero_rows) j_mincol = np.min(j_nonzero_columns) j_maxrow = np.max(j_nonzero_rows) + 1 j_maxcol = np.max(j_nonzero_columns) + 1 figure_to_align = input_i[i_minrow:i_maxrow, i_mincol:i_maxcol] figure_target = input_j[j_minrow:j_maxrow, j_mincol:j_maxcol] best_fit = 0 best_i_fit, best_j_fit = -1, -1 #print(figure_to_align) #print(figure_target) if figure_to_align.shape[0] < figure_target.shape[0] or figure_to_align.shape[1] < figure_target.shape[1]: continue #1/0 else: for i_start in range((figure_to_align.shape[0] - figure_target.shape[0])+1): for j_start in range((figure_to_align.shape[1] - figure_target.shape[1])+1): fig_1 = figure_to_align[i_start:(i_start + figure_target.shape[0]), j_start:(j_start + figure_target.shape[1])] if np.logical_and(np.logical_and(figure_target > 0, figure_target!=rule['allow_color']), figure_target != fig_1).any(): continue fit = np.sum(figure_target==fig_1) if fit > best_fit: best_i_fit, best_j_fit = i_start, j_start best_fit = fit if best_fit == 0: continue imin = j_minrow-best_i_fit imax = j_minrow-best_i_fit + figure_to_align.shape[0] jmin = j_mincol - best_j_fit jmax = j_mincol - best_j_fit + figure_to_align.shape[1] begin_i = max(imin, 0) begin_j = max(jmin, 0) end_i = min(imax, input_j.shape[0]) end_j = min(jmax, input_j.shape[1]) i_fig_begin = (begin_i-imin) i_fig_end = figure_to_align.shape[0]-(imax-end_i) j_fig_begin = (begin_j-jmin) j_fig_end = figure_to_align.shape[1]-(jmax-end_j) if rule['fill_with_color'] == 0: input_j[begin_i:end_i, begin_j:end_j] = figure_to_align[i_fig_begin:i_fig_end, j_fig_begin:j_fig_end] else: for i, j in product(range(end_i-begin_i + 1), range(end_j-begin_j + 1)): if input_j[begin_i + i, begin_j + j] == 0: input_j[begin_i + i, begin_j + j] = rule['fill_with_color'] * (figure_to_align[i_fig_begin + i, j_fig_begin + j]) return grids def trace_param_automata(input, params, n_iter, n_hidden): # expected = real_trace_param_automata(input, params, n_iter, n_hidden) # # testcase = {'input': input, 'params': params} # print(str(testcase).replace('\'', '"').replace('array(', '').replace(')', '')) output = cpp_trace_param_automata(input, params, n_iter) # if not np.array_equal(expected, output): # print('cpp result is wrong') # print('input:') # print(input) # print('expected:') # print(expected) # print('got:') # print(output) # # diff = [[str(g) if e != g else '-' for e, g in zip(exp_row, got_row)] # for exp_row, got_row in zip(expected, output)] # diff_lines = [' '.join(line) for line in diff] # diff_str = '[[' + ']\n ['.join(diff_lines) # # print('diff:') # print(diff_str) # print('rules') # print(params) # # assert False return [[output]] # def vis_automata_trace(states, loadbar=False, prefix_image=None): # """ # Create a video from an array of automata states # # arguments: # states : array of automata steps, returned by `trace_automata()` # loadbar = True: weather display loadbars # prefix_image = None: image to add to the beginning of each frame # returns # a moviepy ImageSequenceClip # """ # frames = [] # if loadbar: # states = tqdm(states, desc='Frame') # for i, (canvas, hidden) in enumerate(states): # # frame = [] # if prefix_image is not None: # frame.append(prefix_image) # frame.append(draw_one(canvas)) # frames.append(vcat_imgs(frame)) # # return ImageSequenceClip(list(map(np.array, frames)), fps=10) # def vis_automata_paramed_task(tasks, parameters, n_iter, n_hidden, vis_only_ix=None): # """ # Visualize the automata steps during the task solution # arguments: # tasks : the task to be solved by the automata # step_fn : automata transition function as passed to `trace_automata()` # n_iter : number of iterations to perform # n_hidden : number of hidden girds # """ # # n_vis = 0 # # def go(task, n_vis, test=False): # # if vis_only_ix is not None and vis_only_ix != n_vis: # return # trace = trace_param_automata(task['input'], parameters, n_iter, n_hidden) # if not test: # vid = vis_automata_trace(trace, prefix_image=draw_one(task['output'])) # else: # vid = vis_automata_trace(trace, prefix_image=draw_one(np.zeros_like(task['input']))) # # # display(display_vid(vid)) # # for task in (tasks['train']): # n_vis += 1 # go(task, n_vis) # # for task in (tasks['test']): # n_vis += 1 # go(task, n_vis, True) training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' training_tasks = sorted(os.listdir(training_path)) evaluation_tasks = sorted(os.listdir(evaluation_path)) test_tasks = sorted(os.listdir(test_path)) def load_data(p, phase=None): """ Load task data """ if phase in {'training', 'test', 'evaluation'}: p = data_path / phase / p task = json.loads(Path(p).read_text()) dict_vals_to_np = lambda x: {k: np.array(v) for k, v in x.items()} assert set(task) == {'test', 'train'} res = dict(test=[], train=[]) for t in task['train']: assert set(t) == {'input', 'output'} res['train'].append(dict_vals_to_np(t)) for t in task['test']: if phase == 'test': assert set(t) == {'input'} else: assert set(t) == {'input', 'output'} res['test'].append(dict_vals_to_np(t)) return res nbh = lambda x, i, j: { (ip, jp) : x[i+ip, j+jp] for ip, jp in product([1, -1, 0], repeat=2) if 0 <= i+ip < x.shape[0] and 0 <= j+jp < x.shape[1] and (not (ip==0 and jp==0)) } def get_random_split_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): rule = {} rule['type'] = random.choice(['nothing', 'color_figures', 'figures', 'macro_multiply']) if rule['type'] in ['color_figures', 'figures']: rule['sort'] = random.choice(['biggest', 'smallest']) if rule['type'] == 'macro_multiply': rule['k1'] = np.random.randint(config['mink1'], config['maxk1']+1) rule['k2'] = np.random.randint(config['mink2'], config['maxk2']+1) return rule def get_random_merge_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): rule = {} rule['type'] = random.choice(['cellwise_or', 'output_first', 'output_last']) return rule def apply_split_rule(input, hidden, split_rule): if split_rule['type'] == 'nothing': return [(input, hidden)] if split_rule['type'] == 'macro_multiply': ks = split_rule['k1'] * split_rule['k2'] grids = [(np.copy(input), np.copy(hidden)) for _ in range(ks)] return grids #split_rule['type'] = 'figures' dif_c_edge = split_rule['type'] == 'figures' communities = get_connectivity_info(input, ignore_black=True, edge_for_difcolors=dif_c_edge) if len(communities) > 0: if split_rule['sort'] == 'biggest': communities = communities[::-1] grids = [(np.zeros_like(input), np.zeros_like(hidden)) for _ in range(len(communities))] for i in range(len(communities)): for point in communities[i]: grids[i][0][point] = input[point] else: grids = [(input, hidden)] return grids def apply_merge_rule(grids, merge_rule, split_rule): if split_rule['type'] == 'macro_multiply': shape_base = grids[0][0].shape shapes = [arr[0].shape for arr in grids] if not np.array([shape_base == sh for sh in shapes]).all(): return np.zeros((1, 1), dtype=np.int) ks_1 = split_rule['k1'] ks_2 = split_rule['k2'] output = np.zeros((shape_base[0] * ks_1, shape_base[1] * ks_2), dtype=np.int8) for k1 in range(ks_1): for k2 in range(ks_2): output[(k1*shape_base[0]):((k1+1) * shape_base[0]), (k2*shape_base[1]):((k2+1) * shape_base[1])] = grids[k1*ks_2 + k2][0] return output if merge_rule['type'] == 'cellwise_or': output = np.zeros_like(grids[0][0]) for i in np.arange(len(grids))[::-1]: if grids[i][0].shape == output.shape: output[grids[i][0]>0] = grids[i][0][grids[i][0]>0] return output elif merge_rule['type'] == 'output_first': output = grids[0][0] elif merge_rule['type'] == 'output_last': output = grids[-1][0] return output def get_random_ca_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): types_possible = \ [ 'copy_color_by_direction', 'direct_check', 'indirect_check', 'nbh_check', 'corner_check', 'color_distribution', ] ca_rules = [] best_candidates_items = list(best_candidates.items()) if len(best_candidates_items) > 0: for best_score, best_candidates_score in best_candidates_items: for best_c in best_candidates_score: gl, ca, _, _ = best_c ca_rules += [c['type'] for c in ca] type_counts = dict(zip(types_possible, np.zeros(len(types_possible)))) rules, counts = np.unique(ca_rules, return_counts=True) for i in range(rules.shape[0]): type_counts[rules[i]] += counts[i] counts = np.array(list(type_counts.values())) if np.sum(counts) > 0: counts /= np.sum(counts) else: counts = np.ones(counts.shape[0]) / counts.shape[0] uniform = np.ones(counts.shape[0]) / counts.shape[0] probs = temp * counts + (1 - temp) * uniform else: probs = np.ones(len(types_possible)) / len(types_possible) colors = all_colors[1:] type_probs = np.ones(len(types_possible)) / len(types_possible) if r_type is None: random_type = types_possible[np.random.choice(len(types_possible), p=probs)] else: random_type = r_type def get_random_out_color(): possible_colors = config['possible_colors_out'] return np.random.choice(possible_colors) def get_random_ignore_colors(): if config['possible_ignore_colors'].shape[0] > 0: possible_colors = config['possible_ignore_colors'] return possible_colors[np.random.randint(2, size=possible_colors.shape[0]) == 1] else: return [] def get_random_all_colors(): return all_colors[np.random.randint(2, size=all_colors.shape[0]) == 1] def get_random_colors(): return get_random_all_colors() def get_random_all_color(): return np.random.choice(all_colors) def get_random_color(): return get_random_all_color() rule = {} rule['type'] = random_type rule['macro_type'] = 'ca_rule' rule['ignore_colors'] = list(config['ignore_colors']) if np.random.rand() < 0.5 and config['possible_ignore_colors'].shape[0]: rule['ignore_colors'] += [random.choice(config['possible_ignore_colors'])] if random_type == 'copy_color_by_direction': rule['direction'] = random.choice(['everywhere']) rule['copy_color'] = [get_random_out_color()] rule['look_back_color'] = rule['copy_color'][0] elif random_type == 'corner_check': if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'direct_check': rule['nbh_check_sum'] = np.random.randint(4) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'indirect_check': rule['nbh_check_sum'] = np.random.randint(4) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'nbh_check': rule['nbh_check_sum'] = np.random.randint(8) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'color_distribution': rule['direction'] = random.choice( ['top', 'bottom', 'left', 'right', 'top_left', 'bottom_left', 'top_right', 'bottom_right']) rule['check_in_empty'] = np.random.randint(2) rule['color_out'] = get_random_out_color() if rule['check_in_empty'] == 0: rule['color_in'] = rule['color_out'] else: rule['color_in'] = get_random_all_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['color_out']])) return rule def get_random_global_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): types_possible = \ [ 'distribute_colors', 'unity', 'color_for_inners', 'map_color', 'draw_lines', 'draw_line_to', 'gravity', 'make_holes', 'distribute_from_border', 'align_pattern', 'rotate', 'flip' ] if config['allow_make_smaller']: types_possible += \ [ 'crop_empty', 'crop_figure', 'split_by_H', 'split_by_W', 'reduce' ] # if config['allow_make_bigger']: # types_possible += \ # [ # 'macro_multiply_by', # 'micro_multiply_by', # 'macro_multiply_k', # ] gl_rules = [] best_candidates_items = list(best_candidates.items()) if len(best_candidates_items) > 0: for best_score, best_candidates_score in best_candidates_items: for best_c in best_candidates_score: gl, ca, _, _ = best_c gl_rules += [c['type'] for c in gl] type_counts = dict(zip(types_possible, np.zeros(len(types_possible)))) rules, counts = np.unique(gl_rules, return_counts=True) for i in range(rules.shape[0]): type_counts[rules[i]] += counts[i] counts = np.array(list(type_counts.values())) if np.sum(counts) > 0: counts /= np.sum(counts) else: counts = np.ones(counts.shape[0]) / counts.shape[0] uniform = np.ones(counts.shape[0]) / counts.shape[0] probs = temp * counts + (1 - temp) * uniform else: probs = np.ones(len(types_possible)) / len(types_possible) colors = all_colors[1:] type_probs = np.ones(len(types_possible)) / len(types_possible) if r_type is None: random_type = types_possible[np.random.choice(len(types_possible), p=probs)] else: random_type = r_type def get_random_all_colors(): return all_colors[np.random.randint(2, size=all_colors.shape[0]) == 1] def get_random_colors(): return all_colors[np.random.randint(2, size=all_colors.shape[0]) == 1] def get_random_all_color(): return np.random.choice(all_colors) def get_random_color(): return get_random_all_color() def get_random_out_color(): possible_colors = config['possible_colors_out'] return np.random.choice(possible_colors) rule = {} rule['type'] = random_type rule['macro_type'] = 'global_rule' rule['apply_to'] = random.choice(['all', 'index']) if np.random.rand()<0.2: rule['apply_to'] = 'last' if rule['apply_to'] == 'index': rule['apply_to_index'] = np.random.choice(10) if random_type == 'macro_multiply_k': rule['k'] = (np.random.randint(1, 4), np.random.randint(1, 4)) elif random_type == 'flip': rule['how'] = random.choice(['ver', 'hor']) elif random_type == 'rotate': rule['rotations_count'] = np.random.randint(1, 4) elif random_type == 'micro_multiply_by': rule['how_many'] = random.choice([2, 3, 4, 5, 'size']) elif random_type == 'macro_multiply_by': rule['how_many'] = random.choice(['both', 'hor', 'ver']) rule['rotates'] = [np.random.randint(1) for _ in range(4)] rule['flips'] = [random.choice(['hor', 'ver', 'horver', 'no']) for _ in range(4)] elif random_type == 'distribute_from_border': rule['colors'] = list(np.unique([get_random_out_color(), get_random_all_color()])) elif random_type == 'draw_lines': rule['direction'] = random.choice(['everywhere', 'horizontal', 'vertical', 'horver', 'diagonal']) # 'top', 'bottom', 'left', 'right', # 'top_left', 'bottom_left', 'top_right', 'bottom_right']) rule['not_stop_by_color'] = 0 # get_random_all_color() rule['start_by_color'] = get_random_all_color() rule['with_color'] = get_random_out_color() elif random_type == 'reduce': rule['skip_color'] = get_random_all_color() elif random_type == 'draw_line_to': #rule['direction_type'] = random.choice(['border']) rule['direction_color'] = get_random_all_color() rule['not_stop_by_color'] = 0 if np.random.rand() < 0.5: rule['not_stop_by_color_and_skip'] = get_random_all_color() else: rule['not_stop_by_color_and_skip'] = 0 rule['start_by_color'] = get_random_all_color() rule['with_color'] = get_random_out_color() elif random_type == 'distribute_colors': rule['colors'] = list(np.unique([get_random_out_color(), get_random_all_color()])) rule['horizontally'] = np.random.randint(2) rule['vertically'] = np.random.randint(2) rule['intersect'] = get_random_out_color() elif random_type == 'color_for_inners': rule['color_out'] = get_random_out_color() elif random_type == 'crop_figure': rule['mode'] = random.choice(['smallest', 'biggest']) rule['dif_c_edge'] = random.choice([True, False]) elif random_type == 'unity': rule['mode'] = random.choice(['diagonal', 'horizontal', 'vertical', 'horver']) # rule['inner'] = np.random.choice(2) rule['ignore_colors'] = [0] if
np.random.rand()
numpy.random.rand
#!/usr/bin/env python # coding=utf-8 # Copyright (c) 2015-2021 UT-BATTELLE, LLC # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """The Perturbation Growth Test: This tests the null hypothesis that the reference (n) and modified (m) model ensembles represent the same atmospheric state after each physics parameterization is applied within a single time-step using the two-sample (n and m) T-test for equal averages at a 95% confidence level. Ensembles are generated by repeating the simulation for many initial conditions, with each initial condition subject to multiple perturbations. """ from __future__ import absolute_import, division, print_function, unicode_literals import six import os import math import argparse # import logging from pprint import pprint from collections import OrderedDict import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as mpatches from scipy import stats from netCDF4 import Dataset import livvkit from livvkit.util import elements as el from livvkit.util import functions as fn from evv4esm.utils import bib2html # logger = logging.getLogger(__name__) def parse_args(args=None): parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-c', '--config', type=fn.read_json, default='test/pge_pc0101123.json', help='A JSON config file containing a `pg` dictionary defining ' + 'the options.') args = parser.parse_args(args) name = args.config.keys()[0] config = args.config[name] return name, config def _instance2sub(instance_number, total_perturbations): """ Converts an instance number (ii) to initial condition index (ci) and perturbation index (pi) subscripts instances use 1-based indexes and vary according to this function: ii = ci * len(PERTURBATIONS) + pi + 1 where both pi and ci use 0-based indexes. """ perturbation_index = (instance_number - 1) % total_perturbations initial_condition = (instance_number - 1 - perturbation_index) // total_perturbations return initial_condition, perturbation_index def _sub2instance(initial_condition, perturbation_index, total_perturbations): """ Converts initial condition index (ci) and perturbation index (pi) subscripts to an instance number (ii) instances use 1-based indexes and vary according to this function: ii = ci * len(PERTURBATIONS) + pi + 1 where both pi and ci use 0-based indexes. """ instance = initial_condition * total_perturbations + perturbation_index + 1 return instance def rmse_writer(file_name, rmse, perturbation_names, perturbation_variables, init_file_template, model_name): """ Opens and writes a netcdf file for PGE curves This function is here purely to avoid duplicate codes so that it is easy to maintain code longterm """ with Dataset(file_name, 'w') as nc: ninit, nprt_m1, nvars = rmse.shape nc.createDimension('ninit', ninit) nc.createDimension('nprt', nprt_m1 + 1) nc.createDimension('nprt_m1', nprt_m1) nc.createDimension('nvars', nvars) nc_init_cond = nc.createVariable('init_cond_files', str, 'ninit') nc_perturbation = nc.createVariable('perturbation_names', str, 'nprt') nc_variables = nc.createVariable('perturbation_variables', str, 'nvars') nc_rmse = nc.createVariable('rmse', 'f8', ('ninit', 'nprt_m1', 'nvars')) # NOTE: Assignment to netcdf4 variable length string array can be done # via numpy arrays, or in a for loop using integer indices. # NOTE: Numpy arrays can't be created from a generator for some dumb reason, # so protect with list nc_perturbation[:] = np.array(list(perturbation_names)) nc_variables[:] = np.array(list(perturbation_variables)) nc_rmse[:] = rmse[:] for icond in range(0, ninit): # NOTE: Zero vs One based indexing nc_init_cond[icond] = init_file_template.format(model_name, 'i', icond+1) def variables_rmse(ifile_test, ifile_cntl, var_list, var_pefix=''): """ Compute RMSE difference between perturbation and control for a set of variables Args: ifile_test: Path to a NetCDF dataset for a perturbed simulation ifile_cntl: Path to a NetCDF dataset for the control simulation var_list (list): List of all variables to analyze var_pefix: Optional prefix (e.g., t_, qv_) to apply to the variable returns: rmse (pandas.DataFrame): A dataframe containing the RMSE and maximum difference details between the perturbed and control simulation """ with Dataset(ifile_test) as ftest, Dataset(ifile_cntl) as fcntl: lat = ftest.variables['lat'] lon = ftest.variables['lon'] rmse = pd.DataFrame(columns=('RMSE', 'max diff', 'i', 'j', 'control', 'test', 'lat', 'lon'), index=var_list) # reshape for RMSE dims = len(ftest.variables[var_pefix + var_list[0]].dimensions) if dims == 3: # see if it is SE grid nx, ny = ftest.variables[var_pefix + var_list[0]][0, ...].shape nz = 1 else: nx, ny, nz = ftest.variables[var_pefix + var_list[0]][0, ...].shape for ivar, vvar in enumerate(var_list): var = var_pefix + vvar if var in ftest.variables: vtest = ftest.variables[var.strip()][0, ...] # first dimension is time (=0) vcntl = fcntl.variables[var.strip()][0, ...] # first dimension is time (=0) vrmse = math.sqrt(((vtest - vcntl)**2).mean()) / np.mean(vcntl) diff = abs(vtest[...] - vcntl[...]) ind_max = np.unravel_index(diff.argmax(), diff.shape) rmse.loc[vvar] = (vrmse, diff[ind_max], ind_max[0], ind_max[1], vcntl[ind_max], vtest[ind_max], lat[ind_max[1]], lon[ind_max[1]]) return rmse def _print_details(details): for set_ in details: print('-' * 80) print(set_) print('-' * 80) pprint(details[set_]) def main(args): nvar = len(args.variables) nprt = len(args.perturbations) # for test cases (new environment etc.) # logger.debug("PGN_INFO: Test case comparison...") rmse_prototype = {} for icond in range(args.ninit): prt_rmse = {} for iprt, prt_name in enumerate(args.perturbations): if prt_name == 'woprt': continue iinst_ctrl = _sub2instance(icond, 0, nprt) ifile_ctrl = os.path.join(args.ref_dir, args.instance_file_template.format('', args.component, iinst_ctrl, '_woprt')) # logger.debug("PGN_INFO:CNTL_TST:" + ifile_cntl) iinst_test = _sub2instance(icond, iprt, nprt) ifile_test = os.path.join(args.test_dir, args.instance_file_template.format( args.test_case + '.', args.component, iinst_test, '_' + prt_name)) # logger.debug("PGN_INFO:TEST_TST:" + ifile_test) prt_rmse[prt_name] = variables_rmse(ifile_test, ifile_ctrl, args.variables, 't_') rmse_prototype[icond] = pd.concat(prt_rmse) rmse = pd.concat(rmse_prototype) comp_rmse =
np.reshape(rmse.RMSE.values, (args.ninit, nprt-1, nvar))
numpy.reshape
## # \file resampler.py # \brief Class to perform resampling operations # # \author <NAME> (<EMAIL>) # \date June 2018 # import os import itk import numpy as np import SimpleITK as sitk import pysitk.python_helper as ph import pysitk.simple_itk_helper as sitkh import simplereg.data_reader as dr import simplereg.data_writer as dw import simplereg.utilities as utils from simplereg.niftyreg_to_simpleitk_converter import \ NiftyRegToSimpleItkConverter as nreg2sitk from simplereg.definitions import ALLOWED_INTERPOLATORS class Resampler(object): def __init__(self, path_to_fixed, path_to_moving, path_to_transform, interpolator="Linear", spacing=None, padding=0, add_to_grid=0, verbose=0, ): self._path_to_fixed = path_to_fixed self._path_to_moving = path_to_moving self._path_to_transform = path_to_transform self._interpolator = interpolator self._spacing = spacing self._padding = padding self._add_to_grid = add_to_grid self._verbose = verbose self._warped_moving_sitk = None self._warped_moving_itk = None def write_image(self, path_to_output): if self._warped_moving_sitk is not None: dw.DataWriter.write_image( self._warped_moving_sitk, path_to_output) else: dw.DataWriter.write_image( self._warped_moving_itk, path_to_output) def run(self): # Possible to use _run_itk for all interpolators. However, loading of # itk library takes noticeably longer. Hence, only use it when required if self._interpolator in ["OrientedGaussian"]: if self._path_to_transform is not None: # This could be implemented for rigid transformations. # For affine, or even displacement fields, it is not quite # clear how a PSF-transformed option shall look like. raise ValueError( "OrientedGaussian interpolation does not allow a " "transformation during resampling.") self._run_itk() else: self._run_sitk() def _run_itk(self): # read input fixed_itk = dr.DataReader.read_image(self._path_to_fixed, as_itk=1) moving_itk = dr.DataReader.read_image(self._path_to_moving, as_itk=1) # get image resampling information size, origin, spacing, direction = self.get_space_resampling_properties( image_sitk=fixed_itk, spacing=self._spacing, add_to_grid=self._add_to_grid, add_to_grid_unit="mm") if self._path_to_transform is not None: transform_itk = dr.DataReader.read_transform( self._path_to_transform, as_itk=1) else: transform_itk = getattr( itk, "Euler%dDTransform" % fixed_itk.GetImageDimension()).New() interpolator_itk = self._convert_interpolator_itk( fixed_itk, moving_itk, spacing, self._interpolator, alpha_cut=3, ) # resample image resampler_itk = itk.ResampleImageFilter[ type(moving_itk), type(fixed_itk)].New() resampler_itk.SetInput(moving_itk) resampler_itk.SetSize(size) resampler_itk.SetTransform(transform_itk) resampler_itk.SetInterpolator(interpolator_itk) resampler_itk.SetOutputOrigin(origin) resampler_itk.SetOutputSpacing(spacing) resampler_itk.SetOutputDirection(fixed_itk.GetDirection()) resampler_itk.SetDefaultPixelValue(self._padding) resampler_itk.UpdateLargestPossibleRegion() resampler_itk.Update() self._warped_moving_itk = resampler_itk.GetOutput() self._warped_moving_itk.DisconnectPipeline() def _run_sitk(self): # read input fixed_sitk = dr.DataReader.read_image(self._path_to_fixed) moving_sitk = dr.DataReader.read_image(self._path_to_moving) # get image resampling information size, origin, spacing, direction = self.get_space_resampling_properties( image_sitk=fixed_sitk, spacing=self._spacing, add_to_grid=self._add_to_grid, add_to_grid_unit="mm") if self._path_to_transform is not None: transform_sitk = dr.DataReader.read_transform( self._path_to_transform) else: transform_sitk = getattr( sitk, "Euler%dDTransform" % fixed_sitk.GetDimension())() # resample image self._warped_moving_sitk = sitk.Resample( moving_sitk, size, transform_sitk, self._convert_interpolator_sitk(self._interpolator), origin, spacing, direction, float(self._padding), fixed_sitk.GetPixelIDValue(), ) @staticmethod def _convert_interpolator_sitk(interpolator): if interpolator.isdigit(): if int(interpolator) == 0: interpolator = "NearestNeighbor" elif int(interpolator) == 1: interpolator = "Linear" else: raise ValueError( "Interpolator order not known. Allowed options are: 0, 1") if interpolator not in ALLOWED_INTERPOLATORS: raise ValueError( "Interpolator not known. Allowed options are: %s" % ( ", ".join(ALLOWED_INTERPOLATORS))) return getattr(sitk, "sitk%s" % interpolator) def _convert_interpolator_itk( self, fixed_itk, moving_itk, spacing, interpolator, alpha_cut, pixel_type=itk.D, ): if interpolator.isdigit(): if int(interpolator) == 0: interpolator = "NearestNeighbor" elif int(interpolator) == 1: interpolator = "Linear" else: raise ValueError( "Interpolator order not known. Allowed options are: 0, 1") if interpolator not in ALLOWED_INTERPOLATORS: raise ValueError( "Interpolator not known. Allowed options are: %s" % ( ", ".join(ALLOWED_INTERPOLATORS))) if interpolator == "OrientedGaussian": cov = self._get_oriented_psf_covariance( fixed_itk, moving_itk, spacing) interpolator_itk = itk.OrientedGaussianInterpolateImageFunction[ type(fixed_itk), pixel_type].New() interpolator_itk.SetCovariance(cov.flatten()) interpolator_itk.SetAlpha(alpha_cut) else: interpolator_itk = getattr( itk, "%sInterpolateImageFunction" % interpolator)[ type(fixed_itk), pixel_type].New() return interpolator_itk def _get_oriented_psf_covariance(self, fixed_itk, moving_itk, spacing): # Fixed axis-aligned covariance matrix representing the PSF cov = self._get_psf_covariance(spacing) # Express fixed axis-aligned PSF in moving space coordinates fixed_direction = sitkh.get_sitk_from_itk_direction( fixed_itk.GetDirection()) moving_direction = sitkh.get_sitk_from_itk_direction( moving_itk.GetDirection()) U = self._get_rotation_matrix(fixed_direction, moving_direction) cov = U.dot(cov).dot(U.transpose()) return cov ## # Compute (axis aligned) covariance matrix from spacing. The PSF is # modelled as Gaussian with # *- FWHM = 1.2*in-plane-resolution (in-plane) # *- FWHM = slice thickness (through-plane) # \date 2017-11-01 16:16:36+0000 # # \param spacing 3D array containing in-plane and through-plane # dimensions # # \return (axis aligned) covariance matrix representing PSF modelled # Gaussian as 3x3 np.array # @staticmethod def _get_psf_covariance(spacing): sigma2 = np.zeros_like(np.array(spacing)) # Compute Gaussian to approximate in-plane PSF: sigma2[0:2] = (1.2 * spacing[0:2])**2 / (8 * np.log(2)) # Compute Gaussian to approximate through-plane PSF: if sigma2.size == 3: sigma2[2] = spacing[2]**2 / (8 * np.log(2)) return np.diag(sigma2) ## # Gets the relative rotation matrix to express fixed-axis aligned # covariance matrix in coordinates of moving image # \date 2016-10-14 16:37:57+0100 # # \param fixed_direction fixed image direction # \param moving_direction moving image direction # # \return The relative rotation matrix as 3x3 numpy array # @staticmethod def _get_rotation_matrix(fixed_direction, moving_direction): dim = np.sqrt(np.array(fixed_direction).size).astype(np.uint8) fixed_direction = np.array(fixed_direction).reshape(dim, dim) moving_direction =
np.array(moving_direction)
numpy.array
""" test get/set & misc """ from datetime import timedelta import re import numpy as np import pytest from pandas import ( DataFrame, IndexSlice, MultiIndex, Series, Timedelta, Timestamp, date_range, period_range, timedelta_range, ) import pandas._testing as tm def test_basic_indexing(): s = Series(np.random.randn(5), index=["a", "b", "a", "a", "b"]) msg = "index 5 is out of bounds for axis 0 with size 5" with pytest.raises(IndexError, match=msg): s[5] with pytest.raises(IndexError, match=msg): s[5] = 0 with pytest.raises(KeyError, match=r"^'c'$"): s["c"] s = s.sort_index() with pytest.raises(IndexError, match=msg): s[5] msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$" with pytest.raises(IndexError, match=msg): s[5] = 0 def test_basic_getitem_with_labels(datetime_series): indices = datetime_series.index[[5, 10, 15]] result = datetime_series[indices] expected = datetime_series.reindex(indices) tm.assert_series_equal(result, expected) result = datetime_series[indices[0] : indices[2]] expected = datetime_series.loc[indices[0] : indices[2]] tm.assert_series_equal(result, expected) def test_basic_getitem_dt64tz_values(): # GH12089 # with tz for values ser = Series( date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"] ) expected = Timestamp("2011-01-01", tz="US/Eastern") result = ser.loc["a"] assert result == expected result = ser.iloc[0] assert result == expected result = ser["a"] assert result == expected def test_getitem_setitem_ellipsis(): s = Series(np.random.randn(10)) np.fix(s) result = s[...] tm.assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() @pytest.mark.parametrize( "result_1, duplicate_item, expected_1", [ [ Series({1: 12, 2: [1, 2, 2, 3]}), Series({1: 313}), Series({1: 12}, dtype=object), ], [ Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), Series({1: [1, 2, 3]}), Series({1: [1, 2, 3]}), ], ], ) def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) tm.assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_setitem_integers(): # caused bug without test s = Series([1, 2, 3], ["a", "b", "c"]) assert s.iloc[0] == s["a"] s.iloc[0] = 5 tm.assert_almost_equal(s["a"], 5) def test_series_box_timestamp(): rng = date_range("20090415", "20090519", freq="B") ser = Series(rng) assert isinstance(ser[0], Timestamp) assert isinstance(ser.at[1], Timestamp) assert isinstance(ser.iat[2], Timestamp) assert isinstance(ser.loc[3], Timestamp) assert isinstance(ser.iloc[4], Timestamp) ser = Series(rng, index=rng) assert isinstance(ser[0], Timestamp) assert isinstance(ser.at[rng[1]], Timestamp) assert isinstance(ser.iat[2], Timestamp) assert isinstance(ser.loc[rng[3]], Timestamp) assert isinstance(ser.iloc[4], Timestamp) def test_series_box_timedelta(): rng = timedelta_range("1 day 1 s", periods=5, freq="h") ser = Series(rng) assert isinstance(ser[0], Timedelta) assert isinstance(ser.at[1], Timedelta) assert isinstance(ser.iat[2], Timedelta) assert isinstance(ser.loc[3], Timedelta) assert isinstance(ser.iloc[4], Timedelta) def test_getitem_ambiguous_keyerror(indexer_sl): ser = Series(range(10), index=list(range(0, 20, 2))) with pytest.raises(KeyError, match=r"^1$"): indexer_sl(ser)[1] def test_getitem_dups_with_missing(indexer_sl): # breaks reindex, so need to use .loc internally # GH 4246 ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"]) with pytest.raises(KeyError, match=re.escape("['bam'] not in index")): indexer_sl(ser)[["foo", "bar", "bah", "bam"]] def test_setitem_ambiguous_keyerror(indexer_sl): s = Series(range(10), index=list(range(0, 20, 2))) # equivalent of an append s2 = s.copy() indexer_sl(s2)[1] = 5 expected = s.append(Series([5], index=[1])) tm.assert_series_equal(s2, expected) def test_setitem(datetime_series, string_series): datetime_series[datetime_series.index[5]] = np.NaN datetime_series[[1, 2, 17]] = np.NaN datetime_series[6] = np.NaN assert np.isnan(datetime_series[6]) assert np.isnan(datetime_series[2]) datetime_series[np.isnan(datetime_series)] = 5 assert not np.isnan(datetime_series[2]) def test_setslice(datetime_series): sl = datetime_series[5:20] assert len(sl) == len(sl.index) assert sl.index.is_unique is True # FutureWarning from NumPy about [slice(None, 5). @pytest.mark.filterwarnings("ignore:Using a non-tuple:FutureWarning") def test_basic_getitem_setitem_corner(datetime_series): # invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2] msg = "key of type tuple not found and not a MultiIndex" with pytest.raises(KeyError, match=msg): datetime_series[:, 2] with pytest.raises(KeyError, match=msg): datetime_series[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices with tm.assert_produces_warning(FutureWarning): # GH#31299 result = datetime_series[[slice(None, 5)]] expected = datetime_series[:5] tm.assert_series_equal(result, expected) # OK msg = r"unhashable type(: 'slice')?" with pytest.raises(TypeError, match=msg): datetime_series[[5, slice(None, None)]] with pytest.raises(TypeError, match=msg): datetime_series[[5, slice(None, None)]] = 2 def test_slice(string_series, object_series): numSlice = string_series[10:20] numSliceEnd = string_series[-10:] objSlice = object_series[10:20] assert string_series.index[9] not in numSlice.index assert object_series.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == string_series.index[11] assert tm.equalContents(numSliceEnd, np.array(string_series)[-10:]) # Test return view. sl = string_series[10:20] sl[:] = 0 assert (string_series[10:20] == 0).all() def test_timedelta_assignment(): # GH 8209 s = Series([], dtype=object) s.loc["B"] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"])) s = s.reindex(s.index.insert(0, "A")) tm.assert_series_equal(s, Series([np.nan, Timedelta("1 days")], index=["A", "B"])) s.loc["A"] = timedelta(1) expected = Series(Timedelta("1 days"), index=["A", "B"]) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(): # GH 4080 df = DataFrame({c: [1, 2, 3] for c in ["a", "b", "c"]}) return_value = df.set_index(["a", "b", "c"], inplace=True) assert return_value is None s = Series([1], index=[(2, 2, 2)]) df["val"] = 0 df df["val"].update(s) expected = DataFrame( {"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3], "val": [0, 1, 0]} ) return_value = expected.set_index(["a", "b", "c"], inplace=True) assert return_value is None tm.assert_frame_equal(df, expected) def test_preserve_refs(datetime_series): seq = datetime_series[[5, 10, 15]] seq[1] = np.NaN assert not np.isnan(datetime_series[10]) def test_cast_on_putmask(): # GH 2746 # need to upcast s = Series([1, 2], index=[1, 2], dtype="int64") s[[True, False]] = Series([0], index=[1], dtype="int64") expected = Series([0, 2], index=[1, 2], dtype="int64") tm.assert_series_equal(s, expected) def test_type_promote_putmask(): # GH8387: test that changing types does not break alignment ts = Series(np.random.randn(100), index=np.arange(100, 0, -1)).round(5) left, mask = ts.copy(), ts > 0 right = ts[mask].copy().map(str) left[mask] = right tm.assert_series_equal(left, ts.map(lambda t: str(t) if t > 0 else t)) def test_setitem_mask_promote_strs(): ser = Series([0, 1, 2, 0]) mask = ser > 0 ser2 = ser[mask].map(str) ser[mask] = ser2 expected = Series([0, "1", "2", 0]) tm.assert_series_equal(ser, expected) def test_setitem_mask_promote(): ser = Series([0, "foo", "bar", 0]) mask = Series([False, True, True, False]) ser2 = ser[mask] ser[mask] = ser2 expected = Series([0, "foo", "bar", 0]) tm.assert_series_equal(ser, expected) def test_multilevel_preserve_name(indexer_sl): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) ser = Series(np.random.randn(len(index)), index=index, name="sth") result = indexer_sl(ser)["foo"] assert result.name == ser.name """ miscellaneous methods """ def test_slice_with_zero_step_raises(index, frame_or_series, indexer_sli): ts = frame_or_series(np.arange(len(index)), index=index) with pytest.raises(ValueError, match="slice step cannot be zero"): indexer_sli(ts)[::0] @pytest.mark.parametrize( "index", [ date_range("2014-01-01", periods=20, freq="MS"), period_range("2014-01", periods=20, freq="M"), timedelta_range("0", periods=20, freq="H"), ], ) def test_slice_with_negative_step(index): keystr1 = str(index[9]) keystr2 = str(index[13]) ser = Series(
np.arange(20)
numpy.arange
import numpy as np def AngleAxisRotatePoint(angle_axis, point): theta2 = np.dot(angle_axis, angle_axis) result = np.zeros((3)) if theta2 > 1e-15: theta = np.sqrt(theta2) costheta = np.cos(theta) sintheta = np.sin(theta) theta_inverse = 1.0/theta w =
np.multiply(angle_axis, theta_inverse)
numpy.multiply
import numpy as np import matplotlib.pyplot as plt import pandas as pd import json import os import datetime as dt import main from eval import data_analysis # LaTeX settings plt.rc('text', usetex=True) plt.rc('font', **{'family': 'serif', 'sans-serif': ['lmodern'], 'size': 18}) plt.rc('axes', **{'titlesize': 18, 'labelsize': 18}) # Constants JSON_PATH = './out/' OUT_PATH = './out/' MODEL_NAMES = { 'KF': ('KalmanFilter', ''), 'KF(+W)': ('KalmanFilter', '_W'), 'KF(+WF)': ('KalmanFilter', '_WF'), 'KD-IC': ('KD-IC', ''), 'KD-IC(+W)': ('KD-IC', '_W'), 'KD-IC(+WF)': ('KD-IC', '_WF'), 'LN-IC': ('LogNormal-IC', ''), 'LN-IC(+W)': ('LogNormal-IC', '_W'), 'LN-IC(+WF)': ('LogNormal-IC', '_WF'), 'DeepAR': ('DeepAR', ''), 'DeepAR(+W)': ('DeepAR', '_W'), 'DeepAR(+WF)': ('DeepAR', '_WF'), 'LW': ('LastWeek', '') } MAIN_SEED = '42' DECIMALS = 2 COLORS = ('C0', 'C1', 'C3', 'C9', 'C7') MARKERS = ('o', 'X', 'v', 'd', 'p') LINESTYLES = ('solid', 'dashed', 'dashdot') S_D = 48 S_W = 7 * S_D def get_file_name(model, level, cluster, seed=''): return f'{MODEL_NAMES[model][0]}{seed}_{level}_{cluster}{MODEL_NAMES[model][1]}' def get_path(model, level, cluster, seed=''): return JSON_PATH + f'{MODEL_NAMES[model][0]}{seed}/{get_file_name(model, level, cluster, seed)}.json' def load_res(model, level, cluster, seed=''): if 'DeepAR' in model and seed == '': seed = MAIN_SEED with open(get_path(model, level, cluster, seed), 'r') as fp: res = json.load(fp) return res def collect_results( levels=('L0', 'L1', 'L2', 'L3'), metrics=('MAPE', 'rMAE', 'rRMSE', 'rCRPS'), models=('KF', 'KF(+W)', 'KF(+WF)', 'KD-IC', 'KD-IC(+W)', 'KD-IC(+WF)', 'DeepAR', 'DeepAR(+W)', 'DeepAR(+WF)', 'LW'), seeds=(0, 1, 2, 3, 4), forecast_reps=28, save_results_with_info=True ): results_path = os.path.join(JSON_PATH, 'results_with_info.npy') if os.path.isfile(results_path): results_with_info = np.load(results_path, allow_pickle=True) return results_with_info[0], results_with_info[1] results = {} level_info = data_analysis.get_level_info(levels) for level in levels: clusters = level_info[level]['clusters'] # Create results array results[level] = np.empty((len(metrics), len(models), len(clusters), forecast_reps)) results[level][:] = np.nan for m, model in enumerate(models): if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue for c, cluster in enumerate(clusters): if 'DeepAR' in model and level is not 'L3': res_per_seed = [] for seed in seeds: res_per_seed.append(load_res(model, level, cluster, seed)) for i, metric in enumerate(metrics): results[level][i, m, c] = np.mean([res[metric] for res in res_per_seed], axis=0) else: res = load_res(model, level, cluster) for i, metric in enumerate(metrics): if 'CRPS' in metric and model == 'LW': # No distributional forecasts for LW model continue results[level][i, m, c] = res[metric] info = { 'levels': level_info, 'metrics': list(metrics), 'models': list(models), 'reps': forecast_reps } if save_results_with_info: np.save(results_path, (results, info), allow_pickle=True) return results, info def collect_results_per_tstp( levels=('L0', 'L1', 'L2'), metrics=('rMAE', 'rRMSE', 'rCRPS'), models=('KF', 'KF(+W)', 'KF(+WF)', 'KD-IC', 'KD-IC(+W)', 'KD-IC(+WF)', 'DeepAR', 'DeepAR(+W)', 'DeepAR(+WF)', 'LW'), seeds=(0, 1, 2, 3, 4), forecast_reps=28, horizon=192, save_results_per_tstp_with_info=True ): results_path = os.path.join(JSON_PATH, 'results_per_tstp_with_info.npy') if os.path.isfile(results_path): results_with_info = np.load(results_path, allow_pickle=True) return results_with_info[0], results_with_info[1] results = {} level_info = data_analysis.get_level_info(levels) t_train, t_val = main.train_val_split(data_analysis.energy_df.index) for level in levels: clusters = level_info[level]['clusters'] # Create results array results[level] = np.empty((len(seeds), len(metrics), len(models), len(clusters), forecast_reps, horizon)) results[level][:] = np.nan level_info[level]['y_mean'] = [] for c, cluster in enumerate(clusters): level_info[level]['y_mean'].append( np.nanmean(data_analysis.get_observations_at(level, cluster, t_train)) ) y_true = data_analysis.get_observations_at(level, cluster, t_val).reshape(forecast_reps, horizon) for m, model in enumerate(models): if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue if 'DeepAR' in model and level is not 'L3': for s, seed in enumerate(seeds): res = load_res(model, level, cluster, seed) for i, metric in enumerate(metrics): if metric == 'rMAE': results[level][s, i, m, c] = np.abs(y_true - res['p50']) elif metric == 'rRMSE': results[level][s, i, m, c] = (y_true - res['mean']) ** 2 elif metric == 'rCRPS': results[level][s, i, m, c] = res['CRPS'] else: res = load_res(model, level, cluster) for i, metric in enumerate(metrics): if 'CRPS' in metric and model == 'LW': # No distributional forecasts for LW model continue if metric == 'rMAE': results[level][0, i, m, c] = np.abs(y_true - res['p50']) elif metric == 'rRMSE': results[level][0, i, m, c] = (y_true - res['mean']) ** 2 elif metric == 'rCRPS': results[level][0, i, m, c] = res['CRPS'] info = { 'levels': level_info, 'metrics': list(metrics), 'models': list(models), 'reps': forecast_reps, 'horizon': horizon } if save_results_per_tstp_with_info: np.save(results_path, (results, info), allow_pickle=True) return results, info def create_metric_df(metric, with_std=True, to_LaTeX=True): results, info = collect_results() i = info['metrics'].index(metric) row_names = info['models'] col_names = info['levels'].keys() metric_df = pd.DataFrame(index=row_names, columns=col_names, dtype=float) for level in col_names: for m, model in enumerate(row_names): mean = np.mean(results[level][i, m]) metric_df.loc[model, level] = (('%%.%sf' % DECIMALS) % mean) if not np.isnan(mean) else '-' if with_std and not np.isnan(mean): std = np.std(results[level][i, m]) metric_df.loc[model, level] += (' (%%.%sf)' % DECIMALS) % std if to_LaTeX: df_to_LaTeX(metric_df) return metric_df def create_level_df(level, with_std=True, to_LaTeX=True): results, info = collect_results() row_names = info['metrics'] col_names = info['models'] level_df = pd.DataFrame(index=row_names, columns=col_names, dtype=float) for i, metric in enumerate(row_names): for m, model in enumerate(col_names): mean = np.mean(results[level][i, m]) level_df.loc[metric, model] = (('%%.%sf' % DECIMALS) % mean) if not np.isnan(mean) else '-' if with_std and not np.isnan(mean): std = np.std(results[level][i, m]) level_df.loc[metric, model] += (' (%%.%sf)' % DECIMALS) % std if to_LaTeX: df_to_LaTeX(level_df) return level_df def create_runtime_df(models=('KF', 'KD-IC', 'DeepAR', 'LW'), with_std=False, to_LaTeX=True): _, info = collect_results() train_name = 'Avg. training time [s]' prediction_name = 'Avg. prediction time [s]' runtime_df = pd.DataFrame(index=[train_name, prediction_name], columns=models, dtype=float) for model in models: training_times = [] prediction_times = [] for level in info['levels'].keys(): if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue for cluster in info['levels'][level]['clusters']: res = load_res(model, level, cluster) training_times.append(res['fit_time']) prediction_times.append(res['prediction_time']) decimals = DECIMALS + 1 runtime_df.loc[train_name, model] = ('%%.%sf' % decimals) % np.mean(training_times) runtime_df.loc[prediction_name, model] = ('%%.%sf' % decimals) % np.mean(prediction_times) if with_std: runtime_df.loc[train_name, model] += (' (%%.%sf)' % decimals) % np.std(training_times) runtime_df.loc[prediction_name, model] += (' (%%.%sf)' % decimals) % np.std(prediction_times) if to_LaTeX: df_to_LaTeX(runtime_df) return runtime_df def df_to_LaTeX(df): num_columns = len(df.columns) print(df.to_latex( float_format=f'%.{DECIMALS}f', na_rep='-', column_format='l' + ''.join('r' * num_columns) )) def get_color(model): if 'KF' in model: return COLORS[0] elif 'KD-IC' in model: return COLORS[1] elif 'DeepAR' in model: return COLORS[2] elif 'LW' in model: return COLORS[3] else: return COLORS[4] def get_linestyle(model): if '(+W)' in model: return LINESTYLES[1] elif '(+WF)' in model: return LINESTYLES[2] else: return LINESTYLES[0] def _complete_plot(name, legend=True, grid=True): if legend: plt.legend() if grid: plt.grid() plt.tight_layout() plt.savefig(OUT_PATH + f'{name}.pdf', bbox_inches='tight') plt.close() def plot_epoch_loss(model, level, cluster, seed=MAIN_SEED): assert 'DeepAR' in model, "Loss plot only available for deep models" res = load_res(model, level, cluster, seed) train_loss = res['train_loss'] val_loss = res['val_loss'] plt.figure(figsize=(6, 4)) plt.plot(np.arange(len(train_loss)) + 1, train_loss, color=COLORS[0], label='Train') plt.plot(np.arange(len(val_loss)) + 1, val_loss, color=COLORS[1], label='Validation') plt.ylabel('Loss') plt.xlabel('Epoch') _complete_plot(f'{get_file_name(model, level, cluster, seed)}_epoch_loss', grid=False) def plot_horizon(model, metric, horizons=(1, 2, 3, 4), levels=('L0', 'L1', 'L2')): results, info = collect_results_per_tstp() model_W = model + '(+W)' model_WF = model + '(+WF)' i = info['metrics'].index(metric) m = info['models'].index(model) m_W = info['models'].index(model_W) m_WF = info['models'].index(model_WF) score = np.empty(len(horizons)) score_W = np.empty(len(horizons)) score_WF = np.empty(len(horizons)) for h, horizon in enumerate(horizons): idx = np.arange(0, horizon * S_D) res = [] res_W = [] res_WF = [] for level in levels: for c, cluster in enumerate(info['levels'][level]['clusters']): y_mean = info['levels'][level]['y_mean'][c] if metric == 'rRMSE': res.append(100 * np.sqrt(np.mean(results[level][:, i, m, c, :, idx], axis=2)) / y_mean) res_W.append(100 * np.sqrt(np.mean(results[level][:, i, m_W, c, :, idx], axis=2)) / y_mean) res_WF.append(100 * np.sqrt(np.mean(results[level][:, i, m_WF, c, :, idx], axis=2)) / y_mean) else: res.append(100 * np.mean(results[level][:, i, m, c, :, idx], axis=2) / y_mean) res_W.append(100 * np.mean(results[level][:, i, m_W, c, :, idx], axis=2) / y_mean) res_WF.append(100 * np.mean(results[level][:, i, m_WF, c, :, idx], axis=2) / y_mean) score[h] = np.nanmean(res) score_W[h] = np.nanmean(res_W) score_WF[h] = np.nanmean(res_WF) skill_W = 100 * (1 - score_W / score) skill_WF = 100 * (1 - score_WF / score) print(f'SS_{metric} (W): {skill_W}') print(f'SS_{metric} (WF): {skill_WF}') plt.figure(figsize=(3.5, 4)) plt.plot( score, linestyle=get_linestyle(model), color=get_color(model), marker=MARKERS[0] ) plt.plot( score_W, linestyle=get_linestyle(model_W), color=get_color(model_W), marker=MARKERS[1] ) plt.plot( score_WF, linestyle=get_linestyle(model_WF), color=get_color(model_WF), marker=MARKERS[2] ) plt.ylim(6.95, 8.35) plt.ylabel(metric) plt.xlabel('Horizon') plt.xticks(np.arange(len(horizons)), np.array(horizons)) plt.title(model) _complete_plot(f"{model}_{metric}_horizon", grid=False, legend=False) def plot_reps(metric, levels=('L0', 'L1', 'L2'), models=None, name=None): results, info = collect_results() models = info['models'] if models is None else models i = info['metrics'].index(metric) # Lines for second legend _, ax = plt.subplots() lines = ax.plot([0, 1], [0, 1], '-C7', [0, 1], [0, 2], '--C7') plt.close() plt.figure(figsize=(10, 4)) for j, model in enumerate(models): m = info['models'].index(model) reps_mean = [] for level in levels: if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue for c, cluster in enumerate(info['levels'][level]['clusters']): reps_mean.append(results[level][i, m, c]) reps_mean = np.mean(reps_mean, axis=0) plt.plot( reps_mean, label=model if '(' not in model else None, linestyle=get_linestyle(model), color=get_color(model) ) plt.ylabel(metric) plt.xlabel('Forecast origin') plt.yticks(np.arange(5, 17, 2.5)) t0 = load_res('LW', 'L0', 'Agg')['t0'] ticks = [dt.datetime.strptime(tstp, '%Y-%m-%d, %H:%M').strftime('%b, %d') for tstp in t0[1::5]] plt.xticks(np.arange(1, len(t0), 5), ticks, rotation=0) plt.grid(axis='y') second_legend = plt.legend(lines, ('no weather', 'actual weather'), loc='upper left') plt.gca().add_artist(second_legend) _complete_plot(f"{f'{name}_' if name is not None else ''}{metric}_reps", grid=False) def plot_clusters(level, metric, models=None, name=None): results, info = collect_results() models = info['models'] if models is None else models i = info['metrics'].index(metric) plt.figure(figsize=(10, 4)) for model in models: if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue m = info['models'].index(model) clusters_mean = np.mean(results[level][i, m], axis=1) plt.plot( clusters_mean, label=model, linestyle=get_linestyle(model), color=get_color(model) ) plt.ylabel(metric) cluster_labels = [f"{cluster.replace('ACORN-', '')} ({count})" for cluster, count in zip( info['levels'][level]['clusters'], info['levels'][level]['cardinality'] )] if level == 'L3': plt.xticks(np.arange(0, len(cluster_labels), 100), np.array(cluster_labels)[::100], rotation=90) elif level == 'L2': plt.xticks(np.arange(len(cluster_labels)), cluster_labels, rotation=90) else: plt.xticks(np.arange(len(cluster_labels)), cluster_labels) _complete_plot(f"{f'{name}_' if name is not None else ''}{level}_{metric}_clusters") def plot_aggregate_size(metric, models=None, name=None): results, info = collect_results() models = info['models'] if models is None else models i = info['metrics'].index(metric) aggregate_sizes = [] errors = {} bottom_level_errors = {} for model in models: errors[model] = [] bottom_level_errors[model] = [] for level, level_info in info['levels'].items(): for c, agg_size in enumerate(level_info['cardinality']): if level != 'L3': aggregate_sizes.append(agg_size) for model in models: m = info['models'].index(model) errors[model].append(
np.mean(results[level][i, m, c])
numpy.mean
"""Augmentations for spectograms""" from abc import abstractmethod import cv2 import numpy as np from pathlib import Path import PIL from PIL import Image from scipy.ndimage.filters import laplace class RandomTransform: def __init__(self, p=0.5): self.p = p def __call__(self, image, y): return self.transform(image, y) def transform(self, image, y): if np.random.rand() < self.p: return self._transform(image, y) return image, y @abstractmethod def _transform(self, image, y): pass class Compose: def __init__(self, transform_list): self.transform_list = transform_list def __call__(self, image, y): out = image.copy() for tfm in self.transform_list: out, y = tfm(out, y) return out, y class RobustScaling(RandomTransform): def __init__(self, min_percentile=0.025, max_percentile=0.975, p=1.0): super().__init__(p=p) self.min_percentile = min_percentile self.max_percentile = max_percentile def _transform(self, image, y): image = image.copy() min_value =
np.percentile(image, self.min_percentile * 100)
numpy.percentile
from PIL import Image import cv2 import numpy as np maskPath="mask.png" cascPath="haarcascade_frontalface_default.xml" mask=Image.open(maskPath) face_cascade=cv2.CascadeClassifier(cascPath) def thug(image): gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) faces=face_cascade.detectMultiScale(gray,1.3) background=Image.fromarray(image) for(x,y,w,h)in faces: r_mask=mask.resize((w,h),Image.ANTIALIAS) offset=(x,y) background.paste(r_mask,offset,mask=r_mask) #just pasted the mask not the trANspiracy return
np.asarray(background)
numpy.asarray
""" Copyright (c) 2017 Matterport, Inc. Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import os import random import itertools import numpy as np from skimage.measure import find_contours import cv2 from models.model import detection_layer, unmold_detections from models.modules import * from utils import * def tileImages(image_list, padding_x=5, padding_y=5, background_color=0): """Tile images""" height = image_list[0][0].shape[0] width = image_list[0][0].shape[1] result_image = np.full((height * len(image_list) + padding_y * (len(image_list) + 1), width * len(image_list[0]) + padding_x * (len(image_list[0]) + 1), 3), fill_value=background_color, dtype=np.uint8) for index_y, images in enumerate(image_list): for index_x, image in enumerate(images): offset_x = index_x * width + (index_x + 1) * padding_x offset_y = index_y * height + (index_y + 1) * padding_y if image.ndim == 2: image = np.expand_dims(image, axis=-1).tile((1, 1, 3)) pass result_image[offset_y:offset_y + height, offset_x:offset_x + width] = image continue continue return result_image ############################################################ # Batch visualization ############################################################ def visualizeBatchDeMoN(options, input_dict, results, indexOffset=0, prefix='', concise=False): cornerColorMap = {'gt': np.array([255, 0, 0]), 'pred': np.array([0, 0, 255]), 'inp': np.array([0, 255, 0])} topdownSize = 256 for batchIndex in range(len(input_dict['image_1'])): pose = input_dict['pose'][batchIndex] for resultIndex, result in enumerate(results): if concise and resultIndex < len(results) - 1: continue depth_pred = invertDepth(result['depth'][batchIndex]).detach().cpu().numpy().squeeze() depth_gt = input_dict['depth'][batchIndex].squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass if options.scaleMode != 'variant': valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4) depth_gt_values = depth_gt[valid_mask] depth_pred_values = depth_pred[valid_mask] scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values))) depth_pred *= scale pass cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_pred_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) if 'flow' in result: flow_pred = result['flow'][batchIndex, :2].detach().cpu().numpy().transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_flow_pred_' + str(len(results) - 1 - resultIndex) + '.png', cv2.resize(drawFlowImage(flow_pred), (256, 192))) pass if 'rotation' in result and resultIndex >= len(results) - 2: pass continue if not concise: cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_gt.png', drawDepthImage(input_dict['depth'][batchIndex])) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image_0.png', (input_dict['image_1'][batchIndex].transpose((1, 2, 0)) + 0.5) * 255) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image_1.png', (input_dict['image_2'][batchIndex].transpose((1, 2, 0)) + 0.5) * 255) flow_gt = input_dict['flow'][batchIndex, :2].transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_flow_gt.png', cv2.resize(drawFlowImage(flow_gt), (256, 192))) pass continue return def visualizeBatchPair(options, config, inp_pair, detection_pair, indexOffset=0, prefix='', suffix='', write_ply=False, write_new_view=False): detection_images = [] for pair_index, (input_dict, detection_dict) in enumerate(zip(inp_pair, detection_pair)): image_dict = visualizeBatchDetection(options, config, input_dict, detection_dict, indexOffset=indexOffset, prefix=prefix, suffix='_' + str(pair_index), prediction_suffix=suffix, write_ply=write_ply, write_new_view=write_new_view) detection_images.append(image_dict['detection']) continue detection_image = tileImages([detection_images]) return def visualizeBatchRefinement(options, config, input_dict, results, indexOffset=0, prefix='', suffix='', concise=False): if not concise: image = (input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255 cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_0.png', image) image_2 = (input_dict['image_2'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255 cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_1.png', image_2) depth_gt = input_dict['depth'].detach().cpu().numpy().squeeze() cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_gt.png', drawDepthImage(depth_gt)) flow_gt = input_dict['flow'][0, :2].detach().cpu().numpy().transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_flow_gt.png', cv2.resize(drawFlowImage(flow_gt), (256, 192))) pass numbers = [] for resultIndex, result in enumerate(results): if 'mask' in result and (options.losses == '' or '0' in options.losses): masks = result['mask'].detach().cpu().numpy() masks = np.concatenate([np.maximum(1 - masks.sum(0, keepdims=True), 0), masks], axis=0).transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation_' + str(len(results) - 1 - resultIndex) + '.png', drawSegmentationImage(masks, blackIndex=0) * (masks.max(-1, keepdims=True) > 0.5).astype(np.uint8)) pass if concise: continue if 'depth' in result and (options.losses == '' or '3' in options.losses): depth_pred = invertDepth(result['depth']).detach().cpu().numpy().squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass if options.scaleMode != 'variant': valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4) depth_gt_values = depth_gt[valid_mask] depth_pred_values = depth_pred[valid_mask] scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values))) depth_pred *= scale pass cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) pass if 'plane_depth' in result and (options.losses == '' or '3' in options.losses): depth_pred = invertDepth(result['plane_depth']).detach().cpu().numpy().squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass if options.scaleMode != 'variant': valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4) depth_gt_values = depth_gt[valid_mask] depth_pred_values = depth_pred[valid_mask] scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values))) depth_pred *= scale pass cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_plane_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) pass if 'flow' in result and (options.losses == '' or '1' in options.losses): flow_pred = result['flow'][0, :2].detach().cpu().numpy().transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_flow_pred_' + str(len(results) - 1 - resultIndex) + '.png', cv2.resize(drawFlowImage(flow_pred), (256, 192))) pass if 'rotation' in result and resultIndex >= len(results) - 2: pass if 'plane' in result and resultIndex > 0: numbers.append(np.linalg.norm(result['plane'].detach().cpu().numpy() - results[0]['plane'].detach().cpu().numpy())) pass if 'warped_image' in result and resultIndex >= len(results) - 2: warped_image = ((result['warped_image'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255).astype(np.uint8) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_warped_' + str(len(results) - 1 - resultIndex) + '.png', warped_image) pass if 'plane_depth_one_hot' in result: depth_pred = invertDepth(result['plane_depth_one_hot']).detach().cpu().numpy().squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_plane_onehot_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) pass continue if 'parameter' in options.suffix: print('plane diff', numbers) pass return def visualizeBatchDetection(options, config, input_dict, detection_dict, indexOffset=0, prefix='', suffix='', prediction_suffix='', write_ply=False, write_new_view=False): image_dict = {} images = input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1)) images = unmold_image(images, config) image = images[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '.png', image[80:560]) if 'warped_image' in input_dict: warped_images = input_dict['warped_image'].detach().cpu().numpy().transpose((0, 2, 3, 1)) warped_images = unmold_image(warped_images, config) warped_image = warped_images[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '_warped.png', warped_image[80:560]) pass if 'warped_depth' in input_dict: warped_depth = input_dict['warped_depth'].detach().cpu().numpy() cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '_warped.png', drawDepthImage(warped_depth[80:560])) pass if 'warped_mask' in input_dict: warped_mask = input_dict['warped_mask'].detach().cpu().numpy()[0] pass if 'depth' in input_dict: depths = input_dict['depth'].detach().cpu().numpy() depth_gt = depths[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '.png', drawDepthImage(depth_gt[80:560])) pass windows = (0, 0, images.shape[1], images.shape[2]) windows = (0, 0, images.shape[1], images.shape[2]) class_colors = ColorPalette(config.NUM_CLASSES).getColorMap().tolist() if 'mask' in input_dict: box_image = image.copy() boxes = input_dict['bbox'][0].detach().cpu().numpy() masks = input_dict['mask'][0].detach().cpu().numpy() if config.NUM_PARAMETER_CHANNELS > 0: depths = masks[:, :, :, 1] masks = masks[:, :, :, 0] pass segmentation_image = image * 0.0 for box, mask in zip(boxes, masks): box = np.round(box).astype(np.int32) mask = cv2.resize(mask, (box[3] - box[1], box[2] - box[0])) segmentation_image[box[0]:box[2], box[1]:box[3]] = np.minimum(segmentation_image[box[0]:box[2], box[1]:box[3]] + np.expand_dims(mask, axis=-1) * np.random.randint(255, size=(3, ), dtype=np.int32), 255) continue cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation' + suffix + '.png', segmentation_image.astype(np.uint8)[80:560]) if config.NUM_PARAMETER_CHANNELS > 0 and not config.OCCLUSION: depth_image = np.zeros((image.shape[0], image.shape[1])) for box, patch_depth in zip(boxes, depths): box = np.round(box).astype(np.int32) patch_depth = cv2.resize(patch_depth, (box[3] - box[1], box[2] - box[0]), cv2.INTER_NEAREST) depth_image[box[0]:box[2], box[1]:box[3]] = patch_depth continue cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_patch' + suffix + '.png', drawDepthImage(depth_image[80:560])) pass pass if 'boundary' in detection_dict: boundary_pred = detection_dict['boundary'].detach().cpu().numpy()[0] boundary_gt = input_dict['boundary'].detach().cpu().numpy()[0] for name, boundary in [('gt', boundary_gt), ('pred', boundary_pred)]: boundary_image = image.copy() boundary_image[boundary[0] > 0.5] = np.array([255, 0, 0]) boundary_image[boundary[1] > 0.5] = np.array([0, 0, 255]) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_boundary' + suffix + '_' + name + '.png', boundary_image) continue pass if 'depth' in detection_dict: depth_pred = detection_dict['depth'][0].detach().cpu().numpy() cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '.png', drawDepthImage(depth_pred[80:560])) if options.debug: valid_mask = (depth_gt > 1e-4) * (input_dict['segmentation'].detach().cpu().numpy()[0] >= 0) * (detection_dict['mask'].detach().cpu().numpy().squeeze() > 0.5) pass pass if 'depth_np' in detection_dict: cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '_np.png', drawDepthImage(detection_dict['depth_np'].squeeze().detach().cpu().numpy()[80:560])) pass if 'depth_ori' in detection_dict: cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '_ori.png', drawDepthImage(detection_dict['depth_ori'].squeeze().detach().cpu().numpy()[80:560])) pass if 'detection' in detection_dict and len(detection_dict['detection']) > 0: detections = detection_dict['detection'].detach().cpu().numpy() detection_masks = detection_dict['masks'].detach().cpu().numpy().transpose((1, 2, 0)) if 'flag' in detection_dict: detection_flags = detection_dict['flag'] else: detection_flags = {} pass instance_image, normal_image, depth_image = draw_instances(config, image, depth_gt, detections[:, :4], detection_masks > 0.5, detections[:, 4].astype(np.int32), detections[:, 6:], detections[:, 5], draw_mask=True, transform_planes=False, detection_flags=detection_flags) image_dict['detection'] = instance_image cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation' + suffix + prediction_suffix + '.png', instance_image[80:560]) else: image_dict['detection'] = np.zeros(image.shape, dtype=image.dtype) pass if write_new_view and False: detection_masks = detection_dict['masks'] pose = np.eye(4) pose[:3, :3] = np.matmul(axisAngleToRotationMatrix(np.array([-1, 0, 0]), np.pi / 18 * 0), axisAngleToRotationMatrix(np.array([0, 0, -1]), np.pi / 18)) pose[:3, 3] = np.array([-0.4, 0, 0]) drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_new_view' + suffix + prediction_suffix + '.png', detection_masks[:, 80:560].detach().cpu().numpy(), detection_dict['plane_XYZ'].detach().cpu().numpy().transpose((0, 2, 3, 1))[:, 80:560], input_dict['camera'].detach().cpu().numpy(), pose) depth = depth_gt[80:560] ranges = config.getRanges(input_dict['camera']).detach().cpu().numpy() XYZ_gt = ranges * np.expand_dims(depth, axis=-1) drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_new_view_depth_gt' + suffix + prediction_suffix + '.png', np.expand_dims(depth > 1e-4, 0), np.expand_dims(XYZ_gt, 0), input_dict['camera'].detach().cpu().numpy(), pose) depth = detection_dict['depth_np'].squeeze()[80:560] ranges = config.getRanges(input_dict['camera']).detach().cpu().numpy() XYZ_gt = ranges * np.expand_dims(depth, axis=-1) drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_new_view_depth_pred' + suffix + prediction_suffix + '.png', np.expand_dims(depth > 1e-4, 0), np.expand_dims(XYZ_gt, 0), input_dict['camera'].detach().cpu().numpy(), pose) pass if write_new_view: detection_masks = detection_dict['masks'][:, 80:560].detach().cpu().numpy() XYZ_pred = detection_dict['plane_XYZ'].detach().cpu().numpy().transpose((0, 2, 3, 1))[:, 80:560] depth = depth_gt[80:560] ranges = config.getRanges(input_dict['camera']).detach().cpu().numpy() XYZ_gt = np.expand_dims(ranges * np.expand_dims(depth, axis=-1), 0) valid_mask = np.expand_dims(depth > 1e-4, 0).astype(np.float32) camera = input_dict['camera'].detach().cpu().numpy() valid_mask = np.expand_dims(cv2.resize(valid_mask[0], (256, 192)), 0) XYZ_gt = np.expand_dims(cv2.resize(XYZ_gt[0], (256, 192)), 0) detection_masks = np.stack([cv2.resize(detection_masks[c], (256, 192)) for c in range(len(detection_masks))], axis=0) XYZ_pred = np.stack([cv2.resize(XYZ_pred[c], (256, 192)) for c in range(len(XYZ_pred))], axis=0) locations = [np.array([-0.4, 0, 0]), np.array([0, 0, 0]), np.array([0, 0, 0]), np.array([0.4, 0, 0])] angle_pairs = [(np.array([-1, 0, 0, np.pi / 18 * 0]), np.array([0, 0, -1, np.pi / 18])), (np.array([0, 0, 0, 0]), np.array([0, 0, 0, 0])), (np.array([0, 0, 0, 0]), np.array([0, 0, 0, 0])), (np.array([-1, 0, 0, np.pi / 18 * 0]), np.array([0, 0, 1, np.pi / 18]))] num_frames = [25, 10, 25] for c in range(len(locations) - 1): if c == 2: continue for frame in range(num_frames[c]): ratio = float(frame + 1) / num_frames[c] location = locations[c] + (locations[c + 1] - locations[c]) * ratio angle_pair = [angle_pairs[c][dim] + (angle_pairs[c + 1][dim] - angle_pairs[c][dim]) * ratio for dim in range(2)] pose = np.eye(4) pose[:3, :3] = np.matmul(axisAngleToRotationMatrix(angle_pair[0][:3], angle_pair[0][3]), axisAngleToRotationMatrix(angle_pair[1][:3], angle_pair[1][3])) pose[:3, 3] = location index_offset = sum(num_frames[:c]) + frame drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_video/' + str(index_offset) + '.png', detection_masks, XYZ_pred, camera, pose) drawNewViewDepth(options.test_dir + '/' + str(indexOffset) + '_video_gt/' + str(index_offset) + '.png', valid_mask, XYZ_gt, camera, pose) continue continue exit(1) pass if write_ply: detection_masks = detection_dict['masks'] if 'plane_XYZ' not in detection_dict: plane_XYZ = planeXYZModule(config.getRanges(input_dict['camera']), detection_dict['detection'][:, 6:9], width=config.IMAGE_MAX_DIM, height=config.IMAGE_MIN_DIM) plane_XYZ = plane_XYZ.transpose(1, 2).transpose(0, 1).transpose(2, 3).transpose(1, 2) zeros = torch.zeros(int(plane_XYZ.shape[0]), 3, (config.IMAGE_MAX_DIM - config.IMAGE_MIN_DIM) // 2, config.IMAGE_MAX_DIM).cuda() plane_XYZ = torch.cat([zeros, plane_XYZ, zeros], dim=2) detection_dict['plane_XYZ'] = plane_XYZ pass print(options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.ply') writePLYFileMask(options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.ply', image[80:560], detection_masks[:, 80:560].detach().cpu().numpy(), detection_dict['plane_XYZ'].detach().cpu().numpy().transpose((0, 2, 3, 1))[:, 80:560], write_occlusion='occlusion' in options.suffix) pose = np.eye(4) pose[:3, :3] = np.matmul(axisAngleToRotationMatrix(np.array([-1, 0, 0]), np.pi / 18), axisAngleToRotationMatrix(np.array([0, -1, 0]), np.pi / 18)) pose[:3, 3] = np.array([-0.4, 0.3, 0]) current_dir = os.path.dirname(os.path.realpath(__file__)) pose_filename = current_dir + '/test/pose_new_view.txt' print(pose_filename) with open(pose_filename, 'w') as f: for row in pose: for col in row: f.write(str(col) + '\t') continue f.write('\n') continue f.close() pass model_filename = current_dir + '/' + options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.ply' output_filename = current_dir + '/' + options.test_dir + '/' + str(indexOffset) + '_model' + suffix + prediction_suffix + '.png' try: os.system('../../../Screenshoter/Screenshoter --model_filename=' + model_filename + ' --output_filename=' + output_filename + ' --pose_filename=' + pose_filename) except: pass pass return image_dict def visualizeBatchDepth(options, config, input_dict, detection_dict, indexOffset=0, prefix='', suffix='', write_ply=False): image_dict = {} images = input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1)) images = unmold_image(images, config) for batchIndex, image in enumerate(images): cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image' + suffix + '.png', image) continue depths = input_dict['depth'].detach().cpu().numpy() for batchIndex, depth in enumerate(depths): cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth' + suffix + '.png', drawDepthImage(depth)) continue if 'depth_np' in detection_dict: for batchIndex, depth in enumerate(detection_dict['depth_np'].detach().cpu().numpy()): cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_pred_np' + suffix + '.png', drawDepthImage(depth)) continue pass return def visualizeBatchSingle(options, config, images, image_metas, rpn_rois, depths, dicts, input_dict={}, inference={}, indexOffset=0, prefix='', suffix='', compare_planenet=False): image = images[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '.png', image) depth = depths[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '.png', drawDepthImage(depth)) windows = (0, 0, images.shape[1], images.shape[2]) class_colors = ColorPalette(config.NUM_CLASSES).getColorMap(returnTuples=True) instance_colors = ColorPalette(1000).getColorMap(returnTuples=True) if 'mask' in input_dict: box_image = image.copy() boxes = input_dict['bbox'][0].detach().cpu().numpy() masks = input_dict['mask'][0].detach().cpu().numpy() for box, mask in zip(boxes, masks): box = np.round(box).astype(np.int32) cv2.rectangle(box_image, (box[1], box[0]), (box[3], box[2]), color=(0, 0, 255), thickness=2) continue segmentation_image = image * 0.0 for box, mask in zip(boxes, masks): box = np.round(box).astype(np.int32) mask = cv2.resize(mask, (box[3] - box[1], box[2] - box[0])) segmentation_image[box[0]:box[2], box[1]:box[3]] = np.minimum(segmentation_image[box[0]:box[2], box[1]:box[3]] + np.expand_dims(mask, axis=-1) * np.random.randint(255, size=(3, ), dtype=np.int32), 255) continue cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_detection' + suffix + '.png', segmentation_image.astype(np.uint8)) pass for name, result_dict in dicts: if len(rpn_rois) > 0: detections, keep_indices, ori_rois = detection_layer(config, rpn_rois.unsqueeze(0), result_dict['mrcnn_class'], result_dict['mrcnn_bbox'], result_dict['mrcnn_parameter'], image_metas, return_indices=True) box_image = image.copy() for instance_index, box in enumerate(detections.detach().cpu().numpy().astype(np.int32)): cv2.rectangle(box_image, (box[1], box[0]), (box[3], box[2]), color=class_colors[int(box[4])], thickness=3) continue else: continue if len(detections) > 0: detections[:, :4] = ori_rois detections = detections.detach().cpu().numpy() mrcnn_mask = result_dict['mrcnn_mask'][keep_indices].detach().cpu().numpy() if name == 'gt': class_mrcnn_mask = np.zeros(list(mrcnn_mask.shape) + [config.NUM_CLASSES], dtype=np.float32) for index, (class_id, mask) in enumerate(zip(detections[:, 4].astype(np.int32), mrcnn_mask)): if config.GLOBAL_MASK: class_mrcnn_mask[index, :, :, 0] = mask else: class_mrcnn_mask[index, :, :, class_id] = mask pass continue mrcnn_mask = class_mrcnn_mask else: mrcnn_mask = mrcnn_mask.transpose((0, 2, 3, 1)) pass box_image = image.copy() for instance_index, box in enumerate(detections.astype(np.int32)): cv2.rectangle(box_image, (box[1], box[0]), (box[3], box[2]), color=tuple(class_colors[int(box[4])]), thickness=3) continue final_rois, final_class_ids, final_scores, final_masks, final_parameters = unmold_detections(config, detections, mrcnn_mask, image.shape, windows, debug=False) result = { "rois": final_rois, "class_ids": final_class_ids, "scores": final_scores, "masks": final_masks, "parameters": final_parameters, } instance_image, normal_image, depth_image = draw_instances(config, image, depth, result['rois'], result['masks'], result['class_ids'], result['parameters'], result['scores']) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_detection' + suffix + '_' + name + '.png', instance_image) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '_' + name + '.png', depth_image) else: print('no detections') pass continue if len(inference) > 0: instance_image, normal_image, depth_image = draw_instances(config, image, depth, inference['rois'], inference['masks'], inference['class_ids'], inference['parameters'], inference['scores'], draw_mask=True) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_detection' + suffix + '.png', instance_image) if compare_planenet: print(image.shape, image.min(), image.max()) pred_dict = detector.detect(image[80:560]) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_planenet_segmentation.png', drawSegmentationImage(pred_dict['segmentation'], blackIndex=10)) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_planenet_depth.png', drawDepthImage(pred_dict['depth'])) pass pass return def visualizeBatchBoundary(options, config, images, boundary_pred, boundary_gt, indexOffset=0): images = (images.detach().cpu().numpy().transpose((0, 2, 3, 1)) + config.MEAN_PIXEL).astype(np.uint8) boundary_pred = boundary_pred.detach().cpu().numpy() boundary_gt = boundary_gt.detach().cpu().numpy() for batchIndex in range(len(images)): for name, boundary in [('gt', boundary_gt[batchIndex]), ('pred', boundary_pred[batchIndex])]: image = images[batchIndex].copy() image[boundary[0] > 0.5] = np.array([255, 0, 0]) image[boundary[1] > 0.5] =
np.array([0, 0, 255])
numpy.array
""" Highly inspired by the work of Scotts Lab: https://arxiv.org/abs/2001.05022v1 https://github.com/ScottLabUCB/HTTEM/blob/master/pyNanoFind/bragg_filtering/bragg_filtering.ipynb """ import numpy as np import scipy.fftpack as ftp import matplotlib.pyplot as plt import matplotlib.patches as mpatches from scipy.signal import medfilt2d from skimage.util import pad import sys import h5py # import realDataProcess as rdp # import freqCutting as fcut from scipy import fftpack from scipy import signal from skimage.morphology import opening, closing, square from skimage.measure import label, regionprops from skimage.filters import threshold_otsu import helpers as helpers def circular_mask(size_x=1024, size_y=1024, cx=512, cy=512, r=50): x = np.arange(0, size_x) y = np.arange(0, size_y) arr = np.zeros((size_x, size_y)) mask = (x[np.newaxis,:]-cx)**2 + (y[:,np.newaxis]-cy)**2 < r**2 arr[mask] = 1 return arr # plt.figure(figsize=(6, 6)) # plt.pcolormesh(x, y, arr) # plt.colorbar() # plt.show() def ring_mask(size_x=1024, size_y=1024, cx=512, cy=512, r_in=50, r_out=100): x = np.arange(0, size_x) y = np.arange(0, size_y) arr =
np.zeros((size_x, size_y))
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Sun Dec 22 17:32:46 2019 @author: Wei-Hsiang, Shen """ import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import time import os from tensorflow.keras import layers # Training parameters BATCH_SIZE = 128 TOTAL_EPOCHS = 10 # We use the MNIST dataset mnist = tf.keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_images = train_images / 255.0 test_images = test_images / 255.0 train_images = np.expand_dims(train_images, axis=-1) test_images = np.expand_dims(test_images, axis=-1) train_images =
np.array(train_images, dtype=np.float32)
numpy.array
from __future__ import print_function, division import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import numpy as np import os import sys sys.path.insert(0, '..') import chronostar.fitplotter as fp import chronostar.retired2.datatool as dt def plotEveryIter(rdir, star_pars, bg_hists=None, true_memb=None): try: print("Attempting init") if os.path.isfile(rdir + 'init_xw.pdf'): print(" init already plotted...") else: for dim1, dim2 in ('xy', 'uv', 'xu', 'yv', 'zw', 'xw'): plt.clf() fp.plotPaneWithHists(dim1, dim2, star_pars=star_pars, groups=rdir + 'init_groups.npy', weights=None, group_now=True, bg_hists=bg_hists, membership=true_memb) plt.savefig(rdir + 'init_{}{}.pdf'.format(dim1, dim2)) except: print("init lacking files") iter_count = 0 while True: try: print("Attempting iter {}".format(iter_count)) # idir = rdir + 'iter{}/'.format(iter_count) idir = rdir + 'iter{:02}/'.format(iter_count) if os.path.isfile(idir + 'iter_{:02}_xw.pdf'.format(iter_count)): print(' iter_{:02} already plotted'.format(iter_count)) else: z = np.load(idir + 'membership.npy') weights = z.sum(axis=0) for dim1, dim2 in ('xy', 'uv', 'xu', 'yv', 'zw', 'xw'): plt.clf() fp.plotPaneWithHists(dim1, dim2, star_pars=star_pars, groups=idir + 'best_groups.npy', weights=weights, group_now=True, bg_hists=bg_hists, membership=z, true_memb=true_memb ) plt.savefig(idir + 'iter_{:02}_{}{}.pdf'.format( iter_count, dim1, dim2)) iter_count += 1 except IOError: print("Iter {} is lacking files".format(iter_count)) break try: print("Attempting final") idir = rdir + 'final/' if os.path.isfile(idir + 'final_xw.pdf'): print(" final already plotted") else: z = np.load(idir + 'final_membership.npy') weights = z.sum(axis=0) for dim1, dim2 in ('xy', 'uv', 'xu', 'yv', 'zw', 'xw'): plt.clf() fp.plotPaneWithHists(dim1, dim2, star_pars=star_pars, groups=idir + 'final_groups.npy', weights=weights, group_now=True, membership=z, true_memb=true_memb, ) plt.savefig(idir + 'final_{}{}.pdf'.format( dim1, dim2)) except IOError: print("final is lacking files") return def getZfromOrigins(origins, star_pars): if type(origins) is str: origins = dt.loadGroups(origins) if type(star_pars) is str: star_pars = dt.loadXYZUVW(star_pars) nstars = star_pars['xyzuvw'].shape[0] ngroups = len(origins) nassoc_stars =
np.sum([o.nstars for o in origins])
numpy.sum
from __future__ import print_function # # Computing the free energy difference of an organic crystal polymorph at different gamma values # # Copyright <NAME> and <NAME>, University of Virginia, 2014 # import sys import numpy as np import pymbar # multistate Bennett acceptance ratio from pymbar import timeseries # timeseries analysis import MBARBootstrap # Bootstrapping algorithm import os.path from optparse import OptionParser # for parsing command-line options import sys import Harvist #Hamiltonian Reweighting Visualization Toolkit import pdb import panedr def dA_Gamma_MBAR(plot_out=True, MINGAMMA=0, MAXGAMMA=100, GSPACING=10, LAMBDA=100, exponent=2, polymorphs='p1 p2', Molecules=72, Independent=4, Temp=200, Pressure=1, k=1000, ignoreframes=500, includeframes=100000, potential='oplsaa',bonds=False, hinge='DefaultHinge'): if (plot_out): import matplotlib # for making plots, version 'matplotlib-1.1.0-1'; errors may pop up when using earlier versions import matplotlib.pyplot as plt font = {'family': 'normal', 'weight': 'normal', 'size': 16} matplotlib.rc('font', **font) # ============================================================================================= # ENSURE THAT USER INPUTS ARE SENSIBLE # ============================================================================================= # TEMPERATURE if Temp < 0: print("Invalid Temperature: " + str(Temp)) sys.exit() # GAMMA if (MINGAMMA == -1) and (MAXGAMMA == -1) and (GSPACING == -1) and (exponent == 1): print("Using default values!") # The Gamma points sampled Gammas = ['000L', '010L', '020L', '030L', '040L', '050L', '060L', '070L', '080L', '090L', '100L'] elif MINGAMMA < 0 or MAXGAMMA < 0 or GSPACING < 0 or MINGAMMA > MAXGAMMA: print("Invalid Gamma Specifications") sys.exit() else: RawGamma = MINGAMMA Gammas = [] Gamma_names = [] gamma_names = np.arange(MINGAMMA, MAXGAMMA + GSPACING, GSPACING) while RawGamma < MAXGAMMA: if exponent >= 0: Gamma = int(100 * (float(RawGamma) / float(MAXGAMMA)) ** abs(exponent)) else: Gamma = int(100 * (1 - (float(MAXGAMMA - RawGamma) / float(MAXGAMMA)) ** abs(exponent))) Gammas.append(Gamma) # Format the gamma point name if RawGamma < 10: Gamma_names.append('00' + str(int(RawGamma)) + 'G') elif RawGamma < 100: Gamma_names.append('0' + str(int(RawGamma)) + 'G') else: Gamma_names.append('100G') RawGamma = RawGamma + GSPACING # Catch the final gamma point Gammas.append(int(MAXGAMMA)) if MAXGAMMA < 10: Gamma_names.append('00' + str(int(MAXGAMMA)) + 'G') elif MAXGAMMA < 100: Gamma_names.append('0' + str(int(MAXGAMMA)) + 'G') else: Gamma_names.append('100G') # LAMBDA if LAMBDA < 0 or LAMBDA > 100: print("Invalid Lambda Point: " + str(LAMBDA)) sys.exit() # POLYMORPH polymorphs = polymorphs.split() polymorph = [] polymorph_short = [] for i, token in enumerate(polymorphs): polymorph.append('Polymorph ' + str(token)) polymorph_short.append(token) # POTENTIAL if potential != "oplsaa" and potential != "gromos" and potential != "designeda" and potential != "oplsaafakeg" and \ potential != "oplsaafakea": print("Invalid Potential") print("Supported potentials: oplsaa gromos designeda oplsaafakeg oplsaafakea") sys.exit() # ============================================================================================= # FORMAT INPUTS # ============================================================================================= # POTENTIAL PotNAME = "" if potential == "oplsaa": PotNAME = "OPLS" elif potential == "gromos": PotNAME = "GROM" elif potential == "designeda": PotNAME = "DESA" elif potential == "oplsaafakeg": PotNAME = "FAKEG" elif potential == "oplsaafakea": PotNAME = "FAKEA" # OPTIONAL HINGE if hinge == "DefaultHinge": hinges = ['_G'] else: # Read in each job hinges = [] hingevect = options.hinge.split() for i, token in enumerate(hingevect): hinges.append("_G_" + str(token)) # ============================================================================================= # READ IN RAW DATA # ============================================================================================= # Constants. kB = 1.3806488e-23 * 6.0221413e23 / (1000.0 * 4.184) # Boltzmann constant in kcal/mol omitT = [] # Temperatures to be omitted from the analysis # Parameters T_k = Temp * np.ones(len(Gammas), float) # Convert temperatures to floats print(T_k) print(Gammas) g_k = np.zeros([len(Gammas)], float) K = len(Gammas) # How many states? # total number of states examined; 0 are unsampled if bonds are left on, 1 is unsampled if the bonds are removed if bonds == True: Kbig = K dhdl_placement = 6 else: Kbig = K dhdl_placement = 5 # maximum number of snapshots/simulation (could make this automated) - doesn't matter, as long as it's long enough. N_max = 200000 # beta factor for the different temperatures beta_k = 1.0 / (kB * T_k) dA = np.zeros([len(polymorph), Kbig], float) ddA = np.zeros([len(polymorph), Kbig], float) convert_units = 0.2390057 * np.ones(Kbig, float) # Convert all energies to kcal/mol # Allocate storage for simulation data for i, poly in enumerate(polymorph): # N_k[k] is the total number of snapshots from alchemical state k N_k = np.zeros([Kbig], np.int32) # N_k_s[k,s] is the total number of snapshots from alchemical state k from seed s N_k_s = np.zeros([Kbig, len(hinges)], np.int32) # u_kln[k,l,n] is the adjusted energy of snapshot n from simulation k u_kln = np.zeros([K, Kbig, N_max], np.float64) # dhdl_kn[k,n] is the derivative of energy with respect to lambda of snapshot n from simulation k dhdl_kn = np.zeros([K, N_max], np.float64) #Load in the data for each run for k in range(K): n = 0 for s, hinge in enumerate(hinges): # cycle through all the input total energy data dirpath = polymorph_short[i] + '/interactions/' + str(gamma_names[k]) fname = dirpath + '/PROD.edr' dhdlname = dirpath + '/dhdl_PROD.xvg' if k not in omitT: potential_energy = panedr.edr_to_df(fname)['Potential'].values print("loading " + fname) dhdl_energy = np.loadtxt(dhdlname, comments=['#', '$', '@', '!']) print("loading " + dhdlname) # Removing any non-equilibrated points of the simulation [start_production, _, _] = timeseries.detectEquilibration(potential_energy) potential_energy = potential_energy[start_production:] dhdl_energy = dhdl_energy[start_production:] # the energy of every configuration from each state evaluated at its sampled state n = len(potential_energy) u_kln[k, :K, :n] = (potential_energy.reshape((n, 1)) + dhdl_energy[:, dhdl_placement:]).T * \ convert_units[k] dhdl_kn[k, :n] = (float(Independent) / Molecules) * \ np.sum(dhdl_energy[:, 2:dhdl_placement], axis=1) * convert_units[k] if s == 0: N_k_s[k, s] = n else: N_k_s[k, s] = n - sum(N_k_s[k, 0:s]) N_k[k] = n # convert to nondimensional units from kcal/mol u_kln *= beta_k[0] # all data loaded from the three sets u_kln_save = u_kln.copy() N_k_save = N_k.copy() g_k = np.zeros([K]) print("Number of retained samples") print(N_k) print("Number of retained samples from each seed") print(N_k_s) # ============================================================================================= # COMPUTE FREE ENERGY DIFFERENCE USING MBAR # ============================================================================================= # Initialize MBAR. print("Running MBAR...") # generate the weights of each of the umbrella set mbar = pymbar.MBAR(u_kln, N_k, verbose=True, subsampling_protocol=[{'method': 'L-BFGS-B'}]) print("MBAR Converged...") # testing for k in range(Kbig): w = np.exp(mbar.Log_W_nk[:, k]) print("max weight in state %d is %12.7f" % (k, np.max(w))) neff = 1 /
np.sum(w ** 2)
numpy.sum
from db import dbtools from tbainfo import tbarequests from picklist_team import Team import numpy as np import globals def main(): globals.init() db = dbtools("Champs", "frc900", "frc900") tba = tbarequests('jQusM2aYtJLHXv3vxhDcPpIWzaxjMga5beNRWOarv6wdRwTF63vNpIsLYVANvCWE') cargo_weight = int(globals.cargo_weight)/100 panel_weight = int(globals.panel_weight)/100 endgame_weight = int(globals.endgame_weight)/100 team_keys = tba.get_teams(globals.tba_competition_id) teams = [] # create and populate team objects for team_key in team_keys: team = new_team(team_key, db) teams.append(team) mean_cargo =
np.mean([team.cargo for team in teams])
numpy.mean
"""Test the mlpack destructors.""" from __future__ import division, print_function import numpy as np # noinspection PyPackageRequirements import pytest from sklearn.utils import check_random_state from ddl.datasets import make_toy_data from ddl.externals.mlpack import MlpackDensityTreeEstimator from ddl.tree import TreeDensity, TreeDestructor from ddl.validation import check_destructor try: # noinspection PyProtectedMember from ddl.externals.mlpack import _det as det except ImportError: import warnings warnings.warn('In test script, could not import necessary mlpack wrappers.') def test_mlpack_density_tree_destructor(): destructor = TreeDestructor( tree_density=TreeDensity( tree_estimator=MlpackDensityTreeEstimator(max_leaf_nodes=10), ) ) assert check_destructor(destructor) @pytest.mark.parametrize('test', ['canonical', 'complex', 'default']) def test_mlpack_det(test): rng = check_random_state(0) if test == 'canonical': X = rng.rand(200, 2) min_vals = np.zeros(X.shape[1]) max_vals = np.ones(X.shape[1]) total_points = X.shape[0] tree = det.PyDTree(min_vals=min_vals, max_vals=max_vals, total_points=total_points) tree.fit(X) print(tree) elif test == 'complex': X = rng.randn(200, 2) tree = det.PyDTree(X=X) tree.fit(X) print(tree) tree.fit(X, max_depth=5) print(tree) tree.fit(X, max_leaf_nodes=8) print(tree) else: X = rng.randn(200, 2) tree = det.PyDTree(X) alpha = -1 # Just to initialize alpha for i in range(10): if i == 0: alpha = tree.grow(X) else: if tree.num_children() == 0: break # Stop since no more pruning allowed alpha = tree.prune_and_update(alpha, X.shape[0]) print('alpha=%g' % alpha) print(tree.get_tree_str(show_leaves=True)) # noinspection SpellCheckingInspection def test_mlpack_det_get_arrayed_tree(): # Setup dataset D = make_toy_data('uniform_grid', n_samples=1000, random_state=0) X = D.X # Setup tree min_vals = np.zeros(X.shape[1]) max_vals = np.ones(X.shape[1]) total_points = X.shape[0] tree = det.PyDTree(min_vals=min_vals, max_vals=max_vals, total_points=total_points) # Fit tree tree.fit(X, max_leaf_nodes=5, min_leaf_size=5) arrayed_tree = tree.get_arrayed_tree() # print(tree.get_tree_str(show_leaves=True)) # stack = [(0, None)] # while len(stack) > 0: # print(stack) # node_i, is_left = stack.pop() # prefix = 'Left' if is_left else 'Right' # # if arrayed_tree.feature[node_i] >= 0: # print('%s dim=%3d, threshold=%.3f' # % (prefix, arrayed_tree.feature[node_i], arrayed_tree.threshold[node_i])) # stack.append((arrayed_tree.children_right[node_i], False)) # stack.append((arrayed_tree.children_left[node_i], True)) # else: # print('%s' % prefix) # print(arrayed_tree) # print(repr(arrayed_tree.feature)) # print(repr(arrayed_tree.threshold)) # print(repr(arrayed_tree.children_left)) # print(repr(arrayed_tree.children_right)) # Test based on known values assert np.all(arrayed_tree.feature == np.array([0, -1, 1, 1, 1, -1, -1, -1, -1])) nan = np.nan expected_threshold = np.array( [0.5631866381580427, nan, 0.7914520226478026, 0.40126660240012946, 0.19549050993708061, nan, nan, nan, nan] )
np.testing.assert_allclose(arrayed_tree.threshold, expected_threshold, rtol=1e-16)
numpy.testing.assert_allclose
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Bayesian Gaussian Mixture Model Classes: contains the basic fields and methods of Bayesian GMMs the high level functions are/should be binded in C The base class BGMM relies on an implementation that perfoms Gibbs sampling A derived class VBGMM uses Variational Bayes inference instead A third class is introduces to take advnatge of the old C-bindings, but it is limited to diagonal covariance models Author : <NAME>, 2008-2011 """ from __future__ import print_function from __future__ import absolute_import import numpy as np import numpy.random as nr from scipy.linalg import inv, cholesky, eigvalsh from scipy.special import gammaln import math from .utils import kmeans from .gmm import GMM ################################################################## # ancillary functions ############################################ ################################################################## def detsh(H): """ Routine for the computation of determinants of symmetric positive matrices Parameters ---------- H array of shape(n,n) the input matrix, assumed symmmetric and positive Returns ------- dh: float, the determinant """ return np.prod(eigvalsh(H)) def dirichlet_eval(w, alpha): """ Evaluate the probability of a certain discrete draw w from the Dirichlet density with parameters alpha Parameters ---------- w: array of shape (n) alpha: array of shape (n) """ if np.shape(w) != np.shape(alpha): raise ValueError("incompatible dimensions") loge = np.sum((alpha-1) * np.log(w)) logb = np.sum(gammaln(alpha)) - gammaln(alpha.sum()) loge -= logb return np.exp(loge) def generate_normals(m, P): """ Generate a Gaussian sample with mean m and precision P Parameters ---------- m array of shape n: the mean vector P array of shape (n,n): the precision matrix Returns ------- ng : array of shape(n): a draw from the gaussian density """ icp = inv(cholesky(P)) ng = nr.randn(m.shape[0]) ng = np.dot(ng, icp) ng += m return ng def generate_Wishart(n, V): """ Generate a sample from Wishart density Parameters ---------- n: float, the number of degrees of freedom of the Wishart density V: array of shape (n,n) the scale matrix of the Wishart density Returns ------- W: array of shape (n,n) the draw from Wishart density """ icv = cholesky(V) p = V.shape[0] A = nr.randn(p, p) for i in range(p): A[i, i:] = 0 A[i, i] = np.sqrt(nr.chisquare(n - i)) R = np.dot(icv, A) W = np.dot(R, R.T) return W def wishart_eval(n, V, W, dV=None, dW=None, piV=None): """Evaluation of the probability of W under Wishart(n,V) Parameters ---------- n: float, the number of degrees of freedom (dofs) V: array of shape (n,n) the scale matrix of the Wishart density W: array of shape (n,n) the sample to be evaluated dV: float, optional, determinant of V dW: float, optional, determinant of W piV: array of shape (n,n), optional inverse of V Returns ------- (float) the density """ # check that shape(V)==shape(W) p = V.shape[0] if dV is None: dV = detsh(V) if dW is None: dW = detsh(W) if piV is None: piV = inv(V) ldW = math.log(dW) * (n - p - 1) / 2 ltr = - np.trace(np.dot(piV, W)) / 2 la = (n * p * math.log(2) + math.log(dV) * n) / 2 lg = math.log(math.pi) * p * (p - 1) / 4 lg += gammaln(np.arange(n - p + 1, n + 1).astype(np.float) / 2).sum() lt = ldW + ltr - la - lg return math.exp(lt) def normal_eval(mu, P, x, dP=None): """ Probability of x under normal(mu, inv(P)) Parameters ---------- mu: array of shape (n), the mean parameter P: array of shape (n, n), the precision matrix x: array of shape (n), the data to be evaluated Returns ------- (float) the density """ dim = P.shape[0] if dP is None: dP = detsh(P) w0 = math.log(dP) - dim * math.log(2 * math.pi) w0 /= 2 dx = mu - x q = np.dot(np.dot(P, dx), dx) w = w0 - q / 2 like = math.exp(w) return like def generate_perm(k, nperm=100): """ returns an array of shape(nbperm, k) representing the permutations of k elements Parameters ---------- k, int the number of elements to be permuted nperm=100 the maximal number of permutations if gamma(k+1)>nperm: only nperm random draws are generated Returns ------- p: array of shape(nperm,k): each row is permutation of k """ from scipy.special import gamma if k == 1: return np.reshape(np.array([0]), (1, 1)).astype(np.int) if gamma(k + 1) < nperm: # exhaustive permutations aux = generate_perm(k - 1) n = aux.shape[0] perm = np.zeros((n * k, k)).astype(np.int) for i in range(k): perm[i * n:(i + 1) * n, :i] = aux[:, :i] perm[i * n:(i + 1) * n, i] = k-1 perm[i * n:(i + 1) * n, i + 1:] = aux[:, i:] else: from numpy.random import rand perm = np.zeros((nperm, k)).astype(np.int) for i in range(nperm): p = np.argsort(rand(k)) perm[i] = p return perm def multinomial(probabilities): """ Generate samples form a miltivariate distribution Parameters ---------- probabilities: array of shape (nelements, nclasses): likelihood of each element belongin to each class each row is assumedt to sum to 1 One sample is draw from each row, resulting in Returns ------- z array of shape (nelements): the draws, that take values in [0..nclasses-1] """ nvox = probabilities.shape[0] nclasses = probabilities.shape[1] cuml = np.zeros((nvox, nclasses + 1)) cuml[:, 1:] = np.cumsum(probabilities, 1) aux = np.random.rand(nvox, 1) z = np.argmax(aux < cuml, 1)-1 return z def dkl_gaussian(m1, P1, m2, P2): """ Returns the KL divergence between gausians densities Parameters ---------- m1: array of shape (n), the mean parameter of the first density P1: array of shape(n,n), the precision parameters of the first density m2: array of shape (n), the mean parameter of the second density P2: array of shape(n,n), the precision parameters of the second density """ tiny = 1.e-15 dim = np.size(m1) if m1.shape != m2.shape: raise ValueError("incompatible dimensions for m1 and m2") if P1.shape != P2.shape: raise ValueError("incompatible dimensions for P1 and P2") if P1.shape[0] != dim: raise ValueError("incompatible dimensions for m1 and P1") d1 = max(detsh(P1), tiny) d2 = max(detsh(P2), tiny) dkl = np.log(d1 / d2) + np.trace(np.dot(P2, inv(P1))) - dim dkl += np.dot(np.dot((m1 - m2).T, P2), (m1 - m2)) dkl /= 2 return dkl def dkl_wishart(a1, B1, a2, B2): """ returns the KL divergence bteween two Wishart distribution of parameters (a1,B1) and (a2,B2), Parameters ---------- a1: Float, degrees of freedom of the first density B1: array of shape(n,n), scale matrix of the first density a2: Float, degrees of freedom of the second density B2: array of shape(n,n), scale matrix of the second density Returns ------- dkl: float, the Kullback-Leibler divergence """ from scipy.special import psi, gammaln tiny = 1.e-15 if B1.shape != B2.shape: raise ValueError("incompatible dimensions for B1 and B2") dim = B1.shape[0] d1 = max(detsh(B1), tiny) d2 = max(detsh(B2), tiny) lgc = dim * (dim - 1) * math.log(np.pi) / 4 lg1 = lgc lg2 = lgc lw1 = - math.log(d1) + dim * math.log(2) lw2 = - math.log(d2) + dim * math.log(2) for i in range(dim): lg1 += gammaln((a1 - i) / 2) lg2 += gammaln((a2 - i) / 2) lw1 += psi((a1 - i) / 2) lw2 += psi((a2 - i) / 2) lz1 = 0.5 * a1 * dim * math.log(2) - 0.5 * a1 * math.log(d1) + lg1 lz2 = 0.5 * a2 * dim * math.log(2) - 0.5 * a2 * math.log(d2) + lg2 dkl = (a1 - dim - 1) * lw1 - (a2 - dim - 1) * lw2 - a1 * dim dkl += a1 * np.trace(np.dot(B2, inv(B1))) dkl /= 2 dkl += (lz2 - lz1) return dkl def dkl_dirichlet(w1, w2): """ Returns the KL divergence between two dirichlet distribution Parameters ---------- w1: array of shape(n), the parameters of the first dirichlet density w2: array of shape(n), the parameters of the second dirichlet density """ if w1.shape != w2.shape: raise ValueError("incompatible dimensions for w1 and w2") dkl = 0 from scipy.special import gammaln, psi dkl = np.sum(gammaln(w2)) - np.sum(gammaln(w1)) dkl += gammaln(np.sum(w1)) - gammaln(np.sum(w2)) dkl += np.sum((w1 - w2) * (psi(w1) - psi(np.sum(w1)))) return dkl ####################################################################### # main GMM class ##################################################### ####################################################################### class BGMM(GMM): """ This class implements Bayesian GMMs this class contains the follwing fields k: int, the number of components in the mixture dim: int, the dimension of the data means: array of shape (k, dim) all the means of the components precisions: array of shape (k, dim, dim) the precisions of the componenets weights: array of shape (k): weights of the mixture shrinkage: array of shape (k): scaling factor of the posterior precisions on the mean dof: array of shape (k) the degrees of freedom of the components prior_means: array of shape (k, dim): the prior on the components means prior_scale: array of shape (k, dim): the prior on the components precisions prior_dof: array of shape (k): the prior on the dof (should be at least equal to dim) prior_shrinkage: array of shape (k): scaling factor of the prior precisions on the mean prior_weights: array of shape (k) the prior on the components weights shrinkage: array of shape (k): scaling factor of the posterior precisions on the mean dof : array of shape (k): the posterior dofs fixme ----- only 'full' precision is supported """ def __init__(self, k=1, dim=1, means=None, precisions=None, weights=None, shrinkage=None, dof=None): """ Initialize the structure with the dimensions of the problem Eventually provide different terms """ GMM.__init__(self, k, dim, 'full', means, precisions, weights) self.shrinkage = shrinkage self.dof = dof if self.shrinkage is None: self.shrinkage = np.ones(self.k) if self.dof is None: self.dof = np.ones(self.k) if self.precisions is not None: self._detp = [detsh(self.precisions[k]) for k in range(self.k)] def check(self): """ Checking the shape of sifferent matrices involved in the model """ GMM.check(self) if self.prior_means.shape[0] != self.k: raise ValueError("Incorrect dimension for self.prior_means") if self.prior_means.shape[1] != self.dim: raise ValueError("Incorrect dimension for self.prior_means") if self.prior_scale.shape[0] != self.k: raise ValueError("Incorrect dimension for self.prior_scale") if self.prior_scale.shape[1] != self.dim: raise ValueError("Incorrect dimension for self.prior_scale") if self.prior_dof.shape[0] != self.k: raise ValueError("Incorrect dimension for self.prior_dof") if self.prior_weights.shape[0] != self.k: raise ValueError("Incorrect dimension for self.prior_weights") def set_priors(self, prior_means, prior_weights, prior_scale, prior_dof, prior_shrinkage): """ Set the prior of the BGMM Parameters ---------- prior_means: array of shape (self.k,self.dim) prior_weights: array of shape (self.k) prior_scale: array of shape (self.k,self.dim,self.dim) prior_dof: array of shape (self.k) prior_shrinkage: array of shape (self.k) """ self.prior_means = prior_means self.prior_weights = prior_weights self.prior_scale = prior_scale self.prior_dof = prior_dof self.prior_shrinkage = prior_shrinkage # cache some pre-computations self._dets = [detsh(self.prior_scale[k]) for k in range(self.k)] self._inv_prior_scale = np.array([inv(self.prior_scale[k]) for k in range(self.k)]) self.check() def guess_priors(self, x, nocheck=0): """ Set the priors in order of having them weakly uninformative this is from Fraley and raftery; Journal of Classification 24:155-181 (2007) Parameters ---------- x, array of shape (nb_samples,self.dim) the data used in the estimation process nocheck: boolean, optional, if nocheck==True, check is skipped """ # a few parameters small = 0.01 elshape = (1, self.dim, self.dim) mx = np.reshape(x.mean(0), (1, self.dim)) dx = x - mx vx = np.dot(dx.T, dx) / x.shape[0] px = np.reshape(np.diag(1.0 / np.diag(vx)), elshape) px *= np.exp(2.0 / self.dim * math.log(self.k)) # set the priors self.prior_means = np.repeat(mx, self.k, 0) self.prior_weights = np.ones(self.k) self.prior_scale = np.repeat(px, self.k, 0) self.prior_dof = np.ones(self.k) * (self.dim + 2) self.prior_shrinkage = np.ones(self.k) * small # cache some pre-computations self._dets = np.ones(self.k) * detsh(px[0]) self._inv_prior_scale = np.repeat( np.reshape(inv(px[0]), elshape), self.k, 0) # check that everything is OK if nocheck == True: self.check() def initialize(self, x): """ initialize z using a k-means algorithm, then upate the parameters Parameters ---------- x: array of shape (nb_samples,self.dim) the data used in the estimation process """ if self.k > 1: cent, z, J = kmeans(x, self.k) else: z = np.zeros(x.shape[0]).astype(np.int) self.update(x, z) def pop(self, z): """ compute the population, i.e. the statistics of allocation Parameters ---------- z array of shape (nb_samples), type = np.int the allocation variable Returns ------- hist : array shape (self.k) count variable """ hist = np.array([np.sum(z == k) for k in range(self.k)]) return hist def update_weights(self, z): """ Given the allocation vector z, resample the weights parameter Parameters ---------- z array of shape (nb_samples), type = np.int the allocation variable """ pop = self.pop(z) weights = pop + self.prior_weights self.weights = np.random.dirichlet(weights) def update_means(self, x, z): """ Given the allocation vector z, and the corresponding data x, resample the mean Parameters ---------- x: array of shape (nb_samples,self.dim) the data used in the estimation process z: array of shape (nb_samples), type = np.int the corresponding classification """ pop = self.pop(z) self.shrinkage = self.prior_shrinkage + pop empmeans = np.zeros(np.shape(self.means)) prior_shrinkage = np.reshape(self.prior_shrinkage, (self.k, 1)) shrinkage = np.reshape(self.shrinkage, (self.k, 1)) for k in range(self.k): empmeans[k] = np.sum(x[z == k], 0) means = empmeans + self.prior_means * prior_shrinkage means /= shrinkage for k in range(self.k): self.means[k] = generate_normals(\ means[k], self.precisions[k] * self.shrinkage[k]) def update_precisions(self, x, z): """ Given the allocation vector z, and the corresponding data x, resample the precisions Parameters ---------- x array of shape (nb_samples,self.dim) the data used in the estimation process z array of shape (nb_samples), type = np.int the corresponding classification """ pop = self.pop(z) self.dof = self.prior_dof + pop + 1 rpop = pop + (pop == 0) self._detp = np.zeros(self.k) for k in range(self.k): # empirical means empmeans = np.sum(x[z == k], 0) / rpop[k] dm = np.reshape(empmeans - self.prior_means[k], (1, self.dim)) # scatter dx = np.reshape(x[z == k] - empmeans, (pop[k], self.dim)) scatter = np.dot(dx.T, dx) # bias addcov = np.dot(dm.T, dm) * self.prior_shrinkage[k] # covariance = prior term + scatter + bias covariance = self._inv_prior_scale[k] + scatter + addcov #precision scale = inv(covariance) self.precisions[k] = generate_Wishart(self.dof[k], scale) self._detp[k] = detsh(self.precisions[k]) def update(self, x, z): """ update function (draw a sample of the GMM parameters) Parameters ---------- x array of shape (nb_samples,self.dim) the data used in the estimation process z array of shape (nb_samples), type = np.int the corresponding classification """ self.update_weights(z) self.update_precisions(x, z) self.update_means(x, z) def sample_indicator(self, like): """ sample the indicator from the likelihood Parameters ---------- like: array of shape (nb_samples,self.k) component-wise likelihood Returns ------- z: array of shape(nb_samples): a draw of the membership variable """ tiny = 1 + 1.e-15 like = (like.T / like.sum(1)).T like /= tiny z = multinomial(like) return z def sample(self, x, niter=1, mem=0, verbose=0): """ sample the indicator and parameters Parameters ---------- x array of shape (nb_samples,self.dim) the data used in the estimation process niter=1 : the number of iterations to perform mem=0: if mem, the best values of the parameters are computed verbose=0: verbosity mode Returns ------- best_weights: array of shape (self.k) best_means: array of shape (self.k, self.dim) best_precisions: array of shape (self.k, self.dim, self.dim) possibleZ: array of shape (nb_samples, niter) the z that give the highest posterior to the data is returned first """ self.check_x(x) if mem: possibleZ = - np.ones((x.shape[0], niter)).astype(np.int) score = - np.inf bpz = - np.inf for i in range(niter): like = self.likelihood(x) sll = np.mean(np.log(np.sum(like, 1))) sll += np.log(self.probability_under_prior()) if sll > score: score = sll best_weights = self.weights.copy() best_means = self.means.copy() best_precisions = self.precisions.copy() z = self.sample_indicator(like) if mem: possibleZ[:, i] = z puz = sll # to save time self.update(x, z) if puz > bpz: ibz = i bpz = puz if mem: aux = possibleZ[:, 0].copy() possibleZ[:, 0] = possibleZ[:, ibz].copy() possibleZ[:, ibz] = aux return best_weights, best_means, best_precisions, possibleZ def sample_and_average(self, x, niter=1, verbose=0): """ sample the indicator and parameters the average values for weights,means, precisions are returned Parameters ---------- x = array of shape (nb_samples,dim) the data from which bic is computed niter=1: number of iterations Returns ------- weights: array of shape (self.k) means: array of shape (self.k,self.dim) precisions: array of shape (self.k,self.dim,self.dim) or (self.k, self.dim) these are the average parameters across samplings Notes ----- All this makes sense only if no label switching as occurred so this is wrong in general (asymptotically). fix: implement a permutation procedure for components identification """ aprec = np.zeros(np.shape(self.precisions)) aweights = np.zeros(np.shape(self.weights)) ameans = np.zeros(np.shape(self.means)) for i in range(niter): like = self.likelihood(x) z = self.sample_indicator(like) self.update(x, z) aprec += self.precisions aweights += self.weights ameans += self.means aprec /= niter ameans /= niter aweights /= niter return aweights, ameans, aprec def probability_under_prior(self): """ Compute the probability of the current parameters of self given the priors """ p0 = 1 p0 = dirichlet_eval(self.weights, self.prior_weights) for k in range(self.k): mp = np.reshape(self.precisions[k] * self.prior_shrinkage[k], (self.dim, self.dim)) p0 *= normal_eval(self.prior_means[k], mp, self.means[k]) p0 *= wishart_eval(self.prior_dof[k], self.prior_scale[k], self.precisions[k], dV=self._dets[k], dW=self._detp[k], piV=self._inv_prior_scale[k]) return p0 def conditional_posterior_proba(self, x, z, perm=None): """ Compute the probability of the current parameters of self given x and z Parameters ---------- x: array of shape (nb_samples, dim), the data from which bic is computed z: array of shape (nb_samples), type = np.int, the corresponding classification perm: array ok shape(nperm, self.k),typ=np.int, optional all permutation of z under which things will be recomputed By default, no permutation is performed """ pop = self.pop(z) rpop = (pop + (pop == 0)).astype(np.float) dof = self.prior_dof + pop + 1 shrinkage = self.prior_shrinkage + pop weights = pop + self.prior_weights # initialize the porsterior proba if perm is None: pp = dirichlet_eval(self.weights, weights) else: pp = np.array([dirichlet_eval(self.weights[pj], weights) for pj in perm]) for k in range(self.k): m1 = np.sum(x[z == k], 0) #0. Compute the empirical means empmeans = m1 / rpop[k] #1. the precisions dx = np.reshape(x[z == k] - empmeans, (pop[k], self.dim)) dm = np.reshape(empmeans - self.prior_means[k], (1, self.dim)) addcov = np.dot(dm.T, dm) * self.prior_shrinkage[k] covariance = self._inv_prior_scale[k] + np.dot(dx.T, dx) + addcov scale = inv(covariance) _dets = detsh(scale) #2. the means means = m1 + self.prior_means[k] * self.prior_shrinkage[k] means /= shrinkage[k] #4. update the posteriors if perm is None: pp *= wishart_eval( dof[k], scale, self.precisions[k], dV=_dets, dW=self._detp[k], piV=covariance) else: for j, pj in enumerate(perm): pp[j] *= wishart_eval( dof[k], scale, self.precisions[pj[k]], dV=_dets, dW=self._detp[pj[k]], piV=covariance) mp = scale * shrinkage[k] _dP = _dets * shrinkage[k] ** self.dim if perm is None: pp *= normal_eval(means, mp, self.means[k], dP=_dP) else: for j, pj in enumerate(perm): pp[j] *= normal_eval( means, mp, self.means[pj[k]], dP=_dP) return pp def evidence(self, x, z, nperm=0, verbose=0): """ See bayes_factor(self, x, z, nperm=0, verbose=0) """ return self.bayes_factor(self, x, z, nperm, verbose) def bayes_factor(self, x, z, nperm=0, verbose=0): """ Evaluate the Bayes Factor of the current model using Chib's method Parameters ---------- x: array of shape (nb_samples,dim) the data from which bic is computed z: array of shape (nb_samples), type = np.int the corresponding classification nperm=0: int the number of permutations to sample to model the label switching issue in the computation of the Bayes Factor By default, exhaustive permutations are used verbose=0: verbosity mode Returns ------- bf (float) the computed evidence (Bayes factor) Notes ----- See: Marginal Likelihood from the Gibbs Output Journal article by <NAME>; Journal of the American Statistical Association, Vol. 90, 1995 """ niter = z.shape[1] p = [] perm = generate_perm(self.k) if nperm > perm.shape[0]: nperm = perm.shape[0] for i in range(niter): if nperm == 0: temp = self.conditional_posterior_proba(x, z[:, i], perm) p.append(temp.mean()) else: drand = np.argsort(np.random.rand(perm.shape[0]))[:nperm] temp = self.conditional_posterior_proba(x, z[:, i], perm[drand]) p.append(temp.mean()) p = np.array(p) mp = np.mean(p) p0 = self.probability_under_prior() like = self.likelihood(x) bf = np.log(p0) + np.sum(np.log(np.sum(like, 1))) - np.log(mp) if verbose: print(np.log(p0), np.sum(np.log(np.sum(like, 1))), np.log(mp)) return bf # --------------------------------------------------------- # --- Variational Bayes inference ------------------------- # --------------------------------------------------------- class VBGMM(BGMM): """ Subclass of Bayesian GMMs (BGMM) that implements Variational Bayes estimation of the parameters """ def __init__(self, k=1, dim=1, means=None, precisions=None, weights=None, shrinkage=None, dof=None): BGMM.__init__(self, k, dim, means, precisions, weights, shrinkage, dof) self.scale = self.precisions.copy() def _Estep(self, x): """VB-E step Parameters ---------- x array of shape (nb_samples,dim) the data used in the estimation process Returns ------- like: array of shape(nb_samples,self.k), component-wise likelihood """ n = x.shape[0] like = np.zeros((n, self.k)) from scipy.special import psi spsi = psi(np.sum(self.weights)) for k in range(self.k): # compute the data-independent factor first w0 = psi(self.weights[k]) - spsi w0 += 0.5 * np.log(detsh(self.scale[k])) w0 -= self.dim * 0.5 / self.shrinkage[k] w0 += 0.5 * np.log(2) * self.dim for i in range(self.dim): w0 += 0.5 * psi((self.dof[k] - i) / 2) m = np.reshape(self.means[k], (1, self.dim)) b = self.dof[k] * self.scale[k] q = np.sum(np.dot(m - x, b) * (m - x), 1) w = w0 - q / 2 w -= 0.5 * np.log(2 * np.pi) * self.dim like[:, k] = np.exp(w) if like.min() < 0: raise ValueError('Likelihood cannot be negative') return like def evidence(self, x, like=None, verbose=0): """computation of evidence bound aka free energy Parameters ---------- x array of shape (nb_samples,dim) the data from which evidence is computed like=None: array of shape (nb_samples, self.k), optional component-wise likelihood If None, it is recomputed verbose=0: verbosity model Returns ------- ev (float) the computed evidence """ from scipy.special import psi from numpy.linalg import inv tiny = 1.e-15 if like is None: like = self._Estep(x) like = (like.T / np.maximum(like.sum(1), tiny)).T pop = like.sum(0)[:self.k] pop = np.reshape(pop, (self.k, 1)) spsi = psi(np.sum(self.weights)) empmeans = np.dot(like.T[:self.k], x) / np.maximum(pop, tiny) F = 0 # start with the average likelihood term for k in range(self.k): # compute the data-independent factor first Lav = psi(self.weights[k]) - spsi Lav -= np.sum(like[:, k] * np.log(
np.maximum(like[:, k], tiny)
numpy.maximum
""" A few helper functions for brownian-manifold """ import numpy as np def vector_cross(v,w): """ helper to compute the cross product of two vectors. Parameters ---------- v: array w: float, threshold parameter Returns ------- v_cross_w: array, the resulting cross product of v and w (v X w) """ v_cross_w = np.array([v[1]*w[2] - v[2]*w[1], v[2]*w[0] - v[0]*w[2], v[0]*w[1] - v[1]*w[0]]) return v_cross_w def arctan2(y,x): """ helper to compute the azimuth angle when converting from Cartesian coordinates to other coordinate systems Given an array of two coordinates (y,x) representing points on a plane, this function computes angles (in radians) mapped to range [0,2*pi) Parameters ---------- y: array x: array Returns ------- theta: array, the resulting angle: arctan(y/x) --inverse tangent mapped to range [0,2*pi) """ theta = np.asarray(np.arctan2(y,x)) for i in range(theta.size-1): if theta[i] < 0: theta[i]+=2*np.pi return theta def surface_sphere(radius): """ """ phi, theta = np.mgrid[0.0:np.pi:100j, 0.0:2.0*np.pi:100j] x_blank_sphere = radius*np.sin(phi)*np.cos(theta) y_blank_sphere = radius*np.sin(phi)*np.sin(theta) z_blank_sphere = radius*np.cos(phi) sphere_surface = np.array(([x_blank_sphere, y_blank_sphere, z_blank_sphere])) return sphere_surface def surface_cylinder(radius, height): """ """ p0 = np.array([0, 0, height]) #point at one end p1 = np.array([0, 0, -height]) #point at other end #vector in direction of axis v = p1 - p0 #find magnitude of vector mag = np.linalg.norm(v) #unit vector in direction of axis v = v / mag #make some vector not in the same direction as v not_v = np.array([1, 0, 0]) if (v == not_v).all(): not_v = np.array([0, 1, 0]) #make vector perpendicular to v n1 = np.cross(v, not_v) #normalize n1 n1 /= np.linalg.norm(n1) #make unit vector perpendicular to v and n1 n2 = np.cross(v, n1) #surface ranges over t from 0 to length of axis and 0 to 2*pi t =
np.linspace(0, mag, 2)
numpy.linspace
__author__ = "<NAME>" __copyright__ = "Copyright 2018-2020 <NAME>" __license__ = "BSD 3-clause" __version__ = "0.2.0" __email__ = "<EMAIL>" import pandas import os import numpy as np import pickle import argparse from glove_loader import SEPARATORS, STOPWORDS, REPLACINGS def save_embeddings(dataframe_path, vocabulary_path, embeddings_path, mode='texts', type='bow'): df = pandas.read_pickle(dataframe_path) vocabulary_list =
np.load(vocabulary_path)
numpy.load
from __future__ import print_function, division, absolute_import import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import numpy as np import six.moves as sm import imgaug as ia # TODO add tests for: # hooks is_activated # hooks is_propagating # hooks preprocess # hooks postprocess # HeatmapsOnImage.__init__() # HeatmapsOnImage.get_arr() # HeatmapsOnImage.to_uint8() # HeatmapsOnImage.from_0to1() # HeatmapsOnImage.copy() # HeatmapsOnImage.deepcopy() class TestHeatmapsOnImage_draw(unittest.TestCase): def test_basic_functionality(self): heatmaps_arr = np.float32([ [0.5, 0.0, 0.0, 0.5], [0.0, 1.0, 1.0, 0.0], [0.0, 1.0, 1.0, 0.0], [0.5, 0.0, 0.0, 0.5], ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(4, 4, 3)) heatmaps_drawn = heatmaps.draw()[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 1] v2 = heatmaps_drawn[0, 0] v3 = heatmaps_drawn[1, 1] v1_coords = [(0, 1), (0, 2), (1, 0), (1, 3), (2, 0), (2, 3), (3, 1), (3, 2)] v2_coords = [(0, 0), (0, 3), (3, 0), (3, 3)] v3_coords = [(1, 1), (1, 2), (2, 1), (2, 2)] for y, x in v1_coords: assert np.allclose(heatmaps_drawn[y, x], v1) for y, x in v2_coords: assert np.allclose(heatmaps_drawn[y, x], v2) for y, x in v3_coords: assert np.allclose(heatmaps_drawn[y, x], v3) def test_use_size_arg_with_different_shape_than_heatmap_arr_shape(self): # size differs from heatmap array size heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) heatmaps_drawn = heatmaps.draw(size=(4, 4))[0] assert heatmaps_drawn.shape == (4, 4, 3) v1 = heatmaps_drawn[0, 0] v2 = heatmaps_drawn[0, -1] for y in sm.xrange(4): for x in sm.xrange(2): assert np.allclose(heatmaps_drawn[y, x], v1) for y in sm.xrange(4): for x in sm.xrange(2, 4): assert np.allclose(heatmaps_drawn[y, x], v2) # TODO test other cmaps class TestHeatmapsOnImage_draw_on_image(unittest.TestCase): @property def heatmaps(self): heatmaps_arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) return ia.HeatmapsOnImage(heatmaps_arr, shape=(2, 2, 3)) def test_cmap_is_none(self): heatmaps = self.heatmaps image = np.uint8([ [0, 0, 0, 255], [0, 0, 0, 255], [0, 0, 0, 255], [0, 0, 0, 255] ]) image = np.tile(image[..., np.newaxis], (1, 1, 3)) heatmaps_drawn = heatmaps.draw_on_image(image, alpha=0.5, cmap=None)[0] assert heatmaps_drawn.shape == (4, 4, 3) assert
np.all(heatmaps_drawn[0:4, 0:2, :] == 0)
numpy.all
import importlib import numpy as np import torch import torch.nn.functional as F from skimage import measure from unet3d.losses import compute_per_channel_dice, expand_as_one_hot from unet3d.utils import get_logger, adapted_rand LOGGER = get_logger('EvalMetric') SUPPORTED_METRICS = ['dice', 'iou', 'boundary_ap', 'dt_ap', 'quantized_dt_ap', 'angle', 'inverse_angular'] class DiceCoefficient: """Computes Dice Coefficient. Generalized to multiple channels by computing per-channel Dice Score (as described in https://arxiv.org/pdf/1707.03237.pdf) and theTn simply taking the average. Input is expected to be probabilities instead of logits. This metric is mostly useful when channels contain the same semantic class (e.g. affinities computed with different offsets). DO NOT USE this metric when training with DiceLoss, otherwise the results will be biased towards the loss. """ def __init__(self, epsilon=1e-5, ignore_index=None, **kwargs): self.epsilon = epsilon self.ignore_index = ignore_index def __call__(self, input, target): """ :param input: 5D probability maps torch tensor (NxCxDxHxW) :param target: 4D or 5D ground truth torch tensor. 4D (NxDxHxW) tensor will be expanded to 5D as one-hot :return: Soft Dice Coefficient averaged over all channels/classes """ # Average across channels in order to get the final score return torch.mean(compute_per_channel_dice(input, target, epsilon=self.epsilon, ignore_index=self.ignore_index)) class MeanIoU: """ Computes IoU for each class separately and then averages over all classes. """ def __init__(self, skip_channels=(), ignore_index=None, **kwargs): """ :param skip_channels: list/tuple of channels to be ignored from the IoU computation :param ignore_index: id of the label to be ignored from IoU computation """ self.ignore_index = ignore_index self.skip_channels = skip_channels def __call__(self, input, target): """ :param input: 5D probability maps torch float tensor (NxCxDxHxW) :param target: 4D or 5D ground truth torch tensor. 4D (NxDxHxW) tensor will be expanded to 5D as one-hot :return: intersection over union averaged over all channels """ assert input.dim() == 5 n_classes = input.size()[1] if target.dim() == 4: target = expand_as_one_hot(target, C=n_classes, ignore_index=self.ignore_index) # batch dim must be 1 input = input[0] target = target[0] assert input.size() == target.size() binary_prediction = self._binarize_predictions(input, n_classes) if self.ignore_index is not None: # zero out ignore_index mask = target == self.ignore_index binary_prediction[mask] = 0 target[mask] = 0 # convert to uint8 just in case binary_prediction = binary_prediction.byte() target = target.byte() per_channel_iou = [] for c in range(n_classes): if c in self.skip_channels: continue per_channel_iou.append(self._jaccard_index(binary_prediction[c], target[c])) assert per_channel_iou, "All channels were ignored from the computation" return torch.mean(torch.tensor(per_channel_iou)) def _binarize_predictions(self, input, n_classes): """ Puts 1 for the class/channel with the highest probability and 0 in other channels. Returns byte tensor of the same size as the input tensor. """ if n_classes == 1: # for single channel input just threshold the probability map result = input > 0.5 return result.long() _, max_index = torch.max(input, dim=0, keepdim=True) return torch.zeros_like(input, dtype=torch.uint8).scatter_(0, max_index, 1) def _jaccard_index(self, prediction, target): """ Computes IoU for a given target and prediction tensors """ return torch.sum(prediction & target).float() / torch.sum(prediction | target).float() class AdaptedRandError: def __init__(self, all_stats=False, **kwargs): self.all_stats = all_stats def __call__(self, input, target): return adapted_rand(input, target, all_stats=self.all_stats) class BoundaryAdaptedRandError: def __init__(self, threshold=0.4, use_last_target=False, use_first_input=False, invert_pmaps=True, **kwargs): self.threshold = threshold self.use_last_target = use_last_target self.use_first_input = use_first_input self.invert_pmaps = invert_pmaps def __call__(self, input, target): if isinstance(input, torch.Tensor): assert input.dim() == 5 # convert to numpy array input = input[0].detach().cpu().numpy() # 4D if isinstance(target, torch.Tensor): if not self.use_last_target: assert target.dim() == 4 # convert to numpy array target = target[0].detach().cpu().numpy() # 3D else: # if use_last_target == True the target must be 5D (NxCxDxHxW) assert target.dim() == 5 target = target[0, -1].detach().cpu().numpy() # 3D if isinstance(input, np.ndarray): assert input.ndim == 4 if isinstance(target, np.ndarray): assert target.ndim == 3 if self.use_first_input: # compute only on the first input channel n_channels = 1 else: n_channels = input.shape[0] per_channel_arand = [] for c in range(n_channels): predictions = input[c] # threshold probability maps predictions = predictions > self.threshold if self.invert_pmaps: # for connected component analysis we need to treat boundary signal as background # assign 0-label to boundary mask predictions = np.logical_not(predictions) predictions = predictions.astype(np.uint8) # run connected components on the predicted mask; consider only 1-connectivity predicted = measure.label(predictions, background=0, connectivity=1) # make sure that target is 'int' type as well target = target.astype(np.int64) # compute AdaptedRand error arand = adapted_rand(predicted, target) per_channel_arand.append(arand) # get minimum AdaptedRand error across channels min_arand, c_index =
np.min(per_channel_arand)
numpy.min
#!/usr/bin/env python3 # -*- coding: utf-8 -*- r""" # .---. .----------- # / \ __ / ------ # / / \( )/ ----- (`-') _ _(`-') <-. (`-')_ # ////// '\/ ` --- ( OO).-/( (OO ).-> .-> \( OO) ) .-> # //// / // : : --- (,------. \ .'_ (`-')----. ,--./ ,--/ ,--.' ,-. # // / / / `\/ '-- | .---' '`'-..__)( OO).-. ' | \ | | (`-')'.' / # // //..\\ (| '--. | | ' |( _) | | | | . '| |)(OO \ / # ============UU====UU==== | .--' | | / : \| |)| | | |\ | | / /) # '//||\\` | `---. | '-' / ' '-' ' | | \ | `-/ /` # ''`` `------' `------' `-----' `--' `--' `--' # ###################################################################################### # # Author: edony - <EMAIL> # # twitter : @edonyzpc # # Last modified: 2015-12-08 21:09 # # Filename: prec2iter.py # # Description: All Rights Are Reserved # """ #import scipy as sp #import math as m #import matplotlib as mpl import matplotlib.pyplot as plt #from mpl_toolkits.mplot3d import Axes3D as Ax3 #from scipy import stats as st #from matplotlib import cm import numpy as np class PyColor(object): """ This class is for colored print in the python interpreter! "F3" call Addpy() function to add this class which is defined in the .vimrc for vim Editor.""" def __init__(self): self.self_doc = r""" STYLE: \033['display model';'foreground';'background'm DETAILS: FOREGROUND BACKGOUND COLOR --------------------------------------- 30 40 black 31 41 red 32 42 green 33 43 yellow 34 44 blue 35 45 purple 36 46 cyan 37 47 white DISPLAY MODEL DETAILS ------------------------- 0 default 1 highlight 4 underline 5 flicker 7 reverse 8 non-visiable e.g: \033[1;31;40m <!--1-highlight;31-foreground red;40-background black--> \033[0m <!--set all into default--> """ self.warningcolor = '\033[0;31m' self.tipcolor = '\033[0;32m' self.endcolor = '\033[0m' self._newcolor = '' @property def new(self): """ Customized Python Print Color. """ return self._newcolor @new.setter def new(self, color_str): """ New Color. """ self._newcolor = color_str def disable(self): """ Disable Color Print. """ self.warningcolor = '' self.endcolor = '' fig = plt.figure('Precision VS Iterations') ax = fig.add_subplot(111) ax1 = fig.add_subplot(111) ax2 = fig.add_subplot(111) x = np.arange(3000, 10000, 100) x1 = np.linspace(3000, 5000, 21) x2 = np.linspace(5100, 10000, 49) y1 = 1000000.0/(((x1-2500)/1.2)**3) + 0.04 #cone y1_2 = np.exp((x2)/(1000*np.exp(np.pi)))/30.0 - 0.0024 y2 = 200000.0/(x**2) + 0.03 #suntou y3 = 100000.0/(3*(x**2)) + 0.03#plane y1 = [i+np.random.normal(-0.02, 0.04)/150.0 for i in y1] y1_2 = [i+np.random.normal(-0.02, 0.04)/135.0 for i in y1_2] y2 = [i+np.random.normal(-0.02, 0.04)/100.0 for i in y2] y3 = [i+
np.random.normal(-0.02, 0.04)
numpy.random.normal
import argparse import os import sys import cv2 import numpy as np import tensorflow as tf # Root directory of the project ROOT_DIR = os.path.abspath("../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils import mrcnn.model as modellib import plates def get_corner_points(r): masks = r['masks'] if masks.shape[2] == 0: return None # Si considera la maschera più grande index = np.argmax(np.sum(np.sum(masks, axis=1), axis=0)) masks = np.moveaxis(masks, -1, 0) bigger_mask = masks[index] bigger_mask =
np.array(bigger_mask * 255)
numpy.array
import numpy as np from scipy.optimize import curve_fit from scipy.optimize import fsolve, brentq from scipy.interpolate import interp1d import scipy.integrate import sys import os import velociraptor_python_tools as vpt from scipy.spatial import cKDTree import h5py import re from constants import * from snapshot import * import copy import itertools class Unbuffered(object): def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() def writelines(self, datas): self.stream.writelines(datas) self.stream.flush() def __getattr__(self, attr): return getattr(self.stream, attr) sys.stdout = Unbuffered(sys.stdout) def getHaloCoord(catalog, halo, z=0, snapshottype='GADGET', physical=False): #Mpc/h coords = np.zeros(3) if (('Xcminpot' not in catalog.keys())):# or # (np.abs(catalog['Xcminpot'][halo])>0.1) or # (np.abs(catalog['Ycminpot'][halo])>0.1) or # (np.abs(catalog['Zcminpot'][halo])>0.1)): return getHaloCoordCOM(catalog, halo, z=z, snapshottype=snapshottype, physical=physical) if physical: coords[0] = (catalog['Xcminpot'][halo]) coords[1] = (catalog['Ycminpot'][halo]) coords[2] = (catalog['Zcminpot'][halo]) elif snapshottype in ['GADGET', 'Gadget', 'gadget']: coords[0] = (catalog['Xcminpot'][halo])*h*(1+z) coords[1] = (catalog['Ycminpot'][halo])*h*(1+z) coords[2] = (catalog['Zcminpot'][halo])*h*(1+z) elif snapshottype in ['SWIFT', 'Swift', 'swift']: coords[0] = (catalog['Xcminpot'][halo])*(1+z) coords[1] = (catalog['Ycminpot'][halo])*(1+z) coords[2] = (catalog['Zcminpot'][halo])*(1+z) else: print('Snapshottype not set') return coords def getHaloRadius(catalog, halo, z=0, rtype='R_200crit', snapshottype='GADGET', physical=False): #Mpc/h if physical: return catalog[rtype][halo] elif snapshottype in ['GADGET', 'Gadget', 'gadget']: return catalog[rtype][halo]*h*(1+z) elif snapshottype in ['SWIFT', 'Swift', 'swift']: return catalog[rtype][halo]*(1+z) def getHaloCoordCOM(catalog, halo, z=0, snapshottype='GADGET', physical=False): #Mpc/h coords = np.zeros(3) if physical: coords[0] = catalog['Xc'][halo] coords[1] = catalog['Yc'][halo] coords[2] = catalog['Zc'][halo] elif snapshottype in ['GADGET', 'Gadget', 'gadget']: coords[0] = catalog['Xc'][halo]*h*(1+z) coords[1] = catalog['Yc'][halo]*h*(1+z) coords[2] = catalog['Zc'][halo]*h*(1+z) elif snapshottype in ['SWIFT', 'Swift', 'swift']: coords[0] = catalog['Xc'][halo]*(1+z) coords[1] = catalog['Yc'][halo]*(1+z) coords[2] = catalog['Zc'][halo]*(1+z) return coords def readHaloFile(halofile): atime,tree,numhalos,halodata,cosmodata,unitdata = vpt.ReadUnifiedTreeandHaloCatalog(halofile, desiredfields=[], icombinedfile=1,iverbose=0) return atime,tree,numhalos,halodata,cosmodata,unitdata def findSurroundingHaloProperties(hp, halolist, d_snap, boxsize=32.): coords = hp['Coord'] halotree = cKDTree(coords, boxsize=boxsize) for k in halolist: if hp['R200'][k] == -1: continue halostring = hp['HaloIndex'][k] length_of_neighbours = len(np.array(halotree.query_ball_point([hp['Coord'][k]], r=hp['R200'][k]*5)[0])) distance, indices = halotree.query([hp['Coord'][k]], k=length_of_neighbours) indices = np.array(indices[0])[1:] distance = np.array(distance[0])[1:] hp['Neighbours'][halostring] = hp['HaloIndex'][indices] hp['Neighbour_distance'][halostring] = distance hp['Neighbour_Velrad'][halostring] = np.zeros(len(distance)) j=0 for i in indices: partindices = hp['Partindices'][hp['HaloIndex'][i]] hp['Neighbour_Velrad'][halostring][j] = np.sum(d_snap['File'].get_radialvelocity(hp['Coord'][k], indices=partindices))/len(partindices) j+=1 def fixSatelliteProblems(hp, TEMPORALHALOIDVAL=1000000000000, boxsize=32): welke = np.where(hp['Coord'][:, 0] >= 0)[0] halotree = cKDTree(hp['Coord'][welke], boxsize=boxsize) toolarge = welke[np.where(hp['R200'][welke] > hp['R200'][np.argmax(hp['n_part'])]*1.2)[0]] #print(i, toolarge) if len(toolarge) != 0: for tl in toolarge: hp['M200'][tl] = -1 hp['R200'][tl] = -1 hp['hostHaloIndex'][hp['HaloIndex'][tl]==hp['hostHaloIndex']] = -2 for halo in welke:#range(len(hp['M200'])): if hp['M200'][halo] == -1: continue buren = np.array(halotree.query_ball_point(hp['Coord'][halo], r = 2*hp['R200'][halo])) if len(buren) <= 1: continue buren = buren[hp['R200'][buren] != -1] if len(buren) == 0: continue i_largest = np.argmax(hp['n_part'][buren]) index_largest = buren[i_largest] buren = np.delete(buren,i_largest) coords = hp['Coord'][buren] - hp['Coord'][index_largest] coords = np.where(np.abs(coords) > 0.5*boxsize, coords - coords/np.abs(coords)*boxsize, coords) rad = np.sqrt(np.sum(coords*coords, axis=1)) burentemp = np.where(hp['R200'][buren]-rad+hp['R200'][index_largest] > 0)[0] if len(burentemp) == 0: continue buren = buren[burentemp] hp['hostHaloIndex'][buren] = index_largest hp['M200'][buren] = -1 hp['R200'][buren] = -1 def findSubHaloFraction(hp, catalog): if len(hp['hostHaloIndex']) < 10: hp['Msub'] = np.zeros(len(hp['M200'])) return 0 i_hostH = np.where(hp['hostHaloIndex'] > -1)[0] hp['Msub'] = np.zeros(len(hp['M200'])) for i in i_hostH: isattemp = np.where(hp['HaloID'][i] == catalog['ID'])[0] hp['Msub'][hp['hostHaloIndex'][i]] += catalog['Mass_FOF'][isattemp] def buildHaloDictionary(Hydro=None, partType=None, multiple=None): if ('DM' in partType) or ('H' in partType) or ('S' in partType): return buildHaloDictionary_nieuw(partType=partType, multiple=multiple) haloproperties = {} if partType is None: if Hydro is None: sys.exit("buildHaloDictionary should have an entry for either Hydro or partType") if partType is not None: if partType in [0, 2, 3, 4, 5]: sys.exit("Bestaat nog niet voor partType = %i" %partType) elif partType == 7: Hydro = True elif partType == 8: Hydro = True haloarray = (['HaloIndex', 'HaloID', 'Coord', 'R200', 'M200', 'redshift', 'snapshot', 'lambda', 'Density', 'Npart', 'Vmax', 'Rmax', 'AngularMomentum', 'Npart_profile', 'Radius', 'Velrad', 'Vel', 'Mass_profile', 'Partindices', 'n_part', 'MaxRadIndex', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'hostHaloIndex', 'MassTable']) if Hydro: haloarray.extend(['lambdaDM', 'lambdaH', 'DensityDM', 'DensityH', 'NpartH_profile', 'DMFraction', 'DMFraction_profile', 'HFraction', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH']) if partType == 8: haloarray.extend(['lambdaS', 'DensityS', 'NpartS_profile', 'SFraction', 'SFraction_profile', 'MassS_profile', 'VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']) for key in haloarray: if (multiple is not None) and (key=='Partindices'): haloproperties[key] = {} else: haloproperties[key] = np.zeros(0) return haloproperties def allocateSizes(key, lengte): if key in ['R200', 'M200', 'redshift', 'lambda', 'Vmax', 'Rmax', 'Vmax_part', 'Rmax_part', 'Vmax_interp', 'Rmax_interp', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'lambdaDM', 'lambdaH', 'DMFraction', 'HFraction', 'lambdaS', 'SFraction']: return np.ones(lengte[0])*-1 if key in ['HaloIndex', 'HaloID', 'snapshot', 'Npart', 'NpartDM', 'NpartH','NpartS', 'n_part', 'MaxRadIndex', 'hostHaloIndex', 'Tail', 'Head', 'RootHead', 'RootTail']: return np.ones(lengte[0]).astype(int)*-1 elif key in ['Coord', 'Vel']: return np.ones((lengte[0], 3))*-1 elif key in ['Density', 'AngularMomentum', 'Velrad', 'Mass_profile', 'DensityDM', 'DensityH', 'DMFraction_profile', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH', 'lambdaS', 'DensityS', 'SFraction_profile', 'MassS_profile','VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']: return np.zeros((lengte[0], lengte[1])) elif key in ['Npart_profile', 'NpartDM_profile', 'NpartH_profile', 'NpartS_profile']: return np.zeros((lengte[0], lengte[1])).astype(int) def buildHaloDictionary_nieuw(partType=None, multiple=None): haloproperties = {} if partType is None: sys.exit("buildHaloDictionary should have an entry for partType") haloarray = (['HaloIndex', 'HaloID', 'Coord', 'R200', 'M200', 'redshift', 'snapshot', 'lambda', 'Density', 'Npart', 'Vmax', 'Rmax', 'AngularMomentum', 'Npart_profile', 'Radius', 'Velrad', 'Vel', 'Mass_profile', 'Partindices', 'n_part', 'MaxRadIndex', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'hostHaloIndex', 'MassTable', 'Tail', 'Head', 'Vmax_part', 'Rmax_part', 'Vmax_interp', 'Rmax_interp', 'RootHead', 'RootTail']) if 'H' in partType: haloarray.extend(['lambdaDM', 'lambdaH', 'DensityDM', 'DensityH', 'NpartDM_profile','NpartH', 'NpartDM', 'NpartH_profile', 'DMFraction', 'DMFraction_profile', 'HFraction', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH']) if 'S' in partType: haloarray.extend(['lambdaS', 'DensityS', 'NpartS', 'NpartS_profile', 'SFraction', 'SFraction_profile', 'MassS_profile', 'VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']) for key in haloarray: if (multiple is not None) and (key=='Partindices'): haloproperties[key] = {} elif multiple is not None: haloproperties[key] = allocateSizes(key, multiple) else: haloproperties[key] = None return haloproperties def quantity_keys(): return (['HaloIndex', 'HaloID', 'Coord', 'R200', 'M200', 'redshift', 'snapshot', 'lambda', 'Npart', 'NpartDM', 'NpartH', 'NpartS', 'Vel', 'n_part', 'Tail', 'Head', 'RootHead', 'RootTail', 'Virial_ratio', 'COM_offset', 'Msub', 'CrossTime', 'hostHaloIndex', 'MassTable', 'lambdaDM', 'lambdaH', 'lambdaS', 'DMFraction', 'HFraction', 'SFraction', 'Vmax_part', 'Rmax_part', 'Vmax_interp', 'Rmax_interp']) def profile_keys(): return (['HaloIndex', 'HaloID', 'AngularMomentum', 'Npart_profile', 'Radius', 'Velrad', 'MassTable', 'Mass_profile', 'MaxRadIndex', 'Density', 'DensityDM', 'DensityH', 'NpartH_profile', 'DMFraction_profile', 'HFraction_profile', 'MassH_profile', 'MassDM_profile', 'VelradDM', 'VelradH', 'Temperature', 'AngularMomentumDM', 'AngularMomentumH', 'NpartS_profile', 'SFraction_profile', 'MassS_profile', 'VelradB', 'VelradS', 'AgeS', 'AngularMomentumS']) def convertVel_keys(): return (['HaloIndex', 'HaloID', 'Npart', 'NpartDM', 'NpartH', 'NpartS', 'n_part', 'Vel', 'Coord', 'R200', 'M200', 'Tail', 'Head', 'RootHead', 'RootTail', 'redshift', 'snapshot', 'hostHaloIndex']) def findHaloPropertiesInSnap_nieuw(catalog, d_snap, Nhalo=100, halolist=None, startHalo=0, d_radius=None, d_partType = None, d_runparams=None, partdata = None, TEMPORALHALOIDVAL=1000000000000, boxsize=None, debug=False): #Keeping all VELOCIraptor haloes, but saving 'wrong' haloes as HaloIndex = -1 if d_runparams['VELconvert'] == False: boxsize = d_snap['File'].boxsize partType = d_partType['particle_type'] print("Computing properties for %i haloes in snapshot %i" %(Nhalo, d_snap['snapshot'])) if 'profile' in d_radius.keys(): ylen = len(d_radius['profile']) else: ylen = 0 haloproperties = buildHaloDictionary(partType=partType, multiple=[Nhalo, ylen]) if len(catalog['Mass_200crit']) == 0: return haloproperties # if (d_runparams['VELconvert'] == False): # sortorder = np.argsort(catalog['Mass_tot'][:])[::-1] # sortorderinvert = np.argsort(sortorder) # for key in catalog.keys(): # catalog[key][:] = catalog[key][sortorder] # else: #sortorder = np.arange(len(catalog['Mass_tot'])).astype(int) # if partdata is not None: # for key in partdata.keys(): # partdata[key][:] = partdata[key][sortorder] if halolist is None: haloindices = np.arange(startHalo, startHalo+Nhalo).astype(int) use_existing_r200 = False else: haloindices = (halolist%TEMPORALHALOIDVAL - 1).astype(int) use_existing_r200 = False halo_i = -1 for halo in haloindices: halo_i += 1 #if halolist is not None: # print('Computing properties for halo %i'%halo) if halo%10000==0: print('Computing properties for halo %i-%i' %(halo, halo+10000)) if halo > len(catalog['Xc'])-1: print("Nhalo > N(velociraptor haloes)") break halopropertiestemp = {} coords = getHaloCoord(catalog, halo_i, z=d_snap['redshift'], snapshottype=d_runparams['SnapshotType'], physical=d_runparams['Physical']) coords = coords%boxsize radhier = getHaloRadius(catalog, halo_i, z=d_snap['redshift'], rtype = d_radius['Rchoice'], snapshottype=d_runparams['SnapshotType'], physical=d_runparams['Physical']) satellite = False #Trusting VELOCIraptor not to falsely identify haloes as satellites if (halolist is None) and (catalog['hostHaloID'][halo_i] != -1): satellite = True hostHaloIDtemp = np.where(catalog['hostHaloID'][halo_i]==catalog['ID'])[0] if len(hostHaloIDtemp) == 0: hostHaloIDtemp = -2 else: hostHaloIDtemp = hostHaloIDtemp[0] else: hostHaloIDtemp = -1 #All happens here if debug: start_time = time.time() print('M200: ', catalog['Mass_200crit'][halo_i]) print('R200: ', catalog['R_200crit'][halo_i]) print('ID: ', catalog['ID'][halo_i]) if d_runparams['VELconvert']: if d_runparams['ParticleDataType'] != 'None': halopropertiestemp = copyVELOCIraptor(catalog, halo_i, coords, redshift = d_snap['redshift'], partType=partType, particledata=partdata['Particle_Types'], d_partType=d_partType) else: halopropertiestemp = copyVELOCIraptor(catalog, halo_i, coords, redshift = d_snap['redshift'], partType=partType) halopropertiestemp['hostHaloIndex'] = hostHaloIDtemp elif d_runparams['ParticleDataType'] == 'None': #print("Halo", halo) halopropertiestemp = findHaloProperties(d_snap, halo_i, coords, d_radius, partType=partType, satellite=satellite, rad = radhier, partlim=0, use_existing_r200=use_existing_r200, profiles=d_runparams['Profiles'], quantities=d_runparams['Quantities'], debug=debug) else: #print("Halo", halo,len(partdata['Particle_IDs'][sortorder[halo]])) halopropertiestemp = findHaloProperties(d_snap, halo_i, coords, d_radius, partType=partType, satellite=satellite, rad = radhier, partlim=0, use_existing_r200=use_existing_r200, profiles=d_runparams['Profiles'], quantities=d_runparams['Quantities'], debug=debug, particledata=partdata['Particle_IDs'][halo_i]) if halopropertiestemp is None: if debug: print("De halo is leeg???") continue if debug: print("--- %s seconds ---" % (time.time() - start_time), 'halopropertiestemp computed') start_time = time.time() if d_runparams['TreeData']: halopropertiestemp['Tail'] = catalog['Tail'][halo_i]-1 halopropertiestemp['Head'] = catalog['Head'][halo_i]-1 halopropertiestemp['RootTail'] = catalog['RootTail'][halo_i]-1 halopropertiestemp['RootHead'] = catalog['RootHead'][halo_i]-1 if d_runparams['VELconvert'] == False: if halopropertiestemp is None: halopropertiestemp = buildHaloDictionary(partType=partType) halopropertiestemp['HaloID'] = catalog['ID'][halo_i] halopropertiestemp['HaloIndex'] = -1 halopropertiestemp['COM_offset'] = -1 halopropertiestemp['CrossTime'] = -1 halopropertiestemp['Coord'] = coords else: if satellite: halopropertiestemp['Npart'] = catalog['npart'][halo_i] halopropertiestemp['n_part'] = catalog['npart'][halo_i] halopropertiestemp['HaloID'] = catalog['ID'][halo_i] halopropertiestemp['hostHaloIndex'] = hostHaloIDtemp if not satellite: afstandtemp = coords - getHaloCoordCOM(catalog, halo_i, z=d_snap['redshift'], snapshottype=d_runparams['SnapshotType'], physical=d_runparams['Physical']) rhier = np.where(np.abs(afstandtemp)>0.5*boxsize, np.abs(afstandtemp) - boxsize, afstandtemp) halopropertiestemp['COM_offset'] = np.sqrt(np.sum(rhier**2))/halopropertiestemp['R200'] halopropertiestemp['CrossTime'] = (2.*halopropertiestemp['R200']*Mpc_to_km / np.sqrt(G_Mpc_km2_Msi_si2*halopropertiestemp['M200']*1e10/ halopropertiestemp['R200']))*s_to_yr/1.e6 else: halopropertiestemp['COM_offset'] = -1 halopropertiestemp['CrossTime'] = -1 for key in haloproperties.keys(): doorgaan = False if (d_runparams['Profiles'] == True) and (key in profile_keys()): doorgaan = True if (d_runparams['Quantities'] == True) and (key in quantity_keys()): doorgaan = True if (d_runparams['VELconvert'] == True) and (key in convertVel_keys()): doorgaan = True if doorgaan == False: continue if key in ['Radius', 'MassTable', 'snapshot', 'redshift']: continue elif key == 'Neighbours' or key == 'Neighbour_distance' or key == 'Neighbour_Velrad': continue if (halopropertiestemp['HaloIndex'] == -1) and (key != 'HaloID'): continue if halopropertiestemp[key] is None: continue elif key=='Partindices': haloproperties[key][halopropertiestemp['HaloIndex']] = halopropertiestemp[key][:] else: haloproperties[key][halo] = halopropertiestemp[key] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'haloproperties updated') if 'profile' in d_radius.keys(): haloproperties['Radius'] = d_radius['profile'] haloproperties['redshift'] = np.array([d_snap['redshift']]) haloproperties['snapshot'] = np.array([d_snap['snapshot']]) j = 0 if d_runparams['VELconvert'] == False: haloproperties['MassTable'] = d_snap['File'].mass for i in d_snap['File'].readParticles: if haloproperties['MassTable'][i] == 0 and d_snap['File'].npart[i] != 0: waar = np.where(d_snap['File'].partTypeArray == i)[0][0] haloproperties['MassTable'][i] = d_snap['File'].masses[waar] j += 1 if d_runparams['TreeData']: haloproperties['Tail'] = haloproperties['Tail'].astype(int) haloproperties['Head'] = haloproperties['Head'].astype(int) haloproperties['RootTail'] = haloproperties['RootTail'].astype(int) haloproperties['RootHead'] = haloproperties['RootHead'].astype(int) if (len(haloproperties['Coord']) > 0) and (halolist is None): if d_runparams['Quantities'] or d_runparams['VELconvert']: print("Reassigning satellite haloes") fixSatelliteProblems(haloproperties, boxsize=boxsize) return haloproperties def findHaloPropertiesInSnap(catalog, snappath, snapshot, partType=8, Nhalo=100, startHalo=0, softeningLength=0.002, Radius=1., partlim=200, sortorder=None, boxsize=32, TEMPORALHALOIDVAL=1000000000000, particledata=None, mass=False): print("Computing properties for %i haloes in snapshot %i" %(Nhalo, snapshot)) haloproperties = buildHaloDictionary(partType=partType, multiple=True) if len(catalog['Mass_tot']) == 0: return haloproperties if sortorder is None: sortorder = np.argsort(catalog['Mass_tot'][:])[::-1] sortorderinvert = np.argsort(sortorder) else: sortorderinvert = np.argsort(sortorder) d_snap = {} d_snap['snapshot'] = snapshot limiet = 0 d_snap['File'] = Snapshot(snappath, snapshot, useIDs=False, partType=partType, softeningLength=softeningLength) d_snap['File'].makeCoordTree() for key in catalog.keys(): catalog[key][:] = catalog[key][sortorder] for halo in range(startHalo, startHalo+Nhalo): #start_time = time.time() #print(halo) #print(catalog['npart'][halo]) if halo%1000==0: print('Computing properties for halo %i-%i' %(halo, halo+1000)) if halo > len(catalog['Xc'])-1: print("Halo limit reached: nhalo = %i, hlim = %i" %(halo, limiet)) print("Coordinates: ", coords) break if limiet > 500: #Only computing sats if catalog['hostHaloID'][halo] == -1: continue halopropertiestemp = {} coords = getHaloCoord(catalog, halo, z=d_snap['File'].redshift) coords = coords%boxsize radhier = getHaloRadius(catalog, halo, z=d_snap['File'].redshift) satellite = False if (catalog['npart'][halo] < 20) or (catalog['Mass_200crit'][halo]*h == 0): startHalo += 1 # haloproperties['TreeBool'][halo] = 0 continue #Checking for dissapeared host haloes if (catalog['hostHaloID'][halo] != -1) and len(haloproperties['HaloID'])>1: haloindextemp = np.where((haloproperties['HaloID']%TEMPORALHALOIDVAL)==catalog['hostHaloID'][halo]%TEMPORALHALOIDVAL)[0] if len(haloindextemp) == 0: hostHaloIDtemp = -1 if catalog['npart'][halo] < partlim/2.: hostHaloIDtemp = -2 satellite = True else: afstandtemp = (haloproperties['Coord'][haloindextemp[0]]-coords) afstandtemp = np.where(np.abs(afstandtemp)>0.5*boxsize, np.abs(afstandtemp) - boxsize, afstandtemp) afstandtemp = (np.sum(afstandtemp*afstandtemp))**0.5 if afstandtemp < haloproperties['R200'][haloindextemp[0]]: # and catalog['npart'][halo] > 50: #print(afstandtemp, haloproperties['R200'][haloindextemp[0]], haloproperties['Coord'][haloindextemp[0]], coords) hostHaloIDtemp = haloindextemp[0] satellite = True else: #print(afstandtemp, haloproperties['R200'][haloindextemp[0]], haloproperties['Coord'][haloindextemp[0]], coords) hostHaloIDtemp = -1 else: hostHaloIDtemp = -1 #All happens here halopropertiestemp = findHaloProperties(d_snap, halo, coords, Radius, partType=partType, rad=radhier, mass=mass, satellite=satellite, partlim=partlim) #print("--- %s seconds ---" % (time.time() - start_time), 'halopropertiestemp computed') if halopropertiestemp is None: startHalo += 1 limiet += 1 # haloproperties['TreeBool'][halo] = 0 continue if satellite == False and halopropertiestemp['Npart'] < partlim: startHalo += 1 limiet += 1 # haloproperties['TreeBool'][halo] = 0 continue limiet = 0 if satellite: halopropertiestemp['Npart'] = catalog['npart'][halo] #start_time = time.time() halopropertiestemp['n_part'] = catalog['npart'][halo] halopropertiestemp['HaloID'] = catalog['ID'][halo] halopropertiestemp['hostHaloIndex'] = hostHaloIDtemp if not satellite: afstandtemp = coords - getHaloCoord(catalog, halo, z=d_snap['File'].redshift) rhier = np.where(np.abs(afstandtemp)>0.5*boxsize, np.abs(afstandtemp) - boxsize, afstandtemp) halopropertiestemp['COM_offset'] = np.sqrt(np.sum(rhier**2))/halopropertiestemp['R200'] halopropertiestemp['CrossTime'] = (2.*halopropertiestemp['R200']*Mpc_to_km / np.sqrt(G_Mpc_km2_Msi_si2*halopropertiestemp['M200']*1e10/halopropertiestemp['R200']))*s_to_yr/1.e6 else: halopropertiestemp['COM_offset'] = -1 halopropertiestemp['CrossTime'] = -1 for key in haloproperties.keys(): if key in ['TreeBool', 'Tail', 'Head', 'Radius', 'MassTable', 'snapshot', 'redshift']: continue elif key == 'Neighbours' or key == 'Neighbour_distance' or key == 'Neighbour_Velrad': continue elif key=='Partindices': haloproperties[key][halopropertiestemp['HaloIndex']] = halopropertiestemp[key][:] elif halo == startHalo: haloproperties[key] = [halopropertiestemp[key]] else: haloproperties[key] = np.concatenate((haloproperties[key], [halopropertiestemp[key]])) #print("--- %s seconds ---" % (time.time() - start_time), 'haloproperties updated') haloproperties['Radius'] = Radius haloproperties['redshift'] = np.array([d_snap['File'].redshift]) haloproperties['snapshot'] = np.array([d_snap['snapshot']]) haloproperties['MassTable'] = d_snap['File'].mass j = 0 for i in d_snap['File'].readParticles: if haloproperties['MassTable'][i] == 0 and d_snap['File'].npart[i] != 0: waar = np.where(d_snap['File'].partTypeArray == i)[0][0] haloproperties['MassTable'][i] = d_snap['File'].masses[waar] j += 1 findSubHaloFraction(haloproperties, catalog) print("Reassigning satellite haloes") if len(haloproperties['Coord']) > 0: if 'DMFraction' in haloproperties.keys(): Hydro = True else: Hydro = False fixSatelliteProblems(haloproperties, Hydro = Hydro) #print("Computing subhalo fraction") print(haloproperties.keys()) return haloproperties def findHaloProperties(d_snap, halo, Coord, fixedRadius, r200fac = 8, partType=None, rad=None, satellite=False, partlim=200, profiles=False, quantities=True, particledata=None, debug=False, use_existing_r200=False): haloproperties = buildHaloDictionary(partType=partType) if isinstance(fixedRadius, dict): if 'profile' in fixedRadius.keys(): radprofile = fixedRadius['profile'] radfrac = fixedRadius['Rfrac'] else: radfrac = fixedRadius['Rfrac'] else: radprofile = fixedRadius radfrac = r200fac snap = d_snap['File'] haloproperties['HaloIndex'] = halo haloproperties['HaloID'] = halo#catalog['ID'][halo] snap.debug = debug coord = Coord if debug: start_time = time.time() if rad is None: rad = fixedRadius[-1] snap.get_temphalo(coord, rad, r200fac=radfrac, fixedRadius=radprofile, satellite=satellite, particledata=particledata, partlim=partlim, initialise_profiles=profiles, use_existing_r200=use_existing_r200) if len(snap.temphalo['indices']) < partlim or len(snap.temphalo['indices'])<=1: if debug: print('Halo has %i particles, and is thus too small' %len(snap.temphalo['indices'])) return None if debug: print("--- %s seconds ---" % (time.time() - start_time), 'halo initiated', snap.temphalo['R200']) if profiles: if debug: start_time = time.time() snap.get_temphalo_profiles() snap.get_specific_angular_momentum_radius(coord, radius=snap.temphalo['Radius']) haloproperties['AngularMomentum'] = snap.temphalo['AngularMomentum'] haloproperties['Density'] = snap.temphalo['profile_density'] haloproperties['Velrad'] = snap.temphalo['profile_vrad'] haloproperties['Npart_profile'] = snap.temphalo['profile_npart'] haloproperties['Mass_profile'] = snap.temphalo['profile_mass'] haloproperties['MaxRadIndex'] = snap.temphalo['MaxRadIndex'] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'halo profiles calculated') haloproperties['Coord'] = snap.temphalo['Coord'] #Virial radius and mass R200 = snap.temphalo['R200'] haloproperties['M200']= snap.temphalo['M200'] haloproperties['R200'] = R200 #Assigning halo properties if quantities: if debug: start_time = time.time() if (satellite == False) or (particledata is not None): snap.get_spin_parameter() haloproperties['lambda'] = snap.temphalo['lambda'] haloproperties['lambda'] = snap.temphalo['lambda'] snap.get_Vmax_Rmax() haloproperties['Vmax_part'] = snap.temphalo['Vmax_part'] haloproperties['Rmax_part'] = snap.temphalo['Rmax_part'] haloproperties['Vmax_interp'] = snap.temphalo['Vmax_interp'] haloproperties['Rmax_interp'] = snap.temphalo['Rmax_interp'] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'lambda calculated') haloproperties['Vel'] = snap.temphalo['Vel'] haloproperties['Partindices'] = snap.temphalo['indices'] haloproperties['Npart'] = len(haloproperties['Partindices']) # if satellite == False: # haloproperties['Virial_ratio'] = snap.get_virial_ratio(1000) # else: # haloproperties['Virial_ratio'] = -1 if debug: start_time = time.time() if len(snap.readParticles) > 1: nietnulhier=np.where(haloproperties['Mass_profile']!=0) for i_pT in range(len(snap.readParticles)): if quantities: if (satellite == False) or (particledata is not None): haloproperties['lambda'+snap.namePrefix[i_pT]] = snap.temphalo['lambda'+snap.namePrefix[i_pT]] else: haloproperties['lambda'+snap.namePrefix[i_pT]] = -1 haloproperties['Npart'+snap.namePrefix[i_pT]] = snap.temphalo['Npart'+snap.namePrefix[i_pT]] haloproperties[snap.namePrefix[i_pT]+'Fraction'] = snap.temphalo[snap.namePrefix[i_pT]+'Fraction'] if profiles: haloproperties['AngularMomentum'+snap.namePrefix[i_pT]] = snap.temphalo['AngularMomentum'+snap.namePrefix[i_pT]] haloproperties['Density'+snap.namePrefix[i_pT]] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'density'] haloproperties['Npart'+snap.namePrefix[i_pT]+'_profile'] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'npart'] haloproperties['Velrad'+snap.namePrefix[i_pT]] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'vrad'] haloproperties['Mass'+snap.namePrefix[i_pT]+'_profile'] = snap.temphalo['profile_'+snap.namePrefix[i_pT]+'mass'] if snap.readParticles[i_pT] == 0: haloproperties['Temperature'] = snap.temphalo['profile_temperature'] elif snap.readParticles[i_pT] == 5: haloproperties['AgeS'] = snap.temphalo['profile_Sage'] haloproperties[snap.namePrefix[i_pT]+'Fraction_profile'] = np.zeros_like(haloproperties['Mass_profile']) haloproperties[snap.namePrefix[i_pT]+'Fraction_profile'][nietnulhier] = haloproperties['Mass'+snap.namePrefix[i_pT]+'_profile'][nietnulhier]/haloproperties['Mass_profile'][nietnulhier] if debug: print("--- %s seconds ---" % (time.time() - start_time), 'particle types done') if particledata is not None: if debug: start_time = time.time() snap.delete_used_indices(snap.temphalo['indices']) if debug: print("--- %s seconds ---" % (time.time() - start_time), 'Deleted particles') return haloproperties def copyVELOCIraptor(catalog, halo, Coord, redshift, d_partType=None, partType=None, particledata=None): c = constant(redshift=redshift) c.change_constants(redshift) comoving_rhocrit200 = deltaVir*c.rhocrit_Ms_Mpci3*h/(h*(1+redshift))**3 haloproperties = buildHaloDictionary(partType=partType) haloproperties['HaloIndex'] = halo haloproperties['HaloID'] = catalog['ID'][halo] haloproperties['n_part'] = catalog['npart'][halo] haloproperties['Coord'] = Coord #Virial radius and mass haloproperties['M200'] = catalog['Mass_200crit'][halo]*h haloproperties['R200'] = (haloproperties['M200']*1.e10/(comoving_rhocrit200 * 4./3. * np.pi))**(1./3.) #Assigning halo properties haloproperties['Vel'] = np.array([catalog['VXc'][halo], catalog['VYc'][halo], catalog['VZc'][halo]])*(1+redshift) haloproperties['Npart'] = catalog['npart'][halo] if (particledata is not None) and (len(d_partType['particle_type']) > 1): allpart = len(particledata[halo]) for i_pT in range(len(d_partType['particle_type'])): if allpart == 0: haloproperties['Npart'+d_partType['particle_type'][i_pT]] = 0 else: haloproperties['Npart'+d_partType['particle_type'][i_pT]] = len(np.where(particledata[halo] == d_partType['particle_number'][i_pT])[0]) #print(d_partType['particle_type'][i_pT], d_partType['particle_number'][i_pT], haloproperties['Npart'+d_partType['particle_type'][i_pT]]) return haloproperties def everythingOutside(haloproperties, d_snap): allpin = np.zeros(0) iets=0 allpinBool = np.array([True]*np.sum(d_snap['File'].npart)) for i in haloproperties['HaloIndex']: allpinBool[haloproperties['Partindices'][i]] = False outsideIndices = np.where(allpinBool)[0] insideIndices = np.where(allpinBool==False)[0] outsideIndicesDM = outsideIndices[np.where(outsideIndices < d_snap['File'].npart[0])[0]] outsideIndicesH = outsideIndices[np.where(outsideIndices >= d_snap['File'].npart[0])[0]] insideIndicesDM = insideIndices[np.where(insideIndices < d_snap['File'].npart[0])[0]] insideIndicesH = insideIndices[np.where(insideIndices >= d_snap['File'].npart[0])[0]] dmmass = d_snap['File'].get_masses()[0] hmass = d_snap['File'].get_masses()[-1] haloproperties['Outside_fdm_temp_DMpart_Hpart_dmmass_hmass'] = np.array([len(outsideIndicesDM)*dmmass/(len(outsideIndicesDM)*dmmass+len(outsideIndicesH)*hmass), np.sum(d_snap['File'].get_temperature()[outsideIndicesH])/len(outsideIndicesH), len(outsideIndicesDM), len(outsideIndicesH), dmmass, hmass]) haloproperties['Inside_fdm_temp_DMpart_Hpart_dmmass_hmass'] = np.array([len(insideIndicesDM)*dmmass/(len(insideIndicesDM)*dmmass+len(insideIndicesH)*hmass), np.sum(d_snap['File'].get_temperature()[insideIndicesH])/len(insideIndicesH), len(insideIndicesDM), len(insideIndicesH), dmmass, hmass]) def writeDataToHDF5quantities(path, name, haloproperties, overwrite=False, savePartData=False, convertVel=False, copyVel=False): existing = False if overwrite==False and os.path.isfile(path + name): haloprop = h5py.File(path + name, 'r+') existing = True HaloIndices = haloprop['HaloIndex'][:] overlap = np.where(np.in1d(haloproperties['HaloIndex'], HaloIndices))[0] nonoverlap = np.delete(haloproperties['HaloIndex'][:], overlap) nonoverlapindex = np.delete(np.arange(0, len(haloproperties['HaloIndex']), 1).astype(int), overlap) nonoverlaplist = ['haloIndex_%05d' %i for i in nonoverlap] else: haloprop = h5py.File(path+name, 'w') for key in haloproperties.keys(): if (copyVel==False) and (convertVel==False) and (key not in quantity_keys()): continue if (copyVel==False) and convertVel and (key not in convertVel_keys()): continue if isinstance(haloproperties[key], dict): if not savePartData: if key == 'DMpartIDs' or key == 'HpartIDs' or key=='Partindices': continue if existing: temp = haloprop[key] else: temp = haloprop.create_group(key) for key2 in haloproperties[key].keys(): if haloproperties[key][key2] is None: print(key) continue key2string = 'haloIndex_%05d' %key2 if existing: if len(np.where(np.in1d(key2string, nonoverlaplist))[0]) > 0: temp.create_dataset(key2string, data = np.array(haloproperties[key][key2])) else: temp.create_dataset(key2string, data = np.array(haloproperties[key][key2])) else: if haloproperties[key] is None: print(key) continue if existing: if key == 'Radius' or key == 'MassTable' or key == 'snapshot' or key == 'redshift': continue data = haloprop[key][:] for i in nonoverlapindex: data = np.concatenate((data, [haloproperties[key][i]])) del haloprop[key] haloprop.create_dataset(key, data = data) else: haloprop.create_dataset(key, data = np.array(haloproperties[key])) haloprop.close() def writeDataToHDF5profiles(path, name, haloproperties, overwrite=False, savePartData=False): existing = False if overwrite==False and os.path.isfile(path + name): haloprop = h5py.File(path + name, 'r+') existing = True HaloIndices = haloprop['HaloIndex'][:] overlap = np.where(np.in1d(haloproperties['HaloIndex'], HaloIndices))[0] nonoverlap = np.delete(haloproperties['HaloIndex'][:], overlap) nonoverlapindex = np.delete(np.arange(0, len(haloproperties['HaloIndex']), 1).astype(int), overlap) nonoverlaplist = ['haloIndex_%05d' %i for i in nonoverlap] else: haloprop = h5py.File(path+name, 'w') for key in haloproperties.keys(): if key not in profile_keys(): continue if isinstance(haloproperties[key], dict): if not savePartData: if key == 'DMpartIDs' or key == 'HpartIDs' or key=='Partindices': continue if existing: temp = haloprop[key] else: temp = haloprop.create_group(key) for key2 in haloproperties[key].keys(): if haloproperties[key][key2] is None: print(key) continue key2string = 'haloIndex_%05d' %key2 if existing: if len(np.where(np.in1d(key2string, nonoverlaplist))[0]) > 0: temp.create_dataset(key2string, data = np.array(haloproperties[key][key2])) else: temp.create_dataset(key2string, data = np.array(haloproperties[key][key2])) else: if haloproperties[key] is None: print(key) continue if existing: if key == 'Radius' or key == 'MassTable' or key == 'snapshot' or key == 'redshift': continue data = haloprop[key][:] for i in nonoverlapindex: data = np.concatenate((data, [haloproperties[key][i]])) del haloprop[key] haloprop.create_dataset(key, data = data) else: haloprop.create_dataset(key, data = np.array(haloproperties[key])) haloprop.close() def writeDataToHDF5(path, name, haloproperties, overwrite=False, savePartData=False): existing = False if overwrite==False and os.path.isfile(path + name): haloprop = h5py.File(path +name, 'r+') existing = True HaloIndices = haloprop['HaloIndex'][:] overlap = np.where(np.in1d(haloproperties['HaloIndex'], HaloIndices))[0] nonoverlap = np.delete(haloproperties['HaloIndex'][:], overlap) nonoverlapindex = np.delete(np.arange(0, len(haloproperties['HaloIndex']), 1).astype(int), overlap) nonoverlaplist = ['haloIndex_%05d' %i for i in nonoverlap] else: haloprop = h5py.File(path+name, 'w') for key in haloproperties.keys(): if isinstance(haloproperties[key], dict): if not savePartData: if key == 'DMpartIDs' or key == 'HpartIDs' or key=='Partindices': continue if existing: temp = haloprop[key] else: temp = haloprop.create_group(key) for key2 in haloproperties[key].keys(): if haloproperties[key][key2] is None: print(key) continue key2string = 'haloIndex_%05d' %key2 if existing: if len(np.where(np.in1d(key2string, nonoverlaplist))[0]) > 0: temp.create_dataset(key2string, data = np.array(haloproperties[key][key2])) else: temp.create_dataset(key2string, data = np.array(haloproperties[key][key2])) else: if haloproperties[key] is None: print(key) continue if existing: if key == 'Radius' or key == 'MassTable' or key == 'snapshot' or key == 'redshift': continue data = haloprop[key][:] for i in nonoverlapindex: data = np.concatenate((data, [haloproperties[key][i]])) del haloprop[key] haloprop.create_dataset(key, data = data) else: haloprop.create_dataset(key, data = np.array(haloproperties[key])) haloprop.close() def readHDF5Data(path, name, Hydro=True): existing = False if os.path.isfile(path + name): haloprop = h5py.File(path +name, 'r') else: sys.exit('Error: file '+path+name+' not found.') haloproperties = buildHaloDictionary(Hydro=Hydro, multiple=True) for key in haloprop.id: if isinstance(haloproperties[key.decode('utf-8')], dict): if isinstance(haloprop[key].id, h5py.h5d.DatasetID): continue temp = haloprop[key] for key2 in haloprop[key].id: haloindex = [int(s) for s in re.findall(r'\d+', key2.decode('utf-8'))][0] haloproperties[key.decode('utf-8')][haloindex] = temp[key2][:] else: haloproperties[key.decode('utf-8')] = haloprop[key][:] haloprop.close() return haloproperties def readHDF5DataSets(path, name, datasets, Hydro=True): existing = False if os.path.isfile(path + name): haloprop = h5py.File(path +name, 'r') else: sys.exit('Error: file '+path+name+' not found.') haloproperties = buildHaloDictionary(Hydro=Hydro, multiple=True) for key in haloprop.id: if key.decode('utf-8') in datasets: if isinstance(haloproperties[key.decode('utf-8')], dict): if isinstance(haloprop[key].id, h5py.h5d.DatasetID): continue temp = haloprop[key] for key2 in haloprop[key].id: haloindex = [int(s) for s in re.findall(r'\d+', key2.decode('utf-8'))][0] haloproperties[key.decode('utf-8')][haloindex] = temp[key2][:] else: haloproperties[key.decode('utf-8')] = haloprop[key][:] haloprop.close() return haloproperties def getRidOfBadHaloes(hp): c = constant() c.change_constants(hp['redshift']) wrong = np.where(4./3*np.pi*hp['R200']**3*200*c.rhocrit_Ms_Mpci3/(h**2*(1+hp['redshift'])**3) > 1.2*hp['M200']*1e10)[0] wrong = np.append(wrong, np.where(4./3*np.pi*hp['R200']**3*200*c.rhocrit_Ms_Mpci3/(h**2*(1+hp['redshift'])**3) < 0.8*hp['M200']*1e10)[0]) wronghi = hp['HaloIndex'][wrong] print(len(wronghi)) for i in hp.keys(): if i == 'Inside_fdm_temp_DMpart_Hpart_dmmass_hmass' or i == 'Outside_fdm_temp_DMpart_Hpart_dmmass_hmass': continue if isinstance(hp[i], dict): for j in wronghi: hp[i].pop(j, None) else: hp[i] = np.delete(hp[i], wrong) def rewriteHeadTails(halodata, snapmin=0, snapmax=200, TEMPORALHALOIDVAL=1000000000000): sortorder = {} sortorderinvert = {} newtail = {} newhead = {} for snap in range(snapmin, snapmax+1): sortorder[snap] = np.argsort(halodata[snap]['Mass_tot'][:])[::-1] sortorderinvert[snap] = np.argsort(sortorder[snap]) #Orders it to point to the right position in the ID list for snap in range(snapmin, snapmax+1): oldhead = halodata[snap]['Head'][sortorder[snap]] oldtail = halodata[snap]['Tail'][sortorder[snap]] newtail[snap] = np.zeros(len(oldtail)) newhead[snap] = np.zeros(len(oldhead)) tempsnaps = (oldtail/TEMPORALHALOIDVAL).astype(int) if len(tempsnaps) == 0: continue for i in range(min(tempsnaps), min(snap-1, max(tempsnaps))+1): loctemp = np.where(tempsnaps == i)[0] if len(loctemp) == 0: continue prevhalotemp = (oldtail[loctemp]%TEMPORALHALOIDVAL - 1).astype(int) newtail[snap][loctemp] = (sortorderinvert[i][prevhalotemp]%TEMPORALHALOIDVAL).astype(int) + i*TEMPORALHALOIDVAL tempsnaps = (oldhead/TEMPORALHALOIDVAL).astype(int) for i in range(max(min(tempsnaps), snap+1), max(tempsnaps)+1): loctemp = np.where(tempsnaps == i)[0] if len(loctemp) == 0: continue prevhalotemp = (oldhead[loctemp]%TEMPORALHALOIDVAL - 1).astype(int) newhead[snap][loctemp] = sortorderinvert[i][prevhalotemp] + i*TEMPORALHALOIDVAL newtail[snap] = newtail[snap].astype(int) newhead[snap] = newhead[snap].astype(int) return sortorder, newtail, newhead def ReadParticleTypes(basefilename,iseparatesubfiles=0,iverbose=0, unbound=True): """ VELOCIraptor/STF catalog_group and catalog_parttypes in hdf5 Note that a file will indicate how many files the total output has been split into """ inompi=True if (iverbose): print("reading particle data",basefilename) gfilename=basefilename+".catalog_groups" tfilename=basefilename+".catalog_parttypes" utfilename=tfilename+".unbound" #check for file existence if (os.path.isfile(gfilename)==True): numfiles=0 else: gfilename+=".0" tfilename+=".0" utfilename+=".0" inompi=False if (os.path.isfile(gfilename)==False): print("file not found") return [] byteoffset=0 #load header information from file to get total number of groups #hdf gfile = h5py.File(gfilename, 'r') filenum=int(gfile["File_id"][0]) numfiles=int(gfile["Num_of_files"][0]) numhalos=np.uint64(gfile["Num_of_groups"][0]) numtothalos=np.uint64(gfile["Total_num_of_groups"][0]) gfile.close() particledata=dict() particledata['Npart']=np.zeros(numtothalos,dtype=np.uint64) particledata['Particle_Types']=[[] for i in range(numtothalos)] #now for all files counter=np.uint64(0) subfilenames=[""] if (iseparatesubfiles==1): subfilenames=["",".sublevels"] for ifile in range(numfiles): for subname in subfilenames: bfname=basefilename+subname gfilename=bfname+".catalog_groups" tfilename=bfname+".catalog_parttypes" utfilename=tfilename+".unbound" if (inompi==False): gfilename+="."+str(ifile) tfilename+="."+str(ifile) utfilename+="."+str(ifile) if (iverbose) : print("reading",bfname,ifile) gfile = h5py.File(gfilename, 'r') numhalos=np.uint64(gfile["Num_of_groups"][0]) numingroup=np.uint64(gfile["Group_Size"]) uoffset=np.uint64(gfile["Offset_unbound"]) offset=np.uint64(gfile["Offset"]) gfile.close() tfile = h5py.File(tfilename, 'r') utfile = h5py.File(utfilename, 'r') tdata=np.uint16(tfile["Particle_types"]) utdata=np.uint16(utfile["Particle_types"]) npart=len(tdata) unpart=len(utdata) tfile.close() utfile.close() #now with data loaded, process it to produce data structure unumingroup=np.zeros(numhalos,dtype=np.uint64) for i in range(int(numhalos-1)): unumingroup[i]=(uoffset[i+1]-uoffset[i]); unumingroup[-1]=(unpart-uoffset[-1]) if unbound: particledata['Npart'][counter:counter+numhalos]=numingroup else: particledata['Npart'][counter:counter+numhalos] = numingroup-unumingroup for i in range(numhalos): if unbound: particledata['Particle_Types'][int(i+counter)]=np.zeros(numingroup[i],dtype=np.int64) particledata['Particle_Types'][int(i+counter)][:int(numingroup[i]-unumingroup[i])]=tdata[offset[i]:offset[i]+numingroup[i]-unumingroup[i]] particledata['Particle_Types'][int(i+counter)][int(numingroup[i]-unumingroup[i]):numingroup[i]]=utdata[uoffset[i]:uoffset[i]+unumingroup[i]] else: particledata['Particle_Types'][int(i+counter)]=np.zeros(numingroup[i]-unumingroup[i],dtype=np.int64) particledata['Particle_Types'][int(i+counter)][:int(numingroup[i]-unumingroup[i])]=tdata[offset[i]:offset[i]+numingroup[i]-unumingroup[i]] counter+=numhalos return particledata def ReadParticleDataFile(basefilename,iseparatesubfiles=0,iparttypes=0,iverbose=1, binarydtype=np.int64, unbound=True, selected_files=None, halolist=None, TEMPORALHALOIDVAL = 1000000000000): """ VELOCIraptor/STF catalog_group, catalog_particles and catalog_parttypes in various formats Note that a file will indicate how many files the total output has been split into """ inompi=True if (iverbose): print("reading particle data",basefilename) gfilename=basefilename+".catalog_groups" pfilename=basefilename+".catalog_particles" upfilename=pfilename+".unbound" tfilename=basefilename+".catalog_parttypes" utfilename=tfilename+".unbound" #check for file existence if (os.path.isfile(gfilename)==True): numfiles=0 else: gfilename+=".0" pfilename+=".0" upfilename+=".0" tfilename+=".0" utfilename+=".0" inompi=False if (os.path.isfile(gfilename)==False): print("file not found") return [] byteoffset=0 #If a list of haloes is given, we only want to read in the haloes (memory efficient) if halolist is not None: haloindices = (halolist%TEMPORALHALOIDVAL - 1).astype(int) #load header information from file to get total number of groups gfile = h5py.File(gfilename, 'r') numfiles=int(gfile["Num_of_files"][0]) numtothalos=np.uint64(gfile["Total_num_of_groups"][0]) gfile.close() if selected_files is not None: numtothalos = np.uint64(0) numfiles = len(selected_files) for ifile in selected_files: filename = basefilename+".catalog_groups"+"."+str(ifile) halofile = h5py.File(filename, 'r') numtothalos += np.uint64(halofile["Num_of_groups"][0]) halofile.close() if halolist is not None: numtothalos = len(haloindices) particledata=dict() particledata['Npart']=np.zeros(numtothalos,dtype=np.uint64) particledata['Npart_unbound']=np.zeros(numtothalos,dtype=np.uint64) particledata['Particle_IDs']=[[] for i in range(numtothalos)] if (iparttypes==1): particledata['Particle_Types']=[[] for i in range(numtothalos)] #now for all files counter=np.uint64(0) if halolist is not None: noffset = np.uint64(0) subfilenames=[""] if (iseparatesubfiles==1): subfilenames=["",".sublevels"] for ifile in range(numfiles): if selected_files is not None: ifile_temp = selected_files[ifile] else: ifile_temp = ifile for subname in subfilenames: bfname=basefilename+subname gfilename=bfname+".catalog_groups" pfilename=bfname+".catalog_particles" upfilename=pfilename+".unbound" tfilename=bfname+".catalog_parttypes" utfilename=tfilename+".unbound" if (inompi==False): gfilename+="."+str(ifile_temp) pfilename+="."+str(ifile_temp) upfilename+="."+str(ifile_temp) tfilename+="."+str(ifile_temp) utfilename+="."+str(ifile_temp) if (iverbose) : print("reading",bfname,ifile_temp) gfile = h5py.File(gfilename, 'r') numhalos=np.uint64(gfile["Num_of_groups"][0]) if halolist is not None: ww = haloindices[np.where((haloindices >= noffset)&(haloindices < noffset+numhalos))[0]] - noffset noffset += numhalos numhalos_hl = len(ww) else: ww =
np.arange(0, numhalos, 1)
numpy.arange
# Jinja2 templating http://bit.ly/flask_walkthrough from flask import Flask, request, jsonify, render_template, current_app, Response # needed to ensure weights are loaded from tensorflow.python.keras.backend import set_session # specified instead of vague next line from tensorflow.python.keras.models import load_model # from keras.models import load_model import tensorflow.compat.v1 as tf tf.disable_v2_behavior() # import tensorflow from numpy import asarray from PIL import Image as Image_PIL # PYTHON IMAGING LIBRARY import base64 import numpy as np import os import re # regular expresions global graph global model global session def get_model(): model = load_model(model_path) print(f'Model from {model_path} is Loaded') return model def convert_canvas(canvas_data): ''' USER INPUT (CANVAS) IMAGE CONVERSION; Canvas will sytem_outputput user entry as Base64 Encoded String; This function will Decode the string to binary data to work with; ''' # pinpoint 64 encoded string encoded_string = re.search(r'base64,(.*)', canvas_data).group(1) decoded_binary_data = base64.b64decode(encoded_string) # decode # print(encoded_string) # save canvas output as png file to process prediction; sytem_output = open(filepath, 'wb') sytem_output.write(decoded_binary_data) sytem_output.close() return filepath def preprocess_image(filepath): ''' Argument: Filepath - Converts image to grayscale - Resizes image to 28 x 28 - Creates Array from Pixel Data - Inverts Array Values; Returns Array from pixels & prints to console Image ''' image = Image_PIL.open(filepath) # create instance of downloaded image; # convert to grayscale; remove rgb channel; image = image.convert(mode='L') image = image.resize((28, 28)) # resize from 280x280 to 28x28; image_array = asarray(image) image_array =
np.invert(image_array)
numpy.invert
import numpy as np from matplotlib import pyplot as plt # Plot Function def draw_pts(x, y): for i in range(len(x)): if y[i] == 1: plt.plot(x[i][0], x[i][1], 'ro') else: plt.plot(x[i][0], x[i][1], 'bo') # plt.show() def draw_line(w, b): line_x = [0, 7] line_y = [0, 0] # w * x +b # w[0] * x[0] + w[1] * x[1] + b = 0 for i in range(len(line_x)): line_y[i] = (- w[0] * line_x[i] - b) / (w[1] + 1e-9) plt.plot(line_x, line_y) # Data & Maker # x = np.array([[3, 3], [4, 3], [2, 4], [1, 1], [1, 2], [2, 1]]) # y = np.array([1, 1, 1, -1, -1, -1]) num = 50 x = np.vstack(( np.random.randn(num, 2) + 6, np.random.randn(num, 2) + 2 )) y = np.hstack(( np.ones(num), - np.ones(num) )) # draw_pts(x, y) # Initial Parameter & Learning rate w = [0, 0] b = 0 lr = 1 # Primitive Form for j in range(100): wrong_pt_cnt = 0 for i in range(len(y)): if y[i] != np.sign(np.dot(w, x[i]) + b): w += lr * y[i] * x[i] b += lr * y[i] wrong_pt_cnt += 1 if wrong_pt_cnt == 0: break # draw_line(w, b) # plt.show() # Dual Form gram =
np.dot(x, x.T)
numpy.dot
"""inpainting by rectangle patch scannning """ import numpy as np import cv2 from skimage.util.shape import view_as_windows from math import ceil import matplotlib.pyplot as plt from PIL import Image class Fast_Synthesis_based_inpaint: def __init__(self, img, inpaint_mask, sample_mask, cloth_mask, in_mirror_hor=False, in_mirror_vert=False, DEBUG=False): ''' img:PIL inpaint_mask:PIL sample_mask:PIL ''' self.img = np.array(img) self.ori_img = np.array(img).copy() self.sample_mask = sample_mask self.cloth_mask = np.array(cloth_mask.convert('L')).astype('bool') self.inpaint_mask = np.array(inpaint_mask.convert('L')).astype('uint8') # 合理的采样区域 self.sample_mask = ~self.inpaint_mask.astype('bool') * np.array(self.sample_mask.convert('L')).astype('bool') if np.sum(self.inpaint_mask) == 0: # 不希望做任何更改 self.pass_ = True else: self.pass_ = False self.DEBUG = DEBUG self.mirror_hor = in_mirror_hor self.mirror_vert = in_mirror_vert self.img = self.img / 255. self.x, self.y, self.w, self.h = cv2.boundingRect(self.inpaint_mask) # 找最小外接矩形 # self.img[self.y:self.y+self.h, self.x:self.x+self.w].fill(1)#填充矩形为纯白 self.init_hyper_parameters() self.examplePatches = self.init_patch() self.canvas_with_bound = self.init_canvas() self.initKDtrees() def init_hyper_parameters(self): self.patchSize = int(min(18, min(self.w, self.h) // 4)) # 不大于18size of the patch (without the overlap) self.overlapSize = max(2, self.patchSize // 6) # 不小于2 the overlap region self.searchKernelSize = self.patchSize + 2 * self.overlapSize self.windowStep = 1 if self.DEBUG: print("patchSize: %s" % self.patchSize) print("overlapSize: %s" % self.overlapSize) print("searchKernelSize: %s" % self.searchKernelSize) print("windowStep: %s" % self.windowStep) def init_patch(self): self.sample_area = self.img.copy() self.sample_mask[self.y:self.y + self.h, self.x:self.x + self.w].fill(False) self.sample_area[~self.sample_mask] = -1 result = view_as_windows(self.sample_area, [self.searchKernelSize, self.searchKernelSize, 3], self.windowStep) result = result.squeeze() axis = (np.zeros((result.shape[0], result.shape[1])) + 1).astype('bool') axis *= np.min(result, (2, 3, 4)) >= 0 index = np.array(range(len(np.where(axis == True)[0]))) if len(np.where(axis == True)[0]) >= 5000: index = np.random.choice(index, 5000, replace=False) select_index = np.array([np.where(axis == True)[0][index], np.where(axis == True)[1][index]]) axis = (np.zeros((result.shape[0], result.shape[1]))).astype('bool') axis[select_index[0], select_index[1]] = True result = result[axis] if self.mirror_hor: hor_result = result[:, :, ::-1] # y轴翻转水平镜像 result = np.concatenate((result, hor_result)) if self.mirror_vert: vert_result = result[:, ::-1] # x轴翻转垂直镜像 result = np.concatenate((result, vert_result)) return result def init_canvas(self): # check whether the outputSize adheres to patch+overlap size self.num_patches_X = ceil((self.w - self.overlapSize) / (self.patchSize + self.overlapSize)) self.num_patches_Y = ceil((self.h - self.overlapSize) / (self.patchSize + self.overlapSize)) # calc needed output image size self.required_size_X = self.num_patches_X * self.patchSize + (self.num_patches_X + 1) * self.overlapSize self.required_size_Y = self.num_patches_Y * self.patchSize + (self.num_patches_Y + 1) * self.overlapSize self.filledMap = np.zeros( (self.num_patches_Y, self.num_patches_X)) # map showing which patches have been resolved self.up_bound = max(self.y - (self.required_size_Y - self.h) // 2, 0) self.down_bound = self.up_bound + self.required_size_Y self.left_bound = max(self.x - (self.required_size_X - self.w) // 2, 0) self.right_bound = self.left_bound + self.required_size_X canvas_with_bound = np.copy(self.img[self.up_bound: self.down_bound, self.left_bound:self.right_bound]) self.x, self.y = self.left_bound + self.overlapSize, self.up_bound + self.overlapSize if self.DEBUG: print("num_patches_X %s" % self.num_patches_X) print("num_patches_Y %s" % self.num_patches_Y) self.canvas_b = np.copy(canvas_with_bound) self.canvas_c = np.copy(canvas_with_bound) return canvas_with_bound def initKDtrees(self): topOverlap = self.examplePatches[:, 0:self.overlapSize, :, :] leftOverlap = self.examplePatches[:, :, 0:self.overlapSize, :].transpose(0, 2, 1, 3) downOverlap = self.examplePatches[:, -self.overlapSize:, :, :] rightOverlap = self.examplePatches[:, :, -self.overlapSize:, :].transpose(0, 2, 1, 3) self.flatten_combined_ld = np.zeros( (leftOverlap.shape[0], leftOverlap.shape[1], leftOverlap.shape[2] * 2, leftOverlap.shape[3])) self.flatten_combined_ld[:, :, :leftOverlap.shape[2], :] = leftOverlap self.flatten_combined_ld[:, :, leftOverlap.shape[2]:, :] = downOverlap self.flatten_combined_ldt = np.zeros( (leftOverlap.shape[0], leftOverlap.shape[1], leftOverlap.shape[2] * 3, leftOverlap.shape[3])) self.flatten_combined_ldt[:, :, :leftOverlap.shape[2], :] = leftOverlap self.flatten_combined_ldt[:, :, leftOverlap.shape[2]:leftOverlap.shape[2] * 2, :] = downOverlap self.flatten_combined_ldt[:, :, leftOverlap.shape[2] * 2:, :] = topOverlap self.flatten_combined_ldr = np.zeros( (leftOverlap.shape[0], leftOverlap.shape[1], leftOverlap.shape[2] * 3, leftOverlap.shape[3])) self.flatten_combined_ldr[:, :, :leftOverlap.shape[2], :] = leftOverlap self.flatten_combined_ldr[:, :, leftOverlap.shape[2]:leftOverlap.shape[2] * 2, :] = downOverlap self.flatten_combined_ldr[:, :, leftOverlap.shape[2] * 2:, :] = rightOverlap self.flatten_combined_ldrt = np.zeros( (leftOverlap.shape[0], leftOverlap.shape[1], leftOverlap.shape[2] * 4, leftOverlap.shape[3])) self.flatten_combined_ldrt[:, :, :leftOverlap.shape[2], :] = leftOverlap self.flatten_combined_ldrt[:, :, leftOverlap.shape[2]:leftOverlap.shape[2] * 2, :] = downOverlap self.flatten_combined_ldrt[:, :, leftOverlap.shape[2] * 2:leftOverlap.shape[2] * 3, :] = rightOverlap self.flatten_combined_ldrt[:, :, leftOverlap.shape[2] * 3:, :] = topOverlap def getOverlapAreaTop(self, coord): # do I have a top neighbour x_range = [(self.patchSize + self.overlapSize) * coord[0], (self.patchSize + self.overlapSize) * (coord[0] + 1) + self.overlapSize] y_range = [(self.patchSize + self.overlapSize) * coord[1], (self.patchSize + self.overlapSize) * (coord[1] + 1) + self.overlapSize] if self.DEBUG: self.canvas_b[x_range[0]:x_range[1], y_range[0]:y_range[1]][0:self.overlapSize, :, :] = 0 return np.copy(self.canvas_with_bound[x_range[0]:x_range[1], y_range[0]:y_range[1]])[0:self.overlapSize, :, :] def getOverlapAreaLeft(self, coord): # do I have a left neighbour x_range = [(self.patchSize + self.overlapSize) * coord[0], (self.patchSize + self.overlapSize) * (coord[0] + 1) + self.overlapSize] y_range = [(self.patchSize + self.overlapSize) * coord[1], (self.patchSize + self.overlapSize) * (coord[1] + 1) + self.overlapSize] if self.DEBUG: self.canvas_b[x_range[0]:x_range[1], y_range[0]:y_range[1]][:, 0:self.overlapSize, :] = 0 return np.copy(self.canvas_with_bound[x_range[0]:x_range[1], y_range[0]:y_range[1]])[:, 0:self.overlapSize, :] def getOverlapAreaDown(self, coord): # do I have a down neighbour x_range = [(self.patchSize + self.overlapSize) * coord[0], (self.patchSize + self.overlapSize) * (coord[0] + 1) + self.overlapSize] y_range = [(self.patchSize + self.overlapSize) * coord[1], (self.patchSize + self.overlapSize) * (coord[1] + 1) + self.overlapSize] if self.DEBUG: self.canvas_b[x_range[0]:x_range[1], y_range[0]:y_range[1]][-self.overlapSize:, :, :] = 1 return np.copy(self.canvas_with_bound[x_range[0]:x_range[1], y_range[0]:y_range[1]])[-self.overlapSize:, :, :] def getOverlapAreaRight(self, coord): # do I have a left neighbour x_range = [(self.patchSize + self.overlapSize) * coord[0], (self.patchSize + self.overlapSize) * (coord[0] + 1) + self.overlapSize] y_range = [(self.patchSize + self.overlapSize) * coord[1], (self.patchSize + self.overlapSize) * (coord[1] + 1) + self.overlapSize] if self.DEBUG: self.canvas_b[x_range[0]:x_range[1], y_range[0]:y_range[1]][:, -self.overlapSize:, :] = 0 return np.copy(self.canvas_with_bound[x_range[0]:x_range[1], y_range[0]:y_range[1]])[:, -self.overlapSize:, :] def linearBlendOverlaps(self, canvasOverlap, examplePatchOverlap, mode): if mode == 'left': mask = np.repeat(np.arange(self.overlapSize)[np.newaxis, :], np.shape(canvasOverlap)[0], axis=0) / self.overlapSize elif mode == 'top': mask = np.repeat(np.arange(self.overlapSize)[:, np.newaxis], np.shape(canvasOverlap)[1], axis=1) / self.overlapSize elif mode == 'right': mask = np.repeat((self.overlapSize - 1 -
np.arange(self.overlapSize)
numpy.arange
######################################################################## # # License: BSD # Created: September 1, 2010 # Author: <NAME> - <EMAIL> # ######################################################################## import sys import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from unittest import TestCase import blaze.carray as ca from common import MayBeDiskTest class createTest(MayBeDiskTest, TestCase): def test00a(self): """Testing ctable creation from a tuple of carrays""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) #print "t->", `t` ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00b(self): """Testing ctable creation from a tuple of lists""" t = ca.ctable(([1,2,3],[4,5,6]), ('f0', 'f1'), rootdir=self.rootdir) #print "t->", `t` ra = np.rec.fromarrays([[1,2,3],[4,5,6]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00c(self): """Testing ctable creation from a tuple of carrays (single column)""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) self.assertRaises(ValueError, ca.ctable, a, 'f0', rootdir=self.rootdir) def test01(self): """Testing ctable creation from a tuple of numpy arrays""" N = 1e1 a = np.arange(N, dtype='i4') b = np.arange(N, dtype='f8')+1 t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) #print "t->", `t` ra = np.rec.fromarrays([a,b]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test02(self): """Testing ctable creation from an structured array""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test03a(self): """Testing ctable creation from large iterator""" N = 10*1000 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8', count=N, rootdir=self.rootdir) #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test03b(self): """Testing ctable creation from large iterator (with a hint)""" N = 10*1000 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8', count=N) t = ca.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8', count=N, rootdir=self.rootdir) #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") class createDiskTest(createTest, TestCase): disk = True class persistentTest(MayBeDiskTest, TestCase): disk = True def test00a(self): """Testing ctable opening in "r" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Open t t = ca.open(rootdir=self.rootdir, mode='r') #print "t->", `t` ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses self.assertRaises(RuntimeError, t.__setitem__, 1, (0, 0.0)) self.assertRaises(RuntimeError, t.append, (0, 0.0)) def test00b(self): """Testing ctable opening in "w" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Open t t = ca.open(rootdir=self.rootdir, mode='w') #print "t->", `t` N = 0 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses t.append((0, 0.0)) t.append((0, 0.0)) t[1] = (1, 2.0) ra = np.rec.fromarrays([(0,1),(0.0, 2.0)], 'i4,f8').view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00c(self): """Testing ctable opening in "a" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Open t t = ca.open(rootdir=self.rootdir, mode='a') #print "t->", `t` # Check values ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses t.append((10, 11.0)) t.append((10, 11.0)) t[-1] = (11, 12.0) # Check values N = 12 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01a(self): """Testing ctable creation in "r" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) self.assertRaises(RuntimeError, ca.ctable, (a, b), ('f0', 'f1'), rootdir=self.rootdir, mode='r') def test01b(self): """Testing ctable creation in "w" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Overwrite the last ctable t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir, mode='w') #print "t->", `t` ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses t.append((10, 11.0)) t.append((10, 11.0)) t[11] = (11, 12.0) # Check values N = 12 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01c(self): """Testing ctable creation in "a" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Overwrite the last ctable self.assertRaises(RuntimeError, ca.ctable, (a, b), ('f0', 'f1'), rootdir=self.rootdir, mode='a') class add_del_colTest(MayBeDiskTest, TestCase): def test00a(self): """Testing adding a new column (list flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c.tolist(), 'f2') ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00(self): """Testing adding a new column (carray flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(ca.carray(c), 'f2') ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01a(self): """Testing adding a new column (numpy flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, 'f2') ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01b(self): """Testing cparams when adding a new column (numpy flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, cparams=ca.cparams(1), rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, 'f2') self.assert_(t['f2'].cparams.clevel == 1, "Incorrect clevel") def test02(self): """Testing adding a new column (default naming)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(ca.carray(c)) ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test03(self): """Testing inserting a new column (at the beginning)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, name='c0', pos=0) ra = np.fromiter(((i*3, i, i*2.) for i in xrange(N)), dtype='i8,i4,f8') ra.dtype.names = ('c0', 'f0', 'f1') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test04(self): """Testing inserting a new column (in the middle)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, name='c0', pos=1) ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') ra.dtype.names = ('f0', 'c0', 'f1') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test05(self): """Testing removing an existing column (at the beginning)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol(pos=0) # The next gives a segfault. See: # http://projects.scipy.org/numpy/ticket/1598 #ra = np.fromiter(((i*3, i*2) for i in xrange(N)), dtype='i8,f8') #ra.dtype.names = ('f1', 'f2') dt = np.dtype([('f1', 'i8'), ('f2', 'f8')]) ra = np.fromiter(((i*3, i*2) for i in xrange(N)), dtype=dt) #print "t->", `t` #print "ra", ra #assert_array_equal(t[:], ra, "ctable values are not correct") def test06(self): """Testing removing an existing column (at the end)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol(pos=2) ra = np.fromiter(((i, i*3) for i in xrange(N)), dtype='i4,i8') ra.dtype.names = ('f0', 'f1') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test07(self): """Testing removing an existing column (in the middle)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol(pos=1) ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') ra.dtype.names = ('f0', 'f2') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test08(self): """Testing removing an existing column (by name)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol('f1') ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') ra.dtype.names = ('f0', 'f2') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") class add_del_colDiskTest(add_del_colTest, TestCase): disk = True class getitemTest(MayBeDiskTest, TestCase): def test00(self): """Testing __getitem__ with only a start""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) start = 9 #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[start], ra[start], "ctable values are not correct") def test01(self): """Testing __getitem__ with start, stop""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) start, stop = 3, 9 #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[start:stop], ra[start:stop], "ctable values are not correct") def test02(self): """Testing __getitem__ with start, stop, step""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) start, stop, step = 3, 9, 2 #print "t->", `t[start:stop:step]` #print "ra->", ra[start:stop:step] assert_array_equal(t[start:stop:step], ra[start:stop:step], "ctable values are not correct") def test03(self): """Testing __getitem__ with a column name""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) colname = "f1" #print "t->", `t[colname]` #print "ra->", ra[colname] assert_array_equal(t[colname][:], ra[colname], "ctable values are not correct") def test04(self): """Testing __getitem__ with a list of column names""" N = 10 ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') t = ca.ctable(ra, rootdir=self.rootdir) colnames = ["f0", "f2"] # For some version of NumPy (> 1.7) I cannot make use of # ra[colnames] :-/ ra2 = np.fromiter(((i, i*3) for i in xrange(N)), dtype='i4,i8') ra2.dtype.names = ('f0', 'f2') #print "t->", `t[colnames]` #print "ra2->", ra2 assert_array_equal(t[colnames][:], ra2, "ctable values are not correct") class getitemDiskTest(getitemTest, TestCase): disk = True class setitemTest(MayBeDiskTest, TestCase): def test00(self): """Testing __setitem__ with only a start""" N = 100 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, chunklen=10, rootdir=self.rootdir) sl = slice(9, None) t[sl] = (0, 1) ra[sl] = (0, 1) #print "t[%s] -> %r" % (sl, t) #print "ra[%s] -> %r" % (sl, ra) assert_array_equal(t[:], ra, "ctable values are not correct") def test01(self): """Testing __setitem__ with only a stop""" N = 100 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, chunklen=10, rootdir=self.rootdir) sl = slice(None, 9, None) t[sl] = (0, 1) ra[sl] = (0, 1) #print "t[%s] -> %r" % (sl, t) #print "ra[%s] -> %r" % (sl, ra) assert_array_equal(t[:], ra, "ctable values are not correct") def test02(self): """Testing __setitem__ with a start, stop""" N = 100 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, chunklen=10, rootdir=self.rootdir) sl = slice(1,90, None) t[sl] = (0, 1) ra[sl] = (0, 1) #print "t[%s] -> %r" % (sl, t) #print "ra[%s] -> %r" % (sl, ra) assert_array_equal(t[:], ra, "ctable values are not correct") def test03(self): """Testing __setitem__ with a start, stop, step""" N = 100 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, chunklen=10, rootdir=self.rootdir) sl = slice(1,90, 2) t[sl] = (0, 1) ra[sl] = (0, 1) #print "t[%s] -> %r" % (sl, t) #print "ra[%s] -> %r" % (sl, ra) assert_array_equal(t[:], ra, "ctable values are not correct") def test04(self): """Testing __setitem__ with a large step""" N = 100 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, chunklen=10, rootdir=self.rootdir) sl = slice(1,43, 20) t[sl] = (0, 1) ra[sl] = (0, 1) #print "t[%s] -> %r" % (sl, t) #print "ra[%s] -> %r" % (sl, ra) assert_array_equal(t[:], ra, "ctable values are not correct") class setitemDiskTest(setitemTest, TestCase): disk = True class appendTest(MayBeDiskTest, TestCase): def test00(self): """Testing append() with scalar values""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.append((N, N*2)) ra = np.fromiter(((i, i*2.) for i in xrange(N+1)), dtype='i4,f8') assert_array_equal(t[:], ra, "ctable values are not correct") def test01(self): """Testing append() with numpy arrays""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) a = np.arange(N, N+10, dtype='i4') b = np.arange(N, N+10, dtype='f8')*2. t.append((a, b)) ra = np.fromiter(((i, i*2.) for i in xrange(N+10)), dtype='i4,f8') assert_array_equal(t[:], ra, "ctable values are not correct") def test02(self): """Testing append() with carrays""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) a = np.arange(N, N+10, dtype='i4') b = np.arange(N, N+10, dtype='f8')*2. t.append((ca.carray(a), ca.carray(b))) ra = np.fromiter(((i, i*2.) for i in xrange(N+10)), dtype='i4,f8') assert_array_equal(t[:], ra, "ctable values are not correct") def test03(self): """Testing append() with structured arrays""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) ra2 = np.fromiter(((i, i*2.) for i in xrange(N, N+10)), dtype='i4,f8') t.append(ra2) ra = np.fromiter(((i, i*2.) for i in xrange(N+10)), dtype='i4,f8') assert_array_equal(t[:], ra, "ctable values are not correct") def test04(self): """Testing append() with another ctable""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) ra2 = np.fromiter(((i, i*2.) for i in xrange(N, N+10)), dtype='i4,f8') t2 = ca.ctable(ra2) t.append(t2) ra = np.fromiter(((i, i*2.) for i in xrange(N+10)), dtype='i4,f8')
assert_array_equal(t[:], ra, "ctable values are not correct")
numpy.testing.assert_array_equal
import typing as ty import warnings import numba as nb import numpy as np from numba.core.errors import NumbaWarning from .. import utility from ..paths import Box, Path, Paths from ..shape import Shape warnings.simplefilter("ignore", category=NumbaWarning) class Sphere(Shape): def __init__(self, center=None, radius=1.0, texture=1): super().__init__() self.center = ( np.zeros(3) if center is None else np.asarray(center, dtype=np.float64) ) self.radius = radius radius_vec = np.array([radius, radius, radius], dtype=np.float64) self.box = Box(self.center - radius_vec, self.center + radius_vec) self.texture = texture def compile(self): pass def bounding_box(self) -> Box: return self.box def contains(self, v: np.ndarray, f) -> bool: return utility.vector_length(v - self.center) <= self.radius + f def intersect( self, ray_origin: np.ndarray, ray_direction: np.ndarray ) -> float: return Sphere._intersect( self.radius, self.center, ray_origin, ray_direction ) @staticmethod @nb.njit( "float64(float64, float64[:], float64[:], float64[:])", cache=True, ) def _intersect( radius: float, center: np.ndarray, ray_origin: np.ndarray, ray_direction: np.ndarray, ) -> float: to = ray_origin - center b = np.dot(to, ray_direction) c = np.dot(to, to) - radius * radius d = b * b - c if d > 0: d = np.sqrt(d) t1 = -b - d if t1 > 1e-2: return t1 t2 = -b + d if t2 > 1e-2: return t2 return utility.INF def paths(self) -> Paths: if self.texture == 1: return Paths(Sphere.paths_1(self.radius, self.center)) elif self.texture == 2: return Paths(Sphere.paths_2(self.radius, self.center)) elif self.texture == 3: return Paths(Sphere.paths_3(self.radius, self.center)) elif self.texture == 4: return Paths(Sphere.paths_4(self.radius, self.center)) @staticmethod def paths_1( radius: float, center: np.ndarray ) -> ty.List[ty.List[np.ndarray]]: # Grid pattern paths = [] n = 5 o = 10 for lat in range(-90 + o, 91 - o, n): paths.append( [ Sphere.latlng_to_xyz(lat, lng, radius) + center for lng in range(0, 361) ] ) for lng in range(0, 361, n): paths.append( [ Sphere.latlng_to_xyz(lat, lng, radius) + center for lat in np.arange(-90 + o, 91 - o) ] ) return paths @staticmethod def paths_2(radius: float, center: np.ndarray) -> ty.List[Path]: # Criss-cross pattern paths = [] equator = Path( [Sphere.latlng_to_xyz(0, lng, radius) for lng in range(360)] ) for i in range(100): matrix = np.eye(4) for j in range(3): v = utility.random_unit_vector() matrix = utility.matrix_mul_matrix( utility.vector_rotate(v, np.random.random() * 2 * np.pi), matrix, ) matrix = utility.matrix_mul_matrix( utility.vector_translate(center), matrix ) paths.append(equator.transform(matrix)) return paths @staticmethod @nb.njit("float64[:,:,:](float64, float64[:])") def paths_3(radius: float, center: np.ndarray) -> np.ndarray: paths = np.zeros((20000, 2, 3)) for i in range(20000): v = utility.random_unit_vector() * radius + center paths[i, 0] = v paths[i, 1] = v.copy() return paths @staticmethod def paths_4( radius: float, center: np.ndarray ) -> ty.List[ty.List[np.ndarray]]: # Criss-cross with circles paths = [] seen = [] radii = [] for i in range(140): while True: v = utility.random_unit_vector() m = np.random.random() * 0.25 + 0.05 ok = True for s in range(len(seen)): threshold = m + radii[s] + 0.02 if utility.vector_length(seen[s] - v) < threshold: ok = False break if ok: seen.append(v) radii.append(m) break p = utility.vector_normalize( np.cross(v, utility.random_unit_vector()) ) q = utility.vector_normalize(np.cross(p, v)) n = np.random.randint(0, 4) + 1 for k in range(n): path = [] for j in range(0, 360, 5): a = np.deg2rad(j) path.append( utility.vector_normalize( v + p * np.cos(a) * m + q * np.sin(a) * m ) * radius + center ) paths.append(path) m += 0.75 return paths @staticmethod @nb.njit("float64[:](float64, float64, float64)", cache=True) def latlng_to_xyz(lat, lng, radius) -> np.ndarray: lat, lng = np.deg2rad(lat), np.deg2rad(lng) x = radius * np.cos(lat) * np.cos(lng) y = radius * np.cos(lat) * np.sin(lng) z = radius * np.sin(lat) return np.array([x, y, z]) class OutlineSphere(Sphere): def __init__( self, eye: ty.Union[ty.List[float], np.ndarray], up: ty.Union[ty.List[float], np.ndarray], center: ty.Union[ty.List[float], np.ndarray], radius: float, ): super().__init__(center, radius) self.eye = np.asarray(eye, dtype=np.float64) self.up = np.asarray(up, dtype=np.float64) def paths(self) -> Paths: hyp = utility.vector_length(self.center - self.eye) theta = np.arcsin(self.radius / hyp) adj = self.radius / np.tan(theta) d = np.cos(theta) * adj r = np.sin(theta) * adj w = utility.vector_normalize(self.center - self.eye) u = utility.vector_normalize(
np.cross(w, self.up)
numpy.cross
""" fastspecfit.templates.qa ======================== QA for templates """ import pdb import os import numpy as np from astropy.table import Table from scipy.ndimage import median_filter from fastspecfit.util import ivar2var, C_LIGHT from fastspecfit.templates.templates import rebuild_fastspec_spectrum import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.patches import Rectangle from desiutil.log import get_logger log = get_logger() def plot_style(font_scale=1.2): import seaborn as sns sns.set(context='talk', style='ticks', palette='deep', font_scale=font_scale)#, rc=rc) colors = sns.color_palette() return sns, colors def qa_bpt(targetclass, fastspecfile=None, png=None): """QA of the fastspec emission-line spectra. """ from fastspecfit.templates.templates import remove_undetected_lines, read_stacked_fastspec sns, _ = plot_style() fastmeta, _fastspec = read_stacked_fastspec(fastspecfile, read_spectra=False) fastspec = remove_undetected_lines(_fastspec) nobj = len(fastmeta) def oplot_class(ax, kewley=False, **kwargs): if kewley: niiha = np.linspace(-1.9, 0.4, 1000) oiiihb = 0.61 / (niiha-0.47) + 1.19 else: niiha = np.linspace(-1.9, -0.1, 1000) oiiihb = 0.61 / (niiha-0.05) + 1.3 ax.plot(niiha, oiiihb, **kwargs) def _bpt(cc, cclabel='Redshift', vmin=None, vmax=None, png=None): fig, ax = plt.subplots(figsize=(10, 7)) cb = ax.scatter(niiha, oiiihb, c=cc, cmap='jet', vmin=vmin, vmax=vmax) oplot_class(ax, kewley=True, color='k', ls='--', lw=3, label='Kewley+01') oplot_class(ax, kewley=False, color='k', lw=3, label='Kauffmann+03') plt.colorbar(cb, label=cclabel) ax.set_xlim(-1.9, 0.7) ax.set_ylim(-1.2, 1.5) ax.set_xlabel(r'$\log_{10}$ ([NII] $\lambda6584$ / H$\alpha$)') ax.set_ylabel(r'$\log_{10}$ ([OIII] $\lambda5007$ / H$\beta$)') ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f')) ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f')) ax.xaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax.legend(fontsize=16, loc='lower left')#, ncol=2) plt.subplots_adjust(bottom=0.15, left=0.18, top=0.95, right=0.95) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() good = np.where( (fastspec['HALPHA_FLUX'] > 0) * (fastspec['HBETA_FLUX'] > 0) * (fastspec['NII_6584_FLUX'] > 0) * (fastspec['OIII_5007_FLUX'] > 0) #(fastspec['HALPHA_CHI2'] < 1e4) )[0] niiha = np.log10(fastspec['NII_6584_FLUX'][good] / fastspec['HALPHA_FLUX'][good]) oiiihb = np.log10(fastspec['OIII_5007_FLUX'][good] / fastspec['HBETA_FLUX'][good]) ww = np.where((niiha > -0.05) * (niiha < 0.05) * (oiiihb < -0.5))[0] #log.info(fastspec[good][ww]['HALPHA_FLUX', 'NII_6584_FLUX']) zz = fastspec['CONTINUUM_Z'][good] ewhb = fastspec['HBETA_EW'][good] #rW1 = fastmeta['RW1'][good] #gr = fastmeta['GR'][good] _bpt(zz, 'Redshift', vmin=0, vmax=0.5, png=png.replace('.png', '-redshift.png')) _bpt(np.log10(ewhb), r'$\log_{10}\,\mathrm{EW}(\mathrm{H}\beta)$', png=png.replace('.png', '-ewhb.png')) #_bpt(rW1, r'$r-W1$', vmin=-0.3, vmax=0.9, png=png.replace('.png', '-rW1.png')) #_bpt(gi, r'$g-i$', vmin=0.6, vmax=1.3, png=png.replace('.png', '-gi.png')) def qa_fastspec_fullspec(targetclass, fastwave=None, fastflux=None, fastivar=None, fastmeta=None, fastspec=None, fastspecfile=None, CFit=None, EMFit=None, ncol=3, nrow=5, photometric_models=False, pdffile=None): """Full-spectrum QA. photometric_models - use the fits to the broadband continuum """ from fastspecfit.util import ivar2var, C_LIGHT from fastspecfit.templates.sample import SAMPLE_PROPERTIES as props from fastspecfit.templates.templates import rebuild_fastspec_spectrum, read_stacked_fastspec sns, _ = plot_style() if CFit is None or EMFit is None: from fastspecfit.continuum import ContinuumFit from fastspecfit.emlines import EMLineFit CFit = ContinuumFit() EMFit = EMLineFit() if fastwave is None: fastwave, fastflux, fastivar, fastmeta, fastspec = read_stacked_fastspec(fastspecfile) #fastspec = remove_undetected_lines(fastspec, EMFit.linetable, devshift=False) absmaglabel = props[targetclass]['absmag_label'] colorlabel = props[targetclass]['color_label'] nobj = len(fastmeta) icam = 0 zobj = np.unique(fastmeta['ZOBJ']) npage = len(zobj) inches_wide_perpanel = 4.0 inches_tall_perpanel = 3.0 if npage == 1: png = True else: png = False if pdffile: if png: pdffile = pdffile.replace('.pdf', '.png') else: from matplotlib.backends.backend_pdf import PdfPages pdf = PdfPages(pdffile) for ipage in [0]:#np.arange(npage): log.info('Building page {}/{}'.format(ipage+1, npage)) pageindx = np.where(zobj[ipage] == fastmeta['ZOBJ'])[0] absmag = sorted(set(fastmeta['ABSMAG'][pageindx])) # subpage nsubpage = len(absmag) for isubpage in [6]:#np.arange(nsubpage): subpageindx = np.where((absmag[isubpage] == fastmeta['ABSMAG'][pageindx]))[0] fig, allax = plt.subplots(nrow, ncol, figsize=(inches_wide_perpanel*ncol, inches_tall_perpanel*nrow), sharex=True, sharey=False)#True) for iplot, (indx, ax) in enumerate(zip(pageindx[subpageindx], allax.flatten())): #log.info(ipage, isubpage, iplot, len(pageindx), len(subpageindx)) # rebuild the best-fitting spectrum; these models have been # normalized already in iterative_stack modelwave, continuum, smooth_continuum, emlinemodel, data = rebuild_fastspec_spectrum( fastspec[indx], fastwave, fastflux[indx, :], fastivar[indx, :], CFit, EMFit) # rest-frame if photometric_models: modelwave_phot, continuum_phot = rebuild_fastspec_spectrum(fastspec[indx], _, _, _, CFit, EMFit, full_resolution=True, normalize_wave=props[targetclass]['normwave']) #modelwave_phot *= (1 + data['zredrock']) #continuum_phot /= (1 + data['zredrock']) zfact = (1 + data['zredrock']) #ax.plot(data['wave'][icam]/zfact, data['flux'][icam], color='skyblue') ax.plot(modelwave_phot, continuum_phot, color='gray') ax.plot(modelwave/zfact, (continuum+emlinemodel), color='firebrick', alpha=0.7) xmin, xmax = 900, 4e4 ww = np.where((modelwave_phot > xmin) * (modelwave_phot < xmax))[0] ymin, ymax = np.min(continuum_phot[ww]), np.max(continuum_phot[ww]) if np.max(emlinemodel) > ymax: pdb.set_trace() ymax = np.max(emlinemodel) else: # observed frame ax.plot(data['wave'][icam], data['flux'][icam], color='skyblue') ax.plot(modelwave, continuum+emlinemodel, color='firebrick', alpha=0.5) ax.plot(modelwave, continuum, color='blue', alpha=0.5) #ax.plot(modelwave, continuum+smooth_continuum, color='gray', alpha=0.3) ax.plot(modelwave, smooth_continuum, color='gray', alpha=0.7) xmin, xmax = modelwave.min(), modelwave.max() ymin, ymax = 1e6, -1e6 filtflux = median_filter(data['flux'][icam], 51, mode='nearest') sigflux = np.std(data['flux'][icam][data['ivar'][icam] > 0]) if -2 * sigflux < ymin: ymin = -2 * sigflux if sigflux * 5 > ymax: ymax = sigflux * 5 if np.max(filtflux) > ymax: ymax = np.max(filtflux) * 1.4 ax.text(0.96, 0.06, r'${:.2f}<{}<{:.2f}$'.format( fastmeta['COLORMIN'][indx], colorlabel, fastmeta['COLORMAX'][indx]), ha='right', va='bottom', transform=ax.transAxes, fontsize=10, bbox=dict(boxstyle='round', facecolor='gray', alpha=0.25)) ax.text(0.04, 0.96, '\n'.join(( 'N={}, S/N={:.1f}'.format( fastmeta['NOBJ'][indx], fastspec['CONTINUUM_SNR_ALL'][indx]), )), ha='left', va='top', transform=ax.transAxes, fontsize=10, bbox=dict(boxstyle='round', facecolor='gray', alpha=0.25)) print(ymin, ymax) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xticklabels([]) ax.set_yticklabels([]) if photometric_models: ax.set_xscale('log') plt.subplots_adjust(wspace=0.05, hspace=0.05, left=0.07, right=0.95, top=0.95, bottom=0.1) if iplot == ncol*nrow-1: break fig.text(0.52, 0.968, r'${:.2f}<z<{:.2f}\ {:.1f}<{}<{:.1f}$'.format( fastmeta['ZOBJMIN'][indx], fastmeta['ZOBJMAX'][indx], fastmeta['{}MIN'.format('ABSMAG')][indx], absmaglabel, fastmeta['{}MAX'.format('ABSMAG')][indx]), ha='center', va='center', fontsize=22) for rem in np.arange(ncol*nrow-iplot-1)+iplot+1: allax.flatten()[rem].axis('off') if pdffile and png is False: pdf.savefig(fig) plt.close() if pdffile: log.info('Writing {}'.format(pdffile)) if png: fig.savefig(pdffile) plt.close() else: pdf.close() def qa_fastspec_emlinespec(targetclass, fastwave=None, fastflux=None, fastivar=None, fastmeta=None, fastspec=None, fastspecfile=None, CFit=None, EMFit=None, ncol=3, nrow=5, pdffile=None): """QA of the fastspec emission-line spectra. """ from matplotlib.colors import Normalize from fastspecfit.templates.templates import remove_undetected_lines from fastspecfit.util import ivar2var, C_LIGHT from fastspecfit.templates.sample import SAMPLE_PROPERTIES as props from fastspecfit.templates.templates import rebuild_fastspec_spectrum, read_stacked_fastspec sns, _ = plot_style() if CFit is None or EMFit is None: from fastspecfit.continuum import ContinuumFit from fastspecfit.emlines import EMLineFit CFit = ContinuumFit() EMFit = EMLineFit() if fastwave is None: fastwave, fastflux, fastivar, fastmeta, fastspec = read_stacked_fastspec(fastspecfile) fastspec_fix = remove_undetected_lines(fastspec, EMFit.linetable, devshift=False) # plotting preferences cmap = plt.cm.get_cmap('jet') #cmap = sns.color_palette(as_cmap=True) cnorm = Normalize(vmin=np.min(fastmeta['ZOBJ']), vmax=np.max(fastmeta['ZOBJ'])) inches_wide = 16 inches_fullspec = 6 inches_perline = inches_fullspec / 2.0 nlinepanels = 4 nline = len(set(EMFit.linetable['plotgroup'])) nlinerows = np.ceil(nline / nlinepanels).astype(int) nrows = 1 + nlinerows height_ratios = np.hstack([1, [0.5]*nlinerows]) plotsig_default = 150.0 # 300.0 # [km/s] meanwaves, deltawaves, sigmas, linenames = [], [], [], [] for plotgroup in set(EMFit.linetable['plotgroup']): I = np.where(plotgroup == EMFit.linetable['plotgroup'])[0] linenames.append(EMFit.linetable['nicename'][I[0]]) meanwaves.append(np.mean(EMFit.linetable['restwave'][I])) deltawaves.append((np.max(EMFit.linetable['restwave'][I]) - np.min(EMFit.linetable['restwave'][I])) / 2) sigmas.append(plotsig_default) srt = np.argsort(meanwaves) meanwaves = np.hstack(meanwaves)[srt] deltawaves = np.hstack(deltawaves)[srt] sigmas = np.hstack(sigmas)[srt] linenames = np.hstack(linenames)[srt] absmaglabel = props[targetclass]['absmag_label'] colorlabel = props[targetclass]['color_label'] # how many pages? nobj = len(fastmeta) icam = 0 restcolor = np.unique(fastmeta['COLOR']) npage = len(restcolor) if npage == 1: png = True else: png = False if pdffile: if png: pdffile = pdffile.replace('.pdf', '.png') else: from matplotlib.backends.backend_pdf import PdfPages pdf = PdfPages(pdffile) # make the plot! for ipage in np.arange(npage): log.info('Building page {}/{}'.format(ipage+1, npage)) pageindx = np.where(restcolor[ipage] == fastmeta['COLOR'])[0] absmag = sorted(set(fastmeta['ABSMAG'][pageindx])) # subpage nsubpage = len(absmag) for isubpage in np.arange(nsubpage):#[:1]:#[::2]: subpageindx = np.where((absmag[isubpage] == fastmeta['ABSMAG'][pageindx]))[0] fig = plt.figure(figsize=(inches_wide, 2*inches_fullspec + inches_perline*nlinerows)) gs = fig.add_gridspec(nrows, nlinepanels, height_ratios=height_ratios) bigax = fig.add_subplot(gs[0, :]) ax, irow, icol = [], 1, 0 for iax in np.arange(nline): icol = iax % nlinepanels if iax > 0 and iax % nlinepanels == 0: irow += 1 xx = fig.add_subplot(gs[irow, icol]) ax.append(xx) bigymin, bigymax = 1e6, -1e6 lineymin, lineymax = np.zeros(nline)+1e6, np.zeros(nline)-1e6 removelabels = np.ones(nline, bool) for iplot, indx in enumerate(pageindx[subpageindx]): #log.info(ipage, isubpage, iplot, len(pageindx), len(subpageindx)) modelwave, continuum, smooth_continuum, emlinemodel, data = rebuild_fastspec_spectrum( fastspec[indx], fastwave, fastflux[indx, :], fastivar[indx, :], CFit, EMFit) #if fastmeta['IBIN'][indx] == 1262: # pdb.set_trace() redshift = data['zredrock'] emlineflux = data['flux'][icam] - continuum - smooth_continuum modelwave /= (1+redshift) # rest-frame label = 'z=[{:.2f}-{:.2f}] (N={})'.format( fastmeta['ZOBJMIN'][indx], fastmeta['ZOBJMAX'][indx], np.sum(fastmeta['ZOBJ'][pageindx[subpageindx]] == fastmeta['ZOBJ'][indx])) #bigax.plot(modelwave/(1+redshift), emlineflux, color='gray') bigax.plot(modelwave, emlinemodel, label=label, color=cmap(cnorm(fastmeta['ZOBJ'][indx]))) if -np.max(emlinemodel)*0.05 < bigymin: bigymin = -np.max(emlinemodel)*0.05 if np.max(emlinemodel)*1.1 > bigymax: bigymax = np.max(emlinemodel)*1.1 if np.max(emlinemodel) == 0.0: bigymin, bigymax = 0.0, 1.0 # zoom in on individual emission lines for iax, (meanwave, deltawave, sig, linename) in enumerate(zip( meanwaves, deltawaves, sigmas, linenames)): wmin = (meanwave - deltawave) - 8 * sig * meanwave / C_LIGHT wmax = (meanwave + deltawave) + 8 * sig * meanwave / C_LIGHT lineindx = np.where((modelwave > wmin) * (modelwave < wmax))[0] if len(lineindx) > 1: if np.min(emlinemodel[lineindx]) > 0.0: # at least one line kept (snr>3) removelabels[iax] = False ax[iax].plot(modelwave[lineindx], emlinemodel[lineindx], color=cmap(cnorm(fastmeta['ZOBJ'][indx]))) if -np.max(emlinemodel[lineindx])*0.05 < lineymin[iax]: lineymin[iax] = -np.max(emlinemodel[lineindx])*0.05 if np.max(emlinemodel[lineindx]) * 1.1 > lineymax[iax]: lineymax[iax] = np.max(emlinemodel[lineindx]) * 1.1 if np.abs(lineymax[iax]-lineymin[iax]) < 1e-2: removelabels[iax] = False for iax, xx in enumerate(ax): xx.text(0.08, 0.89, linenames[iax], ha='left', va='center', transform=xx.transAxes, fontsize=20) if removelabels[iax]: xx.set_ylim(0, 1) xx.set_xticklabels([]) xx.set_yticklabels([]) else: if lineymax[iax] == lineymin[iax]: lineymax[iax] = 1.0 xx.set_ylim(lineymin[iax], lineymax[iax]) xlim = xx.get_xlim() xx.xaxis.set_major_locator(ticker.MaxNLocator(2)) # don't repeat the legend labels hand, lab = bigax.get_legend_handles_labels() ulabels = dict(zip(lab, hand)) bigax.legend(ulabels.values(), ulabels.keys(), fontsize=18, loc='upper left') #bigax.legend(fontsize=18, loc='upper left') bigax.set_ylim(bigymin, bigymax) bigax.set_xlim(2600, 7200) # 3500, 9300) bigax.set_title(r'${:.2f}<{}<{:.2f}\ {:.1f}<{}<{:.1f}$'.format( fastmeta['COLORMIN'][indx], colorlabel, fastmeta['COLORMAX'][indx], fastmeta['ABSMAGMIN'][indx], absmaglabel, fastmeta['ABSMAGMAX'][indx])) #bigax.set_xlabel('Observed-frame Wavelength ($\AA$)') plt.subplots_adjust(wspace=0.28, left=0.07, right=0.95, top=0.95, bottom=0.1) if pdffile and png is False: pdf.savefig(fig) plt.close() if pdffile: log.info('Writing {}'.format(pdffile)) if png: fig.savefig(pdffile) plt.close() else: pdf.close() def qa_photometry_templates(targetclass, samplefile=None, templatefile=None, ntspace=5, png=None): """Compare the color-color tracks of the templates to the data. """ from fastspecfit.templates.sample import read_parent_sample from fastspecfit.templates.templates import read_templates if ntspace == 1: prefix = 'All ' else: prefix = '' sns, _ = plot_style() cmap = plt.cm.get_cmap('RdYlBu') mincnt = 1 phot, spec, meta = read_parent_sample(samplefile) def template_colors_zgrid(templatefile, targetclass): """Compute the colors of the templates on a fixed redshift grid. """ from speclite import filters filt = filters.load_filters('decam2014-g', 'decam2014-r', 'decam2014-z', 'wise2010-W1') wave, flux, meta = read_templates(templatefile) nt = len(meta) print('Number of templates = {}'.format(nt)) print(wave.min(), wave.max()) dz = 0.1 if targetclass == 'lrg': zmin, zmax = 0.0, 1.4 elif targetclass == 'elg': zmin, zmax = 0.0, 1.7 elif targetclass == 'bgs': zmin, zmax = 0.0, 0.6 else: pass nz = np.round( (zmax - zmin) / dz ).astype('i2') print('Number of redshift points = {}'.format(nz)) cc = dict( redshift = np.linspace(zmin, zmax, nz), gr = np.zeros((nt, nz), 'f4'), rz = np.zeros((nt, nz), 'f4'), rW1 = np.zeros((nt, nz), 'f4'), zW1 = np.zeros((nt, nz), 'f4') ) for iz, red in enumerate(cc['redshift']): zwave = wave.astype('float') * (1 + red) maggies = filt.get_ab_maggies(flux, zwave, mask_invalid=False) cc['gr'][:, iz] = -2.5 * np.log10(maggies['decam2014-g'] / maggies['decam2014-r'] ) cc['rz'][:, iz] = -2.5 * np.log10(maggies['decam2014-r'] / maggies['decam2014-z'] ) cc['rW1'][:, iz] = -2.5 * np.log10(maggies['decam2014-r'] / maggies['wise2010-W1'] ) cc['zW1'][:, iz] = -2.5 * np.log10(maggies['decam2014-z'] / maggies['wise2010-W1'] ) return cc # compute colors on a grid log.info('Reading {}'.format(templatefile)) template_colors = template_colors_zgrid(templatefile, targetclass) nt, nz = template_colors['gr'].shape zmin = '{:.1f}'.format(template_colors['redshift'].min()) zmax = '{:.1f}'.format(template_colors['redshift'].max()) dz = '{:.1f}'.format(template_colors['redshift'][1] - template_colors['redshift'][0]) def elg_obs(phot, png=None): grobslim = (-0.8, 1.8) rzobslim = (-1, 2.2) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) ax1.text(0.05, 0.9, 'Data', ha='left', va='bottom', transform=ax1.transAxes, fontsize=14) for tt in np.arange(0, nt, ntspace): ax2.plot(template_colors['rz'][tt, :], template_colors['gr'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax2.scatter(template_colors['rz'][tt, 0], template_colors['gr'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax2.text(0.17, 0.42, 'z=0.0', ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.yaxis.set_label_position('right') ax2.yaxis.tick_right() ax2.set_xlabel(r'$(r - z)_{\rm obs}$') ax2.set_ylabel(r'$(g - r)_{\rm obs}$') ax2.set_xlim(rzobslim) ax2.set_ylim(grobslim) for aa in (ax1, ax2): aa.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.87, bottom=0.19, wspace=0.05) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def bgs_obs(phot, png=None): grobslim = (-0.5, 2.5) rzobslim = (-0.5, 1.5) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) ax1.grid(True) ax1.text(0.05, 0.9, 'Data', ha='left', va='bottom', transform=ax1.transAxes, fontsize=14) for tt in np.arange(0, nt, ntspace): ax2.plot(template_colors['rz'][tt, :], template_colors['gr'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax2.scatter(template_colors['rz'][tt, 0], template_colors['gr'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax2.text(0.2, 0.1, 'z=0.0', ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.set_xlim(rzobslim) ax2.set_ylim(grobslim) ax2.set_xlabel(r'$(r - z)_{\rm obs}$') ax2.set_ylabel(r'$(g - r)_{\rm obs}$') ax2.yaxis.set_label_position('right') ax2.yaxis.tick_right() ax2.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.87, bottom=0.19, wspace=0.05) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def lrg_obs(phot, png=None): grobslim = (-0.2, 3) rzobslim = (0.0, 3) rW1obslim = (-0.3, 5.5) zW1obslim = (-0.5, 3) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.hexbin(phot['RMAG']-phot['W1MAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, #norm=LogNorm(vmin=1, vmax=100), extent=np.hstack((rW1obslim, grobslim))) ax1.set_xlabel(r'$(r - W1)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rW1obslim) ax1.set_ylim(grobslim) ax1.text(0.05, 0.9, 'Data', ha='left', va='bottom', transform=ax1.transAxes, fontsize=14) for tt in np.arange(0, nt, ntspace): ax2.plot(template_colors['rW1'][tt, :], template_colors['gr'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax2.scatter(template_colors['rW1'][tt, 0], template_colors['gr'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax2.text(0.1, 0.05, 'z=0.0', ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.yaxis.set_label_position('right') ax2.yaxis.tick_right() ax2.set_xlabel(r'$(r - W1)_{\rm obs}$') ax2.set_ylabel(r'$(g - r)_{\rm obs}$') ax2.set_xlim(rW1obslim) ax2.set_ylim(grobslim) ax3.hexbin(phot['ZMAG']-phot['W1MAG'], phot['RMAG']-phot['ZMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zW1obslim, rzobslim))) ax3.set_ylabel(r'$(r - z)_{\rm obs}$') ax3.set_xlabel(r'$(z - W1)_{\rm obs}$') ax3.set_xlim(zW1obslim) ax3.set_ylim(rzobslim) ax3.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax3.yaxis.set_major_locator(ticker.MultipleLocator(1)) for tt in np.arange(0, nt, ntspace): ax4.plot(template_colors['zW1'][tt, :], template_colors['rz'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax4.scatter(template_colors['zW1'][tt, 0], template_colors['rz'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax4.text(0.05, 0.3, 'z=0.0', ha='left', va='bottom', transform=ax4.transAxes, fontsize=14) #ax4.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), # ha='left', va='bottom', # transform=ax4.transAxes, fontsize=14) ax4.yaxis.set_label_position('right') ax4.yaxis.tick_right() ax4.set_ylabel(r'$(r - z)_{\rm obs}$') ax4.set_xlabel(r'$(z - W1)_{\rm obs}$') ax4.set_xlim(zW1obslim) ax4.set_ylim(rzobslim) ax4.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax4.yaxis.set_major_locator(ticker.MultipleLocator(1)) for aa in (ax1, ax2, ax3, ax4): aa.grid(True) plt.subplots_adjust(top=0.95, left=0.1, right=0.9, bottom=0.13, wspace=0.05, hspace=0.28) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() # make the plots! if targetclass == 'lrg': lrg_obs(phot, png=png) elif targetclass == 'elg': elg_obs(phot, png=png) elif targetclass == 'bgs': bgs_obs(phot, png=png) else: pass def qa_photometry(targetclass, samplefile=None, png_obs=None, png_rest=None, png_rest_bins=None): """QA of the observed- and rest-frame photometry. """ from matplotlib.colors import LogNorm from fastspecfit.templates.sample import read_parent_sample, stacking_bins sns, _ = plot_style() cmap = plt.cm.get_cmap('RdYlBu') mincnt = 1 phot, spec, meta = read_parent_sample(samplefile) bins = stacking_bins(targetclass, verbose=True) def bgs_obs(phot, png=None): robslim = (15, 21.0) grobslim = (-0.2, 2.5) rzobslim = (-0.5, 1.5) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5), sharey=True) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) hb = ax2.hexbin(phot['RMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((robslim, grobslim))) ax2.set_xlabel(r'$r_{\rm obs}$') ax2.set_ylim(grobslim) ax2.set_xlim(robslim) cax = fig.add_axes([0.88, 0.12, 0.02, 0.83]) formatter = ticker.LogFormatter(10, labelOnlyBase=False) fig.colorbar(hb, cax=cax, format=formatter, label='Number of Galaxies') for aa in (ax1, ax2): aa.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.85, bottom=0.19, wspace=0.07) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def bgs_rest(phot, meta, bins=None, png=None): zlim = (0.0, 0.6) Mrlim = (-16, -25) grlim = (-0.2, 1.2) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.hexbin(meta['Z'], phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zlim, Mrlim))) ax1.set_ylim(Mrlim) ax1.set_xlim(zlim) ax1.set_xlabel('Redshift') ax1.set_ylabel(r'$M_{0.0r}$') #ax1.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) if bins: dx, dy = bins['ZOBJMAX'][0]-bins['ZOBJMIN'][0], bins['ABSMAGMAX'][0]-bins['ABSMAGMIN'][0] [ax1.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ZOBJMIN'], bins['ABSMAGMIN'])] ax2.hexbin(meta['Z'], phot['ABSMAG_G']-phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zlim, grlim))) ax2.set_xlim(zlim) ax2.set_ylim(grlim) ax2.set_xlabel('Redshift') ax2.set_ylabel(r'$^{0.0}(g - r)$')#, labelpad=-10) #ax2.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) #ax2.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) if bins: dx, dy = bins['ZOBJMAX'][0]-bins['ZOBJMIN'][0], bins['COLORMAX'][0]-bins['COLORMIN'][0] [ax2.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ZOBJMIN'], bins['COLORMIN'])] hb = ax3.hexbin(phot['ABSMAG_R'], phot['ABSMAG_G']-phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((Mrlim, grlim))) ax3.set_xlabel(r'$M_{0.0r}$') ax3.set_ylabel(r'$^{0.0}(g - r)$')#, labelpad=-10) ax3.set_xlim(Mrlim) ax3.set_ylim(grlim) #ax3.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) if bins: dx, dy = bins['ABSMAGMAX'][0]-bins['ABSMAGMIN'][0], bins['COLORMAX'][0]-bins['COLORMIN'][0] [ax3.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ABSMAGMIN'], bins['COLORMIN'])] ax4.axis('off') cax = fig.add_axes([0.49, 0.12, 0.02, 0.36]) #cax = fig.add_axes([0.54, 0.4, 0.35, 0.03]) formatter = ticker.LogFormatter(10, labelOnlyBase=False) fig.colorbar(hb, format=formatter, label='Number of Galaxies', cax=cax)#, orientation='horizontal') for aa in (ax1, ax2, ax3): aa.grid(True) plt.subplots_adjust(left=0.1, top=0.95, wspace=0.3, hspace=0.3, right=0.88, bottom=0.13) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def elg_obs(phot, png=None): gobslim = (19.5, 24.5) grobslim = (-1.2, 1.2) rzobslim = (-1.5, 2.2) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5), sharey=True) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) hb = ax2.hexbin(phot['GMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((gobslim, grobslim))) ax2.set_xlabel(r'$g_{\rm obs}$') ax2.set_ylim(grobslim) ax2.set_xlim(gobslim) cax = fig.add_axes([0.88, 0.12, 0.02, 0.83]) formatter = ticker.LogFormatter(10, labelOnlyBase=False) fig.colorbar(hb, cax=cax, format=formatter, label='Number of Galaxies') for aa in (ax1, ax2): aa.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.85, bottom=0.19, wspace=0.07) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def elg_rest(phot, meta, bins=None, png=None): zlim = (0.5, 1.6) Mglim = (-18, -25) grlim = (-0.5, 1.0) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.hexbin(meta['Z'], phot['ABSMAG_G'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zlim, Mglim))) ax1.set_ylim(Mglim) ax1.set_xlim(zlim) ax1.set_xlabel('Redshift') ax1.set_ylabel(r'$M_{0.0g}$') ax1.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) if bins: dx, dy = bins['ZOBJMAX'][0]-bins['ZOBJMIN'][0], bins['ABSMAGMAX'][0]-bins['ABSMAGMIN'][0] [ax1.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ZOBJMIN'], bins['ABSMAGMIN'])] ax2.hexbin(meta['Z'], phot['ABSMAG_G']-phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zlim, grlim))) ax2.set_xlim(zlim) ax2.set_ylim(grlim) ax2.set_xlabel('Redshift') ax2.set_ylabel(r'$^{0.0}(g - r)$', labelpad=-10) ax2.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) ax2.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) if bins: dx, dy = bins['ZOBJMAX'][0]-bins['ZOBJMIN'][0], bins['COLORMAX'][0]-bins['COLORMIN'][0] [ax2.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ZOBJMIN'], bins['COLORMIN'])] hb = ax3.hexbin(phot['ABSMAG_G'], phot['ABSMAG_G']-phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((Mglim, grlim))) ax3.set_xlabel(r'$M_{0.0g}$') ax3.set_ylabel(r'$^{0.0}(g - r)$', labelpad=-10) ax3.set_xlim(Mglim) ax3.set_ylim(grlim) ax3.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) if bins: dx, dy = bins['ABSMAGMAX'][0]-bins['ABSMAGMIN'][0], bins['COLORMAX'][0]-bins['COLORMIN'][0] [ax3.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ABSMAGMIN'], bins['COLORMIN'])] ax4.axis('off') cax = fig.add_axes([0.49, 0.12, 0.02, 0.36]) #cax = fig.add_axes([0.54, 0.4, 0.35, 0.03]) formatter = ticker.LogFormatter(10, labelOnlyBase=False) fig.colorbar(hb, format=formatter, label='Number of Galaxies', cax=cax)#, orientation='horizontal') for aa in (ax1, ax2, ax3): aa.grid(True) plt.subplots_adjust(left=0.1, top=0.95, wspace=0.3, hspace=0.3, right=0.88, bottom=0.13) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def lrg_obs(phot, png=None): zobslim = (16, 22) W1obslim = (16, 21) grobslim = (0.0, 4) rzobslim = (0.0, 3) rW1obslim = (0.7, 4.5) zW1obslim = (0, 2.7) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.hexbin(phot['RMAG']-phot['W1MAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, #norm=LogNorm(vmin=1, vmax=100), extent=np.hstack((rW1obslim, grobslim))) ax1.set_xlabel(r'$(r - W1)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rW1obslim) ax1.set_ylim(grobslim) ax2.hexbin(phot['ZMAG']-phot['W1MAG'], phot['RMAG']-phot['ZMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=
np.hstack((zW1obslim, rzobslim))
numpy.hstack
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data =
np.array([])
numpy.array
from torch.utils.data import Dataset import numpy as np import random import os import time from tqdm import tqdm import torch import logging import json from SoccerNet.Downloader import getListGames from SoccerNet.Downloader import SoccerNetDownloader from SoccerNet.Evaluation.utils import AverageMeter, EVENT_DICTIONARY_V2, INVERSE_EVENT_DICTIONARY_V2 from SoccerNet.Evaluation.utils import EVENT_DICTIONARY_V1, INVERSE_EVENT_DICTIONARY_V1 def feats2clip(feats, stride, clip_length, padding = "replicate_last", off=0): if padding =="zeropad": print("beforepadding", feats.shape) pad = feats.shape[0] - int(feats.shape[0]/stride)*stride print("pad need to be", clip_length-pad) m = torch.nn.ZeroPad2d((0, 0, clip_length-pad, 0)) feats = m(feats) print("afterpadding", feats.shape) # nn.ZeroPad2d(2) idx = torch.arange(start=0, end=feats.shape[0]-1, step=stride) idxs = [] for i in torch.arange(-off, clip_length-off): idxs.append(idx+i) idx = torch.stack(idxs, dim=1) if padding=="replicate_last": idx = idx.clamp(0, feats.shape[0]-1) # print(idx) return feats[idx,...] class SoccerNetClips(Dataset): def __init__(self, path, features="ResNET_PCA512.npy", split=["train"], version=1, framerate=2, window_size=15): self.path = path self.listGames = getListGames(split) self.features = features self.window_size_frame = window_size*framerate self.version = version if version == 1: self.num_classes = 3 self.labels="Labels.json" elif version == 2: self.dict_event = EVENT_DICTIONARY_V2 self.num_classes = 17 self.labels="Labels-v2.json" logging.info("Checking/Download features and labels locally") downloader = SoccerNetDownloader(path) downloader.downloadGames(files=[self.labels, f"1_{self.features}", f"2_{self.features}"], split=split, verbose=False,randomized=True) logging.info("Pre-compute clips") self.game_feats = list() self.game_labels = list() # game_counter = 0 for game in tqdm(self.listGames): # Load features feat_half1 = np.load(os.path.join(self.path, game, "1_" + self.features)) feat_half1 = feat_half1.reshape(-1, feat_half1.shape[-1]) feat_half2 = np.load(os.path.join(self.path, game, "2_" + self.features)) feat_half2 = feat_half2.reshape(-1, feat_half2.shape[-1]) feat_half1 = feats2clip(torch.from_numpy(feat_half1), stride=self.window_size_frame, clip_length=self.window_size_frame) feat_half2 = feats2clip(torch.from_numpy(feat_half2), stride=self.window_size_frame, clip_length=self.window_size_frame) # Load labels labels = json.load(open(os.path.join(self.path, game, self.labels))) label_half1 = np.zeros((feat_half1.shape[0], self.num_classes+1)) label_half1[:,0]=1 # those are BG classes label_half2 = np.zeros((feat_half2.shape[0], self.num_classes+1)) label_half2[:,0]=1 # those are BG classes for annotation in labels["annotations"]: time = annotation["gameTime"] event = annotation["label"] half = int(time[0]) minutes = int(time[-5:-3]) seconds = int(time[-2::]) frame = framerate * ( seconds + 60 * minutes ) if version == 1: if "card" in event: label = 0 elif "subs" in event: label = 1 elif "soccer" in event: label = 2 else: continue elif version == 2: if event not in self.dict_event: continue label = self.dict_event[event] # if label outside temporal of view if half == 1 and frame//self.window_size_frame>=label_half1.shape[0]: continue if half == 2 and frame//self.window_size_frame>=label_half2.shape[0]: continue if half == 1: label_half1[frame//self.window_size_frame][0] = 0 # not BG anymore label_half1[frame//self.window_size_frame][label+1] = 1 # that's my class if half == 2: label_half2[frame//self.window_size_frame][0] = 0 # not BG anymore label_half2[frame//self.window_size_frame][label+1] = 1 # that's my class self.game_feats.append(feat_half1) self.game_feats.append(feat_half2) self.game_labels.append(label_half1) self.game_labels.append(label_half2) self.game_feats = np.concatenate(self.game_feats) self.game_labels = np.concatenate(self.game_labels) def __getitem__(self, index): """ Args: index (int): Index Returns: clip_feat (np.array): clip of features. clip_labels (np.array): clip of labels for the segmentation. clip_targets (np.array): clip of targets for the spotting. """ return self.game_feats[index,:,:], self.game_labels[index,:] def __len__(self): return len(self.game_feats) class SoccerNetClipsTesting(Dataset): def __init__(self, path, features="ResNET_PCA512.npy", split=["test"], version=1, framerate=2, window_size=15): self.path = path self.listGames = getListGames(split) self.features = features self.window_size_frame = window_size*framerate self.framerate = framerate self.version = version self.split=split if version == 1: self.dict_event = EVENT_DICTIONARY_V1 self.num_classes = 3 self.labels="Labels.json" elif version == 2: self.dict_event = EVENT_DICTIONARY_V2 self.num_classes = 17 self.labels="Labels-v2.json" logging.info("Checking/Download features and labels locally") downloader = SoccerNetDownloader(path) for s in split: if s == "challenge": downloader.downloadGames(files=[f"1_{self.features}", f"2_{self.features}"], split=[s], verbose=False,randomized=True) else: downloader.downloadGames(files=[self.labels, f"1_{self.features}", f"2_{self.features}"], split=[s], verbose=False,randomized=True) def __getitem__(self, index): """ Args: index (int): Index Returns: feat_half1 (np.array): features for the 1st half. feat_half2 (np.array): features for the 2nd half. label_half1 (np.array): labels (one-hot) for the 1st half. label_half2 (np.array): labels (one-hot) for the 2nd half. """ # Load features feat_half1 = np.load(os.path.join(self.path, self.listGames[index], "1_" + self.features)) feat_half1 = feat_half1.reshape(-1, feat_half1.shape[-1]) feat_half2 = np.load(os.path.join(self.path, self.listGames[index], "2_" + self.features)) feat_half2 = feat_half2.reshape(-1, feat_half2.shape[-1]) # Load labels label_half1 =
np.zeros((feat_half1.shape[0], self.num_classes))
numpy.zeros
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_Winding_num.ipynb (unless otherwise specified). __all__ = ['Fukui_Kitaev_LR_QP_wn', 'Fukui_Kitaev_LR_QP_inf_wn', 'Real_space_Kitaev_LR_QP_wn', 'w', 'Chiral_Kitaev_QP_LR_wn', 'd_num_h_Kitaev_LR_QP_inf', 'd_num_h_Kitaev_LR_QP_inf', 'Fukui_Kitaev_AA_2D_chern', 'Fukui_Kitaev_AA_2D_chern_inf', 'd_num_k_H_Kitaev_LR_QP', 'd_num_phase_H_Kitaev_LR_QP', 'compute_Kitaev_AA_wn_TKNN', 'd_num_k_H_Kitaev_LR_QP_inf', 'd_num_phase_H_Kitaev_LR_QP_inf', 'compute_Kitaev_AA_wn_TKNN_inf'] # Cell from .Hamiltonians import * import numpy as np from mpmath import * # Cell def Fukui_Kitaev_LR_QP_wn(params, k_l, mu, L, rot = True, close_loop = True): '''Compute the winding number using Fukui for the finite AAH-LR Kitaev chain.''' Fn = params['Fn'] U = np.zeros(len(k_l), dtype=complex) F = 0 if close_loop == False: k_l_range = len(k_l)-1 else: k_l_range = len(k_l) for i in range(k_l_range): evals, evecs = np.linalg.eigh(H_Kitaev_LR_QP(params, k_l[i], mu, L, rot)) evecs1 = evecs[:,:Fn] if i == range(len(k_l))[-1]: k = k_l[0] else: k = k_l[i+1] evals, evecs = np.linalg.eigh(H_Kitaev_LR_QP(params, k, mu, L, rot)) evecs2 = evecs[:,:Fn] Ui=np.dot(np.conjugate(np.transpose(evecs2)),evecs1) Ui=np.linalg.det(Ui) #Ui=Ui/np.abs(Ui) U[i]=Ui F = np.imag(np.log(np.prod(U))) return F, U def Fukui_Kitaev_LR_QP_inf_wn(params, k_l, mu, rot = True, close_loop = True): '''Compute the winding number using Fukui for the infinite AAH-LR Kitaev chain.''' Fn = params['Fn'] U = np.zeros(len(k_l), dtype=complex) F = 0 if close_loop == False: k_l_range = len(k_l)-1 else: k_l_range = len(k_l) for i in range(k_l_range): evals, evecs = np.linalg.eigh(H_Kitaev_LR_QP_inf(params, k_l[i], mu, rot)) evecs1 = evecs[:,:Fn] if i == range(len(k_l))[-1]: k = k_l[0] else: k = k_l[i+1] evals, evecs = np.linalg.eigh(H_Kitaev_LR_QP_inf(params, k, mu, rot)) evecs2 = evecs[:,:Fn] Ui=np.dot(np.conjugate(np.transpose(evecs2)),evecs1) Ui=
np.linalg.det(Ui)
numpy.linalg.det
import os import numpy as np from matplotlib import pyplot from mpl_toolkits.mplot3d import Axes3D from time import sleep def warm_up_exercise(): A = np.eye(5) return A def plot_data(x, y): figure = pyplot.figure() pyplot.plot(x, y, 'ro', ms=10, mec='k') pyplot.ylabel('Profit in $10,000s') pyplot.xlabel('Population of City in 10,000s') def plot_cost_hist(J_hist, rate): pyplot.plot(np.arange(len(J_hist)), J_hist, '-', ms=10, mec='k') pyplot.ylabel('Cost J') pyplot.xlabel('Iterations') pyplot.plot(np.arange(len(J_hist)), J_hist, '-') def compute_cost(X, y, theta): m = y.shape[0] J = (1/(2*m)) * np.sum( np.square((np.dot(X, theta) - y)) ) return J def gradient_descent(X, y, theta, alpha, num_iters): m = y.shape[0] adjusted_theta = theta.copy() J_hist = [] for i in range(0, num_iters): adjusted_theta -= (alpha / m) * (np.dot(X, adjusted_theta) - y).dot(X) J_hist.append(compute_cost(X, y, adjusted_theta)) return J_hist, adjusted_theta def predict(X, theta): pred = np.dot(X, theta) print("For population =", X[1]*10000, ' we predict a profit of {:.2f}\n'.format(pred*10000)) def visualize_cost(X, y, trained_theta): # Step over theta0 values in range -10,10 with 100 steps # theta0_vals => (100 x 1) theta0_vals = np.linspace(-10,10,100) # Step over theta1 values in range -4 4 with 100 steps # thteta1_vals => (100 x 1) theta1_vals = np.linspace(-1,4,100) # Create a matrix of costs at different values of theta0 and theta1 # J_vals => (100 x 100) J_vals =
np.zeros((theta0_vals.shape[0], theta1_vals.shape[0]))
numpy.zeros
import transform import unittest import numpy as np import sys sys.path.insert(0, '../') import pdb import rotateCorrection as rc # another crude transformation computer def _angle(x1, y1, x2, y2): # inputs are in angle dx = x2 - x1 dy = y2 - y1 if dy < 0: return np.arctan(abs(dy)/dx) else: return -np.arctan(abs(dy)/dx) def simple_angle_converter(pointpx, top_right, top_left, bottom_left, bottom_right, imagesize): """ All coordinate tuples are in (x, y) i.e. (lon, lat) convention. pointpx (x, y): pixel coordinates counted from top left corner. top_right, top_left, bottom_left, bottom_right: (lon, lat) pairs imagesize: (width, height) tuple """ # first wrangle inputs image_width, image_height = imagesize px, py = pointpx tr, tl, bl, br = top_right, top_left, bottom_left, bottom_right # now start converting image_width_in_lon = (tr[0] - tl[0] + br[0] - bl[0])/2 image_height_in_lat = (tl[1] - bl[1] + tr[1] - br[1])/2 top_left_lon, top_left_lat = tl # 2. now convert (px, py) -> (dlon, dlat) dlon = px*image_width_in_lon/image_width dlat = py*image_height_in_lat/image_height # compute the angle via simple trig. angle_est1 = _angle(tl[0], tl[1], tr[0], tr[1]) angle_est2 = _angle(bl[0], bl[1], br[0], br[1]) angle = (angle_est1+angle_est2)/2 print(f"angle: {angle}") rot_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) # apply reverse rotation: x2, y2 (unit: meter) x2, y2 = np.dot(rot_matrix, np.array([dlon, dlat])) # convert x2, y2 to lon, lat actual_lon = top_left_lon + x2 actual_lat = top_left_lat - y2 return actual_lon, actual_lat class TestTransformLukas(unittest.TestCase): def test_unrotated_picture(self): width = 10 height = 60 lon_min = 20 lon_max = 30 lat_min = 10 lat_max = 70 top_left = np.array([lon_min, lat_max]) top_right = np.array([lon_max, lat_max]) bottom_left = np.array([lon_min, lat_min]) bottom_right = np.array([lon_max, lat_min]) # check that top left is sane res = transform.transform(np.array([0, 0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_left)) # check that top right is sane res = transform.transform(np.array([width,0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_right)) # check that bottom left is sane res = transform.transform(np.array([0,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_left)) # check that bottom right is sane res = transform.transform(np.array([width,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_right)) class TestBasicTransform(unittest.TestCase): def test_unrotated_picture(self): width = 10 height = 60 lon_min = 20 lon_max = 30 lat_min = 10 lat_max = 70 top_left = np.array([lon_min, lat_max]) top_right = np.array([lon_max, lat_max]) bottom_left =
np.array([lon_min, lat_min])
numpy.array
# -*- coding: utf-8 -*- import numpy as np import multiprocessing import torch from torch import nn, Tensor from ctp.kernels import GaussianKernel from ctp.clutrr.models import BatchNeuralKB, BatchHoppy, BatchUnary, BatchMulti from ctp.reformulators import SymbolicReformulator from typing import List, Dict, Tuple, Optional import pytest torch.set_num_threads(multiprocessing.cpu_count()) def encode_relation(facts: List[Tuple[str, str, str]], relation_embeddings: nn.Embedding, relation_to_idx: Dict[str, int], device: Optional[torch.device] = None) -> Tensor: indices_np = np.array([relation_to_idx[r] for _, r, _ in facts], dtype=np.int64) indices = torch.from_numpy(indices_np) if device is not None: indices = indices.to(device) return relation_embeddings(indices) def encode_arguments(facts: List[Tuple[str, str, str]], entity_embeddings: nn.Embedding, entity_to_idx: Dict[str, int], device: Optional[torch.device] = None) -> Tuple[Tensor, Tensor]: indices_np = np.array([[entity_to_idx[s], entity_to_idx[o]] for s, _, o in facts], dtype=np.int64) indices = torch.from_numpy(indices_np) if device is not None: indices = indices.to(device) emb = entity_embeddings(indices) return emb[:, 0, :], emb[:, 1, :] @pytest.mark.light def test_adv_v1(): embedding_size = 20 torch.manual_seed(0) rs = np.random.RandomState(0) triples = [ ('a', 'p', 'b'), ('b', 'q', 'c'), ('c', 'p', 'd'), ('d', 'q', 'e'), ('e', 'p', 'f'), ('f', 'q', 'g'), ('g', 'p', 'h'), ('h', 'q', 'i'), ('i', 'p', 'l'), ('l', 'q', 'm'), ('m', 'p', 'n'), ('n', 'q', 'o'), ('o', 'p', 'p'), ('p', 'q', 'q'), ('q', 'p', 'r'), ('r', 'q', 's'), ('s', 'p', 't'), ('t', 'q', 'u'), ('u', 'p', 'v'), ('v', 'q', 'w'), ('x', 'r', 'y'), ('x', 's', 'y') ] entity_lst = sorted({e for (e, _, _) in triples} | {e for (_, _, e) in triples}) predicate_lst = sorted({p for (_, p, _) in triples}) nb_entities = len(entity_lst) nb_predicates = len(predicate_lst) entity_to_index = {e: i for i, e in enumerate(entity_lst)} predicate_to_index = {p: i for i, p in enumerate(predicate_lst)} with torch.no_grad(): kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) rel_emb = encode_relation(facts=triples, relation_embeddings=predicate_embeddings, relation_to_idx=predicate_to_index) arg1_emb, arg2_emb = encode_arguments(facts=triples, entity_embeddings=entity_embeddings, entity_to_idx=entity_to_index) batch_size = 12 fact_size = rel_emb.shape[0] entity_size = entity_embeddings.weight.shape[0] rel_emb = rel_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) arg1_emb = arg1_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) arg2_emb = arg2_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) nb_facts = torch.tensor([fact_size for _ in range(batch_size)], dtype=torch.long) emb = entity_embeddings.weight.view(1, entity_size, -1).repeat(batch_size, 1, 1) _nb_entities = torch.tensor([entity_size for _ in range(batch_size)], dtype=torch.long) facts = [rel_emb, arg1_emb, arg2_emb] model = BatchNeuralKB(kernel=kernel) indices = torch.from_numpy(np.array([predicate_to_index['p'], predicate_to_index['q']])) reformulator = SymbolicReformulator(predicate_embeddings, indices) hoppy0 = BatchHoppy(model, hops_lst=[(reformulator, False)], depth=0) hoppy1 = BatchHoppy(model, hops_lst=[(reformulator, False)], depth=1) hoppy2 = BatchHoppy(model, hops_lst=[(reformulator, False)], depth=2) hoppy3 = BatchHoppy(model, hops_lst=[(reformulator, False)], depth=3) xs_np = rs.randint(nb_entities, size=batch_size) xp_np = rs.randint(nb_predicates, size=batch_size) xo_np = rs.randint(nb_entities, size=batch_size) xs_np[0] = entity_to_index['a'] xp_np[0] = predicate_to_index['r'] xo_np[0] = entity_to_index['c'] xs_np[1] = entity_to_index['a'] xp_np[1] = predicate_to_index['r'] xo_np[1] = entity_to_index['e'] xs_np[2] = entity_to_index['a'] xp_np[2] = predicate_to_index['r'] xo_np[2] = entity_to_index['g'] xs_np[3] = entity_to_index['a'] xp_np[3] = predicate_to_index['r'] xo_np[3] = entity_to_index['i'] xs_np[4] = entity_to_index['a'] xp_np[4] = predicate_to_index['r'] xo_np[4] = entity_to_index['m'] xs_np[5] = entity_to_index['a'] xp_np[5] = predicate_to_index['r'] xo_np[5] = entity_to_index['o'] xs_np[6] = entity_to_index['a'] xp_np[6] = predicate_to_index['r'] xo_np[6] = entity_to_index['q'] xs_np[7] = entity_to_index['a'] xp_np[7] = predicate_to_index['r'] xo_np[7] = entity_to_index['s'] xs_np[8] = entity_to_index['a'] xp_np[8] = predicate_to_index['r'] xo_np[8] = entity_to_index['u'] xs = torch.from_numpy(xs_np) xp = torch.from_numpy(xp_np) xo = torch.from_numpy(xo_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) inf0 = hoppy0.score(xp_emb, xs_emb, xo_emb, facts=facts, nb_facts=nb_facts, entity_embeddings=emb, nb_entities=_nb_entities) inf1 = hoppy1.score(xp_emb, xs_emb, xo_emb, facts=facts, nb_facts=nb_facts, entity_embeddings=emb, nb_entities=_nb_entities) inf2 = hoppy2.score(xp_emb, xs_emb, xo_emb, facts=facts, nb_facts=nb_facts, entity_embeddings=emb, nb_entities=_nb_entities) inf3 = hoppy3.score(xp_emb, xs_emb, xo_emb, facts=facts, nb_facts=nb_facts, entity_embeddings=emb, nb_entities=_nb_entities) inf0_np = inf0.cpu().numpy() inf1_np = inf1.cpu().numpy() inf2_np = inf2.cpu().numpy() inf3_np = inf3.cpu().numpy() np.testing.assert_allclose(inf0_np, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf1_np, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf2_np, [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf3_np, [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) print(inf3_np) @pytest.mark.light def test_adv_v2(): embedding_size = 20 torch.manual_seed(0) rs = np.random.RandomState(0) triples = [ ('a', 'p', 'b'), ('a', 'p', 'd'), ('c', 'p', 'd'), ('e', 'q', 'f'), ('f', 'p', 'c'), ('x', 'r', 'y') ] entity_lst = sorted({e for (e, _, _) in triples} | {e for (_, _, e) in triples}) predicate_lst = sorted({p for (_, p, _) in triples}) nb_entities = len(entity_lst) nb_predicates = len(predicate_lst) entity_to_index = {e: i for i, e in enumerate(entity_lst)} predicate_to_index = {p: i for i, p in enumerate(predicate_lst)} with torch.no_grad(): kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) rel_emb = encode_relation(facts=triples, relation_embeddings=predicate_embeddings, relation_to_idx=predicate_to_index) arg1_emb, arg2_emb = encode_arguments(facts=triples, entity_embeddings=entity_embeddings, entity_to_idx=entity_to_index) batch_size = 6 fact_size = rel_emb.shape[0] entity_size = entity_embeddings.weight.shape[0] rel_emb = rel_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) arg1_emb = arg1_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) arg2_emb = arg2_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) nb_facts = torch.tensor([fact_size for _ in range(batch_size)], dtype=torch.long) emb = entity_embeddings.weight.view(1, entity_size, -1).repeat(batch_size, 1, 1) _nb_entities = torch.tensor([entity_size for _ in range(batch_size)], dtype=torch.long) facts = [rel_emb, arg1_emb, arg2_emb] model = BatchNeuralKB(kernel=kernel) indices = torch.from_numpy(np.array([predicate_to_index['p']])) reformulator = SymbolicReformulator(predicate_embeddings, indices) unary = BatchUnary(model, hops_lst=[(reformulator, False)]) xs_np = rs.randint(nb_entities, size=batch_size) xp_np = rs.randint(nb_predicates, size=batch_size) xo_np = rs.randint(nb_entities, size=batch_size) xs_np[0] = entity_to_index['a'] xp_np[0] = predicate_to_index['r'] xo_np[0] = entity_to_index['a'] xs_np[1] = entity_to_index['a'] xp_np[1] = predicate_to_index['r'] xo_np[1] = entity_to_index['b'] xs_np[2] = entity_to_index['a'] xp_np[2] = predicate_to_index['r'] xo_np[2] = entity_to_index['c'] xs_np[3] = entity_to_index['a'] xp_np[3] = predicate_to_index['r'] xo_np[3] = entity_to_index['d'] xs_np[4] = entity_to_index['a'] xp_np[4] = predicate_to_index['r'] xo_np[4] = entity_to_index['e'] xs_np[5] = entity_to_index['a'] xp_np[5] = predicate_to_index['r'] xo_np[5] = entity_to_index['f'] xs = torch.from_numpy(xs_np) xp = torch.from_numpy(xp_np) xo = torch.from_numpy(xo_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) inf = unary.score(xp_emb, xs_emb, xo_emb, facts=facts, nb_facts=nb_facts, entity_embeddings=emb, nb_entities=_nb_entities) inf_np = inf.cpu().numpy() print(inf_np) np.testing.assert_allclose(inf_np, [1] * batch_size, rtol=1e-2, atol=1e-2) @pytest.mark.light def test_adv_v3(): embedding_size = 20 torch.manual_seed(0) rs = np.random.RandomState(0) triples = [ ('a', 'p', 'b'), ('a', 'p', 'd'), ('c', 'p', 'd'), ('e', 'q', 'f'), ('f', 'p', 'c'), ('x', 'r', 'y') ] entity_lst = sorted({e for (e, _, _) in triples} | {e for (_, _, e) in triples}) predicate_lst = sorted({p for (_, p, _) in triples}) nb_entities = len(entity_lst) nb_predicates = len(predicate_lst) entity_to_index = {e: i for i, e in enumerate(entity_lst)} predicate_to_index = {p: i for i, p in enumerate(predicate_lst)} with torch.no_grad(): kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) rel_emb = encode_relation(facts=triples, relation_embeddings=predicate_embeddings, relation_to_idx=predicate_to_index) arg1_emb, arg2_emb = encode_arguments(facts=triples, entity_embeddings=entity_embeddings, entity_to_idx=entity_to_index) batch_size = 6 fact_size = rel_emb.shape[0] entity_size = entity_embeddings.weight.shape[0] rel_emb = rel_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) arg1_emb = arg1_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) arg2_emb = arg2_emb.view(1, fact_size, -1).repeat(batch_size, 1, 1) nb_facts = torch.tensor([fact_size for _ in range(batch_size)], dtype=torch.long) emb = entity_embeddings.weight.view(1, entity_size, -1).repeat(batch_size, 1, 1) _nb_entities = torch.tensor([entity_size for _ in range(batch_size)], dtype=torch.long) facts = [rel_emb, arg1_emb, arg2_emb] model = BatchNeuralKB(kernel=kernel) indices = torch.from_numpy(
np.array([predicate_to_index['p']])
numpy.array
import unittest import yaml import numpy as np from AlphaZero.env.go import GameState from AlphaZero.processing.state_converter import TensorActionConverter, StateTensorConverter, ReverseTransformer with open('tests/go_test.yaml') as f: config = yaml.load(f) def simple_board(): """ """ gs = GameState(size=7) # make a tiny board for the sake of testing and hand-coding expected results # # X # 0 1 2 3 4 5 6 # B W . . . . . 0 # B W . . . . . 1 # B . . . B . . 2 # Y . . . B k B . 3 # . . . W B W . 4 # . . . . W . . 5 # . . . . . . . 6 # # where k is a ko position (white was just captured) # ladder-looking thing in the top-left gs.do_move((0, 0)) # B gs.do_move((1, 0)) # W gs.do_move((0, 1)) # B gs.do_move((1, 1)) # W gs.do_move((0, 2)) # B # ko position in the middle gs.do_move((3, 4)) # W gs.do_move((3, 3)) # B gs.do_move((4, 5)) # W gs.do_move((4, 2)) # B gs.do_move((5, 4)) # W gs.do_move((5, 3)) # B gs.do_move((4, 3)) # W - the ko position gs.do_move((4, 4)) # B - does the capture return gs class TestTransformers(unittest.TestCase): def test_forward_transformer_id_0(self): gs = simple_board() gs.transform(0) target = np.asarray([ [1, 1, 1, 0, 0, 0, 0], [-1, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, -1, 0, 0], [0, 0, 1, 0, 1, -1, 0], [0, 0, 0, 1, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0] ]) self.assertTrue(np.array_equal(gs.board, target)) def test_forward_transformer_id_1_and_history(self): gs = simple_board() gs.transform(1) target = np.asarray([ [1, 1, 1, 0, 0, 0, 0], [-1, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, -1, 0, 0], [0, 0, 1, 0, 1, -1, 0], [0, 0, 0, 1, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0] ]) target_history_last = np.asarray([ [1, 1, 1, 0, 0, 0, 0], [-1, -1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, -1, 0, 0], [0, 0, 1, -1, 0, -1, 0], [0, 0, 0, 1, -1, 0, 0], [0, 0, 0, 0, 0, 0, 0] ]) self.assertTrue(np.array_equal(gs.board,
np.rot90(target, 1)
numpy.rot90
''' Authors: <NAME> <<EMAIL>>, <NAME> <<EMAIL>> If this code is useful to you, please cite the following paper: <NAME>, <NAME>, and <NAME>. Learning topology from synthetic data for unsupervised depth completion. In the Robotics and Automation Letters (RA-L) 2021 and Proceedings of International Conference on Robotics and Automation (ICRA) 2021 @article{wong2021learning, title={Learning topology from synthetic data for unsupervised depth completion}, author={<NAME> and <NAME> and <NAME>}, journal={IEEE Robotics and Automation Letters}, volume={6}, number={2}, pages={1495--1502}, year={2021}, publisher={IEEE} } ''' import os, sys, glob import multiprocessing as mp import numpy as np import cv2 sys.path.insert(0, 'src') import data_utils VOID_ROOT_DIRPATH = os.path.join('data', 'void_release') VOID_DATA_150_DIRPATH = os.path.join(VOID_ROOT_DIRPATH, 'void_150') VOID_DATA_500_DIRPATH = os.path.join(VOID_ROOT_DIRPATH, 'void_500') VOID_DATA_1500_DIRPATH = os.path.join(VOID_ROOT_DIRPATH, 'void_1500') VOID_OUTPUT_DIRPATH = os.path.join('data', 'void_learning_topology') VOID_TRAIN_IMAGE_FILENAME = 'train_image.txt' VOID_TRAIN_SPARSE_DEPTH_FILENAME = 'train_sparse_depth.txt' VOID_TRAIN_VALIDITY_MAP_FILENAME = 'train_validity_map.txt' VOID_TRAIN_GROUND_TRUTH_FILENAME = 'train_ground_truth.txt' VOID_TRAIN_INTRINSICS_FILENAME = 'train_intrinsics.txt' VOID_TEST_IMAGE_FILENAME = 'test_image.txt' VOID_TEST_SPARSE_DEPTH_FILENAME = 'test_sparse_depth.txt' VOID_TEST_VALIDITY_MAP_FILENAME = 'test_validity_map.txt' VOID_TEST_GROUND_TRUTH_FILENAME = 'test_ground_truth.txt' VOID_TEST_INTRINSICS_FILENAME = 'test_intrinsics.txt' TRAIN_REFS_DIRPATH = os.path.join('training', 'void') TEST_REFS_DIRPATH = os.path.join('testing', 'void') # VOID training set 150 density VOID_TRAIN_IMAGE_150_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_image_150.txt') VOID_TRAIN_SPARSE_DEPTH_150_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_sparse_depth_150.txt') VOID_TRAIN_VALIDITY_MAP_150_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_validity_map_150.txt') VOID_TRAIN_GROUND_TRUTH_150_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_ground_truth_150.txt') VOID_TRAIN_INTRINSICS_150_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_intrinsics_150.txt') # VOID training set 500 density VOID_TRAIN_IMAGE_500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_image_500.txt') VOID_TRAIN_SPARSE_DEPTH_500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_sparse_depth_500.txt') VOID_TRAIN_VALIDITY_MAP_500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_validity_map_500.txt') VOID_TRAIN_GROUND_TRUTH_500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_ground_truth_500.txt') VOID_TRAIN_INTRINSICS_500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_intrinsics_500.txt') # VOID training set 1500 density VOID_TRAIN_IMAGE_1500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_image_1500.txt') VOID_TRAIN_SPARSE_DEPTH_1500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_sparse_depth_1500.txt') VOID_TRAIN_VALIDITY_MAP_1500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_validity_map_1500.txt') VOID_TRAIN_GROUND_TRUTH_1500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_ground_truth_1500.txt') VOID_TRAIN_INTRINSICS_1500_FILEPATH = os.path.join(TRAIN_REFS_DIRPATH, 'void_train_intrinsics_1500.txt') # VOID testing set 150 density VOID_TEST_IMAGE_150_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_image_150.txt') VOID_TEST_SPARSE_DEPTH_150_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_sparse_depth_150.txt') VOID_TEST_VALIDITY_MAP_150_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_validity_map_150.txt') VOID_TEST_GROUND_TRUTH_150_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_ground_truth_150.txt') VOID_TEST_INTRINSICS_150_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_intrinsics_150.txt') # VOID testing set 500 density VOID_TEST_IMAGE_500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_image_500.txt') VOID_TEST_SPARSE_DEPTH_500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_sparse_depth_500.txt') VOID_TEST_VALIDITY_MAP_500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_validity_map_500.txt') VOID_TEST_GROUND_TRUTH_500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_ground_truth_500.txt') VOID_TEST_INTRINSICS_500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_intrinsics_500.txt') # VOID testing set 1500 density VOID_TEST_IMAGE_1500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_image_1500.txt') VOID_TEST_SPARSE_DEPTH_1500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_sparse_depth_1500.txt') VOID_TEST_VALIDITY_MAP_1500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_validity_map_1500.txt') VOID_TEST_GROUND_TRUTH_1500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_ground_truth_1500.txt') VOID_TEST_INTRINSICS_1500_FILEPATH = os.path.join(TEST_REFS_DIRPATH, 'void_test_intrinsics_1500.txt') def process_frame(inputs): ''' Processes a single depth frame Args: inputs : tuple image path at time t=0, image path at time t=1, image path at time t=-1, sparse depth path at time t=0, validity map path at time t=0, ground truth path at time t=0 Returns: str : image reference directory path str : output concatenated image path at time t=0 str : output sparse depth path at time t=0 str : output validity map path at time t=0 str : output ground truth path at time t=0 ''' image_path1, \ image_path0, \ image_path2, \ sparse_depth_path, \ validity_map_path, \ ground_truth_path = inputs # Create image composite of triplets image1 = cv2.imread(image_path1) image0 = cv2.imread(image_path0) image2 = cv2.imread(image_path2) imagec = np.concatenate([image1, image0, image2], axis=1) image_refpath = os.path.join(*image_path0.split(os.sep)[2:]) # Set output paths image_outpath = os.path.join(VOID_OUTPUT_DIRPATH, image_refpath) sparse_depth_outpath = sparse_depth_path validity_map_outpath = validity_map_path ground_truth_outpath = ground_truth_path # Verify that all filenames match image_out_dirpath, image_filename = os.path.split(image_outpath) sparse_depth_filename = os.path.basename(sparse_depth_outpath) validity_map_filename = os.path.basename(validity_map_outpath) ground_truth_filename = os.path.basename(ground_truth_outpath) assert image_filename == sparse_depth_filename assert image_filename == validity_map_filename assert image_filename == ground_truth_filename cv2.imwrite(image_outpath, imagec) return (image_refpath, image_outpath, sparse_depth_outpath, validity_map_outpath, ground_truth_outpath) if not os.path.exists(TRAIN_REFS_DIRPATH): os.makedirs(TRAIN_REFS_DIRPATH) if not os.path.exists(TEST_REFS_DIRPATH): os.makedirs(TEST_REFS_DIRPATH) data_dirpaths = [ VOID_DATA_150_DIRPATH, VOID_DATA_500_DIRPATH, VOID_DATA_1500_DIRPATH ] train_output_filepaths = [ [ VOID_TRAIN_IMAGE_150_FILEPATH, VOID_TRAIN_SPARSE_DEPTH_150_FILEPATH, VOID_TRAIN_VALIDITY_MAP_150_FILEPATH, VOID_TRAIN_GROUND_TRUTH_150_FILEPATH, VOID_TRAIN_INTRINSICS_150_FILEPATH ], [ VOID_TRAIN_IMAGE_500_FILEPATH, VOID_TRAIN_SPARSE_DEPTH_500_FILEPATH, VOID_TRAIN_VALIDITY_MAP_500_FILEPATH, VOID_TRAIN_GROUND_TRUTH_500_FILEPATH, VOID_TRAIN_INTRINSICS_500_FILEPATH ], [ VOID_TRAIN_IMAGE_1500_FILEPATH, VOID_TRAIN_SPARSE_DEPTH_1500_FILEPATH, VOID_TRAIN_VALIDITY_MAP_1500_FILEPATH, VOID_TRAIN_GROUND_TRUTH_1500_FILEPATH, VOID_TRAIN_INTRINSICS_1500_FILEPATH ] ] test_output_filepaths = [ [ VOID_TEST_IMAGE_150_FILEPATH, VOID_TEST_SPARSE_DEPTH_150_FILEPATH, VOID_TEST_VALIDITY_MAP_150_FILEPATH, VOID_TEST_GROUND_TRUTH_150_FILEPATH, VOID_TEST_INTRINSICS_150_FILEPATH ], [ VOID_TEST_IMAGE_500_FILEPATH, VOID_TEST_SPARSE_DEPTH_500_FILEPATH, VOID_TEST_VALIDITY_MAP_500_FILEPATH, VOID_TEST_GROUND_TRUTH_500_FILEPATH, VOID_TEST_INTRINSICS_500_FILEPATH ], [ VOID_TEST_IMAGE_1500_FILEPATH, VOID_TEST_SPARSE_DEPTH_1500_FILEPATH, VOID_TEST_VALIDITY_MAP_1500_FILEPATH, VOID_TEST_GROUND_TRUTH_1500_FILEPATH, VOID_TEST_INTRINSICS_1500_FILEPATH ] ] data_filepaths = \ zip(data_dirpaths, train_output_filepaths, test_output_filepaths) for data_dirpath, train_filepaths, test_filepaths in data_filepaths: # Training set train_image_filepath = os.path.join(data_dirpath, VOID_TRAIN_IMAGE_FILENAME) train_sparse_depth_filepath = os.path.join(data_dirpath, VOID_TRAIN_SPARSE_DEPTH_FILENAME) train_validity_map_filepath = os.path.join(data_dirpath, VOID_TRAIN_VALIDITY_MAP_FILENAME) train_ground_truth_filepath = os.path.join(data_dirpath, VOID_TRAIN_GROUND_TRUTH_FILENAME) train_intrinsics_filepath = os.path.join(data_dirpath, VOID_TRAIN_INTRINSICS_FILENAME) # Read training paths train_image_paths = data_utils.read_paths(train_image_filepath) train_sparse_depth_paths = data_utils.read_paths(train_sparse_depth_filepath) train_validity_map_paths = data_utils.read_paths(train_validity_map_filepath) train_ground_truth_paths = data_utils.read_paths(train_ground_truth_filepath) train_intrinsics_paths = data_utils.read_paths(train_intrinsics_filepath) assert len(train_image_paths) == len(train_sparse_depth_paths) assert len(train_image_paths) == len(train_validity_map_paths) assert len(train_image_paths) == len(train_ground_truth_paths) assert len(train_image_paths) == len(train_intrinsics_paths) # Testing set test_image_filepath = os.path.join(data_dirpath, VOID_TEST_IMAGE_FILENAME) test_sparse_depth_filepath = os.path.join(data_dirpath, VOID_TEST_SPARSE_DEPTH_FILENAME) test_validity_map_filepath = os.path.join(data_dirpath, VOID_TEST_VALIDITY_MAP_FILENAME) test_ground_truth_filepath = os.path.join(data_dirpath, VOID_TEST_GROUND_TRUTH_FILENAME) test_intrinsics_filepath = os.path.join(data_dirpath, VOID_TEST_INTRINSICS_FILENAME) # Read testing paths test_image_paths = data_utils.read_paths(test_image_filepath) test_sparse_depth_paths = data_utils.read_paths(test_sparse_depth_filepath) test_validity_map_paths = data_utils.read_paths(test_validity_map_filepath) test_ground_truth_paths = data_utils.read_paths(test_ground_truth_filepath) test_intrinsics_paths = data_utils.read_paths(test_intrinsics_filepath) assert len(test_image_paths) == len(test_sparse_depth_paths) assert len(test_image_paths) == len(test_validity_map_paths) assert len(test_image_paths) == len(test_ground_truth_paths) assert len(test_image_paths) == len(test_intrinsics_paths) # Get test set directories test_seq_dirpaths = set( [test_image_paths[idx].split(os.sep)[-3] for idx in range(len(test_image_paths))]) # Initialize placeholders for training output paths train_image_outpaths = [] train_sparse_depth_outpaths = [] train_validity_map_outpaths = [] train_ground_truth_outpaths = [] train_intrinsics_outpaths = [] # Initialize placeholders for testing output paths test_image_outpaths = [] test_sparse_depth_outpaths = [] test_validity_map_outpaths = [] test_ground_truth_outpaths = [] test_intrinsics_outpaths = [] # For each dataset density, grab the sequences seq_dirpaths = glob.glob(os.path.join(data_dirpath, 'data', '*')) n_sample = 0 for seq_dirpath in seq_dirpaths: # For each sequence, grab the images, sparse depths and valid maps image_paths = \ sorted(glob.glob(os.path.join(seq_dirpath, 'image', '*.png'))) sparse_depth_paths = \ sorted(glob.glob(os.path.join(seq_dirpath, 'sparse_depth', '*.png'))) validity_map_paths = \ sorted(glob.glob(os.path.join(seq_dirpath, 'validity_map', '*.png'))) ground_truth_paths = \ sorted(glob.glob(os.path.join(seq_dirpath, 'ground_truth', '*.png'))) intrinsics_path = os.path.join(seq_dirpath, 'K.txt') assert len(image_paths) == len(sparse_depth_paths) assert len(image_paths) == len(validity_map_paths) # Load intrinsics kin =
np.loadtxt(intrinsics_path)
numpy.loadtxt
# This script is used to produce fitting and confidence interval for results in python. # #%% import numpy as np from scipy.optimize import curve_fit from scipy.stats.distributions import t #%% from numpy import cos, sin, exp, pi, meshgrid def KentFunc(Xin, theta, phi, psi, kappa, beta, A): # Assume theta_z, phi_z are column vectors ([0,2 pi]), theta, phi, psi are # rotational scaler ([0,2 pi]) theta_z, phi_z = Xin[:, 0], Xin[:, 1] Z = np.array([cos(theta_z) * cos(phi_z), sin(theta_z) * cos(phi_z), sin(phi_z)]).T # M by 3 finally coord = SO3(theta, phi, psi) mu1 = coord[:, 0:1] # col vector # mu23 = coord[:, 1:3] # 2 col vectors, 3 by 2 mu2 = coord[:, 1:2] # 2 col vectors, 3 by 2 mu3 = coord[:, 2:3] # 2 col vectors, 3 by 2 fval = A * exp(kappa * Z @ mu1 + beta * ((Z @ mu2) ** 2 - (Z @ mu3) ** 2)) return fval[:, 0] def KentFunc_bsl(Xin, theta, phi, psi, kappa, beta, A, bsl): # Assume theta_z, phi_z are column vectors ([0,2 pi]), theta, phi, psi are # rotational scaler ([0,2 pi]) theta_z, phi_z = Xin[:, 0], Xin[:, 1] Z = np.array([cos(theta_z) * cos(phi_z), sin(theta_z) *
cos(phi_z)
numpy.cos
# -*- coding: utf-8 -*- """ Created on Tue Jul 3 09:12:14 2018 @author: lenovo """ #创建 import h5py #要是读取文件的话,就把w换成r f=h5py.File("myh5py.hdf5","w") d1=f.create_dataset("dset1", (20,), 'i') for key in f.keys(): print(key) print(f[key].name) print(f[key].shape) print(f[key].value) ## 赋值 import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") d1=f.create_dataset("dset1",(20,),'i') #赋值 d1[...]=np.arange(20) #或者我们可以直接按照下面的方式创建数据集并赋值 f["dset2"]=np.arange(15) for key in f.keys(): print(f[key].name) print(f[key].value) # 已有numpy数组时 import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") a=np.arange(20) d1=f.create_dataset("dset3",data=a) for key in f.keys(): print(f[key].name) print(f[key].value) # 创建group import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") #创建一个名字为bar的组 g1=f.create_group("bar") #在bar这个组里面分别创建name为dset1,dset2的数据集并赋值。 g1["dset1"]=np.arange(10) g1["dset2"]=np.arange(12).reshape((3,4)) for key in g1.keys(): print(g1[key].name) print(g1[key].value) # group and datasets import h5py import numpy as np f=h5py.File("myh5py.hdf5","w") #创建组bar1,组bar2,数据集dset g1=f.create_group("bar1") g2=f.create_group("bar2") d=f.create_dataset("dset",data=np.arange(10)) #在bar1组里面创建一个组car1和一个数据集dset1。 c1=g1.create_group("car1") d1=g1.create_dataset("dset1",data=np.arange(10)) #在bar2组里面创建一个组car2和一个数据集dset2 c2=g2.create_group("car2") d2=g2.create_dataset("dset2",data=
np.arange(10)
numpy.arange
import numpy as np from autograd_cls import AutoGrad from compute_utils import compute_lcv_lambda_gradient, compute_epsilon_lambda_gradient, compute_hjj, compute_z, compute_z_gradient, compute_eps_t, compute_hjj_gradient, get_discounted_return, calculate_batch_loss, invert_matrix, calculate_batch_mspbe_msbe_mse_losses from lstd import LSTD, MiniBatchLSTDLambda from adam import ADAM import copy from pprint import pprint import pdb import pudb def minibatch_LSTD(trajectories, Phi, P, V, D, R, Gs, logger, config ): lambda_ = config.default_lambda gamma = config.gamma LSTD_lambda = MiniBatchLSTDLambda(gamma, lambda_, Phi) G = {} running_loss = [] num_episodes = len(trajectories) for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] ep_rewards = [] ep_states = [] cur_state, reward, next_state, done = traj[0] LSTD_lambda.update(None, 0 , cur_state) cur_state = next_state #LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] LSTD_lambda.update(cur_state, reward, next_state) ep_rewards.append(reward) ep_states.append(cur_state) if done: LSTD_lambda.update(next_state, 0, None) theta = LSTD_lambda.theta ep_discountedrewards = get_discounted_return(ep_rewards, gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data #loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) ms_loss, rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) return LSTD_lambda, theta, G, rms_loss, ms_loss def minibatch_LSTD_withCV(trajectories, Phi, P, V, D, R, Gs, logger, config, trajectories_test, Gs_test ): lambda_ = config.default_lambda gamma = config.gamma LSTD_lambda = MiniBatchLSTDLambda(gamma, lambda_, Phi) G = {} running_loss = [] num_episodes = len(trajectories) valid_episode_counter = 0 for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] ep_rewards = [] ep_states = [] cur_state, reward, next_state, done = traj[0] LSTD_lambda.update(None, 0 , cur_state) cur_state = next_state #LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] LSTD_lambda.update(cur_state, reward, next_state) ep_rewards.append(reward) ep_states.append(cur_state) if done: LSTD_lambda.update(next_state, 0, None) theta = LSTD_lambda.theta ep_discountedrewards = get_discounted_return(ep_rewards, gamma) #pdb.set_trace() # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data if valid_episode_counter % config.compute_cv_iterations == 0 and valid_episode_counter > 0: #pudb.set_trace() new_config = copy.deepcopy(config) new_config.default_lambda = 0 current_cv_loss = compute_CV_loss(trajectories, Phi, P, V, D, R, Gs, logger = None, config =new_config) losses, avg_losses = calculate_batch_mspbe_msbe_mse_losses(trajectories_test, Gs_test, theta, Phi, R, D, P, new_config) print('current_cv_loss:{0}'.format(current_cv_loss)) if logger: #pudb.set_trace() logger.log_scalar('Train mean loto cv', current_cv_loss, valid_episode_counter) logger.log_scalar('Test RMSPBE', avg_losses['RMSPBE'], valid_episode_counter) logger.log_scalar('Test RMSBE', avg_losses['RMSBE'], valid_episode_counter) logger.log_scalar('Test RMSBE', avg_losses['RMSE'], valid_episode_counter) logger.writer.flush() valid_episode_counter += 1 #loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) ms_loss, rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) return LSTD_lambda, theta, G, rms_loss, ms_loss def LSTD_algorithm(trajectories, Phi, num_features, gamma=0.4, lambda_=0.2): # LSTD operator: LSTD_lambda = LSTD(num_features) G = {} running_loss = [] num_episodes = len(trajectories) for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] if len(traj) <= 4: continue ep_rewards = [] ep_states = [] cur_state = traj[0][0] LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], gamma, lambda_, timestep) ep_rewards.append(reward) ep_states.append(cur_state) theta = LSTD_lambda.theta ep_discountedrewards = get_discounted_return(ep_rewards, gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) # print('Episode {0} loss is {1}'.format(ep, ep_loss)) # print('Episode {0} rewards are {1}'.format(ep, ep_rewards)) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) # print('episode loss:{0}'.format(loss)) # print(LSTD_lambda.A, LSTD_lambda.b) ms_loss,rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) # print("average running loss in training: ", sum(running_loss) / num_episodes) # print("average loss after training: ", sum(loss) / num_episodes) average_loss = rmse return LSTD_lambda, theta, average_loss, G, rmspbe def Adaptive_LSTD_algorithm(trajectories, Phi, P, V, D, R, Gs, config ): # LSTD operator: Auto_grad = AutoGrad(compute_CV_loss, 4) Auto_grad.gradient_fun() adaptive_LSTD_lambda = LSTD(config.num_features) G = {} loss = [] running_loss = [] num_episodes = len(trajectories) adam_optimizer = ADAM(x_init = config.default_lambda, alpha=config.lr) lambda_ = config.default_lambda for ep in range(num_episodes): G[ep] = [] traj = trajectories[ep] if len(traj) <= 4: continue ep_rewards = [] ep_states = [] Z = np.zeros((config.num_features, config.num_states)) Z_gradient = np.zeros((config.num_features, config.num_states)) H_diag = np.zeros(config.num_states) # n eps = np.zeros(config.num_states) states_count = np.zeros(config.num_states) epsilon_lambda_gradient = np.zeros(config.num_states) H_diag_gradient = np.zeros(config.num_states) episode_loss = 0 cur_state = traj[0][0] adaptive_LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] adaptive_LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], config.gamma, lambda_, timestep) ep_rewards.append(reward) ep_states.append(cur_state) theta = adaptive_LSTD_lambda.theta print(theta) A = adaptive_LSTD_lambda.A b = adaptive_LSTD_lambda.b A_inv = np.linalg.pinv(A + np.eye(A.shape[0]) * config.A_inv_epsilon, rcond=.1) for timestep in range(len(traj)-1): cur_state, reward, next_state, done = traj[timestep] # To-do : change the following update to running average states_count[cur_state] += 1 ct = states_count[cur_state] Z[:,cur_state] = (ct-1)/ct *Z[:,cur_state]+ 1/ct * compute_z(lambda_, config.gamma, Phi, ep_states, timestep ) Z_gradient[:, cur_state] = (ct-1)/ct * Z_gradient[:, cur_state] + 1/ct * compute_z_gradient(lambda_, config.gamma, Phi, ep_states, timestep) H_diag[cur_state] = (ct-1)/ct * H_diag[cur_state] + 1/ct * compute_hjj(Phi, lambda_, config.gamma, ep_states, timestep, A_inv) eps[cur_state] = (ct-1)/ct * eps[cur_state] + 1/ct * compute_eps_t(Phi, theta, config.gamma, reward, ep_states, timestep) epsilon_lambda_gradient[cur_state] = (ct-1)/ct * epsilon_lambda_gradient[cur_state] + \ 1/ct * compute_epsilon_lambda_gradient(Phi, lambda_, config.gamma, A, b, A_inv, Z, timestep, ep_states, ep_rewards ) H_diag_gradient[cur_state] = (ct-1)/ct * H_diag_gradient[cur_state] + 1/ct * compute_hjj_gradient(Phi, lambda_, config.gamma, ep_states, timestep, A, b, A_inv ) #grad = compute_cv_gradient(Phi, theta, gamma, lambda_, P, V, D, R) # Replaced the above update with: grad = compute_lcv_lambda_gradient(eps, H_diag, ep_states, epsilon_lambda_gradient, H_diag_gradient, grad_clip_max_norm = config.grad_clip_norm) if config.compute_autograd: auto_grad = Auto_grad.loss_autograd_fun(trajectories, Phi, config.num_features, config.gamma, lambda_, Gs) print('gradient diff:{0}'.format(abs(grad-auto_grad))) # if ep > 1000 : # new_lambda = lambda_ - lr * compute_cv_gradient(Phi, theta, gamma, lambda_, P, V, D) # print(new_lambda) # if new_lambda >= 0 and new_lambda <= 1: # lambda_ = new_lambda # print('current lambda:{0}'.format(lambda_)) # grad = compute_cv_gradient2(Phi, theta, gamma, lambda_, R, A, b, z) if config.use_adam_optimizer: adam_optimizer.update(grad, ep) new_lambda = adam_optimizer.x else: new_lambda = lambda_ - config.lr * grad if new_lambda >= 0 and new_lambda <= 1: lambda_ = new_lambda print('current lambda:{0}'.format(lambda_)) ep_discountedrewards = get_discounted_return(ep_rewards, config.gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) # print('Episode {0} loss is {1}'.format(ep, ep_loss)) # print('Episode {0} rewards are {1}'.format(ep, ep_rewards)) G[ep] = ep_discountedrewards running_loss.append(ep_loss) # After we calculated the Theta parameter from the training data loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) # print('episode loss:{0}'.format(loss)) # print(LSTD_lambda.A, LSTD_lambda.b) #print("Final Lambda: {0}".format(lambda_)) #print("average running loss in training: ", np.mean(running_loss)) #print("average loss after training: ", np.mean(loss)) average_loss = rmse return adaptive_LSTD_lambda, theta, average_loss, G, lambda_ def Adaptive_LSTD_algorithm_batch(trajectories, Phi, P, V, D, R, Gs, logger, config ): # LSTD operator: Auto_grad = AutoGrad(compute_CV_loss, 4) Auto_grad.gradient_fun() #adaptive_LSTD_lambda = LSTD(config.num_features) adaptive_LSTD_lambda = MiniBatchLSTDLambda(config.gamma, config.default_lambda, Phi) G = {} loss = [] running_loss = [] num_episodes = len(trajectories) adam_optimizer = ADAM(x_init = config.default_lambda, alpha=config.lr) lambda_ = config.default_lambda valid_episode_counter = 0 for ep in range(num_episodes): traj = trajectories[ep] G[ep] = [] if len(traj) <= 4: continue cur_state, reward, next_state, done = traj[0] adaptive_LSTD_lambda.update(None, 0 , cur_state) if valid_episode_counter % config.batch_size == 0: ep_rewards = [] ep_states = [] Z = np.zeros((config.num_features, config.num_states)) Z_gradient = np.zeros((config.num_features, config.num_states)) H_diag = np.zeros(config.num_states) # n eps = np.zeros(config.num_states) states_count = np.zeros(config.num_states) epsilon_lambda_gradient = np.zeros(config.num_states) H_diag_gradient = np.zeros(config.num_states) episode_loss = 0 #cur_state = traj[0][0] #adaptive_LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] adaptive_LSTD_lambda.update(cur_state, reward, next_state) if done: adaptive_LSTD_lambda.update(next_state, 0, None) #adaptive_LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], config.gamma, lambda_, timestep) ep_rewards.append(reward) ep_states.append(cur_state) if logger: logger.log_scalar('average trajectories reward', np.mean(ep_rewards), valid_episode_counter) logger.writer.flush() theta = adaptive_LSTD_lambda.theta A = adaptive_LSTD_lambda.A b = adaptive_LSTD_lambda.b.reshape((-1,1)) #A_inv = np.linalg.pinv(A + np.eye(A.shape[0]) * config.A_inv_epsilon, rcond=.1) A_inv = invert_matrix(A) for timestep in range(len(traj)-1): cur_state, reward, next_state, done = traj[timestep] states_count[cur_state] += 1 ct = states_count[cur_state] Z[:,cur_state] = (ct-1)/ct *Z[:,cur_state]+ 1/ct * compute_z(lambda_, config.gamma, Phi, ep_states, timestep ) Z_gradient[:, cur_state] = (ct-1)/ct * Z_gradient[:, cur_state] + \ 1/ct * compute_z_gradient(lambda_, config.gamma, Phi, ep_states, timestep) H_diag[cur_state] = (ct-1)/ct * H_diag[cur_state] + \ 1/ct * compute_hjj(Phi, lambda_, config.gamma, ep_states, timestep, A_inv) eps[cur_state] = (ct-1)/ct * eps[cur_state] + \ 1/ct * compute_eps_t(Phi, theta, config.gamma, reward, ep_states, timestep) epsilon_lambda_gradient[cur_state] = (ct-1)/ct * epsilon_lambda_gradient[cur_state] + \ 1/ct * compute_epsilon_lambda_gradient(Phi, lambda_, config.gamma, A, b, A_inv, Z, timestep, ep_states, ep_rewards ) H_diag_gradient[cur_state] = (ct-1)/ct * H_diag_gradient[cur_state] + 1/ct * compute_hjj_gradient(Phi, lambda_, config.gamma, ep_states, timestep, A, b, A_inv ) # update the gradients of the batch: if valid_episode_counter % config.batch_size == 0: grad = compute_lcv_lambda_gradient(eps, H_diag, ep_states, epsilon_lambda_gradient, H_diag_gradient, grad_clip_max_norm = config.grad_clip_norm) if logger: logger.log_scalar('CV loss lambda gradients per batch', grad, valid_episode_counter/config.batch_size) logger.writer.flush() if config.compute_autograd: auto_grad = Auto_grad.loss_autograd_fun(trajectories, Phi, config.num_features, config.gamma, lambda_, Gs) print('gradient diff:{0}'.format(abs(grad-auto_grad))) if config.use_adam_optimizer: adam_optimizer.update(grad, valid_episode_counter+1) new_lambda = adam_optimizer.x else: new_lambda = lambda_ - config.lr * grad if new_lambda >= 0 and new_lambda <= 1: lambda_ = new_lambda print('gradient: {0}'.format(grad)) print('current lambda:{0}'.format(lambda_)) print('current theta:{0}'.format(theta)) ep_discountedrewards = get_discounted_return(ep_rewards, config.gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) G[ep] = ep_discountedrewards running_loss.append(ep_loss) valid_episode_counter += 1 # After we calculated the Theta parameter from the training data #loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) new_config = copy.deepcopy(config) new_config.lambda_ = lambda_ ms_loss, rms_loss = calculate_batch_mspbe_msbe_mse_losses(trajectories, G, theta, Phi, R, D, P, config) print('Theta values: {0}'.format(theta)) print('episode RMSPBE :{0}'.format(rmspbe)) # print('episode loss:{0}'.format(loss)) # print(LSTD_lambda.A, LSTD_lambda.b) #print("Final Lambda: {0}".format(lambda_)) #print("average running loss in training: ", np.mean(running_loss)) #print("average loss after training: ", np.mean(loss)) return adaptive_LSTD_lambda, theta, G, lambda_, ms_loss, rms_loss ''' The same as Adaptive_LSTD_algorithm_batch, except A and b are calculated based on all the episodes. ''' def Adaptive_LSTD_algorithm_batch_type2(trajectories, Phi, P, V, D, R, Gs, logger, config ): # LSTD operator: Auto_grad = AutoGrad(compute_CV_loss, 4) Auto_grad.gradient_fun() adaptive_LSTD_lambda = LSTD(config.num_features) G = {} loss = [] running_loss = [] num_episodes = len(trajectories) adam_optimizer = ADAM(x_init = config.default_lambda, alpha=config.lr) lambda_ = config.default_lambda ##### First go over all the trajectories and calculate estimate A and b: for ep in range(num_episodes): traj = trajectories[ep] if len(traj) <= 4: continue cur_state = traj[0][0] adaptive_LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] adaptive_LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], config.gamma, lambda_, timestep ) # theta = adaptive_LSTD_lambda.theta # A = adaptive_LSTD_lambda.A # b = adaptive_LSTD_lambda.b # A_inv = np.linalg.pinv(A + np.eye(A.shape[0]) * config.A_inv_epsilon) #pudb.set_trace() ######## Now use the above A and b to calculate optimal lambda: valid_episode_counter = 0 for ep in range(num_episodes): traj = trajectories[ep] G[ep] = [] # if len(traj) <= 4: # continue if valid_episode_counter % config.batch_size == 0: ep_rewards = [] ep_states = [] Z = np.zeros((config.num_features, config.num_states)) Z_gradient = np.zeros((config.num_features, config.num_states)) H_diag = np.zeros(config.num_states) # n eps = np.zeros(config.num_states) states_count = np.zeros(config.num_states) epsilon_lambda_gradient = np.zeros(config.num_states) H_diag_gradient = np.zeros(config.num_states) episode_loss = 0 cur_state = traj[0][0] adaptive_LSTD_lambda.reset_boyan(Phi[cur_state, :]) for timestep in range(len(traj)): cur_state, reward, next_state, done = traj[timestep] adaptive_LSTD_lambda.update_boyan(Phi[cur_state, :], reward, Phi[next_state, :], config.gamma, lambda_, timestep) ep_rewards.append(reward) ep_states.append(cur_state) #pudb.set_trace() theta = adaptive_LSTD_lambda.theta A = adaptive_LSTD_lambda.A b = adaptive_LSTD_lambda.b A_inv = np.linalg.pinv(A + np.eye(A.shape[0]) * config.A_inv_epsilon, rcond=.1) for timestep in range(len(traj)-1): cur_state, reward, next_state, done = traj[timestep] states_count[cur_state] += 1 ct = states_count[cur_state] Z[:,cur_state] = (ct-1)/ct *Z[:,cur_state]+ 1/ct * compute_z(lambda_, config.gamma, Phi, ep_states, timestep ) Z_gradient[:, cur_state] = (ct-1)/ct * Z_gradient[:, cur_state] + \ 1/ct * compute_z_gradient(lambda_, config.gamma, Phi, ep_states, timestep) H_diag[cur_state] = (ct-1)/ct * H_diag[cur_state] + \ 1/ct * compute_hjj(Phi, lambda_, config.gamma, ep_states, timestep, A_inv) eps[cur_state] = (ct-1)/ct * eps[cur_state] + \ 1/ct * compute_eps_t(Phi, theta, config.gamma, reward, ep_states, timestep) epsilon_lambda_gradient[cur_state] = (ct-1)/ct * epsilon_lambda_gradient[cur_state] + \ 1/ct * compute_epsilon_lambda_gradient(Phi, lambda_, config.gamma, A, b, A_inv, Z, timestep, ep_states, ep_rewards ) H_diag_gradient[cur_state] = (ct-1)/ct * H_diag_gradient[cur_state] + 1/ct * compute_hjj_gradient(Phi, lambda_, config.gamma, ep_states, timestep, A, b, A_inv ) # update the gradients of the batch: if valid_episode_counter % config.batch_size == 0: grad = compute_lcv_lambda_gradient(eps, H_diag, ep_states, epsilon_lambda_gradient, H_diag_gradient, grad_clip_max_norm = config.grad_clip_norm) if config.compute_autograd: auto_grad = Auto_grad.loss_autograd_fun(trajectories, Phi, config.num_features, config.gamma, lambda_, Gs) print('gradient diff:{0}'.format(abs(grad-auto_grad))) if config.use_adam_optimizer: adam_optimizer.update(grad, valid_episode_counter+1) new_lambda = adam_optimizer.x else: new_lambda = lambda_ - config.lr * grad #pudb.set_trace() if new_lambda >= 0 and new_lambda <= 1: lambda_ = new_lambda print('gradient: {0}'.format(grad)) print('current lambda:{0}'.format(lambda_)) ep_discountedrewards = get_discounted_return(ep_rewards, config.gamma) # print('ep_discounted:{0}'.format(ep_discountedrewards)) if len(ep_discountedrewards) > 0: ep_loss = np.mean( [(np.dot(Phi[ep_states[t], :], theta) - ep_discountedrewards[t]) ** 2 for t in range(len(ep_states))]) G[ep] = ep_discountedrewards running_loss.append(ep_loss) valid_episode_counter += 1 # After we calculated the Theta parameter from the training data loss, rmse = calculate_batch_loss(trajectories, G, theta, Phi) # print('episode loss:{0}'.format(loss)) # print(LSTD_lambda.A, LSTD_lambda.b) #print("Final Lambda: {0}".format(lambda_)) #print("average running loss in training: ", np.mean(running_loss)) #print("average loss after training: ", np.mean(loss)) return adaptive_LSTD_lambda, theta, rmse, G, lambda_ ''' This needs to be here to avoid having circular dependencies. ''' def compute_CV_loss(trajectories, Phi, P, V, D, R, Gs, logger, config): ''' :param trajectories: :param num_features: :param gamma: :param epsilon: :return: ''' total_num_tuples = sum([len(traj) for traj in trajectories]) num_episodes = len(trajectories) loto_loss = [] step = 0 for i in range(min(1000,num_episodes)): traj = trajectories[i] if len(traj) <= 2: continue for j in range(len(traj)): # leave one tuple oto_trajectoriesout loto_trajectories = copy.deepcopy(trajectories) del loto_trajectories[i][j] model, _ , _ , rms_loss, ms_loss = minibatch_LSTD(loto_trajectories, Phi, P, V, D, R, Gs, logger, config) theta = model.theta BE = R + config.gamma * P @ Phi @ theta #theta = [-24, -16, -8,0] # pdb.set_trace() #tuple_loss = (np.dot(Phi[trajectories[i][j][0], :], theta) - Gs[i][j]) ** 2 tuple_loss = (np.dot(Phi[trajectories[i][j][0], :], theta) - BE[trajectories[i][j][0]]) ** 2 loto_loss.append(tuple_loss) if logger: logger.log_scalar('average trajectories loss', rms_loss, step) logger.log_scalar('current tuple loto cv', tuple_loss, step) logger.log_scalar('mean loto cv', np.mean(loto_loss)**.5, step) logger.writer.flush() step += 1 print('trajectory :{0}, current mean loto loss:{1}'.format(i, np.mean(loto_loss)**.5)) cv_loss = np.mean(loto_loss) return cv_loss ** 0.5 def Adaptive_LSTD_algorithm_batch_type3(trajectories, Phi, P, V, D, R, Gs, logger, config, trajectories_test, Gs_test ): # LSTD operator: Auto_grad = AutoGrad(compute_CV_loss, 4) Auto_grad.gradient_fun() #adaptive_LSTD_lambda = LSTD(config.num_features) adaptive_LSTD_lambda = MiniBatchLSTDLambda(config.gamma, config.default_lambda, Phi) G = {} loss = [] running_loss = [] num_episodes = len(trajectories) adam_optimizer = ADAM(x_init = config.default_lambda, alpha=config.lr) lambda_ = config.default_lambda valid_episode_counter = 0 for ep in range(config.num_train_episodes): traj = trajectories[ep] G[ep] = [] # if len(traj) <= 4: # continue cur_state, reward, next_state, done = traj[0] adaptive_LSTD_lambda.update(None, 0 , cur_state) if valid_episode_counter % config.batch_size == 0: ep_rewards = [] ep_states = [] Z = np.zeros((config.num_features, config.num_states)) Z_gradient =
np.zeros((config.num_features, config.num_states))
numpy.zeros
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Contents loader functions for DataSource. ''' from scipy.misc import imresize, imread from shutil import rmtree from six import StringIO from six.moves.urllib.parse import urljoin from tqdm import tqdm import contextlib import csv import h5py import numpy import os import six.moves.urllib.request as request import six import tempfile from nnabla.logger import logger pypng_available = False try: import png pypng_available = True except ImportError: pass cv2_available = False try: import cv2 # TODO: Currently cv2 image reader doesn't work. # cv2_available = True except ImportError: pass class FileReader: '''FileReader Read dataset from sevaral data sources. Supported data sources are, * Local file (file or directory name) * HTTP/HTTPS (URI) * S3 (URI with s3:// prefix) Currently HTTP/HTTPS source does not support CACHE input because there is no standard way to get directory entry with HTTP/HTTPS/protocol. To access S3 data, you must specify credentials with environment variable. For example, :: $ export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE $ export AWS_SECRET_ACCESS_KEY=<KEY> Or, you can specify PROFILE with following. :: $ export AWS_DEFAULT_PROFILE=my_profile ''' def __init__(self, base_uri): self._base_uri = base_uri if base_uri[0:5].lower() == 's3://': self._file_type = 's3' uri_header, uri_body = self._base_uri.split('://', 1) us = uri_body.split('/') bucketname = us.pop(0) self._s3_base_key = '/'.join(us) logger.info('Creating session for S3 bucket {}'.format(bucketname)) import boto3 self._s3_bucket = boto3.session.Session().resource('s3').Bucket(bucketname) elif base_uri[0:7].lower() == 'http://' or base_uri[0:8].lower() == 'https://': self._file_type = 'http' else: self._file_type = 'file' @contextlib.contextmanager def open(self, filename=None): if filename is None: filename = self._base_uri else: if self._file_type == 's3': filename = urljoin(self._base_uri.replace( 's3://', 'http://'), filename.replace('\\', '/')).replace('http://', 's3://') elif self._file_type == 'http': filename = urljoin(self._base_uri, filename.replace('\\', '/')) else: filename = os.path.abspath(os.path.join(os.path.dirname( self._base_uri.replace('\\', '/')), filename.replace('\\', '/'))) f = None if self._file_type == 's3': uri_header, uri_body = filename.split('://', 1) us = uri_body.split('/') bucketname = us.pop(0) key = '/'.join(us) logger.info('Opening {}'.format(key)) f = StringIO(self._s3_bucket.Object(key).get()['Body'].read()) elif self._file_type == 'http': f = request.urlopen(filename) else: f = open(filename, 'rb') yield f f.close() @contextlib.contextmanager def open_cache(self, cache_name): if self._file_type == 's3': tmpdir = tempfile.mkdtemp() filename = urljoin((self._base_uri + '/').replace('s3://', 'http://'), cache_name.replace('\\', '/')).replace('http://', 's3://') key = '/'.join(filename.split('/')[3:]) fn = '{}/{}'.format(tmpdir, os.path.basename(filename)) with open(fn, 'wb') as f: f.write(self._s3_bucket.Object(key).get()['Body'].read()) with h5py.File(fn, 'r') as h5: yield h5 rmtree(tmpdir, ignore_errors=True) elif self._file_type == 'http': pass else: filename = os.path.abspath(os.path.join(os.path.dirname( (self._base_uri + '/').replace('\\', '/')), cache_name.replace('\\', '/'))) with h5py.File(filename, 'r') as h5: yield h5 def listdir(self): if self._file_type == 's3': list = [] for fn in self._s3_bucket.objects.filter(Prefix=self._s3_base_key + '/', Delimiter='/'): list.append(os.path.basename(fn.key)) return sorted(list) elif self._file_type == 'http': return None return sorted(os.listdir(self._base_uri)) def load_image_imread(file, shape=None, max_range=1.0): ''' Load image from file like object. :param file: Image contents :type file: file like object. :param shape: shape of output array e.g. (3, 128, 192) : n_color, height, width. :type shape: tuple of int :param float max_range: the value of return array ranges from 0 to `max_range`. :return: numpy array ''' img255 = imread( file) # return value is from zero to 255 (even if the image has 16-bitdepth.) if len(img255.shape) == 2: # gray image height, width = img255.shape if shape is None: out_height, out_width, out_n_color = height, width, 1 else: out_n_color, out_height, out_width = shape assert(out_n_color == 1) if out_height != height or out_width != width: # imresize returns 0 to 255 image. img255 = imresize(img255, (out_height, out_width)) img255 = img255.reshape((out_n_color, out_height, out_width)) elif len(img255.shape) == 3: # RGB image height, width, n_color = img255.shape if shape is None: out_height, out_width, out_n_color = height, width, n_color else: out_n_color, out_height, out_width = shape assert(out_n_color == n_color) if out_height != height or out_width != width or out_n_color != n_color: # imresize returns 0 to 255 image. img255 = imresize(img255, (out_height, out_width, out_n_color)) img255 = img255.transpose(2, 0, 1) if max_range < 0 or max_range == 255.0: return img255 else: return img255 * (max_range / 255.0) def load_image_pypng(file, shape=None, max_range=1.0): import png r = png.Reader(file=file) width, height, pixels, metadata = r.read() bitscale = 2 ** metadata['bitdepth'] - 1 img = numpy.array(list(pixels), dtype=numpy.float32).reshape( (height, width, -1)) / bitscale # (height, width, n_channel) if metadata['alpha'] and metadata['planes'] == 4: # RGBA # TODO: this case is note tested well try: bg = numpy.array(metadata['background']) / bitscale except KeyError: bg =
numpy.array([1.0, 1.0, 1.0])
numpy.array
import numpy as np import matplotlib.pyplot as plt # Uses central difference with 4 points. # I know the error (truncation and machine precision) is bounded by # M*h^4/30+4*MachineEpsilon/h where M is the magnitude bound on the 5th derivative of f # This implies the best h value should be h=(30*MachineEpsilon/M)^(1/5) # However without a good idea of what M actually is I can't use this. # If M=1 this corresponds to about 10^-3. def derivative(f, comp, *args, h=1.0E-3): coef = [-1.0/12, 2.0/3, 0, -2.0/3, 1.0/12] m = (len(coef)-1)//2 diff = np.zeros(len(args)) diff[comp] = h tot = 0 for i in range(m): tot += coef[i]*f(*(np.array(args)+(m-i)*diff)) tot += coef[-1-i]*f(*(np.array(args)-(m-i)*diff)) return tot/h def testDeriv(f, df, comp, *args): hvals = np.logspace(-12, 0, 1000) diff = [] minDiff = 10**5 bestH = 0 for h in hvals: numDf = derivative(f, comp, *args, h=h) currDiff = abs(df(*args) - numDf) diff.append(currDiff) if currDiff < minDiff: minDiff = currDiff bestH = h print(bestH) print(minDiff) plt.loglog(hvals, diff) plt.show() # y is the function we would like to approximate (can be a vector) and f is the # function which given t and y calculates the derivative of y with respect to t # This function takes one step of size h using the RK4 method. def RK4(t_0, y_0, f, h=1.0E-3): t = t_0 y = np.copy(y_0) k1 = f(t, y) k2 = f(t+h/2.0, y+h*k1/2.0) k3 = f(t+h/2.0, y+h*k2/2.0) k4 = f(t+h, y+h*k3) t += h y += (h/6.0)*(k1+2*k2+2*k3+k4) return t, y # Given initial value problem returns the value of y evolved from times t_0 # until stop(t, y) return True. # Uses adaptive time steps (Taken from Wikipedia page on adaptive step size) def initialValueSolution(t_0, y_0, f, stop, tol=1.0E-5): t = t_0 y = np.array(y_0).astype(float) h = 1.0E-2 tvals = [t] yvals = [y] numStepsTaken = 0 while not stop(t, y, numStepsTaken): tFull, yFull = RK4(t, y, f, h=h) tHalf, yHalf = RK4(t, y, f, h=h/2.0) tHalf, yHalf = RK4(tHalf, yHalf, f, h=h/2.0) error = max(abs(yFull-yHalf)) if error < tol: tvals.append(tFull) yvals.append(yFull) t = tFull y = yFull numStepsTaken += 1 if error == 0: # print("0 error?") h *= 2 else: # .9 is safety factor to make sure we get desired accuracy, # .3 is minimum decrease in h, 2 is maximum increase h = .9*h*min(max(tol/error, .3), 2) tvals = np.array(tvals) yvals =
np.array(yvals)
numpy.array
import numpy as np import pandas as pd import pytest from pydantic import ValidationError from napari.layers.utils.string_encoding import ( ConstantStringEncoding, FormatStringEncoding, ManualStringEncoding, ) from napari.layers.utils.text_manager import TextManager @pytest.mark.filterwarnings('ignore::DeprecationWarning') def test_empty_text_manager_property(): """Test creating an empty text manager in property mode. This is for creating an empty layer with text initialized. """ properties = {'confidence': np.empty(0, dtype=float)} text_manager = TextManager( text='confidence', n_text=0, properties=properties ) assert text_manager.values.size == 0 # add a text element new_properties = {'confidence': np.array([0.5])} text_manager.add(new_properties, 1) np.testing.assert_equal(text_manager.values, ['0.5']) @pytest.mark.filterwarnings('ignore::DeprecationWarning') def test_add_many_text_property(): properties = {'confidence': np.empty(0, dtype=float)} text_manager = TextManager( text='confidence', n_text=0, properties=properties, ) text_manager.add({'confidence': np.array([0.5])}, 2) np.testing.assert_equal(text_manager.values, ['0.5'] * 2) @pytest.mark.filterwarnings('ignore::DeprecationWarning') def test_empty_text_manager_format(): """Test creating an empty text manager in formatted mode. This is for creating an empty layer with text initialized. """ properties = {'confidence': np.empty(0, dtype=float)} text = 'confidence: {confidence:.2f}' text_manager = TextManager(text=text, n_text=0, properties=properties) assert text_manager.values.size == 0 # add a text element new_properties = {'confidence': np.array([0.5])} text_manager.add(new_properties, 1) np.testing.assert_equal(text_manager.values, ['confidence: 0.50']) @pytest.mark.filterwarnings('ignore::DeprecationWarning') def test_add_many_text_formatted(): properties = {'confidence': np.empty(0, dtype=float)} text_manager = TextManager( text='confidence: {confidence:.2f}', n_text=0, properties=properties, ) text_manager.add({'confidence': np.array([0.5])}, 2) np.testing.assert_equal(text_manager.values, ['confidence: 0.50'] * 2) @pytest.mark.filterwarnings('ignore::DeprecationWarning') def test_text_manager_property(): n_text = 3 text = 'class' classes = np.array(['A', 'B', 'C']) properties = {'class': classes, 'confidence': np.array([0.5, 0.3, 1])} text_manager = TextManager(text=text, n_text=n_text, properties=properties) np.testing.assert_equal(text_manager.values, classes) # add new text with properties new_properties = {'class': np.array(['A']), 'confidence': np.array([0.5])} text_manager.add(new_properties, 1) expected_text_2 = np.concatenate([classes, ['A']]) np.testing.assert_equal(text_manager.values, expected_text_2) # remove the first text element text_manager.remove({0}) np.testing.assert_equal(text_manager.values, expected_text_2[1::]) @pytest.mark.filterwarnings('ignore::DeprecationWarning') def test_text_manager_format(): n_text = 3 text = 'confidence: {confidence:.2f}' classes = np.array(['A', 'B', 'C']) properties = {'class': classes, 'confidence': np.array([0.5, 0.3, 1])} expected_text = np.array( ['confidence: 0.50', 'confidence: 0.30', 'confidence: 1.00'] ) text_manager = TextManager(text=text, n_text=n_text, properties=properties) np.testing.assert_equal(text_manager.values, expected_text) # add new text with properties new_properties = {'class': np.array(['A']), 'confidence': np.array([0.5])} text_manager.add(new_properties, 1) expected_text_2 = np.concatenate([expected_text, ['confidence: 0.50']]) np.testing.assert_equal(text_manager.values, expected_text_2) # test getting the text elements when there are none in view text_view = text_manager.view_text([]) np.testing.assert_equal(text_view, np.empty((0,), dtype=str)) # test getting the text elements when the first two elements are in view text_view = text_manager.view_text([0, 1]) np.testing.assert_equal(text_view, expected_text_2[0:2]) text_manager.anchor = 'center' coords = np.array([[0, 0], [10, 10], [20, 20]]) text_coords = text_manager.compute_text_coords(coords, ndisplay=3) np.testing.assert_equal(text_coords, (coords, 'center', 'center')) # remove the first text element text_manager.remove({0}) np.testing.assert_equal(text_manager.values, expected_text_2[1::]) @pytest.mark.filterwarnings('ignore::DeprecationWarning') def test_refresh_text(): n_text = 3 text = 'class' classes = np.array(['A', 'B', 'C']) properties = {'class': classes, 'confidence': np.array([0.5, 0.3, 1])} text_manager = TextManager(text=text, n_text=n_text, properties=properties) new_classes = np.array(['D', 'E', 'F']) new_properties = { 'class': new_classes, 'confidence': np.array([0.5, 0.3, 1]), } text_manager.refresh_text(new_properties)
np.testing.assert_equal(new_classes, text_manager.values)
numpy.testing.assert_equal