prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
""" Basic Equations for solving shallow water problems ##################### """ from pysph.sph.equation import Equation from pysph.sph.integrator_step import IntegratorStep from pysph.sph.integrator import Integrator from compyle.api import declare from pysph.sph.wc.linalg import gj_solve, augmented_matrix from numpy import sqrt, cos, sin, zeros, pi, exp import numpy as np import numpy M_PI = pi class CheckForParticlesToSplit(Equation): r"""Particles are tagged for splitting if the following condition is satisfied: .. math:: (A_i > A_max) and (h_i < h_max) and (x_min < x_i < x_max) and (y_min < y_i < y_max) References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def __init__(self, dest, h_max=1e9, A_max=1e9, x_min=-1e9, x_max=1e9, y_min=-1e9, y_max=1e9): r""" Parameters ---------- h_max : float maximum smoothing length beyond which splitting is deactivated A_max : float maximum area beyond which splitting is activated x_min : float minimum distance along x-direction beyond which splitting is activated x_max : float maximum distance along x-direction beyond which splitting is deactivated y_min : float minimum distance along y-direction beyond which splitting is activated y_max : float maximum distance along y-direction beyond which splitting is deactivated """ self.A_max = A_max self.h_max = h_max self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max super(CheckForParticlesToSplit, self).__init__(dest, None) def initialize(self, d_idx, d_A, d_h, d_x, d_y, d_pa_to_split): if (d_A[d_idx] > self.A_max and d_h[d_idx] < self.h_max and (self.x_min < d_x[d_idx] < self.x_max) and (self.y_min < d_y[d_idx] < self.y_max)): d_pa_to_split[d_idx] = 1 else: d_pa_to_split[d_idx] = 0 class ParticleSplit(object): r"""**Hexagonal particle splitting algorithm** References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def __init__(self, pa_arr): r""" Parameters ---------- pa_arr : pysph.base.particle_array.ParticleArray particle array of fluid """ self.pa_arr = pa_arr # Ratio of mass of daughter particle located at center of hexagon to # that of its parents mass self.center_pa_mass_frac = 0.178705766141917 # Ratio of mass of daughter particle located at vertex of hexagon to # that of its parents mass self.vertex_pa_mass_frac = 0.136882287617319 # Ratio of smoothing length of daughter particle to that of its parents # smoothing length self.pa_h_ratio = 0.9 # Ratio of distance between center daughter particle and vertex # daughter particle to that of its parents smoothing length self.center_and_vertex_pa_separation_frac = 0.4 # Get index of the parent particles to split self.idx_pa_to_split = self._get_idx_of_particles_to_split() # Number of daughter particles located at the vertices of hexagon after # splitting self.num_vertex_pa_after_single_split = 6 def do_particle_split(self, solver=None): if not self.idx_pa_to_split.size: # If no particles to split then return return else: # Properties of parent particles to split h_parent = self.pa_arr.h[self.idx_pa_to_split] h0_parent = self.pa_arr.h0[self.idx_pa_to_split] m_parent = self.pa_arr.m[self.idx_pa_to_split] x_parent = self.pa_arr.x[self.idx_pa_to_split] y_parent = self.pa_arr.y[self.idx_pa_to_split] u_parent = self.pa_arr.u[self.idx_pa_to_split] v_parent = self.pa_arr.v[self.idx_pa_to_split] u_prev_step_parent = self.pa_arr.u_prev_step[self.idx_pa_to_split] v_prev_step_parent = self.pa_arr.v_prev_step[self.idx_pa_to_split] rho_parent = self.pa_arr.rho[self.idx_pa_to_split] rho0_parent = self.pa_arr.rho0[self.idx_pa_to_split] alpha_parent = self.pa_arr.alpha[self.idx_pa_to_split] # Vertex daughter particle properties update n = self.num_vertex_pa_after_single_split h_vertex_pa = self.pa_h_ratio * np.repeat(h_parent, n) h0_vertex_pa = self.pa_h_ratio * np.repeat(h0_parent, n) u_prev_step_vertex_pa = np.repeat(u_prev_step_parent, n) v_prev_step_vertex_pa = np.repeat(v_prev_step_parent, n) m_vertex_pa = self.vertex_pa_mass_frac * np.repeat(m_parent, n) vertex_pa_pos = self._get_vertex_pa_positions(h_parent, u_parent, v_parent) x_vertex_pa = vertex_pa_pos[0] + np.repeat(x_parent, n) y_vertex_pa = vertex_pa_pos[1] + np.repeat(y_parent, n) rho0_vertex_pa = np.repeat(rho0_parent, n) rho_vertex_pa = np.repeat(rho_parent, n) alpha_vertex_pa = np.repeat(alpha_parent, n) parent_idx_vertex_pa = np.repeat(self.idx_pa_to_split, n) # Note: # The center daughter particle properties are set at index of # parent. The properties of parent needed for further calculations # are not changed for now # Center daughter particle properties update for idx in self.idx_pa_to_split: self.pa_arr.m[idx] *= self.center_pa_mass_frac self.pa_arr.h[idx] *= self.pa_h_ratio self.pa_arr.h0[idx] *= self.pa_h_ratio self.pa_arr.parent_idx[idx] = int(idx) # Update particle array to include vertex daughter particles self._add_vertex_pa_prop( h0_vertex_pa, h_vertex_pa, m_vertex_pa, x_vertex_pa, y_vertex_pa, rho0_vertex_pa, rho_vertex_pa, u_prev_step_vertex_pa, v_prev_step_vertex_pa, alpha_vertex_pa, parent_idx_vertex_pa) def _get_idx_of_particles_to_split(self): idx_pa_to_split = [] for idx, val in enumerate(self.pa_arr.pa_to_split): if val: idx_pa_to_split.append(idx) return np.array(idx_pa_to_split) def _get_vertex_pa_positions(self, h_parent, u_parent, v_parent): # Number of particles to split num_of_pa_to_split = len(self.idx_pa_to_split) n = self.num_vertex_pa_after_single_split theta_vertex_pa = zeros(n) r = self.center_and_vertex_pa_separation_frac for i, theta in enumerate(range(0, 360, 60)): theta_vertex_pa[i] = (pi/180)*theta # Angle of velocity vector with horizontal angle_vel = np.where( (np.abs(u_parent) > 1e-3) | (np.abs(v_parent) > 1e-3), np.arctan2(v_parent, u_parent), 0 ) # Rotates the hexagon such that its horizontal axis aligns with the # direction of velocity vector angle_actual = (np.tile(theta_vertex_pa, num_of_pa_to_split) + np.repeat(angle_vel, n)) x = r * cos(angle_actual) * np.repeat(h_parent, n) y = r * sin(angle_actual) * np.repeat(h_parent, n) return x.copy(), y.copy() def _add_vertex_pa_prop(self, h0_vertex_pa, h_vertex_pa, m_vertex_pa, x_vertex_pa, y_vertex_pa, rho0_vertex_pa, rho_vertex_pa, u_prev_step_vertex_pa, v_prev_step_vertex_pa, alpha_vertex_pa, parent_idx_vertex_pa): vertex_pa_props = { 'm': m_vertex_pa, 'h': h_vertex_pa, 'h0': h0_vertex_pa, 'x': x_vertex_pa, 'y': y_vertex_pa, 'u_prev_step': u_prev_step_vertex_pa, 'v_prev_step': v_prev_step_vertex_pa, 'rho0': rho0_vertex_pa, 'rho': rho_vertex_pa, 'alpha': alpha_vertex_pa, 'parent_idx': parent_idx_vertex_pa.astype(int) } # Add vertex daughter particles to particle array self.pa_arr.add_particles(**vertex_pa_props) class DaughterVelocityEval(Equation): r"""**Evaluation of the daughter particle velocity after splitting procedure** .. math:: \boldsymbol{v_k} = c_v\frac{d_N}{d_k}\boldsymbol{v_N} where, .. math:: c_v = \dfrac{A_N}{\sum_{k=1}^{M}A_k} References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def __init__(self, dest, sources, rhow=1000.0): r"""" Parameters ---------- rhow : float constant 3-D density of water (kg/m3) Notes ----- This equation should be called before the equation SWEOS, as the parent particle area is required for calculating velocities. On calling the SWEOS equation, the parent properties are changed to the center daughter particle properties. """ self.rhow = rhow super(DaughterVelocityEval, self).__init__(dest, sources) def initialize(self, d_sum_Ak, d_idx, d_m, d_rho, d_u, d_v, d_uh, d_vh, d_u_parent, d_v_parent, d_uh_parent, d_vh_parent, d_parent_idx): # Stores sum of areas of daughter particles d_sum_Ak[d_idx] = 0.0 d_u_parent[d_idx] = d_u[d_parent_idx[d_idx]] d_uh_parent[d_idx] = d_uh[d_parent_idx[d_idx]] d_v_parent[d_idx] = d_v[d_parent_idx[d_idx]] d_vh_parent[d_idx] = d_vh[d_parent_idx[d_idx]] def loop_all(self, d_sum_Ak, d_pa_to_split, d_parent_idx, d_idx, s_m, s_rho, s_parent_idx, NBRS, N_NBRS): i = declare('int') s_idx = declare('long') if d_pa_to_split[d_idx]: for i in range(N_NBRS): s_idx = NBRS[i] if s_parent_idx[s_idx] == d_parent_idx[d_idx]: # Sums the area of daughter particles who have same parent # idx d_sum_Ak[d_idx] += s_m[s_idx] / s_rho[s_idx] def post_loop(self, d_idx, d_parent_idx, d_A, d_sum_Ak, d_dw, d_rho, d_u, d_uh, d_vh, d_v, d_u_parent, d_v_parent, d_uh_parent, d_vh_parent, t): # True only for daughter particles if d_parent_idx[d_idx]: # Ratio of parent area (before split) to sum of areas of its # daughters (after split) cv = d_A[d_parent_idx[d_idx]] / d_sum_Ak[d_parent_idx[d_idx]] # The denominator (d_rho[d_idx]/self.rhow) represents the water # depth of daughter particle. d_dw[d_idx] cannot be used as # equation of state is called after this equation (Refer Notes in # the constructor) dw_ratio = d_dw[d_parent_idx[d_idx]] / (d_rho[d_idx]/self.rhow) d_u[d_idx] = cv * dw_ratio * d_u_parent[d_idx] d_uh[d_idx] = cv * dw_ratio * d_uh_parent[d_idx] d_v[d_idx] = cv * dw_ratio * d_v_parent[d_idx] d_vh[d_idx] = cv * dw_ratio * d_vh_parent[d_idx] d_parent_idx[d_idx] = 0 class FindMergeable(Equation): r"""**Particle merging algorithm** Particles are tagged for merging if the following condition is satisfied: .. math:: (A_i < A_min) and (x_min < x_i < x_max) and (y_min < y_i < y_max) References ---------- .. [Vacondio2013] <NAME> et al., "Shallow water SPH for flooding with dynamic particle coalescing and splitting", Advances in Water Resources, 58 (2013), pp. 10-23 """ def __init__(self, dest, sources, A_min, x_min=-1e9, x_max=1e9, y_min=-1e9, y_max=1e9): r""" Parameters ---------- A_min : float minimum area below which merging is activated x_min : float minimum distance along x-direction beyond which merging is activated x_max : float maximum distance along x-direction beyond which merging is deactivated y_min : float minimum distance along y-direction beyond which merging is activated y_max : float maximum distance along y-direction beyond which merging is deactivated Notes ----- The merging algorithm merges two particles 'a' and 'b' if the following conditions are satisfied: #. Both particles have area less than A_min #. Both particles lies within :math:`x_min < x_i < x_max` and :math:`y_min < y_i < y_max` #. if 'a' is the closest neighbor of 'b' and vice versa The merging algorithm is run every timestep """ self.A_min = A_min self.x_min = x_min self.x_max = x_max self.y_min = y_min self.y_max = y_max super(FindMergeable, self).__init__(dest, sources) def loop_all(self, d_idx, d_merge, d_closest_idx, d_x, d_y, d_h, d_A, d_is_merged_pa, s_x, s_y, s_A, NBRS, N_NBRS): # Finds the closest neighbor of a particle and stores the index of that # neighbor in d_closest_idx[d_idx] i, closest = declare('int', 2) s_idx = declare('unsigned int') d_merge[d_idx] = 0 d_is_merged_pa[d_idx] = 0 xi = d_x[d_idx] yi = d_y[d_idx] rmin = d_h[d_idx] * 10.0 closest = -1 if (d_A[d_idx] < self.A_min and ((self.x_min < d_x[d_idx] < self.x_max) and (self.y_min < d_y[d_idx] < self.y_max))): for i in range(N_NBRS): s_idx = NBRS[i] if s_idx == d_idx: continue xij = xi - s_x[s_idx] yij = yi - s_y[s_idx] rij = sqrt(xij*xij + yij*yij) if rij < rmin: closest = s_idx rmin = rij d_closest_idx[d_idx] = closest def post_loop(self, d_idx, d_m, d_u, d_v, d_h, d_uh, d_vh, d_closest_idx, d_is_merged_pa, d_merge, d_x, d_y, SPH_KERNEL): idx = declare('int') xma = declare('matrix(3)') xmb = declare('matrix(3)') idx = d_closest_idx[d_idx] if idx > -1: # If particle 'a' is closest neighbor of 'b' and vice versa if d_idx == d_closest_idx[idx]: if d_idx < idx: # The newly merged particle properties are set at index of # particle 'a' m_merged = d_m[d_idx] + d_m[idx] x_merged = ((d_m[d_idx]*d_x[d_idx] + d_m[idx]*d_x[idx]) / m_merged) y_merged = ((d_m[d_idx]*d_y[d_idx] + d_m[idx]*d_y[idx]) / m_merged) xma[0] = x_merged - d_x[d_idx] xma[1] = y_merged - d_y[d_idx] xmb[0] = x_merged - d_x[idx] xmb[1] = y_merged - d_y[idx] rma = sqrt(xma[0]*xma[0] + xma[1]*xma[1]) rmb = sqrt(xmb[0]*xmb[0] + xmb[1]*xmb[1]) d_u[d_idx] = ((d_m[d_idx]*d_u[d_idx] + d_m[idx]*d_u[idx]) / m_merged) d_uh[d_idx] = (d_m[d_idx]*d_uh[d_idx] + d_m[idx]*d_uh[idx]) / m_merged d_v[d_idx] = ((d_m[d_idx]*d_v[d_idx] + d_m[idx]*d_v[idx]) / m_merged) d_vh[d_idx] = (d_m[d_idx]*d_vh[d_idx] + d_m[idx]*d_vh[idx]) / m_merged const1 = d_m[d_idx] * SPH_KERNEL.kernel(xma, rma, d_h[d_idx]) const2 = d_m[idx] * SPH_KERNEL.kernel(xmb, rmb, d_h[idx]) d_h[d_idx] = sqrt((7*M_PI/10.) * (m_merged/(const1+const2))) d_m[d_idx] = m_merged # Tags the newly formed particle after merging d_is_merged_pa[d_idx] = 1 else: # Tags particle 'b' for removal after merging d_merge[d_idx] = 1 def reduce(self, dst, t, dt): # The indices of particle 'b' are removed from particle array after # merging is done indices = declare('object') indices = numpy.where(dst.merge > 0)[0] if len(indices) > 0: dst.remove_particles(indices) class InitialDensityEvalAfterMerge(Equation): r"""**Initial density of the newly formed particle after merging** .. math :: \rho_M = \sum_{j}^{}m_jW_{M,j} References ---------- .. [Vacondio2013] R. Vacondio et al., "Shallow water SPH for flooding with dynamic particle coalescing and splitting", Advances in Water Resources, 58 (2013), pp. 10-23 """ def loop_all(self, d_rho, d_idx, d_is_merged_pa, d_x, d_y, s_h, s_m, s_x, d_merge, d_closest_idx, s_y, SPH_KERNEL, NBRS, N_NBRS): i = declare('int') s_idx = declare('long') xij = declare('matrix(3)') # Evaluates the initial density of the newly formed particle after # merging if d_is_merged_pa[d_idx] == 1: d_rho[d_idx] = 0.0 rij = 0.0 rho_sum = 0.0 for i in range(N_NBRS): s_idx = NBRS[i] xij[0] = d_x[d_idx] - s_x[s_idx] xij[1] = d_y[d_idx] - s_y[s_idx] rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1]) rho_sum += s_m[s_idx] * SPH_KERNEL.kernel(xij, rij, s_h[s_idx]) d_rho[d_idx] += rho_sum class EulerStep(IntegratorStep): """Fast but inaccurate integrator. Use this for testing""" def initialize(self, d_u, d_v, d_u_prev_step, d_v_prev_step, d_idx): d_u_prev_step[d_idx] = d_u[d_idx] d_v_prev_step[d_idx] = d_v[d_idx] def stage1(self, d_idx, d_u, d_v, d_au, d_av, d_x, d_y, dt): d_u[d_idx] += dt * d_au[d_idx] d_v[d_idx] += dt * d_av[d_idx] d_x[d_idx] += dt * d_u[d_idx] d_y[d_idx] += dt * d_v[d_idx] class SWEStep(IntegratorStep): """Leap frog time integration scheme""" def initialize(self, t, d_u, d_v, d_uh, d_vh, d_u_prev_step, d_v_prev_step, d_idx): # Stores the velocities at previous time step d_u_prev_step[d_idx] = d_u[d_idx] d_v_prev_step[d_idx] = d_v[d_idx] def stage1(self, d_uh, d_vh, d_idx, d_au, d_av, dt): # Velocities at half time step d_uh[d_idx] += dt * d_au[d_idx] d_vh[d_idx] += dt * d_av[d_idx] def stage2(self, d_u, d_v, d_uh, d_vh, d_idx, d_au, d_av, d_x, d_y, dt): d_x[d_idx] += dt * d_uh[d_idx] d_y[d_idx] += dt * d_vh[d_idx] d_u[d_idx] = d_uh[d_idx] + dt/2.*d_au[d_idx] d_v[d_idx] = d_vh[d_idx] + dt/2.*d_av[d_idx] class SWEIntegrator(Integrator): """Integrator for shallow water problems""" def one_timestep(self, t, dt): self.compute_accelerations() self.initialize() # Predict self.stage1() # Call any post-stage functions. self.do_post_stage(0.5*dt, 1) # Correct self.stage2() # Call any post-stage functions. self.do_post_stage(dt, 2) class GatherDensityEvalNextIteration(Equation): r"""**Gather formulation for evaluating the density of a particle** .. math:: \rho_i = \sum_{j}{m_jW(\textbf{x}_i - \textbf{x}_j, h_i)} References ---------- .. [Hernquist and Katz, 1988] <NAME> and <NAME>, "TREESPH: A unification of SPH with the hierarcgical tree method", The Astrophysical Journal Supplement Series, 70 (1989), pp 419-446. """ def initialize(self, d_rho, d_idx, d_rho_prev_iter): # Stores density of particle i of the previous iteration d_rho_prev_iter[d_idx] = d_rho[d_idx] d_rho[d_idx] = 0.0 def loop(self, d_rho, d_idx, s_m, s_idx, WI): d_rho[d_idx] += s_m[s_idx] * WI class ScatterDensityEvalNextIteration(Equation): r"""**Scatter formulation for evaluating the density of a particle** .. math:: \rho_i = \sum_{J}{m_JW(\textbf{x}_i - \textbf{x}_j, h_j)} References ---------- .. [Hernquist and Katz, 1988] <NAME> and <NAME>, "TREESPH: A unification of SPH with the hierarcgical tree method", The Astrophysical Journal Supplement Series, 70 (1989), pp 419-446. """ def initialize(self, t, d_rho, d_idx, d_rho_prev_iter): # Stores density of particle i of the previous iteration d_rho_prev_iter[d_idx] = d_rho[d_idx] d_rho[d_idx] = 0.0 def loop(self, d_rho, d_idx, s_m, s_idx, WJ): d_rho[d_idx] += s_m[s_idx] * WJ class NonDimensionalDensityResidual(Equation): r"""**Non-dimensional density residual** .. math:: \psi^{k+1} = \dfrac{|\rho_i^{k+1} - \rho_i^k|}{\rho_i^k} References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def __init__(self, dest, sources=None): super(NonDimensionalDensityResidual, self).__init__(dest, sources) def post_loop(self, d_psi, d_rho, d_rho_prev_iter, d_idx): # Non-dimensional residual d_psi[d_idx] = abs(d_rho[d_idx] - d_rho_prev_iter[d_idx]) \ / d_rho_prev_iter[d_idx] class CheckConvergenceDensityResidual(Equation): r"""The iterative process is stopped once the following condition is met .. math:: \psi^{k+1} < \epsilon_{\psi} where, \epsilon_{\psi} = 1e-3 References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 Notes ----- If particle splitting is activated, better to use this convergence criteria. It can be used even if particle splitting is not activated. """ def __init__(self, dest, sources=None): super(CheckConvergenceDensityResidual, self).__init__(dest, sources) self.eqn_has_converged = 0 def initialize(self): self.eqn_has_converged = 0 def reduce(self, dst, t, dt): epsilon = max(dst.psi) if epsilon <= 1e-3: self.eqn_has_converged = 1 def converged(self): return self.eqn_has_converged class CorrectionFactorVariableSmoothingLength(Equation): r"""**Correction factor in internal force due to variable smoothing length** .. math:: \alpha_i = -\sum_j m_j r_{ij}\frac{dW_i}{dr_{ij}} References ---------- .. [<NAME>, 2005] <NAME> and <NAME>, "A corrected smooth particle hydrodynamics formulation of the shallow-water equations", Computers and Structures, 83 (2005), pp. 1396-1410 """ def initialize(self, d_idx, d_alpha): d_alpha[d_idx] = 0.0 def loop(self, d_alpha, d_idx, DWIJ, XIJ, s_idx, s_m): d_alpha[d_idx] += -s_m[s_idx] * (DWIJ[0]*XIJ[0] + DWIJ[1]*XIJ[1]) class RemoveParticlesWithZeroAlpha(Equation): r"""Removes particles if correction factor (alpha) in internal force due to variable smoothing length is zero """ def __init__(self, dest): super(RemoveParticlesWithZeroAlpha, self).__init__(dest, None) def post_loop(self, d_alpha, d_pa_alpha_zero, d_idx): if d_alpha[d_idx] == 0: d_pa_alpha_zero[d_idx] = 1 def reduce(self, dst, t, dt): indices = declare('object') indices = numpy.where(dst.pa_alpha_zero > 0)[0] if len(indices) > 0: dst.remove_particles(indices) class SummationDensity(Equation): r"""**Summation Density** .. math:: \rho_i = \sum_{j}{m_jW(\textbf{x}_i - \textbf{x}_j, h_i)} """ def initialize(self, d_summation_rho, d_idx): d_summation_rho[d_idx] = 0.0 def loop(self, d_summation_rho, d_idx, s_m, s_idx, WI): d_summation_rho[d_idx] += s_m[s_idx] * WI class InitialGuessDensityVacondio(Equation): r"""**Initial guess density to start the iterative evaluation of density for time step n+1** .. math:: \rho_{i(0)}^{n+1} = \rho_i^n + dt\dfrac{d\rho_i}{dt}\\ h_{i(0)}^{n+1} = h_i^n + -\dfrac{h_i^n}{\rho_i^n}\dfrac{dt}{dm} \dfrac{d\rho_i}{dt} where, .. math:: \frac{d\rho_i}{dt} = \rho_i^n\sum_j\dfrac{m_j}{\rho_j} (\textbf{v}_i-\textbf{v}_j).\nabla W_i References ---------- .. [VacondioSWE-SPHysics, 2013] <NAME> et al., SWE-SPHysics source code, File: SWE_SPHYsics/SWE-SPHysics_2D_v1.0.00/source/SPHYSICS_SWE_2D/ ac_dw_var_hj_2D.f Note: If particle splitting is activated, better to use this method. It can be used even if particle splitting is not activated. """ def __init__(self, dest, sources, dim=2): r""" Parameters ---------- dim : int number of space dimensions (Default: 2) """ self.dim = dim super(InitialGuessDensityVacondio, self).__init__(dest, sources) def initialize(self, d_arho, d_idx): d_arho[d_idx] = 0 def loop(self, d_arho, d_rho, d_idx, s_m, s_rho, s_idx, d_u_prev_step, d_v_prev_step, s_u_prev_step, s_v_prev_step, DWI): tmp1 = (d_u_prev_step[d_idx]-s_u_prev_step[s_idx]) * DWI[0] tmp2 = (d_v_prev_step[d_idx]-s_v_prev_step[s_idx]) * DWI[1] d_arho[d_idx] += d_rho[d_idx] * ((s_m[s_idx]/s_rho[s_idx])*(tmp1+tmp2)) def post_loop(self, d_rho, d_h, dt, d_arho, d_idx): d_rho[d_idx] += dt * d_arho[d_idx] d_h[d_idx] += -(dt/self.dim)*d_h[d_idx]*(d_arho[d_idx]/d_rho[d_idx]) class InitialGuessDensity(Equation): r"""**Initial guess density to start the iterative evaluation of density for time step n+1 based on properties of time step n** .. math:: \rho_{I, n+1}^{(0)} = \rho_{I,n}e^{\lambda_n} where, \lambda = \dfrac{\rho_Id_m}{\alpha_I}\sum_{J}^{}m_J (\textbf{v}_J - \textbf{v}_I).\nabla W_I(\textbf{x}_I - \textbf{x}_J, h_I) References ---------- .. [Rodriguez and Bonet, 2005] <NAME> and <NAME>, "A corrected smooth particle hydrodynamics formulation of the shallow-water equations", Computers and Structures, 83 (2005), pp. 1396-1410 """ def __init__(self, dest, sources, dim=2): r""" Parameters ---------- dim : int number of space dimensions (Default: 2) """ self.dim = dim super(InitialGuessDensity, self).__init__(dest, sources) def initialize(self, d_exp_lambda, d_idx): d_exp_lambda[d_idx] = 0.0 def loop(self, d_exp_lambda, d_u_prev_step, d_v_prev_step, d_alpha, d_idx, s_m, s_u_prev_step, s_v_prev_step, s_idx, DWI, dt, t): a1 = (d_u_prev_step[d_idx]-s_u_prev_step[s_idx]) * DWI[0] a2 = (d_v_prev_step[d_idx]-s_v_prev_step[s_idx]) * DWI[1] const = (self.dim*dt) / d_alpha[d_idx] d_exp_lambda[d_idx] += const * (s_m[s_idx]*(a1+a2)) def post_loop(self, t, d_rho, d_exp_lambda, d_idx): d_rho[d_idx] = d_rho[d_idx] * exp(d_exp_lambda[d_idx]) class UpdateSmoothingLength(Equation): r"""**Update smoothing length based on density** .. math:: h_I^{(k)} = h_I^{0}\biggl(\dfrac{\rho_I^0}{\rho_I^{(k)}} \biggl)^\frac{1}{d_m} References ---------- .. [<NAME>, 2005] <NAME> and <NAME>, "A corrected smooth particle hydrodynamics formulation of the shallow-water equations", Computers and Structures, 83 (2005), pp. 1396-1410 """ def __init__(self, dest, dim=2): r""" Parameters ---------- dim : int number of space dimensions (Default: 2) """ self.dim = dim super(UpdateSmoothingLength, self).__init__(dest, None) def post_loop(self, d_h, d_h0, d_rho0, d_rho, d_idx): d_h[d_idx] = d_h0[d_idx] * (d_rho0[d_idx]/d_rho[d_idx])**(1./self.dim) class DensityResidual(Equation): r"""**Residual of density** .. math:: R(\rho^{(k)}) = \rho_I^{(k)} - \sum_{J}^{}m_J W_I(\textbf{x}_I - \textbf{x}_J, h_I^{(k)}) References ---------- .. [Rodriguez and Bonet, 2005] <NAME> and <NAME>, "A corrected smooth particle hydrodynamics formulation of the shallow-water equations", Computers and Structures, 83 (2005), pp. 1396-1410 """ def __init__(self, dest, sources=None): super(DensityResidual, self).__init__(dest, sources) def post_loop(self, d_rho, d_idx, d_rho_residual, d_summation_rho, t): d_rho_residual[d_idx] = d_rho[d_idx] - d_summation_rho[d_idx] class DensityNewtonRaphsonIteration(Equation): r"""**Newton-Raphson approximate solution for the density equation at iteration k+1** .. math:: \rho^{(k+1)} = \rho_I^{(k)}\biggl[1 - \dfrac{R_I^{(k)}d_m}{( R_I^{(k)} d_m + \alpha_I^k)}\biggr] References ---------- .. [Rodriguez and Bonet, 2005] <NAME> and <NAME>, "A corrected smooth particle hydrodynamics formulation of the shallow-water equations", Computers and Structures, 83 (2005), pp. 1396-1410 """ def __init__(self, dest, sources=None, dim=2): r""" Parameters ---------- dim : int number of space dimensions (Default: 2) """ self.dim = dim super(DensityNewtonRaphsonIteration, self).__init__(dest, sources) def initialize(self, d_rho, d_rho_prev_iter, d_idx): d_rho_prev_iter[d_idx] = d_rho[d_idx] def post_loop(self, d_rho, d_idx, d_alpha, d_rho_residual): a1 = d_rho_residual[d_idx] * self.dim a2 = a1 + d_alpha[d_idx] const = 1 - (a1/a2) d_rho[d_idx] = d_rho[d_idx] * const class CheckConvergence(Equation): r"""Stops the Newton-Raphson iterative procedure if the following convergence criteria is satisfied: .. math:: \dfrac{|R_I^{(k+1)}|}{\rho_I^{(k)}} \leq \epsilon where, \epsilon = 1e-15 References ---------- .. [<NAME>, 2005] <NAME> and <NAME>, "A corrected smooth particle hydrodynamics formulation of the shallow-water equations", Computers and Structures, 83 (2005), pp. 1396-1410 Notes ----- Use this convergence criteria when using the Newton-Raphson iterative procedure. """ def __init__(self, dest, sources=None): super(CheckConvergence, self).__init__(dest, sources) self.eqn_has_converged = 0 def initialize(self): self.eqn_has_converged = 0 def post_loop(self, d_positive_rho_residual, d_rho_residual, d_rho_prev_iter, d_idx, t): d_positive_rho_residual[d_idx] = abs(d_rho_residual[d_idx]) def reduce(self, dst, t, dt): max_epsilon = max(dst.positive_rho_residual / dst.rho_prev_iter) if max_epsilon <= 1e-15: self.eqn_has_converged = 1 def converged(self): return self.eqn_has_converged class SWEOS(Equation): r"""**Update fluid properties based on density** References ---------- .. [Rodriguez and Bonet, 2005] <NAME> and <NAME>, "A corrected smooth particle hydrodynamics formulation of the shallow-water equations", Computers and Structures, 83 (2005), pp. 1396-1410 """ def __init__(self, dest, sources=None, g=9.81, rhow=1000.0): r""" Parameters ---------- g : float acceleration due to gravity rhow : float constant 3-D density of water """ self.rhow = rhow self.g = g self.fac = 0.5 * (g/rhow) super(SWEOS, self).__init__(dest, sources) def post_loop(self, d_rho, d_cs, d_u, d_v, d_idx, d_p, d_dw, d_dt_cfl, d_m, d_A, d_alpha): # Pressure d_p[d_idx] = self.fac * (d_rho[d_idx])**2 # Wave speed d_cs[d_idx] = sqrt(self.g * d_rho[d_idx]/self.rhow) # Area d_A[d_idx] = d_m[d_idx] / d_rho[d_idx] # Depth of water d_dw[d_idx] = d_rho[d_idx] / self.rhow # dt = CFL * (h_min / max(dt_cfl)) d_dt_cfl[d_idx] = d_cs[d_idx] + (d_u[d_idx]**2 + d_v[d_idx]**2)**0.5 def mu_calc(hi=1.0, hj=1.0, velij_dot_rij=1.0, rij2=1.0): r"""Term present in the artificial viscosity formulation (Monaghan) .. math:: \mu_{ij} = \dfrac{\bar h_{ij}\textbf{v}_{ij}.\textbf{x}_{ij}} {|\textbf{x}_{ij}|^2 + \zeta^2} References ---------- .. [Monaghan2005] <NAME>, "Smoothed particle hydrodynamics", Reports on Progress in Physics, 68 (2005), pp. 1703-1759. """ h_bar = (hi+hj) / 2.0 eta2 = 0.01 * hi**2 muij = (h_bar*velij_dot_rij) / (rij2+eta2) return muij def artificial_visc(alpha=1.0, rij2=1.0, hi=1.0, hj=1.0, rhoi=1.0, rhoj=1.0, csi=1.0, csj=1.0, muij=1.0): r"""**Artificial viscosity based stabilization term (Monaghan)** Activated when :math:`\textbf{v}_{ij}.\textbf{x}_{ij} < 0` Given by .. math:: \Pi_{ij} = \dfrac{-a\bar c_{ij}\mu_{ij}+b\bar c_{ij}\mu_{ij}^2}{\rho_{ij}} References ---------- .. [Monaghan2005] <NAME>, "Smoothed particle hydrodynamics", Reports on Progress in Physics, 68 (2005), pp. 1703-1759. """ cs_bar = (csi+csj) / 2.0 rho_bar = (rhoi+rhoj) / 2.0 pi_visc = -(alpha*cs_bar*muij) / rho_bar return pi_visc def viscosity_LF(alpha=1.0, rij2=1.0, hi=1.0, hj=1.0, rhoi=1.0, rhoj=1.0, csi=1.0, csj=1.0, muij=1.0): r"""**Lax-Friedrichs flux based stabilization term (Ata and Soulaimani)** .. math:: \Pi_{ij} = \dfrac{\bar c_{ij}\textbf{v}_{ij}.\textbf{x}_{ij}} {\bar\rho_{ij}\sqrt{|x_{ij}|^2 + \zeta^2}} References ---------- .. [Ata and Soulaimani, 2004] <NAME> and <NAME>, "A stabilized SPH method for inviscid shallow water", Int. J. Numer. Meth. Fluids, 47 (2005), pp. 139-159. Notes ----- The advantage of this term is that it automatically sets the required level of numerical viscosity based on the Lax-Friedrichs flux. This is the default stabilization method. """ cs_bar = (csi+csj) / 2.0 rho_bar = (rhoi+rhoj) / 2.0 eta2 = 0.01 * hi**2 h_bar = (hi+hj) / 2.0 tmp = (muij*(rij2+eta2)**0.5) / h_bar pi_visc = -(cs_bar*tmp) / rho_bar return pi_visc class ParticleAcceleration(Equation): r"""**Acceleration of a particle** .. math:: \textbf{a}_i = -\frac{g+\textbf{v}_i.\textbf{k}_i\textbf{v}_i -\textbf{t}_i.\nabla H_i}{1+\nabla H_i.\nabla H_i} \nabla H_i - \textbf{t}_i - \textbf{S}_{fi} where, .. math:: \textbf{t}_i &= \sum_j m_j\ \biggl[\biggl(\frac{p_j}{ \alpha_j \rho_j^2}+0.5\Pi_{ij}\biggr)\nabla W_j(\textbf{x}_i, h_j) - \biggl(\frac{p_i}{\alpha_i \rho_i^2}+0.5\Pi_{ij}\biggr)\nabla W_i(\textbf{x}_j, h_i)\biggr] .. math:: \textbf{S}_f = \textbf{v}\dfrac{gn^2|\textbf{v}|}{d^{\frac{4}{3}}} with, .. math:: \alpha_i = -\sum_j m_j r_{ij}\frac{dW_i}{dr_{ij}} .. math:: n_i = \sum_jn_j^b\overline W_i(x_i - x_j^b, h^b)V_j References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 Notes ----- The acceleration term given in [Vacondio2010] has incorrect sign. """ def __init__(self, dest, sources, dim=2, u_only=False, v_only=False, alpha=0.0, visc_option=2, rhow=1000.0): r""" Parameters ---------- dim : int number of space dimensions (Default: 2) u_only : bool motion of fluid column in x-direction only evaluated (Default: False) v_only : bool motion of fluid column in y-direction only evaluated (Default: False) alpha : float coefficient to control amount of artificial viscosity (Monaghan) (Default: 0.0) visc_option : int artifical viscosity (1) or Lax-Friedrichs flux (2) based stabilization term (Default: 2) rhow : float constant 3-D density of water """ self.g = 9.81 self.rhow = rhow self.ct = self.g / (2*self.rhow) self.dim = dim self.u_only = u_only self.v_only = v_only self.alpha = alpha if visc_option == 1: self.viscous_func = artificial_visc else: self.viscous_func = viscosity_LF super(ParticleAcceleration, self).__init__(dest, sources) def initialize(self, d_idx, d_tu, d_tv): d_tu[d_idx] = 0.0 d_tv[d_idx] = 0.0 def loop(self, d_x, d_y, s_x, s_y, d_rho, d_idx, s_m, s_idx, s_rho, d_m, DWI, DWJ, d_au, d_av, s_alpha, d_alpha, s_p, d_p, d_tu, s_dw, d_dw, t, s_is_wall_boun_pa, s_tu, d_tv, s_tv, d_h, s_h, d_u, s_u, d_v, s_v, d_cs, s_cs): # True if neighbor is wall boundary particle if s_is_wall_boun_pa[s_idx] == 1: # Setting artificial viscosity to zero when a particle interacts # with wall boundary particles pi_visc = 0.0 # Setting water depth of wall boundary particles same as particle # interacting with it (For sufficient pressure to prevent wall # penetration) s_dw[s_idx] = d_dw[d_idx] else: uij = d_u[d_idx] - s_u[s_idx] vij = d_v[d_idx] - s_v[s_idx] xij = d_x[d_idx] - s_x[s_idx] yij = d_y[d_idx] - s_y[s_idx] rij2 = xij**2 + yij**2 uij_dot_xij = uij * xij vij_dot_yij = vij * yij velij_dot_rij = uij_dot_xij + vij_dot_yij muij = mu_calc(d_h[d_idx], s_h[s_idx], velij_dot_rij, rij2) if velij_dot_rij < 0: # Stabilization term pi_visc = self.viscous_func(self.alpha, rij2, d_h[d_idx], s_h[s_idx], d_rho[d_idx], s_rho[s_idx], d_cs[d_idx], s_cs[s_idx], muij) else: pi_visc = 0 tmp1 = (s_dw[s_idx]*self.rhow*self.dim) / s_alpha[s_idx] tmp2 = (d_dw[d_idx]*self.rhow*self.dim) / d_alpha[d_idx] # Internal force per unit mass d_tu[d_idx] += s_m[s_idx] * ((self.ct*tmp1 + 0.5*pi_visc)*DWJ[0] + (self.ct*tmp2 + 0.5*pi_visc)*DWI[0]) d_tv[d_idx] += s_m[s_idx] * ((self.ct*tmp1 + 0.5*pi_visc)*DWJ[1] + (self.ct*tmp2 + 0.5*pi_visc)*DWI[1]) def _get_helpers_(self): return [mu_calc, artificial_visc, viscosity_LF] def post_loop(self, d_idx, d_u, d_v, d_tu, d_tv, d_au, d_av, d_Sfx, d_Sfy, d_bx, d_by, d_bxx, d_bxy, d_byy): vikivi = d_u[d_idx]*d_u[d_idx]*d_bxx[d_idx] \ + 2*d_u[d_idx]*d_v[d_idx]*d_bxy[d_idx] \ + d_v[d_idx]*d_v[d_idx]*d_byy[d_idx] tidotgradbi = d_tu[d_idx]*d_bx[d_idx] + d_tv[d_idx]*d_by[d_idx] gradbidotgradbi = d_bx[d_idx]**2 + d_by[d_idx]**2 temp3 = self.g + vikivi - tidotgradbi temp4 = 1 + gradbidotgradbi if not self.v_only: # Acceleration along x-direction d_au[d_idx] = -(temp3/temp4)*d_bx[d_idx] - d_tu[d_idx] \ - d_Sfx[d_idx] if not self.u_only: # Acceleration along y-direction d_av[d_idx] = -(temp3/temp4)*d_by[d_idx] - d_tv[d_idx] \ - d_Sfy[d_idx] class FluidBottomElevation(Equation): r"""**Bottom elevation of fluid** .. math:: b_i = \sum_jb_j^b\overline{W_i}(\textbf{x}_i - \textbf{x}_j^b, h^b)V_j References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def initialize(self, d_b, d_idx): d_b[d_idx] = 0.0 def loop_all(self, d_shep_corr, d_x, d_y, d_idx, s_x, s_y, s_V, s_idx, s_h, SPH_KERNEL, NBRS, N_NBRS): # Shepard filter i = declare('int') xij = declare('matrix(3)') rij = 0.0 corr_sum = 0.0 for i in range(N_NBRS): s_idx = NBRS[i] xij[0] = d_x[d_idx] - s_x[s_idx] xij[1] = d_y[d_idx] - s_y[s_idx] rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1]) corr_sum += s_V[s_idx] * SPH_KERNEL.kernel(xij, rij, s_h[s_idx]) d_shep_corr[d_idx] = corr_sum def loop(self, d_b, d_idx, s_b, s_idx, WJ, s_V, RIJ): d_b[d_idx] += s_b[s_idx] * WJ * s_V[s_idx] def post_loop(self, d_b, d_shep_corr, d_idx): if d_shep_corr[d_idx] > 1e-14: d_b[d_idx] /= d_shep_corr[d_idx] class FluidBottomGradient(Equation): r"""**Bottom gradient of fluid** .. math:: \nabla b_i &=& \sum_j\nabla b_j^b W_i(\textbf{x}_i - \textbf{x}_j^b, h^b)V_j Notes: It is obtained from a simple SPH interpolation from the gradient of bed particles """ def initialize(self, d_idx, d_bx, d_by): d_bx[d_idx] = 0.0 d_by[d_idx] = 0.0 def loop(self, d_idx, d_bx, d_by, WJ, s_idx, s_bx, s_by, s_V): # Bottom gradient of fluid d_bx[d_idx] += s_bx[s_idx] * WJ * s_V[s_idx] d_by[d_idx] += s_by[s_idx] * WJ * s_V[s_idx] class FluidBottomCurvature(Equation): r"""Bottom curvature of fluid** .. math:: \nabla^2 b_i = \sum_j\nabla^2 b_j^b W_i(\textbf{x}_i - \textbf{x}_j^b, h^b)V_j Notes: It is obtained from a simple SPH interpolation from the curvature of bed particles """ def initialize(self, d_idx, d_bx, d_by, d_bxx, d_bxy, d_byy): d_bxx[d_idx] = 0.0 d_bxy[d_idx] = 0.0 d_byy[d_idx] = 0.0 def loop(self, d_idx, d_bxx, d_bxy, d_byy, WJ, s_idx, s_bxx, s_bxy, s_byy, s_V): # Bottom curvature of fluid d_bxx[d_idx] += s_bxx[s_idx] * WJ * s_V[s_idx] d_bxy[d_idx] += s_bxy[s_idx] * WJ * s_V[s_idx] d_byy[d_idx] += s_byy[s_idx] * WJ * s_V[s_idx] class BedGradient(Equation): r"""**Gradient of bed** .. math:: \nabla b_i = \sum_jb_j^b\tilde{\nabla}W_i(\textbf{x}_i - \textbf{x}_j^b, h^b)V_j References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def initialize(self, d_bx, d_by, d_idx): d_bx[d_idx] = 0.0 d_by[d_idx] = 0.0 def loop(self, d_bx, d_by, d_idx, s_b, s_idx, DWJ, s_V, RIJ): if RIJ > 1e-6: # Gradient of bed d_bx[d_idx] += s_b[s_idx] * DWJ[0] * s_V[s_idx] d_by[d_idx] += s_b[s_idx] * DWJ[1] * s_V[s_idx] class BedCurvature(Equation): r"""**Curvature of bed** .. math:: \biggl(\dfrac{\partial^2b}{\partial x^\alpha \partial x^\beta} \biggr)_i = \sum_{j}^{}\biggl(4\dfrac{x_{ij}^\alphax_{ij}^\beta} {r_{ij}^2}-\delta^{\alpha\beta}\biggr)\dfrac{b_i - b_j^b}{ \textbf{r}_{ij}\textbf{r}_{ij} + \eta^2}\textbf{r}_{ij}.\tilde{\nabla} W_i(\textbf{x}_i - \textbf{x}_j^b, h^b)V_j References ---------- .. [Vacondio2010] <NAME>, <NAME> and <NAME>, "Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing", Int. J. Numer. Meth. Fluids, 69 (2012), pp. 1377-1410 """ def initialize(self, d_bxx, d_bxy, d_byy, d_idx): d_bxx[d_idx] = 0.0 d_bxy[d_idx] = 0.0 d_byy[d_idx] = 0.0 def loop(self, d_bxx, d_bxy, d_byy, d_b, d_idx, s_h, s_b, s_idx, XIJ, RIJ, DWJ, s_V): if RIJ > 1e-6: eta = 0.01 * s_h[s_idx] temp1 = (d_b[d_idx]-s_b[s_idx]) / (RIJ**2+eta**2) temp2 = XIJ[0]*DWJ[0] + XIJ[1]*DWJ[1] temp_bxx = ((4*XIJ[0]**2/RIJ**2)-1) * temp1 temp_bxy = (4*XIJ[0]*XIJ[1]/RIJ**2) * temp1 temp_byy = ((4*XIJ[1]**2/RIJ**2)-1) * temp1 # Curvature of bed d_bxx[d_idx] += temp_bxx * temp2 * s_V[s_idx] d_bxy[d_idx] += temp_bxy * temp2 * s_V[s_idx] d_byy[d_idx] += temp_byy * temp2 * s_V[s_idx] class BedFrictionSourceEval(Equation): r"""**Friction source term** .. math:: \textbf{S}_f = \textbf{v}\dfrac{gn^2|\textbf{v}|}{d^{\frac{4}{3}}} where, .. math:: n_i = \sum_jn_j^b\overline W_i(x_i - x_j^b, h^b)V_j """ def __init__(self, dest, sources): self.g = 9.8 super(BedFrictionSourceEval, self).__init__(dest, sources) def initialize(self, d_n, d_idx): d_n[d_idx] = 0.0 def loop(self, d_n, d_idx, s_n, s_idx, WJ, s_V, RIJ): if RIJ > 1e-6: # Manning coefficient d_n[d_idx] += s_n[s_idx] * WJ * s_V[s_idx] def post_loop(self, d_idx, d_Sfx, d_Sfy, d_u, d_v, d_n, d_dw): vmag = sqrt(d_u[d_idx]**2 + d_v[d_idx]**2) temp = (self.g*d_n[d_idx]**2*vmag) / d_dw[d_idx]**(4.0/3.0) # Friction source term d_Sfx[d_idx] = d_u[d_idx] * temp d_Sfy[d_idx] = d_v[d_idx] * temp class BoundaryInnerReimannStateEval(Equation): r"""Evaluates the inner Riemann state of velocity and depth .. math:: \textbf{v}_i^o = \sum_j\dfrac{m_j^f}{\rho_j^f}\textbf{v}_j^f\bar W_i(\textbf{x}_i^o - \textbf{x}_j^f, h_o)\\ {d}_i^o = \sum_j\dfrac{m_j^f}{\rho_j^f}d_j^f\bar W_i(\textbf{x}_i^o - \textbf{x}_j^f, h_o) References ---------- .. [Vacondio2012] <NAME> et al., "SPH modeling of shallow flow with open boundaries for practical flood simulation", J. Hydraul. Eng., 2012, 138(6), pp. 530-541. """ def initialize(self, d_u_inner_reimann, d_v_inner_reimann, d_dw_inner_reimann, d_idx): d_u_inner_reimann[d_idx] = 0.0 d_v_inner_reimann[d_idx] = 0.0 d_dw_inner_reimann[d_idx] = 0.0 def loop_all(self, d_shep_corr, d_x, d_y, d_idx, s_x, s_y, s_m, s_rho, s_idx, d_h, SPH_KERNEL, NBRS, N_NBRS): # Shepard filter i = declare('int') xij = declare('matrix(3)') rij = 0.0 corr_sum = 0.0 for i in range(N_NBRS): s_idx = NBRS[i] xij[0] = d_x[d_idx] - s_x[s_idx] xij[1] = d_y[d_idx] - s_y[s_idx] rij = sqrt(xij[0]*xij[0] + xij[1]*xij[1]) corr_sum += ((s_m[s_idx]/s_rho[s_idx]) * SPH_KERNEL.kernel(xij, rij, d_h[d_idx])) d_shep_corr[d_idx] = corr_sum def loop(self, d_u_inner_reimann, d_v_inner_reimann, d_dw_inner_reimann, d_idx, WI, s_m, s_u, s_v, s_rho, s_dw, s_idx): tmp = WI * (s_m[s_idx]/s_rho[s_idx]) # Riemann invariants at open boundaries d_u_inner_reimann[d_idx] += s_u[s_idx] * tmp d_v_inner_reimann[d_idx] += s_v[s_idx] * tmp d_dw_inner_reimann[d_idx] += s_dw[s_idx] * tmp def post_loop(self, d_u_inner_reimann, d_v_inner_reimann, d_dw_inner_reimann, d_shep_corr, d_idx): if d_shep_corr[d_idx] > 1e-14: d_u_inner_reimann[d_idx] /= d_shep_corr[d_idx] d_v_inner_reimann[d_idx] /= d_shep_corr[d_idx] d_dw_inner_reimann[d_idx] /= d_shep_corr[d_idx] class SubCriticalInFlow(Equation): r"""**Subcritical inflow condition** ..math :: d_B = \biggl[\frac{1}{2\sqrt{g}}(v_{B,n}-v_{I,n}) + \sqrt{d_I}\biggr]^2 References ---------- .. [Vacondio2012] <NAME> et al., "SPH modeling of shallow flow with open boundaries for practical flood simulation", J. Hydraul. Eng., 2012, 138(6), pp. 530-541. Notes ----- The velocity is imposed at the open boundary. """ def __init__(self, dest, dim=2, rhow=1000.0): r""" Parameters ---------- dim : int number of space dimensions (Default: 2) rhow : float constant 3-D density of water """ self.g = 9.8 self.dim = dim self.rhow = rhow super(SubCriticalInFlow, self).__init__(dest, None) def post_loop(self, d_dw, d_dw_inner_reimann, d_u, d_u_inner_reimann, d_rho, d_alpha, d_cs, d_idx): const = 1. / (2.*sqrt(self.g)) # Properties of open boundary particles d_dw[d_idx] = (const*(d_u_inner_reimann[d_idx] - d_u[d_idx]) + sqrt(d_dw_inner_reimann[d_idx]))**2 d_rho[d_idx] = d_dw[d_idx] * self.rhow d_alpha[d_idx] = self.dim * d_rho[d_idx] d_cs[d_idx] =
sqrt(self.g * d_dw[d_idx])
numpy.sqrt
""" defines: bdf merge (IN_BDF_FILENAMES)... [-o OUT_BDF_FILENAME]\n' bdf equivalence IN_BDF_FILENAME EQ_TOL\n' bdf renumber IN_BDF_FILENAME [-o OUT_BDF_FILENAME]\n' bdf mirror IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--plane PLANE] [--tol TOL]\n' bdf export_mcids IN_BDF_FILENAME [-o OUT_GEOM_FILENAME]\n' bdf split_cbars_by_pin_flags IN_BDF_FILENAME [-o OUT_BDF_FILENAME]\n' """ import os import sys from io import StringIO from typing import List from cpylog import SimpleLogger import pyNastran from pyNastran.bdf.mesh_utils.bdf_renumber import bdf_renumber, superelement_renumber from pyNastran.bdf.mesh_utils.bdf_merge import bdf_merge from pyNastran.bdf.mesh_utils.export_mcids import export_mcids from pyNastran.bdf.mesh_utils.pierce_shells import pierce_shell_model # testing these imports are up to date # if something is imported and tested, it should be removed from here from pyNastran.bdf.mesh_utils.shift import update_nodes from pyNastran.bdf.mesh_utils.mirror_mesh import write_bdf_symmetric from pyNastran.bdf.mesh_utils.collapse_bad_quads import convert_bad_quads_to_tris from pyNastran.bdf.mesh_utils.delete_bad_elements import delete_bad_shells, get_bad_shells from pyNastran.bdf.mesh_utils.split_cbars_by_pin_flag import split_cbars_by_pin_flag from pyNastran.bdf.mesh_utils.dev.create_vectorized_numbered import create_vectorized_numbered from pyNastran.bdf.mesh_utils.remove_unused import remove_unused from pyNastran.bdf.mesh_utils.free_faces import write_skin_solid_faces from pyNastran.bdf.mesh_utils.get_oml import get_oml_eids def cmd_line_create_vectorized_numbered(argv=None, quiet=False): # pragma: no cover if argv is None: argv = sys.argv msg = ( 'Usage:\n' ' bdf create_vectorized_numbered IN_BDF_FILENAME [OUT_BDF_FILENAME]\n' ' bdf create_vectorized_numbered -h | --help\n' ' bdf create_vectorized_numbered -v | --version\n' '\n' 'Positional Arguments:\n' ' IN_BDF_FILENAME the model to convert\n' " OUT_BDF_FILENAME the converted model name (default=IN_BDF_FILENAME + '_convert.bdf')" '\n' 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) if len(argv) == 1: sys.exit(msg) from docopt import docopt ver = str(pyNastran.__version__) data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) bdf_filename_in = data['IN_BDF_FILENAME'] if data['OUT_BDF_FILENAME']: bdf_filename_out = data['OUT_BDF_FILENAME'] else: base, ext = os.path.splitext(bdf_filename_in) bdf_filename_out = base + '_convert' + ext create_vectorized_numbered(bdf_filename_in, bdf_filename_out) def cmd_line_equivalence(argv=None, quiet=False): """command line interface to bdf_equivalence_nodes""" if argv is None: argv = sys.argv from docopt import docopt msg = ( 'Usage:\n' ' bdf equivalence IN_BDF_FILENAME EQ_TOL [-o OUT_BDF_FILENAME]\n' ' bdf equivalence -h | --help\n' ' bdf equivalence -v | --version\n' '\n' "Positional Arguments:\n" " IN_BDF_FILENAME path to input BDF/DAT/NAS file\n" " EQ_TOL the spherical equivalence tolerance\n" #" OUT_BDF_FILENAME path to output BDF/DAT/NAS file\n" '\n' 'Options:\n' " -o OUT, --output OUT_BDF_FILENAME path to output BDF/DAT/NAS file\n\n" 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) if len(argv) == 1: sys.exit(msg) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) bdf_filename = data['IN_BDF_FILENAME'] bdf_filename_out = data['--output'] if bdf_filename_out is None: bdf_filename_out = 'merged.bdf' tol = float(data['EQ_TOL']) size = 16 from pyNastran.bdf.mesh_utils.bdf_equivalence import bdf_equivalence_nodes level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) bdf_equivalence_nodes(bdf_filename, bdf_filename_out, tol, renumber_nodes=False, neq_max=10, xref=True, node_set=None, size=size, is_double=False, remove_collapsed_elements=False, avoid_collapsed_elements=False, crash_on_collapse=False, log=log, debug=True) def cmd_line_bin(argv=None, quiet=False): # pragma: no cover """bins the model into nbins""" if argv is None: argv = sys.argv from docopt import docopt msg = ( "Usage:\n" #" bdf bin IN_BDF_FILENAME AXIS1 AXIS2 [--cid CID] [--step SIZE]\n" " bdf bin IN_BDF_FILENAME AXIS1 AXIS2 [--cid CID] [--nbins NBINS]\n" ' bdf bin -h | --help\n' ' bdf bin -v | --version\n' '\n' "Positional Arguments:\n" " IN_BDF_FILENAME path to input BDF/DAT/NAS file\n" " AXIS1 axis to loop over\n" " AXIS2 axis to bin\n" '\n' 'Options:\n' " --cid CID the coordinate system to bin (default:0)\n" " --step SIZE the step size for binning\n\n" " --nbins NBINS the number of bins\n\n" 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n\n" 'Plot z (2) as a function of y (1) in y-stepsizes of 0.1:\n' ' bdf bin fem.bdf 1 2 --cid 0 --step 0.1\n\n' 'Plot z (2) as a function of y (1) with 50 bins:\n' ' bdf bin fem.bdf 1 2 --cid 0 --nbins 50' ) if len(argv) == 1: sys.exit(msg) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) bdf_filename = data['IN_BDF_FILENAME'] axis1 = int(data['AXIS1']) axis2 = int(data['AXIS2']) cid = 0 if data['--cid']: cid = int(data['--cid']) #stepsize = 0.1 #if data['--step']: #stepsize = float(data['--step']) nbins = 10 if data['--nbins']: nbins = int(data['--nbins']) assert nbins >= 2, nbins if not quiet: # pragma: no cover print(data) import numpy as np import matplotlib.pyplot as plt from pyNastran.bdf.bdf import read_bdf level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) model = read_bdf(bdf_filename, log=log) xyz_cid = model.get_xyz_in_coord(cid=cid, fdtype='float64') y = xyz_cid[:, axis1] z = xyz_cid[:, axis2] plt.figure(1) #n, bins, patches = plt.hist( [x0,x1,x2], 10, weights=[w0, w1, w2], histtype='bar') ys = [] #zs = [] zs_min = [] zs_max = [] y0 = y.min() y1 = y.max() dy = (y1 - y0) / nbins y0i = y0 y1i = y0 + dy for unused_i in range(nbins): j = np.where((y0i <= y) & (y <= y1i))[0] if not len(j): continue ys.append(y[j].mean()) zs_min.append(z[j].min()) zs_max.append(z[j].max()) y0i += dy y1i += dy zs_max = np.array(zs_max) zs_min = np.array(zs_min) if not quiet: # pragma: no cover print('ys = %s' % ys) print('zs_max = %s' % zs_max) print('zs_min = %s' % zs_min) plt.plot(ys, zs_max, 'r-o', label='max') plt.plot(ys, zs_min, 'b-o', label='min') plt.plot(ys, zs_max - zs_min, 'g-o', label='delta') #plt.xlim([y0, y1]) plt.xlabel('Axis %s' % axis1) plt.ylabel('Axis %s' % axis2) plt.grid(True) plt.legend() plt.show() def cmd_line_renumber(argv=None, quiet=False): """command line interface to bdf_renumber""" if argv is None: argv = sys.argv from docopt import docopt msg = ( "Usage:\n" ' bdf renumber IN_BDF_FILENAME OUT_BDF_FILENAME [--superelement] [--size SIZE]\n' ' bdf renumber IN_BDF_FILENAME [--superelement] [--size SIZE]\n' ' bdf renumber -h | --help\n' ' bdf renumber -v | --version\n' '\n' 'Positional Arguments:\n' ' IN_BDF_FILENAME path to input BDF/DAT/NAS file\n' ' OUT_BDF_FILENAME path to output BDF/DAT/NAS file\n' '\n' 'Options:\n' '--superelement calls superelement_renumber\n' '--size SIZE set the field size (default=16)\n\n' 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) if len(argv) == 1: sys.exit(msg) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) bdf_filename = data['IN_BDF_FILENAME'] bdf_filename_out = data['OUT_BDF_FILENAME'] if bdf_filename_out is None: bdf_filename_out = 'renumber.bdf' size = 16 if data['--size']: size = int(data['SIZE']) assert size in [8, 16], f'size={size} args={argv}' #cards_to_skip = [ #'AEFACT', 'CAERO1', 'CAERO2', 'SPLINE1', 'SPLINE2', #'AERO', 'AEROS', 'PAERO1', 'PAERO2', 'MKAERO1'] cards_to_skip = [] level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) if data['--superelement']: superelement_renumber(bdf_filename, bdf_filename_out, size=size, is_double=False, starting_id_dict=None, #round_ids=False, cards_to_skip=cards_to_skip, log=log) else: bdf_renumber(bdf_filename, bdf_filename_out, size=size, is_double=False, starting_id_dict=None, round_ids=False, cards_to_skip=cards_to_skip, log=log) def cmd_line_mirror(argv=None, quiet=False): """command line interface to write_bdf_symmetric""" if argv is None: argv = sys.argv from docopt import docopt import pyNastran msg = ( "Usage:\n" " bdf mirror IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--plane PLANE] [--tol TOL]\n" " bdf mirror IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--plane PLANE] [--noeq]\n" ' bdf mirror -h | --help\n' ' bdf mirror -v | --version\n' '\n' "Positional Arguments:\n" " IN_BDF_FILENAME path to input BDF/DAT/NAS file\n" #" OUT_BDF_FILENAME path to output BDF/DAT/NAS file\n" '\n' 'Options:\n' " -o OUT, --output OUT_BDF_FILENAME path to output BDF/DAT/NAS file\n" " --plane PLANE the symmetry plane (xz, yz, xy); default=xz\n" ' --tol TOL the spherical equivalence tolerance; default=1e-6\n' ' --noeq disable equivalencing\n' "\n" # (default=0.000001) 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) if len(argv) == 1: sys.exit(msg) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if data['--tol'] is None: data['TOL'] = 0.000001 if isinstance(data['TOL'], str): data['TOL'] = float(data['TOL']) tol = data['TOL'] assert data['--noeq'] in [True, False] if data['--noeq']: tol = -1. plane = 'xz' if data['--plane'] is not None: # None or str plane = data['--plane'] if not quiet: # pragma: no cover print(data) size = 16 bdf_filename = data['IN_BDF_FILENAME'] bdf_filename_out = data['--output'] if bdf_filename_out is None: bdf_filename_out = 'mirrored.bdf' #from io import StringIO from pyNastran.bdf.bdf import read_bdf from pyNastran.bdf.mesh_utils.bdf_equivalence import bdf_equivalence_nodes level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) model = read_bdf(bdf_filename, log=log) bdf_filename_stringio = StringIO() write_bdf_symmetric(model, bdf_filename_stringio, encoding=None, size=size, is_double=False, enddata=None, close=False, plane=plane, log=log) bdf_filename_stringio.seek(0) if tol >= 0.0: bdf_equivalence_nodes(bdf_filename_stringio, bdf_filename_out, tol, renumber_nodes=False, neq_max=10, xref=True, node_set=None, size=size, is_double=False, remove_collapsed_elements=False, avoid_collapsed_elements=False, crash_on_collapse=False, debug=True, log=log) else: model.log.info('writing mirrored model %s without equivalencing' % bdf_filename_out) with open(bdf_filename_out, 'w') as bdf_file: bdf_file.write(bdf_filename_stringio.getvalue()) def cmd_line_merge(argv=None, quiet=False): """command line interface to bdf_merge""" if argv is None: argv = sys.argv from docopt import docopt import pyNastran msg = ( "Usage:\n" ' bdf merge (IN_BDF_FILENAMES)... [-o OUT_BDF_FILENAME]\n' ' bdf merge -h | --help\n' ' bdf merge -v | --version\n' '\n' 'Positional Arguments:\n' ' IN_BDF_FILENAMES path to input BDF/DAT/NAS files\n' '\n' 'Options:\n' ' -o OUT, --output OUT_BDF_FILENAME path to output BDF/DAT/NAS file\n\n' 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) if len(argv) == 1: sys.exit(msg) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) size = 16 bdf_filenames = data['IN_BDF_FILENAMES'] bdf_filename_out = data['--output'] if bdf_filename_out is None: bdf_filename_out = 'merged.bdf' #cards_to_skip = [ #'AEFACT', 'CAERO1', 'CAERO2', 'SPLINE1', 'SPLINE2', #'AERO', 'AEROS', 'PAERO1', 'PAERO2', 'MKAERO1'] cards_to_skip = [] bdf_merge(bdf_filenames, bdf_filename_out, renumber=True, encoding=None, size=size, is_double=False, cards_to_skip=cards_to_skip) def cmd_line_convert(argv=None, quiet=False): """command line interface to bdf_merge""" if argv is None: argv = sys.argv from docopt import docopt msg = ( "Usage:\n" ' bdf convert IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--in_units IN_UNITS] [--out_units OUT_UNITS]\n' ' bdf convert -h | --help\n' ' bdf convert -v | --version\n' '\n' 'Options:\n' ' -o OUT, --output OUT_BDF_FILENAME path to output BDF/DAT/NAS file\n\n' ' --in_units IN_UNITS length,mass\n\n' ' --out_units OUT_UNITS length,mass\n\n' 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) if len(argv) == 1: sys.exit(msg) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) #size = 16 bdf_filename = data['IN_BDF_FILENAME'] bdf_filename_out = data['--output'] if bdf_filename_out is None: #bdf_filename_out = 'merged.bdf' bdf_filename_out = bdf_filename + '.convert.bdf' in_units = data['IN_UNITS'] if in_units is None: in_units = 'm,kg' out_units = data['OUT_UNITS'] if out_units is None: out_units = 'm,kg' length_in, mass_in = in_units.split(',') length_out, mass_out = out_units.split(',') units_to = [length_out, mass_out, 's'] units = [length_in, mass_in, 's'] #cards_to_skip = [ #'AEFACT', 'CAERO1', 'CAERO2', 'SPLINE1', 'SPLINE2', #'AERO', 'AEROS', 'PAERO1', 'PAERO2', 'MKAERO1'] from pyNastran.bdf.bdf import read_bdf from pyNastran.bdf.mesh_utils.convert import convert level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) model = read_bdf(bdf_filename, validate=True, xref=True, punch=False, save_file_structure=False, skip_cards=None, read_cards=None, encoding=None, log=log, debug=True, mode='msc') convert(model, units_to, units=units) for prop in model.properties.values(): prop.comment = '' model.write_bdf(bdf_filename_out) def cmd_line_scale(argv=None, quiet=False): if argv is None: argv = sys.argv import argparse #import textwrap parent_parser = argparse.ArgumentParser( #prog = 'pyNastranGUI', #usage = usage, #description='A foo that bars', #epilog="And that's how you'd foo a bar", #formatter_class=argparse.RawDescriptionHelpFormatter, #description=textwrap.dedent(text), #version=pyNastran.__version__, #add_help=False, ) # positional arguments parent_parser.add_argument('scale', type=str) parent_parser.add_argument('INPUT', help='path to output BDF/DAT/NAS file', type=str) parent_parser.add_argument('OUTPUT', nargs='?', help='path to output file', type=str) #' --l LENGTH_SF length scale factor\n' #' --m MASS_SF mass scale factor\n' #' --f FORCE_SF force scale factor\n' #' --p PRESSURE_SF pressure scale factor\n' #' --t TIME_SF time scale factor\n' #' --v VEL_SF velocity scale factor\n' parent_parser.add_argument('-l', '--length', help='length scale factor') parent_parser.add_argument('-m', '--mass', help='mass scale factor') parent_parser.add_argument('-f', '--force', help='force scale factor') parent_parser.add_argument('-p', '--pressure', help='pressure scale factor') parent_parser.add_argument('-t', '--time', help='time scale factor') parent_parser.add_argument('-V', '--velocity', help='velocity scale factor') #parent_parser.add_argument('--user_geom', type=str, help='log msg') #parent_parser.add_argument('-q', '--quiet', help='prints debug messages (default=True)', action='store_true') #parent_parser.add_argument('-h', '--help', help='show this help message and exits', action='store_true') parent_parser.add_argument('-v', '--version', action='version', version=pyNastran.__version__) args = parent_parser.parse_args(args=argv[1:]) if not quiet: # pragma: no cover print(args) scales = [] terms = [] bdf_filename = args.INPUT bdf_filename_out = args.OUTPUT if bdf_filename_out is None: bdf_filename_base, ext = os.path.splitext(bdf_filename) bdf_filename_out = '%s.scaled%s' % (bdf_filename_base, ext) #assert bdf_filename_out is not None if args.mass: scale = float(args.mass) scales.append(scale) terms.append('M') if args.length: scale = float(args.length) scales.append(scale) terms.append('L') if args.time: scale = float(args.time) scales.append(scale) terms.append('T') if args.force: scale = float(args.force) scales.append(scale) terms.append('F') if args.pressure: scale = float(args.pressure) scales.append(scale) terms.append('P') if args.velocity: scale = float(args.velocity) scales.append(scale) terms.append('V') from pyNastran.bdf.mesh_utils.convert import scale_by_terms level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) scale_by_terms(bdf_filename, terms, scales, bdf_filename_out=bdf_filename_out, log=log) def cmd_line_export_mcids(argv=None, quiet=False): """command line interface to export_mcids""" if argv is None: argv = sys.argv from docopt import docopt msg = ( 'Usage:\n' ' bdf export_mcids IN_BDF_FILENAME [-o OUT_CSV_FILENAME] [--iplies PLIES] [--no_x | --no_y]\n' ' bdf export_mcids -h | --help\n' ' bdf export_mcids -v | --version\n' '\n' 'Positional Arguments:\n' ' IN_BDF_FILENAME path to input BDF/DAT/NAS file\n' '\n' 'Options:\n' ' -o OUT, --output OUT_CSV_FILENAME path to output CSV file\n' ' --iplies PLIES the plies indices to export; comma separated (default=0)\n' '\n' 'Data Suppression:\n' " --no_x, don't write the x axis\n" " --no_y, don't write the y axis\n" '\n' 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) _filter_no_args(msg, argv, quiet=quiet) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) #size = 16 bdf_filename = data['IN_BDF_FILENAME'] csv_filename_in = data['--output'] if csv_filename_in is None: csv_filename_in = 'mcids.csv' export_xaxis = True export_yaxis = True if data['--no_x']: export_xaxis = False if data['--no_y']: export_yaxis = False csv_filename_base = os.path.splitext(csv_filename_in)[0] iplies = [0] if data['--iplies']: iplies = data['--iplies'].split(',') iplies = [int(iply) for iply in iplies] if not quiet: # pragma: no cover print('iplies = %s' % iplies) from pyNastran.bdf.bdf import read_bdf level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) model = read_bdf(bdf_filename, log=log, xref=False) model.safe_cross_reference() for iply in iplies: csv_filename = csv_filename_base + '_ply=%i.csv' % iply export_mcids(model, csv_filename, export_xaxis=export_xaxis, export_yaxis=export_yaxis, iply=iply) model.log.info('wrote %s' % csv_filename) def _filter_no_args(msg: str, argv: List[str], quiet: bool=False): if len(argv) == 1: if quiet: sys.exit() sys.exit(msg) def cmd_line_free_faces(argv=None, quiet=False): """command line interface to bdf free_faces""" if argv is None: argv = sys.argv encoding = sys.getdefaultencoding() usage = ( 'Usage:\n' ' bdf free_faces BDF_FILENAME SKIN_FILENAME [-d] [-l] [-f] [--encoding ENCODE]\n' ' bdf free_faces -h | --help\n' ' bdf free_faces -v | --version\n' '\n' ) arg_msg = ( "Positional Arguments:\n" " BDF_FILENAME path to input BDF/DAT/NAS file\n" " SKIN_FILENAME path to output BDF/DAT/NAS file\n" '\n' 'Options:\n' ' -l, --large writes the BDF in large field, single precision format (default=False)\n' ' -d, --double writes the BDF in large field, double precision format (default=False)\n' f' --encoding ENCODE the encoding method (default=None -> {encoding!r})\n' '\n' 'Developer:\n' ' -f, --profile Profiles the code (default=False)\n' '\n' "Info:\n" ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) _filter_no_args(arg_msg, argv, quiet=quiet) arg_msg += '\n' examples = ( 'Examples\n' '--------\n' ' bdf free_faces solid.bdf skin.bdf\n' ' bdf free_faces solid.bdf skin.bdf --large\n' ) import argparse parent_parser = argparse.ArgumentParser() # positional arguments parent_parser.add_argument('BDF_FILENAME', help='path to input BDF/DAT/NAS file', type=str) parent_parser.add_argument('SKIN_FILENAME', help='path to output BDF/DAT/NAS file', type=str) size_group = parent_parser.add_mutually_exclusive_group() size_group.add_argument('-d', '--double', help='writes the BDF in large field, single precision format', action='store_true') size_group.add_argument('-l', '--large', help='writes the BDF in large field, double precision format', action='store_true') size_group.add_argument('--encoding', help='the encoding method (default=None -> {repr(encoding)})', type=str) parent_parser.add_argument('--profile', help='Profiles the code', action='store_true') parent_parser.add_argument('-v', '--version', action='version', version=pyNastran.__version__) from pyNastran.utils.arg_handling import argparse_to_dict, update_message update_message(parent_parser, usage, arg_msg, examples) if not quiet: print(argv) args = parent_parser.parse_args(args=argv[2:]) data = argparse_to_dict(args) if not quiet: # pragma: no cover for key, value in sorted(data.items()): print("%-12s = %r" % (key.strip('--'), value)) import time time0 = time.time() is_double = False if data['double']: size = 16 is_double = True elif data['large']: size = 16 else: size = 8 bdf_filename = data['BDF_FILENAME'] skin_filename = data['SKIN_FILENAME'] from pyNastran.bdf.mesh_utils.bdf_equivalence import bdf_equivalence_nodes tol = 1e-005 bdf_filename_merged = 'merged.bdf' level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) bdf_equivalence_nodes(bdf_filename, bdf_filename_merged, tol, renumber_nodes=False, neq_max=10, xref=True, node_set=None, size=8, is_double=is_double, remove_collapsed_elements=False, avoid_collapsed_elements=False, crash_on_collapse=False, log=log, debug=True) if not quiet: # pragma: no cover print('done with equivalencing') write_skin_solid_faces( bdf_filename_merged, skin_filename, write_solids=False, write_shells=True, size=size, is_double=is_double, encoding=None, log=log, ) if not quiet: # pragma: no cover print('total time: %.2f sec' % (time.time() - time0)) def cmd_line_split_cbars_by_pin_flag(argv=None, quiet=False): """command line interface to split_cbars_by_pin_flag""" if argv is None: argv = sys.argv from docopt import docopt msg = ( 'Usage:\n' ' bdf split_cbars_by_pin_flags IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [-p PIN_FLAGS_CSV_FILENAME]\n' ' bdf split_cbars_by_pin_flags -h | --help\n' ' bdf split_cbars_by_pin_flags -v | --version\n' '\n' "Positional Arguments:\n" " IN_BDF_FILENAME path to input BDF/DAT/NAS file\n" '\n' 'Options:\n' " -o OUT, --output OUT_BDF_FILENAME path to output BDF file\n" " -p PIN, --pin PIN_FLAGS_CSV_FILENAME path to pin_flags_csv file\n\n" 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) _filter_no_args(msg, argv, quiet=quiet) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) #size = 16 bdf_filename_in = data['IN_BDF_FILENAME'] bdf_filename_out = data['--output'] if bdf_filename_out is None: bdf_filename_out = 'model_new.bdf' pin_flags_filename = data['--pin'] if pin_flags_filename is None: pin_flags_filename = 'pin_flags.csv' split_cbars_by_pin_flag(bdf_filename_in, pin_flags_filename=pin_flags_filename, bdf_filename_out=bdf_filename_out) def cmd_line_transform(argv=None, quiet=False): """command line interface to export_caero_mesh""" if argv is None: argv = sys.argv from docopt import docopt msg = ( 'Usage:\n' ' bdf transform IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--shift XYZ]\n' ' bdf transform -h | --help\n' ' bdf transform -v | --version\n' '\n' 'Positional Arguments:\n' ' IN_BDF_FILENAME path to input BDF/DAT/NAS file\n' '\n' 'Options:\n' ' -o OUT, --output OUT_BDF_FILENAME path to output BDF file\n' '\n' 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" ) _filter_no_args(msg, argv, quiet=quiet) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) #size = 16 bdf_filename = data['IN_BDF_FILENAME'] bdf_filename_out = data['--output'] if bdf_filename_out is None: bdf_filename_out = 'transform.bdf' dxyz = None import numpy as np if data['--shift']: dxyz = np.array(data['XYZ'].split(','), dtype='float64') assert len(dxyz) == 3, dxyz from pyNastran.bdf.bdf import read_bdf level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) model = read_bdf(bdf_filename, log=log) nid_cp_cd, xyz_cid0, unused_xyz_cp, unused_icd_transform, unused_icp_transform = model.get_xyz_in_coord_array( cid=0, fdtype='float64', idtype='int32') update_nodes_flag = False # we pretend to change the SPOINT location if dxyz is not None: xyz_cid0 += dxyz update_nodes_flag = True if update_nodes_flag: update_nodes(model, nid_cp_cd, xyz_cid0) model.write_bdf(bdf_filename_out) def cmd_line_filter(argv=None, quiet=False): # pragma: no cover """command line interface to bdf filter""" if argv is None: argv = sys.argv from docopt import docopt msg = ( 'Usage:\n' ' bdf filter IN_BDF_FILENAME [-o OUT_BDF_FILENAME]\n' ' bdf filter IN_BDF_FILENAME [-o OUT_BDF_FILENAME] [--x YSIGN_X] [--y YSIGN_Y] [--z YSIGN_Z]\n' ' bdf filter -h | --help\n' ' bdf filter -v | --version\n' '\n' 'Positional Arguments:\n' ' IN_BDF_FILENAME path to input BDF/DAT/NAS file\n' '\n' 'Options:\n' ' -o OUT, --output OUT_BDF_FILENAME path to output BDF file (default=filter.bdf)\n' " --x YSIGN_X a string (e.g., '< 0.')\n" " --y YSIGN_Y a string (e.g., '< 0.')\n" " --z YSIGN_Z a string (e.g., '< 0.')\n" '\n' 'Info:\n' ' -h, --help show this help message and exit\n' " -v, --version show program's version number and exit\n" '\n' 'Examples\n' '1. remove unused cards:\n' ' >>> bdf filter fem.bdf' '2. remove GRID points and associated cards with y value < 0:\n' " >>> bdf filter fem.bdf --y '< 0.'" ) _filter_no_args(msg, argv, quiet=quiet) ver = str(pyNastran.__version__) #type_defaults = { # '--nerrors' : [int, 100], #} data = docopt(msg, version=ver, argv=argv[1:]) if not quiet: # pragma: no cover print(data) #size = 16 bdf_filename = data['IN_BDF_FILENAME'] bdf_filename_out = data['--output'] if bdf_filename_out is None: bdf_filename_out = 'filter.bdf' import numpy as np func_map = { '<' : np.less, '>' : np.greater, '<=' : np.less_equal, '>=' : np.greater_equal, } xsign = None ysign = None zsign = None if data['--x']: xsign, xval = data['--x'].split(' ') xval = float(xval) assert xsign in ['<', '>', '<=', '>='], xsign if data['--y']: # --y < 0 ysign, yval = data['--y'].split(' ') yval = float(yval) assert ysign in ['<', '>', '<=', '>='], ysign if data['--z']: zsign, zval = data['--z'].split(' ') zval = float(zval) assert zsign in ['<', '>', '<=', '>='], zsign from pyNastran.bdf.bdf import read_bdf level = 'debug' if not quiet else 'warning' log = SimpleLogger(level=level, encoding='utf-8', log_func=None) model = read_bdf(bdf_filename, log=log) #nid_cp_cd, xyz_cid0, xyz_cp, icd_transform, icp_transform = model.get_xyz_in_coord_array( #cid=0, fdtype='float64', idtype='int32') eids = [] xyz_cid0 = [] for eid, elem in sorted(model.elements.items()): xyz = elem.Centroid() xyz_cid0.append(xyz) eids.append(eid) xyz_cid0 = np.array(xyz_cid0) eids =
np.array(eids)
numpy.array
# coding:=utf-8 # Copyright 2020 Tencent. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Applications based on Wide & Deep model. ''' import copy import numpy as np from uf.tools import tf from .base import ClassifierModule from .bert import BERTClassifier, get_bert_config from .albert import get_albert_config from uf.modeling.bert import BERTEncoder from uf.modeling.albert import ALBERTEncoder from uf.modeling.wide_and_deep import WideAndDeepDecoder from uf.tokenization.word_piece import get_word_piece_tokenizer import uf.utils as utils class WideAndDeepClassifier(BERTClassifier, ClassifierModule): ''' Single-label classifier on Wide & Deep model with BERT. ''' _INFER_ATTRIBUTES = copy.deepcopy(BERTClassifier._INFER_ATTRIBUTES) _INFER_ATTRIBUTES['wide_features'] = \ 'A list of possible values for `Wide` features (integer or string)' def __init__(self, config_file, vocab_file, max_seq_length=128, label_size=None, init_checkpoint=None, output_dir=None, gpu_ids=None, wide_features=None, deep_module='bert', do_lower_case=True, truncate_method='LIFO'): super(ClassifierModule, self).__init__( init_checkpoint, output_dir, gpu_ids) self.batch_size = 0 self.max_seq_length = max_seq_length self.label_size = label_size self.truncate_method = truncate_method self.wide_features = wide_features self._deep_module = deep_module self._id_to_label = None self.__init_args__ = locals() if deep_module == 'albert': self.bert_config = get_albert_config(config_file) else: self.bert_config = get_bert_config(config_file) assert deep_module in ('bert', 'roberta', 'albert', 'electra'), ( 'Invalid value of `deep_module`: %s. Pick one from ' '`bert`, `roberta`, `albert` and `electra`.') self.tokenizer = get_word_piece_tokenizer(vocab_file, do_lower_case) self._key_to_depths = get_key_to_depths( self.bert_config.num_hidden_layers) if '[CLS]' not in self.tokenizer.vocab: self.tokenizer.add('[CLS]') self.bert_config.vocab_size += 1 tf.logging.info('Add necessary token `[CLS]` into vocabulary.') if '[SEP]' not in self.tokenizer.vocab: self.tokenizer.add('[SEP]') self.bert_config.vocab_size += 1 tf.logging.info('Add necessary token `[SEP]` into vocabulary.') def convert(self, X=None, y=None, sample_weight=None, X_tokenized=None, is_training=False, is_parallel=False): self._assert_legal(X, y, sample_weight, X_tokenized) if is_training: assert y is not None, '`y` can\'t be None.' if is_parallel: assert self.label_size, ('Can\'t parse data on multi-processing ' 'when `label_size` is None.') n_inputs = None data = {} # convert X if X or X_tokenized: tokenized = False if X else X_tokenized (input_ids, input_mask, segment_ids, n_wide_features, wide_features) = self._convert_X( X_tokenized if tokenized else X, tokenized=tokenized) data['input_ids'] = np.array(input_ids, dtype=np.int32) data['input_mask'] = np.array(input_mask, dtype=np.int32) data['segment_ids'] =
np.array(segment_ids, dtype=np.int32)
numpy.array
import os import numpy as np import pandas as pd from sklearn import linear_model def allign_alleles(df): """Look for reversed alleles and inverts the z-score for one of them. Here, we take advantage of numpy's vectorized functions for performance. """ d = {'A': 0, 'C': 1, 'G': 2, 'T': 3} a = [] # array of alleles for colname in ['A1_ref', 'A2_ref', 'A1_gen', 'A2_gen', 'A1_y', 'A2_y']: tmp = np.empty(len(df[colname]), dtype=int) for k, v in d.items(): tmp[np.array(df[colname]) == k] = v a.append(tmp) matched_alleles_gen = (((a[0] == a[2]) & (a[1] == a[3])) | ((a[0] == 3 - a[2]) & (a[1] == 3 - a[3]))) reversed_alleles_gen = (((a[0] == a[3]) & (a[1] == a[2])) | ((a[0] == 3 - a[3]) & (a[1] == 3 - a[2]))) matched_alleles_y = (((a[0] == a[4]) & (a[1] == a[5])) | ((a[0] == 3 - a[4]) & (a[1] == 3 - a[5]))) reversed_alleles_y = (((a[0] == a[5]) & (a[1] == a[4])) | ((a[0] == 3 - a[5]) & (a[1] == 3 - a[4]))) df['Z_y'] *= -2 * reversed_alleles_y + 1 df['reversed'] = reversed_alleles_gen df = df[((matched_alleles_y|reversed_alleles_y)&(matched_alleles_gen|reversed_alleles_gen))] def get_files(file_name, chr): if '@' in file_name: valid_files = [] if chr is None: for i in range(1, 23): cur_file = file_name.replace('@', str(i)) if os.path.isfile(cur_file): valid_files.append(cur_file) else: raise ValueError('No file matching {} for chr {}'.format( file_name, i)) else: cur_file = file_name.replace('@', chr) if os.path.isfile(cur_file): valid_files.append(cur_file) else: raise ValueError('No file matching {} for chr {}'.format( file_name, chr)) return valid_files else: if os.path.isfile(file_name): return [file_name] else: ValueError('No files matching {}'.format(file_name)) def prep(bfile, genotype, sumstats2, N2, phenotype, covariates, chr, start, end): bim_files = get_files(bfile + '.bim', chr) genotype_files = get_files(genotype + '.bim', chr) # read in bim files bims = [pd.read_csv(f, header=None, names=['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], delim_whitespace=True) for f in bim_files] bim = pd.concat(bims, ignore_index=True) genotype_bims = [pd.read_csv(f, header=None, names=['CHR', 'SNP', 'CM', 'BP', 'A1', 'A2'], delim_whitespace=True) for f in genotype_files] genotype_bim = pd.concat(genotype_bims, ignore_index=True) if chr is not None: if start is None: start = 0 if end is None: end = float('inf') genotype_bim = genotype_bim[np.logical_and(np.logical_and(genotype_bim['CHR']==chr, genotype_bim['BP']<=end), genotype_bim['BP']>=start)].reset_index(drop=True) bim = bim[np.logical_and(
np.logical_and(bim['CHR']==chr, bim['BP']<=end)
numpy.logical_and
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 2 16:52:27 2017 @author: abauville """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Feb 24 15:21:26 2017 @author: abauville """ import numpy as np from numpy import sin, cos, tan, arcsin, arccos, arctan, pi import matplotlib.pyplot as plt degree = 180.0/pi # ============================================================================= # # Functions for fault diagram plotting # # ============================================================================= def plotFaultArrow(x,y,theta, L=1, sense=0, spacing=0.1, color="r",angleHead=20.0 * pi/180.0,headL = .5,ax=plt,linewidth = 1): # sense 0: sinistral, 1:dextral x = x + sin(theta)*spacing y = y - cos(theta)*spacing segment = np.array((-1,1)) * L segmentHead = np.array((0,2)) * L*headL ax.plot(x+cos(theta)*segment, y + sin(theta)*segment,color=color,linewidth=linewidth) if ((spacing>0) & (sense == 0)): ax.plot(x+L*cos(theta) - cos(angleHead+theta)*(segmentHead), y+L*sin(theta) - sin(angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) elif ((spacing>0) & (sense == 1)): ax.plot(x-L*cos(theta) + cos(-angleHead+theta)*(segmentHead), y-L*sin(theta) + sin(-angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) elif ((spacing<=0) & (sense == 0)): ax.plot(x-L*cos(theta) + cos(angleHead+theta)*(segmentHead), y-L*sin(theta) + sin(angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) elif ((spacing<=0) & (sense == 1)): ax.plot(x+L*cos(theta) - cos(-angleHead+theta)*(segmentHead), y+L*sin(theta) - sin(-angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) else: raise ValueError("sense must be 0 or 1") def plotArrow(x,y,theta, L=1, color="r", sense=0, angleHead=20.0 * pi/180.0,headL = .5,ax=plt,linewidth = 1): # sense 0: sinistral, 1:dextral x = x# + sin(theta)*spacing y = y# - cos(theta)*spacing segment = np.array((-1,1)) * L segmentHead = np.array((0,2)) * L*headL ax.plot(x+cos(theta)*segment, y + sin(theta)*segment,color=color,linewidth=linewidth) if sense == 0: ax.plot(x+L*cos(theta) - cos(angleHead+theta)*(segmentHead), y+L*sin(theta) - sin(angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) # elif ((spacing>0) & (sense == 1)): ax.plot(x+L*cos(theta) - cos(-angleHead+theta)*(segmentHead), y+L*sin(theta) - sin(-angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) elif sense == 1: # ax.plot(x-L*cos(theta) + cos(-angleHead+theta)*(segmentHead), y-L*sin(theta) + sin(-angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) ax.plot(x-L*cos(theta) + cos(angleHead+theta)*(segmentHead), y-L*sin(theta) + sin(angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) # elif ((spacing<=0) & (sense == 1)): ax.plot(x-L*cos(theta) + cos(-angleHead+theta)*(segmentHead), y-L*sin(theta) + sin(-angleHead+theta)*(segmentHead),color=color,linewidth=linewidth) else: raise ValueError("sense must be 0 or 1") def plotFaultDiagram(Tau,psi, L=1,colorFault="r",colorSigma1="b",Larrow=.15,PosArrow=.66,angleHeadArrow=20.0 * pi/180.0, spacing=.1,ax=plt,refAxes=0,faultLinewidth=1,arrowLinewidth=1,sigma1Linewidth=1,polar=0): segment = np.array((-1,1)) * L thetaA = psi+30*pi/180 thetaB = psi-30*pi/180 if (refAxes==0): Tau = Tau psiPos = psi*degree else: Tau = ( (Tau - refAxes.axis()[0])/(refAxes.axis()[1]-refAxes.axis()[0]) - ax.axis()[0] ) * (ax.axis()[1]-ax.axis()[0]) psiPos = ( (psi*degree - refAxes.axis()[2])/(refAxes.axis()[3]-refAxes.axis()[2]) - ax.axis()[2] ) * (ax.axis()[3]-ax.axis()[2]) if (polar==0): # Sigma1 dir ax.plot(Tau+cos(psi)*segment, psiPos + sin(psi)*segment,color=colorSigma1,linewidth=sigma1Linewidth) # Faults ax.plot(Tau+cos(thetaA)*segment, psiPos + sin(thetaA)*segment,color=[.8,.5,.2],linewidth=faultLinewidth) ax.plot(Tau+cos(thetaB)*segment, psiPos + sin(thetaB)*segment,color=[.6,.3,.6],linewidth=faultLinewidth) else: # Sigma1 dir ax.plot(Tau*cos(psi)+cos(psi)*segment, Tau*sin(psi) + sin(psi)*segment,color=colorSigma1,linewidth=sigma1Linewidth) # Faults ax.plot(Tau*cos(psi)+cos(thetaA)*segment, Tau*sin(psi) + sin(thetaA)*segment,color=[.8,.5,.2],linewidth=faultLinewidth) ax.plot(Tau*cos(psi)+cos(thetaB)*segment, Tau*sin(psi) + sin(thetaB)*segment,color=[.6,.3,.6],linewidth=faultLinewidth) # ax.plot(Tau+cos(thetaA)*segment, psiPos + sin(thetaA)*segment,color=colorFault,linewidth=faultLinewidth) # ax.plot(Tau+cos(thetaB)*segment, psiPos + sin(thetaB)*segment,color=colorFault,linewidth=faultLinewidth) # Arrows # All arrows # plotFaultArrow(Tau-cos(thetaA)*PosArrow*L,psiPos-sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing=spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau-cos(thetaA)*PosArrow*L,psiPos-sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau-cos(thetaB)*PosArrow*L,psiPos-sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau-cos(thetaB)*PosArrow*L,psiPos-sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing= spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # # plotFaultArrow(Tau+cos(thetaA)*PosArrow*L,psiPos+sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing= spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau+cos(thetaA)*PosArrow*L,psiPos+sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau+cos(thetaB)*PosArrow*L,psiPos+sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau+cos(thetaB)*PosArrow*L,psiPos+sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing= spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # # # # Outer arrows only # plotFaultArrow(Tau-cos(thetaA)*PosArrow*L,psiPos-sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing=spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau-cos(thetaB)*PosArrow*L,psiPos-sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # # plotFaultArrow(Tau+cos(thetaA)*PosArrow*L,psiPos+sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # plotFaultArrow(Tau+cos(thetaB)*PosArrow*L,psiPos+sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing= spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) # if (polar==0): # Inner arrows only plotFaultArrow(Tau-cos(thetaA)*PosArrow*L,psiPos-sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) plotFaultArrow(Tau-cos(thetaB)*PosArrow*L,psiPos-sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing= spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) plotFaultArrow(Tau+cos(thetaA)*PosArrow*L,psiPos+sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing= spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) plotFaultArrow(Tau+cos(thetaB)*PosArrow*L,psiPos+sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) else: # Inner arrows only plotFaultArrow(Tau*cos(psi)-cos(thetaA)*PosArrow*L,Tau*sin(psi)-sin(thetaA)*PosArrow*L,thetaA,sense=1,spacing=-spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) plotFaultArrow(Tau*cos(psi)-cos(thetaB)*PosArrow*L,Tau*sin(psi)-sin(thetaB)*PosArrow*L,thetaB,sense=0,spacing= spacing,L=Larrow,ax=ax,linewidth=arrowLinewidth,angleHead=angleHeadArrow) plotFaultArrow(Tau*cos(psi)+cos(thetaA)*PosArrow*L,Tau*sin(psi)+
sin(thetaA)
numpy.sin
# Food Bank Problem import sys import importlib import numpy as np from scipy.optimize import minimize import scipy # ## OPT - via Convex Programming # Calculates the optimal solution for the offline problem with convex programming def solve(W, n, k, budget, size): # Objective function in the nash social welfare # Note we take the negative one to turn it into a minimization problem def objective(x, w, n, k, size): X = np.reshape(x, (n,k)) W = np.reshape(w, (n, k)) value = np.zeros(n) for i in range(n): value[i] = np.log(np.dot(X[i,:], W[i,:])) return (-1) * np.dot(size, value) w = W.flatten() obj = lambda x: objective(x, w, n, k, size) # Ensures that the allocations are positive bds = scipy.optimize.Bounds([0 for _ in range(n*k)], [np.inf for _ in range(n*k)]) B = np.zeros((k, n*k)) for i in range(n): B[:,k*i:k*(i+1)] = size[i]*np.eye(k) # print(B) # Enforces the budget constraint constr = scipy.optimize.LinearConstraint(B, np.zeros(k), budget) x0 = np.zeros(n*k) # Initial solution starts out with equal allocation B / S index = 0 for i in range(n): for j in range(k): x0[index] = budget[j] / np.sum(size) index += 1 sol = minimize(obj, x0, bounds=bds, constraints = constr, tol = 10e-8) return sol.x, sol # Calculates the optimal solution for the offline problem with convex programming # Note that this program instead solves for the optimization problem in a different form, where now # the histogram is used directly in the original optimization problem instead of rewriting the problem # as maximizing over types. This was used for investigation, and not as a primary proposed heuristic in the paper. def solve_weights(weight_matrix, weight_distribution, n, k, budget, size): # Similar objective, but now multiplying by the probability agent i has type j def objective(x, weight_matrix, n, k, size, weight_distribution): num_types = weight_distribution.shape[1] X = np.reshape(x, (n,k)) value = np.zeros(n) for i in range(n): value[i] = np.sum([weight_distribution[i,j] * np.log(np.dot(X[i,:], weight_matrix[j,:])) for j in range(num_types)]) return (-1) * np.dot(size, value) obj = lambda x: objective(x, weight_matrix, n, k, size, weight_distribution) # Constraints are the same as before, along with initial solution bds = scipy.optimize.Bounds([0 for _ in range(n*k)], [np.inf for _ in range(n*k)]) B = np.zeros((k, n*k)) for i in range(n): B[:,k*i:k*(i+1)] = size[i]*np.eye(k) constr = scipy.optimize.LinearConstraint(B, np.zeros(k), budget) x0 = np.zeros(n*k) index = 0 for i in range(n): for j in range(k): x0[index] = budget[j] / np.sum(size) index += 1 sol = minimize(obj, x0, bounds=bds, constraints = constr, tol = 10e-8) return sol.x, sol # proportional solution, i.e. equal allocation B / S def proportional_alloc(n, k, budget, size): allocations = np.zeros((n,k)) for i in range(n): allocations[i, :] = budget / np.sum(size) return allocations # Calculates the offline optimal solution just utilizing the distribution and not adapting to realized types def offline_alloc(weight_matrix, weight_distribution, n, k, budget, size): allocations = np.zeros((n,k)) weight_dist = np.asarray([weight_distribution for i in range(n)]) alloc, _ = solve_weights(np.asarray(weight_matrix), np.asarray(weight_dist), n, k, budget, size) allocations = np.reshape(alloc, (n,k)) return allocations # Implements the ET - Online heuristic algorithm def et_online(expected_weights, observed_weights, n, k, budget, size): allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): if i == n-1: # Last agent gets the maximum of earlier allocations or the remaining budget allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] current_budget -= size[i] * allocations[i,:] else: cur_n = n - i # Solves the eisenbergt gale program with future weights taken to be their expectation weights = expected_weights[i:,:] weights[0, :] = observed_weights[i, :] alloc, _ = solve(weights, cur_n, k, current_budget, size[i:]) alloc = np.reshape(alloc, (cur_n, k)) allocations[i, :] = [max(0, min(alloc[0, j], current_budget[j] / size[i])) for j in range(k)] # solves the eisenberg gale current_budget -= size[i]*allocations[i, :] # reduces budget for next iteration return allocations # Implements the ET - Full heuristic algorithm def et_full(expected_weights, observed_weights, n, k, budget, size): allocations = np.zeros((n,k)) current_budget = np.copy(budget) weights = np.copy(expected_weights) for i in range(n): if i == n-1: allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] current_budget -= size[i] * allocations[i,:] else: weights[i, :] = observed_weights[i, :] # Replaces the weights with the observed one alloc, _ = solve(weights, n, k, budget, size) # Solves for the allocation, and makes it alloc = np.reshape(alloc, (n,k)) allocations[i, :] = [max(0, min(current_budget[j] / size[i], alloc[i,j])) for j in range(k)] current_budget -= size[i]*allocations[i,:] # Reduces the budget return allocations # Implements the Hope-Full heuristic algorithm def hope_full(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): size_factors = np.zeros(num_types) # Calculates the number of types and the N_\theta terms for m in range(n): if m <= i: size_factors[observed_types[m]] += size[m] elif m > i: size_factors += size[m] * weight_distribution obs_type = observed_types[i] alloc, _ = solve(weight_matrix, num_types, k, budget, size_factors) # Solves for the allocation alloc = np.reshape(alloc, (num_types, k)) allocations[i,:] = [max(0,min(current_budget[j] / size[i], alloc[obs_type, j])) for j in range(k)] current_budget -= size[i] * allocations[i,:] # Reduces budget return allocations # Implements the Hope-Online heuristic algorithm def hope_online(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations = np.zeros((n,k)) current_budget = np.copy(budget) for i in range(n): if i == n-1: allocations[i, :] = [max(0, min(np.max(allocations[:, j]), current_budget[j] / size[i])) for j in range(k)] else: size_factors = np.zeros(num_types) for m in range(n): if m == i: size_factors[observed_types[m]] += size[m] elif m > i: size_factors += size[m] * weight_distribution obs_type = observed_types[i] alloc, _ = solve(weight_matrix, num_types, k, current_budget, size_factors) alloc = np.reshape(alloc, (num_types, k)) allocations[i,:] = [max(0, min(current_budget[j] / size[i], alloc[obs_type, j])) for j in range(k)] current_budget -= size[i] * allocations[i,:] return allocations # Implements the Hope-Full heuristic algorithm of a different form, by solving the original Eisenberg-Gale over agents # taking the expectation of the utility with the histogram on types. def hope_full_v2(weight_matrix, weight_distribution, observed_types, n, k, budget, size): num_types = len(weight_distribution) allocations =
np.zeros((n,k))
numpy.zeros
""" Source code please refer to the following: http://web.stanford.edu/~hrhakim/NMF/code.html Description: This file provides the functions used in implementing the proposed method for Non-negative matrix factorization in the paper, "Non-negative Matrix Factorization via Archetypal Analysis". Link = https://arxiv.org/abs/1705.02994 Re-implemented into class-based code by: <NAME> (<EMAIL>) """ import numpy as np import matplotlib.pyplot as plt from scipy.optimize import nnls from scipy.optimize import linprog from hw3.libs.common.blend_dataset import BlendImgDataset class NMF(BlendImgDataset): def __init__(self, n_comp, o_img_size, shape, N, p): self.n_comp = n_comp super().__init__(o_img_size, df_dataset=True, shape=shape, N=N, p=p, all=True) """ Please go to the paper for the detail of the algorithm. """ def run(self, maxiter, delta, threshold, c1, c2, verbose, oracle): self.W, self.H, self.L, self.Err = self.acc_palm_nmf(self.img_data.values, r=self.n_comp, maxiter=maxiter, delta=delta, threshold=threshold, c1=c1, c2=c2, verbose=verbose, oracle=oracle) def plot_result(self): plt.figure() plt.suptitle("Illustration of NMF features =%s from Zw (DR of X)" % self.n_comp) for i in range(0, self.n_comp): plt.subplot(1, 4, i + 1) Vt_row = self.H[i, :].reshape(self.shape) # Reconstruct row into image for checkout plt.title("H{}".format(i), size=8) plt.imshow(Vt_row, cmap='gray') ## Display the image plt.axis('off') plt.tight_layout() plt.show() def D_distance(self, H1, H2): # This function computes the 'L'-distance between the two set of vectors collected in the rows of H1 and H2. In our paper notation, this is $\mathscr{L}(H_1, H_2)$. n1 = H1.shape[0] n2 = H2.shape[0] D = 0 for i in range(0, n1): d = (np.linalg.norm(H1[i, :] - H2[0, :])) ** 2 for j in range(1, n2): d = min(d, (np.linalg.norm(H1[i, :] - H2[j, :]) ** 2)) D = D + d return D # not used yet, in this implementation def generate_weights(self, n, r, alpha, n_f, deg_prob): # This function generates 'n' weight vectors in r-dimensions, distributed as Dirichlet(alpha, alpha, ..., alpha). 'n_f' is the number of weight vector which have zero components (induce points that lie on the faces) and 'deg_prob' is the distribution of the support size of these weight vectors. Namely, these weight vectors are distributed as Dirichlet over the set of nonzero entries which is a uniformly distributed set with a size randomly generated according to 'deg_prob'. W = np.zeros((n, r)) for i in range(0, n_f): deg_cdf = np.cumsum(deg_prob) t = np.random.uniform(0, 1) ind = np.nonzero(deg_cdf > t) deg = np.min(ind) + 1 dirich_param = alpha * np.ones(deg) w = np.random.dirichlet(dirich_param) vertices = np.random.permutation(r) vertices = vertices[0:deg] W[i, vertices] = np.random.dirichlet(dirich_param) for i in range(n_f, n): dirich_param = alpha * np.ones(r) W[i, :] = np.random.dirichlet(dirich_param) return W def l2distance(self, x, U, x0): # This function computes <x-x0, (U^T*U)*(x-x0)>. lx = np.linalg.norm(x - x0) ** 2 lpx = np.linalg.norm(np.dot(U, x - x0)) ** 2 return (lx - lpx) def plot_H(self, H, col, type): # This function plots the 'archetypes', (rows of 'H', when they are 2-dimensional) in 'col' color using 'type' as plot options. v0 = H[:, 0] v0 = np.append(v0, H[0, 0]) v1 = H[:, 1] v1 = np.append(v1, H[0, 1]) hplt, = plt.plot(v0, v1, type, color=col, markersize=8, linewidth=3) return hplt def plot_data(self, X, col): # This function plots the 'data points', (rows of 'X', when they are 2-dimensional) in 'col' color. plt.plot(X[:, 0], X[:, 1], 'o', color=col, markersize=5) def initH(self, X, r): # This function computes 'r' initial archetypes given rows of 'X' as the data points. The method used here is the successive projections method explained in the paper. n = X.shape[0] d = X.shape[1] H = np.zeros((r, d)) maxd = np.linalg.norm(X[0, :]) imax = 0 for i in range(1, n): newd = np.linalg.norm(X[i, :]) if (newd > maxd): imax = i maxd = newd H[0, :] = X[imax, :] maxd = np.linalg.norm(X[0, :] - H[0, :]) imax = 0 for i in range(1, n): newd = np.linalg.norm(X[i, :] - H[0, :]) if (newd > maxd): imax = i maxd = newd H[1, :] = X[imax, :] for k in range(2, r): M = H[1:k, :] - np.outer(np.ones(k - 1), H[0, :]) [U, s, V] = np.linalg.svd(M, full_matrices=False) maxd = self.l2distance(X[0, :], V, H[0, :]) imax = 0 for i in range(1, n): newd = self.l2distance(X[i, :], V, H[0, :]) if (newd > maxd): imax = i maxd = newd H[k, :] = X[imax, :] return H def project_simplex(self, x): # This function computes the euclidean projection of vector 'x' onto the standard simplex. n = len(x) xord = -np.sort(-x) sx = np.sum(x) lam = (sx - 1.) / n if (lam <= xord[n - 1]): return (x - lam) k = n - 1 flag = 0 while ((flag == 0) and (k > 0)): sx -= xord[k] lam = (sx - 1.) / k if ((xord[k] <= lam) and (lam <= xord[k - 1])): flag = 1 k -= 1 return np.fmax(x - lam, 0) def project_principal(self, X, r): # This function computes the rank 'r' pca estimate of columns of 'X'. U, s, V = np.linalg.svd(X) V = V[0:r, :] U = U[:, 0:r] s = s[0:r] proj_X = np.dot(U, np.dot(np.diag(s), V)) return proj_X def prune_convex(self, X): # This function output the rows of 'X' which do not lie on the convex hull of the other rows. n = X.shape[0] indices = [] d = X.shape[1] pruned_X = np.empty((0, d), int) for i in range(0, n - 1): print(i) c = np.zeros(n - 1) AEQ = np.delete(X, i, 0) AEQ = np.transpose(AEQ) AEQ = np.vstack([AEQ, np.ones((1, n - 1))]) BEQ = np.concatenate((X[i, :], [1]), 0) res = linprog(c, A_ub=-1 * np.identity(n - 1), b_ub=np.zeros((n - 1, 1)), A_eq=AEQ, b_eq=np.transpose(BEQ), options={"disp": True}) if (res.status == 2): pruned_X = np.append(pruned_X, X[i, :].reshape(1, d), axis=0) indices = np.append(indices, i) return [indices.astype(int), pruned_X] # project onto a line-segment def proj_line_seg(self, X, x0): # This function computes the projection of the point x0 onto the line segment between the points x1 and x2. x1 = X[:, 0] x2 = X[:, 1] alpha = float(np.dot(np.transpose(x1 - x2), x0 - x2)) / (np.dot(np.transpose(x1 - x2), x1 - x2)) alpha = max(0, min(1, alpha)) y = alpha * x1 + (1 - alpha) * x2 theta = np.array([alpha, 1 - alpha]) return [theta, y] # project onto a triangle def proj_triangle(self, X, x0): # This function computes the projection of the point x0 onto the triangle with corners specified with the rows of X. d = len(x0) XX = np.zeros((d, 2)) XX[:, 0] = X[:, 0] - X[:, 2] XX[:, 1] = X[:, 1] - X[:, 2] P = np.dot(np.linalg.inv(np.dot(np.transpose(XX), XX)), np.transpose(XX)) theta = np.append(np.dot(P, x0 - X[:, 2]), 1 - np.sum(np.dot(P, x0 - X[:, 2]))) y = np.dot(X, theta) if ((any(theta < 0)) or (any(theta > 1)) or (np.sum(theta) != 1)): d1 = np.linalg.norm(X[:, 0] - y) d2 = np.linalg.norm(X[:, 1] - y) d3 = np.linalg.norm(X[:, 2] - y) theta4, y4 = self.proj_line_seg(X[:, [0, 1]], y) d4 = np.linalg.norm(y - y4) theta5, y5 = self.proj_line_seg(X[:, [0, 2]], y) d5 = np.linalg.norm(y - y5) theta6, y6 = self.proj_line_seg(X[:, [1, 2]], y) d6 = np.linalg.norm(y - y6) d = min(d1, d2, d3, d4, d5, d6) if (d1 == d): y = X[:, 0] theta = np.array([1, 0, 0]) elif (d2 == d): y = X[:, 1] theta = np.array([0, 1, 0]) elif (d3 == d): y = X[:, 2] theta = np.array([0, 0, 1]) elif (d4 == d): y = y4 theta = np.zeros(3) theta[[0, 1]] = theta4 elif (d5 == d): y = y5 theta = np.zeros(3) theta[[0, 2]] = theta5 else: y = y6 theta = np.zeros(3) theta[[1, 2]] = theta6 return [theta, y] # project onto a tetrahedron def proj_tetrahedron(self, X, x0): # This function computes the projection of the point x0 onto the tetrahedron with corners specified with the rows of X. d = len(x0) XX = np.zeros((d, 3)) XX[:, 0] = X[:, 0] - X[:, 3] XX[:, 1] = X[:, 1] - X[:, 3] XX[:, 2] = X[:, 2] - X[:, 3] P = np.dot(np.linalg.inv(np.dot(np.transpose(XX), XX)), np.transpose(XX)) theta = np.append(np.dot(P, x0 - X[:, 3]), 1 - np.sum(np.dot(P, x0 - X[:, 3]))) y = np.dot(X, theta) if ((any(theta < 0)) or (any(theta > 1)) or (np.sum(theta) != 1)): d1 = np.linalg.norm(X[:, 0] - y) d2 = np.linalg.norm(X[:, 1] - y) d3 = np.linalg.norm(X[:, 2] - y) d4 = np.linalg.norm(X[:, 3] - y) theta5, y5 = self.proj_line_seg(X[:, [0, 1]], y) d5 = np.linalg.norm(y - y5) theta6, y6 = self.proj_line_seg(X[:, [0, 2]], y) d6 = np.linalg.norm(y - y6) theta7, y7 = self.proj_line_seg(X[:, [0, 3]], y) d7 = np.linalg.norm(y - y7) theta8, y8 = self.proj_line_seg(X[:, [1, 2]], y) d8 = np.linalg.norm(y - y8) theta9, y9 = self.proj_line_seg(X[:, [1, 3]], y) d9 = np.linalg.norm(y - y9) theta10, y10 = self.proj_line_seg(X[:, [2, 3]], y) d10 = np.linalg.norm(y - y10) theta11, y11 = self.proj_triangle(X[:, [0, 1, 2]], y) d11 = np.linalg.norm(y - y11) theta12, y12 = self.proj_triangle(X[:, [0, 1, 3]], y) d12 = np.linalg.norm(y - y12) theta13, y13 = self.proj_triangle(X[:, [0, 2, 3]], y) d13 = np.linalg.norm(y - y13) theta14, y14 = self.proj_triangle(X[:, [1, 2, 3]], y) d14 = np.linalg.norm(y - y14) d = min(d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14) if (d1 == d): y = X[:, 0] theta = np.array([1, 0, 0, 0]) elif (d2 == d): y = X[:, 1] theta = np.array([0, 1, 0, 0]) elif (d3 == d): y = X[:, 2] theta = np.array([0, 0, 1, 0]) elif (d4 == d): y = X[:, 3] theta = np.array([0, 0, 0, 1]) elif (d5 == d): y = y5 theta = np.zeros(4) theta[[0, 1]] = theta5 elif (d6 == d): y = y6 theta = np.zeros(4) theta[[0, 2]] = theta6 elif (d7 == d): y = y7 theta = np.zeros(4) theta[[0, 3]] = theta7 elif (d8 == d): y = y8 theta = np.zeros(4) theta[[1, 2]] = theta8 elif (d9 == d): y = y9 theta = np.zeros(4) theta[[1, 3]] = theta9 elif (d10 == d): y = y10 theta = np.zeros(4) theta[[2, 3]] = theta10 elif (d11 == d): y = y11 theta = np.zeros(4) theta[[0, 1, 2]] = theta11 elif (d12 == d): y = y12 theta = np.zeros(4) theta[[0, 1, 3]] = theta12 elif (d13 == d): y = y13 theta = np.zeros(4) theta[[0, 2, 3]] = theta13 else: y = y14 theta = np.zeros(4) theta[[1, 2, 3]] = theta14 return [theta, y] # project onto a 5cell def proj_5cell(self, X, x0): # This function computes the projection of the point x0 onto the 5-cell with corners specified with the rows of X. d = len(x0) XX = np.zeros((d, 4)) XX[:, 0] = X[:, 0] - X[:, 4] XX[:, 1] = X[:, 1] - X[:, 4] XX[:, 2] = X[:, 2] - X[:, 4] XX[:, 3] = X[:, 3] - X[:, 4] P = np.dot(np.linalg.inv(np.dot(np.transpose(XX), XX)), np.transpose(XX)) theta = np.append(np.dot(P, x0 - X[:, 4]), 1 - np.sum(np.dot(P, x0 - X[:, 4]))) y = np.dot(X, theta) if ((any(theta < 0)) or (any(theta > 1)) or (np.sum(theta) != 1)): d1 = np.linalg.norm(X[:, 0] - y) d2 = np.linalg.norm(X[:, 1] - y) d3 = np.linalg.norm(X[:, 2] - y) d4 = np.linalg.norm(X[:, 3] - y) d5 = np.linalg.norm(X[:, 4] - y) theta6, y6 = self.proj_line_seg(X[:, [0, 1]], y) d6 = np.linalg.norm(y - y6) theta7, y7 = self.proj_line_seg(X[:, [0, 2]], y) d7 = np.linalg.norm(y - y7) theta8, y8 = self.proj_line_seg(X[:, [0, 3]], y) d8 = np.linalg.norm(y - y8) theta9, y9 = self.proj_line_seg(X[:, [0, 4]], y) d9 = np.linalg.norm(y - y9) theta10, y10 = self.proj_line_seg(X[:, [1, 2]], y) d10 = np.linalg.norm(y - y10) theta11, y11 = self.proj_line_seg(X[:, [1, 3]], y) d11 = np.linalg.norm(y - y11) theta12, y12 = self.proj_line_seg(X[:, [1, 4]], y) d12 = np.linalg.norm(y - y12) theta13, y13 = self.proj_line_seg(X[:, [2, 3]], y) d13 = np.linalg.norm(y - y13) theta14, y14 = self.proj_line_seg(X[:, [2, 4]], y) d14 = np.linalg.norm(y - y14) theta15, y15 = self.proj_line_seg(X[:, [3, 4]], y) d15 = np.linalg.norm(y - y15) theta16, y16 = self.proj_triangle(X[:, [0, 1, 2]], y) d16 = np.linalg.norm(y - y16) theta17, y17 = self.proj_triangle(X[:, [0, 1, 3]], y) d17 = np.linalg.norm(y - y17) theta18, y18 = self.proj_triangle(X[:, [0, 1, 4]], y) d18 = np.linalg.norm(y - y18) theta19, y19 = self.proj_triangle(X[:, [0, 2, 3]], y) d19 = np.linalg.norm(y - y19) theta20, y20 = self.proj_triangle(X[:, [0, 2, 4]], y) d20 = np.linalg.norm(y - y20) theta21, y21 = self.proj_triangle(X[:, [0, 3, 4]], y) d21 = np.linalg.norm(y - y21) theta22, y22 = self.proj_triangle(X[:, [1, 2, 3]], y) d22 = np.linalg.norm(y - y22) theta23, y23 = self.proj_triangle(X[:, [1, 2, 4]], y) d23 = np.linalg.norm(y - y23) theta24, y24 = self.proj_triangle(X[:, [1, 3, 4]], y) d24 = np.linalg.norm(y - y24) theta25, y25 = self.proj_triangle(X[:, [2, 3, 4]], y) d25 = np.linalg.norm(y - y25) theta26, y26 = self.proj_tetrahedron(X[:, [0, 1, 2, 3]], y) d26 = np.linalg.norm(y - y26) theta27, y27 = self.proj_tetrahedron(X[:, [0, 1, 2, 4]], y) d27 = np.linalg.norm(y - y27) theta28, y28 = self.proj_tetrahedron(X[:, [0, 1, 3, 4]], y) d28 = np.linalg.norm(y - y28) theta29, y29 = self.proj_tetrahedron(X[:, [0, 2, 3, 4]], y) d29 = np.linalg.norm(y - y29) theta30, y30 = self.proj_tetrahedron(X[:, [1, 2, 3, 4]], y) d30 = np.linalg.norm(y - y30) d = min(d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30) if (d1 == d): y = X[:, 0] theta = np.array([1, 0, 0, 0, 0]) elif (d2 == d): y = X[:, 1] theta = np.array([0, 1, 0, 0, 0]) elif (d3 == d): y = X[:, 2] theta = np.array([0, 0, 1, 0, 0]) elif (d4 == d): y = X[:, 3] theta = np.array([0, 0, 0, 1, 0]) elif (d5 == d): y = X[:, 4] theta = np.array([0, 0, 0, 0, 1]) elif (d6 == d): y = y6 theta = np.zeros(5) theta[[0, 1]] = theta6 elif (d7 == d): y = y7 theta = np.zeros(5) theta[[0, 2]] = theta7 elif (d8 == d): y = y8 theta = np.zeros(5) theta[[0, 3]] = theta8 elif (d9 == d): y = y9 theta = np.zeros(5) theta[[0, 4]] = theta9 elif (d10 == d): y = y10 theta = np.zeros(5) theta[[1, 2]] = theta10 elif (d11 == d): y = y11 theta = np.zeros(5) theta[[1, 3]] = theta11 elif (d12 == d): y = y12 theta = np.zeros(5) theta[[1, 4]] = theta12 elif (d13 == d): y = y13 theta = np.zeros(5) theta[[2, 3]] = theta13 elif (d14 == d): y = y14 theta = np.zeros(5) theta[[2, 4]] = theta14 elif (d15 == d): y = y15 theta = np.zeros(5) theta[[3, 4]] = theta15 elif (d16 == d): y = y16 theta = np.zeros(5) theta[[0, 1, 2]] = theta16 elif (d17 == d): y = y17 theta = np.zeros(5) theta[[0, 1, 3]] = theta17 elif (d18 == d): y = y18 theta = np.zeros(5) theta[[0, 1, 4]] = theta18 elif (d19 == d): y = y19 theta = np.zeros(5) theta[[0, 2, 3]] = theta19 elif (d20 == d): y = y20 theta = np.zeros(5) theta[[0, 2, 4]] = theta20 elif (d21 == d): y = y21 theta = np.zeros(5) theta[[0, 3, 4]] = theta21 elif (d22 == d): y = y22 theta = np.zeros(5) theta[[1, 2, 3]] = theta22 elif (d23 == d): y = y23 theta = np.zeros(5) theta[[1, 2, 4]] = theta23 elif (d24 == d): y = y24 theta = np.zeros(5) theta[[1, 3, 4]] = theta24 elif (d25 == d): y = y25 theta = np.zeros(5) theta[[2, 3, 4]] = theta25 elif (d26 == d): y = y26 theta = np.zeros(5) theta[[0, 1, 2, 3]] = theta26 elif (d27 == d): y = y27 theta = np.zeros(5) theta[[0, 1, 2, 4]] = theta27 elif (d28 == d): y = y28 theta = np.zeros(5) theta[[0, 1, 3, 4]] = theta28 elif (d29 == d): y = y29 theta = np.zeros(5) theta[[0, 2, 3, 4]] = theta29 else: y = y30 theta = np.zeros(5) theta[[1, 2, 3, 4]] = theta30 return [theta, y] def nnls(self, y, X, niter): # Solves min |y-X\theta| st \theta>=0, \sum\theta = 1, using projected gradient. Maximum number of iterations is specified by 'niter'. m = X.shape[0] p = X.shape[1] Xt = X.transpose() Sig = np.dot(X.transpose(), X) / m SS = Sig for i in range(0, 10): SS = np.dot(Sig, SS) L = np.power(np.trace(SS) / p, 0.1) theta = np.ones(p) / p it = 0 converged = 0 while ((converged == 0) and (it < niter)): res = y - np.dot(X, theta) grad = -np.dot(Xt, res) / m thetanew = self.project_simplex(theta - grad / L) dist = np.linalg.norm(theta - thetanew) theta = thetanew if (dist < 0.00001 * np.linalg.norm(theta)): converged = 1 it += 1 return theta def nnls_nesterov(self, y, X, niter): # Solves min |y-X\theta| st \theta>=0, \sum\theta = 1, using 'Nesterov' accelerated projected gradient. Maximum number of iterations is specified by 'niter'. m = X.shape[0] p = X.shape[1] Xt = X.transpose() _, s, _ = np.linalg.svd(X) smin = np.power(min(s), 2) L = np.power(max(s), 2) theta = np.ones(p) / p mu = np.ones(p) / p it = 0 converged = 0 g = max(1, smin) while ((converged == 0) and (it < niter)): t = (smin - g + np.sqrt(pow((m - g), 2) + 4 * g * L)) / (2 * L) thetatemp = theta + ((t * g) / (g + smin * t)) * (mu - theta) res = y - np.dot(X, thetatemp) grad = -np.dot(Xt, res) thetanew = self.project_simplex(theta - grad / L) dist = np.linalg.norm(theta - thetanew) mu = theta + (thetanew - theta) / t theta = thetanew if (dist < 0.00001 * np.linalg.norm(theta)): converged = 1 it += 1 g = pow(t, 2) * L return theta def nnls_fista(self, y, X, niter): # Solves min |y-X\theta| st \theta>=0, \sum\theta = 1, using Fast Iterative Shrinkage Thresholding Algorithm 'FISTA' by <NAME> Teboulle. Maximum number of iterations is specified by 'niter'. m = X.shape[0] p = X.shape[1] Xt = X.transpose() Sig = np.dot(X.transpose(), X) / m SS = Sig.copy() for i in range(0, 10): SS = np.dot(Sig, SS) L = np.power(np.trace(SS) / p, 0.1) * 1 theta = np.ones(p) / p mu = np.ones(p) / p it = 0 converged = 0 t = 1 while ((converged == 0) and (it < niter)): res = y - np.dot(X, mu) grad = -np.dot(Xt, res) / m thetanew = self.project_simplex(mu - grad / L) tnew = (1 + np.sqrt(1 + 4 * np.power(t, 2))) / 2 munew = thetanew + ((t - 1) / tnew) * (thetanew - theta) dist = np.linalg.norm(theta - thetanew) theta = thetanew mu = munew if (dist < 0.00001 * np.linalg.norm(theta)): converged = 1 it += 1 return theta def check_if_optimal(self, X, x, threshold=1e-8): # checks whether 'x' approximates the projection of the origin onto the convex hull of the rows of matrix 'X'. The approximation acceptance threshold is determined by 'threshold'. isoptimal = 1 n = X.shape[0] min_res = 0 min_ind = -1 for i in range(0, n): res = np.dot(X[i, :] - x, np.transpose(x)) if (res < min_res): min_res = res min_ind = i if (min_res < -threshold): isoptimal = 0 return [isoptimal, min_ind, min_res] def gjk_proj(self, X, m, epsilon=1e-3, threshold=1e-8, niter=10000, verbose=False, method='fista', fixed_max_size=float("inf")): # Projects origin onto the convex hull of the rows of 'X' using GJK method with initial simplex size equal to 'm'. The algorithm is by <NAME> and Keerthi in their paper 'A fast procedure for computing the distance between complex objects in three-dimensional space'. The input parameters are as below: # 'epsilon': This is an algorithm parameter determining the threshold that entries of weight vectors that are below 'epsilon' are set to zero. Default = 1e-3. # 'threshold': The parameter determining the approximation acceptance threshold. Default = 1e-8. # 'niter': Maximum number of iterations. Default = 10000. # 'verbose': If set to be True, the algorithm prints out the current set of weights, active set, current estimate of the projection after each iteration. Default = False. # 'method': If the size of the current active set is larger than 5, this method is used to calculate the projection onto the face created by active set. Options are 'proj_grad' for projected gradient, 'nesterov' for Nesterov accelerated gradient method, 'fista' for FISTA. Default = 'fista'. # 'fixed_max_size': maximum size of the active set. Default = Inf. n = X.shape[0] d = X.shape[1] m = min(n, m) s_ind = np.random.permutation(n) s_ind = s_ind[0:m] isoptimal = 0 iter = 0 weights = np.zeros(n) while (isoptimal == 0): iter = iter + 1 X_s = X[s_ind, :] if (len(s_ind) == 2): theta, y = self.proj_line_seg(np.transpose(X_s), np.zeros(d)) elif (len(s_ind) == 3): theta, y = self.proj_triangle(np.transpose(X_s), np.zeros(d)) elif (len(s_ind) == 4): theta, y = self.proj_tetrahedron(np.transpose(X_s), np.zeros(d)) elif (len(s_ind) == 5): theta, y = self.proj_5cell(np.transpose(X_s), np.zeros(d)) elif (method == 'nesterov'): theta = self.nnls_nesterov(np.zeros(d), np.transpose(X_s), niter) y = np.dot(np.transpose(X_s), theta) elif (method == 'fista'): theta = self.nnls_fista(np.zeros(d), np.transpose(X_s), niter) y = np.dot(np.transpose(X_s), theta) else: theta = nnls(np.zeros(d), np.transpose(X_s), niter) y = np.dot(np.transpose(X_s), theta) weights[s_ind] = theta [isoptimal, min_ind, min_res] = self.check_if_optimal(X, np.transpose(y), threshold=threshold) ref_ind = (theta > epsilon) pruned_ind = np.argmin(theta) prune = False if (sum(ref_ind) >= fixed_max_size): prune = True if (min_ind >= 0): if (min_ind in s_ind): isoptimal = 1 else: s_ind = s_ind[ref_ind] s_ind = np.append(s_ind, min_ind) if prune == True: s_ind = np.delete(s_ind, pruned_ind) prune = False if (verbose == True): print('X_s=') print(X_s) print('theta=') print(theta) print('y=') print(y) print('ref_ind=') print(ref_ind) print('s_ind=') print(s_ind) return [y, weights] def wolfe_proj(self, X, epsilon=1e-6, threshold=1e-8, niter=10000, verbose=False): # Projects origin onto the convex hull of the rows of 'X' using Wolfe method. The algorithm is by Wolfe in his paper 'Finding the nearest point in A polytope'. The input parameters are as below: # 'epsilon', 'threshold': Algorithm parameters determining approximation acceptance thresholds. These parameters are denoted as (Z2,Z3) and Z1, in the main paper, respectively. Default values = 1e-6, 1e-8. # 'niter': Maximum number of iterations. Default = 10000. # 'verbose': If set to be True, the algorithm prints out the current set of weights, active set, current estimate of the projection after each iteration. Default = False. n = X.shape[0] d = X.shape[1] max_norms = np.min(np.sum(np.abs(X) ** 2, axis=-1) ** (1. / 2)) s_ind = np.array([np.argmin(np.sum(np.abs(X) ** 2, axis=-1) ** (1. / 2))]) w = np.array([1.0]) E = np.array([[-max_norms ** 2, 1.0], [1.0, 0.0]]) isoptimal = 0 iter = 0 while (isoptimal == 0) and (iter <= niter): isoptimal_aff = 0 iter = iter + 1 P = np.dot(w, np.reshape(X[s_ind, :], (len(s_ind), d))) new_ind = np.argmin(np.dot(P, X.T)) max_norms = max(max_norms, np.sum(np.abs(X[new_ind, :]) ** 2)) if (np.dot(P, X[new_ind, :]) > np.dot(P, P) - threshold * max_norms): isoptimal = 1 elif (np.any(s_ind == new_ind)): isoptimal = 1 else: y = np.append(1, np.dot(X[s_ind, :], X[new_ind, :])) Y = np.dot(E, y) t = np.dot(X[new_ind, :], X[new_ind, :]) - np.dot(y, np.dot(E, y)) s_ind = np.append(s_ind, new_ind) w = np.append(w, 0.0) E = np.block([[E + np.outer(Y, Y) / (t + 0.0), -np.reshape(Y / (t + 0.0), (len(Y), 1))], [-Y / (t + 0.0), 1.0 / (t + 0.0)]]) while (isoptimal_aff == 0): v = np.dot(E, np.block([1, np.zeros(len(s_ind))])) v = v[1:len(v)] if (np.all(v > epsilon)): w = v isoptimal_aff = 1 else: POS = np.where((w - v) > epsilon)[0] if (POS.size == 0): theta = 1 else: fracs = (w + 0.0) / (w - v) theta = min(1, np.min(fracs[POS])) w = theta * v + (1 - theta) * w w[w < epsilon] = 0 if np.any(w == 0): remov_ind = np.where(w == 0)[0][0] w = np.delete(w, remov_ind) s_ind = np.delete(s_ind, remov_ind) col = E[:, remov_ind + 1] E = E - (np.outer(col, col) + 0.0) / col[remov_ind + 1] E = np.delete(np.delete(E, remov_ind + 1, axis=0), remov_ind + 1, axis=1) y = np.dot(X[s_ind, :].T, w) if (verbose == True): print('X_s=') print(X[s_ind, :]) print('w=') print(w) print('y=') print(y) print('s_ind=') print(s_ind) weights = np.zeros(n) weights[s_ind] = w return [y, weights] def palm_nmf_update(self, H, W, X, l, proj_method='wolfe', m=5, c1=1.2, c2=1.2, proj_low_dim=False, eps_step=1e-4, epsilon='None', threshold=1e-8, niter=10000, method='fista', weights_exact=False, fixed_max_size=float("inf")): # Performs an iteration of PALM algorithm. The inputs are as below. # 'H': Current matrix of Archetypes. # 'W': Current matrix of Weights. # 'X': Input Data points. # 'l': parameter \lambda of the algorithm. # 'proj_method': method used for computing the projection onto the convex hull. Options are: 'wolfe' for Wolfe method, 'gjk' for GJK algorithm, 'proj_grad' for projected gradient, 'nesterov' for Nesterov accelerated gradient method, 'fista' for FISTA. Default is 'wolfe'. # 'm': Original size of the active set used for projection. Used only when GJK method is used for projection. Default is m=5. # 'c1', 'c2': Parameters for determining the step size of the update. default values are 1.2. # 'proj_low_dim': If set to be True, the algorithm replaces the data points with their projections onto the principal r-dimensional subspace formed by them. Default is False. # 'eps_step': Small constant to make sure that the step size of the iteration remains bounded and the PALM iterations remain well-defined. Default value is 1e-4. # 'epsilon': Plays the role of 'epsilon' in 'wolfe_proj' and 'gjk_proj' functions. Only used when GJK or Wolfe methods used for projection. Default value is equal to their corresponding default value for each GJK or Wolfe method. # 'threshold': Plays the role of 'threshold' in 'wolfe_proj' and 'gjk_proj' functions. Only used when GJK or Wolfe methods used for projection. Default value is 1-e8. # 'niter': Maximum number of iterations for computing the projection. Default is 10000. # 'method': The same as 'method' in 'gjk_proj' function. Only used when GJK method is chosen. # 'weights_exact': Updates the weights with their 'exact' estimates resulting from solving the constrained non-negative least squares problem after updating 'H' at each iteration. Must be set to False to follow the PALM iterations. # 'fixed_max_size': The same as 'fixed_max_size' in 'gjk_proj' function. Only used when GJK method is chosen. if (epsilon == 'None') and (proj_method == 'wolfe'): epsilon = 1e-6 elif (epsilon == 'None') and (proj_method == 'gjk'): epsilon = 1e-3 n = W.shape[0] r = W.shape[1] d = H.shape[1] Hnew = H.copy() Wnew = W.copy() gamma1 = c1 * np.linalg.norm(np.dot(np.transpose(W), W)) gamma2 = c2 * np.linalg.norm(np.dot(H, np.transpose(H))) gamma2 = max(gamma2, eps_step) res = np.dot(W, H) - X[:] H_temp = H.copy() - np.dot(np.transpose(W), res) / gamma1 for i in range(0, r): if (proj_low_dim == True): proj_X = self.project_principal(X, min(d, r)) if (proj_method == 'wolfe'): H_grad, _ = self.wolfe_proj(proj_X - H_temp[i, :], epsilon=epsilon, threshold=threshold, niter=niter) elif (proj_method == 'gjk'): H_grad, _ = self.gjk_proj(proj_X - H_temp[i, :], m=m, epsilon=epsilon, threshold=threshold, niter=niter, method=method, fixed_max_size=fixed_max_size) elif (proj_method == 'proj_grad'): H_grad = nnls(H_temp[i, :], proj_X.T, niter=niter) H_grad = np.dot(proj_X.T, H_grad) - H_temp[i, :] elif (proj_method == 'nesterov'): H_grad = self.nnls_nesterov(H_temp[i, :], proj_X.T, niter=niter) H_grad = np.dot(proj_X.T, H_grad) - H_temp[i, :] elif (proj_method == 'fista'): H_grad = self.nnls_fista(H_temp[i, :], proj_X.T, niter=niter) H_grad = np.dot(proj_X.T, H_grad) - H_temp[i, :] else: if (proj_method == 'wolfe'): H_grad, _ = self.wolfe_proj(X - H_temp[i, :], epsilon=epsilon, threshold=threshold, niter=niter) elif (proj_method == 'gjk'): H_grad, _ = self.gjk_proj(X - H_temp[i, :], m=m, epsilon=epsilon, threshold=threshold, niter=niter, method=method, fixed_max_size=fixed_max_size) elif (proj_method == 'proj_grad'): H_grad = nnls(H_temp[i, :], X.T, niter=niter) H_grad = np.dot(X.T, H_grad) - H_temp[i, :] elif (proj_method == 'nesterov'): H_grad = self.nnls_nesterov(H_temp[i, :], X.T, niter=niter) H_grad = np.dot(X.T, H_grad) - H_temp[i, :] elif (proj_method == 'fista'): H_grad = self.nnls_fista(H_temp[i, :], X.T, niter=niter) H_grad = np.dot(X.T, H_grad) - H_temp[i, :] Hnew[i, :] = H_temp[i, :] + (l / (l + gamma1)) * H_grad res = np.dot(W, Hnew) - X if weights_exact == False: W_temp = W[:] - (1 / gamma2) * np.dot(res, np.transpose(Hnew)) for i in range(0, n): Wnew[i, :] = self.project_simplex(W_temp[i, :]) else: for i in range(0, n): if (proj_low_dim == True): if (proj_method == 'wolfe'): _, Wnew[i, :] = self.wolfe_proj(Hnew - proj_X[i, :], epsilon=epsilon, threshold=threshold, niter=niter) elif (proj_method == 'gjk'): _, Wnew[i, :] = self.gjk_proj(Hnew - proj_X[i, :], m=m, epsilon=epsilon, threshold=threshold, niter=niter, method=method, fixed_max_size=fixed_max_size) elif (proj_method == 'proj_grad'): Wnew[i, :] = nnls(proj_X[i, :], Hnew.T, niter=niter) elif (proj_method == 'nesterov'): Wnew[i, :] = self.nnls_nesterov(proj_X[i, :], Hnew.T, niter=niter) elif (proj_method == 'fista'): Wnew[i, :] = self.nnls_fista(proj_X[i, :], Hnew.T, niter=niter) else: if (proj_method == 'wolfe'): _, Wnew[i, :] = self.wolfe_proj(Hnew - X[i, :], epsilon=epsilon, threshold=threshold, niter=niter) elif (proj_method == 'gjk'): _, Wnew[i, :] = self.gjk_proj(Hnew - X[i, :], m=m, epsilon=epsilon, threshold=threshold, niter=niter, method=method, fixed_max_size=fixed_max_size) elif (proj_method == 'proj_grad'): Wnew[i, :] = nnls(X[i, :], Hnew.T, niter=niter) elif (proj_method == 'nesterov'): Wnew[i, :] = self.nnls_nesterov(X[i, :], Hnew.T, niter=niter) elif (proj_method == 'fista'): Wnew[i, :] = self.nnls_fista(X[i, :], Hnew.T, niter=niter) return [Wnew, Hnew] def costfun(self, W, H, X, l, proj_method='wolfe', m=3, epsilon='None', threshold=1e-8, niter=1000, method='fista', fixed_max_size=float("inf")): # Computes the value of the cost function minimized by PALM iterations. The inputs are as below: # 'W': Matrix of weights. # 'H': Matrix of Archetypes. # 'X': Data matrix. # 'l': \lambda. # 'proj_method': The same as in 'palm_nmf_update' function. # 'm': The same as in 'palm_nmf_update' function. # 'epsilon': The same as in 'palm_nmf_update' function. # 'threshold': The same as in 'palm_nmf_update' function. # 'niter': The same as in 'palm_nmf_update' function. # 'method': The same as in 'palm_nmf_update' function. # 'fixed_max_size': The same as in 'palm_nmf_update' function. if (epsilon == 'None') and (proj_method == 'wolfe'): epsilon = 1e-6 elif (epsilon == 'None') and (proj_method == 'gjk'): epsilon = 1e-3 n = W.shape[0] r = W.shape[1] d = H.shape[1] fH = np.power(np.linalg.norm(X - np.dot(W, H)), 2) for i in range(0, r): if (proj_method == 'wolfe'): projHi, _ = self.wolfe_proj(X - H[i, :], epsilon=epsilon, threshold=threshold, niter=niter) elif (proj_method == 'gjk'): projHi, _ = self.gjk_proj(X - H[i, :], m=m, epsilon=epsilon, threshold=threshold, niter=niter, method=method, fixed_max_size=fixed_max_size) elif (proj_method == 'proj_grad'): projHi = nnls(H[i, :], X.T, niter=niter) projHi = np.dot(X.T, projHi) - H[i, :] elif (proj_method == 'nesterov'): projHi = self.nnls_nesterov(H[i, :], X.T, niter=niter) projHi = np.dot(X.T, projHi) - H[i, :] elif (proj_method == 'fista'): projHi = self.nnls_fista(H[i, :], X.T, niter=niter) projHi = np.dot(X.T, projHi) - H[i, :] fH = fH + l * (np.power(np.linalg.norm(projHi), 2)) return fH def palm_nmf(self, X, r, l=None, lmax=10, lmin=0.001, lambda_no=20, c_lambda=1.2, proj_method='wolfe', m=5, H_init=None, W_init=None, maxiter=200, delta=1e-6, c1=1.1, c2=1.1, proj_low_dim=False, eps_step=1e-4, epsilon='None', threshold=1e-8, niter=10000, verbose=False, plotit=False, plotloss=True, ploterror=True, oracle=True, H0=[], weights_exact=False, method='fista', fixed_max_size=float("inf")): # The main function which minimizes the proposed cost function using PALM iterations and outputs the estimates for archetypes, weights, fitting error and estimation error for the archetypes (if the ground truth is known). The inputs are as below: # 'X': Input data matrix. # 'r': Rank of the fitted model. # 'l': \lambda, if not given data driven method is used to find it. # 'lmax': maximum of the search range for \lambda. Default value is 10. # 'lmin': minimum of the search range for \lambda. Default value is 0.001. # 'lambda_no': number of \lambdas in the range [lmin, lmax] used for search in finding appropriate \lambda. Default is 20. # 'c_lambda': constant 'c' used in the data driven method for finding \lambda. Default is 1.2. # 'proj_method': The same as in 'palm_nmf_update' function. # 'm': The same as in 'palm_nmf_update' function. # 'H_init': Initial value for the archetype matrix H. If not given, successive projection method is used to find an initial point. # 'W_init': Initial value for the weights matrix H. If not given, successive projection method is used to find an initial point. # 'maxiter': Maximum number of iterations of PALM algorithm. Default value is 200. # 'delta': PALM Iterations are terminated when the frobenius norm of the differences between W,H estimates for successive iterations are less than 'delta'. Default value is 1e-6. # 'c1': The same as in 'palm_nmf_update' function. Default value is 1.1. # 'c2': The same as in 'palm_nmf_update' function. Default value is 1.1. # 'proj_low_dim': The same as in 'palm_nmf_update' function. # 'eps_step': The same as in 'palm_nmf_update' function. # 'epsilon': The same as in 'palm_nmf_update' function. # 'threshold': The same as in 'palm_nmf_update' function. # 'niter': The same as in 'palm_nmf_update' function. # 'verbose': If it is 'True' the number of taken iterations is given. If the ground truth is known, the Loss is also typed after each iteration. Default value is False. # 'plotit': For the case that data points are in 2 dimensions, if 'plotit' is true, data points and estimate for archetypes are plotted after each iteration. Default value is False. # 'plotloss': If it is True and the ground truth is known, the Loss in estimating archetypes versus iteration is plotted. Default value is True. # 'ploterror': If it is True the minimized cost function versus iteration is plotted. Default value is True. # 'oracle': If it is True then the ground truth archetypes are given in H0. The Default value is True. # 'H0': Ground truth archetypes. Default is empty array. # 'weights_exact': The same as in 'palm_nmf_update' function. # 'method': The same as in 'palm_nmf_update' function. # 'fixed_max_size': The same as in 'palm_nmf_update' function. if (epsilon == 'None') and (proj_method == 'wolfe'): epsilon = 1e-6 elif (epsilon == 'None') and (proj_method == 'gjk'): epsilon = 1e-3 if (l == None): lambdas = np.geomspace(lmin, lmax, lambda_no) else: lambdas =
np.array([l])
numpy.array
# OpenSeesPy visualization module # Author: <NAME> # Faculty of Civil Engineering and Architecture # Opole University of Technology, Poland # ver. 0.94, 2020 August # License: MIT # Notes: # 1. matplotlib's plt.axis('equal') does not work for 3d plots # therefore right angles are not guaranteed to be 90 degrees on the # plots import openseespy.opensees as ops # installed from pip # import opensees as ops # local compilation import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection from matplotlib.patches import Circle, Polygon from matplotlib.animation import FuncAnimation import matplotlib.tri as tri # default settings # fmt: format string setting color, marker and linestyle # check documentation on matplotlib's plot # continuous interpolated shape line fmt_interp = 'b-' # blue solid line, no markers # element end nodes fmt_nodes = 'rs' # red square markers, no line # undeformed model fmt_undefo = 'g--' # green dashed line, no markers # section forces fmt_secforce = 'b-' # blue solid line # figure left right bottom top offsets fig_lbrt = (.04, .04, .96, .96) # azimuth and elevation in degrees az_el = (-60., 30.) # figure width and height in centimeters fig_wi_he = (16., 10.) def _plot_model_2d(node_labels, element_labels, offset_nd_label, axis_off): max_x_crd, max_y_crd, max_crd = -np.inf, -np.inf, -np.inf node_tags = ops.getNodeTags() ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd max_crd = np.amax([max_x_crd, max_y_crd]) _offset = 0.005 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen plt.plot(ex, ey, 'bo-') if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y = _offset, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y = 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y = 0.03, 0.03 plt.text(xt+offset_x, yt+offset_y, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: if not offset_nd_label == 'above': offset_nd_label_x, offset_nd_label_y = _offset, _offset va = 'bottom' ha = 'left' else: offset_nd_label_x, offset_nd_label_y = 0.0, _offset va = 'bottom' ha = 'center' plt.text(ops.nodeCoord(node_tag)[0]+offset_nd_label_x, ops.nodeCoord(node_tag)[1]+offset_nd_label_y, f'{node_tag}', va=va, ha=ha, color='blue') # plt.axis('equal') # 2d triangular (tri31) elements elif nen == 3: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd max_crd = np.amax([max_x_crd, max_y_crd]) _offset = 0.005 * max_crd _offnl = 0.003 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), 'bo-') if element_labels: va = 'center' ha = 'center' plt.text(xt, yt, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: if not offset_nd_label == 'above': offset_nd_label_x, offset_nd_label_y = _offnl, _offnl va = 'bottom' # va = 'center' ha = 'left' else: offset_nd_label_x, offset_nd_label_y = 0.0, _offnl va = 'bottom' ha = 'center' plt.text(ops.nodeCoord(node_tag)[0]+offset_nd_label_x, ops.nodeCoord(node_tag)[1]+offset_nd_label_y, f'{node_tag}', va=va, ha=ha, color='blue') # 2d quadrilateral (quad) elements elif nen == 4: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd max_crd = np.amax([max_x_crd, max_y_crd]) _offset = 0.005 * max_crd _offnl = 0.003 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen # plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), 'bo-') plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), 'b-', lw=0.4) if element_labels: va = 'center' ha = 'center' plt.text(xt, yt, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: if not offset_nd_label == 'above': offset_nd_label_x, offset_nd_label_y = _offnl, _offnl va = 'bottom' # va = 'center' ha = 'left' else: offset_nd_label_x, offset_nd_label_y = 0.0, _offnl va = 'bottom' ha = 'center' plt.text(ops.nodeCoord(node_tag)[0]+offset_nd_label_x, ops.nodeCoord(node_tag)[1]+offset_nd_label_y, f'{node_tag}', va=va, ha=ha, color='blue') plt.axis('equal') def _plot_model_3d(node_labels, element_labels, offset_nd_label, axis_off, az_el, fig_wi_he, fig_lbrt): node_tags = ops.getNodeTags() ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) max_x_crd, max_y_crd, max_z_crd, max_crd = -np.inf, -np.inf, \ -np.inf, -np.inf nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd if z_crd > max_z_crd: max_z_crd = z_crd if offset_nd_label == 0 or offset_nd_label == 0.: _offset = 0. else: max_crd = np.amax([max_x_crd, max_y_crd, max_z_crd]) _offset = 0.005 * max_crd # # work-around fix because of aspect equal bug # _max_overall = 1.1*max_crd # _min_overall = -0.1*max_crd # ax.set_xlim(_min_overall, _max_overall) # ax.set_ylim(_min_overall, _max_overall) # ax.set_zlim(_min_overall, _max_overall) for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen zt = sum(ez)/nen ax.plot(ex, ey, ez, 'bo-') # fixme: placement of node_tag labels if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y, offset_z = _offset, 0.0, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, _offset, 0.0 elif ez[1]-ez[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y, offset_z = 0.03, 0.03, 0.03 ax.text(xt+offset_x, yt+offset_y, zt+offset_z, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: ax.text(ops.nodeCoord(node_tag)[0]+_offset, ops.nodeCoord(node_tag)[1]+_offset, ops.nodeCoord(node_tag)[2]+_offset, f'{node_tag}', va='bottom', ha='left', color='blue') # quad in 3d elif nen == 4: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd if z_crd > max_z_crd: max_z_crd = z_crd # ax.plot(np.array([x_crd]), # np.array([y_crd]), # np.array([z_crd]), 'ro') max_crd = np.amax([max_x_crd, max_y_crd, max_z_crd]) _offset = 0.002 * max_crd for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen zt = sum(ez)/nen ax.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), np.append(ez, ez[0]), 'bo-') # fixme: placement of node_tag labels if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y, offset_z = _offset, 0.0, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, _offset, 0.0 elif ez[1]-ez[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y, offset_z = 0.03, 0.03, 0.03 ax.text(xt+offset_x, yt+offset_y, zt+offset_z, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: ax.text(ops.nodeCoord(node_tag)[0]+_offset, ops.nodeCoord(node_tag)[1]+_offset, ops.nodeCoord(node_tag)[2]+_offset, f'{node_tag}', va='bottom', ha='left', color='blue') # 8-node brick, 3d model elif nen == 8: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] if x_crd > max_x_crd: max_x_crd = x_crd if y_crd > max_y_crd: max_y_crd = y_crd if z_crd > max_z_crd: max_z_crd = z_crd # ax.plot(np.array([x_crd]), # np.array([y_crd]), # np.array([z_crd]), 'ro') max_crd = np.amax([max_x_crd, max_y_crd, max_z_crd]) _offset = 0.005 * max_crd # work-around fix because of aspect equal bug _max_overall = 1.1*max_crd _min_overall = -0.1*max_crd ax.set_xlim(_min_overall, _max_overall) ax.set_ylim(_min_overall, _max_overall) ax.set_zlim(_min_overall, _max_overall) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4, nd5, nd6, nd7, nd8 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0], ops.nodeCoord(nd5)[0], ops.nodeCoord(nd6)[0], ops.nodeCoord(nd7)[0], ops.nodeCoord(nd8)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1], ops.nodeCoord(nd5)[1], ops.nodeCoord(nd6)[1], ops.nodeCoord(nd7)[1], ops.nodeCoord(nd8)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2], ops.nodeCoord(nd5)[2], ops.nodeCoord(nd6)[2], ops.nodeCoord(nd7)[2], ops.nodeCoord(nd8)[2]]) # location of label xt = sum(ex)/nen yt = sum(ey)/nen zt = sum(ez)/nen ax.plot(np.append(ex[0:4], ex[0]), np.append(ey[0:4], ey[0]), np.append(ez[0:4], ez[0]), 'bo-') ax.plot(np.append(ex[4:8], ex[4]), np.append(ey[4:8], ey[4]), np.append(ez[4:8], ez[4]), 'bo-') ax.plot(np.array([ex[0], ex[4]]), np.array([ey[0], ey[4]]), np.array([ez[0], ez[4]]), 'bo-') ax.plot(np.array([ex[1], ex[5]]), np.array([ey[1], ey[5]]), np.array([ez[1], ez[5]]), 'bo-') ax.plot(np.array([ex[2], ex[6]]), np.array([ey[2], ey[6]]), np.array([ez[2], ez[6]]), 'bo-') ax.plot(np.array([ex[3], ex[7]]), np.array([ey[3], ey[7]]), np.array([ez[3], ez[7]]), 'bo-') # fixme: placement of node_tag labels if element_labels: if ex[1]-ex[0] == 0: va = 'center' ha = 'left' offset_x, offset_y, offset_z = _offset, 0.0, 0.0 elif ey[1]-ey[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, _offset, 0.0 elif ez[1]-ez[0] == 0: va = 'bottom' ha = 'center' offset_x, offset_y, offset_z = 0.0, 0.0, _offset else: va = 'bottom' ha = 'left' offset_x, offset_y, offset_z = 0.03, 0.03, 0.03 ax.text(xt+offset_x, yt+offset_y, zt+offset_z, f'{ele_tag}', va=va, ha=ha, color='red') if node_labels: for node_tag in node_tags: ax.text(ops.nodeCoord(node_tag)[0]+_offset, ops.nodeCoord(node_tag)[1]+_offset, ops.nodeCoord(node_tag)[2]+_offset, f'{node_tag}', va='bottom', ha='left', color='blue') def plot_model(node_labels=1, element_labels=1, offset_nd_label=False, axis_off=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot defined model of the structure. Args: node_labels (int): 1 - plot node labels, 0 - do not plot them; (default: 1) element_labels (int): 1 - plot element labels, 0 - do not plot them; (default: 1) offset_nd_label (bool): False - do not offset node labels from the actual node location. This option can enhance visibility. axis_off (int): 0 - turn off axes, 1 - display axes; (default: 0) az_el (tuple): contains azimuth and elevation for 3d plots fig_wi_he (tuple): contains width and height of the figure fig_lbrt (tuple): a tuple contating left, bottom, right and top offsets Usage: ``plot_()`` - plot deformed shape with default parameters and automatically calcutated scale factor. ``plot_defo(interpFlag=0)`` - plot displaced nodes without shape function interpolation ``plot_defo(sfac=1.5)`` - plot with specified scale factor ``plot_defo(unDefoFlag=0, endDispFlag=0)`` - plot without showing undeformed (original) mesh and without showing markers at the element ends. """ # az_el - azimut, elevation used for 3d plots only node_tags = ops.getNodeTags() ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: _plot_model_2d(node_labels, element_labels, offset_nd_label, axis_off) if axis_off: plt.axis('off') elif ndim == 3: _plot_model_3d(node_labels, element_labels, offset_nd_label, axis_off, az_el, fig_wi_he, fig_lbrt) if axis_off: plt.axis('off') else: print(f'\nWarning! ndim: {ndim} not supported yet.') # plt.show() # call this from main py file for more control def _plot_defo_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes): ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # truss element if ndf == 2: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) if modeNo: eux = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[0]]) euy = np.array([ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[1]]) else: eux = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd2)[0]]) euy = np.array([ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[1]]) # displaced element coordinates (scaled by sfac factor) edx = np.array([ex[0] + sfac*eux[0], ex[1] + sfac*eux[1]]) edy = np.array([ey[0] + sfac*euy[0], ey[1] + sfac*euy[1]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) plt.plot(edx, edy, fmt_interp) # beam/frame element elif ndf == 3: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) # interpolated displacement field if interpFlag: xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) plt.plot(xcdi, ycdi, fmt_interp) # translations of ends if endDispFlag: xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) plt.plot(xdi, ydi, fmt_nodes) plt.axis('equal') # plt.show() # call this from main py file for more control # 2d triangular (tri31) elements elif nen == 3: for ele_tag in ele_tags: nd1, nd2, nd3 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # xc = [x, x[0, :]] # yc = [x, x[0, :]] # test it with one element x = ex+sfac*ed[[0, 2, 4]] y = ey+sfac*ed[[1, 3, 5]] # x = ex+sfac*ed[[0, 2, 4, 6]] # y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d quadrilateral (quad) elements elif nen == 4: for ele_tag in ele_tags: nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # test it with one element x = ex+sfac*ed[[0, 2, 4, 6]] y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d 8-node quadratic elements # elif nen == 8: # x = ex+sfac*ed[:, [0, 2, 4, 6, 8, 10, 12, 14]] # y = ex+sfac*ed[:, [1, 3, 5, 7, 9, 11, 13, 15]] # t = -1 # n = 0 # for s in range(-1, 1.4, 0.4): # n += 1 # ... else: print(f'\nWarning! Elements not supported yet. nen: {nen}; must be: 2, 3, 4, 8.') # noqa: E501 def _plot_defo_mode_3d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, az_el, fig_wi_he, fig_lbrt): ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) # ax.axis('equal') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # plot: truss and beam/frame elements in 3d if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # plot: beam/frame element in 3d if ndf == 6: for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd1, modeNo)[3], ops.nodeEigenvector(nd1, modeNo)[4], ops.nodeEigenvector(nd1, modeNo)[5], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[3], ops.nodeEigenvector(nd2, modeNo)[4], ops.nodeEigenvector(nd2, modeNo)[5]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd1)[3], ops.nodeDisp(nd1)[4], ops.nodeDisp(nd1)[5], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2], ops.nodeDisp(nd2)[3], ops.nodeDisp(nd2)[4], ops.nodeDisp(nd2)[5]]) # eo = Eo[i, :] xloc = ops.eleResponse(ele_tag, 'xlocal') yloc = ops.eleResponse(ele_tag, 'ylocal') zloc = ops.eleResponse(ele_tag, 'zlocal') g = np.vstack((xloc, yloc, zloc)) if unDefoFlag: plt.plot(ex, ey, ez, fmt_undefo) # interpolated displacement field if interpFlag: xcd, ycd, zcd = beam_defo_interp_3d(ex, ey, ez, g, ed, sfac, nep) ax.plot(xcd, ycd, zcd, fmt_interp) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # translations of ends if endDispFlag: xd, yd, zd = beam_disp_ends3d(ex, ey, ez, ed, sfac) ax.plot(xd, yd, zd, fmt_nodes) # # work-around fix because of aspect equal bug # xmin, xmax = ax.get_xlim() # ymin, ymax = ax.get_ylim() # zmin, zmax = ax.get_zlim() # min_overall = np.amax([np.abs(xmin), np.abs(ymin), np.abs(zmin)]) # max_overall = np.amax([np.abs(xmax), np.abs(ymax), np.abs(zmax)]) # minmax_overall = max(min_overall, max_overall) # _max_overall = 1.1 * minmax_overall # _min_overall = -1.1 * minmax_overall # ax.set_xlim(_min_overall, _max_overall) # ax.set_ylim(_min_overall, _max_overall) # # ax.set_zlim(_min_overall, _max_overall) # ax.set_zlim(0.0, _max_overall) # plot: quad in 3d elif nen == 4: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # plot: shell in 3d if ndf == 6: for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[2], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[2]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd3)[2], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1], ops.nodeDisp(nd4)[2]]) if unDefoFlag: ax.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), np.append(ez, ez[0]), fmt_undefo) x = ex+sfac*ed[[0, 3, 6, 9]] y = ey+sfac*ed[[1, 4, 7, 10]] z = ez+sfac*ed[[2, 5, 8, 11]] # ax.plot(np.append(x, x[0]), # np.append(y, y[0]), # np.append(z, z[0]), # 'b.-') # ax.axis('equal') pts = [[x[0], y[0], z[0]], [x[1], y[1], z[1]], [x[2], y[2], z[2]], [x[3], y[3], z[3]]] verts = [[pts[0], pts[1], pts[2], pts[3]]] ax.add_collection3d(Poly3DCollection(verts, linewidths=1, edgecolors='k', alpha=.25)) ax.scatter(x, y, z, s=0) # 8-node brick, 3d model elif nen == 8: for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4, nd5, nd6, nd7, nd8 = ops.eleNodes(ele_tag) # element node1-node2, x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0], ops.nodeCoord(nd5)[0], ops.nodeCoord(nd6)[0], ops.nodeCoord(nd7)[0], ops.nodeCoord(nd8)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1], ops.nodeCoord(nd5)[1], ops.nodeCoord(nd6)[1], ops.nodeCoord(nd7)[1], ops.nodeCoord(nd8)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2], ops.nodeCoord(nd3)[2], ops.nodeCoord(nd4)[2], ops.nodeCoord(nd5)[2], ops.nodeCoord(nd6)[2], ops.nodeCoord(nd7)[2], ops.nodeCoord(nd8)[2]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[2], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[2], ops.nodeEigenvector(nd5, modeNo)[0], ops.nodeEigenvector(nd5, modeNo)[1], ops.nodeEigenvector(nd5, modeNo)[2], ops.nodeEigenvector(nd6, modeNo)[0], ops.nodeEigenvector(nd6, modeNo)[1], ops.nodeEigenvector(nd6, modeNo)[2], ops.nodeEigenvector(nd7, modeNo)[0], ops.nodeEigenvector(nd7, modeNo)[1], ops.nodeEigenvector(nd7, modeNo)[2], ops.nodeEigenvector(nd8, modeNo)[0], ops.nodeEigenvector(nd8, modeNo)[1], ops.nodeEigenvector(nd8, modeNo)[2]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd1)[2], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd2)[2], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd3)[2], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1], ops.nodeDisp(nd4)[2], ops.nodeDisp(nd5)[0], ops.nodeDisp(nd5)[1], ops.nodeDisp(nd5)[2], ops.nodeDisp(nd6)[0], ops.nodeDisp(nd6)[1], ops.nodeDisp(nd6)[2], ops.nodeDisp(nd7)[0], ops.nodeDisp(nd7)[1], ops.nodeDisp(nd7)[2], ops.nodeDisp(nd8)[0], ops.nodeDisp(nd8)[1], ops.nodeDisp(nd8)[2]]) if unDefoFlag: ax.plot(np.append(ex[0:4], ex[0]), np.append(ey[0:4], ey[0]), np.append(ez[0:4], ez[0]), fmt_undefo) ax.plot(np.append(ex[4:8], ex[4]), np.append(ey[4:8], ey[4]), np.append(ez[4:8], ez[4]), fmt_undefo) ax.plot(np.array([ex[0], ex[4]]), np.array([ey[0], ey[4]]), np.array([ez[0], ez[4]]), fmt_undefo) ax.plot(np.array([ex[1], ex[5]]), np.array([ey[1], ey[5]]), np.array([ez[1], ez[5]]), fmt_undefo) ax.plot(np.array([ex[2], ex[6]]), np.array([ey[2], ey[6]]), np.array([ez[2], ez[6]]), fmt_undefo) ax.plot(np.array([ex[3], ex[7]]), np.array([ey[3], ey[7]]), np.array([ez[3], ez[7]]), fmt_undefo) x = ex+sfac*ed[[0, 3, 6, 9, 12, 15, 18, 21]] y = ey+sfac*ed[[1, 4, 7, 10, 13, 16, 19, 22]] z = ez+sfac*ed[[2, 5, 8, 11, 14, 17, 20, 23]] ax.plot(np.append(x[:4], x[0]), np.append(y[:4], y[0]), np.append(z[:4], z[0]), 'b.-') ax.plot(np.append(x[4:8], x[4]), np.append(y[4:8], y[4]), np.append(z[4:8], z[4]), 'b.-') ax.plot(np.array([x[0], x[4]]), np.array([y[0], y[4]]), np.array([z[0], z[4]]), 'b.-') ax.plot(np.array([x[1], x[5]]), np.array([y[1], y[5]]), np.array([z[1], z[5]]), 'b.-') ax.plot(np.array([x[2], x[6]]), np.array([y[2], y[6]]), np.array([z[2], z[6]]), 'b.-') ax.plot(np.array([x[3], x[7]]), np.array([y[3], y[7]]), np.array([z[3], z[7]]), 'b.-') # ax.axis('equal') # work-around fix because of aspect equal bug xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() zmin, zmax = ax.get_zlim() min_overall = np.amax([np.abs(xmin), np.abs(ymin), np.abs(zmin)]) max_overall = np.amax([np.abs(xmax), np.abs(ymax), np.abs(zmax)]) minmax_overall = max(min_overall, max_overall) _min_overall = -1.1 * minmax_overall _max_overall = 1.1 * minmax_overall ax.set_xlim(0.3*_min_overall, 0.3*_max_overall) ax.set_ylim(0.3*_min_overall, 0.3*_max_overall) # ax.set_zlim(_min_overall, _max_overall) ax.set_zlim(0.0, _max_overall) def plot_defo(sfac=False, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes=fmt_nodes, Eo=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot deformed shape of the structure. Args: sfac (float): scale factor to increase/decrease displacements obtained from FE analysis. If not specified (False), sfac is automatically calculated based on the maximum overall displacement and this maximum displacement is plotted as 20 percent (hordcoded) of the maximum model dimension. interpFlag (int): 1 - use interpolated deformation using shape function, 0 - do not use interpolation, just show displaced element nodes (default is 1) nep (int): number of evaluation points for shape function interpolation (default: 17) Usage: ``plot_defo()`` - plot deformed shape with default parameters and automatically calcutated scale factor. ``plot_defo(interpFlag=0)`` - plot simplified deformation by displacing the nodes connected with straight lines (shape function interpolation) ``plot_defo(sfac=1.5)`` - plot with specified scale factor ``plot_defo(unDefoFlag=0, endDispFlag=0)`` - plot without showing undeformed (original) mesh and without showing markers at the element ends. """ node_tags = ops.getNodeTags() # calculate sfac min_x, min_y, min_z = np.inf, np.inf, np.inf max_x, max_y, max_z = -np.inf, -np.inf, -np.inf max_ux, max_uy, max_uz = -np.inf, -np.inf, -np.inf ratio = 0.1 ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] ux = ops.nodeDisp(node_tag)[0] uy = ops.nodeDisp(node_tag)[1] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) dxmax = max_x - min_x dymax = max_y - min_y dlmax = max(dxmax, dymax) edmax = max(max_ux, max_uy) sfac = ratio * dlmax/edmax if sfac > 1000.: print("""\nWarning!\nsfac is quite large - perhaps try to specify \ sfac value yourself. This usually happens when translational DOFs are too small\n\n""") _plot_defo_mode_2d(0, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes) elif ndim == 3: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] ux = ops.nodeDisp(node_tag)[0] uy = ops.nodeDisp(node_tag)[1] uz = ops.nodeDisp(node_tag)[2] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) min_z = min(min_z, z_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_z = max(max_z, z_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) max_uz = max(max_uz, np.abs(uz)) dxmax = max_x - min_x dymax = max_y - min_y dzmax = max_z - min_z dlmax = max(dxmax, dymax, dzmax) edmax = max(max_ux, max_uy, max_uz) sfac = ratio * dlmax/edmax _plot_defo_mode_3d(0, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, az_el, fig_wi_he, fig_lbrt) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def _anim_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim, lw): fig_wi, fig_he = fig_wi_he ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # truss element if ndf == 2: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) if modeNo: eux = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[0]]) euy = np.array([ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[1]]) else: eux = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd2)[0]]) euy = np.array([ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[1]]) # displaced element coordinates (scaled by sfac factor) edx = np.array([ex[0] + sfac*eux[0], ex[1] + sfac*eux[1]]) edy = np.array([ey[0] + sfac*euy[0], ey[1] + sfac*euy[1]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) plt.plot(edx, edy, fmt_interp) # beam/frame element anim eigen elif ndf == 3: fig, ax = plt.subplots(figsize=(fig_wi/2.54, fig_he/2.54)) ax.axis('equal') ax.set_xlim(xlim[0], xlim[1]) ax.set_ylim(ylim[0], ylim[1]) nel = len(ele_tags) Ex = np.zeros((nel, 2)) Ey = np.zeros((nel, 2)) Ed = np.zeros((nel, 6)) # time vector for one cycle (period) n_frames = 32 + 1 t = np.linspace(0., 2*np.pi, n_frames) lines = [] for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates Ex[i, :] = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) Ey[i, :] = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) Ed[i, :] = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd1, modeNo)[2], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[2]]) lines.append(ax.plot([], [], fmt_nodes, lw=lw)[0]) def init(): for j, ele_tag in enumerate(ele_tags): lines[j].set_data([], []) return lines def animate(i): for j, ele_tag in enumerate(ele_tags): if interpFlag: xcdi, ycdi = beam_defo_interp_2d(Ex[j, :], Ey[j, :], Ed[j, :], sfac*np.cos(t[i]), nep) lines[j].set_data(xcdi, ycdi) else: xdi, ydi = beam_disp_ends(Ex[j, :], Ey[j, :], Ed[j, :], sfac*np.cos(t[i])) lines[j].set_data(xdi, ydi) # plt.plot(xcdi, ycdi, fmt_interp) return lines FuncAnimation(fig, animate, init_func=init, frames=n_frames, interval=50, blit=True) # plt.axis('equal') # plt.show() # call this from main py file for more control # 2d triangular elements - todo # elif nen == 3: # x = ex+sfac*ed[:, [0, 2, 4]] # y = ex+sfac*ed[:, [1, 3, 5]] # xc = [x, x[0, :]] # yc = [x, x[0, :]] # 2d quadrilateral (quad) elements elif nen == 4: for ele_tag in ele_tags: nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) if modeNo: ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], ops.nodeEigenvector(nd1, modeNo)[1], ops.nodeEigenvector(nd2, modeNo)[0], ops.nodeEigenvector(nd2, modeNo)[1], ops.nodeEigenvector(nd3, modeNo)[0], ops.nodeEigenvector(nd3, modeNo)[1], ops.nodeEigenvector(nd4, modeNo)[0], ops.nodeEigenvector(nd4, modeNo)[1]]) else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # test it with one element x = ex+sfac*ed[[0, 2, 4, 6]] y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d 8-node quadratic elements # elif nen == 8: # x = ex+sfac*ed[:, [0, 2, 4, 6, 8, 10, 12, 14]] # y = ex+sfac*ed[:, [1, 3, 5, 7, 9, 11, 13, 15]] # t = -1 # n = 0 # for s in range(-1, 1.4, 0.4): # n += 1 # ... else: print(f'\nWarning! Elements not supported yet. nen: {nen}; must be: 2, 3, 4, 8.') # noqa: E501 def anim_mode(modeNo, sfac=False, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes='b-', Eo=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt, xlim=[0, 1], ylim=[0, 1], lw=3.): """Make animation of a mode shape obtained from eigenvalue solution. Args: modeNo (int): indicates which mode shape to animate. Eds (ndarray): An array (n_eles x n_dof_per_element) containing displacements per element. timeV (1darray): vector of discretized time values sfac (float): scale factor nep (integer): number of evaluation points inside the element and including both element ends unDefoFlag (integer): 1 - plot the undeformed model (mesh), 0 - do not plot the mesh interpFlag (integer): 1 - interpolate deformation inside element, 0 - no interpolation endDispFlag (integer): 1 - plot marks at element ends, 0 - no marks fmt_interp (string): format line string for interpolated (continuous) deformated shape. The format contains information on line color, style and marks as in the standard matplotlib plot function. fmt_nodes (string): format string for the marks of element ends az_el (tuple): a tuple containing the azimuth and elevation fig_lbrt (tuple): a tuple contating left, bottom, right and top offsets fig_wi_he (tuple): contains width and height of the figure Examples: Notes: See also: """ node_tags = ops.getNodeTags() # calculate sfac # min_x, min_y, min_z = np.inf, np.inf, np.inf # max_x, max_y, max_z = -np.inf, -np.inf, -np.inf # max_ux, max_uy, max_uz = -np.inf, -np.inf, -np.inf min_x, min_y = np.inf, np.inf max_x, max_y = -np.inf, -np.inf max_ux, max_uy = -np.inf, -np.inf ratio = 0.1 ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] ux = ops.nodeEigenvector(node_tag, modeNo)[0] uy = ops.nodeEigenvector(node_tag, modeNo)[1] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) dxmax = max_x - min_x dymax = max_y - min_y dlmax = max(dxmax, dymax) edmax = max(max_ux, max_uy) sfac = ratio * dlmax/edmax _anim_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim, lw) # elif ndim == 3: # if not sfac: # for node_tag in node_tags: # x_crd = ops.nodeCoord(node_tag)[0] # y_crd = ops.nodeCoord(node_tag)[1] # z_crd = ops.nodeCoord(node_tag)[2] # ux = ops.nodeEigenvector(node_tag, modeNo)[0] # uy = ops.nodeEigenvector(node_tag, modeNo)[1] # uz = ops.nodeEigenvector(node_tag, modeNo)[2] # min_x = min(min_x, x_crd) # min_y = min(min_y, y_crd) # min_z = min(min_z, z_crd) # max_x = max(max_x, x_crd) # max_y = max(max_y, y_crd) # max_z = max(max_z, z_crd) # max_ux = max(max_ux, np.abs(ux)) # max_uy = max(max_uy, np.abs(uy)) # max_uz = max(max_uz, np.abs(uz)) # dxmax = max_x - min_x # dymax = max_y - min_y # dzmax = max_z - min_z # dlmax = max(dxmax, dymax, dzmax) # edmax = max(max_ux, max_uy, max_uz) # sfac = ratio * dlmax/edmax # _plot_defo_mode_3d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, # interpFlag, endDispFlag, fmt_interp, fmt_nodes, # Eo, az_el, fig_wi_he, fig_lbrt) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def plot_mode_shape(modeNo, sfac=False, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes=fmt_nodes, Eo=0, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot mode shape of the structure obtained from eigenvalue analysis. Args: modeNo (int): indicates which mode shape to plot sfac (float): scale factor to increase/decrease displacements obtained from FE analysis. If not specified (False), sfac is automatically calculated based on the maximum overall displacement and this maximum displacement is plotted as 20 percent (hordcoded) of the maximum model dimension. interpFlag (int): 1 - use interpolated deformation using shape function, 0 - do not use interpolation, just show displaced element nodes (default is 1) nep (int): number of evaluation points for shape function interpolation (default: 17) Usage: ``plot_mode_shape(1)`` - plot the first mode shape with default parameters and automatically calcutated scale factor. ``plot_mode_shape(2, interpFlag=0)`` - plot the 2nd mode shape by displacing the nodes connected with straight lines (shape function interpolation) ``plot_mode_shape(3, sfac=1.5)`` - plot the 3rd mode shape with specified scale factor ``plot_mode_shape(4, unDefoFlag=0, endDispFlag=0)`` - plot the 4th mode shape without showing undeformed (original) mesh and without showing markers at the element ends. Examples: Notes: See also: """ node_tags = ops.getNodeTags() # calculate sfac min_x, min_y, min_z = np.inf, np.inf, np.inf max_x, max_y, max_z = -np.inf, -np.inf, -np.inf max_ux, max_uy, max_uz = -np.inf, -np.inf, -np.inf ratio = 0.1 ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] ux = ops.nodeEigenvector(node_tag, modeNo)[0] uy = ops.nodeEigenvector(node_tag, modeNo)[1] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) dxmax = max_x - min_x dymax = max_y - min_y dlmax = max(dxmax, dymax) edmax = max(max_ux, max_uy) sfac = ratio * dlmax/edmax _plot_defo_mode_2d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes) elif ndim == 3: if not sfac: for node_tag in node_tags: x_crd = ops.nodeCoord(node_tag)[0] y_crd = ops.nodeCoord(node_tag)[1] z_crd = ops.nodeCoord(node_tag)[2] ux = ops.nodeEigenvector(node_tag, modeNo)[0] uy = ops.nodeEigenvector(node_tag, modeNo)[1] uz = ops.nodeEigenvector(node_tag, modeNo)[2] min_x = min(min_x, x_crd) min_y = min(min_y, y_crd) min_z = min(min_z, z_crd) max_x = max(max_x, x_crd) max_y = max(max_y, y_crd) max_z = max(max_z, z_crd) max_ux = max(max_ux, np.abs(ux)) max_uy = max(max_uy, np.abs(uy)) max_uz = max(max_uz, np.abs(uz)) dxmax = max_x - min_x dymax = max_y - min_y dzmax = max_z - min_z dlmax = max(dxmax, dymax, dzmax) edmax = max(max_ux, max_uy, max_uz) sfac = ratio * dlmax/edmax _plot_defo_mode_3d(modeNo, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, az_el, fig_wi_he, fig_lbrt) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def rot_transf_3d(ex, ey, ez, g): Lxyz = np.array([ex[1]-ex[0], ey[1]-ey[0], ez[1]-ez[0]]) L = np.sqrt(Lxyz @ Lxyz) z = np.zeros((3, 3)) G = np.block([[g, z, z, z], [z, g, z, z], [z, z, g, z], [z, z, z, g]]) return G, L def beam_defo_interp_2d(ex, ey, u, sfac, nep=17): """ Interpolate element displacements at nep points. Parametrs: ex, ey : element x, y coordinates, u : element nodal displacements sfac : scale factor for deformation plot nep : number of evaluation points (including end nodes) Returns: crd_xc, crd_yc : x, y coordinates of interpolated (at nep points) beam deformation required for plot_defo() function """ Lxy = np.array([ex[1]-ex[0], ey[1]-ey[0]]) L = np.sqrt(Lxy @ Lxy) cosa, cosb = Lxy / L G = np.array([[cosa, cosb, 0., 0., 0., 0.], [-cosb, cosa, 0., 0., 0., 0.], [0., 0., 1., 0., 0., 0.], [0., 0., 0., cosa, cosb, 0.], [0., 0., 0., -cosb, cosa, 0.], [0., 0., 0., 0., 0., 1.]]) u_l = G @ u xl = np.linspace(0., L, num=nep) one = np.ones(xl.shape) # longitudinal deformation (1) N_a = np.column_stack((one - xl/L, xl/L)) u_ac = N_a @ np.array([u_l[0], u_l[3]]) # transverse deformation (2) N_t = np.column_stack((one - 3*xl**2/L**2 + 2*xl**3/L**3, xl - 2*xl**2/L + xl**3/L**2, 3*xl**2/L**2 - 2*xl**3/L**3, -xl**2/L + xl**3/L**2)) u_tc = N_t @ np.array([u_l[1], u_l[2], u_l[4], u_l[5]]) # combined two row vectors # 1-st vector longitudinal deformation (1) # 2-nd vector transverse deformation (2) u_atc = np.vstack((u_ac, u_tc)) # project longitudinal (u_ac) and transverse deformation # (local u and v) to (global u and v) G1 = np.array([[cosa, -cosb], [cosb, cosa]]) u_xyc = G1 @ u_atc # discretize element coordinates # first row = X + [0 dx 2dx ... 4-dx 4] # second row = Y + [0 dy 2dy ... 3-dy 3] xy_c = np.vstack((np.linspace(ex[0], ex[1], num=nep), np.linspace(ey[0], ey[1], num=nep))) # Continuous x, y displacement coordinates crd_xc = xy_c[0, :] + sfac * u_xyc[0, :] crd_yc = xy_c[1, :] + sfac * u_xyc[1, :] # latex_array(ecrd_xc) # latex_array(ecrd_yc) return crd_xc, crd_yc def beam_defo_interp_3d(ex, ey, ez, g, u, sfac, nep=17): """ 3d beam version of beam_defo_interp_2d. """ G, L = rot_transf_3d(ex, ey, ez, g) ul = G @ u _, crd_yc = beam_defo_interp_2d(np.array([0., L]), np.array([0., 0.]), np.array([ul[0], ul[1], ul[5], ul[6], ul[7], ul[11]]), sfac, nep) crd_xc, crd_zc = beam_defo_interp_2d(np.array([0., L]), np.array([0., 0.]), np.array([ul[0], ul[2], -ul[4], ul[6], ul[8], -ul[10]]), sfac, nep) xl = np.linspace(0., L, num=nep) crd_xc = crd_xc - xl crd_xyzc = np.vstack([crd_xc, crd_yc, crd_zc]) u_xyzc = np.transpose(g) @ crd_xyzc xyz_c = np.vstack((np.linspace(ex[0], ex[1], num=nep), np.linspace(ey[0], ey[1], num=nep), np.linspace(ez[0], ez[1], num=nep))) crd_xc = xyz_c[0, :] + u_xyzc[0, :] crd_yc = xyz_c[1, :] + u_xyzc[1, :] crd_zc = xyz_c[2, :] + u_xyzc[2, :] return crd_xc, crd_yc, crd_zc def beam_disp_ends(ex, ey, d, sfac): """ Calculate the element deformation at element ends only. """ # indx: 0 1 2 3 4 5 # Ed = ux1 uy1 ur1 ux2 uy2 ur2 exd = np.array([ex[0] + sfac*d[0], ex[1] + sfac*d[3]]) eyd = np.array([ey[0] + sfac*d[1], ey[1] + sfac*d[4]]) return exd, eyd def beam_disp_ends3d(ex, ey, ez, d, sfac): """ Calculate the element deformation at element ends only. """ # indx: 0 1 2 3 4 5 6 7 8 9 10 11 # Ed = ux1 uy1 uz1 rx1 ry1 rz1 ux2 uy2 uz2 rx2 ry2 rz2 exd = np.array([ex[0] + sfac*d[0], ex[1] + sfac*d[6]]) eyd = np.array([ey[0] + sfac*d[1], ey[1] + sfac*d[7]]) ezd = np.array([ez[0] + sfac*d[2], ez[1] + sfac*d[8]]) return exd, eyd, ezd # plot_fiber_section is inspired by Matlab ``plotSection.zip`` # written by <NAME> available at # http://users.ntua.gr/divamva/software.html def plot_fiber_section(fib_sec_list, fillflag=1, matcolor=['y', 'b', 'r', 'g', 'm', 'k']): """Plot fiber cross-section. Args: fib_sec_list (list): list of lists in the format similar to the input given for in fillflag (int): 1 - filled fibers with color specified in matcolor list, 0 - no color, only the outline of fibers matcolor (list): sequence of colors for various material tags assigned to fibers Examples: :: fib_sec_1 = [['section', 'Fiber', 1, '-GJ', 1.0e6], ['patch', 'quad', 1, 4, 1, 0.032, 0.317, -0.311, 0.067, -0.266, 0.005, 0.077, 0.254], # noqa: E501 ['patch', 'quad', 1, 1, 4, -0.075, 0.144, -0.114, 0.116, 0.075, -0.144, 0.114, -0.116], # noqa: E501 ['patch', 'quad', 1, 4, 1, 0.266, -0.005, -0.077, -0.254, -0.032, -0.317, 0.311, -0.067] # noqa: E501 ] opsv.fib_sec_list_to_cmds(fib_sec_1) matcolor = ['r', 'lightgrey', 'gold', 'w', 'w', 'w'] opsv.plot_fiber_section(fib_sec_1, matcolor=matcolor) plt.axis('equal') # plt.savefig(f'{kateps}fibsec_rc.png') plt.show() Notes: ``fib_sec_list`` can be reused by means of a python helper function ``ops_vis.fib_sec_list_to_cmds(fib_sec_list_1)`` See also: ``ops_vis.fib_sec_list_to_cmds()`` """ fig, ax = plt.subplots() ax.set_xlabel('z') ax.set_ylabel('y') ax.grid(False) for item in fib_sec_list: if item[0] == 'layer': matTag = item[2] if item[1] == 'straight': n_bars = item[3] As = item[4] Iy, Iz, Jy, Jz = item[5], item[6], item[7], item[8] r = np.sqrt(As / np.pi) Y = np.linspace(Iy, Jy, n_bars) Z = np.linspace(Iz, Jz, n_bars) for zi, yi in zip(Z, Y): bar = Circle((zi, yi), r, ec='k', fc='k', zorder=10) ax.add_patch(bar) if item[0] == 'patch': matTag, nIJ, nJK = item[2], item[3], item[4] if item[1] == 'quad' or item[1] == 'quadr': Iy, Iz, Jy, Jz = item[5], item[6], item[7], item[8] Ky, Kz, Ly, Lz = item[9], item[10], item[11], item[12] if item[1] == 'rect': Iy, Iz, Ky, Kz = item[5], item[6], item[7], item[8] Jy, Jz, Ly, Lz = Ky, Iz, Iy, Kz # check for convexity (vector products) outIJxIK = (Jy-Iy)*(Kz-Iz) - (Ky-Iy)*(Jz-Iz) outIKxIL = (Ky-Iy)*(Lz-Iz) - (Ly-Iy)*(Kz-Iz) # check if I, J, L points are colinear outIJxIL = (Jy-Iy)*(Lz-Iz) - (Ly-Iy)*(Jz-Iz) # outJKxJL = (Ky-Jy)*(Lz-Jz) - (Ly-Jy)*(Kz-Jz) if outIJxIK <= 0 or outIKxIL <= 0 or outIJxIL <= 0: print('\nWarning! Patch quad is non-convex or counter-clockwise defined or has at least 3 colinear points in line') # noqa: E501 IJz, IJy = np.linspace(Iz, Jz, nIJ+1), np.linspace(Iy, Jy, nIJ+1) JKz, JKy = np.linspace(Jz, Kz, nJK+1), np.linspace(Jy, Ky, nJK+1) LKz, LKy = np.linspace(Lz, Kz, nIJ+1), np.linspace(Ly, Ky, nIJ+1) ILz, ILy = np.linspace(Iz, Lz, nJK+1), np.linspace(Iy, Ly, nJK+1) if fillflag: Z = np.zeros((nIJ+1, nJK+1)) Y = np.zeros((nIJ+1, nJK+1)) for j in range(nIJ+1): Z[j, :] = np.linspace(IJz[j], LKz[j], nJK+1) Y[j, :] = np.linspace(IJy[j], LKy[j], nJK+1) for j in range(nIJ): for k in range(nJK): zy = np.array([[Z[j, k], Y[j, k]], [Z[j, k+1], Y[j, k+1]], [Z[j+1, k+1], Y[j+1, k+1]], [Z[j+1, k], Y[j+1, k]]]) poly = Polygon(zy, True, ec='k', fc=matcolor[matTag-1]) ax.add_patch(poly) else: # horizontal lines for az, bz, ay, by in zip(IJz, LKz, IJy, LKy): plt.plot([az, bz], [ay, by], 'b-', zorder=1) # vertical lines for az, bz, ay, by in zip(JKz, ILz, JKy, ILy): plt.plot([az, bz], [ay, by], 'b-', zorder=1) def fib_sec_list_to_cmds(fib_sec_list): """Reuses fib_sec_list to define fiber section in OpenSees. At present it is not possible to extract fiber section data from the OpenSees domain, this function is a workaround. The idea is to prepare data similar to the one the regular OpenSees commands (``section('Fiber', ...)``, ``fiber()``, ``patch()`` and/or ``layer()``) require. Args: fib_sec_list (list): is a list of fiber section data. First sub-list also defines the torsional stiffness (GJ). Warning: If you use this function, do not issue the regular OpenSees: section, Fiber, Patch or Layer commands. See also: ``ops_vis.plot_fiber_section()`` """ for dat in fib_sec_list: if dat[0] == 'section': secTag, GJ = dat[2], dat[4] ops.section('Fiber', secTag, '-GJ', GJ) if dat[0] == 'layer': matTag = dat[2] if dat[1] == 'straight': n_bars = dat[3] As = dat[4] Iy, Iz, Jy, Jz = dat[5], dat[6], dat[7], dat[8] ops.layer('straight', matTag, n_bars, As, Iy, Iz, Jy, Jz) if dat[0] == 'patch': matTag = dat[2] nIJ = dat[3] nJK = dat[4] if dat[1] == 'quad' or dat[1] == 'quadr': Iy, Iz, Jy, Jz = dat[5], dat[6], dat[7], dat[8] Ky, Kz, Ly, Lz = dat[9], dat[10], dat[11], dat[12] ops.patch('quad', matTag, nIJ, nJK, Iy, Iz, Jy, Jz, Ky, Kz, Ly, Lz) if dat[1] == 'rect': Iy, Iz, Ky, Kz = dat[5], dat[6], dat[7], dat[8] Jy, Jz, Ly, Lz = Ky, Iz, Iy, Kz ops.patch('rect', matTag, nIJ, nJK, Iy, Iz, Ky, Kz) def _anim_defo_2d(Eds, timeV, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim): fig_wi, fig_he = fig_wi_he ele_tags = ops.getEleTags() nen = np.shape(ops.eleNodes(ele_tags[0]))[0] # truss and beam/frame elements if nen == 2: ndf = np.shape(ops.nodeDOFs(ops.eleNodes(ele_tags[0])[0]))[0] # truss element if ndf == 2: for ele_tag in ele_tags: nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) eux = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd2)[0]]) euy = np.array([ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[1]]) # displaced element coordinates (scaled by sfac factor) edx = np.array([ex[0] + sfac*eux[0], ex[1] + sfac*eux[1]]) edy = np.array([ey[0] + sfac*euy[0], ey[1] + sfac*euy[1]]) if unDefoFlag: plt.plot(ex, ey, fmt_undefo) plt.plot(edx, edy, fmt_interp) # beam/frame element anim defo elif ndf == 3: fig, ax = plt.subplots(figsize=(fig_wi/2.54, fig_he/2.54)) ax.axis('equal') ax.set_xlim(xlim[0], xlim[1]) ax.set_ylim(ylim[0], ylim[1]) # ax.grid() nel = len(ele_tags) Ex = np.zeros((nel, 2)) Ey = np.zeros((nel, 2)) # no of frames equal to time intervals n_frames, _, _ = np.shape(Eds) lines = [] # time_text = ax.set_title('') # does not work time_text = ax.text(.05, .95, '', transform=ax.transAxes) for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates Ex[i, :] = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) Ey[i, :] = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) lines.append(ax.plot([], [], fmt_nodes, lw=3)[0]) def init(): for j, ele_tag in enumerate(ele_tags): lines[j].set_data([], []) time_text.set_text('') return tuple(lines) + (time_text,) def animate(i): for j, ele_tag in enumerate(ele_tags): if interpFlag: xcdi, ycdi = beam_defo_interp_2d(Ex[j, :], Ey[j, :], Eds[i, j, :], sfac, nep) lines[j].set_data(xcdi, ycdi) else: xdi, ydi = beam_disp_ends(Ex[j, :], Ey[j, :], Eds[i, j, :], sfac) lines[j].set_data(xdi, ydi) # plt.plot(xcdi, ycdi, fmt_interp) # time_text.set_text(f'f') time_text.set_text(f'frame: {i+1}/{n_frames}, \ time: {timeV[i]:.3f} s') return tuple(lines) + (time_text,) FuncAnimation(fig, animate, init_func=init, frames=n_frames, interval=50, blit=True, repeat=False) # plt.axis('equal') # plt.show() # call this from main py file for more control # 2d triangular elements # elif nen == 3: # x = ex+sfac*ed[:, [0, 2, 4]] # y = ex+sfac*ed[:, [1, 3, 5]] # xc = [x, x[0, :]] # yc = [x, x[0, :]] # 2d quadrilateral (quad) elements elif nen == 4: for ele_tag in ele_tags: nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0], ops.nodeCoord(nd3)[0], ops.nodeCoord(nd4)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1], ops.nodeCoord(nd3)[1], ops.nodeCoord(nd4)[1]]) # if modeNo: # ed = np.array([ops.nodeEigenvector(nd1, modeNo)[0], # ops.nodeEigenvector(nd1, modeNo)[1], # ops.nodeEigenvector(nd2, modeNo)[0], # ops.nodeEigenvector(nd2, modeNo)[1], # ops.nodeEigenvector(nd3, modeNo)[0], # ops.nodeEigenvector(nd3, modeNo)[1], # ops.nodeEigenvector(nd4, modeNo)[0], # ops.nodeEigenvector(nd4, modeNo)[1]]) # else: ed = np.array([ops.nodeDisp(nd1)[0], ops.nodeDisp(nd1)[1], ops.nodeDisp(nd2)[0], ops.nodeDisp(nd2)[1], ops.nodeDisp(nd3)[0], ops.nodeDisp(nd3)[1], ops.nodeDisp(nd4)[0], ops.nodeDisp(nd4)[1]]) if unDefoFlag: plt.plot(np.append(ex, ex[0]), np.append(ey, ey[0]), fmt_undefo) # xcdi, ycdi = beam_defo_interp_2d(ex, ey, ed, sfac, nep) # xdi, ydi = beam_disp_ends(ex, ey, ed, sfac) # # interpolated displacement field # plt.plot(xcdi, ycdi, 'b.-') # # translations of ends only # plt.plot(xdi, ydi, 'ro') # test it with one element x = ex+sfac*ed[[0, 2, 4, 6]] y = ey+sfac*ed[[1, 3, 5, 7]] plt.plot(np.append(x, x[0]), np.append(y, y[0]), 'b.-') plt.axis('equal') # 2d 8-node quadratic elements # elif nen == 8: # x = ex+sfac*ed[:, [0, 2, 4, 6, 8, 10, 12, 14]] # y = ex+sfac*ed[:, [1, 3, 5, 7, 9, 11, 13, 15]] # t = -1 # n = 0 # for s in range(-1, 1.4, 0.4): # n += 1 # ... else: print(f'\nWarning! Elements not supported yet. nen: {nen}; must be: 2, 3, 4, 8.') # noqa: E501 def anim_defo(Eds, timeV, sfac, nep=17, unDefoFlag=1, fmt_undefo=fmt_undefo, interpFlag=1, endDispFlag=1, fmt_interp=fmt_interp, fmt_nodes='b-', az_el=az_el, fig_lbrt=fig_lbrt, fig_wi_he=fig_wi_he, xlim=[0, 1], ylim=[0, 1]): """Make animation of the deformed shape computed by transient analysis Args: Eds (ndarray): An array (n_eles x n_dof_per_element) containing displacements per element. timeV (1darray): vector of discretized time values sfac (float): scale factor nep (integer): number of evaluation points inside the element and including both element ends unDefoFlag (integer): 1 - plot the undeformed model (mesh), 0 - do not plot the mesh interpFlag (integer): 1 - interpolate deformation inside element, 0 - no interpolation endDispFlag (integer): 1 - plot marks at element ends, 0 - no marks fmt_interp (string): format line string for interpolated (continuous) deformated shape. The format contains information on line color, style and marks as in the standard matplotlib plot function. fmt_nodes (string): format string for the marks of element ends az_el (tuple): a tuple containing the azimuth and elevation fig_lbrt (tuple): a tuple contating left, bottom, right and top offsets fig_wi_he (tuple): contains width and height of the figure Examples: Notes: See also: """ node_tags = ops.getNodeTags() ndim = np.shape(ops.nodeCoord(node_tags[0]))[0] if ndim == 2: _anim_defo_2d(Eds, timeV, sfac, nep, unDefoFlag, fmt_undefo, interpFlag, endDispFlag, fmt_interp, fmt_nodes, fig_wi_he, xlim, ylim) else: print(f'\nWarning! ndim: {ndim} not supported yet.') def section_force_distribution_2d(ex, ey, pl, nep=2, ele_load_data=['-beamUniform', 0., 0.]): """ Calculate section forces (N, V, M) for an elastic 2D Euler-Bernoulli beam. Input: ex, ey - x, y element coordinates in global system nep - number of evaluation points, by default (2) at element ends ele_load_list - list of transverse and longitudinal element load syntax: [ele_load_type, Wy, Wx] For now only '-beamUniform' element load type is acceptable Output: s = [N V M]; shape: (nep,3) section forces at nep points along local x xl: coordinates of local x-axis; shape: (nep,) Use it with dia_sf to draw N, V, M diagrams. TODO: add '-beamPoint' element load type """ # eload_type, Wy, Wx = ele_load_data[0], ele_load_data[1], ele_load_data[2] Wy, Wx = ele_load_data[1], ele_load_data[2] nlf = len(pl) if nlf == 2: # trusses N_1 = pl[0] elif nlf == 6: # plane frames # N_1, V_1, M_1 = pl[0], pl[1], pl[2] N_1, V_1, M_1 = pl[:3] else: print('\nWarning! Not supported. Number of nodal forces: {nlf}') Lxy = np.array([ex[1]-ex[0], ey[1]-ey[0]]) L = np.sqrt(Lxy @ Lxy) xl = np.linspace(0., L, nep) one = np.ones(nep) N = -1.*(N_1 * one + Wx * xl) if nlf == 6: V = V_1 * one + Wy * xl M = -M_1 * one + V_1 * xl + 0.5 * Wy * xl**2 s = np.column_stack((N, V, M)) elif nlf == 2: s = np.column_stack((N)) # if eload_type == '-beamUniform': # else: return s, xl def section_force_distribution_3d(ex, ey, ez, pl, nep=2, ele_load_data=['-beamUniform', 0., 0., 0.]): """ Calculate section forces (N, Vy, Vz, T, My, Mz) for an elastic 3d beam. Longer description Parameters ---------- ex : list x element coordinates ey : list y element coordinates ez : list z element coordinates pl : ndarray nep : int number of evaluation points, by default (2) at element ends ele_load_list : list list of transverse and longitudinal element load syntax: [ele_load_type, Wy, Wz, Wx] For now only '-beamUniform' element load type is acceptable. Returns ------- s : ndarray [N Vx Vy T My Mz]; shape: (nep,6) column vectors of section forces along local x-axis uvwfi : ndarray [u v w fi]; shape (nep,4) displacements at nep points along local x xl : ndarray coordinates of local x-axis; shape (nep,) Notes ----- Todo: add '-beamPoint' element load type """ # eload_type = ele_load_data[0] Wy, Wz, Wx = ele_load_data[1], ele_load_data[2], ele_load_data[3] N1, Vy1, Vz1, T1, My1, Mz1 = pl[:6] Lxyz = np.array([ex[1]-ex[0], ey[1]-ey[0], ez[1]-ez[0]]) L = np.sqrt(Lxyz @ Lxyz) xl = np.linspace(0., L, nep) one = np.ones(nep) N = -1.*(N1*one + Wx*xl) Vy = Vy1*one + Wy*xl Vz = Vz1*one + Wz*xl T = -T1*one Mz = -Mz1*one + Vy1*xl + 0.5*Wy*xl**2 My = My1*one + Vz1*xl + 0.5*Wz*xl**2 s = np.column_stack((N, Vy, Vz, T, My, Mz)) return s, xl def section_force_diagram_2d(sf_type, Ew, sfac=1., nep=17, fmt_secforce=fmt_secforce): """Display section forces diagram for 2d beam column model. This function plots a section forces diagram for 2d beam column elements with or without element loads. For now only '-beamUniform' constant transverse or axial element loads are supported. Args: sf_type (str): type of section force: 'N' - normal force, 'V' - shear force, 'M' - bending moments. Ew (dict): Ew Python dictionary contains information on non-zero element loads, therfore each item of the Python dictionary is in the form: 'ele_tag: ['-beamUniform', Wy, Wx]'. sfac (float): scale factor by wich the values of section forces are multiplied. nep (int): number of evaluation points including both end nodes (default: 17) fmt_secforce (str): format line string for section force distribution curve. The format contains information on line color, style and marks as in the standard matplotlib plot function. (default: fmt_secforce = 'b-' # blue solid line) Usage: :: Wy, Wx = -10.e+3, 0. Ew = {3: ['-beamUniform', Wy, Wx]} sfacM = 5.e-5 plt.figure() minVal, maxVal = opsv.section_force_diagram_2d('M', Ew, sfacM) plt.title('Bending moments') Todo: Add support for other element loads available in OpenSees: partial (trapezoidal) uniform element load, and 'beamPoint' element load. """ maxVal, minVal = -np.inf, np.inf ele_tags = ops.getEleTags() for ele_tag in ele_tags: # by default no element load eload_data = ['', 0., 0.] if ele_tag in Ew: eload_data = Ew[ele_tag] nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) Lxy = np.array([ex[1]-ex[0], ey[1]-ey[0]]) L = np.sqrt(Lxy @ Lxy) cosa, cosb = Lxy / L pl = ops.eleResponse(ele_tag, 'localForces') s_all, xl = section_force_distribution_2d(ex, ey, pl, nep, eload_data) if sf_type == 'N' or sf_type == 'axial': s = s_all[:, 0] elif sf_type == 'V' or sf_type == 'shear' or sf_type == 'T': s = s_all[:, 1] elif sf_type == 'M' or sf_type == 'moment': s = s_all[:, 2] minVal = min(minVal, np.min(s)) maxVal = max(maxVal, np.max(s)) s = s*sfac s_0 = np.zeros((nep, 2)) s_0[0, :] = [ex[0], ey[0]] s_0[1:, 0] = s_0[0, 0] + xl[1:] * cosa s_0[1:, 1] = s_0[0, 1] + xl[1:] * cosb s_p = np.copy(s_0) # positive M are opposite to N and V if sf_type == 'M' or sf_type == 'moment': s *= -1. s_p[:, 0] -= s * cosb s_p[:, 1] += s * cosa plt.axis('equal') # section force curve plt.plot(s_p[:, 0], s_p[:, 1], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # model plt.plot(ex, ey, 'k-', solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # reference perpendicular lines for i in np.arange(nep): plt.plot([s_0[i, 0], s_p[i, 0]], [s_0[i, 1], s_p[i, 1]], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') return minVal, maxVal def section_force_diagram_3d(sf_type, Ew, sfac=1., nep=17, fmt_secforce=fmt_secforce): """Display section forces diagram of a 3d beam column model. This function plots section forces diagrams for 3d beam column elements with or without element loads. For now only '-beamUniform' constant transverse or axial element loads are supported. Args: sf_type (str): type of section force: 'N' - normal force, 'Vy' or 'Vz' - shear force, 'My' or 'Mz' - bending moments, 'T' - torsional moment. Ew (dict): Ew Python dictionary contains information on non-zero element loads, therfore each item of the Python dictionary is in the form: 'ele_tag: ['-beamUniform', Wy, Wz, Wx]'. sfac (float): scale factor by wich the values of section forces are multiplied. nep (int): number of evaluation points including both end nodes (default: 17) fmt_secforce (str): format line string for section force distribution curve. The format contains information on line color, style and marks as in the standard matplotlib plot function. (default: fmt_secforce = 'b-' # blue solid line) Usage: :: Wy, Wz, Wx = -5., 0., 0. Ew = {3: ['-beamUniform', Wy, Wz, Wx]} sfacMz = 1.e-1 plt.figure() minY, maxY = opsv.section_force_diagram_3d('Mz', Ew, sfacMz) plt.title(f'Bending moments Mz, max = {maxY:.2f}, min = {minY:.2f}') Todo: Add support for other element loads available in OpenSees: partial (trapezoidal) uniform element load, and 'beamPoint' element load. """ maxVal, minVal = -np.inf, np.inf ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) # ax.axis('equal') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) for i, ele_tag in enumerate(ele_tags): # by default no element load eload_data = ['-beamUniform', 0., 0., 0.] if ele_tag in Ew: eload_data = Ew[ele_tag] nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) # eo = Eo[i, :] xloc = ops.eleResponse(ele_tag, 'xlocal') yloc = ops.eleResponse(ele_tag, 'ylocal') zloc = ops.eleResponse(ele_tag, 'zlocal') g = np.vstack((xloc, yloc, zloc)) G, _ = rot_transf_3d(ex, ey, ez, g) g = G[:3, :3] pl = ops.eleResponse(ele_tag, 'localForces') s_all, xl = section_force_distribution_3d(ex, ey, ez, pl, nep, eload_data) # 1:'y' 2:'z' if sf_type == 'N': s = s_all[:, 0] dir_plt = 1 elif sf_type == 'Vy': s = s_all[:, 1] dir_plt = 1 elif sf_type == 'Vz': s = s_all[:, 2] dir_plt = 2 elif sf_type == 'T': s = s_all[:, 3] dir_plt = 1 elif sf_type == 'My': s = s_all[:, 4] dir_plt = 2 elif sf_type == 'Mz': s = s_all[:, 5] dir_plt = 1 minVal = min(minVal, np.min(s)) maxVal = max(maxVal, np.max(s)) s = s*sfac # FIXME - can be simplified s_0 = np.zeros((nep, 3)) s_0[0, :] = [ex[0], ey[0], ez[0]] s_0[1:, 0] = s_0[0, 0] + xl[1:] * g[0, 0] s_0[1:, 1] = s_0[0, 1] + xl[1:] * g[0, 1] s_0[1:, 2] = s_0[0, 2] + xl[1:] * g[0, 2] s_p = np.copy(s_0) # positive M are opposite to N and V # if sf_type == 'Mz' or sf_type == 'My': if sf_type == 'Mz': s *= -1. s_p[:, 0] += s * g[dir_plt, 0] s_p[:, 1] += s * g[dir_plt, 1] s_p[:, 2] += s * g[dir_plt, 2] # plt.axis('equal') # section force curve plt.plot(s_p[:, 0], s_p[:, 1], s_p[:, 2], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # model plt.plot(ex, ey, ez, 'k-', solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # reference perpendicular lines for i in np.arange(nep): plt.plot([s_0[i, 0], s_p[i, 0]], [s_0[i, 1], s_p[i, 1]], [s_0[i, 2], s_p[i, 2]], fmt_secforce, solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') return minVal, maxVal def quad_sig_out_per_node(): """Return a 2d numpy array of stress components per OpenSees node. Returns: sig_out (ndarray): a 2d array of stress components per node with the following components: sxx, syy, sxy, svm, s1, s2, angle. Size (n_nodes x 7). Examples: sig_out = opsv.quad_sig_out_per_node() Notes: s1, s2: principal stresses angle: angle of the principal stress s1 """ ele_tags = ops.getEleTags() node_tags = ops.getNodeTags() n_nodes = len(node_tags) # initialize helper arrays sig_out = np.zeros((n_nodes, 7)) nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) nodes_tag_count[:, 0] = node_tags for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) nodes_tag_count[[ind1, ind2, ind3, ind4], 1] += 1 sig_ip_el = ops.eleResponse(ele_tag, 'stress') sigM_ip = np.vstack(([sig_ip_el[0:3], sig_ip_el[3:6], sig_ip_el[6:9], sig_ip_el[9:12]])) sigM_nd = quad_extrapolate_ip_to_node(sigM_ip) # sxx sig_out[ind1, 0] += sigM_nd[0, 0] sig_out[ind2, 0] += sigM_nd[1, 0] sig_out[ind3, 0] += sigM_nd[2, 0] sig_out[ind4, 0] += sigM_nd[3, 0] # syy sig_out[ind1, 1] += sigM_nd[0, 1] sig_out[ind2, 1] += sigM_nd[1, 1] sig_out[ind3, 1] += sigM_nd[2, 1] sig_out[ind4, 1] += sigM_nd[3, 1] # sxy sig_out[ind1, 2] += sigM_nd[0, 2] sig_out[ind2, 2] += sigM_nd[1, 2] sig_out[ind3, 2] += sigM_nd[2, 2] sig_out[ind4, 2] += sigM_nd[3, 2] indxs, = np.where(nodes_tag_count[:, 1] > 1) # n_indxs < n_nodes: e.g. 21<25 (bous), 2<6 (2el) etc. n_indxs = np.shape(indxs)[0] # divide summed stresses by the number of common nodes sig_out[indxs, :] = \ sig_out[indxs, :]/nodes_tag_count[indxs, 1].reshape(n_indxs, 1) # warning reshape from (pts,ncomp) to (ncomp,pts) vm_out = vm_stress(np.transpose(sig_out[:, :3])) sig_out[:, 3] = vm_out princ_sig_out = princ_stress(np.transpose(sig_out[:, :3])) sig_out[:, 4:7] = np.transpose(princ_sig_out) return sig_out def quad_extrapolate_ip_to_node(yip): """ Exprapolate values at 4 integration points to 4 nodes of a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) yip - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ xep = np.sqrt(3.)/2 X = np.array([[1.+xep, -1/2., 1.-xep, -1/2.], [-1/2., 1.+xep, -1/2., 1.-xep], [1.-xep, -1/2., 1.+xep, -1/2.], [-1/2., 1.-xep, -1/2., 1.+xep]]) ynp = X @ yip return ynp def quad_9n_extrapolate_ip_to_node(yip): """ Exprapolate values at 9 integration points to 9 nodes of a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) yip - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ a = 1./np.sqrt(0.6) a10 = 1 - a*a a9 = a10 * a10 a11, a12 = 1 + a, 1 - a a1, a2, a3 = a11 * a11, a11 * a12, a12 * a12 a4, a5 = a10 * a11, a10 * a12 # 1 n5, n6, n7, n8 = a4/2-a9/2, a5/2-a9/2, a5/2-a9/2, a4/2-a9/2 n1 = a1/4 - (n8 + n5)/2 - a9/4 n2 = a2/4 - (n5 + n6)/2 - a9/4 n3 = a3/4 - (n6 + n7)/2 - a9/4 n4 = a2/4 - (n7 + n8)/2 - a9/4 r1 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 2 n5, n6, n7, n8 = a4/2-a9/2, a4/2-a9/2, a5/2-a9/2, a5/2-a9/2 n1 = a2/4 - (n8 + n5)/2 - a9/4 n2 = a1/4 - (n5 + n6)/2 - a9/4 n3 = a2/4 - (n6 + n7)/2 - a9/4 n4 = a3/4 - (n7 + n8)/2 - a9/4 r2 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 3 n5, n6, n7, n8 = a5/2-a9/2, a4/2-a9/2, a4/2-a9/2, a5/2-a9/2 n1 = a3/4 - (n8 + n5)/2 - a9/4 n2 = a2/4 - (n5 + n6)/2 - a9/4 n3 = a1/4 - (n6 + n7)/2 - a9/4 n4 = a2/4 - (n7 + n8)/2 - a9/4 r3 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 4 n5, n6, n7, n8 = a5/2-a9/2, a5/2-a9/2, a4/2-a9/2, a4/2-a9/2 n1 = a2/4 - (n8 + n5)/2 - a9/4 n2 = a3/4 - (n5 + n6)/2 - a9/4 n3 = a2/4 - (n6 + n7)/2 - a9/4 n4 = a1/4 - (n7 + n8)/2 - a9/4 r4 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a9]) # 5 n5, n6, n7, n8 = a11/2-a10/2, a10/2-a10/2, a12/2-a10/2, a10/2-a10/2 n1 = a11/4 - (n8 + n5)/2 - a10/4 n2 = a11/4 - (n5 + n6)/2 - a10/4 n3 = a12/4 - (n6 + n7)/2 - a10/4 n4 = a12/4 - (n7 + n8)/2 - a10/4 r5 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) # 6 n5, n6, n7, n8 = a10/2-a10/2, a11/2-a10/2, a10/2-a10/2, a12/2-a10/2 n1 = a12/4 - (n8 + n5)/2 - a10/4 n2 = a11/4 - (n5 + n6)/2 - a10/4 n3 = a11/4 - (n6 + n7)/2 - a10/4 n4 = a12/4 - (n7 + n8)/2 - a10/4 r6 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) # 7 n5, n6, n7, n8 = a12/2-a10/2, a10/2-a10/2, a11/2-a10/2, a10/2-a10/2 n1 = a12/4 - (n8 + n5)/2 - a10/4 n2 = a12/4 - (n5 + n6)/2 - a10/4 n3 = a11/4 - (n6 + n7)/2 - a10/4 n4 = a11/4 - (n7 + n8)/2 - a10/4 r7 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) # 8 n5, n6, n7, n8 = a10/2-a10/2, a12/2-a10/2, a10/2-a10/2, a11/2-a10/2 n1 = a11/4 - (n8 + n5)/2 - a10/4 n2 = a12/4 - (n5 + n6)/2 - a10/4 n3 = a12/4 - (n6 + n7)/2 - a10/4 n4 = a11/4 - (n7 + n8)/2 - a10/4 r8 = np.array([n1, n2, n3, n4, n5, n6, n7, n8, a10]) r9 = np.array([0., 0., 0., 0., 0., 0., 0., 0., 1.]) X = np.vstack((r1, r2, r3, r4, r5, r6, r7, r8, r9)) ynp = X @ yip # ynp = 1.0 return ynp def quad_8n_extrapolate_ip_to_node(yip): """ Exprapolate values at 8 integration points to 8 nodes of a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) yip - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ a = 1./np.sqrt(0.6) a0 = 1 - a**2 a4, a5 = -(1-a)**2*(1+2*a)/4, -(1+a)**2*(1-2*a)/4 a7 = -a0/4 a11, a12 = a0*(1+a)/2, a0*(1-a)/2 a1, a2, a3 = (1+a)/2, (1-a)/2, (1-a**2)/2 X = np.array([[a5, a7, a4, a7, a11, a12, a12, a11], [a7, a5, a7, a4, a11, a11, a12, a12], [a4, a7, a5, a7, a12, a11, a11, a12], [a7, a4, a7, a5, a12, a12, a11, a11], [a7, a7, a7, a7, a1, a3, a2, a3], [a7, a7, a7, a7, a3, a1, a3, a2], [a7, a7, a7, a7, a2, a3, a1, a3], [a7, a7, a7, a7, a3, a2, a3, a1]]) ynp = X @ yip # ynp = 1.0 return ynp def quad_interpolate_node_to_ip(ynp): """ Interpolate values at 4 nodes to 4 integration points a quad element. Integration points of Gauss quadrature. Usefull for : stress components (sxx, syy, sxy) ynp - either a single vector (4,) or array (4,3) /sxx syy sxy/ or array (4, n) """ jsz = 1./6. jtr = 1./3. p2 = jsz * np.sqrt(3.) X = np.array([[jtr+p2, jsz, jtr-p2, jsz], [jsz, jtr+p2, jsz, jtr-p2], [jtr-p2, jsz, jtr+p2, jsz], [jsz, jtr-p2, jsz, jtr+p2]]) yip = X @ ynp return yip def princ_stress(sig): """Return a tuple (s1, s2, angle): principal stresses (plane stress) and angle Args: sig (ndarray): input array of stresses at nodes: sxx, syy, sxy (tau) Returns: out (ndarray): 1st row is first principal stress s1, 2nd row is second principal stress s2, 3rd row is the angle of s1 """ sx, sy, tau = sig[0], sig[1], sig[2] ds = (sx-sy)/2 R = np.sqrt(ds**2 + tau**2) s1 = (sx+sy)/2. + R s2 = (sx+sy)/2. - R angle = np.arctan2(tau, ds)/2 out = np.vstack((s1, s2, angle)) return out def vm_stress(sig): n_sig_comp, n_pts = np.shape(sig) if n_sig_comp > 3: x, y, z, xy, xz, yz = sig else: x, y, xy = sig z, xz, yz = 0., 0., 0. _a = 0.5*((x-y)**2 + (y-z)**2 + (z-x)**2 + 6.*(xy**2 + xz**2 + yz**2)) return np.sqrt(_a) def quad_crds_node_to_ip(): """ Return global coordinates of 4 quad ip nodes and corner nodes. It also returns quad connectivity. """ node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) # idiom coordinates as ordered in node_tags nds_crd = np.zeros((n_nodes, 2)) for i, node_tag in enumerate(node_tags): nds_crd[i] = ops.nodeCoord(node_tag) quads_conn = np.zeros((n_eles, 4), dtype=int) # quads_conn_ops = np.zeros((n_eles, 4), dtype=int) eles_nds_crd = np.zeros((n_eles, 4, 2)) eles_ips_crd = np.zeros((n_eles, 4, 2)) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) quads_conn[i] = np.array([ind1, ind2, ind3, ind4]) # quads_conn_ops[i] = np.array([nd1, nd2, nd3, nd4]) eles_nds_crd[i] = np.array([[ops.nodeCoord(nd1, 1), ops.nodeCoord(nd1, 2)], [ops.nodeCoord(nd2, 1), ops.nodeCoord(nd2, 2)], [ops.nodeCoord(nd3, 1), ops.nodeCoord(nd3, 2)], [ops.nodeCoord(nd4, 1), ops.nodeCoord(nd4, 2)]]) eles_ips_crd[i] = quad_interpolate_node_to_ip(eles_nds_crd[i]) return eles_ips_crd, eles_nds_crd, nds_crd, quads_conn def quad_sig_out_per_ele(): """ Extract stress components for all elements from OpenSees analysis. Returns: eles_ips_sig_out, eles_nds_sig_out (tuple of ndarrays): eles_ips_sig_out - values at integration points of elements (n_eles x 4 x 4) eles_nds_sig_out - values at nodes of elements (n_eles x 4 x 4) Examples: eles_ips_sig_out, eles_nds_sig_out = opsv.quad_sig_out_per_ele() Notes: Stress components in array columns are: Sxx, Syy, Sxy, Svmis, empty Used e.g. by plot_mesh_with_ips_2d function """ node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) eles_ips_sig_out = np.zeros((n_eles, 4, 4)) eles_nds_sig_out = np.zeros((n_eles, 4, 4)) # array (n_nodes, 2): # node_tags, number of occurrence in quad elements) # correspondence indx and node_tag is in node_tags.index # (a) data in np.array of integers nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) nodes_tag_count[:, 0] = node_tags for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) nodes_tag_count[[ind1, ind2, ind3, ind4], 1] += 1 sig_ip_el = ops.eleResponse(ele_tag, 'stress') sigM_ip = np.vstack(([sig_ip_el[0:3], sig_ip_el[3:6], sig_ip_el[6:9], sig_ip_el[9:12]])) sigM_nd = quad_extrapolate_ip_to_node(sigM_ip) eles_ips_sig_out[i, :, :3] = sigM_ip eles_nds_sig_out[i, :, :3] = sigM_nd vm_ip_out = vm_stress(np.transpose(eles_ips_sig_out[i, :, :3])) vm_nd_out = vm_stress(np.transpose(eles_nds_sig_out[i, :, :3])) eles_ips_sig_out[i, :, 3] = vm_ip_out eles_nds_sig_out[i, :, 3] = vm_nd_out return eles_ips_sig_out, eles_nds_sig_out def quads_to_4tris(quads_conn, nds_crd, nds_val): """ Get triangles connectivity, coordinates and new values at quad centroids. Args: quads_conn (ndarray): nds_crd (ndarray): nds_val (ndarray): Returns: tris_conn, nds_c_crd, nds_c_val (tuple): Notes: Triangles connectivity array is based on quadrilaterals connectivity. Each quad is split into four triangles. New nodes are created at the quad centroid. See also: function: quads_to_8tris_9n, quads_to_8tris_8n """ n_quads, _ = quads_conn.shape n_nds, _ = nds_crd.shape # coordinates and values at quad centroids _c_ nds_c_crd = np.zeros((n_quads, 2)) nds_c_val = np.zeros(n_quads) tris_conn = np.zeros((4*n_quads, 3), dtype=int) for i, quad_conn in enumerate(quads_conn): j = 4*i n0, n1, n2, n3 = quad_conn # quad centroids nds_c_crd[i] = np.array([np.sum(nds_crd[[n0, n1, n2, n3], 0])/4., np.sum(nds_crd[[n0, n1, n2, n3], 1])/4.]) nds_c_val[i] = np.sum(nds_val[[n0, n1, n2, n3]])/4. # triangles connectivity tris_conn[j] = np.array([n0, n1, n_nds+i]) tris_conn[j+1] = np.array([n1, n2, n_nds+i]) tris_conn[j+2] = np.array([n2, n3, n_nds+i]) tris_conn[j+3] = np.array([n3, n0, n_nds+i]) return tris_conn, nds_c_crd, nds_c_val def plot_mesh_2d(nds_crd, eles_conn, lw=0.4, ec='k'): """ Plot 2d mesh (quads or triangles) outline. """ for ele_conn in eles_conn: x = nds_crd[ele_conn, 0] y = nds_crd[ele_conn, 1] plt.fill(x, y, edgecolor=ec, lw=lw, fill=False) def plot_stress_2d(nds_val, mesh_outline=1, cmap='jet'): """ Plot stress distribution of a 2d elements of a 2d model. Args: nds_val (ndarray): the values of a stress component, which can be extracted from sig_out array (see quad_sig_out_per_node function) mesh_outline (int): 1 - mesh is plotted, 0 - no mesh plotted. cmap (str): Matplotlib color map (default is 'jet') Usage: :: sig_out = opsv.quad_sig_out_per_node() j, jstr = 3, 'vmis' nds_val = sig_out[:, j] opsv.plot_stress_2d(nds_val) plt.xlabel('x [m]') plt.ylabel('y [m]') plt.title(f'{jstr}') plt.show() See also: :ref:`ops_vis_quad_sig_out_per_node` """ node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) # idiom coordinates as ordered in node_tags # use node_tags.index(tag) for correspondence nds_crd = np.zeros((n_nodes, 2)) for i, node_tag in enumerate(node_tags): nds_crd[i] = ops.nodeCoord(node_tag) # from utils / quad_sig_out_per_node # fixme: if this can be simplified # index (starts from 0) to node_tag correspondence # (a) data in np.array of integers # nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) # nodes_tag_count[:, 0] = node_tags # # correspondence indx and node_tag is in node_tags.index # after testing remove the above quads_conn = np.zeros((n_eles, 4), dtype=int) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) quads_conn[i] = np.array([ind1, ind2, ind3, ind4]) tris_conn, nds_c_crd, nds_c_val = \ quads_to_4tris(quads_conn, nds_crd, nds_val) nds_crd_all = np.vstack((nds_crd, nds_c_crd)) # nds_val_all = np.concatenate((nds_val, nds_c_val)) nds_val_all = np.hstack((nds_val, nds_c_val)) # 1. plot contour maps triangulation = tri.Triangulation(nds_crd_all[:, 0], nds_crd_all[:, 1], tris_conn) plt.tricontourf(triangulation, nds_val_all, 50, cmap=cmap) # 2. plot original mesh (quad) without subdivision into triangles if mesh_outline: plot_mesh_2d(nds_crd, quads_conn) # plt.colorbar() plt.axis('equal') def plot_stress_9n_2d(nds_val, cmap='jet'): node_tags, ele_tags = ops.getNodeTags(), ops.getEleTags() n_nodes, n_eles = len(node_tags), len(ele_tags) # idiom coordinates as ordered in node_tags # use node_tags.index(tag) for correspondence nds_crd = np.zeros((n_nodes, 2)) for i, node_tag in enumerate(node_tags): nds_crd[i] = ops.nodeCoord(node_tag) # from utils / quad_sig_out_per_node # fixme: if this can be simplified # index (starts from 0) to node_tag correspondence # (a) data in np.array of integers # nodes_tag_count = np.zeros((n_nodes, 2), dtype=int) # nodes_tag_count[:, 0] = node_tags # # correspondence indx and node_tag is in node_tags.index # after testing remove the above quads_conn = np.zeros((n_eles, 4), dtype=int) for i, ele_tag in enumerate(ele_tags): nd1, nd2, nd3, nd4 = ops.eleNodes(ele_tag) ind1 = node_tags.index(nd1) ind2 = node_tags.index(nd2) ind3 = node_tags.index(nd3) ind4 = node_tags.index(nd4) quads_conn[i] = np.array([ind1, ind2, ind3, ind4]) tris_conn, nds_c_crd, nds_c_val = \ quads_to_4tris(quads_conn, nds_crd, nds_val) nds_crd_all = np.vstack((nds_crd, nds_c_crd)) # nds_val_all = np.concatenate((nds_val, nds_c_val)) nds_val_all = np.hstack((nds_val, nds_c_val)) # 1. plot contour maps triangulation = tri.Triangulation(nds_crd_all[:, 0], nds_crd_all[:, 1], tris_conn) plt.tricontourf(triangulation, nds_val_all, 50, cmap=cmap) # 2. plot original mesh (quad) without subdivision into triangles plot_mesh_2d(nds_crd, quads_conn) # plt.colorbar() plt.axis('equal') def plot_extruded_model_rect_section_3d(b, h, az_el=az_el, fig_wi_he=fig_wi_he, fig_lbrt=fig_lbrt): """Plot an extruded 3d model based on cross-section dimenions. Three arrows present local section axes: green - local x-axis, red - local z-axis, blue - local y-axis. Args: b (float): section width h (float): section height az_el (tuple): azimuth and elevation fig_wi_he: figure width and height in centimeters fig_lbrt: figure left, bottom, right, top boundaries Usage: :: plot_extruded_model_rect_section_3d(0.3, 0.4) Notes: - For now only rectangular cross-section is supported. """ b2, h2 = b/2, h/2 ele_tags = ops.getEleTags() azim, elev = az_el fig_wi, fig_he = fig_wi_he fleft, fbottom, fright, ftop = fig_lbrt fig = plt.figure(figsize=(fig_wi/2.54, fig_he/2.54)) fig.subplots_adjust(left=.08, bottom=.08, right=.985, top=.94) ax = fig.add_subplot(111, projection=Axes3D.name) # ax.axis('equal') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.view_init(azim=azim, elev=elev) for i, ele_tag in enumerate(ele_tags): nd1, nd2 = ops.eleNodes(ele_tag) # element x, y coordinates ex = np.array([ops.nodeCoord(nd1)[0], ops.nodeCoord(nd2)[0]]) ey = np.array([ops.nodeCoord(nd1)[1], ops.nodeCoord(nd2)[1]]) ez = np.array([ops.nodeCoord(nd1)[2], ops.nodeCoord(nd2)[2]]) # eo = Eo[i, :] xloc = ops.eleResponse(ele_tag, 'xlocal') yloc = ops.eleResponse(ele_tag, 'ylocal') zloc = ops.eleResponse(ele_tag, 'zlocal') g = np.vstack((xloc, yloc, zloc)) # G, L = rot_transf_3d(ex, ey, ez, eo) G, L = rot_transf_3d(ex, ey, ez, g) # g = G[:3, :3] Xi, Yi, Zi = ex[0], ey[0], ez[0] Xj, Yj, Zj = ex[1], ey[1], ez[1] g10, g11, g12 = g[1, 0]*h2, g[1, 1]*h2, g[1, 2]*h2 g20, g21, g22 = g[2, 0]*b2, g[2, 1]*b2, g[2, 2]*b2 # beg node cross-section vertices Xi1, Yi1, Zi1 = Xi - g10 - g20, Yi - g11 - g21, Zi - g12 - g22 Xi2, Yi2, Zi2 = Xi + g10 - g20, Yi + g11 - g21, Zi + g12 - g22 Xi3, Yi3, Zi3 = Xi + g10 + g20, Yi + g11 + g21, Zi + g12 + g22 Xi4, Yi4, Zi4 = Xi - g10 + g20, Yi - g11 + g21, Zi - g12 + g22 # end node cross-section vertices Xj1, Yj1, Zj1 = Xj - g10 - g20, Yj - g11 - g21, Zj - g12 - g22 Xj2, Yj2, Zj2 = Xj + g10 - g20, Yj + g11 - g21, Zj + g12 - g22 Xj3, Yj3, Zj3 = Xj + g10 + g20, Yj + g11 + g21, Zj + g12 + g22 Xj4, Yj4, Zj4 = Xj - g10 + g20, Yj - g11 + g21, Zj - g12 + g22 # mesh outline ax.plot(ex, ey, ez, 'k--', solid_capstyle='round', solid_joinstyle='round', dash_capstyle='butt', dash_joinstyle='round') # collected i-beg, j-end node coordinates, counter-clockwise order pts = [[Xi1, Yi1, Zi1], [Xi2, Yi2, Zi2], [Xi3, Yi3, Zi3], [Xi4, Yi4, Zi4], [Xj1, Yj1, Zj1], [Xj2, Yj2, Zj2], [Xj3, Yj3, Zj3], [Xj4, Yj4, Zj4]] # list of 4-node sides verts = [[pts[0], pts[1], pts[2], pts[3]], # beg [pts[4], pts[5], pts[6], pts[7]], # end [pts[0], pts[4], pts[5], pts[1]], # bottom [pts[3], pts[7], pts[6], pts[2]], # top [pts[0], pts[4], pts[7], pts[3]], # front [pts[1], pts[5], pts[6], pts[2]]] # back # plot 3d element composed with sides ax.add_collection3d(Poly3DCollection(verts, linewidths=1, edgecolors='k', alpha=.25)) Xm, Ym, Zm = sum(ex)/2, sum(ey)/2, sum(ez)/2 alen = 0.1*L # plot local axis directional vectors: workaround quiver = arrow plt.quiver(Xm, Ym, Zm, g[0, 0], g[0, 1], g[0, 2], color='g', lw=2, length=alen, alpha=.8, normalize=True) plt.quiver(Xm, Ym, Zm, g[1, 0], g[1, 1], g[1, 2], color='b', lw=2, length=alen, alpha=.8, normalize=True) plt.quiver(Xm, Ym, Zm, g[2, 0], g[2, 1], g[2, 2], color='r', lw=2, length=alen, alpha=.8, normalize=True) def plot_mesh_with_ips_2d(nds_crd, eles_ips_crd, eles_nds_crd, quads_conn, eles_ips_sig_out, eles_nds_sig_out, sig_out_indx): """ Plot 2d element mesh with the values at gauss and nodal points. Args: nds_crd (ndarray): nodes coordinates (n_nodes x 2) eles_ips_crd (ndarray): integration points coordinates of elements (n_eles x 4 x 2) eles_nds_crd (ndarray): nodal coordinates of elements (n_eles x 4 x 2) quads_conn (ndarray): connectivity array (n_eles x 4) eles_ips_sig_out (ndarray): stress component values at integration points (n_eles x 4 x 5) eles_nds_sig_out (ndarray): stress component values at element nodes (n_eles x 4 x 5) sig_out_indx (int): which sig_out component Notes: This function is suitable for small models for illustration purposes. """ plot_mesh_2d(nds_crd, quads_conn, lw=1.2, ec='b') ele_tags = ops.getEleTags() n_eles = len(ele_tags) for i in range(n_eles): plt.plot(eles_ips_crd[i, :, 0], eles_ips_crd[i, :, 1], 'kx', markersize=3) ips_val = eles_ips_sig_out[i, :, sig_out_indx] nds_val = eles_nds_sig_out[i, :, sig_out_indx] # show ips values plt.text(eles_ips_crd[i, 0, 0], eles_ips_crd[i, 0, 1], f'{ips_val[0]:.2f}', {'color': 'C0'}, ha='center', va='bottom') plt.text(eles_ips_crd[i, 1, 0], eles_ips_crd[i, 1, 1], f'{ips_val[1]:.2f}', {'color': 'C1'}, ha='center', va='bottom') plt.text(eles_ips_crd[i, 2, 0], eles_ips_crd[i, 2, 1], f'{ips_val[2]:.2f}', {'color': 'C2'}, ha='center', va='top') plt.text(eles_ips_crd[i, 3, 0], eles_ips_crd[i, 3, 1], f'{ips_val[3]:.2f}', {'color': 'C3'}, ha='center', va='top') # show node values plt.text(eles_nds_crd[i, 0, 0], eles_nds_crd[i, 0, 1], f' {nds_val[0]:.2f}', {'color': 'C0'}, ha='left', va='bottom') plt.text(eles_nds_crd[i, 1, 0], eles_nds_crd[i, 1, 1], f'{nds_val[1]:.2f} ', {'color': 'C1'}, ha='right', va='bottom') plt.text(eles_nds_crd[i, 2, 0], eles_nds_crd[i, 2, 1], f'{nds_val[2]:.2f} ', {'color': 'C2'}, ha='right', va='top') plt.text(eles_nds_crd[i, 3, 0], eles_nds_crd[i, 3, 1], f' {nds_val[3]:.2f}', {'color': 'C3'}, ha='left', va='top') plt.axis('equal') # see also quads_to_8tris_9n def quads_to_8tris_8n(quads_conn, nds_crd, nds_val): """ Get triangles connectivity, coordinates and new values at quad centroids. Args: quads_conn (ndarray): nds_crd (ndarray): nds_val (ndarray): Returns: tris_conn, nds_c_crd, nds_c_val (tuple): Notes: Triangles connectivity array is based on quadrilaterals connectivity. Each quad is split into eight triangles. New nodes are created at the quad centroid. See also: function: quads_to_8tris_9n, quads_to_4tris """ n_quads, _ = quads_conn.shape n_nds, _ = nds_crd.shape # coordinates and values at quad centroids _c_ nds_c_crd = np.zeros((n_quads, 2)) nds_c_val = np.zeros(n_quads) tris_conn = np.zeros((8*n_quads, 3), dtype=int) for i, quad_conn in enumerate(quads_conn): j = 8*i n0, n1, n2, n3, n4, n5, n6, n7 = quad_conn # quad centroids # nds_c_crd[i] = np.array([np.sum(nds_crd[[n0, n1, n2, n3], 0])/4., # np.sum(nds_crd[[n0, n1, n2, n3], 1])/4.]) # nds_c_val[i] = np.sum(nds_val[[n0, n1, n2, n3]])/4. nds_c_crd[i] = quad_8n_val_at_center(nds_crd[[n0, n1, n2, n3, n4, n5, n6, n7]]) nds_c_val[i] = quad_8n_val_at_center(nds_val[[n0, n1, n2, n3, n4, n5, n6, n7]]) # triangles connectivity tris_conn[j] = np.array([n0, n4, n_nds+i]) tris_conn[j+1] = np.array([n4, n1, n_nds+i]) tris_conn[j+2] = np.array([n1, n5, n_nds+i]) tris_conn[j+3] = np.array([n5, n2, n_nds+i]) tris_conn[j+4] = np.array([n2, n6, n_nds+i]) tris_conn[j+5] = np.array([n6, n3, n_nds+i]) tris_conn[j+6] = np.array([n3, n7, n_nds+i]) tris_conn[j+7] = np.array([n7, n0, n_nds+i]) return tris_conn, nds_c_crd, nds_c_val # see also quads_to_8tris_8n def quads_to_8tris_9n(quads_conn): """ Get triangles connectivity, coordinates and new values at quad centroids. Args: quads_conn (ndarray): nds_crd (ndarray): nds_val (ndarray): Returns: tris_conn, nds_c_crd, nds_c_val (tuple): Notes: Triangles connectivity array is based on quadrilaterals connectivity. Each quad is split into eight triangles. New nodes are created at the quad centroid. See also: function: quads_to_8tris_8n, quads_to_4tris """ n_quads, _ = quads_conn.shape # n_nds, _ = nds_crd.shape tris_conn =
np.zeros((8*n_quads, 3), dtype=int)
numpy.zeros
#!/usr/bin/env python3 import tensorflow as tf import tflearn from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import array_ops import numpy as np import numpy.random as npr np.set_printoptions(precision=2) # np.seterr(all='raise') np.seterr(all='warn') import argparse import csv import os import sys import time import pickle as pkl import json import shutil import setproctitle from datetime import datetime sys.path.append('../lib') import olivetti import bundle_entropy import matplotlib as mpl mpl.use("Agg") import matplotlib.pyplot as plt def main(): parser = argparse.ArgumentParser() parser.add_argument('--save', type=str, default='work/mse.ebundle') parser.add_argument('--nEpoch', type=float, default=50) parser.add_argument('--nBundleIter', type=int, default=30) # parser.add_argument('--trainBatchSz', type=int, default=25) parser.add_argument('--trainBatchSz', type=int, default=70) # parser.add_argument('--testBatchSz', type=int, default=2048) parser.add_argument('--noncvx', action='store_true') parser.add_argument('--seed', type=int, default=42) # parser.add_argument('--valSplit', type=float, default=0) args = parser.parse_args() assert(not args.noncvx) setproctitle.setproctitle('bamos.icnn.comp.mse.ebundle') npr.seed(args.seed) tf.set_random_seed(args.seed) save = os.path.expanduser(args.save) if os.path.isdir(save): shutil.rmtree(save) os.makedirs(save) ckptDir = os.path.join(save, 'ckpt') args.ckptDir = ckptDir if not os.path.exists(ckptDir): os.makedirs(ckptDir) data = olivetti.load("data/olivetti") # eps = 1e-8 # data['trainX'] = data['trainX'].clip(eps, 1.-eps) # data['trainY'] = data['trainY'].clip(eps, 1.-eps) # data['testX'] = data['testX'].clip(eps, 1.-eps) # data['testY'] = data['testY'].clip(eps, 1.-eps) nTrain = data['trainX'].shape[0] nTest = data['testX'].shape[0] inputSz = list(data['trainX'][0].shape) outputSz = list(data['trainY'][1].shape) print("\n\n" + "="*40) print("+ nTrain: {}, nTest: {}".format(nTrain, nTest)) print("+ inputSz: {}, outputSz: {}".format(inputSz, outputSz)) print("="*40 + "\n\n") config = tf.ConfigProto() #log_device_placement=False) config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: model = Model(inputSz, outputSz, sess) model.train(args, data['trainX'], data['trainY'], data['testX'], data['testY']) def variable_summaries(var, name=None): if name is None: name = var.name with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.scalar_summary('mean/' + name, mean) with tf.name_scope('stdev'): stdev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.scalar_summary('stdev/' + name, stdev) tf.scalar_summary('max/' + name, tf.reduce_max(var)) tf.scalar_summary('min/' + name, tf.reduce_min(var)) tf.histogram_summary(name, var) class Model: def __init__(self, inputSz, outputSz, sess): self.inputSz = inputSz self.outputSz = outputSz self.nOutput = np.prod(outputSz) self.sess = sess self.trueY_ = tf.placeholder(tf.float32, shape=[None] + outputSz, name='trueY') self.x_ = tf.placeholder(tf.float32, shape=[None] + inputSz, name='x') self.y_ = tf.placeholder(tf.float32, shape=[None] + outputSz, name='y') self.v_ = tf.placeholder(tf.float32, shape=[None, self.nOutput], name='v') self.c_ = tf.placeholder(tf.float32, shape=[None], name='c') self.E_ = self.f(self.x_, self.y_) variable_summaries(self.E_) self.dE_dy_ = tf.gradients(self.E_, self.y_)[0] self.dE_dyFlat_ = tf.contrib.layers.flatten(self.dE_dy_) self.yFlat_ = tf.contrib.layers.flatten(self.y_) self.E_entr_ = self.E_ + tf.reduce_sum(self.yFlat_*tf.log(self.yFlat_), 1) + \ tf.reduce_sum((1.-self.yFlat_)*tf.log(1.-self.yFlat_), 1) self.dE_entr_dy_ = tf.gradients(self.E_entr_, self.y_)[0] self.dE_entr_dyFlat_ = tf.contrib.layers.flatten(self.dE_entr_dy_) self.F_ = tf.mul(self.c_, self.E_) + \ tf.reduce_sum(tf.mul(self.dE_dyFlat_, self.v_), 1) # regLosses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) # self.F_reg_ = self.F_ + 0.1*regLosses # self.F_reg_ = self.F_ + 1e-5*tf.square(self.E_) self.opt = tf.train.AdamOptimizer(0.001) self.theta_ = tf.trainable_variables() self.gv_ = [(g,v) for g,v in self.opt.compute_gradients(self.F_, self.theta_) if g is not None] self.train_step = self.opt.apply_gradients(self.gv_) self.theta_cvx_ = [v for v in self.theta_ if 'proj' in v.name and 'W:' in v.name] self.makeCvx = [v.assign(tf.abs(v)/2.0) for v in self.theta_cvx_] self.proj = [v.assign(tf.maximum(v, 0)) for v in self.theta_cvx_] for g,v in self.gv_: variable_summaries(g, 'gradients/'+v.name) self.l_yN_ = tf.placeholder(tf.float32, name='l_yN') tf.scalar_summary('mse', self.l_yN_) self.nBundleIter_ = tf.placeholder(tf.float32, [None], name='nBundleIter') variable_summaries(self.nBundleIter_) self.nActive_ = tf.placeholder(tf.float32, [None], name='nActive') variable_summaries(self.nActive_) self.merged = tf.merge_all_summaries() self.saver = tf.train.Saver(max_to_keep=0) def train(self, args, trainX, trainY, valX, valY): save = args.save self.meanY = np.mean(trainY, axis=0) nTrain = trainX.shape[0] nTest = valX.shape[0] nIter = int(np.ceil(args.nEpoch*nTrain/args.trainBatchSz)) trainFields = ['iter', 'loss'] trainF = open(os.path.join(save, 'train.csv'), 'w') trainW = csv.writer(trainF) trainW.writerow(trainFields) trainF.flush() testFields = ['iter', 'loss'] testF = open(os.path.join(save, 'test.csv'), 'w') testW = csv.writer(testF) testW.writerow(testFields) testF.flush() self.trainWriter = tf.train.SummaryWriter(os.path.join(save, 'train'), self.sess.graph) self.sess.run(tf.initialize_all_variables()) if not args.noncvx: self.sess.run(self.makeCvx) nParams = np.sum(v.get_shape().num_elements() for v in tf.trainable_variables()) self.nBundleIter = args.nBundleIter meta = {'nTrain': nTrain, 'trainBatchSz': args.trainBatchSz, 'nParams': nParams, 'nEpoch': args.nEpoch, 'nIter': nIter, 'nBundleIter': self.nBundleIter} metaP = os.path.join(save, 'meta.json') with open(metaP, 'w') as f: json.dump(meta, f, indent=2) nErrors = 0 maxErrors = 20 for i in range(nIter): tflearn.is_training(True) print("=== Iteration {} (Epoch {:.2f}) ===".format( i, i/np.ceil(nTrain/args.trainBatchSz))) start = time.time() I = npr.randint(nTrain, size=args.trainBatchSz) xBatch = trainX[I, :] yBatch = trainY[I, :] yBatch_flat = yBatch.reshape((args.trainBatchSz, -1)) xBatch_flipped = xBatch[:,:,::-1,:] def fg(yhats): yhats_shaped = yhats.reshape([args.trainBatchSz]+self.outputSz) fd = {self.x_: xBatch_flipped, self.y_: yhats_shaped} e, ge = self.sess.run([self.E_, self.dE_dyFlat_], feed_dict=fd) return e, ge y0 = np.expand_dims(self.meanY, axis=0).repeat(args.trainBatchSz, axis=0) y0 = y0.reshape((args.trainBatchSz, -1)) try: yN, G, h, lam, ys, nIters = bundle_entropy.solveBatch( fg, y0, nIter=self.nBundleIter) yN_shaped = yN.reshape([args.trainBatchSz]+self.outputSz) except (KeyboardInterrupt, SystemExit): raise except: print("Warning: Exception in bundle_entropy.solveBatch") nErrors += 1 if nErrors > maxErrors: print("More than {} errors raised, quitting".format(maxErrors)) sys.exit(-1) continue nActive = [len(Gi) for Gi in G] l_yN = mse(yBatch_flat, yN) fd = self.train_step_fd(args.trainBatchSz, xBatch_flipped, yBatch_flat, G, yN, ys, lam) fd[self.l_yN_] = l_yN fd[self.nBundleIter_] = nIters fd[self.nActive_] = nActive summary, _ = self.sess.run([self.merged, self.train_step], feed_dict=fd) if not args.noncvx and len(self.proj) > 0: self.sess.run(self.proj) saveImgs(xBatch, yN_shaped, "{}/trainImgs/{:05d}".format(args.save, i)) self.trainWriter.add_summary(summary, i) trainW.writerow((i, l_yN)) trainF.flush() print(" + loss: {:0.5e}".format(l_yN)) print(" + time: {:0.2f} s".format(time.time()-start)) if i % np.ceil(nTrain/(4.0*args.trainBatchSz)) == 0: os.system('./icnn.plot.py ' + args.save) if i % np.ceil(nTrain/args.trainBatchSz) == 0: print("=== Testing ===") tflearn.is_training(False) y0 = np.expand_dims(self.meanY, axis=0).repeat(nTest, axis=0) y0 = y0.reshape((nTest, -1)) valX_flipped = valX[:,:,::-1,:] def fg(yhats): yhats_shaped = yhats.reshape([nTest]+self.outputSz) fd = {self.x_: valX_flipped, self.y_: yhats_shaped} e, ge = self.sess.run([self.E_, self.dE_dyFlat_], feed_dict=fd) return e, ge try: yN, G, h, lam, ys, nIters = bundle_entropy.solveBatch( fg, y0, nIter=self.nBundleIter) yN_shaped = yN.reshape([nTest]+self.outputSz) except (KeyboardInterrupt, SystemExit): raise except: print("Warning: Exception in bundle_entropy.solveBatch") nErrors += 1 if nErrors > maxErrors: print("More than {} errors raised, quitting".format(maxErrors)) sys.exit(-1) continue testMSE = mse(valY, yN_shaped) saveImgs(valX, yN_shaped, "{}/testImgs/{:05d}".format(args.save, i)) print(" + test loss: {:0.5e}".format(testMSE)) testW.writerow((i, testMSE)) testF.flush() self.save(os.path.join(args.ckptDir, '{:05d}.tf'.format(i))) os.system('./icnn.plot.py ' + args.save) trainF.close() testF.close() os.system('./icnn.plot.py ' + args.save) def save(self, path): self.saver.save(self.sess, path) def load(self, path): self.saver.restore(self.sess, path) def train_step_fd(self, trainBatchSz, xBatch, yBatch, G, yN, ys, lam): fd_xs, fd_ys, fd_vs, fd_cs = ([] for i in range(4)) for j in range(trainBatchSz): if len(G[j]) == 0: continue Gj = np.array(G[j]) cy, clam, ct = mseGrad(yN[j], yBatch[j], Gj) for i in range(len(G[j])): fd_xs.append(xBatch[j]) fd_ys.append(ys[j][i].reshape(self.outputSz)) v = lam[j][i] * cy + clam[i] * (yN[j] - ys[j][i]) fd_vs.append(v) fd_cs.append(clam[i]) fd_xs = np.array(fd_xs) fd_ys = np.array(fd_ys) fd_vs = np.array(fd_vs) fd_cs = np.array(fd_cs) fd = {self.x_: fd_xs, self.y_: fd_ys, self.v_: fd_vs, self.c_: fd_cs} return fd def f(self, x, y, reuse=False): conv = tflearn.conv_2d bn = tflearn.batch_normalization fc = tflearn.fully_connected # Architecture from 'Human-level control through deep reinforcement learning' # http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html convs = [(32, 8, [1,4,4,1]), (64, 4, [1,2,2,1]), (64, 3, [1,1,1,1])] fcs = [512, 1] reg = None #'L2' us = [] zs = [] layerI = 0 prevU = x for nFilter, kSz, strides in convs: with tf.variable_scope('u'+str(layerI)) as s: u = bn(conv(prevU, nFilter, kSz, strides=strides, activation='relu', scope=s, reuse=reuse, regularizer=reg), scope=s, reuse=reuse) us.append(u) prevU = u layerI += 1 for sz in fcs: with tf.variable_scope('u'+str(layerI)) as s: u = fc(prevU, sz, scope=s, reuse=reuse, regularizer=reg) if sz == 1: u = tf.reshape(u, [-1]) else: u = bn(tf.nn.relu(u), scope=s, reuse=reuse) us.append(u) prevU = u layerI += 1 layerI = 0 prevU, prevZ, y_red = x, None, y for nFilter, kSz, strides in convs: z_add = [] if layerI > 0: with tf.variable_scope('z{}_zu_u'.format(layerI)) as s: prev_nFilter = convs[layerI-1][0] zu_u = conv(prevU, prev_nFilter, 3, reuse=reuse, scope=s, activation='relu', bias=True, regularizer=reg) with tf.variable_scope('z{}_zu_proj'.format(layerI)) as s: z_zu = conv(tf.mul(prevZ, zu_u), nFilter, kSz, strides=strides, reuse=reuse, scope=s, bias=False, regularizer=reg) z_add.append(z_zu) with tf.variable_scope('z{}_yu_u'.format(layerI)) as s: yu_u = conv(prevU, 1, 3, reuse=reuse, scope=s, bias=True, regularizer=reg) with tf.variable_scope('z{}_yu'.format(layerI)) as s: z_yu = conv(tf.mul(y_red, yu_u), nFilter, kSz, strides=strides, reuse=reuse, scope=s, bias=False, regularizer=reg) with tf.variable_scope('z{}_y_red'.format(layerI)) as s: y_red = conv(y_red, 1, kSz, strides=strides, reuse=reuse, scope=s, bias=True, regularizer=reg) z_add.append(z_yu) with tf.variable_scope('z{}_u'.format(layerI)) as s: z_u = conv(prevU, nFilter, kSz, strides=strides, reuse=reuse, scope=s, bias=True, regularizer=reg) z_add.append(z_u) z = tf.nn.relu(tf.add_n(z_add)) zs.append(z) prevU = us[layerI] if layerI < len(us) else None prevZ = z layerI += 1 prevZ = tf.contrib.layers.flatten(prevZ) prevU = tf.contrib.layers.flatten(prevU) y_red_flat = tf.contrib.layers.flatten(y_red) for sz in fcs: z_add = [] with tf.variable_scope('z{}_zu_u'.format(layerI)) as s: prevU_sz = prevU.get_shape()[1].value zu_u = fc(prevU, prevU_sz, reuse=reuse, scope=s, activation='relu', bias=True, regularizer=reg) with tf.variable_scope('z{}_zu_proj'.format(layerI)) as s: z_zu = fc(tf.mul(prevZ, zu_u), sz, reuse=reuse, scope=s, bias=False, regularizer=reg) z_add.append(z_zu) # y passthrough in the FC layers: # # with tf.variable_scope('z{}_yu_u'.format(layerI)) as s: # ycf_sz = y_red_flat.get_shape()[1].value # yu_u = fc(prevU, ycf_sz, reuse=reuse, scope=s, bias=True, # regularizer=reg) # with tf.variable_scope('z{}_yu'.format(layerI)) as s: # z_yu = fc(tf.mul(y_red_flat, yu_u), sz, reuse=reuse, scope=s, # bias=False, regularizer=reg) # z_add.append(z_yu) with tf.variable_scope('z{}_u'.format(layerI)) as s: z_u = fc(prevU, sz, reuse=reuse, scope=s, bias=True, regularizer=reg) z_add.append(z_u) z = tf.add_n(z_add) variable_summaries(z, 'z{}_preact'.format(layerI)) if sz != 1: z = tf.nn.relu(z) variable_summaries(z, 'z{}_act'.format(layerI)) prevU = us[layerI] if layerI < len(us) else None prevZ = z zs.append(z) layerI += 1 z = tf.reshape(z, [-1], name='energies') return z def saveImgs(xs, ys, save, colWidth=10): nImgs = xs.shape[0] assert(nImgs == ys.shape[0]) if not os.path.exists(save): os.makedirs(save) fnames = [] for i in range(nImgs): xy = np.clip(np.squeeze(np.concatenate([ys[i], xs[i]], axis=1)), 0., 1.) # Imagemagick montage has intensity scaling issues with png output files here. fname = "{}/{:04d}.jpg".format(save, i) plt.imsave(fname, xy, cmap=mpl.cm.gray) fnames.append(fname) os.system('montage -geometry +0+0 -tile {}x {} {}.png'.format( colWidth, ' '.join(fnames), save)) def tf_nOnes(b): # Must be binary. return tf.reduce_sum(tf.cast(b, tf.int32)) def mse(y, trueY): return np.mean(np.square(255.*(y-trueY))) # return 0.5*np.sum(np.square((y-trueY))) def mseGrad_full(y, trueY, G): k,n = G.shape assert(len(y) == n) I = np.where((y > 1e-8) & (1.-y > 1e-8)) z = np.ones_like(y) z[I] = (1./y[I] + 1./(1.-y[I])) H = np.bmat([[np.diag(z), G.T, np.zeros((n,1))], [G, np.zeros((k,k)), -np.ones((k,1))], [np.zeros((1,n)), -np.ones((1,k)), np.zeros((1,1))]]) c = -np.linalg.solve(H, np.concatenate([(y - trueY), np.zeros(k+1)])) return
np.split(c, [n, n+k])
numpy.split
# Copyright 2019-2021 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools from functools import lru_cache from pytket.circuit import Circuit, Qubit, Bit, Node, CircBox # type: ignore import numpy as np from collections import OrderedDict, namedtuple from typing import Dict, Iterable, List, Tuple, Counter, cast, Optional from math import ceil, log2 from pytket.backends import Backend from pytket.passes import DecomposeBoxes, FlattenRegisters # type: ignore from pytket.backends.backendresult import BackendResult from pytket.utils.outcomearray import OutcomeArray from enum import Enum FullCorrelatedNoiseCharacterisation = namedtuple( "FullCorrelatedNoiseCharacterisation", ["CorrelatedNodes", "NodeToIntDict", "CharacterisationMatrices"], ) StateInfo = namedtuple("StateInfo", ["PreparedStates", "QubitBitMaps"]) # Helper methods for holding basis states @lru_cache(maxsize=128) def binary_to_int(bintuple: Tuple[int]) -> int: """Convert a binary tuple to corresponding integer, with most significant bit as the first element of tuple. :param bintuple: Binary tuple :type bintuple: Tuple[int] :return: Integer :rtype: int """ integer = 0 for index, bitset in enumerate(reversed(bintuple)): if bitset: integer |= 1 << index return integer @lru_cache(maxsize=128) def int_to_binary(val: int, dim: int) -> Tuple[int, ...]: """Convert an integer to corresponding binary tuple, with most significant bit as the first element of tuple. :param val: input integer :type val: int :param dim: Bit width :type dim: int :return: Binary tuple of width dim :rtype: Tuple[int, ...] """ return tuple(map(int, format(val, "0{}b".format(dim)))) def get_full_transition_tomography_circuits( process_circuit: Circuit, backend: Backend, correlations: List[List[Node]] ) -> Tuple[List[Circuit], List[StateInfo]]: """Generate calibration circuits according to the specified correlation, backend and given circuit. :param circuit: Circuit surmising correlated noise process being characterised :param backend: Backend on which the experiments are run. :type backend: Backend :param correlations: A list of lists of correlated Nodes of a `Device`. Qubits within the same list are assumed to only have errors correlated with each other. Thus to allow errors between all qubits you should provide a single list. The qubits in `correlations` must be nodes in the backend's associated `Device`. :type correlations: List[List[Node]] :return: A list of calibration circuits to be run on the machine. The circuits should be processed without compilation. :rtype: List[Circuit] """ subsets_matrix_map = OrderedDict.fromkeys( sorted(map(tuple, correlations), key=len, reverse=True) ) # ordered from largest to smallest via OrderedDict & sorted subset_dimensions = [len(subset) for subset in subsets_matrix_map] major_state_dimensions = subset_dimensions[0] n_circuits = 1 << major_state_dimensions all_qubits = [qb for subset in correlations for qb in subset] if len(process_circuit.qubits) != len(all_qubits): raise ValueError( "Process being characterised has {} qubits, correlations only specify {} qubits.".format( len(process_circuit.qubits), len(all_qubits) ) ) # output prepared_circuits = [] state_infos = [] # set up CircBox of X gate for preparing basis states xcirc = Circuit(1).X(0) xcirc = backend.get_compiled_circuit(xcirc) FlattenRegisters().apply(xcirc) xbox = CircBox(xcirc) # need to be default register to add as box suitably process_circuit = backend.get_compiled_circuit(process_circuit) rename_map_pc = {} for index, qb in enumerate(process_circuit.qubits): rename_map_pc[qb] = Qubit(index) process_circuit.rename_units(rename_map_pc) pbox = CircBox(process_circuit) # set up base circuit for appending xbox to base_circuit = Circuit() index = 0 measures = {} for qb in all_qubits: base_circuit.add_qubit(qb) c_bit = Bit(index) base_circuit.add_bit(c_bit) index += 1 measures[qb] = c_bit # generate state circuits for given correlations for major_state_index in range(n_circuits): state_circuit = base_circuit.copy() # get bit string corresponding to basis state of biggest subset of qubits major_state = int_to_binary(major_state_index, major_state_dimensions) new_state_dicts = {} # parallelise circuits, run uncorrelated subsets characterisation in parallel for dim, qubits in zip(subset_dimensions, subsets_matrix_map): # add state to prepared states new_state_dicts[qubits] = major_state[:dim] # find only qubits that are expected to be in 1 state, add xbox to given qubits for flipped_qb in itertools.compress(qubits, major_state[:dim]): state_circuit.add_circbox(xbox, [flipped_qb]) # Decompose boxes, add barriers to preserve circuit, add measures state_circuit.add_barrier(all_qubits) # add process circuit to measure state_circuit.add_circbox(pbox, state_circuit.qubits) DecomposeBoxes().apply(state_circuit) state_circuit.add_barrier(all_qubits) for q in measures: state_circuit.Measure(q, measures[q]) # add to returned types state_circuit = backend.get_compiled_circuit(state_circuit) prepared_circuits.append(state_circuit) state_infos.append(StateInfo(new_state_dicts, measures)) return (prepared_circuits, state_infos) def calculate_correlation_matrices( results_list: List[BackendResult], states_info: List[StateInfo], correlations: List[List[Qubit]], ) -> FullCorrelatedNoiseCharacterisation: """Calculate the calibration matrices corresponding to some pure noise from the results of running calibration circuits. :param results_list: List of result via BackendResult. Must be in the same order as the corresponding circuits given by prepared_states. :type results_list: List[BackendResult] :param states_info: Each StateInfo object containts the state prepared via a binary representation and the qubit_to_bit_map for the corresponding state circuit. :type states_info: List[StateInfo] :param correlations: List of dict corresponding to each prepared basis state :type correlations: List[List[Qubit]] :return: Characterisation for pure noise given by process circuit :rtype: FullCorrelatedNoiseCharacterisation """ subsets_matrix_map = OrderedDict.fromkeys( sorted(map(tuple, correlations), key=len, reverse=True) ) # ordered from largest to smallest via OrderedDict & sorted subset_dimensions = [len(subset) for subset in subsets_matrix_map] counter = 0 node_index_dict = dict() for qbs, dim in zip(subsets_matrix_map, subset_dimensions): # for a subset with n qubits, create a 2^n by 2^n matrix subsets_matrix_map[qbs] = np.zeros((1 << dim,) * 2, dtype=float) for i in range(len(qbs)): qb = qbs[i] node_index_dict[qb] = (counter, i) counter += 1 for result, state_info in zip(results_list, states_info): state_dict = state_info[0] qb_bit_map = state_info[1] for qb_sub in subsets_matrix_map: # bits of counts to consider bits = [qb_bit_map[q] for q in qb_sub] counts_dict = result.get_counts(cbits=bits) for measured_state, count in counts_dict.items(): # intended state prepared_state_index = binary_to_int(state_dict[qb_sub]) # produced state measured_state_index = binary_to_int(measured_state) # update characterisation matrix subsets_matrix_map[qb_sub][ measured_state_index, prepared_state_index ] += count # normalise everything normalised_mats = [mat / np.sum(mat, axis=0) for mat in subsets_matrix_map.values()] return FullCorrelatedNoiseCharacterisation( correlations, node_index_dict, normalised_mats ) ######################################### ### _compute_dot and helper functions ### ### ### With thanks to ### https://math.stackexchange.com/a/3423910 ### and especially ### https://gist.github.com/ahwillia/f65bc70cb30206d4eadec857b98c4065 ### on which this code is based. def _unfold(tens: np.ndarray, mode: int, dims: List[int]) -> np.ndarray: """ Unfolds tensor into matrix. :param tens: Tensor with shape equivalent to dimensions :type tens: np.ndarray :param mode: Specifies axis move to front of matrix in unfolding of tensor :type mode: int :param dims: Gives shape of tensor passed :type dims: List[int] :return: Matrix with shape (dims[mode], prod(dims[/mode])) :rtype: np.ndarray """ if mode == 0: return tens.reshape(dims[0], -1) else: return np.moveaxis(tens, mode, 0).reshape(dims[mode], -1) def _refold(vec: np.ndarray, mode: int, dims: List[int]) -> np.ndarray: """ Refolds vector into tensor. :param vec: Tensor with length equivalent to the product of dimensions given in dims :type vec: np.ndarray :param mode: Axis tensor was unfolded along :type mode: int :param dims: Shape of tensor :type dims: List[int] :return: Tensor folded from vector with shape equivalent to dimensions given in dims :rtype: np.ndarray """ if mode == 0: return vec.reshape(dims) else: # Reshape and then move dims[mode] back to its # appropriate spot (undoing the `unfold` operation). tens = vec.reshape([dims[mode]] + [d for m, d in enumerate(dims) if m != mode]) return np.moveaxis(tens, 0, mode) def _compute_dot(submatrices: Iterable[np.ndarray], vector: np.ndarray) -> np.ndarray: """ Multiplies the kronecker product of the given submatrices with given vector. :param submatrices: Submatrices multiplied :type submatrices: Iterable[np.ndarray] :param vector: Vector multplied :type vector: np.ndarray :return: Kronecker product of arguments :rtype: np.ndarray """ dims = [A.shape[0] for A in submatrices] vt = vector.reshape(dims) for i, A in enumerate(submatrices): vt = _refold(A @ _unfold(vt, i, dims), i, dims) return vt.ravel() def _bayesian_iteration( submatrices: Iterable[np.ndarray], measurements: np.ndarray, t: np.ndarray, epsilon: float, ) -> np.ndarray: """ Transforms T corresponds to a Bayesian iteration, used to modfiy measurements. :param submatrices: submatrices to be inverted and applied to measurements. :type submatrices: Iterable[np.ndarray] :param measurements: Probability distribution over some set of states to be amended. :type measurements: np.ndarray :param t: Some transform to act on measurements. :type t: np.ndarray :param epsilon: A stabilization parameter to define an affine transformation for applicatoin to submatrices, eliminating zero probabilities. :type epsilon: float :return: Transformed distribution vector. :rtype: np.ndarray """ # Transform t according to the Bayesian iteration # The parameter epsilon is a stabilization parameter which defines an affine # transformation to apply to the submatrices to eliminate zero probabilities. This # transformation preserves the property that all columns sum to 1 if epsilon == 0: # avoid copying if we don't need to As = submatrices else: As = [ epsilon / submatrix.shape[0] + (1 - epsilon) * submatrix for submatrix in submatrices ] z = _compute_dot(As, t) if np.isclose(z, 0).any(): raise ZeroDivisionError return cast( np.ndarray, t * _compute_dot([A.transpose() for A in As], measurements / z) ) def _bayesian_iterative_correct( submatrices: Iterable[np.ndarray], measurements: np.ndarray, tol: float = 1e-5, max_it: Optional[int] = None, ) -> np.ndarray: """ Finds new states to represent application of inversion of submatrices on measurements. Converges when update states within tol range of previously tested states. :param submatrices: Matrices comprising the pure noise characterisation. :type submatrices: Iterable[np.ndarray] :param input_vector: Vector corresponding to some counts distribution. :type input_vector: np.ndarray :param tol: tolerance of closeness of found results :type tol: float :param max_it: Maximum number of inversions attempted to correct results. :type max_it: int """ # based on method found in https://arxiv.org/abs/1910.00129 vector_size = measurements.size # uniform initial true_states = np.full(vector_size, 1 / vector_size) prev_true = true_states.copy() converged = False count = 0 epsilon: float = 0 # stabilization parameter, adjusted dynamically while not converged: if max_it: if count >= max_it: break count += 1 try: true_states = _bayesian_iteration( submatrices, measurements, true_states, epsilon ) converged = np.allclose(true_states, prev_true, atol=tol) prev_true = true_states.copy() except ZeroDivisionError: # Shift the stabilization parameter up a bit (always < 0.5). epsilon = 0.99 * epsilon + 0.01 * 0.5 return true_states class CorrectionMethod(Enum): def Invert( submatrices: Iterable[np.ndarray], input_vector: np.ndarray ) -> np.ndarray: """ Multiplies the kronecker product of given submatrices on input vector and then adjusts output to make them genuine probabilities. Submatrices represent pure noise characterisation, vector corresponds to counts distribution from circuit and device. :param submatrices: Matrices comprising the pure noise characterisation. :type submatrices: Iterable[np.ndarray] :param input_vector: Vector corresponding to some counts distribution. :type input_vector: np.ndarray """ try: subinverts = [np.linalg.inv(submatrix) for submatrix in submatrices] except np.linalg.LinAlgError: raise ValueError( "Unable to invert calibration matrix: please re-run " "calibration experiments or use an alternative correction method." ) # assumes that order of rows in flattened subinverts equals order of bits in input vector v = _compute_dot(subinverts, input_vector) # The entries of v will always sum to 1, but they may not all be in the range [0,1]. # In order to make them genuine probabilities (and thus generate meaningful counts), # we adjust them by setting all negative values to 0 and scaling the remainder. v[v < 0] = 0 v /= sum(v) return v def Bayesian( submatrices: Iterable[np.ndarray], input_vector: np.ndarray ) -> np.ndarray: """ Computes the product of the invert of submatrices on the given input vector via a an iterative Bayesian correction method. :param submatrices: Matrices comprising the pure noise characterisation. :type submatrices: Iterable[np.ndarray] :param input_vector: Vector corresponding to some counts distribution. :type input_vector: np.ndarray :param tol: tolerance of closeness of found results :type tol: float :param max_it: Maximum number of inversions attempted to correct results. :type max_it: int """ return _bayesian_iterative_correct( submatrices, input_vector, tol=1e-5, max_it=500 ) def reduce_matrix(indices_to_remove: List[int], matrix: np.ndarray) -> np.ndarray: """ Removes indices from indices_to_remove from binary associated to indexing of matrix, producing a new transition matrix. To do so, it assigns all transition probabilities as the given state in the remaining indices binary, with the removed binary in state 0. This is an assumption on the noise made because it is likely that unmeasured qubits will be in that state. :param indices_to_remove: Binary index of state matrix is mapping to be removed. :type indices_to_remove: List[int] :param matrix: Transition matrix where indices correspond to some binary state, to have some dimension removed. :type matrix: np.ndarray :return: Transition matrix with removed entries. :rtype: np.ndarray """ new_n_qubits = int(log2(matrix.shape[0])) - len(indices_to_remove) if new_n_qubits == 0: return np.array([]) bin_map = dict() mat_dim = 1 << new_n_qubits for index in range(mat_dim): # get current binary bina = list(int_to_binary(index, new_n_qubits)) # add 0's to fetch old binary to set values from for i in sorted(indices_to_remove): bina.insert(i, 0) # get index of values bin_map[index] = binary_to_int(tuple(bina)) new_mat = np.zeros((mat_dim,) * 2, dtype=float) for i in range(len(new_mat)): old_row_index = bin_map[i] for j in range(len(new_mat)): old_col_index = bin_map[j] new_mat[i, j] = matrix[old_row_index, old_col_index] return new_mat def reduce_matrices( entries_to_remove: List[Tuple[int, int]], matrices: List[np.ndarray] ) -> List[np.ndarray]: """ Removes some dimensions from some matrices. :param entries_to_remove: Via indexing, says which dimensions to remove from which indices. :type entries_to_remove: List[Tuple[int, int]] :param matrices: All matrices to have dimensions removed. :type matrices: List[np.ndarray] :return: Matrices with some dimensions removed. :rtype: List[np.ndarray] """ organise: Dict[int, List[int]] = {k: [] for k in range(len(matrices))} for unused in entries_to_remove: # unused[0] is index in matrices # unused[1] is qubit index in matrix organise[unused[0]].append(unused[1]) output_matrices = [reduce_matrix(organise[m], matrices[m]) for m in organise] normalised_mats = [ mat / np.sum(mat, axis=0) for mat in [x for x in output_matrices if x.size > 0] ] return normalised_mats def get_single_matrix( entry_to_keep: Tuple[int, int], matrices: List[np.ndarray] ) -> np.ndarray: """ Returns a correction matrix just for the index given. :param entry_to_keep: Which matrix and indexing to return a correction matrix for. :type entries_to_keep: Tuple[int, int] :param matrices: All matrices to find returned matrix from. :type matrices: List[np.ndarray] :return: Matrix for correcting given entry. :rtype: List[np.ndarray] """ mat = matrices[entry_to_keep[0]] all_indices = list(range(int(log2(mat.shape[0])))) all_indices.remove(entry_to_keep[1]) return reduce_matrix(all_indices, mat) def correct_transition_noise( result: BackendResult, bit_qb_info: Tuple[Dict[Qubit, Bit], Dict[Bit, Qubit]], noise_characterisation: FullCorrelatedNoiseCharacterisation, corr_method: CorrectionMethod, ) -> BackendResult: """ Modifies count distribution for result, such that the inversion of the pure noise map represented by matrices in noise_characterisation is applied to it :param result: BackendResult object to be negated by pure noise object. :type result: BackendResult :param bit_qb_info: Used to permute corresponding BackendResult object so counts order matches noise characterisation. :type bit_qb_info: Tuple[Dict[Qubit, Bit], Dict[Bit, Qubit]] :param noise_characterisation: Object holding all required information for some full noise characterisation of correlated subsets. :type noise_characterisation: FullCorrelatedNoiseCharacterisation """ final_measures_qb_map = bit_qb_info[0] mid_circuit_measures_bq_map = bit_qb_info[1] # get counts from with order of bits that matches order of qubits in subsets # if qubit in subset has no bit, skip it char_bits_order = [] unused_final_qbs = [] for subset in noise_characterisation.CorrelatedNodes: for q in subset: if q in final_measures_qb_map: char_bits_order.append(final_measures_qb_map[q]) else: unused_final_qbs.append(q) mid_measure_qbs = [] for bit in mid_circuit_measures_bq_map: mid_measure_qbs.append(mid_circuit_measures_bq_map[bit]) char_bits_order.append(bit) # get counts object for returning later counts = result.get_counts(cbits=char_bits_order) in_vec = np.zeros(1 << len(char_bits_order), dtype=float) # turn from counts to probability distribution for state, count in counts.items(): in_vec[binary_to_int(state)] = count Ncounts =
np.sum(in_vec)
numpy.sum
# -*- coding: utf-8 -*- """ Created on Fri Jan 22 13:51:08 2021 @author: mzomou """ from scipy.signal import savgol_filter import tkinter as tk from tkinter import IntVar, DISABLED, ACTIVE, NORMAL, StringVar, messagebox from tkinter.colorchooser import askcolor import numpy as np from hsi import HSAbsorption, HSImage from hsi.analysis import HSComponentFit from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure import matplotlib.pyplot as plt import matplotlib.lines as lines from tkinter import filedialog from scipy import ndimage from matplotlib.widgets import Cursor from matplotlib.colors import ListedColormap, LinearSegmentedColormap from tkinter import font as tkFont from tkinter import simpledialog from spectral import spectral_angles from sklearn.decomposition import PCA, KernelPCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.ensemble import RandomForestClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC import susi ##### Cube-Data Laden und als RGB Bild Darstellen WLD =
np.linspace(500, 995, 100)
numpy.linspace
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import math import json import threading import numpy as np import tensorflow as tf import util import coref_ops import conll import metrics import optimization from bert import tokenization from bert import modeling from pytorch_to_tf import load_from_pytorch_checkpoint class CorefModel(object): def __init__(self, config): self.config = config self.subtoken_maps = {} self.max_segment_len = config['max_segment_len'] self.max_span_width = config["max_span_width"] self.mask_perc = config['mask_percentage'] #MODIFIED self.n_placeholders = 1 #MODIFIED self.genres = { g:i for i,g in enumerate(config["genres"]) } self.eval_data = None # Load eval data lazily. self.bert_config = modeling.BertConfig.from_json_file(config["bert_config_file"]) self.sep = 102 self.cls = 101 self.tokenizer = tokenization.FullTokenizer( vocab_file=config['vocab_file'], do_lower_case=False) input_props = [] input_props.append((tf.int32, [None, None])) # input_ids. input_props.append((tf.int32, [None, None])) # input_mask input_props.append((tf.int32, [None, None])) # input_ids. input_props.append((tf.int32, [None, None])) # input_mask input_props.append((tf.int32, [None])) # Text lengths. input_props.append((tf.int32, [None, None])) # Speaker IDs. input_props.append((tf.int32, [])) # Genre. input_props.append((tf.bool, [])) # Is training. input_props.append((tf.int32, [None])) # Gold starts. input_props.append((tf.int32, [None])) # Gold ends. input_props.append((tf.int32, [None])) # Cluster ids. input_props.append((tf.int32, [None])) # Sentence Map self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props] dtypes, shapes = zip(*input_props) queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes) self.enqueue_op = queue.enqueue(self.queue_input_tensors) self.input_tensors = queue.dequeue() self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors) # bert stuff tvars = tf.trainable_variables() assignment_map, initialized_variable_names = modeling.get_assignment_map_from_checkpoint(tvars, config['tf_checkpoint']) init_from_checkpoint = tf.train.init_from_checkpoint if config['init_checkpoint'].endswith('ckpt') else load_from_pytorch_checkpoint init_from_checkpoint(config['init_checkpoint'], assignment_map) print("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" # tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, # init_string) print(" name = %s, shape = %s%s" % (var.name, var.shape, init_string)) num_train_steps = int( self.config['num_docs'] * self.config['num_epochs']) num_warmup_steps = int(num_train_steps * 0.1) self.global_step = tf.train.get_or_create_global_step() self.train_op = optimization.create_custom_optimizer(tvars, self.loss, self.config['bert_learning_rate'], self.config['task_learning_rate'], num_train_steps, num_warmup_steps, False, self.global_step, freeze=-1) def start_enqueue_thread(self, session): print('Loading data') with open(self.config["train_path"]) as f: train_examples = [json.loads(jsonline) for jsonline in f.readlines()] def _enqueue_loop(): while True: random.shuffle(train_examples) if self.config['single_example']: for example in train_examples: example = add_masks(example, mask_profile = 'percentage', all_profiles = False, n_masks_profile = 1, skip_first_mention = False, perc_mask=self.mask_perc, n_placeholders = self.n_placeholders) tensorized_example = self.tensorize_example(example[0], is_training=True) feed_dict = dict(zip(self.queue_input_tensors, tensorized_example)) session.run(self.enqueue_op, feed_dict=feed_dict) else: examples = [] for example in train_examples: example = add_masks(example, mask_profile = 'percentage', all_profiles = False, n_masks_profile = 1, skip_first_mention = False, perc_mask=self.mask_perc, n_placeholders = self.n_placeholders) tensorized = self.tensorize_example(example[0], is_training=True) if type(tensorized) is not list: tensorized = [tensorized] examples += tensorized random.shuffle(examples) print('num examples', len(examples)) for example in examples: feed_dict = dict(zip(self.queue_input_tensors, example)) session.run(self.enqueue_op, feed_dict=feed_dict) enqueue_thread = threading.Thread(target=_enqueue_loop) enqueue_thread.daemon = True enqueue_thread.start() def restore(self, session): # Don't try to restore unused variables from the TF-Hub ELMo module. vars_to_restore = [v for v in tf.global_variables() ] saver = tf.train.Saver(vars_to_restore) checkpoint_path = os.path.join(self.config["log_dir"], "model.max.ckpt") print("Restoring from {}".format(checkpoint_path)) session.run(tf.global_variables_initializer()) saver.restore(session, checkpoint_path) def tensorize_mentions(self, mentions): if len(mentions) > 0: starts, ends = zip(*mentions) else: starts, ends = [], [] return np.array(starts), np.array(ends) def tensorize_span_labels(self, tuples, label_dict): if len(tuples) > 0: starts, ends, labels = zip(*tuples) else: starts, ends, labels = [], [], [] return np.array(starts), np.array(ends), np.array([label_dict[c] for c in labels]) def get_speaker_dict(self, speakers): speaker_dict = {'UNK': 0, '[SPL]': 1} for s in speakers: if s not in speaker_dict and len(speaker_dict) < self.config['max_num_speakers']: speaker_dict[s] = len(speaker_dict) return speaker_dict def tensorize_example(self, example, is_training): clusters = example["clusters"] gold_mentions = sorted(tuple(m) for m in util.flatten(clusters)) gold_mention_map = {m:i for i,m in enumerate(gold_mentions)} cluster_ids = np.zeros(len(gold_mentions)) for cluster_id, cluster in enumerate(clusters): for mention in cluster: cluster_ids[gold_mention_map[tuple(mention)]] = cluster_id + 1 sentences = example["sentences"] #sentences = [sentence[1:-1] for sentence in sentences] num_words = sum(len(s) for s in sentences) speakers = example["speakers"] # assert num_words == len(speakers), (num_words, len(speakers)) speaker_dict = self.get_speaker_dict(util.flatten(speakers)) sentence_map = example['sentence_map'] max_sentence_length = self.max_segment_len #270 #max(len(s) for s in sentences) max_len = max(len(s) + 2 for s in sentences) # CHANGED; two symbols added later if max_len > max_sentence_length: max_sentence_length = max_len text_len = np.array([len(s) for s in sentences]) input_ids, input_mask, speaker_ids, prev_overlap = [], [], [], [] overlap_ids, overlap_mask = [], [] half = self.max_segment_len // 2 prev_tokens_per_seg = [] for i, (sentence, speaker) in enumerate(zip(sentences, speakers)): prev_tokens_per_seg += [len(prev_overlap)] overlap_words = ['[CLS]'] + prev_overlap + sentence[:half] + ['[SEP]'] prev_overlap = sentence[half:] sentence = ['[CLS]'] + sentence + ['[SEP]'] sent_input_ids = self.tokenizer.convert_tokens_to_ids(sentence) sent_input_mask = [1] * len(sent_input_ids) sent_speaker_ids = [speaker_dict.get(s, 0) for s in ['##'] + speaker + ['##']] while len(sent_input_ids) < max_sentence_length: sent_input_ids.append(0) sent_input_mask.append(0) sent_speaker_ids.append(0) overlap_input_ids = self.tokenizer.convert_tokens_to_ids(overlap_words) overlap_input_mask = [1] * len(overlap_input_ids) while len(overlap_input_ids) < max_sentence_length: overlap_input_ids.append(0) overlap_input_mask.append(0) input_ids.append(sent_input_ids) speaker_ids.append(sent_speaker_ids) input_mask.append(sent_input_mask) overlap_ids.append(overlap_input_ids) overlap_mask.append(overlap_input_mask) overlap_words = ['[CLS]'] + prev_overlap + ['[SEP]'] overlap_input_ids = self.tokenizer.convert_tokens_to_ids(overlap_words) overlap_input_mask = [1] * len(overlap_input_ids) prev_tokens_per_seg += [len(prev_overlap)] while len(overlap_input_ids) < max_sentence_length: overlap_input_ids.append(0) overlap_input_mask.append(0) overlap_ids.append(overlap_input_ids) overlap_mask.append(overlap_input_mask) input_ids = np.array(input_ids) input_mask = np.array(input_mask) speaker_ids = np.array(speaker_ids) overlap_ids = np.array(overlap_ids) overlap_mask =
np.array(overlap_mask)
numpy.array
import numpy as np from scipy.optimize import linear_sum_assignment from ._base_metric import _BaseMetric from .. import _timing class Identity(_BaseMetric): """Class which implements the ID metrics""" def __init__(self): super().__init__() self.integer_fields = ['IDTP', 'IDFN', 'IDFP'] self.float_fields = ['IDF1', 'IDR', 'IDP'] self.fields = self.float_fields + self.integer_fields self.summary_fields = self.fields self.threshold = 0.5 @_timing.time def eval_sequence(self, data): """Calculates ID metrics for one sequence""" # Initialise results res = {} for field in self.fields: res[field] = 0 # Return result quickly if tracker or gt sequence is empty if data['num_tracker_dets'] == 0: res['IDFN'] = data['num_gt_dets'] return res if data['num_gt_dets'] == 0: res['IDFP'] = data['num_tracker_dets'] return res # Variables counting global association potential_matches_count = np.zeros((data['num_gt_ids'], data['num_tracker_ids'])) gt_id_count = np.zeros(data['num_gt_ids']) tracker_id_count = np.zeros(data['num_tracker_ids']) # First loop through each timestep and accumulate global track information. for t, (gt_ids_t, tracker_ids_t) in enumerate(zip(data['gt_ids'], data['tracker_ids'])): # Count the potential matches between ids in each timestep matches_mask = np.greater_equal(data['similarity_scores'][t], self.threshold) match_idx_gt, match_idx_tracker = np.nonzero(matches_mask) potential_matches_count[gt_ids_t[match_idx_gt], tracker_ids_t[match_idx_tracker]] += 1 # Calculate the total number of dets for each gt_id and tracker_id. gt_id_count[gt_ids_t] += 1 tracker_id_count[tracker_ids_t] += 1 # Calculate optimal assignment cost matrix for ID metrics num_gt_ids = data['num_gt_ids'] num_tracker_ids = data['num_tracker_ids'] fp_mat =
np.zeros((num_gt_ids + num_tracker_ids, num_gt_ids + num_tracker_ids))
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import time import pandas as pd import numpy as np import os __docformat__ = 'restructedtext en' def exe_time(func): def new_func(*args, **args2): t0 = time.time() print("-- @%s, {%s} start" % (time.strftime("%X", time.localtime()), func.__name__)) back = func(*args, **args2) print("-- @%s, {%s} end" % (time.strftime("%X", time.localtime()), func.__name__)) print("-- @%.3fs taken for {%s}" % (time.time() - t0, func.__name__)) return back return new_func def fun_hit_zero_one(user_test_recom): """ 根据recom_list中item在test_lst里的出现情况生成与recom_list等长的0/1序列 0表示推荐的item不在test里,1表示推荐的item在test里 :param test_lst: 单个用户的test列表 :param recom_lst: 推荐的列表 :param test_mask: 单个用户的test列表对应的mask列表 :return: 与recom_list等长的0/1序列。 """ test_lst, recom_lst, test_mask, _ = user_test_recom test_lst = test_lst[:np.sum(test_mask)] # 取出来有效的user_test_list seq = [] for e in recom_lst: if e in test_lst: # 命中 seq.append(1) else: # 没命中 seq.append(0) return np.array(seq) def fun_evaluate_map(user_test_recom_zero_one): """ 计算map。所得是单个用户test的,最后所有用户的求和取平均 :param test_lst: 单个用户的test集 :param zero_one: 0/1序列 :param test_mask: 单个用户的test列表对应的mask列表 :return: """ test_lst, zero_one, test_mask, _ = user_test_recom_zero_one test_lst = test_lst[:np.sum(test_mask)] zero_one = np.array(zero_one) if 0 == sum(zero_one): # 没有命中的 return 0.0 zero_one_cum = zero_one.cumsum() # precision要算累计命中 zero_one_cum *= zero_one # 取出命中为1的那些,其余位置得0 idxs = list(np.nonzero(zero_one_cum))[0] # 得到(n,)类型的非零的索引array s = 0.0 for idx in idxs: s += 1.0 * zero_one_cum[idx] / (idx + 1) return s / len(test_lst) def fun_evaluate_ndcg(user_test_recom_zero_one): """ 计算ndcg。所得是单个用户test的,最后所有用户的求和取平均 :param test_lst: 单个用户的test集 :param zero_one: 0/1序列 :param test_mask: 单个用户的test列表对应的mask列表 :return: """ test_lst, zero_one, test_mask, _ = user_test_recom_zero_one test_lst = test_lst[:np.sum(test_mask)] zero_one = np.array(zero_one) if 0 == sum(zero_one): # 没有命中的 return 0.0 s = 0.0 idxs = list(np.nonzero(zero_one))[0] for idx in idxs: s += 1.0 / np.log2(idx + 2) m = 0.0 length = min(len(test_lst), len(zero_one)) # 序列短的,都命中为1,此时是最优情况 for idx in range(length): m += 1.0 / np.log2(idx + 2) return s / m def fun_idxs_of_max_n_score(user_scores_to_all_items, top_k): # 从一个向量里找到前n个大数所对应的index return np.argpartition(user_scores_to_all_items, -top_k)[-top_k:] def fun_sort_idxs_max_to_min(user_max_n_idxs_scores): # 按照前n个大数index对应的具体值由大到小排序,即最左侧的index对应原得分值的最大实数值 # 就是生成的推荐items列表里,最左侧的是得分最高的 idxs, scores = user_max_n_idxs_scores # idxs是n个得分最大的items,scores是所有items的得分。 return idxs[np.argsort(scores[idxs])][::-1] # idxs按照对应得分由大到小排列 def fun_predict_auc_recall_map_ndcg( p, model, best, epoch, starts_ends_auc, starts_ends_tes, tes_buys_masks, tes_masks): # ------------------------------------------------------------------------------------------------------------------ # 注意:当zip里的所有子项tes_buys_masks, all_upqs维度一致时,也就是子项的每行每列长度都一样。 # zip后的arr会变成三维矩阵,扫描axis=1会出错得到的一行实际上是2d array,所以后边单独加一列 append 避免该问题。 append = [[0] for _ in np.arange(len(tes_buys_masks))] # ------------------------------------------------------------------------------------------------------------------ # auc all_upqs = np.array([[0 for _ in np.arange(len(tes_masks[0]))]]) # 初始化 for start_end in starts_ends_auc: sub_all_upqs = model.compute_sub_auc_preference(start_end) all_upqs = np.concatenate((all_upqs, sub_all_upqs)) all_upqs = np.delete(all_upqs, 0, axis=0) auc = 1.0 * np.sum(all_upqs) / np.sum(tes_masks) # 全部items # 保存:保存auc的最佳值 if auc > best.best_auc: best.best_auc = auc best.best_epoch_auc = epoch # ------------------------------------------------------------------------------------------------------------------ # recall, map, ndcg at_nums = p['at_nums'] # [5, 10, 15, 20, 30, 50] ranges = range(len(at_nums)) # 计算:所有用户对所有商品预测得分的前50个。 # 不会预测出来添加的那个虚拟商品,因为先把它从item表达里去掉 # 注意矩阵形式的索引 all_scores[0, rank]:表示all_scores的各行里取的各个列值是rank里的各项 all_ranks = np.array([[0 for _ in np.arange(at_nums[-1])]]) # 初始shape=(1, 50) for start_end in starts_ends_tes: sub_all_scores = model.compute_sub_all_scores(start_end) # shape=(sub_n_user, n_item) sub_score_ranks = np.apply_along_axis( func1d=fun_idxs_of_max_n_score, axis=1, arr=sub_all_scores, top_k=at_nums[-1]) sub_all_ranks = np.apply_along_axis( func1d=fun_sort_idxs_max_to_min, axis=1, arr=np.array(zip(sub_score_ranks, sub_all_scores))) all_ranks = np.concatenate((all_ranks, sub_all_ranks)) del sub_all_scores all_ranks = np.delete(all_ranks, 0, axis=0) # 去除第一行全0项 # 计算:recall、map、ndcg当前epoch的值 arr = np.array([0.0 for _ in ranges]) recall, precis, f1scor, map, ndcg = arr.copy(), arr.copy(), arr.copy(), arr.copy(), arr.copy() hits, denominator_recalls = arr.copy(), np.sum(tes_masks) # recall的分母,要预测这么些items for k in ranges: # 每次考察某个at值下的命中情况 recoms = all_ranks[:, :at_nums[k]] # 向每名user推荐这些 # 逐行,得到recom_lst在test_lst里的命中情况,返回与recom_lst等长的0/1序列,1表示预测的该item在user_test里 all_zero_ones = np.apply_along_axis( func1d=fun_hit_zero_one, axis=1, arr=np.array(zip(tes_buys_masks, recoms, tes_masks, append))) # shape=(n_user, at_nums[k]) hits[k] =
np.sum(all_zero_ones)
numpy.sum
import numpy as np import acor import logging from .findpeaks import peakdetect def peaks_and_lphs(y, x=None, lookahead=5, return_heights=False): """Returns locations of peaks and corresponding "local peak heights" """ if x is None: x = np.arange(len(y)) maxes, mins = peakdetect(y, x, lookahead=lookahead) maxes = np.array(maxes) mins = np.array(mins) logging.debug('maxes: {0} (shape={0.shape})'.format(maxes)) logging.debug('mins: {0} (shape={0.shape})'.format(mins)) if len(maxes) == 0: logging.warning('No peaks found in acorr; returning empty') if return_heights: return [], [], [] else: return [], [] n_maxes = maxes.shape[0] n_mins = mins.shape[0] if n_maxes==1 and n_mins==1: lphs = maxes[0,1] - mins[0,1] elif n_maxes == n_mins+1: lphs = np.concatenate([[maxes[0,1] - mins[0,1]], ((maxes[1:-1,1] - mins[1:,1]) + (maxes[1:-1,1] - mins[:-1,1]))/2]) elif n_mins == n_maxes+1: lphs = ((maxes[:,1] - mins[1:,1]) + (maxes[:1,1] - mins[:-1,1])) elif n_maxes == n_mins: if maxes[0,0] < mins[0,0]: lphs = np.concatenate([[maxes[0,1] - mins[0,1]], ((maxes[1:,1] - mins[:-1,1]) + (maxes[1:,1] + mins[1:,1]))/2]) else: lphs = np.concatenate([((maxes[:-1,1] - mins[:-1,1]) + (maxes[:-1,1] - mins[1:,1]))/2., [maxes[-1,1] - mins[-1,1]]]) else: raise RuntimeError('No cases satisfied??') ##if first extremum is a max, remove it: #if maxes[0,0] < mins[0,0]: # logging.debug('first extremum is a max; removing') # maxes = maxes[1:,:] # logging.debug('now, maxes: {}'.format(maxes)) # logging.debug('now, mins: {}'.format(mins)) ##if last extremum is a max, remove it: #if maxes[-1,0] > mins[-1,0]: # logging.debug('last extremum is a max; removing') # maxes = maxes[:-1,:] # logging.debug('now, maxes: {}'.format(maxes)) # logging.debug('now, mins: {}'.format(mins)) #this should always work now? #lphs = ((maxes[:,1] - mins[:-1,1]) + (maxes[:,1] - mins[1:,1]))/2. """ if maxes.shape[0]==1: if return_heights: return maxes[:,0], [], [] else: return [], [] #calculate "local heights". First (used to) always be a minimum. try: #this if maxes and mins are same length lphs = np.concatenate([((maxes[:-1,1] - mins[:-1,1]) + (maxes[:-1,1] - mins[1:,1]))/2., np.array([maxes[-1,1]-mins[-1,1]])]) except ValueError: #this if mins have one more try: lphs = ((maxes[:,1] - mins[:-1,1]) + (maxes[:,1] - mins[1:,1]))/2. except ValueError: # if maxes have one more (drop first max) lphs = np.concatenate([((maxes[1:-1,1] - mins[:-1,1]) + (maxes[1:-1,1] - mins[1:,1]))/2., np.array([maxes[-1,1]-mins[-1,1]])]) """ logging.debug('lphs: {}'.format(lphs)) if return_heights: return maxes[:,0], lphs, maxes[:,1] else: return maxes[:,0], lphs def acorr_peaks_old(fs, maxlag, mask=None, lookahead=5, smooth=18, return_acorr=False, days=True): """Returns positions of acorr peaks, with corresponding local heights. """ fs = np.atleast_1d(fs) if mask is None: mask = self.mask fs[mask] = 0 corr = acor.function(fs,maxlag) lag = np.arange(maxlag) logging.debug('ac: {}'.format(corr)) #lag, corr = acorr(fs, mask=mask, maxlag=maxlag) maxes, mins = peakdetect(corr, lag, lookahead=lookahead) maxes = np.array(maxes) mins = np.array(mins) logging.debug('maxes: {}'.format(maxes)) #calculate "local heights". First will always be a minimum. try: #this if maxes and mins are same length lphs = np.concatenate([((maxes[:-1,1] - mins[:-1,1]) + (maxes[:-1,1] - mins[1:,1]))/2., np.array([maxes[-1,1]-mins[-1,1]])]) except ValueError: #this if mins have one more lphs = ((maxes[:,1] - mins[:-1,1]) + (maxes[:,1] - mins[1:,1]))/2. if return_acorr: return corr, maxes[:-1,0], lphs[:-1] #leaving off the last one, just in case weirdness... else: return maxes[:-1,0], lphs[:-1] #leaving off the last one, just in case weirdness... def fit_period(period, peaks, lphs, fit_npeaks=4, tol=0.2): """fits series of fit_npeaks peaks near integer multiples of period to a line tol is fractional tolerance in order to select a peak to fit. """ #identify peaks to use in fit: first 'fit_npeaks' peaks w/in # 20% of integer multiple of period logging.debug(np.absolute((peaks[:fit_npeaks]/period)/(np.arange(fit_npeaks)+1) - 1)) close_peaks = np.absolute((peaks[:fit_npeaks]/period)/(
np.arange(fit_npeaks)
numpy.arange
""" Dataset for 3D object detection on SUN RGB-D (with support of vote supervision). A sunrgbd oriented bounding box is parameterized by (cx,cy,cz), (l,w,h) -- (dx,dy,dz) in upright depth coord (Z is up, Y is forward, X is right ward), heading angle (from +X rotating to -Y) and semantic class Point clouds are in **upright_depth coordinate (X right, Y forward, Z upward)** Return heading class, heading residual, size class and size residual for 3D bounding boxes. Oriented bounding box is parameterized by (cx,cy,cz), (l,w,h), heading_angle and semantic class label. (cx,cy,cz) is in upright depth coordinate (l,h,w) are *half length* of the object sizes The heading angle is a rotation rad from +X rotating towards -Y. (+X is 0, -Y is pi/2) Author: <NAME> Date: 2021 """ import os import sys import numpy as np from torch.utils.data import Dataset import scipy.io as sio # to load .mat files for depth points import cv2 BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) import pc_util import my_sunrgbd_utils as sunrgbd_utils from my_model_util_sunrgbd import SunrgbdDatasetConfig DC = SunrgbdDatasetConfig() # dataset specific config MAX_NUM_OBJ = 64 # maximum number of objects allowed per scene MEAN_COLOR_RGB = np.array([0.5, 0.5, 0.5]) # sunrgbd color is in 0~1 class SunrgbdDetectionVotesDataset(Dataset): def __init__(self, split_set='train', num_points=20000, use_color=False, use_height=False, use_v1=False, augment=False, scan_idx_list=None): assert (num_points <= 80000) self.use_v1 = use_v1 if use_v1: self.data_path = os.path.join(ROOT_DIR, 'sunrgbd/sunrgbd_pc_bbox_votes_80k_v1_%s' % (split_set)) else: self.data_path = os.path.join(ROOT_DIR, 'sunrgbd/sunrgbd_pc_bbox_votes_80k_v2_%s' % (split_set)) self.raw_data_path = os.path.join(ROOT_DIR, 'sunrgbd/sunrgbd_trainval') self.scan_names = sorted(list(set([os.path.basename(x)[0:6] \ for x in os.listdir(self.data_path)]))) if scan_idx_list is not None: self.scan_names = [self.scan_names[i] for i in scan_idx_list] self.num_points = num_points self.augment = augment self.use_color = use_color self.use_height = use_height def __len__(self): return len(self.scan_names) def __getitem__(self, idx): """ Returns a dict with following keys: point_clouds: (N,3+C) #ST: C is the RGB and/or height center_label: (MAX_NUM_OBJ,3) for GT box center XYZ heading_class_label: (MAX_NUM_OBJ,) with int values in 0,...,NUM_HEADING_BIN-1 heading_residual_label: (MAX_NUM_OBJ,) size_classe_label: (MAX_NUM_OBJ,) with int values in 0,...,NUM_SIZE_CLUSTER size_residual_label: (MAX_NUM_OBJ,3) sem_cls_label: (MAX_NUM_OBJ,) semantic class index box_label_mask: (MAX_NUM_OBJ) as 0/1 with 1 indicating a unique box vote_label: (N,9) with votes XYZ (3 votes: X1Y1Z1, X2Y2Z2, X3Y3Z3) if there is only one vote than X1==X2==X3 etc. vote_label_mask: (N,) with 0/1 with 1 indicating the point is in one of the object's OBB. scan_idx: int scan index in scan_names list max_gt_bboxes: unused """ scan_name = self.scan_names[idx] point_cloud = np.load(os.path.join(self.data_path, scan_name) + '_pc.npz')['pc'] # Nx6 bboxes = np.load(os.path.join(self.data_path, scan_name) + '_bbox.npy') # K,8 centroids (cx,cy,cz), dimension (l,w,h), heanding_angle and semantic_class calib = np.load(os.path.join(self.data_path, scan_name) + '_calib.npy') img = sunrgbd_utils.load_image(os.path.join(self.data_path, scan_name) + '_img.jpg') d_img = sunrgbd_utils.load_depth_image(os.path.join(self.data_path, scan_name) + '_depth_img.png') if not self.use_color: point_cloud = point_cloud[:, 0:3] else: point_cloud = point_cloud[:, 0:6] point_cloud[:, 3:] = (point_cloud[:, 3:] - MEAN_COLOR_RGB) if self.use_height: floor_height = np.percentile(point_cloud[:, 2], 0.99) height = point_cloud[:, 2] - floor_height point_cloud = np.concatenate([point_cloud, np.expand_dims(height, 1)], 1) # (N,4) or (N,7) # ------------------------------- LABELS ------------------------------ box3d_centers = np.zeros((MAX_NUM_OBJ, 3)) box3d_sizes = np.zeros((MAX_NUM_OBJ, 3)) #ST: L, W, H label_mask = np.zeros((MAX_NUM_OBJ)) label_mask[0:bboxes.shape[0]] = 1 #ST: mark first K objects only used max_bboxes = np.zeros((MAX_NUM_OBJ, 8)) max_bboxes[0:bboxes.shape[0], :] = bboxes for i in range(bboxes.shape[0]): bbox = bboxes[i] semantic_class = bbox[7] box3d_center = bbox[0:3] # NOTE: The mean size stored in size2class is of full length of box edges, # while in sunrgbd_data.py data dumping we dumped *half* length l,w,h.. so have to time it by 2 here box3d_size = bbox[3:6] * 2 box3d_centers[i, :] = box3d_center box3d_sizes[i, :] = box3d_size target_bboxes_mask = label_mask target_bboxes = np.zeros((MAX_NUM_OBJ, 6)) for i in range(bboxes.shape[0]): bbox = bboxes[i] corners_3d = sunrgbd_utils.my_compute_box_3d(bbox[0:3], bbox[3:6], bbox[6]) # compute axis aligned box xmin = np.min(corners_3d[:, 0]) ymin = np.min(corners_3d[:, 1]) zmin = np.min(corners_3d[:, 2]) xmax = np.max(corners_3d[:, 0]) ymax =
np.max(corners_3d[:, 1])
numpy.max
# Databricks notebook source # MAGIC %md # MAGIC # MAGIC # [SDS-2.2, Scalable Data Science](https://lamastex.github.io/scalable-data-science/sds/2/2/) # MAGIC # MAGIC This is used in a non-profit educational setting with kind permission of [<NAME>](https://www.linkedin.com/in/adbreind). # MAGIC This is not licensed by Adam for use in a for-profit setting. Please contact Adam directly at `<EMAIL>` to request or report such use cases or abuses. # MAGIC A few minor modifications and additional mathematical statistical pointers have been added by <NAME> when teaching PhD students in Uppsala University. # MAGIC # MAGIC Please feel free to refer to basic concepts here: # MAGIC # MAGIC * Udacity's course on Deep Learning [https://www.udacity.com/course/deep-learning--ud730](https://www.udacity.com/course/deep-learning--ud730) by Google engineers: <NAME> and <NAME> and their full video playlist: # MAGIC * [https://www.youtube.com/watch?v=X_B9NADf2wk&index=2&list=PLAwxTw4SYaPn_OWPFT9ulXLuQrImzHfOV](https://www.youtube.com/watch?v=X_B9NADf2wk&index=2&list=PLAwxTw4SYaPn_OWPFT9ulXLuQrImzHfOV) # COMMAND ---------- # MAGIC %md # MAGIC Archived YouTube video of this live unedited lab-lecture: # MAGIC # MAGIC [![Archived YouTube video of this live unedited lab-lecture](http://img.youtube.com/vi/nHYXMZAHM1c/0.jpg)](https://www.youtube.com/embed/nHYXMZAHM1c?start=0&end=2465&autoplay=1) [![Archived YouTube video of this live unedited lab-lecture](http://img.youtube.com/vi/4cD8ieyHVh4/0.jpg)](https://www.youtube.com/embed/4cD8ieyHVh4?start=0&end=2353&autoplay=1) # COMMAND ---------- # MAGIC %md # MAGIC # Entering the 4th Dimension # MAGIC ## Networks for Understanding Time-Oriented Patterns in Data # MAGIC # MAGIC Common time-based problems include # MAGIC * Sequence modeling: "What comes next?" # MAGIC * Likely next letter, word, phrase, category, cound, action, value # MAGIC * Sequence-to-Sequence modeling: "What alternative sequence is a pattern match?" (i.e., similar probability distribution) # MAGIC * Machine translation, text-to-speech/speech-to-text, connected handwriting (specific scripts) # MAGIC # MAGIC <img src="http://i.imgur.com/tnxf9gV.jpg"> # COMMAND ---------- # MAGIC %md # MAGIC ### Simplified Approaches # MAGIC # MAGIC * If we know all of the sequence states and the probabilities of state transition... # MAGIC * ... then we have a simple Markov Chain model. # MAGIC # MAGIC * If we *don't* know all of the states or probabilities (yet) but can make constraining assumptions and acquire solid information from observing (sampling) them... # MAGIC * ... we can use a Hidden Markov Model approach. # MAGIC # MAGIC These approached have only limited capacity because they are effectively stateless and so have some degree of "extreme retrograde amnesia." # MAGIC # MAGIC ### Can we use a neural network to learn the "next" record in a sequence? # MAGIC # MAGIC First approach, using what we already know, might look like # MAGIC * Clamp input sequence to a vector of neurons in a feed-forward network # MAGIC * Learn a model on the class of the next input record # MAGIC # MAGIC Let's try it! This can work in some situations, although it's more of a setup and starting point for our next development. # COMMAND ---------- # MAGIC %md # MAGIC We will make up a simple example of the English alphabet sequence wehere we try to predict the next alphabet from a sequence of length 3. # COMMAND ---------- alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) seq_length = 3 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print (seq_in, '->', seq_out) # COMMAND ---------- # dataX is just a reindexing of the alphabets in consecutive triplets of numbers dataX # COMMAND ---------- dataY # just a reindexing of the following alphabet after each consecutive triplet of numbers # COMMAND ---------- # MAGIC %md # MAGIC Train a network on that data: # COMMAND ---------- import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM # <- this is the Long-Short-term memory layer from keras.utils import np_utils # begin data generation ------------------------------------------ # this is just a repeat of what we did above alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) seq_length = 3 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print (seq_in, '->', seq_out) # end data generation --------------------------------------------- X = numpy.reshape(dataX, (len(dataX), seq_length)) X = X / float(len(alphabet)) # normalize the mapping of alphabets from integers into [0, 1] y = np_utils.to_categorical(dataY) # make the output we want to predict to be categorical # keras architecturing of a feed forward dense or fully connected Neural Network model = Sequential() # draw the architecture of the network given by next two lines, hint: X.shape[1] = 3, y.shape[1] = 26 model.add(Dense(30, input_dim=X.shape[1], kernel_initializer='normal', activation='relu')) model.add(Dense(y.shape[1], activation='softmax')) # keras compiling and fitting model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=1000, batch_size=5, verbose=2) scores = model.evaluate(X, y) print("Model Accuracy: %.2f " % scores[1]) for pattern in dataX: x = numpy.reshape(pattern, (1, len(pattern))) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) # get prediction from fitted model index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print (seq_in, "->", result) # print the predicted outputs # COMMAND ---------- X.shape[1], y.shape[1] # get a sense of the shapes to understand the network architecture # COMMAND ---------- # MAGIC %md # MAGIC The network does learn, and could be trained to get a good accuracy. But what's really going on here? # MAGIC # MAGIC Let's leave aside for a moment the simplistic training data (one fun experiment would be to create corrupted sequences and augment the data with those, forcing the network to pay attention to the whole sequence). # MAGIC # MAGIC Because the model is fundamentally symmetric and stateless (in terms of the sequence; naturally it has weights), this model would need to learn every sequential feature relative to every single sequence position. That seems difficult, inflexible, and inefficient. # MAGIC # MAGIC Maybe we could add layers, neurons, and extra connections to mitigate parts of the problem. We could also do things like a 1D convolution to pick up frequencies and some patterns. # MAGIC # MAGIC But instead, it might make more sense to explicitly model the sequential nature of the data (a bit like how we explictly modeled the 2D nature of image data with CNNs). # COMMAND ---------- # MAGIC %md # MAGIC ## Recurrent Neural Network Concept # MAGIC # MAGIC __Let's take the neuron's output from one time (t) and feed it into that same neuron at a later time (t+1), in combination with other relevant inputs. Then we would have a neuron with memory.__ # MAGIC # MAGIC We can weight the "return" of that value and train the weight -- so the neuron learns how important the previous value is relative to the current one. # MAGIC # MAGIC Different neurons might learn to "remember" different amounts of prior history. # MAGIC # MAGIC This concept is called a *Recurrent Neural Network*, originally developed around the 1980s. # MAGIC # MAGIC Let's recall some pointers from the crash intro to Deep learning. # MAGIC # MAGIC ### Watch following videos now for 12 minutes for the fastest introduction to RNNs and LSTMs # MAGIC # MAGIC [Udacity: Deep Learning by <NAME> - Recurrent Neural network](https://youtu.be/LTbLxm6YIjE?list=PLAwxTw4SYaPn_OWPFT9ulXLuQrImzHfOV) # MAGIC # MAGIC #### Recurrent neural network # MAGIC ![Recurrent neural network](http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png) # MAGIC [http://colah.github.io/posts/2015-08-Understanding-LSTMs/](http://colah.github.io/posts/2015-08-Understanding-LSTMs/) # MAGIC # MAGIC # MAGIC [http://karpathy.github.io/2015/05/21/rnn-effectiveness/](http://karpathy.github.io/2015/05/21/rnn-effectiveness/) # MAGIC *** # MAGIC # MAGIC *** # MAGIC ##### LSTM - Long short term memory # MAGIC ![LSTM](http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png) # MAGIC # MAGIC *** # MAGIC ##### GRU - Gated recurrent unit # MAGIC ![Gated Recurrent unit](http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png) # MAGIC [http://arxiv.org/pdf/1406.1078v3.pdf](http://arxiv.org/pdf/1406.1078v3.pdf) # MAGIC # MAGIC # MAGIC ### Training a Recurrent Neural Network # MAGIC # MAGIC <img src="http://i.imgur.com/iPGNMvZ.jpg"> # MAGIC # MAGIC We can train an RNN using backpropagation with a minor twist: since RNN neurons with different states over time can be "unrolled" (i.e., are analogous) to a sequence of neurons with the "remember" weight linking directly forward from (t) to (t+1), we can backpropagate through time as well as the physical layers of the network. # MAGIC # MAGIC This is, in fact, called __Backpropagation Through Time__ (BPTT) # MAGIC # MAGIC The idea is sound but -- since it creates patterns similar to very deep networks -- it suffers from the same challenges: # MAGIC * Vanishing gradient # MAGIC * Exploding gradient # MAGIC * Saturation # MAGIC * etc. # MAGIC # MAGIC i.e., many of the same problems with early deep feed-forward networks having lots of weights. # MAGIC # MAGIC 10 steps back in time for a single layer is a not as bad as 10 layers (since there are fewer connections and, hence, weights) but it does get expensive. # MAGIC # MAGIC --- # MAGIC # MAGIC > __ASIDE: Hierarchical and Recursive Networks, Bidirectional RNN__ # MAGIC # MAGIC > Network topologies can be built to reflect the relative structure of the data we are modeling. E.g., for natural language, grammar constraints mean that both hierarchy and (limited) recursion may allow a physically smaller model to achieve more effective capacity. # MAGIC # MAGIC > A bi-directional RNN includes values from previous and subsequent time steps. This is less strange than it sounds at first: after all, in many problems, such as sentence translation (where BiRNNs are very popular) we usually have the entire source sequence at one time. In that case, a BiDiRNN is really just saying that both prior and subsequent words can influence the interpretation of each word, something we humans take for granted. # MAGIC # MAGIC > Recent versions of neural net libraries have support for bidirectional networks, although you may need to write (or locate) a little code yourself if you want to experiment with hierarchical networks. # MAGIC # MAGIC --- # MAGIC # MAGIC ## Long Short-Term Memory (LSTM) # MAGIC # MAGIC "Pure" RNNs were never very successful. <NAME> and <NAME> (1997) made a game-changing contribution with the publication of the Long Short-Term Memory unit. How game changing? It's effectively state of the art today. # MAGIC # MAGIC <sup>(Credit and much thanks to <NAME>, http://colah.github.io/about.html, Research Scientist at Google Brain, for publishing the following excellent diagrams!)</sup> # MAGIC # MAGIC *In the following diagrams, pay close attention that the output value is "split" for graphical purposes -- so the two *h* arrows/signals coming out are the same signal.* # MAGIC # MAGIC __RNN Cell:__ # MAGIC <img src="http://i.imgur.com/DfYyKaN.png" width=600> # MAGIC # MAGIC __LSTM Cell:__ # MAGIC # MAGIC <img src="http://i.imgur.com/pQiMLjG.png" width=600> # MAGIC # MAGIC # MAGIC An LSTM unit is a neuron with some bonus features: # MAGIC * Cell state propagated across time # MAGIC * Input, Output, Forget gates # MAGIC * Learns retention/discard of cell state # MAGIC * Admixture of new data # MAGIC * Output partly distinct from state # MAGIC * Use of __addition__ (not multiplication) to combine input and cell state allows state to propagate unimpeded across time (addition of gradient) # MAGIC # MAGIC --- # MAGIC # MAGIC > __ASIDE: Variations on LSTM__ # MAGIC # MAGIC > ... include "peephole" where gate functions have direct access to cell state; convolutional; and bidirectional, where we can "cheat" by letting neurons learn from future time steps and not just previous time steps. # MAGIC # MAGIC ___ # MAGIC # MAGIC Slow down ... exactly what's getting added to where? For a step-by-step walk through, read <NAME>'s full post http://colah.github.io/posts/2015-08-Understanding-LSTMs/ # MAGIC # MAGIC # MAGIC ### Do LSTMs Work Reasonably Well? # MAGIC # MAGIC __Yes!__ These architectures are in production (2017) for deep-learning-enabled products at Baidu, Google, Microsoft, Apple, and elsewhere. They are used to solve problems in time series analysis, speech recognition and generation, connected handwriting, grammar, music, and robot control systems. # MAGIC # MAGIC ### Let's Code an LSTM Variant of our Sequence Lab # MAGIC # MAGIC (this great demo example courtesy of <NAME>: http://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/) # COMMAND ---------- import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.utils import np_utils alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) seq_length = 3 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print (seq_in, '->', seq_out) # reshape X to be .......[samples, time steps, features] X = numpy.reshape(dataX, (len(dataX), seq_length, 1)) X = X / float(len(alphabet)) y = np_utils.to_categorical(dataY) # Let’s define an LSTM network with 32 units and an output layer with a softmax activation function for making predictions. # a naive implementation of LSTM model = Sequential() model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2]))) # <- LSTM layer... model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X, y, epochs=400, batch_size=1, verbose=2) scores = model.evaluate(X, y) print("Model Accuracy: %.2f%%" % (scores[1]*100)) for pattern in dataX: x = numpy.reshape(pattern, (1, len(pattern), 1)) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print (seq_in, "->", result) # COMMAND ---------- (X.shape[1], X.shape[2]) # the input shape to LSTM layer with 32 neurons is given by dimensions of time-steps and features # COMMAND ---------- X.shape[0], y.shape[1] # number of examples and number of categorical outputs # COMMAND ---------- # MAGIC %md # MAGIC __Memory and context__ # MAGIC # MAGIC If this network is learning the way we would like, it should be robust to noise and also understand the relative context (in this case, where a prior letter occurs in the sequence). # MAGIC # MAGIC I.e., we should be able to give it corrupted sequences, and it should produce reasonably correct predictions. # MAGIC # MAGIC Make the following change to the code to test this out: # MAGIC # MAGIC ## You Try! # MAGIC * We'll use "W" for our erroneous/corrupted data element # MAGIC * Add code at the end to predict on the following sequences: # MAGIC * 'WBC', 'WKL', 'WTU', 'DWF', 'MWO', 'VWW', 'GHW', 'JKW', 'PQW' # MAGIC * Notice any pattern? Hard to tell from a small sample, but if you play with it (trying sequences from different places in the alphabet, or different "corruption" letters, you'll notice patterns that give a hint at what the network is learning # MAGIC # MAGIC The solution is in `060_DLByABr_05a-LSTM-Solution` if you are lazy right now or get stuck. # MAGIC # MAGIC __Pretty cool... BUT__ # MAGIC # MAGIC This alphabet example does seem a bit like "tennis without the net" since the original goal was to develop networks that could extract patterns from complex, ambiguous content like natural language or music, and we've been playing with a sequence (Roman alphabet) that is 100% deterministic and tiny in size. # MAGIC # MAGIC First, go ahead and start `061_DLByABr_05b-LSTM-Language` since it will take several minutes to produce its first output. # MAGIC # MAGIC This latter script is taken 100% exactly as-is from the Keras library examples folder (https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py) and uses precisely the logic we just learned, in order to learn and synthesize English language text from a single-author corpuse. The amazing thing is that the text is learned and generated one letter at a time, just like we did with the alphabet. # MAGIC # MAGIC Compared to our earlier examples... # MAGIC * there is a minor difference in the way the inputs are encoded, using 1-hot vectors # MAGIC * and there is a *significant* difference in the way the outputs (predictions) are generated: instead of taking just the most likely output class (character) via argmax as we did before, this time we are treating the output as a distribution and sampling from the distribution. # MAGIC # MAGIC Let's take a look at the code ... but even so, this will probably be something to come back to after fika or a long break, as the training takes about 5 minutes per epoch (late 2013 MBP CPU) and we need around 20 epochs (80 minutes!) to get good output. # COMMAND ---------- import sys sys.exit(0) #just to keep from accidentally running this code (that is already in 061_DLByABr_05b-LSTM-Language) HERE '''Example script to generate text from Nietzsche's writings. At least 20 epochs are required before the generated text starts sounding coherent. It is recommended to run this script on GPU, as recurrent networks are quite computationally intensive. If you try this script on new data, make sure your corpus has at least ~100k characters. ~1M is better. ''' from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file import numpy as np import random import sys path = "../data/nietzsche.txt" text = open(path).read().lower() print('corpus length:', len(text)) chars = sorted(list(set(text))) print('total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) # cut the text in semi-redundant sequences of maxlen characters maxlen = 40 step = 3 sentences = [] next_chars = [] for i in range(0, len(text) - maxlen, step): sentences.append(text[i: i + maxlen]) next_chars.append(text[i + maxlen]) print('nb sequences:', len(sentences)) print('Vectorization...') X = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sentences), len(chars)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): X[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1 # build the model: a single LSTM print('Build model...') model = Sequential() model.add(LSTM(128, input_shape=(maxlen, len(chars)))) model.add(Dense(len(chars))) model.add(Activation('softmax')) optimizer = RMSprop(lr=0.01) model.compile(loss='categorical_crossentropy', optimizer=optimizer) def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds =
np.log(preds)
numpy.log
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import unittest import numpy as np from mo.front.common.partial_infer.elemental import copy_shape_infer from mo.front.common.partial_infer.eltwise import eltwise_infer from mo.middle.passes.fusing.resnet_optimization import stride_optimization from mo.ops.convolution import Convolution from mo.ops.pooling import Pooling from mo.utils.ir_engine.compare_graphs import compare_graphs from mo.utils.unittest.graph import build_graph max_elt_lambda = lambda node: eltwise_infer(node, lambda a, b: np.maximum(a, b)) nodes_attributes = { # Placeholders 'placeholder_1': {'shape': None, 'type': 'Parameter', 'kind': 'op', 'op': 'Parameter'}, 'placeholder_1_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, # Concat1 operation 'eltwise_1': {'type': 'Maximum', 'kind': 'op', 'op': 'Maximum', 'infer': max_elt_lambda}, 'eltwise_1_data': {'name': 'eltwise_1_data', 'value': None, 'shape': None, 'kind': 'data'}, # Convolutions 'conv_1': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_1_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_1_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_1_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_2': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_2_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_2_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_2_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_3': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_3_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_3_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_3_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_4': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_4_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_4_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_4_data': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_5': {'type': 'Convolution', 'kind': 'op', 'op': 'Conv2D', 'layout': 'NCHW', 'output_spatial_shape': None, 'output_shape': None, 'bias_term': True, 'group': 1, 'spatial_dims': np.array([2, 3]), 'channel_dims': np.array([1]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'dilation': np.array([1, 1, 1, 1]), 'batch_dims': np.array([0]), 'infer': Convolution.infer, 'kernel_spatial_idx': np.array([2, 3], dtype=np.int64), 'input_feature_channel': 1, 'output_feature_channel': 0, }, 'conv_5_w': {'value': None, 'shape': None, 'kind': 'data', 'dim_attrs': ['spatial_dims', 'channel_dims', 'batch_dims', 'axis']}, 'conv_5_b': {'value': None, 'shape': None, 'kind': 'data'}, 'conv_5_data': {'value': None, 'shape': None, 'kind': 'data'}, # ReLU 'relu_1': {'shape': None, 'type': 'ReLU', 'kind': 'op', 'op': 'ReLU', 'infer': copy_shape_infer}, 'relu_1_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, 'relu_2': {'shape': None, 'type': 'ReLU', 'kind': 'op', 'op': 'ReLU', 'infer': copy_shape_infer}, 'relu_2_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, 'relu_3': {'shape': None, 'type': 'ReLU', 'kind': 'op', 'op': 'ReLU', 'infer': copy_shape_infer}, 'relu_3_data': {'value': None, 'shape': None, 'kind': 'data', 'data_type': None}, # Pooling 'pool_1': {'type': 'Pooling', 'kind': 'op', 'op': 'Pooling', 'spatial_dims': np.array([2, 3]), 'pad_spatial_shape': np.array([[0, 0], [0, 0]]), 'infer': Pooling.infer}, 'pool_1_data': {'value': None, 'shape': None, 'kind': 'data'}, } # In description of unit tests below will be used next syntax: Operation(NxM,XxY), where NxM - kernel size, XxY - stride class ResnetOptimizationTests(unittest.TestCase): # Pl->Conv(1x1,1x1)->Conv(1x1,2x2) => Pl->Conv(1x1,2x2)->Conv(1x1,1x1) def test_resnet_optimization_1(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 1, 1]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 112, 112])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 1, 1]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 112, 112])}, }, nodes_with_edges_only=True) graph.graph['layout'] = 'NCHW' graph_ref.graph['layout'] = 'NCHW' stride_optimization(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'conv_2_data', check_op_attrs=True) self.assertTrue(flag, resp) # Pl->Conv(3x3,2x2)->Conv(1x1,2x2) => Pl->Conv(3x3,4x4)->Conv(1x1,1x1) def test_resnet_optimization_2(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_1': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 4, 4]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 56, 56])}, 'conv_2_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_2': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 1, 1]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph.graph['layout'] = 'NCHW' graph_ref.graph['layout'] = 'NCHW' stride_optimization(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'conv_2_data', check_op_attrs=True) self.assertTrue(flag, resp) # Pl->Conv(3x3,2x2)->Conv(3x3,2x2) => Same def test_resnet_optimization_3(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph.graph['layout'] = 'NCHW' graph_ref.graph['layout'] = 'NCHW' stride_optimization(graph) (flag, resp) = compare_graphs(graph, graph_ref, 'conv_2_data', check_op_attrs=True) self.assertTrue(flag, resp) # Pl--->Conv(3x3,2x2)->ReLU--->Eltwise-->Conv(1x1,2x2) => Pl--->Conv(3x3,4x4)->ReLU--->Eltwise-->Conv(1x1,1x1) # `-->Conv(3x3,2x2)->ReLU---` `-->Conv(3x3,4x4)->ReLU---` def test_resnet_optimization_4(self): graph = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'relu_1'), ('relu_1', 'relu_1_data'), ('placeholder_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ('conv_2_data', 'relu_2'), ('relu_2', 'relu_2_data'), ('relu_1_data', 'eltwise_1'), ('relu_2_data', 'eltwise_1'), ('eltwise_1', 'eltwise_1_data'), ('eltwise_1_data', 'conv_3'), ('conv_3_w', 'conv_3'), ('conv_3_b', 'conv_3'), ('conv_3', 'conv_3_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_1_data': {'shape': np.array([1, 3, 112, 112])}, 'relu_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_2_data': {'shape': np.array([1, 3, 112, 112])}, 'relu_2_data': {'shape': np.array([1, 3, 112, 112])}, 'eltwise_1_data': {'shape': np.array([1, 3, 112, 112])}, 'conv_3_w': {'value': np.zeros([3, 3, 1, 1]), 'shape': np.array([3, 3, 1, 1])}, 'conv_3': {'kernel_spatial': np.array([1, 1]), 'stride': np.array([1, 1, 2, 2]), 'output': np.array([3]), }, 'conv_3_data': {'shape': np.array([1, 3, 56, 56])}, }, nodes_with_edges_only=True) graph_ref = build_graph(nodes_attributes, [('placeholder_1', 'placeholder_1_data'), ('placeholder_1_data', 'conv_1'), ('conv_1_w', 'conv_1'), ('conv_1_b', 'conv_1'), ('conv_1', 'conv_1_data'), ('conv_1_data', 'relu_1'), ('relu_1', 'relu_1_data'), ('placeholder_1_data', 'conv_2'), ('conv_2_w', 'conv_2'), ('conv_2_b', 'conv_2'), ('conv_2', 'conv_2_data'), ('conv_2_data', 'relu_2'), ('relu_2', 'relu_2_data'), ('relu_1_data', 'eltwise_1'), ('relu_2_data', 'eltwise_1'), ('eltwise_1', 'eltwise_1_data'), ('eltwise_1_data', 'conv_3'), ('conv_3_w', 'conv_3'), ('conv_3_b', 'conv_3'), ('conv_3', 'conv_3_data'), ], {'placeholder_1_data': {'shape': np.array([1, 3, 224, 224])}, 'conv_1_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_1': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 4, 4]), 'output': np.array([3])}, 'conv_1_data': {'shape': np.array([1, 3, 56, 56])}, 'relu_1_data': {'shape': np.array([1, 3, 56, 56])}, 'conv_2_w': {'value': np.zeros([3, 3, 3, 3]), 'shape': np.array([3, 3, 3, 3])}, 'conv_2': {'kernel_spatial': np.array([3, 3]), 'stride': np.array([1, 1, 4, 4]), 'output':
np.array([3])
numpy.array
#!/usr/bin/env python3 import os import pprint import json import urllib.parse import time import numpy as np # type:ignore import random import math import os import logging import wave import threading import datetime import struct import subprocess import copy import sys import string from typing import Any, Dict, List, Tuple, Iterable sys.path.append(os.path.dirname(__file__)) # for finding our files import util logging.basicConfig(filename='server.log',level=logging.DEBUG) # big-endian # 8 userid: uint64 # 32 name: 32 bytes of utf8, '\0' padded # 4 mic_volume: float32, # 4 rms_volume: float32 # 2 delay: uint16 # 1 muted: uint8 BINARY_USER_CONFIG_FORMAT = struct.Struct(">Q32sffHB") FRAME_SIZE = 128 N_IMAGINARY_USERS = 0 # for debugging user summary + mixing console performance SUPPORT_SERVER_CONTROL = False # The maximum number of users to allow to join. This is enforced on a # best-effort basis by the client. If many people are calibrating at # the same time this will be exceeded, because we only check before # calibration. # # In stress testing, the server seems to do fine with 61 users, but # the video call might change that (stress test includes no video). MAX_USERS = 35 # XXX needs tuning try: # Grab these on startup, when they are very very likely to be the actual # running version. SERVER_VERSION = subprocess.check_output( ["git", "rev-parse", "--short", "HEAD"]).strip().decode("utf-8") SERVER_BRANCH = subprocess.check_output( ["git", "rev-parse", "--abbrev-ref", "HEAD"]).strip().decode("utf-8") except Exception: SERVER_VERSION="unknown" SERVER_BRANCH="unknown" SERVER_STARTUP_TIME = int(time.time()) ENABLE_TWILIO = True SECRETS_FNAME = "secrets.json" secrets = {} if os.path.exists(SECRETS_FNAME): with open(SECRETS_FNAME) as inf: secrets = json.loads(inf.read()) else: ENABLE_TWILIO = False if ENABLE_TWILIO: from twilio.jwt.access_token import AccessToken from twilio.jwt.access_token.grants import VideoGrant class State(): def __init__(self): self.reset() def reset(self): self.server_controlled = False self.last_request_clock = None self.last_cleared_clock = None self.global_volume = 1.2 self.backing_volume = 1.0 self.song_end_clock = 0 self.song_start_clock = 0 self.requested_track: Any = None self.bpm = 0 self.repeats = 0 self.bpr = 0 self.leftover_beat_samples = 0 self.first_bucket = DELAY_INTERVAL self.leader = None self.backing_track: Any =
np.zeros(0)
numpy.zeros
import numpy as np from numba import cuda, int32, float32 from numba.cuda.testing import skip_on_cudasim, unittest, CUDATestCase from numba.core.config import ENABLE_CUDASIM def useless_syncthreads(ary): i = cuda.grid(1) cuda.syncthreads() ary[i] = i def useless_syncwarp(ary): i = cuda.grid(1) cuda.syncwarp() ary[i] = i def useless_syncwarp_with_mask(ary): i = cuda.grid(1) cuda.syncwarp(0xFFFF) ary[i] = i def coop_syncwarp(res): sm = cuda.shared.array(32, int32) i = cuda.grid(1) sm[i] = i cuda.syncwarp() if i < 16: sm[i] = sm[i] + sm[i + 16] cuda.syncwarp(0xFFFF) if i < 8: sm[i] = sm[i] + sm[i + 8] cuda.syncwarp(0xFF) if i < 4: sm[i] = sm[i] + sm[i + 4] cuda.syncwarp(0xF) if i < 2: sm[i] = sm[i] + sm[i + 2] cuda.syncwarp(0x3) if i == 0: res[0] = sm[0] + sm[1] def simple_smem(ary): N = 100 sm = cuda.shared.array(N, int32) i = cuda.grid(1) if i == 0: for j in range(N): sm[j] = j cuda.syncthreads() ary[i] = sm[i] def coop_smem2d(ary): i, j = cuda.grid(2) sm = cuda.shared.array((10, 20), float32) sm[i, j] = (i + 1) / (j + 1) cuda.syncthreads() ary[i, j] = sm[i, j] def dyn_shared_memory(ary): i = cuda.grid(1) sm = cuda.shared.array(0, float32) sm[i] = i * 2 cuda.syncthreads() ary[i] = sm[i] def use_threadfence(ary): ary[0] += 123 cuda.threadfence() ary[0] += 321 def use_threadfence_block(ary): ary[0] += 123 cuda.threadfence_block() ary[0] += 321 def use_threadfence_system(ary): ary[0] += 123 cuda.threadfence_system() ary[0] += 321 def use_syncthreads_count(ary_in, ary_out): i = cuda.grid(1) ary_out[i] = cuda.syncthreads_count(ary_in[i]) def use_syncthreads_and(ary_in, ary_out): i = cuda.grid(1) ary_out[i] = cuda.syncthreads_and(ary_in[i]) def use_syncthreads_or(ary_in, ary_out): i = cuda.grid(1) ary_out[i] = cuda.syncthreads_or(ary_in[i]) def _safe_cc_check(cc): if ENABLE_CUDASIM: return True else: return cuda.get_current_device().compute_capability >= cc class TestCudaSync(CUDATestCase): def _test_useless(self, kernel): compiled = cuda.jit("void(int32[::1])")(kernel) nelem = 10 ary = np.empty(nelem, dtype=np.int32) exp =
np.arange(nelem, dtype=np.int32)
numpy.arange
import collections import dataclasses import enum import functools from copy import deepcopy from itertools import chain import deap import numpy as np import pyDOE2 from deap.base import Fitness def listify(fn=None, wrapper=list): """ From https://github.com/shazow/unstdlib.py/blob/master/unstdlib/standard/list_.py#L149 A decorator which wraps a function's return value in ``list(...)``. Useful when an algorithm can be expressed more cleanly as a generator but the function should return an list. Example:: >>> @listify ... def get_lengths(iterable): ... for i in iterable: ... yield len(i) >>> get_lengths(["spam", "eggs"]) [4, 4] >>> >>> @listify(wrapper=tuple) ... def get_lengths_tuple(iterable): ... for i in iterable: ... yield len(i) >>> get_lengths_tuple(["foo", "bar"]) (3, 3) """ def listify_return(fn): @functools.wraps(fn) def listify_helper(*args, **kw): return wrapper(fn(*args, **kw)) return listify_helper if fn is None: return listify_return return listify_return(fn) @dataclasses.dataclass(frozen=True) class VariableProperties: discrete: bool bounded: bool ordered: bool class VariableType(VariableProperties, enum.Enum): CONTINUOUS = (False, True, True) INTEGER = (True, True, True) ORDINAL = (True, False, True) NOMINAL = (True, False, False) @dataclasses.dataclass(frozen=True) class ObjectiveValueWithConstraintViolation: objectives: tuple constraint_violation: float def __iter__(self): yield from self.objectives class ConstraintDominatedFitness(Fitness): feasibility_tolerance = 1e-12 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.constraint_violation = None def __deepcopy__(self, memo): # The base Fitness class uses an optimized deepcopy that throws away attributes copy_ = super().__deepcopy__(memo) copy_.constraint_violation = self.constraint_violation return copy_ @property def feasible(self): return self.valid and self.constraint_violation <= self.feasibility_tolerance def set_values(self, values): if isinstance(values, ObjectiveValueWithConstraintViolation): self.constraint_violation = values.constraint_violation values = values.objectives Fitness.setValues(self, values) def del_values(self): self.constraint_violation = None Fitness.delValues(self) values = property(Fitness.getValues, set_values, del_values) def dominates(self, other, obj=slice(None)): if self.feasible and other.feasible: return super().dominates(other, obj) else: return self.constraint_violation < other.constraint_violation class Individual(list): def __init__(self, *args, fitness_class, **kwargs): super().__init__(*args, **kwargs) self.fitness = fitness_class() # Metadata self.generation = None def __repr__(self): return f"Individual({super().__repr__()})" @dataclasses.dataclass(frozen=True) class IndividualBounds: lower: tuple upper: tuple @classmethod def from_design_var_meta(cls, design_var_meta): lower = { name: (meta["lower"] if meta["type"].bounded else np.zeros(meta["shape"])) for name, meta in design_var_meta.items() } upper = { name: ( meta["upper"] if meta["type"].bounded else np.vectorize(len)(meta["values"]) - 1 ) for name, meta in design_var_meta.items() } return cls( lower=tuple(individual_sequence(lower, design_var_meta)), upper=tuple(individual_sequence(upper, design_var_meta)), ) def individual_sequence(design_vars, design_var_meta): return chain.from_iterable( np.broadcast_to(design_vars[name], meta["shape"]).flat for name, meta in design_var_meta.items() ) def individual_types_sequence(design_var_meta): return chain.from_iterable( [meta["type"]] * np.product(meta["shape"] or (1,)) for meta in design_var_meta.values() ) def stretch_array(array, shape): try: return np.broadcast_to(array, shape) except ValueError: return np.reshape(array, shape) missing_dims = len(shape) - array.ndim indexer = (...,) + (np.newaxis,) * missing_dims array = array[indexer] return np.broadcast_to(array, shape) def random_ints(shape, lower, upper): ret = np.empty(shape, dtype=np.int) lower = np.broadcast_to(lower, shape) upper = np.broadcast_to(upper, shape) for i in np.ndindex(*shape): ret[i] =
np.random.randint(lower[i], upper[i], dtype=np.int)
numpy.random.randint
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Functions for running experiments (colabs, xm) and storing/saving data.""" import dataclasses import os from typing import (Any, Callable, List, MutableMapping, Optional, Text, Tuple, Union) import graph_nets import more_itertools import numpy as np import sonnet as snt import tensorflow as tf from graph_attribution import datasets from graph_attribution import graphnet_models as models from graph_attribution import graphnet_techniques as techniques from graph_attribution import graphs as graph_utils from graph_attribution import tasks, templates # Typing alias. GraphsTuple = graph_nets.graphs.GraphsTuple TransparentModel = templates.TransparentModel AttributionTechnique = templates.AttributionTechnique AttributionTask = templates.AttributionTask NodeEdgeTensors = templates.NodeEdgeTensors MethodDict = MutableMapping[Text, AttributionTechnique] OrderedDict = MutableMapping def set_seed(random_seed: int): """Sets initial seed for random numbers.""" tf.random.set_seed(random_seed) np.random.seed(random_seed) def get_graph_block(block_type: models.BlockType, node_size: int, edge_size: int, global_size: int, index: int) -> snt.Module: """Gets a GNN block based on enum and sizes.""" name = f'{block_type.name}_{index+1}' if block_type == models.BlockType.gcn: return models.GCNLayer(models.get_mlp_fn([node_size] * 2), name=name) elif block_type == models.BlockType.gat: return models.SelfAttention( node_size, models.get_mlp_fn([node_size] * 2)) elif block_type == models.BlockType.mpnn: return models.NodeEdgeLayer( models.get_mlp_fn([node_size] * 2), models.get_mlp_fn([edge_size] * 2), name=name) elif block_type == models.BlockType.graphnet: use_globals = index != 0 return graph_nets.modules.GraphNetwork( node_model_fn=models.get_mlp_fn([node_size] * 2), edge_model_fn=models.get_mlp_fn([edge_size] * 2), global_model_fn=models.get_mlp_fn([global_size] * 2), edge_block_opt={'use_globals': use_globals}, node_block_opt={'use_globals': use_globals}, global_block_opt={'use_globals': use_globals}, name=name) else: raise ValueError(f'block_type={block_type} not implemented') class GNN(snt.Module, templates.TransparentModel): """A general graph neural network for graph property prediction.""" def __init__(self, node_size: int, edge_size: int, global_size: int, y_output_size: int, block_type: models.BlockType, activation: models.Activation, target_type: templates.TargetType, n_layers: int = 3): super(GNN, self).__init__(name=block_type.name) # Graph encoding step, basic linear mapping. self.encode = graph_nets.modules.GraphIndependent( node_model_fn=lambda: snt.Linear(node_size), edge_model_fn=lambda: snt.Linear(edge_size)) # Message passing steps or GNN blocks. gnn_layers = [ get_graph_block( block_type, node_size, edge_size, global_size, index) for index in range(0, n_layers) ] self.gnn = models.SequentialWithActivations(gnn_layers) if target_type == templates.TargetType.globals: readout = models.ReadoutGAP(global_size, tf.nn.softmax) else: readout = graph_nets.modules.GraphIndependent() self.readout = readout self.linear = snt.Linear(y_output_size, with_bias=False) self.activation = models.cast_activation(activation) self.pred_layer = snt.Sequential([self.linear, self.activation]) self.block_type = block_type self.target_type = target_type def cast_task_batch_index( self, task_index: Optional[int] = None, batch_index: Optional[int] = None) -> Tuple[int, Union[int, slice]]: """Provide defaults for task and batch indices when not present.""" task_index = 0 if task_index is None else task_index batch_index = slice(None) if batch_index is None else batch_index return task_index, batch_index @tf.function(experimental_relax_shapes=True) def get_graph_embedding(self, x: GraphsTuple) -> tf.Tensor: """Build a graph embedding.""" out_graph = self.readout(self.gnn(self.encode(x))) return models.get_graph_attribute(out_graph, self.target_type) def __call__(self, x: GraphsTuple) -> tf.Tensor: """Typical forward pass for the model.""" graph_emb = self.get_graph_embedding(x) y = self.pred_layer(graph_emb) return y def predict(self, x: GraphsTuple, task_index: Optional[int] = None, batch_index: Optional[int] = None) -> tf.Tensor: """Forward pass with output set on the task of interest (y[batch_index, task_index]).""" task_index, batch_index = self.cast_task_batch_index( task_index, batch_index) return self(x)[batch_index, task_index] @tf.function(experimental_relax_shapes=True) def get_gradient(self, x: GraphsTuple, task_index: Optional[int] = None, batch_index: Optional[int] = None) -> NodeEdgeTensors: """Gets gradient of inputs wrt to the target.""" with tf.GradientTape(watch_accessed_variables=False) as gtape: gtape.watch([x.nodes, x.edges]) y = self.predict(x, task_index, batch_index) nodes_grad, edges_grad = gtape.gradient(y, [x.nodes, x.edges]) return nodes_grad, edges_grad @tf.function(experimental_relax_shapes=True) def get_gap_activations(self, x: GraphsTuple) -> NodeEdgeTensors: """Gets node-wise and edge-wise contributions to graph embedding.""" return self.readout.get_activations(self.gnn(self.encode(x))) @tf.function(experimental_relax_shapes=True) def get_prediction_weights(self, task_index: Optional[int] = None) -> tf.Tensor: """Gets last layer prediction weights.""" task_index, _ = self.cast_task_batch_index(task_index, None) w = self.linear.w[:, task_index] return w @tf.function(experimental_relax_shapes=True) def get_intermediate_activations_gradients( self, x: GraphsTuple, task_index: Optional[int] = None, batch_index: Optional[int] = None ) -> Tuple[List[NodeEdgeTensors], List[NodeEdgeTensors], tf.Tensor]: """Gets intermediate layer activations and gradients.""" task_index, batch_index = self.cast_task_batch_index( task_index, batch_index) acts = [] grads = [] with tf.GradientTape( persistent=True, watch_accessed_variables=False) as gtape: gtape.watch([x.nodes, x.edges]) x = self.encode(x) outputs, acts = self.gnn.call_with_activations(x) outputs = self.readout(outputs) embs = models.get_graph_attribute(outputs, self.target_type) y = self.pred_layer(embs)[batch_index, task_index] acts = [(act.nodes, act.edges) for act in acts] grads = gtape.gradient(y, acts) return acts, grads, y @tf.function(experimental_relax_shapes=True) def get_attention_weights(self, inputs: GraphsTuple) -> List[tf.Tensor]: if self.block_type != models.BlockType.gat: raise ValueError( f'block_type={self.block_type.name}, attention only works with "gat" blocks' ) outs = self.encode(inputs) weights = [] for block in self.gnn._layers: # pylint: disable=protected-access outs, w = block.apply_attention(outs) weights.append(w) return weights @classmethod def from_hparams(cls, hp, task:AttributionTask) -> 'GNN': return cls(node_size = hp.node_size, edge_size = hp.edge_size, global_size = hp.global_size, y_output_size = task.n_outputs, block_type = models.BlockType(hp.block_type), activation = task.get_nn_activation_fn(), target_type = task.target_type, n_layers = hp.n_layers) def get_batched_attributions(method: AttributionTechnique, model: TransparentModel, inputs: GraphsTuple, batch_size: int = 2500) -> List[GraphsTuple]: """Batched attribution since memory (e.g. IG) can be an issue.""" n = graph_utils.get_num_graphs(inputs) att_pred = [] actual_batch_size = int(np.ceil(batch_size / method.sample_size)) for chunk in more_itertools.chunked(range(n), actual_batch_size): x_chunk = graph_utils.get_graphs_tf(inputs, np.array(chunk)) att = method.attribute(x_chunk, model) att_pred.extend(att) return att_pred def generate_result(model: templates.TransparentModel, method: templates.AttributionTechnique, task: templates.AttributionTask, inputs: GraphsTuple, y_true: np.ndarray, true_atts: List[GraphsTuple], pred_atts: Optional[List[GraphsTuple]] = None, reducer_fn: Optional[Callable[[np.ndarray], Any]] = np.nanmean, batch_size: int = 1000) -> MutableMapping[Text, Any]: """For a given model, method and task, generate metrics.""" if pred_atts is None: pred_atts = get_batched_attributions(method, model, inputs, batch_size) result = task.evaluate_attributions( true_atts, pred_atts, reducer_fn=reducer_fn) # Need to reshape since predict returns a 1D array. y_pred = model.predict(inputs).numpy().reshape(-1, 1) result.update(task.evaluate_predictions(y_true, y_pred)) result['Task'] = task.name result['Technique'] = method.name result['Model'] = model.name return result @dataclasses.dataclass(frozen=True) class ExperimentData: """Helper class to hold all data relating to an experiment.""" x_train: GraphsTuple x_test: GraphsTuple y_train: np.ndarray y_test: np.ndarray att_test: List[GraphsTuple] x_aug: Optional[GraphsTuple] = None y_aug: Optional[np.ndarray] = None @classmethod def from_data_and_splits(cls, x, y, att, train_index, test_index, x_aug=None, y_aug=None): """Build class from data and split indices.""" if np.intersect1d(train_index, test_index).shape[0]: raise ValueError('train/test indices have overlap!.') return cls( x_train=graph_utils.get_graphs_tf(x, np.array(train_index)), x_test=graph_utils.get_graphs_tf(x,
np.array(test_index)
numpy.array
import unittest import warnings # for suppressing numpy.array PendingDeprecationWarning's from importlib import reload import sys sys.path.append("..") import numpy as np import sympy as sp import Ch6.utilities as ch6_utils import Ch7.utilities as ch7_utils reload(ch7_utils) import control def fullOrderCompensator(A, B, C, D, controlPoles, observerPoles): """ combine controller and observer constructions into a compensator design currently, supports single-input-single-output systems only Inputs: A (numpy matrix/array, type=real) - system state matrix B (numpy matrix/array, type=real) - system control matrix C (numpy matrix/array, type=real) - system measurement matrix desiredPoles (numpy matrix/array, type=complex) - desired pole locations D (numpy matrix/array, type=real) - direct path from control to measurement matrix E (numpy matrix/array, type=real) - (default=None) exogeneous input matrix controlPoles (numpy matrix/array, type=complex) - desired controller system poles observerPoles (numpy matrix/array, type=complex) - desired observer system poles Returns: (control.TransferFunction) - compensator transfer function from input to output Raises: TypeError - if input system is not SISO """ if B.shape[1] > 1 or C.shape[0] > 1: raise TypeError('Only single-input-single-output (SISO) systems are currently supported') A = A.astype('float') B = B.astype('float') C = C.astype('float') D = D.astype('float') G = ch6_utils.bassGura(A, B, controlPoles) K = ch7_utils.obsBassGura(A, C, observerPoles) return control.ss2tf(control.StateSpace(A - B@G - K@C, K, G, D)) def stabilityRange(tfD, tfPlant, gain): """ numerically evaluate a range of gains, k, to see if the closed-loop system (k*tfD*tfPlant) / (1 + k*tfD*tfPlant) Inputs: tfD (control.TransferFunction) - compensator transfer function tfPlant (control.TransferFunction) - open loop system transfer function gain (numpy matrix/array, type=real) - range of gains to check Returns: tuple(min gain, max gain) defining stability interval if such an interval could be found, `None` otherwise Raises: """ stable =
np.zeros_like(gain)
numpy.zeros_like
#!/usr/bin/env python3 # pylint: disable=C0111 import pytest import numpy as np from pyndl import correlation @pytest.mark.nolinux def test_correlation(): np.random.seed(20190507) n_vec_dims = 40 n_outcomes = 50 n_cues = 20 n_events = 120 semantics = np.asfortranarray(np.random.random((n_vec_dims, n_outcomes))) weights = np.random.random((n_vec_dims, n_cues)) events = np.random.random((n_cues, n_events)) # n_vec_dims x n_events activations = np.asfortranarray(weights @ events) corr1 = correlation._reference_correlation(semantics, activations, verbose=True) corr2 = correlation.correlation(semantics, activations, verbose=True) assert
np.allclose(corr1, corr2)
numpy.allclose
import matplotlib.pyplot as plt import numpy as np ## assignment 1 ## 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 n = np.array([0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 2, 2, 0, 0, 0, 6, 5, 4 ,1 ,0, 0, 0, 0, 0, 1, 2, 5 ,7, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 3, 7, 0, 8, 2, 2, 21, 2, 2, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 0]) m = np.arange(0, len(n)) ## assignment 2 ## 5, 10, 15, 20, 30, 35, 40 a =
np.array([0, 0, 0, 20, 20, 20, 40, 40, 40, 20, 80, 20, 40, 80, 100, 120, 100, 40, 160, 200, 100, 120, 200, 240, 160, 200, 40 , 340 ,140, 240, 220, 260, 280, 220, 280, 260, 400, 180, 340, 260, 360, 520, 120, 540, 260, 140, 320, 300, 240, 260, 320, 480, 200, 620, 380, 520, 260, 280, 240, 280, 360, 360, 480, 560, 400, 320, 280, 400, 120, 260, 460, 160, 300, 580, 260, 500, 540, 280, 540, 620, 620, 380, 520, 660, 480,400, 280, 360, 460, 480, 560, 600, 620, 380, 520, 460, 280, 540, 280, 360, 660, 480, 660, 820]) m = np.arange(0, len(n))
numpy.array
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the GTFlow training Ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from google.protobuf import text_format from tensorflow.contrib.boosted_trees.proto import learner_pb2 from tensorflow.contrib.boosted_trees.proto import split_info_pb2 from tensorflow.contrib.boosted_trees.proto import tree_config_pb2 from tensorflow.contrib.boosted_trees.python.ops import model_ops from tensorflow.contrib.boosted_trees.python.ops import training_ops from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import resources from tensorflow.python.platform import googletest def _gen_learner_config(num_classes, l1_reg, l2_reg, tree_complexity, max_depth, min_node_weight, pruning_mode, growing_mode, dropout_probability=None, dropout_learning_rate=None, dropout_prob_of_skipping=None): """Create a serialized learner config with the desired settings.""" config = learner_pb2.LearnerConfig() config.num_classes = num_classes config.regularization.l1 = l1_reg config.regularization.l2 = l2_reg config.regularization.tree_complexity = tree_complexity config.constraints.max_tree_depth = max_depth config.constraints.min_node_weight = min_node_weight config.pruning_mode = pruning_mode config.growing_mode = growing_mode if dropout_probability is not None: config.learning_rate_tuner.dropout.dropout_probability = dropout_probability if dropout_learning_rate is not None: config.learning_rate_tuner.dropout.learning_rate = dropout_learning_rate if dropout_prob_of_skipping is not None: config.learning_rate_tuner.dropout.dropout_prob_of_skipping = ( dropout_prob_of_skipping) return config def _gen_dense_split_info(fc, threshold, left_weight, right_weight): split_str = """ split_node { dense_float_binary_split { feature_column: %d threshold: %f } } left_child { sparse_vector { index: 0 value: %f } } right_child { sparse_vector { index: 0 value: %f } }""" % (fc, threshold, left_weight, right_weight) split = split_info_pb2.SplitInfo() text_format.Merge(split_str, split) return split.SerializeToString() def _gen_dense_oblivious_split_info(fc, threshold, leave_weights, children_parent_id): split_str = """ split_node { oblivious_dense_float_binary_split { feature_column: %d threshold: %f } }""" % (fc, threshold) for weight in leave_weights: split_str += """ children { vector { value: %f } }""" % ( weight) for x in children_parent_id: split_str += """ children_parent_id: %d""" % (x) split = split_info_pb2.ObliviousSplitInfo() text_format.Merge(split_str, split) return split.SerializeToString() def _gen_categorical_split_info(fc, feat_id, left_weight, right_weight): split_str = """ split_node { categorical_id_binary_split { feature_column: %d feature_id: %d } } left_child { sparse_vector { index: 0 value: %f } } right_child { sparse_vector { index: 0 value: %f } }""" % (fc, feat_id, left_weight, right_weight) split = split_info_pb2.SplitInfo() text_format.Merge(split_str, split) return split.SerializeToString() def _get_bias_update(grads, hess): return array_ops.where(hess > 0, -grads / hess, array_ops.zeros_like(grads)) class CenterTreeEnsembleBiasOpTest(test_util.TensorFlowTestCase): """Tests for centering tree ensemble bias.""" def testCenterBias(self): """Tests bias centering for multiple iterations.""" with self.cached_session() as session: # Create empty ensemble. tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig() tree_ensemble_handle = model_ops.tree_ensemble_variable( stamp_token=0, tree_ensemble_config=tree_ensemble_config.SerializeToString(), name="tree_ensemble") resources.initialize_resources(resources.shared_resources()).run() # Prepare learner config. learner_config = _gen_learner_config( num_classes=3, l1_reg=0, l2_reg=0, tree_complexity=0, max_depth=4, min_node_weight=0, pruning_mode=learner_pb2.LearnerConfig.PRE_PRUNE, growing_mode=learner_pb2.LearnerConfig.WHOLE_TREE, # Dropout does not change anything here. dropout_probability=0.5).SerializeToString() # Center bias for the initial step. grads = constant_op.constant([0.4, -0.3]) hess = constant_op.constant([2.0, 1.0]) continue_centering1 = training_ops.center_tree_ensemble_bias( tree_ensemble_handle, stamp_token=0, next_stamp_token=1, delta_updates=_get_bias_update(grads, hess), learner_config=learner_config) continue_centering = session.run(continue_centering1) self.assertEqual(continue_centering, True) # Validate ensemble state. # dim 0 update: -0.4/2.0 = -0.2 # dim 1 update: +0.3/1.0 = +0.3 new_stamp, serialized = session.run( model_ops.tree_ensemble_serialize(tree_ensemble_handle)) stats = session.run( training_ops.tree_ensemble_stats(tree_ensemble_handle, stamp_token=1)) tree_ensemble_config.ParseFromString(serialized) expected_result = """ trees { nodes { leaf { vector { value: -0.2 value: 0.3 } } } } tree_weights: 1.0 tree_metadata { num_layers_grown: 1 } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 1 } """ self.assertEqual(new_stamp, 1) self.assertEqual(stats.num_trees, 0) self.assertEqual(stats.num_layers, 1) self.assertEqual(stats.active_tree, 1) self.assertEqual(stats.active_layer, 1) self.assertEqual(stats.attempted_trees, 1) self.assertEqual(stats.attempted_layers, 1) self.assertProtoEquals(expected_result, tree_ensemble_config) # Center bias for another step. # dim 0 update: -0.06/0.5 = -0.12 # dim 1 update: -0.01/0.5 = -0.02 grads = constant_op.constant([0.06, 0.01]) hess = constant_op.constant([0.5, 0.5]) continue_centering2 = training_ops.center_tree_ensemble_bias( tree_ensemble_handle, stamp_token=1, next_stamp_token=2, delta_updates=_get_bias_update(grads, hess), learner_config=learner_config) continue_centering = session.run(continue_centering2) self.assertEqual(continue_centering, True) # Validate ensemble state. new_stamp, serialized = session.run( model_ops.tree_ensemble_serialize(tree_ensemble_handle)) stats = session.run( training_ops.tree_ensemble_stats(tree_ensemble_handle, stamp_token=2)) tree_ensemble_config.ParseFromString(serialized) expected_result = """ trees { nodes { leaf { vector { value: -0.32 value: 0.28 } } } } tree_weights: 1.0 tree_metadata { num_layers_grown: 1 } growing_metadata { num_trees_attempted: 1 num_layers_attempted: 1 } """ self.assertEqual(new_stamp, 2) self.assertEqual(stats.num_trees, 0) self.assertEqual(stats.num_layers, 1) self.assertEqual(stats.active_tree, 1) self.assertEqual(stats.active_layer, 1) self.assertEqual(stats.attempted_trees, 1) self.assertEqual(stats.attempted_layers, 1) self.assertProtoEquals(expected_result, tree_ensemble_config) # Center bias for another step, but this time updates are negligible. grads = constant_op.constant([0.0000001, -0.00003]) hess = constant_op.constant([0.5, 0.0]) continue_centering3 = training_ops.center_tree_ensemble_bias( tree_ensemble_handle, stamp_token=2, next_stamp_token=3, delta_updates=_get_bias_update(grads, hess), learner_config=learner_config) continue_centering = session.run(continue_centering3) self.assertEqual(continue_centering, False) # Validate ensemble stamp. new_stamp, _ = session.run( model_ops.tree_ensemble_serialize(tree_ensemble_handle)) stats = session.run( training_ops.tree_ensemble_stats(tree_ensemble_handle, stamp_token=3)) self.assertEqual(new_stamp, 3) self.assertEqual(stats.num_trees, 1) self.assertEqual(stats.num_layers, 1) self.assertEqual(stats.active_tree, 1) self.assertEqual(stats.active_layer, 1) self.assertEqual(stats.attempted_trees, 1) self.assertEqual(stats.attempted_layers, 1) class GrowTreeEnsembleOpTest(test_util.TensorFlowTestCase): """Tests for growing tree ensemble from split candidates.""" def testGrowEmptyEnsemble(self): """Test growing an empty ensemble.""" with self.cached_session() as session: # Create empty ensemble. tree_ensemble_config = tree_config_pb2.DecisionTreeEnsembleConfig() tree_ensemble_handle = model_ops.tree_ensemble_variable( stamp_token=0, tree_ensemble_config=tree_ensemble_config.SerializeToString(), name="tree_ensemble") resources.initialize_resources(resources.shared_resources()).run() # Prepare learner config. learner_config = _gen_learner_config( num_classes=2, l1_reg=0, l2_reg=0, tree_complexity=0, max_depth=1, min_node_weight=0, pruning_mode=learner_pb2.LearnerConfig.PRE_PRUNE, growing_mode=learner_pb2.LearnerConfig.WHOLE_TREE, # Dropout does not change anything here, tree is not finalized. dropout_probability=0.5) # Prepare handler inputs. # Note that handlers 1 & 3 have the same gain but different splits. handler1_partitions = np.array([0], dtype=np.int32) handler1_gains =
np.array([7.62], dtype=np.float32)
numpy.array
import glob import math import os import sys import warnings from decimal import Decimal import numpy as np import pandas as pd import pytest from packaging.version import parse as parse_version import dask import dask.dataframe as dd import dask.multiprocessing from dask.blockwise import Blockwise, optimize_blockwise from dask.dataframe._compat import PANDAS_GT_110, PANDAS_GT_121, PANDAS_GT_130 from dask.dataframe.io.parquet.utils import _parse_pandas_metadata from dask.dataframe.optimize import optimize_dataframe_getitem from dask.dataframe.utils import assert_eq from dask.layers import DataFrameIOLayer from dask.utils import natural_sort_key from dask.utils_test import hlg_layer try: import fastparquet except ImportError: fastparquet = False fastparquet_version = parse_version("0") else: fastparquet_version = parse_version(fastparquet.__version__) try: import pyarrow as pa except ImportError: pa = False pa_version = parse_version("0") else: pa_version = parse_version(pa.__version__) try: import pyarrow.parquet as pq except ImportError: pq = False SKIP_FASTPARQUET = not fastparquet FASTPARQUET_MARK = pytest.mark.skipif(SKIP_FASTPARQUET, reason="fastparquet not found") if sys.platform == "win32" and pa and pa_version == parse_version("2.0.0"): SKIP_PYARROW = True SKIP_PYARROW_REASON = ( "skipping pyarrow 2.0.0 on windows: " "https://github.com/dask/dask/issues/6093" "|https://github.com/dask/dask/issues/6754" ) else: SKIP_PYARROW = not pq SKIP_PYARROW_REASON = "pyarrow not found" PYARROW_MARK = pytest.mark.skipif(SKIP_PYARROW, reason=SKIP_PYARROW_REASON) # "Legacy" and "Dataset"-specific MARK definitions SKIP_PYARROW_LE = SKIP_PYARROW SKIP_PYARROW_LE_REASON = "pyarrow not found" SKIP_PYARROW_DS = SKIP_PYARROW SKIP_PYARROW_DS_REASON = "pyarrow not found" if not SKIP_PYARROW_LE: # NOTE: We should use PYARROW_LE_MARK to skip # pyarrow-legacy tests once pyarrow officially # removes ParquetDataset support in the future. PYARROW_LE_MARK = pytest.mark.filterwarnings( "ignore::DeprecationWarning", "ignore::FutureWarning", ) else: PYARROW_LE_MARK = pytest.mark.skipif(SKIP_PYARROW_LE, reason=SKIP_PYARROW_LE_REASON) PYARROW_DS_MARK = pytest.mark.skipif(SKIP_PYARROW_DS, reason=SKIP_PYARROW_DS_REASON) ANY_ENGINE_MARK = pytest.mark.skipif( SKIP_FASTPARQUET and SKIP_PYARROW, reason="No parquet engine (fastparquet or pyarrow) found", ) nrows = 40 npartitions = 15 df = pd.DataFrame( { "x": [i * 7 % 5 for i in range(nrows)], # Not sorted "y": [i * 2.5 for i in range(nrows)], # Sorted }, index=pd.Index([10 * i for i in range(nrows)], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=npartitions) @pytest.fixture( params=[ pytest.param("fastparquet", marks=FASTPARQUET_MARK), pytest.param("pyarrow-legacy", marks=PYARROW_LE_MARK), pytest.param("pyarrow-dataset", marks=PYARROW_DS_MARK), ] ) def engine(request): return request.param def write_read_engines(**kwargs): """Product of both engines for write/read: To add custom marks, pass keyword of the form: `mark_writer_reader=reason`, or `mark_engine=reason` to apply to all parameters with that engine.""" backends = {"pyarrow-dataset", "pyarrow-legacy", "fastparquet"} # Skip if uninstalled skip_marks = { "fastparquet": FASTPARQUET_MARK, "pyarrow-legacy": PYARROW_LE_MARK, "pyarrow-dataset": PYARROW_DS_MARK, } marks = {(w, r): [skip_marks[w], skip_marks[r]] for w in backends for r in backends} # Custom marks for kw, val in kwargs.items(): kind, rest = kw.split("_", 1) key = tuple(rest.split("_")) if kind not in ("xfail", "skip") or len(key) > 2 or set(key) - backends: raise ValueError("unknown keyword %r" % kw) val = getattr(pytest.mark, kind)(reason=val) if len(key) == 2: marks[key].append(val) else: for k in marks: if key in k: marks[k].append(val) return pytest.mark.parametrize( ("write_engine", "read_engine"), [pytest.param(*k, marks=tuple(v)) for (k, v) in sorted(marks.items())], ) pyarrow_fastparquet_msg = "pyarrow schema and pandas metadata may disagree" write_read_engines_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, } ) if ( fastparquet and fastparquet_version < parse_version("0.5") and PANDAS_GT_110 and not PANDAS_GT_121 ): # a regression in pandas 1.1.x / 1.2.0 caused a failure in writing partitioned # categorical columns when using fastparquet 0.4.x, but this was (accidentally) # fixed in fastparquet 0.5.0 fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, "xfail_fastparquet_fastparquet": fp_pandas_msg, "xfail_fastparquet_pyarrow-dataset": fp_pandas_msg, "xfail_fastparquet_pyarrow-legacy": fp_pandas_msg, } ) else: fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines() @PYARROW_MARK def test_pyarrow_getengine(): from dask.dataframe.io.parquet.arrow import ArrowDatasetEngine from dask.dataframe.io.parquet.core import get_engine # Check that the default engine for "pyarrow"/"arrow" # is the `pyarrow.dataset`-based engine assert get_engine("pyarrow") == ArrowDatasetEngine assert get_engine("arrow") == ArrowDatasetEngine if SKIP_PYARROW_LE: with pytest.warns(FutureWarning): get_engine("pyarrow-legacy") @write_read_engines() def test_local(tmpdir, write_engine, read_engine): tmp = str(tmpdir) data = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df = dd.from_pandas(data, chunksize=500) df.to_parquet(tmp, write_index=False, engine=write_engine) files = os.listdir(tmp) assert "_common_metadata" in files assert "_metadata" in files assert "part.0.parquet" in files df2 = dd.read_parquet(tmp, index=False, engine=read_engine) assert len(df2.divisions) > 1 out = df2.compute(scheduler="sync").reset_index() for column in df.columns: assert (data[column] == out[column]).all() @pytest.mark.parametrize("index", [False, True]) @write_read_engines_xfail def test_empty(tmpdir, write_engine, read_engine, index): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]})[:0] if index: df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, write_index=index, engine=write_engine) read_df = dd.read_parquet(fn, engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_simple(tmpdir, write_engine, read_engine): fn = str(tmpdir) if write_engine != "fastparquet": df = pd.DataFrame({"a": [b"a", b"b", b"b"], "b": [4, 5, 6]}) else: df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) read_df = dd.read_parquet(fn, index=["a"], engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_delayed_no_metadata(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet( fn, engine=write_engine, compute=False, write_metadata_file=False ).compute() files = os.listdir(fn) assert "_metadata" not in files # Fastparquet doesn't currently handle a directory without "_metadata" read_df = dd.read_parquet( os.path.join(fn, "*.parquet"), index=["a"], engine=read_engine, gather_statistics=True, ) assert_eq(ddf, read_df) @write_read_engines() def test_read_glob(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) if os.path.exists(os.path.join(tmp_path, "_metadata")): os.unlink(os.path.join(tmp_path, "_metadata")) files = os.listdir(tmp_path) assert "_metadata" not in files ddf2 = dd.read_parquet( os.path.join(tmp_path, "*.parquet"), engine=read_engine, index="myindex", # Must specify index without _metadata gather_statistics=True, ) assert_eq(ddf, ddf2) @write_read_engines() def test_gather_statistics_false(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, write_index=False, engine=write_engine) ddf2 = dd.read_parquet( tmp_path, engine=read_engine, index=False, gather_statistics=False, ) assert_eq(ddf, ddf2, check_index=False, check_divisions=False) @write_read_engines() def test_read_list(tmpdir, write_engine, read_engine): if write_engine == read_engine == "fastparquet" and os.name == "nt": # fastparquet or dask is not normalizing filepaths correctly on # windows. pytest.skip("filepath bug.") tmpdir = str(tmpdir) ddf.to_parquet(tmpdir, engine=write_engine) files = sorted( ( os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if not f.endswith("_metadata") ), key=natural_sort_key, ) ddf2 = dd.read_parquet( files, engine=read_engine, index="myindex", gather_statistics=True ) assert_eq(ddf, ddf2) @write_read_engines() def test_columns_auto_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # XFAIL, auto index selection no longer supported (for simplicity) # ### Empty columns ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=[], engine=read_engine), ddf[[]]) # No divisions assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, gather_statistics=False), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, auto select index ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=["x"], engine=read_engine), ddf[["x"]]) # No divisions assert_eq( dd.read_parquet(fn, columns=["x"], engine=read_engine, gather_statistics=False), ddf[["x"]].clear_divisions(), check_divisions=True, ) @write_read_engines() def test_columns_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # With Index # ---------- # ### Empty columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, index="myindex"), ddf[[]] ) # No divisions assert_eq( dd.read_parquet( fn, columns=[], engine=read_engine, index="myindex", gather_statistics=False ), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x"], engine=read_engine), ddf[["x"]], ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x"], engine=read_engine, gather_statistics=False, ), ddf[["x"]].clear_divisions(), check_divisions=True, ) # ### Two columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x", "y"], engine=read_engine), ddf, ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x", "y"], engine=read_engine, gather_statistics=False, ), ddf.clear_divisions(), check_divisions=True, ) def test_nonsense_column(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) with pytest.raises((ValueError, KeyError)): dd.read_parquet(fn, columns=["nonesense"], engine=engine) with pytest.raises((Exception, KeyError)): dd.read_parquet(fn, columns=["nonesense"] + list(ddf.columns), engine=engine) @write_read_engines() def test_columns_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) ddf2 = ddf.reset_index() # No Index # -------- # All columns, none as index assert_eq( dd.read_parquet(fn, index=False, engine=read_engine, gather_statistics=True), ddf2, check_index=False, check_divisions=True, ) # Two columns, none as index assert_eq( dd.read_parquet( fn, index=False, columns=["x", "y"], engine=read_engine, gather_statistics=True, ), ddf2[["x", "y"]], check_index=False, check_divisions=True, ) # One column and one index, all as columns assert_eq( dd.read_parquet( fn, index=False, columns=["myindex", "x"], engine=read_engine, gather_statistics=True, ), ddf2[["myindex", "x"]], check_index=False, check_divisions=True, ) @write_read_engines() def test_gather_statistics_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine, write_index=False) df = dd.read_parquet(fn, engine=read_engine, index=False) assert df.index.name is None assert not df.known_divisions def test_columns_index_with_multi_index(tmpdir, engine): fn = os.path.join(str(tmpdir), "test.parquet") index = pd.MultiIndex.from_arrays( [np.arange(10), np.arange(10) + 1], names=["x0", "x1"] ) df = pd.DataFrame(np.random.randn(10, 2), columns=["a", "b"], index=index) df2 = df.reset_index(drop=False) if engine == "fastparquet": fastparquet.write(fn, df.reset_index(), write_index=False) else: pq.write_table(pa.Table.from_pandas(df.reset_index(), preserve_index=False), fn) ddf = dd.read_parquet(fn, engine=engine, index=index.names) assert_eq(ddf, df) d = dd.read_parquet(fn, columns="a", engine=engine, index=index.names) assert_eq(d, df["a"]) d = dd.read_parquet(fn, index=["a", "b"], columns=["x0", "x1"], engine=engine) assert_eq(d, df2.set_index(["a", "b"])[["x0", "x1"]]) # Just index d = dd.read_parquet(fn, index=False, engine=engine) assert_eq(d, df2) d = dd.read_parquet(fn, columns=["b"], index=["a"], engine=engine) assert_eq(d, df2.set_index("a")[["b"]]) d = dd.read_parquet(fn, columns=["a", "b"], index=["x0"], engine=engine) assert_eq(d, df2.set_index("x0")[["a", "b"]]) # Just columns d = dd.read_parquet(fn, columns=["x0", "a"], index=["x1"], engine=engine) assert_eq(d, df2.set_index("x1")[["x0", "a"]]) # Both index and columns d = dd.read_parquet(fn, index=False, columns=["x0", "b"], engine=engine) assert_eq(d, df2[["x0", "b"]]) for index in ["x1", "b"]: d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) assert_eq(d, df2.set_index(index)[["x0", "a"]]) # Columns and index intersect for index in ["a", "x0"]: with pytest.raises(ValueError): d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) # Series output for ind, col, sol_df in [ ("x1", "x0", df2.set_index("x1")), (False, "b", df2), (False, "x0", df2[["x0"]]), ("a", "x0", df2.set_index("a")[["x0"]]), ("a", "b", df2.set_index("a")), ]: d = dd.read_parquet(fn, index=ind, columns=col, engine=engine) assert_eq(d, sol_df[col]) @write_read_engines() def test_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine) assert_eq(df, ddf2, check_index=False) def test_read_series(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, columns=["x"], index="myindex", engine=engine) assert_eq(ddf[["x"]], ddf2) ddf2 = dd.read_parquet(fn, columns="x", index="myindex", engine=engine) assert_eq(ddf.x, ddf2) def test_names(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) def read(fn, **kwargs): return dd.read_parquet(fn, engine=engine, **kwargs) assert set(read(fn).dask) == set(read(fn).dask) assert set(read(fn).dask) != set(read(fn, columns=["x"]).dask) assert set(read(fn, columns=("x",)).dask) == set(read(fn, columns=["x"]).dask) @write_read_engines() def test_roundtrip_from_pandas(tmpdir, write_engine, read_engine): fn = str(tmpdir.join("test.parquet")) dfp = df.copy() dfp.index.name = "index" dfp.to_parquet( fn, engine="pyarrow" if write_engine.startswith("pyarrow") else "fastparquet" ) ddf = dd.read_parquet(fn, index="index", engine=read_engine) assert_eq(dfp, ddf) @write_read_engines() def test_categorical(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame({"x": ["a", "b", "c"] * 100}, dtype="category") ddf = dd.from_pandas(df, npartitions=3) dd.to_parquet(ddf, tmp, engine=write_engine) ddf2 = dd.read_parquet(tmp, categories="x", engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2 = dd.read_parquet(tmp, categories=["x"], engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] # autocat if read_engine == "fastparquet": ddf2 = dd.read_parquet(tmp, engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2.loc[:1000].compute() assert assert_eq(df, ddf2) # dereference cats ddf2 = dd.read_parquet(tmp, categories=[], engine=read_engine) ddf2.loc[:1000].compute() assert (df.x == ddf2.x.compute()).all() def test_append(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) ddf2.to_parquet(tmp, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, engine=engine) assert_eq(df, ddf3) def test_append_create(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp_path = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp_path, append=True, engine=engine) ddf2.to_parquet(tmp_path, append=True, engine=engine) ddf3 = dd.read_parquet(tmp_path, engine=engine) assert_eq(df, ddf3) def test_append_with_partition(tmpdir, engine): tmp = str(tmpdir) df0 = pd.DataFrame( { "lat": np.arange(0, 10, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(100, 110, dtype="int64"), } ) df0.index.name = "index" df1 = pd.DataFrame( { "lat": np.arange(10, 20, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(120, 130, dtype="int64"), } ) df1.index.name = "index" # Check that nullable dtypes work # (see: https://github.com/dask/dask/issues/8373) df0["lat"] = df0["lat"].astype("Int64") df1["lat"].iloc[0] = np.nan df1["lat"] = df1["lat"].astype("Int64") dd_df0 = dd.from_pandas(df0, npartitions=1) dd_df1 = dd.from_pandas(df1, npartitions=1) dd.to_parquet(dd_df0, tmp, partition_on=["lon"], engine=engine) dd.to_parquet( dd_df1, tmp, partition_on=["lon"], append=True, ignore_divisions=True, engine=engine, ) out = dd.read_parquet( tmp, engine=engine, index="index", gather_statistics=True ).compute() # convert categorical to plain int just to pass assert out["lon"] = out.lon.astype("int64") # sort required since partitioning breaks index order assert_eq( out.sort_values("value"), pd.concat([df0, df1])[out.columns], check_index=False ) def test_partition_on_cats(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} @PYARROW_MARK @pytest.mark.parametrize("meta", [False, True]) @pytest.mark.parametrize("stats", [False, True]) def test_partition_on_cats_pyarrow(tmpdir, stats, meta): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine="pyarrow", write_metadata_file=meta) df = dd.read_parquet(tmp, engine="pyarrow", gather_statistics=stats) assert set(df.b.cat.categories) == {"x", "y", "z"} def test_partition_on_cats_2(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b", "c"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} assert set(df.c.cat.categories) == {"x", "y", "z"} df = dd.read_parquet(tmp, columns=["a", "c"], engine=engine) assert set(df.c.cat.categories) == {"x", "y", "z"} assert "b" not in df.columns assert_eq(df, df.compute()) df = dd.read_parquet(tmp, index="c", engine=engine) assert set(df.index.categories) == {"x", "y", "z"} assert "c" not in df.columns # series df = dd.read_parquet(tmp, columns="b", engine=engine) assert set(df.cat.categories) == {"x", "y", "z"} def test_append_wo_index(tmpdir, engine): """Test append with write_index=False.""" tmp = str(tmpdir.join("tmp1.parquet")) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) assert "Appended columns" in str(excinfo.value) tmp = str(tmpdir.join("tmp2.parquet")) ddf1.to_parquet(tmp, write_index=False, engine=engine) ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, index="f", engine=engine) assert_eq(df.set_index("f"), ddf3) def test_append_overlapping_divisions(tmpdir, engine): """Test raising of error when divisions overlapping.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half - 10 :], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended divisions" in str(excinfo.value) ddf2.to_parquet(tmp, engine=engine, append=True, ignore_divisions=True) def test_append_different_columns(tmpdir, engine): """Test raising of error when non equal columns.""" tmp = str(tmpdir) df1 = pd.DataFrame({"i32": np.arange(100, dtype=np.int32)}) df2 = pd.DataFrame({"i64": np.arange(100, dtype=np.int64)}) df3 = pd.DataFrame({"i32": np.arange(100, dtype=np.int64)}) ddf1 = dd.from_pandas(df1, chunksize=2) ddf2 = dd.from_pandas(df2, chunksize=2) ddf3 = dd.from_pandas(df3, chunksize=2) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended columns" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: ddf3.to_parquet(tmp, engine=engine, append=True) assert "Appended dtypes" in str(excinfo.value) def test_append_dict_column(tmpdir, engine): # See: https://github.com/dask/dask/issues/7492 if engine == "fastparquet": pytest.xfail("Fastparquet engine is missing dict-column support") elif pa_version < parse_version("1.0.1"): pytest.skip("PyArrow 1.0.1+ required for dict-column support.") tmp = str(tmpdir) dts = pd.date_range("2020-01-01", "2021-01-01") df = pd.DataFrame( {"value": [{"x": x} for x in range(len(dts))]}, index=dts, ) ddf1 = dd.from_pandas(df, npartitions=1) # Write ddf1 to tmp, and then append it again ddf1.to_parquet(tmp, append=True, engine=engine) ddf1.to_parquet(tmp, append=True, engine=engine, ignore_divisions=True) # Read back all data (ddf1 + ddf1) ddf2 = dd.read_parquet(tmp, engine=engine) # Check computed result expect = pd.concat([df, df]) result = ddf2.compute() assert_eq(expect, result) @write_read_engines_xfail def test_ordering(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame( {"a": [1, 2, 3], "b": [10, 20, 30], "c": [100, 200, 300]}, index=pd.Index([-1, -2, -3], name="myindex"), columns=["c", "a", "b"], ) ddf = dd.from_pandas(df, npartitions=2) dd.to_parquet(ddf, tmp, engine=write_engine) if read_engine == "fastparquet": pf = fastparquet.ParquetFile(tmp) assert pf.columns == ["myindex", "c", "a", "b"] ddf2 = dd.read_parquet(tmp, index="myindex", engine=read_engine) assert_eq(ddf, ddf2, check_divisions=False) def test_read_parquet_custom_columns(tmpdir, engine): tmp = str(tmpdir) data = pd.DataFrame( {"i32": np.arange(1000, dtype=np.int32), "f": np.arange(1000, dtype=np.float64)} ) df = dd.from_pandas(data, chunksize=50) df.to_parquet(tmp, engine=engine) df2 = dd.read_parquet(tmp, columns=["i32", "f"], engine=engine) assert_eq(df[["i32", "f"]], df2, check_index=False) fns = glob.glob(os.path.join(tmp, "*.parquet")) df2 = dd.read_parquet(fns, columns=["i32"], engine=engine).compute() df2.sort_values("i32", inplace=True) assert_eq(df[["i32"]], df2, check_index=False, check_divisions=False) df3 = dd.read_parquet(tmp, columns=["f", "i32"], engine=engine) assert_eq(df[["f", "i32"]], df3, check_index=False) @pytest.mark.parametrize( "df,write_kwargs,read_kwargs", [ (pd.DataFrame({"x": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": ["c", "a", "b"]}), {}, {}), (pd.DataFrame({"x": ["cc", "a", "bbb"]}), {}, {}), (pd.DataFrame({"x": [b"a", b"b", b"c"]}), {"object_encoding": "bytes"}, {}), ( pd.DataFrame({"x": pd.Categorical(["a", "b", "a"])}), {}, {"categories": ["x"]}, ), (pd.DataFrame({"x": pd.Categorical([1, 2, 1])}), {}, {"categories": ["x"]}), (pd.DataFrame({"x": list(map(pd.Timestamp, [3000, 2000, 1000]))}), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("M8[ns]"), {}, {}), pytest.param( pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ns]"), {}, {}, ), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[us]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ms]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, UTC]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, CET]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("uint16"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("float32"), {}, {}), (pd.DataFrame({"x": [3, 1, 2]}, index=[3, 2, 1]), {}, {}), (pd.DataFrame({"x": [3, 1, 5]}, index=pd.Index([1, 2, 3], name="foo")), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}, columns=["y", "x"]), {}, {}), (pd.DataFrame({"0": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [3, 2, None]}), {}, {}), (pd.DataFrame({"-": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({".": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({" ": [3.0, 2.0, None]}), {}, {}), ], ) def test_roundtrip(tmpdir, df, write_kwargs, read_kwargs, engine): if "x" in df and df.x.dtype == "M8[ns]" and "arrow" in engine: pytest.xfail(reason="Parquet pyarrow v1 doesn't support nanosecond precision") if ( "x" in df and df.x.dtype == "M8[ns]" and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail(reason="fastparquet doesn't support nanosecond precision yet") if ( PANDAS_GT_130 and read_kwargs.get("categories", None) and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail("https://github.com/dask/fastparquet/issues/577") tmp = str(tmpdir) if df.index.name is None: df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) oe = write_kwargs.pop("object_encoding", None) if oe and engine == "fastparquet": dd.to_parquet(ddf, tmp, engine=engine, object_encoding=oe, **write_kwargs) else: dd.to_parquet(ddf, tmp, engine=engine, **write_kwargs) ddf2 = dd.read_parquet(tmp, index=df.index.name, engine=engine, **read_kwargs) if str(ddf2.dtypes.get("x")) == "UInt16" and engine == "fastparquet": # fastparquet choooses to use masked type to be able to get true repr of # 16-bit int assert_eq(ddf.astype("UInt16"), ddf2) else: assert_eq(ddf, ddf2) def test_categories(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": list("caaab")}) ddf = dd.from_pandas(df, npartitions=2) ddf["y"] = ddf.y.astype("category") ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, categories=["y"], engine=engine) # Shouldn't need to specify categories explicitly ddf3 = dd.read_parquet(fn, engine=engine) assert_eq(ddf3, ddf2) with pytest.raises(NotImplementedError): ddf2.y.cat.categories assert set(ddf2.y.compute().cat.categories) == {"a", "b", "c"} cats_set = ddf2.map_partitions(lambda x: x.y.cat.categories.sort_values()).compute() assert cats_set.tolist() == ["a", "c", "a", "b"] if engine == "fastparquet": assert_eq(ddf.y, ddf2.y, check_names=False) with pytest.raises(TypeError): # attempt to load as category that which is not so encoded ddf2 = dd.read_parquet(fn, categories=["x"], engine=engine).compute() with pytest.raises((ValueError, FutureWarning)): # attempt to load as category unknown column ddf2 = dd.read_parquet(fn, categories=["foo"], engine=engine) def test_categories_unnamed_index(tmpdir, engine): # Check that we can handle an unnamed categorical index # https://github.com/dask/dask/issues/6885 tmpdir = str(tmpdir) df = pd.DataFrame( data={"A": [1, 2, 3], "B": ["a", "a", "b"]}, index=["x", "y", "y"] ) ddf = dd.from_pandas(df, npartitions=1) ddf = ddf.categorize(columns=["B"]) ddf.to_parquet(tmpdir, engine=engine) ddf2 = dd.read_parquet(tmpdir, engine=engine) assert_eq(ddf.index, ddf2.index, check_divisions=False) def test_empty_partition(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"a": range(10), "b": range(10)}) ddf = dd.from_pandas(df, npartitions=5) ddf2 = ddf[ddf.a <= 5] ddf2.to_parquet(fn, engine=engine) ddf3 = dd.read_parquet(fn, engine=engine) assert ddf3.npartitions < 5 sol = ddf2.compute() assert_eq(sol, ddf3, check_names=False, check_index=False) def test_timestamp_index(tmpdir, engine): fn = str(tmpdir) df = dd._compat.makeTimeDataFrame() df.index.name = "foo" ddf = dd.from_pandas(df, npartitions=5) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, engine=engine) assert_eq(ddf, ddf2) @FASTPARQUET_MARK @PYARROW_MARK def test_to_parquet_default_writes_nulls(tmpdir): fn = str(tmpdir.join("test.parquet")) df = pd.DataFrame({"c1": [1.0, np.nan, 2, np.nan, 3]}) ddf = dd.from_pandas(df, npartitions=1) ddf.to_parquet(fn) table = pq.read_table(fn) assert table[1].null_count == 2 @PYARROW_LE_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_fails_by_default(tmpdir): df = pd.DataFrame( {"partition_column": [0, 0, 1, 1], "strings": ["a", "b", None, None]} ) ddf = dd.from_pandas(df, npartitions=2) # In order to allow pyarrow to write an inconsistent schema, # we need to avoid writing the _metadata file (will fail >0.17.1) # and need to avoid schema inference (i.e. use `schema=None`) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on=["partition_column"], write_metadata_file=False, schema=None, ) # Test that schema is not validated by default # (shouldn't raise error with legacy dataset) dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, ).compute() # Test that read fails when validate_schema=True # Note: This fails differently for pyarrow.dataset api with pytest.raises(ValueError) as e_info: dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, dataset={"validate_schema": True}, ).compute() assert e_info.message.contains("ValueError: Schema in partition") assert e_info.message.contains("was different") @PYARROW_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_succeeds_w_manual_schema( tmpdir, ): # Data types to test: strings, arrays, ints, timezone aware timestamps in_arrays = [[0, 1, 2], [3, 4], np.nan, np.nan] out_arrays = [[0, 1, 2], [3, 4], None, None] in_strings = ["a", "b", np.nan, np.nan] out_strings = ["a", "b", None, None] tstamp = pd.Timestamp(1513393355, unit="s") in_tstamps = [tstamp, tstamp, pd.NaT, pd.NaT] out_tstamps = [ # Timestamps come out in numpy.datetime64 format tstamp.to_datetime64(), tstamp.to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] timezone = "US/Eastern" tz_tstamp = pd.Timestamp(1513393355, unit="s", tz=timezone) in_tz_tstamps = [tz_tstamp, tz_tstamp, pd.NaT, pd.NaT] out_tz_tstamps = [ # Timezones do not make it through a write-read cycle. tz_tstamp.tz_convert(None).to_datetime64(), tz_tstamp.tz_convert(None).to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] df = pd.DataFrame( { "partition_column": [0, 0, 1, 1], "arrays": in_arrays, "strings": in_strings, "tstamps": in_tstamps, "tz_tstamps": in_tz_tstamps, } ) ddf = dd.from_pandas(df, npartitions=2) schema = pa.schema( [ ("arrays", pa.list_(pa.int64())), ("strings", pa.string()), ("tstamps", pa.timestamp("ns")), ("tz_tstamps", pa.timestamp("ns", timezone)), ("partition_column", pa.int64()), ] ) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on="partition_column", schema=schema ) ddf_after_write = ( dd.read_parquet(str(tmpdir), engine="pyarrow", gather_statistics=False) .compute() .reset_index(drop=True) ) # Check array support arrays_after_write = ddf_after_write.arrays.values for i in range(len(df)): assert np.array_equal(arrays_after_write[i], out_arrays[i]), type(out_arrays[i]) # Check datetime support tstamps_after_write = ddf_after_write.tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tstamps_after_write[i]): assert np.isnat(out_tstamps[i]) else: assert tstamps_after_write[i] == out_tstamps[i] # Check timezone aware datetime support tz_tstamps_after_write = ddf_after_write.tz_tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tz_tstamps_after_write[i]): assert np.isnat(out_tz_tstamps[i]) else: assert tz_tstamps_after_write[i] == out_tz_tstamps[i] # Check string support assert np.array_equal(ddf_after_write.strings.values, out_strings) # Check partition column assert np.array_equal(ddf_after_write.partition_column, df.partition_column) @PYARROW_MARK @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("schema", ["infer", "complex"]) def test_pyarrow_schema_inference(tmpdir, index, engine, schema): if schema == "complex": schema = {"index": pa.string(), "amount": pa.int64()} tmpdir = str(tmpdir) df = pd.DataFrame( { "index": ["1", "2", "3", "2", "3", "1", "4"], "date": pd.to_datetime( [ "2017-01-01", "2017-01-01", "2017-01-01", "2017-01-02", "2017-01-02", "2017-01-06", "2017-01-09", ] ), "amount": [100, 200, 300, 400, 500, 600, 700], }, index=range(7, 14), ) if index: df = dd.from_pandas(df, npartitions=2).set_index("index") else: df = dd.from_pandas(df, npartitions=2) df.to_parquet(tmpdir, engine="pyarrow", schema=schema) df_out = dd.read_parquet(tmpdir, engine=engine) df_out.compute() if index and engine == "fastparquet": # Fastparquet fails to detect int64 from _metadata df_out["amount"] = df_out["amount"].astype("int64") # Fastparquet not handling divisions for # pyarrow-written dataset with string index assert_eq(df, df_out, check_divisions=False) else: assert_eq(df, df_out) def test_partition_on(tmpdir, engine): tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), "d": np.arange(0, 100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) # Note #1: Cross-engine functionality is missing # Note #2: The index is not preserved in pyarrow when partition_on is used out = dd.read_parquet( tmpdir, engine=engine, index=False, gather_statistics=False ).compute() for val in df.a1.unique(): assert set(df.d[df.a1 == val]) == set(out.d[out.a1 == val]) # Now specify the columns and allow auto-index detection out = dd.read_parquet(tmpdir, engine=engine, columns=["d", "a2"]).compute() for val in df.a2.unique(): assert set(df.d[df.a2 == val]) == set(out.d[out.a2 == val]) def test_partition_on_duplicates(tmpdir, engine): # https://github.com/dask/dask/issues/6445 tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "data": np.random.random(size=100), } ) d = dd.from_pandas(df, npartitions=2) for _ in range(2): d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) out = dd.read_parquet(tmpdir, engine=engine).compute() assert len(df) == len(out) for root, dirs, files in os.walk(tmpdir): for file in files: assert file in ( "part.0.parquet", "part.1.parquet", "_common_metadata", "_metadata", ) @PYARROW_MARK @pytest.mark.parametrize("partition_on", ["aa", ["aa"]]) def test_partition_on_string(tmpdir, partition_on): tmpdir = str(tmpdir) with dask.config.set(scheduler="single-threaded"): tmpdir = str(tmpdir) df = pd.DataFrame( { "aa": np.random.choice(["A", "B", "C"], size=100), "bb":
np.random.random(size=100)
numpy.random.random
import numpy as np import matplotlib.pyplot as plt from scipy.stats import chi2, norm import pickle plt.style.use('../../plot/paper.mplstyle') from matplotlib import rcParams def comparison(datasets, method): defaultfontsize = rcParams['font.size'] rcParams['font.size'] = 14 f, (axes) = plt.subplots(2, sharex=True, sharey=False, figsize=(5.5, 5.3)) preds = [] for dset in datasets: with open(dset + "/results_predictions_" + method +".pkl") as hin: preds.append(pickle.load(hin)) for i, pred in enumerate(preds): diff = pred[0.7] thisdiff = np.array(diff) mean = np.mean(thisdiff) std = np.std(thisdiff) if 'mle' in method and i == 0: thisdiff = thisdiff[np.where((thisdiff >= 0.7-1.1) & (thisdiff <= 0.7+1.1))] mean = np.mean(thisdiff) std = np.std(thisdiff) nbins = 50 if i == 0 else 100 xlow, xhigh = -0.3, 1.7 axes[i].axvspan(xlow, 0, alpha=0.15, color='gray') axes[i].axvspan(1, xhigh, alpha=0.15, color='gray') axes[i].hist(diff, bins=nbins, range=(xlow, xhigh), color='#39568C', alpha=0.7, label=r'$\alpha$ (test) = 0.7f') textloc = (0.2, 0.8) if mean > 0.8 else (0.75, 0.8) axes[i].text(textloc[0]+0.0216, textloc[1], r'$n = %d$' % (20 if i == 0 else 500), transform=axes[i].transAxes, fontsize=14) axes[i].text(textloc[0]+0.0216, textloc[1]-0.10, r'$\alpha = 0.7$', transform=axes[i].transAxes, fontsize=14) axes[i].text(textloc[0], textloc[1]-0.22, r'$\mu_{\alpha} = %.2f$' % mean, transform=axes[i].transAxes, fontsize=14) axes[i].text(textloc[0], textloc[1]-0.32, r'$\sigma_{\alpha} = %.2f$' % std, transform=axes[i].transAxes, fontsize=14) axes[i].set_xlim([xlow, xhigh]) if i == 0: axes[i].set_ylim([0, 700]) axes[i].yaxis.set_ticks(np.arange(0, 700, 200)) else: axes[i].set_ylim([0, 950]) axes[i].yaxis.set_ticks(np.arange(0, 950, 200)) xvals =
np.linspace(xlow, xhigh, 200)
numpy.linspace
from lda2vec import fake_data from chainer import Variable from chainer.functions import cross_covariance import numpy as np def test_orthogonal_matrix(): msg = "Orthogonal matrices have equal inverse and transpose" arr = fake_data.orthogonal_matrix([20, 20]) assert np.allclose(np.linalg.inv(arr), arr.T), msg def test_orthogonal_matrix_covariance(): msg = "Orthogonal matrix should have less covariance than a random matrix" orth = Variable(fake_data.orthogonal_matrix([20, 20]).astype('float32')) rand = Variable(np.random.randn(20, 20).astype('float32')) orth_cc = cross_covariance(orth, orth).data rand_cc = cross_covariance(rand, rand).data assert orth_cc < rand_cc, msg def test_softmax(): arr = np.random.randn(100, 15) probs = fake_data.softmax(arr) norms = np.sum(probs, axis=1) assert np.allclose(norms, np.ones_like(norms)) def test_sample(): n_categories = 10 idx = 4 probs = np.zeros(n_categories) probs = np.array(probs) probs[idx] = 1.0 values = np.arange(n_categories) size = 10 draws = fake_data.sample(values, probs, size) assert
np.all(draws == idx)
numpy.all
import numpy as np import torch import torch.nn as nn from torch.nn.modules.utils import _triple import torch.nn.functional as F from torch.optim.lr_scheduler import ReduceLROnPlateau import math import os import datetime from matplotlib import pyplot as plt class SpatioTemporalConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True): super(SpatioTemporalConv, self).__init__() kernel_size = _triple(kernel_size) stride = _triple(stride) padding = _triple(padding) spatial_kernel_size = [1, kernel_size[1], kernel_size[2]] spatial_stride = [1, stride[1], stride[2]] spatial_padding = [0, padding[1], padding[2]] temporal_kernel_size = [kernel_size[0], 1, 1] temporal_stride = [stride[0], 1, 1] temporal_padding = [padding[0], 0, 0] intermed_channels = int(math.floor((kernel_size[0] * kernel_size[1] * kernel_size[2] * in_channels * out_channels)/ \ (kernel_size[1]* kernel_size[2] * in_channels + kernel_size[0] * out_channels))) self.spatial_conv = nn.Conv3d(in_channels, intermed_channels, spatial_kernel_size, stride=spatial_stride, padding=spatial_padding, bias=bias) self.bn = nn.BatchNorm3d(intermed_channels) self.relu = nn.ReLU() self.temporal_conv = nn.Conv3d(intermed_channels, out_channels, temporal_kernel_size, stride=temporal_stride, padding=temporal_padding, bias=bias) def forward(self, x): x = self.relu(self.bn(self.spatial_conv(x))) x = self.temporal_conv(x) return x class SpatioTemporalResBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, downsample=False): super(SpatioTemporalResBlock, self).__init__() self.downsample = downsample padding = kernel_size//2 if self.downsample: self.downsampleconv = SpatioTemporalConv(in_channels, out_channels, 1, stride=2) self.downsamplebn = nn.BatchNorm3d(out_channels) self.conv1 = SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding, stride=2) else: self.conv1 = SpatioTemporalConv(in_channels, out_channels, kernel_size, padding=padding) self.bn1 = nn.BatchNorm3d(out_channels) self.relu1 = nn.ReLU() self.conv2 = SpatioTemporalConv(out_channels, out_channels, kernel_size, padding=padding) self.bn2 = nn.BatchNorm3d(out_channels) self.outrelu = nn.ReLU() def forward(self, x): res = self.relu1(self.bn1(self.conv1(x))) res = self.bn2(self.conv2(res)) if self.downsample: x = self.downsamplebn(self.downsampleconv(x)) return self.outrelu(x + res) class SpatioTemporalResLayer(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, layer_size, block_type=SpatioTemporalResBlock, downsample=False): super(SpatioTemporalResLayer, self).__init__() self.block1 = block_type(in_channels, out_channels, kernel_size, downsample) self.blocks = nn.ModuleList([]) for i in range(layer_size - 1): self.blocks += [block_type(out_channels, out_channels, kernel_size)] def forward(self, x): x = self.block1(x) for block in self.blocks: x = block(x) return x class R2Plus1DNet(nn.Module): def __init__(self, layer_sizes, block_type=SpatioTemporalResBlock, p = 0.2): super(R2Plus1DNet, self).__init__() self.conv1 = SpatioTemporalConv(3, 64, [3, 7, 7], stride=[1, 2, 2], padding=[1, 3, 3]) self.conv2 = SpatioTemporalResLayer(64, 64, 3, layer_sizes[0], block_type=block_type) self.conv3 = SpatioTemporalResLayer(64, 128, 3, layer_sizes[1], block_type=block_type, downsample=True) self.conv4 = SpatioTemporalResLayer(128, 256, 3, layer_sizes[2], block_type=block_type, downsample=True) self.conv5 = SpatioTemporalResLayer(256, 512, 3, layer_sizes[3], block_type=block_type, downsample=True) self.pool = nn.AdaptiveAvgPool3d(1) # define dropout layer in __init__ self.drop_layer = nn.Dropout(p = p) def forward(self, x): x = self.conv1(x) x = self.drop_layer(x) x = self.conv2(x) x = self.drop_layer(x) x = self.conv3(x) x = self.drop_layer(x) x = self.conv4(x) x = self.drop_layer(x) x = self.conv5(x) x = self.drop_layer(x) x = self.pool(x) return x.view(-1, 512) class R2Plus1DClassifier(nn.Module): def __init__(self, num_classes, layer_sizes, block_type=SpatioTemporalResBlock, p = 0.2): super(R2Plus1DClassifier, self).__init__() self.res2plus1d = R2Plus1DNet(layer_sizes, block_type, p = p) self.linear = nn.Linear(512, num_classes) def forward(self, x): x = self.res2plus1d(x) x = self.linear(x) return x class DataGenerator(torch.utils.data.Dataset): def __init__(self, vids, labels, batch_size, flip = False, angle = 0, crop = 0, shift = 0): self.vids = vids self.labels = labels self.indices = np.arange(vids.shape[0]) self.batch_size = batch_size self.flip = flip self.angle = angle self.crop = crop self.shift = shift self.max_index = vids.shape[0] // batch_size self.index = 0 np.random.shuffle(self.indices) def __iter__(self): return self def random_zoom(self, batch, x, y): ax = np.random.uniform(self.crop) bx = np.random.uniform(ax) ay = np.random.uniform(self.crop) by = np.random.uniform(ay) x = x*(1-ax/batch.shape[2]) + bx y = y*(1-ay/batch.shape[3]) + by return x, y def random_rotate(self, batch, x, y): rad = np.random.uniform(-self.angle, self.angle)/180*np.pi rotm = np.array([[np.cos(rad), np.sin(rad)], [-np.sin(rad), np.cos(rad)]]) x, y = np.einsum('ji, mni -> jmn', rotm, np.dstack([x, y])) return x, y def random_translate(self, batch, x, y): xs = np.random.uniform(-self.shift, self.shift) ys = np.random.uniform(-self.shift, self.shift) return x + xs, y + ys def horizontal_flip(self, batch): return np.flip(batch, 3) def __next__(self): if self.index == self.max_index: self.index = 0 np.random.shuffle(self.indices) raise StopIteration indices = self.indices[self.index * self.batch_size:(self.index + 1) * self.batch_size] vids = np.array(self.vids[indices]) x, y = np.meshgrid(range(112), range(112)) x = x*24/112 y = y*24/112 if self.crop: x, y = self.random_zoom(vids, x, y) if self.angle: x, y = self.random_rotate(vids, x, y) if self.shift: x, y = self.random_translate(vids, x, y) if self.flip and np.random.random() < 0.5: vids = self.horizontal_flip(vids) x = np.clip(x, 0, vids.shape[2]-1).astype(np.int) y =
np.clip(y, 0, vids.shape[3]-1)
numpy.clip
import util import numpy as np import tensorflow as tf from keras.utils.np_utils import * import riemannian from scipy import signal import pyriemann from pyriemann.utils.mean import mean_covariance MOVEMENT_START = 1 * 160 # MI starts 1s after trial begin MOVEMENT_END = 5 * 160 # MI lasts 4 seconds NOISE_LEVEL = 0.01 clas = 4 fc = 160 aug = 40 ntrials = 84 def load_raw_data(electrodes, subject=None, num_classes=2, long_edge=False): # load from file trials = [] labels = [] if subject == None: # subject_ids = range(1, 110) subject_ids = range(1, 11) else: try: subject_ids = [int(subject)] except: subject_ids = subject for subject_id in subject_ids: print("load subject %d" % (subject_id,)) t, l, loc, fs = util.load_physionet_data(subject_id, num_classes, long_edge=long_edge) if num_classes == 2 and t.shape[0] != 42: # drop subjects with less trials continue trials.append(t[:, :, electrodes]) labels.append(l) return np.array(trials).reshape((len(trials),) + trials[0].shape), np.array(labels) def split_idx( idx,a,b): """ Shuffle and split a list of indexes into training and test data with a fixed random seed for reproducibility run: index of the current split (zero based) nruns: number of splits (> run) idx: list of indices to split """ rs = np.random.RandomState() rs.shuffle(idx) start = int(a / 10. * len(idx)) end = int((b+a) / 10. * len(idx)) train_idx = idx[0:start] test_idx = idx[start:end] val_idx = idx[end:] return train_idx, val_idx, test_idx # return train_idx, test_idx def n_classfilter(x,y,arg): # x = np.squeeze(x) signal = np.zeros((5,)+x.shape) label = np.zeros((5,)+y.shape) signal[0,:] = filter(x,0.5,4,arg) label[0,:] = y signal[1, :] = filter(x, 4, 8,arg) label[1, :] = y signal[2, :] = filter(x, 8, 13,arg) label[2, :] = y signal[3, :] = filter(x, 13, 32,arg) label[3, :] = y signal[4, :] = filter(x, 32, 50,arg) label[4, :] = y return signal,label def filter(x,low_filter,high_filter, aru): Wn = [low_filter*2/fc,high_filter*2/fc] b, a = signal.butter(3, Wn, 'bandpass') # x = x.transpose((0, 1, 2, 4, 3)) fdata = np.zeros(x.shape) if aru: for i in range(len(x)): for j in range(x.shape[1]): for k in range(x.shape[2]): for l in range(x.shape[4]): fdata[i, j, k, :, l] = signal.filtfilt(b, a, x[i, j, k, :, l]) # fdata = fdata.transpose((0, 1, 2, 4, 3)) return fdata else: for i in range(len(x)): for j in range(x.shape[1]): for l in range(x.shape[3]): fdata[i, j, :, l] = signal.filtfilt(b, a, x[i, j, :, l]) # fdata = fdata.transpose((0, 1, 2, 4, 3)) return fdata def n_class_signal_mapping(x_train, y_train, x_val, y_val): x1_train = np.zeros((x_train.shape[0:4] + (64,64, ))) y1_train = np.zeros((y_train.shape)) x1_val = np.zeros((x_val.shape[0:3] + (64, 64,))) y1_val = np.zeros((y_val.shape)) for j in range(len(x_train)): x1_train[j, :], y1_train[j, :], x1_val[j, :], y1_val[j, :] = signal_mapping(x_train[j], y_train[j], x_val[j], y_val[j]) print("yes") x1_train = x1_train.transpose(1, 2, 3, 4, 5, 0) x1_val = x1_val.transpose(1, 2, 3, 4, 0) # y1_train = y1_train[0] # y1_val = y1_val[0] return x1_train, y1_train, x1_val, y1_val def signal_mapping(x_train, y_train, x_val, y_val): #训练集 signals1,core = Signals_Covariance(x_train,None,mean_all=True) #测试集 signals2 = Signals_Covariance(x_val, core, mean_all=False) # y_test = y_val.reshape((-1,)) # y_train = y_train.reshape((-1,)) return signals1,y_train,signals2,y_val def Signals_Covariance(signals,core_test,mean_all=True): if mean_all: signal = signals.reshape((-1,) + (signals.shape[-2:])) signal = np.transpose(signal, axes=[0, 2, 1]) x_out = pyriemann.estimation.Covariances().fit_transform(signal) core = mean_covariance(x_out, metric='riemann') # core = training_data_cov_means(X,y,num_classes=4) core = core ** (-1 / 2) signal1, core = signal_covar(signals, core, mean_all) return signal1,core else: core = core_test ** (-1 / 2) signal1 = signal_covar(signals, core, mean_all) return signal1 #对输入的数组进行协方差,并返回同纬度结果[n,84,q,960,64] -> [n,84,q,64,960] -> [n,84,q,64,64] # [n, 84, 960, 64] -> [n, 84, 64, 960] -> [n, 84, 64, 64] def signal_covar(signal,core, mean_all): if mean_all: signal = np.transpose(signal, axes=[0, 1, 2, 4, 3]) signals = np.zeros((signal.shape[0:4])+(64,)) for i in range(len(signal)): for j in range(signal.shape[1]): signal1 = pyriemann.estimation.Covariances().fit_transform(signal[i, j, :]) signal2 = core * signal1 * core signals[i, j, :] =
np.log(signal2)
numpy.log
#!/usr/bin/env python # coding: utf-8 # In[38]: from scipy.io import loadmat import glob import cv2 from shutil import copyfile import os import numpy as np import matplotlib.pylab as plt from skimage.io import imread from pathlib import Path import skimage from skimage import feature, morphology from matplotlib.pyplot import figure import matplotlib from skimage.color import rgb2gray import copy import gc import sys # In[39]: bird_labels = {'head':1, 'leye':2, 'reye':3, 'beak':4, 'torso':5, 'neck':6, 'lwing':7, 'rwing':8, 'lleg':9, 'lfoot':10, 'rleg':11, 'rfoot':12, 'tail':13} cat_labels = {'head':1, 'leye':2, 'reye':3, 'lear':4, 'rear':5, 'nose':6, 'torso':7, 'neck':8, 'lfleg':9, 'lfpa':10, 'rfleg':11, 'rfpa':12, 'lbleg':13, 'lbpa':14, 'rbleg':15, 'rbpa':16, 'tail':17} cow_labels = {'head':1, 'leye':2, 'reye':3, 'lear':4, 'rear':5, 'muzzle':6, 'lhorn':7, 'rhorn':8, 'torso':9, 'neck':10, 'lfuleg':11, 'lflleg':12, 'rfuleg':13, 'rflleg':14, 'lbuleg':15, 'lblleg':16, 'rbuleg':17, 'rblleg':18, 'tail':19} dog_labels = {'head':1, 'leye':2, 'reye':3, 'lear':4, 'rear':5, 'nose':6, 'torso':7, 'neck':8, 'lfleg':9, 'lfpa':10, 'rfleg':11, 'rfpa':12, 'lbleg':13, 'lbpa':14, 'rbleg':15, 'rbpa':16, 'tail':17, 'muzzle':18} horse_labels = {'head':1, 'leye':2, 'reye':3, 'lear':4, 'rear':5, 'muzzle':6, 'lfho':7, 'rfho':8, 'torso':9, 'neck':10, 'lfuleg':11, 'lflleg':12, 'rfuleg':13, 'rflleg':14, 'lbuleg':15, 'lblleg':16, 'rbuleg':17, 'rblleg':18, 'tail':19, 'lbho':20, 'rbho':21} bottle_labels = {'cap':1, 'body':2} person_labels = {'head':1, 'leye':2, 'reye':3, 'lear':4, 'rear':5, 'lebrow':6, 'rebrow':7, 'nose':8, 'mouth':9, 'hair':10, 'torso':11, 'neck': 12, 'llarm': 13, 'luarm': 14, 'lhand': 15, 'rlarm':16, 'ruarm':17, 'rhand': 18, 'llleg': 19, 'luleg':20, 'lfoot':21, 'rlleg':22, 'ruleg':23, 'rfoot':24} bus_labels = { 'frontside':1, 'leftside':2, 'rightside':3, 'backside':4, 'roofside':5, 'leftmirror':6, 'rightmirror':7, 'fliplate':8, 'bliplate':9 } for ii in range(0,10): bus_labels['door_{}'.format(ii+1)] = 10+ii for ii in range(0,10): bus_labels['wheel_{}'.format(ii+1)] = 20+ii for ii in range(0,10): bus_labels['headlight_{}'.format(ii+1)] = 30+ii for ii in range(0,10): bus_labels['window_{}'.format(ii+1)] = 40+ii aeroplane_labels = {'body': 1, 'stern': 2, 'lwing': 3, 'rwing':4, 'tail':5} for ii in range(0, 10): aeroplane_labels['engine_{}'.format(ii+1)] = 6+ii for ii in range(0, 10): aeroplane_labels['wheel_{}'.format(ii+1)] = 16+ii motorbike_labels = {'fwheel': 1, 'bwheel': 2, 'handlebar': 3, 'saddle': 4} for ii in range(0,10): motorbike_labels['headlight_{}'.format(ii+1)] = 5+ii motorbike_labels['body']=15 bicycle_labels = {'fwheel': 1, 'bwheel': 2, 'saddle': 3, 'handlebar': 4, 'chainwheel': 5} for ii in range(0,10): bicycle_labels['headlight_{}'.format(ii+1)] = 6+ii bicycle_labels['body']=16 train_labels = {'head':1,'hfrontside':2,'hleftside':3,'hrightside':4,'hbackside':5,'hroofside':6} for ii in range(0,10): train_labels['headlight_{}'.format(ii+1)] = 7 + ii for ii in range(0,10): train_labels['coach_{}'.format(ii+1)] = 17 + ii for ii in range(0,10): train_labels['cfrontside_{}'.format(ii+1)] = 27 + ii for ii in range(0,10): train_labels['cleftside_{}'.format(ii+1)] = 37 + ii for ii in range(0,10): train_labels['crightside_{}'.format(ii+1)] = 47 + ii for ii in range(0,10): train_labels['cbackside_{}'.format(ii+1)] = 57 + ii for ii in range(0,10): train_labels['croofside_{}'.format(ii+1)] = 67 + ii sheep_labels = cow_labels car_labels = bus_labels part_labels = {'bird': bird_labels, 'cat': cat_labels, 'cow': cow_labels, 'dog': dog_labels, 'sheep': sheep_labels, 'horse':horse_labels, 'car':car_labels, 'bus':bus_labels, 'bicycle':bicycle_labels, 'motorbike':motorbike_labels, 'person':person_labels,'aeroplane':aeroplane_labels, 'train':train_labels} # In[40]: object_name = sys.argv[1] animals = [object_name] # In[4]: def rotate_im(image, angle): # grab the dimensions of the image and then determine the # centre (h, w) = image.shape[:2] (cX, cY) = (w // 2, h // 2) # grab the rotation matrix (applying the negative of the # angle to rotate clockwise), then grab the sine and cosine # (i.e., the rotation components of the matrix) M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0) cos = np.abs(M[0, 0]) sin = np.abs(M[0, 1]) # compute the new bounding dimensions of the image nW = int((h * sin) + (w * cos)) nH = int((h * cos) + (w * sin)) # adjust the rotation matrix to take into account translation M[0, 2] += (nW / 2) - cX M[1, 2] += (nH / 2) - cY # perform the actual rotation and return the image image = cv2.warpAffine(image, M, (nW, nH)) # image = cv2.resize(image, (w,h)) return image # In[5]: def get_corners(bboxes): width = (bboxes[:,2] - bboxes[:,0]).reshape(-1,1) height = (bboxes[:,3] - bboxes[:,1]).reshape(-1,1) x1 = bboxes[:,0].reshape(-1,1) y1 = bboxes[:,1].reshape(-1,1) x2 = x1 + width y2 = y1 x3 = x1 y3 = y1 + height x4 = bboxes[:,2].reshape(-1,1) y4 = bboxes[:,3].reshape(-1,1) corners = np.hstack((x1,y1,x2,y2,x3,y3,x4,y4)) return corners # In[6]: def clip_box(bbox, clip_box, alpha): ar_ = (bbox_area(bbox)) x_min = np.maximum(bbox[:,0], clip_box[0]).reshape(-1,1) y_min = np.maximum(bbox[:,1], clip_box[1]).reshape(-1,1) x_max = np.minimum(bbox[:,2], clip_box[2]).reshape(-1,1) y_max = np.minimum(bbox[:,3], clip_box[3]).reshape(-1,1) bbox = np.hstack((x_min, y_min, x_max, y_max, bbox[:,4:])) delta_area = ((ar_ - bbox_area(bbox))/ar_) mask = (delta_area < (1 - alpha)).astype(int) bbox = bbox[mask == 1,:] return bbox # In[7]: def rotate_box(corners,angle, cx, cy, h, w): corners = corners.reshape(-1,2) corners = np.hstack((corners, np.ones((corners.shape[0],1), dtype = type(corners[0][0])))) M = cv2.getRotationMatrix2D((cx, cy), angle, 1.0) cos = np.abs(M[0, 0]) sin = np.abs(M[0, 1]) nW = int((h * sin) + (w * cos)) nH = int((h * cos) + (w * sin)) # adjust the rotation matrix to take into account translation M[0, 2] += (nW / 2) - cx M[1, 2] += (nH / 2) - cy # Prepare the vector to be transformed calculated =
np.dot(M,corners.T)
numpy.dot
import numpy as np from .Gaussianformula.baseFunc import * from .Gaussianformula.ordering import * from .Gaussianformula.gates import * import matplotlib.pyplot as plt GATE_SET = { "D": Dgate, "BS": BSgate, "S": Sgate, "R": Rgate, "XS": Sgate, "PS": PSgate, "X": Xgate, "Z": Zgate, "TMS": TMSgate, "MeasX": MeasX, "MeasP": MeasP } class Gaussian(): """ Class for continuous variable quantum compting in Gaussian formula. This class can only deal with gaussian states and gaussian gate. """ def __init__(self, N): self.N = N self.V = (np.eye(2 * N)) * 0.5 self.mu = np.zeros(2 * N) self.ops = [] self.creg = [[None, None] for i in range(self.N)] # [x, p] def __getattr__(self, name): if name in GATE_SET: self.ops.append(GATE_SET[name]) return self._setGateParam else: raise AttributeError('The state method does not exist') def _setGateParam(self, *args, **kwargs): self.ops[-1] = self.ops[-1](self, *args, **kwargs) return self def Creg(self, idx, var, scale = 1): return CregReader(self.creg, idx, var, scale) def run(self): """ Run the circuit. """ for gate in self.ops: [self.mu, self.V] = gate.run(state = [self.mu, self.V]) return self def mean(self, idx): res = np.copy(self.mu[2 * idx:2 * idx + 2]) return res def cov(self, idx): res = np.copy(self.V[(2 * idx):(2 * idx + 2), (2 * idx):(2 * idx + 2)]) return res def Wigner(self, idx, plot = 'y', xrange = 5.0, prange = 5.0): """ Calculate the Wigner function of a selected mode. Args: mode (int): Selecting a optical mode plot: If 'y', the plot of wigner function is output using matplotlib. If 'n', only the meshed values are returned x(p)range: The range in phase space for calculateing Wigner function """ idx = idx * 2 x =
np.arange(-xrange, xrange, 0.1)
numpy.arange
""" Code for training and evaluating Pytorch models. """ from torch.nn.modules.loss import MarginRankingLoss, CrossEntropyLoss from torch.optim.lr_scheduler import ReduceLROnPlateau import logging import numpy as np import os import pprint import time import torch import torch.optim as optim import models import utils CUDA = torch.cuda.is_available() CONFIG = utils.read_config() LOGGER = logging.getLogger(os.path.basename(__file__)) def calc_losses(y_hats, y, out_dims): """ Calculate all losses across all prediction tasks. Also reformats 'predictions' to be a friendly pytorch tensor for later use. TODO: this should be a class? """ reg_loss = MarginRankingLoss() clf_loss = CrossEntropyLoss() if CUDA: reg_loss = reg_loss.cuda() clf_loss = clf_loss.cuda() losses, predictions = [], [] for i, out_dim in enumerate(out_dims): y_hat = y_hats[i] y_tru = y[:, i] # Regression case. if out_dim == 1: # Required for margin ranking loss. y_rank = get_paired_ranks(y_tru) y1_hat, y2_hat = get_pairs(y_hat) losses.append(reg_loss(y1_hat, y2_hat, y_rank)) predictions.append(y_hat) # Classification case. elif out_dim > 1: # Cross entropy loss. losses.append(clf_loss(y_hat, y_tru.long())) _, preds = torch.max(y_hat.data, 1) predictions.append(preds.float().unsqueeze(1)) predictions = torch.cat(predictions, dim=1) return(losses, predictions) def get_pairs(y): """ For an input vector y, returns vectors y1 and y2 such that y1-y2 gives all unique pairwise subtractions possible in y. """ y = y.cpu() n = len(y) idx_y2, idx_y1 = np.where(np.tril(np.ones((n, n)), k=-1)) y1 = y[torch.LongTensor(idx_y1)] y2 = y[torch.LongTensor(idx_y2)] if CUDA: y1 = y1.cuda() y2 = y2.cuda() return(y1, y2) def get_paired_ranks(y): """ Generate y_rank (for margin ranking loss). If `y == 1` then it assumed the first input should be ranked higher (have a larger value) than the second input, and vice-versa for `y == -1`. """ y = y.cpu() # Calculates all pairwise subtractions. y_rank = y[np.newaxis, :] - y[:, np.newaxis] # Edge case where the difference between 2 points is 0. y_rank[y_rank == 0] = 1e-19 # Get the lower triangle of y_rank (ignoring the diagonal). idx = np.where(np.tril(y_rank, k=-1)) # Order: y1-y2, y1-y3, y2-y3, y1-y4, y2-y4, y3-y4 ... (lower triangle). y_rank = y_rank[idx[0], idx[1]] y_rank[y_rank > 0] = 1 y_rank[y_rank <= 0] = -1 if CUDA: y_rank = y_rank.cuda() # Make a column vector. y_rank = y_rank[:, np.newaxis] return(y_rank) def check_predictions(all_y_hats, all_y_trus): """Check model predictions.""" all_y_hats = torch.cat(all_y_hats, dim=0).cpu().detach().numpy() all_y_trus = torch.cat(all_y_trus, dim=0).cpu().numpy() total_score, pr_mu, rt_mu, rr_std, id_recall = utils.score_performance( all_y_hats[:, 0], all_y_trus[:, 0], all_y_hats[:, 1], all_y_trus[:, 1], all_y_hats[:, 2], all_y_trus[:, 2], all_y_hats[:, 3].astype(np.int32), all_y_trus[:, 3].astype(np.int32)) return(total_score, pr_mu, rt_mu, rr_std, id_recall) def train_loop(mdl, optimizer, loader): """Train model using the supplied learning rate optimizer and scheduler.""" mdl.train(True) mean_loss = 0.0 all_y_hats, all_y_trus = [], [] for batch_idx, (X, y) in enumerate(loader): optimizer.zero_grad() if CUDA: X = X.cuda() y = y.cuda() y_hats = mdl.forward(X) losses, y_hats = calc_losses(y_hats, y, mdl.out_dims) # Backprop with sum of losses across prediction tasks. loss = sum(losses) loss.backward() mean_loss += loss.item() optimizer.step() all_y_hats.append(y_hats) all_y_trus.append(y) mean_loss /= (batch_idx+1) total_score, pr_mu, rt_mu, rr_std, id_recall = check_predictions( all_y_hats, all_y_trus) results = { 'scores': {'total_score': total_score, 'pr_mu': pr_mu, 'rt_mu': rt_mu, 'rr_std': rr_std, 'id_recall': id_recall}, 'loss': {'mean': mean_loss} } return(results) def evalu_loop(mdl, loader, return_preds=False): """Validation/Test evaluation loop.""" mdl.eval() mean_loss = 0.0 all_y_hats, all_y_trus = [], [] for batch_idx, (X, y) in enumerate(loader): if CUDA: X = X.cuda() y = y.cuda() y_hats = mdl.forward(X) losses, y_hats = calc_losses(y_hats, y, mdl.out_dims) # Report sum of losses. loss = sum(losses) mean_loss += loss.item() all_y_hats.append(y_hats) all_y_trus.append(y) mean_loss /= (batch_idx+1) total_score, pr_mu, rt_mu, rr_std, id_recall = check_predictions( all_y_hats, all_y_trus) # If required (for evaluation), return the actual predictions made. if return_preds: results_y_hat = [] # Loop through epochs. for y_hats in all_y_hats: # Loop through each prediction (n-element list). for y_hat in y_hats: results_y_hat.append(y_hat.cpu().detach().numpy()) # Convert to a single numpy array. results_y_hat = np.vstack(results_y_hat) else: results_y_hat = None results = { 'scores': {'total_score': total_score, 'pr_mu': pr_mu, 'rt_mu': rt_mu, 'rr_std': rr_std, 'id_recall': id_recall}, 'loss': {'mean': mean_loss}, 'preds': results_y_hat } return(results) def train_mdl(mdl, optimizer): """ Trains a submitted model using the submitted optimizer. """ pp = pprint.PrettyPrinter(indent=4) LOGGER.info('+ Begin training with configuration:\n{}'.format( pp.pformat(CONFIG))) epochs = CONFIG['training']['epochs'] load_args = { 'batch_size': CONFIG['dataloader']['batch_size'], 'num_workers': CONFIG['dataloader']['num_workers'], 'shuffle': CONFIG['dataloader']['shuffle']} # Shuffles data between day1=test and day2=valid. data = utils.get_shuffled_data( test_p=CONFIG['dataloader']['test_proportion']) # Set up Dataloaders. train_data = utils.Data(precomputed=data['train'], augmentation=True) valid_data = utils.Data(precomputed=data['valid'], augmentation=False) train_load = torch.utils.data.DataLoader(train_data, **load_args) valid_load = torch.utils.data.DataLoader(valid_data, **load_args) # Move model to GPU if required. if CUDA: mdl = mdl.cuda() # Initial values. valid_loss = 10000 best_valid_loss = 10000 all_train_losses, all_valid_losses = [], [] all_train_scores, all_valid_scores = [], [] # Reduce learning rate if we plateau (valid_loss does not decrease). scheduler = ReduceLROnPlateau(optimizer, patience=CONFIG['training']['schedule_patience']) for ep in range(epochs): t1 = time.time() scheduler.step(valid_loss) train_results = train_loop(mdl, optimizer, train_load) valid_results = evalu_loop(mdl, valid_load) # Keep track of per-epoch stats for plots. all_train_losses.append(train_results['loss']['mean']) all_valid_losses.append(valid_results['loss']['mean']) all_train_scores.append([ train_results['scores']['pr_mu'], train_results['scores']['rt_mu'], train_results['scores']['rr_std'], train_results['scores']['id_recall'], train_results['scores']['total_score']]) all_valid_scores.append([ valid_results['scores']['pr_mu'], valid_results['scores']['rt_mu'], valid_results['scores']['rr_std'], valid_results['scores']['id_recall'], valid_results['scores']['total_score']]) # Get the best model (early stopping). if valid_results['loss']['mean'] < best_valid_loss: best_valid_loss = all_valid_losses[-1] best_model = mdl.state_dict() best_epoch = ep+1 LOGGER.info('+ New best model found: loss={}, score={}'.format( best_valid_loss, valid_results['scores']['total_score'])) # Log training performance. time_elapsed = time.time() - t1 msg_info = '[{}/{}] {:.2f} sec: '.format( ep+1, epochs, time_elapsed) msg_loss = 'loss(t/v)={:.2f}/{:.2f}, '.format( train_results['loss']['mean'], valid_results['loss']['mean']) msg_scr1 = '{:.2f}/{:.2f}'.format( train_results['scores']['pr_mu'], valid_results['scores']['pr_mu']) msg_scr2 = '{:.2f}/{:.2f}'.format( train_results['scores']['rt_mu'], valid_results['scores']['rt_mu']) msg_scr3 = '{:.2f}/{:.2f}'.format( train_results['scores']['rr_std'], valid_results['scores']['rr_std']) msg_scr4 = '{:.2f}/{:.2f}'.format( train_results['scores']['id_recall'], valid_results['scores']['id_recall']) msg_scrt = '{:.2f}/{:.2f}'.format( train_results['scores']['total_score'], valid_results['scores']['total_score']) msg_task = 'scores(t/v)=[{} + {} + {} + {} = {}]'.format( msg_scr1, msg_scr2, msg_scr3, msg_scr4, msg_scrt) LOGGER.info(msg_info + msg_loss + msg_task) # Early stopping patience breaks training if we are just overfitting. if ep+1 >= best_epoch + CONFIG['training']['early_stopping_patience']: LOGGER.info('Impatient! No gen. improvement in {} epochs'.format( CONFIG['training']['early_stopping_patience'])) break # Rewind to best epoch. LOGGER.info('Early Stopping: Rewinding to epoch {}'.format(best_epoch)) mdl.load_state_dict(best_model) # Stack scores into one numpy array each. all_train_losses = np.vstack(all_train_losses) all_train_scores = np.vstack(all_train_scores) all_valid_losses =
np.vstack(all_valid_losses)
numpy.vstack
import tensorflow as tf import numpy as np import sys tf.logging.set_verbosity(tf.logging.ERROR) class Judge: def __init__(self, N_to_mask, model_dir, binary_rewards=True): self.N_to_mask = N_to_mask self.binary_rewards = binary_rewards # Create the Estimator try: self.estimator = tf.estimator.Estimator( model_fn=self.model_fn, model_dir=model_dir, # directory to restore model from and save model to ) except AttributeError: raise Exception("Subclass needs to define a model_fn") # Create the predictor from the present model. Important when restoring a model. self.update_predictor() def update_predictor(self): # Predictors are used to get predictions fast once the model has been trained. # We create it from an estimator. self.predictor = tf.contrib.predictor.from_estimator( self.estimator, # The serving input receiver fn is witchcraft, which I don't quite understand. # It's supposed to set up the data in a way that tensorflow can handle. tf.estimator.export.build_raw_serving_input_receiver_fn( # The input is a dictionary that corresponds to the data we feed the predictor. # Each key stores a tensor that is replaced by data when the predictor is used. {"masked_x": tf.placeholder(shape=[None, 28, 28, 2], dtype=tf.float32)} ), ) def mask_image_batch(self, image_batch): """ Takes a batch of two-dimensional images, reshapes them, runs them through mask_batch, reshapes them back to images, and returns them. """ shape = tf.shape(image_batch) batch_flat = tf.reshape(image_batch, (shape[0], shape[1] * shape[2])) mask_flat = self.mask_batch(batch_flat) return tf.reshape(mask_flat, (shape[0], shape[1], shape[2], 2)) def mask_batch(self, batch): """ Create mask for each feature-vector in a batch, that contains N_to_mask nonzero features of the input vector. Combine this with the vector to create the input for the DNN. """ shape = tf.shape(batch) n_zero = tf.random.categorical(logits=self.zero_logits,num_samples=1,dtype=tf.int32) p = tf.random_uniform(shape, 0, 1) p = tf.where(batch > 0, p, -p) # each number is positive if > 0, else negative _, nonzero_indices = tf.nn.top_k(p, self.N_to_mask - n_zero[0][0]) # sample positive _, zero_indices = tf.nn.top_k(-p, n_zero[0][0]) # sample negative indices = tf.concat([nonzero_indices,zero_indices],1) mask = tf.one_hot(indices, shape[1], axis=1) mask = tf.reduce_sum(mask, axis=2) return tf.stack((mask, mask * batch), 2) def train(self, n_steps, n_zero=0): # Train the model train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": self.train_data}, y=self.train_labels, batch_size=self.batch_size, num_epochs=None, shuffle=True, ) if type(n_zero) != list: self.zero_logits = [[0 if i == n_zero else -np.inf for i in range(self.N_to_mask + 1)]] else: assert len(n_zero) == self.N_to_mask + 1 self.zero_logits = np.log(n_zero).reshape((1,-1)) self.estimator.train(input_fn=train_input_fn, steps=n_steps) # Replace the old predictor with one created from the new estimator self.update_predictor() def evaluate_accuracy(self, n_zero=0): # Evaluate the accuracy on all the eval_data eval_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": self.eval_data}, y=self.eval_labels, num_epochs=1, shuffle=False ) if type(n_zero) != list: self.zero_logits = [[0 if i == n_zero else -np.inf for i in range(self.N_to_mask + 1)]] else: assert len(n_zero) == self.N_to_mask + 1 self.zero_logits = np.log(n_zero).reshape((1,-1)) return self.estimator.evaluate(input_fn=eval_input_fn) def evaluate_accuracy_using_predictor(self): """ Evaluates the test set accuracy using the tensorflow predictor instead of the estimator. Can be useful for debugging. """ correct = 0 count = 0 for i in range(len(self.eval_labels)): # print(i) image = self.eval_data[i].flat mask = np.zeros_like(image) while mask.sum() < self.N_to_mask: a =
np.random.randint(mask.shape[0])
numpy.random.randint
""" Processing full slides of RREB1-TM1B_B6N-IC with pipeline v7 (modfied with colour correction): * data generation * training images (*0076*) * non-overlap training images (*0077*) * augmented training images (*0078*) * k-folds + extra "other" for classifier (*0094*) * segmentation * dmap (*0086*) * contour from dmap (*0091*) * classifier (*0095*) * segmentation correction (*0089*) networks" * validation (*0096*) Difference with pipeline v7: * Constants added to colour channels so that the medians match the training data. Requirements for this script to work: 1) Upload the cytometer project directory to ~/Software in the server where you are going to process the data. 2) Upload the AIDA project directory to ~/Software too. 3) Mount the network share with the histology slides onto ~/scan_srv2_cox. 4) Convert the .ndpi files to AIDA .dzi files, so that we can see the results of the segmentation. You need to go to the server that's going to process the slides, add a list of the files you want to process to ~/Software/cytometer/tools/rebb1_pilot_full_histology_ndpi_to_dzi.sh and run cd ~/Software/cytometer/tools ./rebb1_pilot_full_histology_ndpi_to_dzi.sh 5) You need to have the models for the 10-folds of the pipeline that were trained on the KLF14 data. 6) To monitor the segmentation as it's being processed, you need to have AIDA running cd ~/Software/AIDA/dist/ node aidaLocal.js & You also need to create a soft link per .dzi file to the annotations you want to visualise for that file, whether the non-overlapping ones, or the corrected ones. E.g. ln -s 'RREB1-TM1B-B6N-IC-1.1a 1132-18 G1 - 2018-11-16 14.58.55_exp_0097_corrected.json' 'RREB1-TM1B-B6N-IC-1.1a 1132-18 G1 - 2018-11-16 14.58.55_exp_0097.json' Then you can use a browser to open the AIDA web interface by visiting the URL (note that you need to be on the MRC VPN, or connected from inside the office to get access to the titanrtx server) http://titanrtx:3000/dashboard You can use the interface to open a .dzi file that corresponds to an .ndpi file being segmented, and see the annotations (segmentation) being created for it. """ """ This file is part of Cytometer Copyright 2021 Medical Research Council SPDX-License-Identifier: Apache-2.0 Author: <NAME> <<EMAIL>> """ # script name to identify this experiment experiment_id = 'rreb1_tm1b_exp_0001_pilot_full_slide_pipeline_v7.py' # cross-platform home directory from pathlib import Path home = str(Path.home()) import os from pathlib import Path import sys import pickle sys.path.extend([os.path.join(home, 'Software/cytometer')]) import cytometer.utils import cytometer.data # Filter out INFO & WARNING messages os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # # limit number of GPUs # os.environ['CUDA_VISIBLE_DEVICES'] = '0' os.environ['KERAS_BACKEND'] = 'tensorflow' import time import openslide import numpy as np import matplotlib.pyplot as plt from cytometer.utils import rough_foreground_mask, bspline_resample import PIL # import tensorflow.compat.v1 as tf # tf.disable_v2_behavior() from keras import backend as K import itertools from shapely.geometry import Polygon import scipy.stats # # limit GPU memory used # from keras.backend.tensorflow_backend import set_session # config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.95 # set_session(tf.Session(config=config)) DEBUG = False SAVE_FIGS = False pipeline_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') experiment_root_data_dir = os.path.join(home, 'Data/cytometer_data/rreb1') data_dir = os.path.join(home, 'scan_srv2_cox/Liz Bentley/Grace') figures_dir = os.path.join(experiment_root_data_dir, 'figures') saved_models_dir = os.path.join(pipeline_root_data_dir, 'saved_models') results_dir = os.path.join(experiment_root_data_dir, 'results') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Rreb1_tm1b/annotations') klf14_training_colour_histogram_file = os.path.join(saved_models_dir, 'klf14_training_colour_histogram.npz') # although we don't need k-folds here, we need this file to load the list of SVG contours that we compute the AIDA # colourmap from # TODO: just save a cell size - colour function, instead of having to recompute it every time saved_extra_kfolds_filename = 'klf14_b6ntac_exp_0094_generate_extra_training_images.pickle' # model names dmap_model_basename = 'klf14_b6ntac_exp_0086_cnn_dmap' contour_model_basename = 'klf14_b6ntac_exp_0091_cnn_contour_after_dmap' classifier_model_basename = 'klf14_b6ntac_exp_0095_cnn_tissue_classifier_fcn' correction_model_basename = 'klf14_b6ntac_exp_0089_cnn_segmentation_correction_overlapping_scaled_contours' # full resolution image window and network expected receptive field parameters fullres_box_size =
np.array([2751, 2751])
numpy.array
from io import BytesIO from imgutils import pngify from matplotlib.colors import hsv_to_rgb, LinearSegmentedColormap import matplotlib.pyplot as plt from random import random import io import copy import json import matplotlib import numpy as np import os import random import tarfile import tempfile import boto3 import sys from werkzeug.utils import secure_filename from skimage import filters import skimage.morphology from skimage.morphology import watershed, dilation, disk from skimage.morphology import flood_fill, flood from skimage.draw import circle from skimage.measure import regionprops from skimage.exposure import rescale_intensity from config import S3_KEY, S3_SECRET # Connect to the s3 service s3 = boto3.client( "s3", aws_access_key_id=S3_KEY, aws_secret_access_key=S3_SECRET ) class ZStackReview: def __init__(self, filename, input_bucket, output_bucket, subfolders): self.filename = filename self.input_bucket = input_bucket self.output_bucket = output_bucket self.subfolders = subfolders self.trial = self.load(filename) self.raw = self.trial["raw"] self.annotated = self.trial["annotated"] self.feature = 0 self.feature_max = self.annotated.shape[-1] self.channel = 0 self.max_frames, self.height, self.width, self.channel_max = self.raw.shape self.dimensions = (self.width, self.height) #create a dictionary that has frame information about each cell #analogous to .trk lineage but do not need relationships between cells included self.cell_ids = {} self.num_cells = {} self.cell_info = {} self.current_frame = 0 for feature in range(self.feature_max): self.create_cell_info(feature) self.draw_raw = False self.max_intensity = {} for channel in range(self.channel_max): self.max_intensity[channel] = None self.dtype_raw = self.raw.dtype self.scale_factor = 2 self.save_version = 0 self.color_map = plt.get_cmap('viridis') self.color_map.set_bad('black') self.frames_changed = False self.info_changed = False @property def readable_tracks(self): """ Preprocesses tracks for presentation on browser. For example, simplifying track['frames'] into something like [0-29] instead of [0,1,2,3,...]. """ cell_info = copy.deepcopy(self.cell_info) for _, feature in cell_info.items(): for _, label in feature.items(): slices = list(map(list, consecutive(label['frames']))) slices = '[' + ', '.join(["{}".format(a[0]) if len(a) == 1 else "{}-{}".format(a[0], a[-1]) for a in slices]) + ']' label["slices"] = str(slices) return cell_info def get_frame(self, frame, raw): if raw: frame = self.raw[frame][:,:, self.channel] return pngify(imgarr=frame, vmin=0, vmax=self.max_intensity[self.channel], cmap="cubehelix") else: frame = self.annotated[frame][:,:, self.feature] frame = np.ma.masked_equal(frame, 0) return pngify(imgarr=frame, vmin=0, vmax=np.max(self.cell_ids[self.feature]), cmap=self.color_map) def get_array(self, frame): frame = self.annotated[frame][:,:,self.feature] return frame def load(self, filename): global original_filename original_filename = filename s3 = boto3.client('s3') key = self.subfolders print(key) response = s3.get_object(Bucket=self.input_bucket, Key= key) return load_npz(response['Body'].read()) def action(self, action_type, info): # change displayed channel or feature if action_type == "change_channel": self.action_change_channel(**info) elif action_type == "change_feature": self.action_change_feature(**info) # edit mode actions elif action_type == "handle_draw": self.action_handle_draw(**info) elif action_type == "threshold": self.action_threshold(**info) # modified click actions elif action_type == "flood_cell": self.action_flood_contiguous(**info) elif action_type == "trim_pixels": self.action_trim_pixels(**info) # single click actions elif action_type == "fill_hole": self.action_fill_hole(**info) elif action_type == "new_single_cell": self.action_new_single_cell(**info) elif action_type == "new_cell_stack": self.action_new_cell_stack(**info) elif action_type == "delete": self.action_delete_mask(**info) # multiple click actions elif action_type == "replace_single": self.action_replace_single(**info) elif action_type == "replace": self.action_replace(**info) elif action_type == "swap_single_frame": self.action_swap_single_frame(**info) elif action_type == "swap_all_frame": self.action_swap_all_frame(**info) elif action_type == "watershed": self.action_watershed(**info) # misc elif action_type == "predict_single": self.action_predict_single(**info) elif action_type == "predict_zstack": self.action_predict_zstack(**info) else: raise ValueError("Invalid action '{}'".format(action_type)) def action_change_channel(self, channel): self.channel = channel self.frames_changed = True def action_change_feature(self, feature): self.feature = feature self.frames_changed = True def action_handle_draw(self, trace, target_value, brush_value, brush_size, erase, frame): annotated = np.copy(self.annotated[frame,:,:,self.feature]) in_original = np.any(np.isin(annotated, brush_value)) annotated_draw = np.where(annotated==target_value, brush_value, annotated) annotated_erase = np.where(annotated==brush_value, target_value, annotated) for loc in trace: # each element of trace is an array with [y,x] coordinates of array x_loc = loc[1] y_loc = loc[0] brush_area = circle(y_loc, x_loc, brush_size, (self.height,self.width)) #do not overwrite or erase labels other than the one you're editing if not erase: annotated[brush_area] = annotated_draw[brush_area] else: annotated[brush_area] = annotated_erase[brush_area] in_modified = np.any(np.isin(annotated, brush_value)) #cell deletion if in_original and not in_modified: self.del_cell_info(feature = self.feature, del_label = brush_value, frame = frame) #cell addition elif in_modified and not in_original: self.add_cell_info(feature = self.feature, add_label = brush_value, frame = frame) #check for image change, in case pixels changed but no new or del cell comparison = np.where(annotated != self.annotated[frame,:,:,self.feature]) self.frames_changed = np.any(comparison) #if info changed, self.info_changed set to true with info helper functions self.annotated[frame,:,:,self.feature] = annotated def action_threshold(self, y1, x1, y2, x2, frame, label): ''' thresholds the raw image for annotation prediction within user-determined bounding box ''' top_edge = min(y1, y2) bottom_edge = max(y1, y2) left_edge = min(x1, x2) right_edge = max(x1, x2) # pull out the selection portion of the raw frame predict_area = self.raw[frame, top_edge:bottom_edge, left_edge:right_edge, self.channel] # triangle threshold picked after trying a few on one dataset # may not be the best threshold approach for other datasets! # pick two thresholds to use hysteresis thresholding strategy threshold = filters.threshold_triangle(image = predict_area) threshold_stringent = 1.10 * threshold # try to keep stray pixels from appearing hyst = filters.apply_hysteresis_threshold(image = predict_area, low = threshold, high = threshold_stringent) ann_threshold = np.where(hyst, label, 0) #put prediction in without overwriting predict_area = self.annotated[frame, top_edge:bottom_edge, left_edge:right_edge, self.feature] safe_overlay = np.where(predict_area == 0, ann_threshold, predict_area) self.annotated[frame,top_edge:bottom_edge,left_edge:right_edge,self.feature] = safe_overlay # don't need to update cell_info unless an annotation has been added if np.any(np.isin(self.annotated[frame,:,:,self.feature], label)): self.add_cell_info(feature=self.feature, add_label=label, frame = frame) def action_flood_contiguous(self, label, frame, x_location, y_location): ''' flood fill a cell with a unique new label; alternative to watershed for fixing duplicate label issue if cells are not touching ''' img_ann = self.annotated[frame,:,:,self.feature] old_label = label new_label = np.max(self.cell_ids[self.feature]) + 1 in_original = np.any(np.isin(img_ann, old_label)) filled_img_ann = flood_fill(img_ann, (int(y_location/self.scale_factor), int(x_location/self.scale_factor)), new_label) self.annotated[frame,:,:,self.feature] = filled_img_ann in_modified = np.any(np.isin(filled_img_ann, old_label)) # update cell info dicts since labels are changing self.add_cell_info(feature=self.feature, add_label=new_label, frame = frame) if in_original and not in_modified: self.del_cell_info(feature = self.feature, del_label = old_label, frame = frame) def action_trim_pixels(self, label, frame, x_location, y_location): ''' get rid of any stray pixels of selected label; pixels of value label that are not connected to the cell selected will be removed from annotation in that frame ''' img_ann = self.annotated[frame,:,:,self.feature] contig_cell = flood(image = img_ann, seed_point = (int(y_location/self.scale_factor), int(x_location/self.scale_factor))) img_trimmed = np.where(np.logical_and(np.invert(contig_cell), img_ann == label), 0, img_ann) #check if image changed comparison = np.where(img_trimmed != img_ann) self.frames_changed = np.any(comparison) #this action should never change the cell info self.annotated[frame,:,:,self.feature] = img_trimmed def action_fill_hole(self, label, frame, x_location, y_location): ''' fill a "hole" in a cell annotation with the cell label. Doesn't check if annotation at (y,x) is zero (hole to fill) because that logic is handled in javascript. Just takes the click location, scales it to match the actual annotation size, then fills the hole with label (using skimage flood_fill). connectivity = 1 prevents hole fill from spilling out into background in some cases ''' # rescale click location -> corresponding location in annotation array hole_fill_seed = (y_location // self.scale_factor, x_location // self.scale_factor) # fill hole with label img_ann = self.annotated[frame,:,:,self.feature] filled_img_ann = flood_fill(img_ann, hole_fill_seed, label, connectivity = 1) self.annotated[frame,:,:,self.feature] = filled_img_ann #never changes info but always changes annotation self.frames_changed = True def action_new_single_cell(self, label, frame): """ Create new label in just one frame """ old_label, single_frame = label, frame new_label = np.max(self.cell_ids[self.feature]) + 1 # replace frame labels frame = self.annotated[single_frame,:,:,self.feature] frame[frame == old_label] = new_label # replace fields self.del_cell_info(feature = self.feature, del_label = old_label, frame = single_frame) self.add_cell_info(feature = self.feature, add_label = new_label, frame = single_frame) def action_new_cell_stack(self, label, frame): """ Creates new cell label and replaces original label with it in all subsequent frames """ old_label, start_frame = label, frame new_label = np.max(self.cell_ids[self.feature]) + 1 # replace frame labels for frame in self.annotated[start_frame:,:,:,self.feature]: frame[frame == old_label] = new_label for frame in range(self.annotated.shape[0]): if new_label in self.annotated[frame,:,:,self.feature]: self.del_cell_info(feature = self.feature, del_label = old_label, frame = frame) self.add_cell_info(feature = self.feature, add_label = new_label, frame = frame) def action_delete_mask(self, label, frame): ''' remove selected annotation from frame, replacing with zeros ''' ann_img = self.annotated[frame,:,:,self.feature] ann_img = np.where(ann_img == label, 0, ann_img) self.annotated[frame,:,:,self.feature] = ann_img #update cell_info self.del_cell_info(feature = self.feature, del_label = label, frame = frame) def action_replace_single(self, label_1, label_2, frame): ''' replaces label_2 with label_1, but only in one frame. Frontend checks to make sure labels are different and were selected within same frames before sending action ''' annotated = self.annotated[frame,:,:,self.feature] # change annotation annotated = np.where(annotated == label_2, label_1, annotated) self.annotated[frame,:,:,self.feature] = annotated # update info self.add_cell_info(feature = self.feature, add_label = label_1, frame = frame) self.del_cell_info(feature = self.feature, del_label = label_2, frame = frame) def action_replace(self, label_1, label_2): """ Replacing label_2 with label_1. Frontend checks to make sure these labels are different before sending action """ # check each frame for frame in range(self.annotated.shape[0]): annotated = self.annotated[frame,:,:,self.feature] # if label being replaced is present, remove it from image and update cell info dict if np.any(np.isin(annotated, label_2)): annotated = np.where(annotated == label_2, label_1, annotated) self.annotated[frame,:,:,self.feature] = annotated self.add_cell_info(feature = self.feature, add_label = label_1, frame = frame) self.del_cell_info(feature = self.feature, del_label = label_2, frame = frame) def action_swap_single_frame(self, label_1, label_2, frame): ann_img = self.annotated[frame,:,:,self.feature] ann_img = np.where(ann_img == label_1, -1, ann_img) ann_img = np.where(ann_img == label_2, label_1, ann_img) ann_img = np.where(ann_img == -1, label_2, ann_img) self.annotated[frame,:,:,self.feature] = ann_img self.frames_changed = self.info_changed = True def action_swap_all_frame(self, label_1, label_2): for frame in range(self.annotated.shape[0]): ann_img = self.annotated[frame,:,:,self.feature] ann_img = np.where(ann_img == label_1, -1, ann_img) ann_img = np.where(ann_img == label_2, label_1, ann_img) ann_img = np.where(ann_img == -1, label_2, ann_img) self.annotated[frame,:,:,self.feature] = ann_img #update cell_info cell_info_1 = self.cell_info[self.feature][label_1].copy() cell_info_2 = self.cell_info[self.feature][label_2].copy() self.cell_info[self.feature][label_1].update({'frames': cell_info_2['frames']}) self.cell_info[self.feature][label_2].update({'frames': cell_info_1['frames']}) self.frames_changed = self.info_changed = True def action_watershed(self, label, frame, x1_location, y1_location, x2_location, y2_location): # Pull the label that is being split and find a new valid label current_label = label new_label = np.max(self.cell_ids[self.feature]) + 1 # Locally store the frames to work on img_raw = self.raw[frame,:,:,self.channel] img_ann = self.annotated[frame,:,:,self.feature] # Pull the 2 seed locations and store locally # define a new seeds labeled img that is the same size as raw/annotation imgs seeds_labeled = np.zeros(img_ann.shape) # create two seed locations seeds_labeled[int(y1_location/self.scale_factor ), int(x1_location/self.scale_factor)]=current_label seeds_labeled[int(y2_location/self.scale_factor ), int(x2_location/self.scale_factor )]=new_label # define the bounding box to apply the transform on and select appropriate sections of 3 inputs (raw, seeds, annotation mask) props = regionprops(np.squeeze(np.int32(img_ann == current_label))) minr, minc, maxr, maxc = props[0].bbox # store these subsections to run the watershed on img_sub_raw = np.copy(img_raw[minr:maxr, minc:maxc]) img_sub_ann = np.copy(img_ann[minr:maxr, minc:maxc]) img_sub_seeds = np.copy(seeds_labeled[minr:maxr, minc:maxc]) # contrast adjust the raw image to assist the transform img_sub_raw_scaled = rescale_intensity(img_sub_raw) # apply watershed transform to the subsections ws = watershed(-img_sub_raw_scaled, img_sub_seeds, mask=img_sub_ann.astype(bool)) # did watershed effectively create a new label? new_pixels = np.count_nonzero(np.logical_and(ws == new_label, img_sub_ann == current_label)) # if only a few pixels split, dilate them; new label is "brightest" # so will expand over other labels and increase area if new_pixels < 5: ws = dilation(ws, disk(3)) # ws may only leave a few pixels of old label old_pixels = np.count_nonzero(ws == current_label) if old_pixels < 5: # create dilation image so "dimmer" label is not eroded by "brighter" label dilated_ws = dilation(np.where(ws==current_label, ws, 0), disk(3)) ws = np.where(dilated_ws==current_label, dilated_ws, ws) # only update img_sub_ann where ws has changed label from current_label to new_label img_sub_ann = np.where(np.logical_and(ws == new_label,img_sub_ann == current_label), ws, img_sub_ann) # reintegrate subsection into original mask img_ann[minr:maxr, minc:maxc] = img_sub_ann self.annotated[frame,:,:,self.feature] = img_ann #update cell_info dict only if new label was created with ws if np.any(np.isin(self.annotated[frame,:,:,self.feature], new_label)): self.add_cell_info(feature=self.feature, add_label=new_label, frame = frame) def action_predict_single(self, frame): ''' predicts zstack relationship for current frame based on previous frame useful for finetuning corrections one frame at a time ''' annotated = self.annotated[:,:,:,self.feature] current_slice = frame if current_slice > 0: prev_slice = current_slice - 1 img = self.annotated[prev_slice,:,:,self.feature] next_img = self.annotated[current_slice,:,:,self.feature] updated_slice = predict_zstack_cell_ids(img, next_img) #check if image changed comparison = np.where(next_img != updated_slice) self.frames_changed = np.any(comparison) #if the image changed, update self.annotated and remake cell info if self.frames_changed: self.annotated[current_slice,:,:,int(self.feature)] = updated_slice self.create_cell_info(feature = int(self.feature)) def action_predict_zstack(self): ''' use location of cells in image to predict which annotations are different slices of the same cell ''' annotated = self.annotated[:,:,:,self.feature] for zslice in range(self.annotated.shape[0] -1): img = self.annotated[zslice,:,:,self.feature] next_img = self.annotated[zslice + 1,:,:,self.feature] predicted_next = predict_zstack_cell_ids(img, next_img) self.annotated[zslice + 1,:,:,self.feature] = predicted_next #remake cell_info dict based on new annotations self.frames_changed = True self.create_cell_info(feature = self.feature) def action_save_zstack(self): save_file = self.filename + "_save_version_{}.npz".format(self.save_version) # save secure version of data before storing on regular file system file = secure_filename(save_file) np.savez(file, raw = self.raw, annotated = self.annotated) path = self.subfolders s3.upload_file(file, self.output_bucket, path) def add_cell_info(self, feature, add_label, frame): ''' helper function for actions that add a cell to the npz ''' #if cell already exists elsewhere in npz: add_label = int(add_label) try: old_frames = self.cell_info[feature][add_label]['frames'] updated_frames = np.append(old_frames, frame) updated_frames = np.unique(updated_frames).tolist() self.cell_info[feature][add_label].update({'frames': updated_frames}) #cell does not exist anywhere in npz: except KeyError: self.cell_info[feature].update({add_label: {}}) self.cell_info[feature][add_label].update({'label': str(add_label)}) self.cell_info[feature][add_label].update({'frames': [frame]}) self.cell_info[feature][add_label].update({'slices': ''}) self.cell_ids[feature] = np.append(self.cell_ids[feature], add_label) self.num_cells[feature] += 1 #if adding cell, frames and info have necessarily changed self.frames_changed = self.info_changed = True def del_cell_info(self, feature, del_label, frame): ''' helper function for actions that remove a cell from the npz ''' #remove cell from frame old_frames = self.cell_info[feature][del_label]['frames'] updated_frames = np.delete(old_frames, np.where(old_frames == np.int64(frame))).tolist() self.cell_info[feature][del_label].update({'frames': updated_frames}) #if that was the last frame, delete the entry for that cell if self.cell_info[feature][del_label]['frames'] == []: del self.cell_info[feature][del_label] #also remove from list of cell_ids ids = self.cell_ids[feature] self.cell_ids[feature] = np.delete(ids, np.where(ids == np.int64(del_label))) #if deleting cell, frames and info have necessarily changed self.frames_changed = self.info_changed = True def create_cell_info(self, feature): ''' helper function for actions that make or remake the entire cell info dict ''' feature = int(feature) annotated = self.annotated[:,:,:,feature] self.cell_ids[feature] = np.unique(annotated)[np.nonzero(np.unique(annotated))] self.num_cells[feature] = int(max(self.cell_ids[feature])) self.cell_info[feature] = {} for cell in self.cell_ids[feature]: cell = int(cell) self.cell_info[feature][cell] = {} self.cell_info[feature][cell]['label'] = str(cell) self.cell_info[feature][cell]['frames'] = [] for frame in range(self.annotated.shape[0]): if cell in annotated[frame,:,:]: self.cell_info[feature][cell]['frames'].append(int(frame)) self.cell_info[feature][cell]['slices'] = '' self.info_changed = True def create_lineage(self): for cell in self.cell_ids[self.feature]: self.lineage[str(cell)] = {} cell_info = self.lineage[str(cell)] cell_info["label"] = int(cell) cell_info["daughters"] = [] cell_info["frame_div"] = None cell_info["parent"] = None cell_info["capped"] = False cell_info["frames"] = self.cell_info[self.feature][cell]['frames'] #_______________________________________________________________________________________________________________ class TrackReview: def __init__(self, filename, input_bucket, output_bucket, subfolders): self.filename = filename self.input_bucket = input_bucket self.output_bucket = output_bucket self.subfolders = subfolders self.trial = self.load(filename) self.raw = self.trial["raw"] self.tracked = self.trial["tracked"] # lineages is a list of dictionaries. There should be only a single one # when using a .trk file if len(self.trial["lineages"]) != 1: raise ValueError("Input file has multiple trials/lineages.") self.tracks = self.trial["lineages"][0] self.max_frames = self.raw.shape[0] self.dimensions = self.raw.shape[1:3][::-1] self.width, self.height = self.dimensions self.scale_factor = 2 self.color_map = plt.get_cmap('viridis') self.color_map.set_bad('black') self.current_frame = 0 self.frames_changed = False self.info_changed = False @property def readable_tracks(self): """ Preprocesses tracks for presentation on browser. For example, simplifying track['frames'] into something like [0-29] instead of [0,1,2,3,...]. """ tracks = copy.deepcopy(self.tracks) for _, track in tracks.items(): frames = list(map(list, consecutive(track["frames"]))) frames = '[' + ', '.join(["{}".format(a[0]) if len(a) == 1 else "{}-{}".format(a[0], a[-1]) for a in frames]) + ']' track["frames"] = frames return tracks def get_frame(self, frame, raw): self.current_frame = frame if raw: frame = self.raw[frame][:,:,0] return pngify(imgarr=frame, vmin=0, vmax=None, cmap="cubehelix") else: frame = self.tracked[frame][:,:,0] frame = np.ma.masked_equal(frame, 0) return pngify(imgarr=frame, vmin=0, vmax=max(self.tracks), cmap=self.color_map) def get_array(self, frame): frame = self.tracked[frame][:,:,0] return frame def load(self, filename): global original_filename original_filename = filename s3 = boto3.client('s3') response = s3.get_object(Bucket=self.input_bucket, Key=self.subfolders) return load_trks(response['Body'].read()) def action(self, action_type, info): # edit mode action if action_type == "handle_draw": self.action_handle_draw(**info) # modified click actions elif action_type == "flood_cell": self.action_flood_contiguous(**info) elif action_type == "trim_pixels": self.action_trim_pixels(**info) # single click actions elif action_type == "fill_hole": self.action_fill_hole(**info) elif action_type == "create_single_new": self.action_new_single_cell(**info) elif action_type == "create_all_new": self.action_new_track(**info) elif action_type == "delete_cell": self.action_delete(**info) # multiple click actions elif action_type == "set_parent": self.action_set_parent(**info) elif action_type == "replace": self.action_replace(**info) elif action_type == "swap_single_frame": self.action_swap_single_frame(**info) elif action_type == "swap_tracks": self.action_swap_tracks(**info) elif action_type == "watershed": self.action_watershed(**info) # misc elif action_type == "save_track": self.action_save_track(**info) else: raise ValueError("Invalid action '{}'".format(action_type)) def action_handle_draw(self, trace, edit_value, brush_size, erase, frame): annotated = np.copy(self.tracked[frame]) in_original = np.any(np.isin(annotated, edit_value)) annotated_draw = np.where(annotated==0, edit_value, annotated) annotated_erase = np.where(annotated==edit_value, 0, annotated) for loc in trace: # each element of trace is an array with [y,x] coordinates of array x_loc = loc[1] y_loc = loc[0] brush_area = circle(y_loc, x_loc, brush_size, (self.height,self.width)) #do not overwrite or erase labels other than the one you're editing if not erase: annotated[brush_area] = annotated_draw[brush_area] else: annotated[brush_area] = annotated_erase[brush_area] in_modified = np.any(np.isin(annotated, edit_value)) # cell deletion if in_original and not in_modified: self.del_cell_info(del_label = edit_value, frame = frame) # cell addition elif in_modified and not in_original: self.add_cell_info(add_label = edit_value, frame = frame) comparison = np.where(annotated != self.tracked[frame]) self.frames_changed = np.any(comparison) self.tracked[frame] = annotated def action_flood_contiguous(self, label, frame, x_location, y_location): ''' flood fill a cell with a unique new label; alternative to watershed for fixing duplicate label issue if cells are not touching ''' img_ann = self.tracked[frame,:,:,0] old_label = label new_label = max(self.tracks) + 1 in_original = np.any(np.isin(img_ann, old_label)) filled_img_ann = flood_fill(img_ann, (int(y_location/self.scale_factor), int(x_location/self.scale_factor)), new_label) self.tracked[frame,:,:,0] = filled_img_ann in_modified = np.any(np.isin(filled_img_ann, old_label)) # update cell info dicts since labels are changing self.add_cell_info(add_label=new_label, frame = frame) if in_original and not in_modified: self.del_cell_info(del_label = old_label, frame = frame) def action_trim_pixels(self, label, frame, x_location, y_location): ''' get rid of any stray pixels of selected label; pixels of value label that are not connected to the cell selected will be removed from annotation in that frame ''' img_ann = self.tracked[frame,:,:,0] contig_cell = flood(image = img_ann, seed_point = (int(y_location/self.scale_factor), int(x_location/self.scale_factor))) img_trimmed = np.where(np.logical_and(np.invert(contig_cell), img_ann == label), 0, img_ann) comparison = np.where(img_trimmed != img_ann) self.frames_changed = np.any(comparison) self.tracked[frame,:,:,0] = img_trimmed def action_fill_hole(self, label, frame, x_location, y_location): ''' fill a "hole" in a cell annotation with the cell label. Doesn't check if annotation at (y,x) is zero (hole to fill) because that logic is handled in javascript. Just takes the click location, scales it to match the actual annotation size, then fills the hole with label (using skimage flood_fill). connectivity = 1 prevents hole fill from spilling out into background in some cases ''' # rescale click location -> corresponding location in annotation array hole_fill_seed = (y_location // self.scale_factor, x_location // self.scale_factor) # fill hole with label img_ann = self.tracked[frame,:,:,0] filled_img_ann = flood_fill(img_ann, hole_fill_seed, label, connectivity = 1) self.tracked[frame,:,:,0] = filled_img_ann self.frames_changed = True def action_new_single_cell(self, label, frame): """ Create new label in just one frame """ old_label = label new_label = max(self.tracks) + 1 # replace frame labels self.tracked[frame] = np.where(self.tracked[frame] == old_label, new_label, self.tracked[frame]) # replace fields self.del_cell_info(del_label = old_label, frame = frame) self.add_cell_info(add_label = new_label, frame = frame) def action_new_track(self, label, frame): """ Replacing label - create in all subsequent frames """ old_label, start_frame = label, frame new_label = max(self.tracks) + 1 if start_frame != 0: # replace frame labels for frame in self.tracked[start_frame:]: frame[frame == old_label] = new_label # replace fields track_old = self.tracks[old_label] track_new = self.tracks[new_label] = {} idx = track_old["frames"].index(start_frame) frames_before = track_old["frames"][:idx] frames_after = track_old["frames"][idx:] track_old["frames"] = frames_before track_new["frames"] = frames_after track_new["label"] = new_label # only add daughters if they aren't in the same frame as the new track track_new["daughters"] = [] for d in track_old["daughters"]: if start_frame not in self.tracks[d]["frames"]: track_new["daughters"].append(d) track_new["frame_div"] = track_old["frame_div"] track_new["capped"] = track_old["capped"] track_new["parent"] = None track_old["daughters"] = [] track_old["frame_div"] = None track_old["capped"] = True self.frames_changed = self.info_changed = True def action_delete(self, label, frame): """ Deletes label from current frame only """ # Set frame labels to 0 ann_img = self.tracked[frame] ann_img = np.where(ann_img == label, 0, ann_img) self.tracked[frame] = ann_img self.del_cell_info(del_label = label, frame = frame) def action_set_parent(self, label_1, label_2): """ label_1 gave birth to label_2 """ track_1 = self.tracks[label_1] track_2 = self.tracks[label_2] last_frame_parent = max(track_1['frames']) first_frame_daughter = min(track_2['frames']) if last_frame_parent < first_frame_daughter: track_1["daughters"].append(label_2) daughters = np.unique(track_1["daughters"]).tolist() track_1["daughters"] = daughters track_2["parent"] = label_1 if track_1["frame_div"] is None: track_1["frame_div"] = first_frame_daughter else: track_1["frame_div"] = min(track_1["frame_div"], first_frame_daughter) self.info_changed = True def action_replace(self, label_1, label_2): """ Replacing label_2 with label_1 """ # replace arrays for frame in range(self.max_frames): annotated = self.tracked[frame] annotated = np.where(annotated == label_2, label_1, annotated) self.tracked[frame] = annotated # replace fields track_1 = self.tracks[label_1] track_2 = self.tracks[label_2] for d in track_1["daughters"]: self.tracks[d]["parent"] = None track_1["frames"].extend(track_2["frames"]) track_1["frames"] = sorted(set(track_1["frames"])) track_1["daughters"] = track_2["daughters"] track_1["frame_div"] = track_2["frame_div"] track_1["capped"] = track_2["capped"] del self.tracks[label_2] for _, track in self.tracks.items(): try: track["daughters"].remove(label_2) except ValueError: pass self.frames_changed = self.info_changed = True def action_swap_single_frame(self, label_1, label_2, frame): '''swap the labels of two cells in one frame, but do not change any of the lineage information''' ann_img = self.tracked[frame,:,:,0] ann_img = np.where(ann_img == label_1, -1, ann_img) ann_img = np.where(ann_img == label_2, label_1, ann_img) ann_img = np.where(ann_img == -1, label_2, ann_img) self.tracked[frame,:,:,0] = ann_img self.frames_changed = True def action_swap_tracks(self, label_1, label_2): def relabel(old_label, new_label): for frame in self.tracked: frame[frame == old_label] = new_label # replace fields track_new = self.tracks[new_label] = self.tracks[old_label] track_new["label"] = new_label del self.tracks[old_label] for d in track_new["daughters"]: self.tracks[d]["parent"] = new_label if track_new["parent"] is not None: parent_track = self.tracks[track_new["parent"]] parent_track["daughters"].remove(old_label) parent_track["daughters"].append(new_label) relabel(label_1, -1) relabel(label_2, label_1) relabel(-1, label_2) self.frames_changed = self.info_changed = True def action_watershed(self, label, frame, x1_location, y1_location, x2_location, y2_location): # Pull the label that is being split and find a new valid label current_label = label new_label = max(self.tracks) + 1 # Locally store the frames to work on img_raw = self.raw[frame,:,:,0] img_ann = self.tracked[frame,:,:,0] # Pull the 2 seed locations and store locally # define a new seeds labeled img that is the same size as raw/annotation imgs seeds_labeled = np.zeros(img_ann.shape) # create two seed locations seeds_labeled[int(y1_location/self.scale_factor), int(x1_location/self.scale_factor)] = current_label seeds_labeled[int(y2_location/self.scale_factor), int(x2_location/self.scale_factor)] = new_label # define the bounding box to apply the transform on and select appropriate sections of 3 inputs (raw, seeds, annotation mask) props = regionprops(np.squeeze(np.int32(img_ann == current_label))) minr, minc, maxr, maxc = props[0].bbox # store these subsections to run the watershed on img_sub_raw = np.copy(img_raw[minr:maxr, minc:maxc]) img_sub_ann = np.copy(img_ann[minr:maxr, minc:maxc]) img_sub_seeds = np.copy(seeds_labeled[minr:maxr, minc:maxc]) # contrast adjust the raw image to assist the transform img_sub_raw_scaled = rescale_intensity(img_sub_raw) # apply watershed transform to the subsections ws = watershed(-img_sub_raw_scaled, img_sub_seeds, mask=img_sub_ann.astype(bool)) # did watershed effectively create a new label? new_pixels = np.count_nonzero(np.logical_and(ws == new_label, img_sub_ann == current_label)) # if only a few pixels split, dilate them; new label is "brightest" # so will expand over other labels and increase area if new_pixels < 5: ws = dilation(ws, disk(3)) # ws may only leave a few pixels of old label old_pixels = np.count_nonzero(ws == current_label) if old_pixels < 5: # create dilation image so "dimmer" label is not eroded by "brighter" label dilated_ws = dilation(np.where(ws==current_label, ws, 0), disk(3)) ws = np.where(dilated_ws==current_label, dilated_ws, ws) # only update img_sub_ann where ws has changed label from current_label to new_label img_sub_ann = np.where(np.logical_and(ws == new_label,img_sub_ann == current_label), ws, img_sub_ann) #reintegrate subsection into original mask img_ann[minr:maxr, minc:maxc] = img_sub_ann self.tracked[frame,:,:,0] = img_ann #update cell_info dict only if new label was created with ws if np.any(np.isin(self.tracked[frame,:,:,0], new_label)): self.add_cell_info(add_label=new_label, frame = frame) def action_save_track(self): # clear any empty tracks before saving file empty_tracks = [] for key in self.tracks: if not self.tracks[key]['frames']: empty_tracks.append(self.tracks[key]['label']) for track in empty_tracks: del self.tracks[track] file = secure_filename(self.filename) with tarfile.open(file, "w") as trks: with tempfile.NamedTemporaryFile("w") as lineage_file: json.dump(self.tracks, lineage_file, indent=1) lineage_file.flush() trks.add(lineage_file.name, "lineage.json") with tempfile.NamedTemporaryFile() as raw_file: np.save(raw_file, self.raw) raw_file.flush() trks.add(raw_file.name, "raw.npy") with tempfile.NamedTemporaryFile() as tracked_file: np.save(tracked_file, self.tracked) tracked_file.flush() trks.add(tracked_file.name, "tracked.npy") try: s3.upload_file(file, self.output_bucket, self.subfolders) except Exception as e: print("Something Happened: ", e, file=sys.stderr) raise #os.remove(file) return "Success!" def add_cell_info(self, add_label, frame): ''' helper function for actions that add a cell to the trk ''' #if cell already exists elsewhere in trk: try: old_frames = self.tracks[add_label]['frames'] updated_frames = np.append(old_frames, frame) updated_frames = np.unique(updated_frames).tolist() self.tracks[add_label].update({'frames': updated_frames}) #cell does not exist anywhere in trk: except KeyError: self.tracks.update({add_label: {}}) self.tracks[add_label].update({'label': int(add_label)}) self.tracks[add_label].update({'frames': [frame]}) self.tracks[add_label].update({'daughters': []}) self.tracks[add_label].update({'frame_div': None}) self.tracks[add_label].update({'parent': None}) self.tracks[add_label].update({'capped': False}) self.frames_changed = self.info_changed = True def del_cell_info(self, del_label, frame): ''' helper function for actions that remove a cell from the trk ''' #remove cell from frame old_frames = self.tracks[del_label]['frames'] updated_frames = np.delete(old_frames, np.where(old_frames == np.int64(frame))).tolist() self.tracks[del_label].update({'frames': updated_frames}) #if that was the last frame, delete the entry for that cell if self.tracks[del_label]['frames'] == []: del self.tracks[del_label] # If deleting lineage data, remove parent/daughter entries for _, track in self.tracks.items(): try: track["daughters"].remove(del_label) except ValueError: pass if track["parent"] == del_label: track["parent"] = None self.frames_changed = self.info_changed = True def consecutive(data, stepsize=1): return np.split(data, np.where(np.diff(data) != stepsize)[0]+1) def predict_zstack_cell_ids(img, next_img, threshold = 0.1): ''' Predict labels for next_img based on intersection over union (iou) with img. If cells don't meet threshold for iou, they don't count as matching enough to share label with "matching" cell in img. Cells that don't have a match in img (new cells) get a new label so that output relabeled_next does not skip label values (unless label values present in prior image need to be skipped to avoid conflating labels). ''' # relabel to remove skipped values, keeps subsequent predictions cleaner next_img = relabel_frame(next_img) #create np array that can hold all pairings between cells in one #image and cells in next image iou = np.zeros((np.max(img)+1, np.max(next_img)+1)) vals = np.unique(img) cells = vals[np.nonzero(vals)] #nothing to predict off of if len(cells) == 0: return next_img next_vals = np.unique(next_img) next_cells = next_vals[np.nonzero(next_vals)] #no values to reassign if len(next_cells) == 0: return next_img #calculate IOUs for i in cells: for j in next_cells: intersection = np.logical_and(img==i,next_img==j) union = np.logical_or(img==i,next_img==j) iou[i,j] = intersection.sum(axis=(0,1)) / union.sum(axis=(0,1)) #relabel cells appropriately #relabeled_next holds cells as they get relabeled appropriately relabeled_next = np.zeros(next_img.shape, dtype = np.uint16) #max_indices[cell_from_next_img] -> cell from first image that matches it best max_indices = np.argmax(iou, axis = 0) #put cells that into new image if they've been matched with another cell #keep track of which (next_img)cells don't have matches #this can be if (next_img)cell matched background, or if (next_img)cell matched #a cell already used unmatched_cells = [] #don't reuse cells (if multiple cells in next_img match one particular cell) used_cells_src = [] #next_cell ranges between 0 and max(next_img) #matched_cell is which cell in img matched next_cell the best # this for loop does the matching between cells for next_cell, matched_cell in enumerate(max_indices): #if more than one match, look for best match #otherwise the first match gets linked together, not necessarily reproducible # matched_cell != 0 prevents adding the background to used_cells_src if matched_cell != 0 and matched_cell not in used_cells_src: bool_matches = np.where(max_indices == matched_cell) count_matches = np.count_nonzero(bool_matches) if count_matches > 1: #for a given cell in img, which next_cell has highest iou matching_next_options = np.argmax(iou, axis =1) best_matched_next = matching_next_options[matched_cell] #ignore if best_matched_next is the background if best_matched_next != 0: if next_cell != best_matched_next: unmatched_cells = np.append(unmatched_cells, next_cell) continue else: # don't add if bad match if iou[matched_cell][best_matched_next] > threshold: relabeled_next = np.where(next_img == best_matched_next, matched_cell, relabeled_next) # if it's a bad match, we still need to add next_cell back into relabeled next later elif iou[matched_cell][best_matched_next] <= threshold: unmatched_cells = np.append(unmatched_cells, best_matched_next) # in either case, we want to be done with the "matched_cell" from img used_cells_src = np.append(used_cells_src, matched_cell) # matched_cell != 0 is still true elif count_matches == 1: #add the matched cell to the relabeled image if iou[matched_cell][next_cell] > threshold: relabeled_next = np.where(next_img == next_cell, matched_cell, relabeled_next) else: unmatched_cells = np.append(unmatched_cells, next_cell) used_cells_src = np.append(used_cells_src, matched_cell) elif matched_cell in used_cells_src and next_cell != 0: #skip that pairing, add next_cell to unmatched_cells unmatched_cells =
np.append(unmatched_cells, next_cell)
numpy.append
__copyright__ = "Copyright 2013, RLPy http://www.acl.mit.edu/RLPy" __credits__ = ["<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>"] __license__ = "BSD 3-Clause" __author__ = ["<NAME>", "<NAME>"] from rlpy.Agents.Agent import Agent, DescentAlgorithm import numpy as np class PosteriorSampling(DescentAlgorithm, Agent): """ Standard Posterior Sampling algorithm with normal-gaussian prior for rewards and dirichlet for transitions. """ episodeCap = None startState=None flag_ = True observed_rewards = None mean_rewards = None var_requards = None observed = None observed_transitions = None bad_reward = None def __init__(self, policy, representation, discount_factor, initial_learn_rate=0.1,bad_reward=-1, **kwargs): super(PosteriorSampling,self).__init__(policy=policy, representation=representation, discount_factor=discount_factor, **kwargs) self.logger.info("Initial learning rate:\t\t%0.2f" % initial_learn_rate) self.episodeCap = self.representation.domain.episodeCap self.observed_rewards = {} self.mean_rewards= np.zeros((self.representation.features_num,self.representation.actions_num)) self.var_rewards=
np.zeros((self.representation.features_num,self.representation.actions_num))
numpy.zeros
#!/usr/bin/env python # coding: utf-8 import cv2 import matplotlib.pyplot as plt import numpy as np import sys import os import math import json from time import sleep # initial threshold for FAST feature (difference to center point) iniThFast = 20 # reduce threshold for FAST, if not enough feature points were found to this minThFast = 5 # original patch size for rotation estimation PATCH_SIZE = 31 HALF_PATCH_SIZE = 15 # how wide shall the window image be window_width = 1500 # initialize the fast detector, will be used later fast = cv2.FastFeatureDetector_create(iniThFast, True) pattern = json.load(open('pattern.json')) # https://github.com/raulmur/ORB_SLAM2/blob/master/src/ORBextractor.cc#L150 modes = ["fast", "full", "pattern"] def limit(val, lower, upper): # clip given value to lower or upper limit return min(upper, max(lower, val)) def pixel_circle(r): # find out, which points belong to a pixel circle around a certain point d = round(math.pi - (2 * r)) x = 0 y = r cpoints = [] while x <= y: cpoints.append((x, -y)) cpoints.append((y, -x)) cpoints.append((y, x)) cpoints.append((x, y)) cpoints.append((-x, y)) cpoints.append((-y, x)) cpoints.append((-y, -x)) cpoints.append((-x, -y)) if d < 0: d += (math.pi * x) + (math.pi * 2) else: d += math.pi * (x - y) + (math.pi * 3) y -= 1 x += 1 return list(set(cpoints)) def calc_umax(): # This relates to https://github.com/raulmur/ORB_SLAM2/blob/f2e6f51cdc8d067655d90a78c06261378e07e8f3/src/ORBextractor.cc#L452 # This is for orientation # pre-compute the end of a row in a circular patch umax = [0] * (HALF_PATCH_SIZE + 1) vmax = int(np.floor(HALF_PATCH_SIZE * np.sqrt(2) / 2 + 1)) vmin = int(np.ceil(HALF_PATCH_SIZE * np.sqrt(2) / 2)) hp2 = HALF_PATCH_SIZE*HALF_PATCH_SIZE; for v in range(vmax + 1): umax[v] = int(np.round(np.sqrt(hp2 - v * v))) # Make sure we are symmetric v0 = 0 for v in range(HALF_PATCH_SIZE, vmin-1, -1): while umax[v0] == umax[v0 + 1]: v0 += 1 umax[v] = v0 v0 += 1 print('umax:', umax) return umax def IC_Angle(image, pt, u_max): # this relates to https://github.com/raulmur/ORB_SLAM2/blob/master/src/ORBextractor.cc#L77 if image.ndim > 2: image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) cpx = int(round(pt[1])) cpy = int(round(pt[0])) print('cpx/y/val', cpx, cpy, image[cpy, cpx]) m_01 = int(0) # Treat the center line differently, v=0 m_10 = sum([u * image[cpy, cpx + u] for u in range(-HALF_PATCH_SIZE, HALF_PATCH_SIZE + 1)]) m_00 = sum([image[cpy, cpx + u] for u in range(-HALF_PATCH_SIZE, HALF_PATCH_SIZE + 1)]) # Go line by line in the circuI853lar patch for v in range(1, HALF_PATCH_SIZE + 1): # Proceed over the two lines v_sum = 0; d = u_max[v]; for u in range(-d, d + 1): val_plus = int(image[cpy + v, cpx + u]) val_minus = int(image[cpy - v, cpx + u]) v_sum += (val_plus - val_minus) m_10 += u * (val_plus + val_minus) m_00 += val_plus + val_minus m_01 += v * v_sum # print('m_01, m_10, m_00', m_01, m_10, m_00) angle = cv2.fastAtan2(m_01, m_10) if m_00 == 0 or not m_00: centerpoint_x = 0 centerpoint_y = 0 else: centerpoint_x = int(m_10/m_00) centerpoint_y = int(m_01/m_00) return angle, centerpoint_x + HALF_PATCH_SIZE, centerpoint_y + HALF_PATCH_SIZE def put_text_on_enlarged(text, x, y, thickness=1): # a wrapper for positioning text in the upscaled version of the image global overlay, canvas, resized textsize = cv2.getTextSize(text, fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=text_scale, thickness=thickness)[0] xshift = int(((canvas.shape[1] - ls * resized.shape[1] + x * f) + (canvas.shape[1] - ls * resized.shape[1] + (x + 1) * f)) / 2) xshift -= textsize[0] // 2 yshift = int(y * f + f / 2) yshift += textsize[1] // 2 overlay = cv2.putText( overlay, text, (xshift , yshift), cv2.FONT_HERSHEY_COMPLEX, text_scale, (255), thickness=thickness ) # start of main source = "" while source != "q": source = input("Filepath or camera index: ") try: source = int(source) in_mode = 'live' webcam = cv2.VideoCapture(0) ret, video_frame = webcam.read() video_frame = cv2.flip(video_frame, 1) fast_ex = cv2.cvtColor(video_frame, cv2.COLOR_BGR2GRAY) break except: if os.path.exists(source.strip()): in_mode = 'file' fast_ex = cv2.imread(source.strip(), cv2.IMREAD_GRAYSCALE) break else: print("Could not find given path or Camera Device for {}".format(source)) exit() center = (fast_ex.shape[0] // 2 , fast_ex.shape[1] // 2) mode = modes[0] umax = calc_umax() while True: if in_mode == 'live': ret, video_frame = webcam.read() video_frame = cv2.flip(video_frame, 1) fast_ex = cv2.cvtColor(video_frame, cv2.COLOR_BGR2GRAY) # circle radius r = HALF_PATCH_SIZE # calculating the text scale on base of radius. This was just interpolated with two examples text_scale = -0.04*r+0.87 # how many pixels to pad around cirle padding = 2 # the representation of the cropped area shall be *scale* times larger than the original height # keeping cropped separate, to later iterate over it scale = 1.2 cropped = fast_ex[center[0]-r-padding:center[0]+r+padding+1, center[1]-r-padding:center[1]+r+padding+1] resized = cv2.resize(cropped, (int(fast_ex.shape[0] *scale), int(fast_ex.shape[0]*scale)), interpolation=cv2.INTER_NEAREST) vKeysCell = fast.detect(fast_ex[center[0]-r-padding:center[0]+r+padding+1, center[1]-r-padding:center[1]+r+padding+1]) # create a new canvas, to paste everything into canvas = np.ndarray((resized.shape[0], fast_ex.shape[1]+20+resized.shape[1])) canvas.fill(255) # where to paste the original image paste_x1 = 0 paste_x2 = fast_ex.shape[1] paste_y1 = int(canvas.shape[0] / 2 - fast_ex.shape[0] / 2) paste_y2 = int(canvas.shape[0] / 2 - fast_ex.shape[0] / 2 + fast_ex.shape[0]) # paste original image canvas[paste_y1: paste_y2, paste_x1:paste_x2] = fast_ex # paste resized crop canvas[:, -resized.shape[1]:] = resized # scale up everything to make lines smoother ls = int(np.ceil(window_width/canvas.shape[1])) canvas = cv2.resize(canvas, (0, 0), fx=ls, fy=ls, interpolation=cv2.INTER_NEAREST) # pasting things into an overlay, to later increase contrast (black & white) overlay = np.ndarray(canvas.shape) # use 128 to indicate emtpy spaces later overlay.fill(128) # line from rectangle to top left corner of crop overlay = cv2.line( overlay, (ls * (paste_x1 + center[1]+r+padding), ls * (paste_y1 + center[0]-r-padding)), (canvas.shape[1] - ls * resized.shape[1], 0), (255), thickness=2 ) # line from rectangle to bottom left corner of crop overlay = cv2.line( overlay, (ls * (paste_x1 + center[1]+r+padding+1), ls * (paste_y1 + center[0]+r+padding+1)), (canvas.shape[1]- ls * resized.shape[1], canvas.shape[0]), (255), thickness=2 ) # rectangle to indicate crop in original image overlay = cv2.rectangle( overlay, (ls * (paste_x1 + center[1]-r-padding), ls * (paste_y1 + center[0]-r-padding)), (ls * (paste_x1 + center[1]+r+padding+1), ls * (paste_y1 + center[0]+r+padding+1)), (255), thickness=2 ) # scale factor from original crop to resized version, after scaling up everything f = (resized.shape[0]) / cropped.shape[0] * ls pc = pixel_circle(r) # create vertical lines for cx in range(cropped.shape[1]): xshift = int(canvas.shape[1] - ls * resized.shape[1] + cx * f ) overlay = cv2.line( overlay, (xshift, 0), (xshift, canvas.shape[0]), 255 ) # create horizontal lines for cy in range(cropped.shape[0]): overlay = cv2.line( overlay, (canvas.shape[1] - ls * resized.shape[1], int((1+cy) * f)), (canvas.shape[1], int((1+cy) * f)), 255 ) # outer circle overlay = cv2.circle( overlay, (int(canvas.shape[1] - ls * resized.shape[1] + cropped.shape[1] / 2 * f ), int(cropped.shape[0] / 2 * f)), int((r + 0.6) * f), 255 ) # inner circle overlay = cv2.circle( overlay, (int(canvas.shape[1] - ls * resized.shape[1] + cropped.shape[1] / 2 * f ), int(cropped.shape[0] / 2 * f)), int((r - 0.55) * f), 255 ) if mode == "full": # circle through all points of the circle and insert the values for cy in range(-r, r + 1): yp = [p[0] for p in pc if p[1] == cy] yshift = cy+r+padding for cx in range(min(yp), max(yp)+1): # calculating center of upscaled pixels, with respect to the text size thick = 1 # 2 if cy == 0 and cx == 0 else 1 textsize = cv2.getTextSize(str(cropped[cy+r+padding, cx+r+padding]), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=text_scale, thickness=thick)[0] xshift = int(((canvas.shape[1] - ls * resized.shape[1] + (cx+r+padding) * f) + (canvas.shape[1] - ls * resized.shape[1] + (cx + r + padding + 1) * f)) / 2) xshift -= textsize[0] // 2 yshift = int((cy+r+padding) * f + f / 2) yshift += textsize[1] // 2 overlay = cv2.putText( overlay, str(cropped[cy+r+padding, cx+r+padding]), (xshift , yshift), cv2.FONT_HERSHEY_COMPLEX, text_scale, (255), thickness=thick ) if cy == 0 and cx == 0: overlay = cv2.rectangle( overlay, (overlay.shape[1] - int((r+1+padding) * f + 2), int((r+padding) * f)), (overlay.shape[1] - int((r+padding) * f - 1), int((r+1+padding) * f)), (255), 2 ) elif mode == "fast": # show which pixels would count into the FAST feature detection # put values of pixels into cropped / resized image for cx in range(cropped.shape[1]): for cy in range(cropped.shape[0]): if (cx-r-padding, cy-r-padding) in pc or (cx-r-padding == 0 and cy-r-padding == 0): put_text_on_enlarged(str(cropped[cy, cx]), cx, cy) if (cx-r-padding == 0 and cy-r-padding == 0): # add info to point in the center put_text_on_enlarged("[p]", cx+0.75, cy+0.25,thickness=2) nb_angle = 2 * np.pi / len(pc) r_plus = 1.15 for nb, nba in enumerate(np.arange(0.0, 2 * np.pi, nb_angle)): textsize = cv2.getTextSize('[{}]'.format(nb + 1), fontFace=cv2.FONT_HERSHEY_DUPLEX, fontScale=text_scale, thickness=2)[0] nba_x = int(np.sin(nba) * (r + r_plus) * f - overlay.shape[0] / 2 + overlay.shape[1] - textsize[0] / 2) nba_y = int(-np.cos(nba) * (r + r_plus) * f + overlay.shape[0] / 2 + textsize[1] / 2) overlay = cv2.putText( overlay, '[{}]'.format(nb + 1), (nba_x, nba_y), cv2.FONT_HERSHEY_COMPLEX, text_scale, (255), thickness=2 ) elif mode == "pattern": # show the first x pattern overlayed pmax = 10 descriptor = [] d_count = 0 for a_x, a_y, b_x, b_y in pattern: if a_x > padding + r or a_x < - padding - r or \ a_y > padding + r or a_y < - padding - r or \ b_x > padding + r or b_x < - padding - r or \ b_y > padding + r or b_y < - padding - r: continue if d_count > pmax: break if fast_ex[center[0]+ a_y, center[1]+ a_x] < fast_ex[center[0]+ b_y, center[1]+ b_x]: descriptor.append("1") put_text_on_enlarged("{}a".format(d_count), a_x+padding+r, a_y+padding+r) put_text_on_enlarged("{}b".format(d_count), b_x+padding+r, b_y+padding+r, thickness=2) else: descriptor.append("0") # if fast_ex[center[0]+ a_y, center[1]+ a_x] == fast_ex[center[0]+ b_y, center[1]+ b_x]: # put_text_on_enlarged("{}a".format(d_count), a_x+padding+r, a_y+padding+r) # else: put_text_on_enlarged("{}a".format(d_count), a_x+padding+r, a_y+padding+r, thickness=2) put_text_on_enlarged("{}b".format(d_count), b_x+padding+r, b_y+padding+r) d_count += 1 # Also print this onto the image overlay = cv2.putText( overlay, "Descriptor: " + " | ".join(descriptor) + " ...", (20, overlay.shape[0] - 20), cv2.FONT_HERSHEY_COMPLEX, text_scale, (255), thickness=1 ) print("Descriptor: " + " | ".join(descriptor) + " ...") # turning overlay into white (255) pixels, where the underlying image is darker # and into black (0) pixels, where the underlying image is lighter overlay[overlay != 128] = np.where(canvas > 150, 50, 200)[overlay != 128] # pasting in the overlay canvas[overlay != 128] = overlay[overlay != 128] # calculate the momentums and angle of a circular patch a, cpx, cpy = IC_Angle(fast_ex, center, umax) print("returned", a, cpx, cpy, np.sin(np.deg2rad(a)), np.cos(np.deg2rad(a))) # initialize an RGB canvas rgb = cv2.cvtColor(canvas.astype('uint8'), cv2.COLOR_GRAY2BGR) # draw a line according to the angle xshift = int(((canvas.shape[1] - ls * resized.shape[1] + (padding + r) * f) + (canvas.shape[1] - ls * resized.shape[1] + ((padding + r) + 1) * f)) / 2) yshift = int((padding + r) * f + f / 2) r_red = 1 # drawing reference line and arc rgb = cv2.line(rgb, (xshift, yshift), (int(xshift + (r - r_red) * f), yshift), (255, 200, 128), 3) rgb = cv2.ellipse(rgb, (xshift, yshift), ( int((r-r_red-1) * f), int((r-r_red-1) * f)), 0, 0, a, (210, 50, 128), 3) # drawing arrow a_x = int(np.cos(np.deg2rad(a)) * (r - r_red) * f - overlay.shape[0] / 2 + overlay.shape[1]) a_y = int(np.sin(np.deg2rad(a)) * (r - r_red) * f + overlay.shape[0] / 2) rgb = cv2.line(rgb, (xshift, yshift), (a_x, a_y), (128, 150, 0), 3) a_x_l = int(np.cos(np.deg2rad((a - 150) % 360)) * (1) * f + a_x) a_y_l = int(np.sin(np.deg2rad((a - 150) % 360)) * (1) * f + a_y) rgb = cv2.line(rgb, (a_x, a_y), (a_x_l, a_y_l), (128, 150, 0), 3) a_x_r = int(np.cos(np.deg2rad(a + 150)) * (1) * f + a_x) a_y_r = int(np.sin(np.deg2rad(a + 150)) * (1) * f + a_y) rgb = cv2.line(rgb, (a_x, a_y), (a_x_r, a_y_r), (128, 150, 0), 3) cpx += padding cpy += padding # add the angle rgb = cv2.putText(rgb, '{:.2f}'.format(a), (int(xshift + (r - r_red) * f), int(yshift + f / 2)), cv2.FONT_HERSHEY_COMPLEX, text_scale * 2, (255, 200, 128), 2 ) # draw centroid xshift = int(((canvas.shape[1] - ls * resized.shape[1] + cpx * f) + (canvas.shape[1] - ls * resized.shape[1] + (cpx + 1) * f)) / 2) yshift = int(cpy * f + f / 2) rgb = cv2.circle(rgb, ( xshift, yshift ), 3,(50, 80, 255), 3) rgb = cv2.putText(rgb, "C", (int(xshift + f), int(yshift + f)), cv2.FONT_HERSHEY_COMPLEX, text_scale * 2, (50, 80, 255), 2 ) # draw keypoints vKeysCellShifted = [] for vit in vKeysCell: xshift = int(((canvas.shape[1] - ls * resized.shape[1] + vit.pt[0] * f) + (canvas.shape[1] - ls * resized.shape[1] + (vit.pt[0] + 1) * f)) / 2) yshift = int(vit.pt[1] * f + f / 2) vit.pt = (xshift, yshift) vKeysCellShifted.append(vit) rgb = cv2.drawKeypoints(rgb, vKeysCellShifted, rgb, (255, 0, 0)) # add some information beneath the image rgb_info =
np.zeros((rgb.shape[0] + 50, rgb.shape[1], rgb.shape[2]), dtype=np.uint8)
numpy.zeros
# Code for initialization of NMF, copied with little modification from scikit-learn # Original source: https://github.com/scikit-learn/scikit-learn/blob/7e1e6d09bcc2eaeba98f7e737aac2ac782f0e5f1/sklearn/decomposition/_nmf.py#L229 import numpy as np from scipy import linalg import warnings from math import sqrt import numbers def check_random_state(seed): """Turn seed into a np.random.RandomState instance Parameters ---------- seed : None, int or instance of RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, numbers.Integral): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError( "%r cannot be used to seed a numpy.random.RandomState instance" % seed ) def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Faster than norm(x) ** 2. Parameters ---------- x : array-like Returns ------- float The Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). """ x = np.ravel(x, order="K") if np.issubdtype(x.dtype, np.integer): warnings.warn( "Array type is integer, np.dot may overflow. " "Data should be float type to avoid this issue", UserWarning, ) return np.dot(x, x) def norm(x): """Dot product-based Euclidean norm implementation. See: http://fseoane.net/blog/2011/computing-the-vector-norm/ Parameters ---------- x : array-like Vector for which to compute the norm. """ return sqrt(squared_norm(x)) def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u : ndarray u and v are the output of `linalg.svd` or :func:`~sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. v : ndarray u and v are the output of `linalg.svd` or :func:`~sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. The input v should really be called vt to be consistent with scipy's output. u_based_decision : bool, default=True If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, range(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(
np.abs(v)
numpy.abs
import numpy as np import numpy.matlib LEFT, ROPE, RIGHT = range(3) def correlated_ttest_MC(x, rope, runs=1, nsamples=50000): """ See correlated_ttest module for explanations """ if x.ndim == 2: x = x[:, 1] - x[:, 0] diff=x n = len(diff) nfolds = n / runs x = np.mean(diff) # Nadeau's and Bengio's corrected variance var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1)) if var == 0: return int(x < rope), int(-rope <= x <= rope), int(rope < x) return x+np.sqrt(var)*np.random.standard_t( n - 1, nsamples) ## Correlated t-test def correlated_ttest(x, rope, runs=1, verbose=False, names=('C1', 'C2')): import scipy.stats as stats """ Compute correlated t-test The function uses the Bayesian interpretation of the p-value and returns the probabilities the difference are below `-rope`, within `[-rope, rope]` and above the `rope`. For details, see `A Bayesian approach for comparing cross-validated algorithms on multiple data sets <http://link.springer.com/article/10.1007%2Fs10994-015-5486-z>`_, <NAME> and <NAME>, Mach Learning 2015. | The test assumes that the classifiers were evaluated using cross validation. The number of folds is determined from the length of the vector of differences, as `len(diff) / runs`. The variance includes a correction for underestimation of variance due to overlapping training sets, as described in `Inference for the Generalization Error <http://link.springer.com/article/10.1023%2FA%3A1024068626366>`_, <NAME> and <NAME>, Mach Learning 2003.) | Args: x (array): a vector of differences or a 2d array with pairs of scores. rope (float): the width of the rope runs (int): number of repetitions of cross validation (default: 1) return: probablities (tuple) that differences are below -rope, within rope or above rope """ if x.ndim == 2: x = x[:, 1] - x[:, 0] diff=x n = len(diff) nfolds = n / runs x = np.mean(diff) # Nadeau's and Bengio's corrected variance var = np.var(diff, ddof=1) * (1 / n + 1 / (nfolds - 1)) if var == 0: return int(x < rope), int(-rope <= x <= rope), int(rope < x) pr = 1-stats.t.cdf(rope, n - 1, x, np.sqrt(var)) pl = stats.t.cdf(-rope, n - 1, x, np.sqrt(var)) pe=1-pl-pr if verbose: print('P({c1} > {c2}) = {pl}, P(rope) = {pe}, P({c2} > {c1}) = {pr}'. format(c1=names[0], c2=names[1], pl=pl, pe=pe, pr=pr)) return pl, pe, pr ## SIGN TEST def signtest_MC(x, rope, prior_strength=1, prior_place=ROPE, nsamples=50000): """ Args: x (array): a vector of differences or a 2d array with pairs of scores. rope (float): the width of the rope prior_strength (float): prior strength (default: 1) prior_place (LEFT, ROPE or RIGHT): the region to which the prior is assigned (default: ROPE) nsamples (int): the number of Monte Carlo samples Returns: 2-d array with rows corresponding to samples and columns to probabilities `[p_left, p_rope, p_right]` """ if prior_strength < 0: raise ValueError('Prior strength must be nonegative') if nsamples < 0: raise ValueError('Number of samples must be a positive integer') if rope < 0: raise ValueError('Rope must be a positive number') if x.ndim == 2: x = x[:, 1] - x[:, 0] nleft = sum(x < -rope) nright = sum(x > rope) nrope = len(x) - nleft - nright alpha = np.array([nleft, nrope, nright], dtype=float) alpha += 0.0001 # for numerical stability alpha[prior_place] += prior_strength return
np.random.dirichlet(alpha, nsamples)
numpy.random.dirichlet
# -*- coding: utf-8 -*- """ This is a script for satellite image classification Last updated on Aug 6 2019 @author: <NAME> @Email: <EMAIL> @functions 1. generate samples from satellite images 2. grid search SVM/random forest parameters 3. object-based post-classification refinement superpixel-based regularization for classification maps 4. confusion matrix: OA, kappa, PA, UA, AA 5. save maps as images @sample codes c = rscls.rscls(image,ground_truth,cls=number_of_classes) c.padding(patch) c.normalize(style='-11') # optional x_train,y_train = c.train_sample(num_per_cls) x_train,y_train = rscls.make_sample(x_train,y_train) x_test,y_test = c.test_sample() # for superpixel refinement c.locate_obj(seg) pcmap = rscls.obpc(c.seg,predicted,c.obj) @Notes Ground truth file should be uint8 format begin with 1 Background = 0 """ import numpy as np import copy import scipy.stats as stats from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.naive_bayes import GaussianNB import matplotlib.pyplot as plt class rscls: def __init__(self, im, gt, cls): # 图片,ground truth, 类别数 if cls == 0: print('num of class not specified !!') self.im = copy.deepcopy(im) # 深拷贝 if gt.max() != cls: self.gt = copy.deepcopy(gt - 1) else: self.gt = copy.deepcopy(gt - 1) self.gt_b = copy.deepcopy(gt) self.cls = cls self.patch = 1 self.imx, self.imy, self.imz = self.im.shape self.record = [] self.sample = {} def padding(self, patch): self.patch = patch pad = self.patch // 2 r1 = np.repeat([self.im[0, :, :]], pad, axis=0) # 将元素im重复pad次 r2 = np.repeat([self.im[-1, :, :]], pad, axis=0) self.im = np.concatenate((r1, self.im, r2)) # 图像填充 r1 = np.reshape(self.im[:, 0, :], [self.imx + 2 * pad, 1, self.imz]) # 将 image reshape r2 = np.reshape(self.im[:, -1, :], [self.imx + 2 * pad, 1, self.imz]) r1 = np.repeat(r1, pad, axis=1) r2 = np.repeat(r2, pad, axis=1) self.im = np.concatenate((r1, self.im, r2), axis=1) self.im = self.im.astype('float32') def normalize(self, style='01'): im = self.im for i in range(im.shape[-1]): im[:, :, i] = (im[:, :, i] - im[:, :, i].min()) / (im[:, :, i].max() - im[:, :, i].min()) if style == '-11': im = im * 2 - 1 def locate_sample(self): sam = [] for i in range(self.cls): _xy = np.array(np.where(self.gt == i)).T _sam = np.concatenate([_xy, i * np.ones([_xy.shape[0], 1])], axis=-1) try: sam = np.concatenate([sam, _sam], axis=0) except: sam = _sam self.sample = sam.astype(int) def get_patch(self, xy): d = self.patch // 2 x = xy[0] y = xy[1] try: self.im[x][y] except IndexError: return [] x += d y += d sam = self.im[(x - d):(x + d + 1), (y - d):(y + d + 1)] return np.array(sam) def train_sample(self, pn): x_train, y_train = [], [] self.locate_sample() _samp = self.sample for _cls in range(self.cls): _xy = _samp[_samp[:, 2] == _cls] np.random.shuffle(_xy) _xy = _xy[:pn, :] for xy in _xy: self.gt[xy[0], xy[1]] = 255 # !! # x_train.append(self.get_patch(xy[:-1])) y_train.append(xy[-1]) # print(_xy) x_train, y_train = np.array(x_train), np.array(y_train) idx = np.random.permutation(x_train.shape[0]) x_train = x_train[idx] y_train = y_train[idx] return x_train, y_train.astype(int) def test_sample(self): x_test, y_test = [], [] self.locate_sample() _samp = self.sample for _cls in range(self.cls): _xy = _samp[_samp[:, 2] == _cls] np.random.shuffle(_xy) for xy in _xy: x_test.append(self.get_patch(xy[:-1])) y_test.append(xy[-1]) return np.array(x_test), np.array(y_test) def all_sample(self): imx, imy = self.gt.shape sample = [] for i in range(imx): for j in range(imy): sample.append(self.get_patch(np.array([i, j]))) return np.array(sample) def all_sample_light(self, clip=0, bs=10): imx, imy = self.gt.shape imz = self.im.shape[-1] patch = self.patch # fp = np.memmap('allsample' + str(clip) + '.h5', dtype='float32', mode='w+', shape=(imgx*self.IMGY,5,5,bs)) fp = np.zeros([imx * imy, patch, patch, imz]) countnum = 0 for i in range(imx * clip, imx * (clip + 1)): for j in range(imy): xy = np.array([i, j]) fp[countnum, :, :, :] = self.get_patch(xy) countnum += 1 return fp def all_sample_row_hd(self, sub=0): imx, imy = self.gt.shape imz = self.im.shape[-1] patch = self.patch # fp = np.memmap('allsample' + str(clip) + '.h5', dtype='float32', mode='w+', shape=(imgx*self.IMGY,5,5,bs)) fp = np.zeros([imx * imy, patch, patch, imz]) countnum = 0 for i in range(sub): for j in range(imy): xy = np.array([i, j]) fp[countnum, :, :, :] = self.get_patch(xy) countnum += 1 return fp def all_sample_row(self, sub=0): imx, imy = self.gt.shape fp = [] for j in range(imy): xy = np.array([sub, j]) fp.append(self.get_patch(xy)) return np.array(fp) def all_sample_heavy(self, name, clip=0, bs=10): imx, imy = self.gt.shape imz = self.im.shape[-1] patch = self.patch try: fp = np.memmap(name, dtype='float32', mode='w+', shape=(imx * imy, patch, patch, imz)) except: fp = np.memmap(name, dtype='float32', mode='r', shape=(imx * imy, patch, patch, imz)) # fp = np.zeros([imx*imy,patch,patch,imz]) countnum = 0 for i in range(imx * clip, imx * (clip + 1)): for j in range(imy): xy = np.array([i, j]) fp[countnum, :, :, :] = self.get_patch(xy) countnum += 1 return fp def read_all_sample(self, name, clip=0, bs=10): imx, imy = self.gt.shape imz = self.im.shape[-1] patch = self.patch fp = np.memmap(name, dtype='float32', mode='r', shape=(imx * imy, patch, patch, imz)) return fp def locate_obj(self, seg): obj = {} for i in range(seg.min(), seg.max() + 1): obj[str(i)] = np.where(seg == i) # 若满足条件则为1,否则相应位置为0 self.obj = obj self.seg = seg def obpc(seg, cmap, obj): pcmap = copy.deepcopy(cmap) for (k, v) in obj.items(): #print('v', v) #print('cmap[v]', cmap[v]) tmplabel = stats.mode(cmap[v])[0] pcmap[v] = tmplabel return pcmap def cfm(pre, ref, ncl=9): if ref.min() != 0: print('warning: label should begin with 0 !!') return nsize = ref.shape[0] cf = np.zeros((ncl, ncl)) for i in range(nsize): cf[pre[i], ref[i]] += 1 tmp1 = 0 for j in range(ncl): tmp1 = tmp1 + (cf[j, :].sum() / nsize) * (cf[:, j].sum() / nsize) cfm = np.zeros((ncl + 2, ncl + 1)) cfm[:-2, :-1] = cf oa = 0 for i in range(ncl): if cf[i, :].sum(): cfm[i, ncl] = cf[i, i] / cf[i, :].sum() if cf[:, i].sum(): cfm[ncl, i] = cf[i, i] / cf[:, i].sum() oa += cf[i, i] cfm[-1, 0] = oa / nsize cfm[-1, 1] = (cfm[-1, 0] - tmp1) / (1 - tmp1) cfm[-1, 2] = cfm[ncl, :-1].mean() print('oa: ', format(cfm[-1, 0], '.5'), ' kappa: ', format(cfm[-1, 1], '.5'), ' mean: ', format(cfm[-1, 2], '.5')) return cfm def gtcfm(pre, gt, ncl): if gt.max() == 255: print('warning: max 255 !!') cf = np.zeros([ncl, ncl]) for i in range(gt.shape[0]): for j in range(gt.shape[1]): if gt[i, j]: cf[pre[i, j] - 1, gt[i, j] - 1] += 1 tmp1 = 0 nsize = np.sum(gt != 0) for j in range(ncl): tmp1 = tmp1 + (cf[j, :].sum() / nsize) * (cf[:, j].sum() / nsize) cfm = np.zeros((ncl + 2, ncl + 1)) cfm[:-2, :-1] = cf oa = 0 for i in range(ncl): if cf[i, :].sum(): cfm[i, ncl] = cf[i, i] / cf[i, :].sum() if cf[:, i].sum(): cfm[ncl, i] = cf[i, i] / cf[:, i].sum() oa += cf[i, i] cfm[-1, 0] = oa / nsize cfm[-1, 1] = (cfm[-1, 0] - tmp1) / (1 - tmp1) cfm[-1, 2] = cfm[ncl, :-1].mean() #print(cfm) print(cfm[ncl, :-1]) print('oa: ', format(cfm[-1, 0], '.5'), ' kappa: ', format(cfm[-1, 1], '.5'), ' mean: ', format(cfm[-1, 2], '.5')) return cfm def svm(trainx, trainy): cost = [] gamma = [] for i in range(-5, 16, 2): cost.append(np.power(2.0, i)) for i in range(-15, 4, 2): gamma.append(np.power(2.0, i)) parameters = {'C': cost, 'gamma': gamma} svm = SVC(verbose=0, kernel='rbf') clf = GridSearchCV(svm, parameters, cv=3) p = clf.fit(trainx, trainy) print(clf.best_params_) bestc = clf.best_params_['C'] bestg = clf.best_params_['gamma'] tmpc = [-1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75] cost = [] gamma = [] for i in tmpc: cost.append(bestc * np.power(2.0, i)) gamma.append(bestg * np.power(2.0, i)) parameters = {'C': cost, 'gamma': gamma} svm = SVC(verbose=0, kernel='rbf') clf = GridSearchCV(svm, parameters, cv=3) p = clf.fit(trainx, trainy) print(clf.best_params_) p2 = clf.best_estimator_ return p2 def svm_rbf(trainx, trainy): cost = [] gamma = [] for i in range(-3, 10, 2): cost.append(np.power(2.0, i)) for i in range(-5, 4, 2): gamma.append(np.power(2.0, i)) parameters = {'C': cost, 'gamma': gamma} svm = SVC(verbose=0, kernel='rbf') clf = GridSearchCV(svm, parameters, cv=3) clf.fit(trainx, trainy) # print(clf.best_params_) bestc = clf.best_params_['C'] bestg = clf.best_params_['gamma'] tmpc = [-1.75, -1.5, -1.25, -1, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75] cost = [] gamma = [] for i in tmpc: cost.append(bestc *
np.power(2.0, i)
numpy.power
from liquepy.element import models import numpy as np def test_av_stress(): tau =
np.array([0, -2, -4, -6, -8, -6, -4, -2, 0, 2, 4, 6, 8, 6, 4, 2, 0])
numpy.array
# Author: <NAME> <<EMAIL>> # My imports from amt_tools.tools.instrument import GuitarProfile # Regular imports from mpl_toolkits.axisartist.axislines import SubplotZero import matplotlib.lines as mlines import matplotlib.pyplot as plt import numpy as np import librosa def visualize_pitch_list(times, pitch_list, save_path=None): plt.figure() times = np.concatenate([[times[i]] * len(pitch_list[i]) for i in range(len(pitch_list))]) pitches = np.concatenate(pitch_list) plt.scatter(times, pitches, s=5, c='k') plt.xlabel('Time (s)') plt.ylabel('Pitch') plt.xlim(0, 25) plt.tight_layout() plt.savefig(save_path) if save_path else plt.show() return plt def visualize_multi_pitch(multi_pitch, ax=None): if ax is None: ax = plt.gca() ax.imshow(multi_pitch, cmap='gray_r', vmin=0, vmax=1) ax.invert_yaxis() return ax # TODO - this is mostly trash for now - I've yet to make an effort to reestablish this # TODO - see earlier commits to get started def pianoroll(track_name, i_est, p_est, i_ref, p_ref, t_bounds, save_path=None): est_max, ref_max = 0, 0 for i in range(profile.num_strings): if i_est.size != 0: est_max = max(est_max, np.max(i_est)) if i_ref.size != 0: ref_max = max(ref_max, np.max(i_ref)) t_bounds = [t_bounds[0], min(t_bounds[1], max(est_max, ref_max))] plt.figure() for s in range(profile.num_strings): for n in range(p_ref.size): t_st = i_ref[n][0] t_fn = i_ref[n][1] m_fq = int(round(librosa.hz_to_midi(p_ref[n]))) plt.plot([t_st, t_fn], [m_fq] * 2, linewidth=10, color='black', label='Ref.') for n in range(p_est.size): t_st = i_est[n][0] t_fn = i_est[n][1] m_fq = int(round(librosa.hz_to_midi(p_est[n]))) plt.plot([t_st, t_fn], [m_fq] * 2, linewidth=10, color='orange', label='Est.',alpha=0.75) handles = [mlines.Line2D([], [], color='black', linestyle='-', label='Ref.', linewidth=10), mlines.Line2D([], [], color='orange', linestyle='-', label='Est.', linewidth=10)] # The lowest possible note - i.e. the open note of the lowest string m_lw = librosa.note_to_midi(profile.tuning[0]) # The highest possible note - i.e. the maximum fret on the highest string m_hg = librosa.note_to_midi(profile.tuning[profile.num_strings - 1]) + profile.num_frets plt.title(track_name) plt.xlabel('Time (s)') plt.ylabel('Pitch (MIDI)') plt.legend(handles=handles, loc='upper right', framealpha=0.5) plt.xlim(t_bounds[0] - 0.25, t_bounds[1] + 0.25) plt.ylim(m_lw - 1, m_hg + 1) plt.gcf().set_size_inches(16, 9) plt.tight_layout() if save_path: plt.savefig(save_path, bbox_inches='tight', dpi=500) else: plt.show() def guitar_tabs(track_name, tabs_est, tabs_ref, t_bounds, offset=True, save_path=None): est_max, ref_max = 0, 0 for i in range(profile.num_strings): if tabs_est[i][1].size != 0: est_max = max(est_max, np.max(tabs_est[i][1])) if tabs_ref[i][1].size != 0: ref_max = max(ref_max,
np.max(tabs_ref[i][1])
numpy.max
''' define some fucntions that will plot spheres and galaxies in pixels @author: <NAME> ppymj11 ''' from numba import jit import numpy as np # %% # define a function that will draw spherical regions around point in pixels # use numba jit to improve efficiency of used loops. @jit(nopython=True) def draw_sphere(body_size, image_s, index, color): ''' Draws a spherical body (proj to 2D -- circle) on the provided image in pixels Parameters: -------------- body - size of body (radius) in pizels, int. image_s - (N x N x 3) image array to plot on. color - tuple of size 3, gives flat RGB color of shpere. Returns: -------------- image as size x size x 3 array ''' # make sure given image is square and get size assert len(image_s[0, :, 0]) == len(image_s[:, 0, 0]), 'Need a square Image' size = len(image_s[0, :, 0]) # loop over i and j, for a square around the object for i in range(2*body_size+1): # get x rel. to star centre and its index in array x = -body_size + i ind_1 = int(size/2) - body_size + i for j in range(2*body_size+1): # as before for y y = -body_size + j ind_2 = index - body_size + j # check if current point is the circular region and plot: if ((x/body_size)**2 + (y/body_size)**2) <= 1 and (ind_1 >= 0 and ind_1 < size) and (ind_2 >= 0 and ind_2 < size): image_s[ind_1, ind_2, :] = color # return the image with source drawn, to user return image_s # define a function that will generate image of galaxy cluster # use numba jit to improve efficiency of used loops. @jit(nopython=True) def gal_image(gal_N, size, max_a, minor_max, minor_major_multiplier=5, seeded=1234): ''' Generates a random, pixelated image of galaxies Parameters: --------------- gal_N - int - number of galaxies size - int - side length of square image to create max_a - float - maximum decay costant for flux, in pixels minor_max - int - maximum semi-minor axis size, in pixels kwargs: --------------- minor_major_multiplier - int - max ratio between minor and major axis seeded - int - seed for numpy.random library returns: --------------- image, as (size x size x 3) array ''' # set the seed for repeatable results np.random.seed(seeded) # ############################################## # randomly generate galaxy properties: # ############################################## # fluxes in each RGB band (inetegers), as tuple to append to the pixels f0r = np.random.randint(0, 255, gal_N) f0g = np.random.randint(0, 255, gal_N) f0b = np.random.randint(0, 255, gal_N) f0 = np.vstack((f0r, f0g, f0b)) # pixel center indexes x_centr, y_centr = np.random.randint(0, size, gal_N), np.random.randint(0, size, gal_N) # decay a, unit = pixels: a = np.random.rand(gal_N) * max_a # minor axis minor = np.random.randint(1, minor_max+1, gal_N) # angle of major axis to horizontal (radians) theta =
np.random.rand(gal_N)
numpy.random.rand
from nutils import SI import numpy import pickle import typing import unittest class Dimension(unittest.TestCase): def test_multiply(self): self.assertEqual(SI.Velocity * SI.Time, SI.Length) self.assertEqual(SI.Length * int, SI.Length) self.assertEqual(float * SI.Time, SI.Time) def test_divide(self): self.assertEqual(SI.Length / SI.Time, SI.Velocity) self.assertEqual(SI.Length / int, SI.Length) self.assertEqual(float / SI.Time, SI.Frequency) def test_power(self): self.assertEqual(SI.Length**2, SI.Area) self.assertEqual(SI.Area**.5, SI.Length) def test_name(self): self.assertEqual(SI.Force.__name__, '[M*L/T2]') self.assertEqual((SI.Force**.5).__name__, '[M_2*L_2/T]') self.assertEqual((SI.Force**1.5).__name__, '[M3_2*L3_2/T3]') def test_fromname(self): self.assertEqual(getattr(SI.Quantity, '[M*L/T2]'), SI.Force) self.assertEqual(getattr(SI.Quantity, '[M_2*L_2/T]'), SI.Force**.5) self.assertEqual(getattr(SI.Quantity, '[M3_2*L3_2/T3]'), SI.Force**1.5) def test_typing(self): self.assertEqual(SI.Length | None, typing.Optional[SI.Length]) self.assertEqual(None | SI.Length | SI.Time, typing.Optional[typing.Union[SI.Time, SI.Length]]) def test_pickle(self): T = SI.Length / SI.Time s = pickle.dumps(T) self.assertEqual(pickle.loads(s), T) class Quantity(unittest.TestCase): def test_fromstring(self): F = SI.parse('5kN') self.assertEqual(type(F), SI.Force) self.assertEqual(F / 'N', 5000) v = SI.parse('-864km/24h') self.assertEqual(type(v), SI.Velocity) self.assertEqual(v / 'm/s', -10) def test_fromvalue(self): F = SI.Force('10N') self.assertEqual(type(F), SI.Force) self.assertEqual(F / SI.Force('2N'), 5) def test_array(self): F = SI.units.N * numpy.arange(6).reshape(2, 3) self.assertEqual(F.shape, (2, 3)) self.assertEqual(F.ndim, 2) self.assertEqual(F.size, 6) def test_getitem(self): F = SI.units.N * numpy.arange(6).reshape(2, 3) self.assertEqual(F[0, 0], SI.Force('0N')) self.assertEqual(F[0, 1], SI.Force('1N')) self.assertEqual(F[0, 2], SI.Force('2N')) self.assertEqual(F[1, 0], SI.Force('3N')) self.assertEqual(F[1, 1], SI.Force('4N')) self.assertEqual(F[1, 2], SI.Force('5N')) def test_setitem(self): F = SI.units.N * numpy.zeros(3) F[0] = SI.Force('1N') F[1] = SI.Force('2N') with self.assertRaisesRegex(TypeError, r'cannot assign \[L2\] to \[M\*L/T2\]'): F[2] = SI.Area('10m2') F[2] = SI.Force('3N') self.assertTrue(numpy.all(F == SI.units.N * numpy.array([1, 2, 3]))) def test_iter(self): F = SI.units.N * numpy.arange(6).reshape(2, 3) for i, Fi in enumerate(F): for j, Fij in enumerate(Fi): self.assertEqual(Fij, SI.units.N * (i*3+j)) def test_multiply(self): self.assertEqual(SI.Mass('2kg') * SI.Acceleration('10m/s2'), SI.Force('20N')) self.assertEqual(2 * SI.Acceleration('10m/s2'), SI.Acceleration('20m/s2')) self.assertEqual(SI.Mass('2kg') * 10, SI.Mass('20kg')) self.assertEqual(SI.Time('2s') * SI.Frequency('10/s'), 20) self.assertEqual(numpy.multiply(SI.Mass('2kg'), SI.Acceleration('10m/s2')), SI.Force('20N')) def test_matmul(self): self.assertEqual((SI.units.kg * numpy.array([2, 3])) @ (SI.parse('m/s2') * numpy.array([5, -3])), SI.Force('1N')) def test_divide(self): self.assertEqual(SI.Length('2m') / SI.Time('10s'), SI.Velocity('.2m/s')) self.assertEqual(2 / SI.Time('10s'), SI.Frequency('.2/s')) self.assertEqual(SI.Length('2m') / 10, SI.Length('.2m')) self.assertEqual(SI.Density('2kg/m3') / SI.Density('10kg/m3'), .2) self.assertEqual(numpy.divide(SI.Length('2m'), SI.Time('10s')), SI.Velocity('.2m/s')) def test_power(self): self.assertEqual(SI.Length('3m')**2, SI.Area('9m2')) self.assertEqual(SI.Length('3m')**0, 1) self.assertEqual(numpy.power(SI.Length('3m'), 2), SI.Area('9m2')) def test_add(self): self.assertEqual(SI.Mass('2kg') + SI.Mass('3kg'), SI.Mass('5kg')) self.assertEqual(numpy.add(SI.Mass('2kg'), SI.Mass('3kg')), SI.Mass('5kg')) with self.assertRaisesRegex(TypeError, r'incompatible arguments for add: \[M\], \[L\]'): SI.Mass('2kg') + SI.Length('3m') def test_sub(self): self.assertEqual(SI.Mass('2kg') - SI.Mass('3kg'), SI.Mass('-1kg')) self.assertEqual(numpy.subtract(SI.Mass('2kg'), SI.Mass('3kg')), SI.Mass('-1kg')) with self.assertRaisesRegex(TypeError, r'incompatible arguments for sub: \[M\], \[L\]'): SI.Mass('2kg') - SI.Length('3m') def test_hypot(self): self.assertEqual(numpy.hypot(SI.Mass('3kg'), SI.Mass('4kg')), SI.Mass('5kg')) with self.assertRaisesRegex(TypeError, r'incompatible arguments for hypot: \[M\], \[L\]'): numpy.hypot(SI.Mass('3kg'), SI.Length('4m')) def test_neg(self): self.assertEqual(-SI.Mass('2kg'), SI.Mass('-2kg')) self.assertEqual(numpy.negative(SI.Mass('2kg')), SI.Mass('-2kg')) def test_pos(self): self.assertEqual(+SI.Mass('2kg'), SI.Mass('2kg')) self.assertEqual(numpy.positive(SI.Mass('2kg')), SI.Mass('2kg')) def test_abs(self): self.assertEqual(numpy.abs(SI.Mass('-2kg')), SI.Mass('2kg')) def test_sqrt(self): self.assertEqual(numpy.sqrt(SI.Area('4m2')), SI.Length('2m')) def test_sum(self): self.assertTrue(numpy.all(numpy.sum(SI.units.kg * numpy.arange(6).reshape(2, 3), 0) == SI.units.kg * numpy.array([3, 5, 7]))) self.assertTrue(numpy.all(numpy.sum(SI.units.kg * numpy.arange(6).reshape(2, 3), 1) == SI.units.kg * numpy.array([3, 12]))) def test_mean(self): self.assertTrue(numpy.all(numpy.mean(SI.units.kg * numpy.arange(6).reshape(2, 3), 0) == SI.units.kg * numpy.array([1.5, 2.5, 3.5]))) self.assertTrue(numpy.all(numpy.mean(SI.units.kg * numpy.arange(6).reshape(2, 3), 1) == SI.units.kg * numpy.array([1, 4]))) def test_broadcast_to(self): v = numpy.array([1, 2, 3]) A = SI.units.kg * v B = numpy.broadcast_to(A, (2, 3)) self.assertEqual(B.shape, (2, 3)) self.assertEqual(B[1, 1], SI.Mass('2kg')) def test_trace(self): A = SI.units.kg * numpy.arange(18).reshape(3, 2, 3) self.assertTrue(numpy.all(numpy.trace(A, axis1=0, axis2=2) == SI.units.kg * numpy.array([21, 30]))) def test_ptp(self): A = SI.units.kg * numpy.array([2, -10, 5, 0]) self.assertEqual(numpy.ptp(A), SI.Mass('15kg')) def test_min(self): A = SI.units.kg * numpy.array([2, -10, 5, 0]) self.assertEqual(
numpy.max(A)
numpy.max
#!/usr/bin/env python3 # # Pocket SDR Python AP - GNSS Signal Acquisition # # Author: # T.TAKASU # # History: # 2021-12-01 1.0 new # 2021-12-05 1.1 add signals: G1CA, G2CA, B1I, B2I, B1CD, B1CP, B2AD, B2AP, # B2BI, B3I # 2021-12-15 1.2 add option: -d, -nz, -np # 2022-01-20 1.3 add signals: I5S # add option: -l, -s # import sys, time import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import sdr_func, sdr_code mpl.rcParams['toolbar'] = 'None'; mpl.rcParams['font.size'] = 9 # constants -------------------------------------------------------------------- T_AQC = 0.010 # non-coherent integration time for acquisition (s) THRES_CN0 = 38.0 # threshold to lock (dB-Hz) ESC_COL = '\033[34m' # ANSI escape color = blue ESC_RES = '\033[0m' # ANSI escape reset # show usage ------------------------------------------------------------------- def show_usage(): print('Usage: pocket_acq.py [-sig sig] [-prn prn[,...]] [-tint tint]') print(' [-toff toff] [-f freq] [-fi freq] [-d freq] [-nz] [-np]') print(' [-s] [-p] [-l] [-3d] file') exit() # plot C/N0 -------------------------------------------------------------------- def plot_cn0(ax, cn0, prns, fc): thres = THRES_CN0 x = np.arange(len(cn0)) y = cn0 ax.bar(x[y < thres], y[y < thres], color='gray', width=0.6) ax.bar(x[y >= thres], y[y >= thres], color=fc , width=0.6) ax.grid(True, lw=0.4) ax.set_xlim([x[0] - 0.5, x[-1] + 0.5]) plt.xticks(x, ['%d' % (prn) for prn in prns]) ax.set_ylim([30, 50]) ax.set_xlabel('PRN Number') ax.set_ylabel('C/N0 (dB-Hz)') # plot correlation 3D ---------------------------------------------------------- def plot_corr_3d(ax, P, dops, coffs, ix, fc): x, y = np.meshgrid(coffs * 1e3, dops) z = P /
np.mean(P)
numpy.mean
# standard imports import numpy as np import matplotlib.pyplot as plt # Add parent directory to path import sys import os parent_path = '..\\nistapttools' if parent_path not in sys.path: sys.path.append(os.path.abspath(parent_path)) # custom imports import apt_fileio import m2q_calib import plotting_stuff import initElements_P3 import histogram_functions import peak_param_determination as ppd from histogram_functions import bin_dat import voltage_and_bowl from voltage_and_bowl import do_voltage_and_bowl from voltage_and_bowl import mod_full_vb_correction import colorcet as cc def create_histogram(xs, ys, x_roi=None, delta_x=0.1, y_roi=None, delta_y=0.1): """Create a 2d histogram of the data, specifying the bin intensity, region of interest (on the y-axis), and the spacing of the y bins""" # even number num_x = int(np.ceil((x_roi[1]-x_roi[0])/delta_x)) num_y = int(np.ceil((y_roi[1]-y_roi[0])/delta_y)) return np.histogram2d(xs, ys, bins=[num_x, num_y], range=[x_roi, y_roi], density=False) def _extents(f): """Helper function to determine axis extents based off of the bin edges""" delta = f[1] - f[0] return [f[0] - delta/2, f[-1] + delta/2] def plot_2d_histo(ax, N, x_edges, y_edges, scale='log'): if scale=='log': dat = np.log10(1+N) elif scale=='lin': dat = N """Helper function to plot a histogram on an axis""" ax.imshow(np.transpose(dat), aspect='auto', extent=_extents(x_edges) + _extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='antialiased') def corrhist(epos, delta=1, roi=None): dat = epos['tof'] if roi is None: roi = [0, 1000] N = int(np.ceil((roi[1]-roi[0])/delta)) corrhist = np.zeros([N,N], dtype=int) multi_idxs = np.where(epos['ipp']>1)[0] for multi_idx in multi_idxs: n_hits = epos['ipp'][multi_idx] cluster = dat[multi_idx:multi_idx+n_hits] idx1 = -1 idx2 = -1 for i in range(n_hits): for j in range(i+1,n_hits): idx1 = int(np.floor(cluster[i]/delta)) idx2 = int(np.floor(cluster[j]/delta)) if idx1 < N and idx1>=0 and idx2 < N and idx2>=0: corrhist[idx1,idx2] += 1 edges = np.arange(roi[0],roi[1]+delta,delta) assert edges.size-1 == N return (edges, corrhist+corrhist.T-np.diag(np.diag(corrhist))) def calc_t0(tof,tof_vcorr_fac,tof_bcorr_fac,sigma): BB = tof_bcorr_fac[0::2]+tof_bcorr_fac[1::2] t0 = ((tof_bcorr_fac[0::2]*tof[0::2]+tof_bcorr_fac[1::2]*tof[1::2]) - sigma/(tof_vcorr_fac[0::2]))/BB t0 = np.ravel(np.column_stack((t0,t0))) return t0 def create_sigma_delta_histogram(raw_tof, tof_vcorr_fac, tof_bcorr_fac, sigmas=None, delta_range=None, delta_step=0.5): # Must be a doubles only epos... # scan through a range of sigmas and compute the corrected data if sigmas is None: sigmas = np.linspace(0,2000,2**7) if delta_range is None: delta_range = [0,700] delta_n_bins = int((delta_range[1]-delta_range [0])/delta_step) # print('delta_n_bins = '+str(delta_n_bins)) res_dat = np.zeros((sigmas.size,delta_n_bins)) for sigma_idx in np.arange(sigmas.size): t0 = calc_t0(raw_tof, tof_vcorr_fac, tof_bcorr_fac, sigmas[sigma_idx]) tof_corr = tof_vcorr_fac*tof_bcorr_fac*(raw_tof-t0) dts = np.abs(tof_corr[:-1:2]-tof_corr[1::2]) N, delta_edges = np.histogram(dts, bins=delta_n_bins, range=delta_range) res_dat[sigma_idx,:] = N if np.mod(sigma_idx,10)==0: print("Loop index "+str(sigma_idx+1)+" of "+str(sigmas.size)) delta_centers = 0.5*(delta_edges[:-1]+delta_edges[1:]) return (res_dat, sigmas, delta_centers) def interleave(a,b): return np.ravel(np.column_stack((a,b))) def calc_slope_and_intercept(raw_tof, volt_coeff, bowl_coeff): A = volt_coeff[0::2] B_alpha = bowl_coeff[0::2] B_beta = bowl_coeff[1::2] tof_alpha = raw_tof[0::2] tof_beta = raw_tof[1::2] intercept = 2*A*B_alpha*B_beta*(tof_beta-tof_alpha)/(B_alpha+B_beta) slope = (B_beta-B_alpha)/(B_beta+B_alpha) return (slope, intercept) # Note that x is sums and y is diffs def compute_dist_to_line(slope, intercept, x, y): return np.abs(intercept+slope*x-y)/np.sqrt(1+slope**2) def calc_parametric_line(raw_tof, volt_coeff, bowl_coeff, n=2): if n>0: t = raw_tof.reshape(-1,n) v = volt_coeff.reshape(-1,n) b = bowl_coeff.reshape(-1,n) else: t = raw_tof v = volt_coeff b = bowl_coeff r0 = v*b*(t-np.sum(b*t,axis=1)[:,np.newaxis]/np.sum(b,axis=1)[:,np.newaxis]) r1 = b/np.sum(b,axis=1)[:,np.newaxis] return (r0, r1) def compute_dist_to_parametric_line(r0, r1, q): # q is n_pts by n_dim sigma = (np.dot(r1,q.T)-np.sum(r0*r1,axis=1)[:,np.newaxis])/
np.sum(r1**2,axis=1)
numpy.sum
# -*- coding: utf-8 -*- """ Created on Fri Oct 5 10:40:35 2018 @author: hamed """ try: import torch from torch.utils import data except: pass import numpy as np from sklearn import datasets #%% class kk_mimic_dataset(data.Dataset): def __init__(self, phase="train", seq_len=10, data_norm=True, test=False): percent = 20 n_valid = percent/20 * 328 ind_valid = np.ones(n_valid) ind_valid = np.concatenate((ind_valid, np.zeros(6564-n_valid))) ind_valid =
np.random.permutation(ind_valid)
numpy.random.permutation
from sys import maxsize import numpy as np from cv2 import cv2 from numpy.core.arrayprint import array2string from numpy.lib.shape_base import split from daugman import daugman from scipy.spatial import distance import itertools import glob import re np.set_printoptions(threshold=maxsize) def daugman_normalizaiton(image, height, width, r_in, r_out): thetas = np.arange(0, 2 * np.pi, 2 * np.pi / width) # Theta values # Create empty flatten image flat = np.zeros((height, width, 3), np.uint8) circle_x = int(image.shape[0] / 2) circle_y = int(image.shape[1] / 2) for i in range(width): for j in range(height): theta = thetas[i] # value of theta coordinate r_pro = j / height # value of r coordinate(normalized) # get coordinate of boundaries Xi = circle_x + r_in * np.cos(theta) Yi = circle_y + r_in * np.sin(theta) Xo = circle_x + r_out * np.cos(theta) Yo = circle_y + r_out *
np.sin(theta)
numpy.sin
"""Plotting utilities. Import requires matplotlib. """ import datetime import copy # for shallow copies of matplotlib colormaps import numpy as np import scipy.signal import matplotlib.pyplot as plt import matplotlib.patches import matplotlib.colors import matplotlib.lines import matplotlib.patheffects import matplotlib.cm import desietcimg.util def draw_ellipse(ax, x0, y0, s, g1, g2, nsigmas=1, **ellipseopts): g = np.sqrt(g1 ** 2 + g2 ** 2) if g > 1: raise ValueError('g1 ** 2 + g2 ** 2 > 1') center = np.array([x0, y0]) angle = np.rad2deg(0.5 * np.arctan2(g2, g1)) ratio = np.sqrt((1 + g) / (1 - g)) width = 2 * s * ratio * nsigmas height = 2 * s / ratio * nsigmas kwargs = dict(color='r', ls='-', lw=2, alpha=0.7, fill=False) kwargs.update(ellipseopts) ellipse = matplotlib.patches.Ellipse(center, width, height, angle, **kwargs) ax.add_artist(ellipse) def plot_image(D, W=None, ax=None, cmap='viridis', masked_color='chocolate', threshold=0.01): if W is not None and np.any(W == 0): D = D.copy() D[W == 0] = np.nan if W is not None: # Ignore pixels with low ivar for setting color scale limits. informative = W > threshold * np.median(W) else: informative = np.ones_like(D, bool) vmin, vmax = np.percentile(D[informative], (0, 100)) ax = ax or plt.gca() cmap = copy.copy(matplotlib.cm.get_cmap(cmap)) cmap.set_bad(color=masked_color) h, w = D.shape I = ax.imshow(D, interpolation='none', origin='lower', cmap=cmap, vmin=vmin, vmax=vmax, extent=[-0.5 * w, 0.5 * w, -0.5 * h, 0.5 * h]) ax.axis('off') return ax class Axes(object): def __init__(self, n, size=4, pad=0.02): rows = int(np.floor(np.sqrt(n))) cols = int(np.ceil(n / rows)) assert rows * cols >= n width = cols * size + (cols - 1) * pad height = rows * size + (rows - 1) * pad self.fig, axes = plt.subplots(rows, cols, figsize=(width, height), squeeze=False) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=pad, hspace=pad) self.axes = axes.flatten() self.n = n for ax in self.axes: ax.axis('off') def plot_sky_camera(SCA, size=4, pad=0.02, what='stamp', labels=True, params=True, fiber=True): if SCA.fibers is None or SCA.results is None: raise RuntimeError('No results available to plot.') nfibers = len(SCA.fibers) A = Axes(nfibers, size, pad) # Extract the pixel values to plot. plotdata = [] results = iter(SCA.results.items()) for k in range(nfibers): label, (xfit, yfit, bgmean, fiber_flux, snr, stamp, ivar, model, raw) = next(results) plotdata.append({'stamp': stamp, 'ivar': ivar, 'model': model, 'raw': raw}[what]) # Use the same colorscale for all stamps. allpixels = np.concatenate(plotdata, axis=1).flatten() vmin, vmax = np.percentile(allpixels[allpixels > 0], (1, 99)) # Loop over fibers to plot. results = iter(SCA.results.items()) fibers = iter(SCA.fibers.values()) for k in range(nfibers): ax = A.axes[k] ix, iy = next(fibers) label, (xfit, yfit, bgmean, fiber_flux, snr, stamp, ivar, model, raw) = next(results) ax.imshow(plotdata[k], interpolation='none', origin='lower', cmap='viridis', vmin=vmin, vmax=vmax) ax.axis('off') if fiber: cx = (xfit - ix) / SCA.binning + SCA.rsize cy = (yfit - iy) / SCA.binning + SCA.rsize cr = 0.5 * SCA.fiberdiam / SCA.binning circle = matplotlib.patches.Circle( [cx, cy], cr, lw=2, ec='r', fc='none', alpha=0.5) dxy = SCA.dxy + SCA.rsize xgrid, ygrid = np.meshgrid(dxy, dxy) ax.plot(xgrid[0], ygrid[0], 'r.', ms=1) ax.plot(xgrid[-1], ygrid[-1], 'r.', ms=1) ax.plot(xgrid[:, 0], ygrid[:, 0], 'r.', ms=1) ax.plot(xgrid[:, -1], ygrid[:, -1], 'r.', ms=1) ax.plot(cx, cy, 'r+') ax.add_artist(circle) kwargs = dict(verticalalignment='center', horizontalalignment='center', transform=ax.transAxes, color='w', fontweight='bold') if labels: ax.text(0.5, 0.95, label, fontsize=16, **kwargs) if params: params = '{0:.1f} e/s SNR {1:.1f}'.format(fiber_flux, snr) ax.text(0.5, 0.05, params, fontsize=14, **kwargs) return A def plot_guide_results(GCR, size=4, pad=0.02, ellipses=True, params=True): if GCR.stamps is None or GCR.results is None: raise RuntimeError('No results available to plot.') nstamps = GCR.meta['NSRC'] rsize = GCR.meta['SSIZE'] // 2 A = Axes(nstamps, size, pad) for k in range(nstamps): ax = A.axes[k] plot_image(*GCR.stamps[k], ax=ax) kwargs = dict(verticalalignment='center', horizontalalignment='center', transform=ax.transAxes, fontweight='bold') result, y_slice, x_slice = GCR.results[k] ix, iy = x_slice.start + rsize, y_slice.start + rsize label = 'x={0:04d} y={1:04d}'.format(ix, iy) ax.text(0.5, 0.05, label, fontsize=16, color='w', **kwargs) if result['success']: color = 'w' if result['psf'] else 'r' if ellipses: draw_ellipse(ax, result['x0'], result['y0'], result['s'], result['g1'], result['g2'], ec=color) if params: g = np.sqrt(result['g1'] ** 2 + result['g2'] ** 2) label = f'$\\nu$ {result["snr"]:.1f} s {result["s"]:.1f} g {g:.2f}' ax.text(0.5, 0.95, label, fontsize=18, color=color, **kwargs) return A def plot_psf_profile(GCR, size=4, pad=0.5, inset_size=35, max_ang=2.0, label=None): """ """ assert inset_size % 2 == 1 P, W = GCR.profile h1 = len(P) // 2 h2 = inset_size // 2 inset = slice(h1 - h2, h1 + h2 + 1) width = 2.5 * size + pad height = size fig = plt.figure(figsize=(width, height)) lhs = plt.axes((0., 0., size / width, 1.)) rhs = plt.axes(((size + pad) / width, pad / height, (width - size - pad) / width - 0.02, (height - pad) / height - 0.02)) plot_image(P[inset, inset], W[inset, inset], ax=lhs) kwargs = dict(fontsize=16, color='w', verticalalignment='center', horizontalalignment='center', transform=lhs.transAxes, fontweight='bold') fwhm = GCR.meta['FWHM'] ffrac = GCR.meta['FFRAC'] xc = GCR.meta['XC'] yc = GCR.meta['YC'] lhs.text(0.5, 0.95, 'FWHM={0:.2f}" FFRAC={1:.3f}'.format(fwhm, ffrac), **kwargs) if label is not None: lhs.text(0.5, 0.05, label, **kwargs) rfiber_pix = 0.5 * GCR.meta['FIBSIZ'] / GCR.meta['PIXSIZ'] lhs.add_artist(plt.Circle((xc, yc), rfiber_pix, fc='none', ec='r', lw=2, alpha=0.5)) lhs.plot(xc, yc, 'r+', ms=25) lhs.plot([xc, h2], [yc, yc], 'r--') lhs.plot([xc, xc], [yc, h2], 'r:') # Plot the circularized radial profile. rhs.plot(GCR.profile_tab['rang'], GCR.profile_tab['prof'], 'k-', label='Circ. Profile') # Plot the fiber acceptance fraction for centroid offsets along +x and +y. noffset = len(GCR.fiberfrac) noffset_per_pix = GCR.meta.get('NOFFPX', 2) dxy_pix = (np.arange(noffset) - 0.5 * (noffset - 1)) / noffset_per_pix pixel_size_um = GCR.meta['PIXSIZ'] plate_scales = (GCR.meta['XSCALE'], GCR.meta['YSCALE']) dx_ang = (dxy_pix - xc) * pixel_size_um / plate_scales[0] dy_ang = (dxy_pix - yc) * pixel_size_um / plate_scales[0] iy, ix = np.unravel_index(np.argmax(GCR.fiberfrac), GCR.fiberfrac.shape) rhs.plot(dx_ang[ix:], GCR.fiberfrac[iy, ix:], 'r--', label='Fiber Frac (x)') rhs.plot(dx_ang[iy:], GCR.fiberfrac[iy:, ix], 'r:', label='Fiber Frac (y)') rhs.set_ylim(-0.02, 1.02) rhs.set_xlim(0., max_ang) rhs.grid() rhs.legend(loc='upper right') rhs.set_xlabel('Offset from PSF center [arcsec]') def plot_colorhist(D, ax, imshow, mode='reverse', color='w', alpha=0.75): """Draw a hybrid colorbar and histogram. """ ax.axis('off') # Extract parameters of the original imshow. cmap = imshow.get_cmap() vmin, vmax = imshow.get_clim() # Get the pixel dimension of the axis to fill. fig = plt.gcf() bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) width, height = int(round(bbox.width * fig.dpi)), int(round(bbox.height * fig.dpi)) # Draw the colormap gradient. img = np.zeros((height, width, 3)) xgrad = np.linspace(0, 1, width) img[:] = cmap(xgrad)[:, :-1] # Superimpose a histogram of pixel values. counts, _ = np.histogram(D.reshape(-1), bins=np.linspace(vmin, vmax, width + 1)) hist_height = ((height - 1) * counts / counts[1:-1].max()).astype(int) mask = np.arange(height).reshape(-1, 1) < hist_height if mode == 'color': img[mask] = (1 - alpha) * img[mask] + alpha * np.asarray(matplotlib.colors.to_rgb(color)) elif mode == 'reverse': cmap_r = cmap.reversed() for i, x in enumerate(xgrad): img[mask[:, i], i] = cmap_r(x)[:-1] elif mode == 'complement': # https://stackoverflow.com/questions/40233986/ # python-is-there-a-function-or-formula-to-find-the-complementary-colour-of-a-rgb hilo = np.amin(img, axis=2, keepdims=True) + np.amax(img, axis=2, keepdims=True) img[mask] = hilo[mask] - img[mask] else: raise ValueError('Invalid mode "{0}".'.format(mode)) ax.imshow(img, interpolation='none', origin='lower') def plot_pixels(D, label=None, colorhist=False, zoom=1, masked_color='cyan', imshow_args={}, text_args={}, colorhist_args={}): """Plot pixel data at 1:1 scale with an optional label and colorhist. """ dpi = 100 # value only affects metadata in an output file, not appearance on screen. ny, nx = D.shape width, height = zoom * nx, zoom * ny if colorhist: colorhist_height = 32 height += colorhist_height fig = plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi, frameon=False) ax = plt.axes((0, 0, 1, zoom * ny / height)) args = dict(imshow_args) for name, default in dict(interpolation='none', origin='lower', cmap='plasma_r').items(): if name not in args: args[name] = default # Set the masked color in the specified colormap. cmap = copy.copy(matplotlib.cm.get_cmap(args['cmap'])) cmap.set_bad(color=masked_color) args['cmap'] = cmap # Draw the image. I = ax.imshow(D, **args) ax.axis('off') if label: args = dict(text_args) for name, default in dict(color='w', fontsize=18).items(): if name not in args: args[name] = default outline = [ matplotlib.patheffects.Stroke(linewidth=1, foreground='k'), matplotlib.patheffects.Normal()] text = ax.text(0.01, 0.01 * nx / ny, label, transform=ax.transAxes, **args) text.set_path_effects(outline) if colorhist: axcb = plt.axes((0, zoom * ny / height, 1, colorhist_height / height)) plot_colorhist(D, axcb, I, **colorhist_args) return fig, ax def plot_data(D, W, downsampling=4, zoom=1, label=None, colorhist=False, stamps=[], preprocess_args={}, imshow_args={}, text_args={}, colorhist_args={}): """Plot weighted image data using downsampling, optional preprocessing, and decorators. """ # Downsample the input data. D, W = desietcimg.util.downsample_weighted(D, W, downsampling) # Preprocess the data for display. D = desietcimg.util.preprocess(D, W, **preprocess_args) ny, nx = D.shape # Display the image. args = dict(imshow_args) if 'extent' not in args: # Use the input pixel space for the extent, without downsampling. args['extent'] = [-0.5, nx * downsampling - 0.5, -0.5, ny * downsampling - 0.5] fig, ax = plot_pixels(D, zoom=zoom, label=label, colorhist=colorhist, imshow_args=args, text_args=text_args, colorhist_args=colorhist_args) outline = [ matplotlib.patheffects.Stroke(linewidth=1, foreground='k'), matplotlib.patheffects.Normal()] for k, stamp in enumerate(stamps): yslice, xslice = stamp[:2] xlo, xhi = xslice.start, xslice.stop ylo, yhi = yslice.start, yslice.stop rect = plt.Rectangle((xlo, ylo), xhi - xlo, yhi - ylo, fc='none', ec='w', lw=1) ax.add_artist(rect) if xhi < nx // 2: xtext, halign = xhi, 'left' else: xtext, halign = xlo, 'right' text = ax.text( xtext, 0.5 * (ylo + yhi), str(k), fontsize=12, color='w', va='center', ha=halign) text.set_path_effects(outline) return fig, ax def plot_full_frame(D, W=None, saturation=None, downsampling=8, clip_pct=0.5, dpi=100, GCR=None, label=None, cmap='plasma_r', fg_color='w', compress=True, vmin=None, vmax=None): # Convert to a float32 array. D, W = desietcimg.util.prepare(D, W, saturation=saturation) # Downsample. WD = desietcimg.util.downsample(D * W, downsampling=downsampling, summary=np.sum, allow_trim=True) W = desietcimg.util.downsample(W, downsampling=downsampling, summary=np.sum, allow_trim=True) D = np.divide(WD, W, out=
np.zeros_like(WD)
numpy.zeros_like
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ade: # Asynchronous Differential Evolution. # # Copyright (C) 2018-19 by <NAME>, # http://edsuom.com/ade # # See edsuom.com for API documentation as well as information about # Ed's background and other projects, software and otherwise. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS # IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Unit tests for L{ade.report}. """ from io import StringIO import numpy as np from twisted.internet import defer from ade.util import * from ade import report from ade.test import testbase as tb #import twisted.internet.base #twisted.internet.base.DelayedCall.debug = True class TestReporter(tb.TestCase): def setUp(self): self.calls = [] self.p = tb.MockPopulation(tb.ackley, ['x', 'y'], [(0,1)]*2, popsize=1) self.r = report.Reporter(self.p, self.processComplaint) self.r.addCallback(self.cbImmediate, 3.14, bar=9.87) return self.p.setup() def cbImmediate(self, values, counter, SSE, foo, bar=None): self.calls.append(['cbi', values, counter, SSE, foo, bar]) if SSE == 0: # Complaint return 123 def cbDeferred(self, values, counter, SSE): def doNow(null): self.calls.append(['cbd', values, counter, SSE]) return self.deferToDelay(0.5).addCallback(doNow) def processComplaint(self, i, result): self.calls.append(['processComplaint', i, result]) def test_runCallbacks_basic(self): i = self.p.spawn([1.0, 2.0]) i.SSE = 0.876 self.r.runCallbacks(i) self.assertEqual( self.calls, [['cbi', [1.0, 2.0], 0, 0.876, 3.14, 9.87]]) return self.r.waitForCallbacks() def test_runCallbacks_complaint(self): i = self.p.spawn([0.0, 0.0]) i.SSE = 0.0 self.r.runCallbacks(i) self.assertEqual( self.calls, [['cbi', [0.0, 0.0], 0, 0.0, 3.14, 9.87], ['processComplaint', i, 123]]) return self.r.waitForCallbacks() @defer.inlineCallbacks def test_runCallbacks_stacked(self): i1 = self.p.spawn([1, 2]) i1.SSE = 0.876 i2 = self.p.spawn([3, 4]) i2.SSE = 0.543 self.r.addCallback(self.cbDeferred) self.r.runCallbacks(i1) self.r.cbrScheduled(i2) self.assertEqual(self.calls, [ ['cbi', [1, 2], 0, 0.876, 3.14, 9.87], ]) yield self.r.waitForCallbacks() self.assertEqual(self.calls, [ ['cbi', [1, 2], 0, 0.876, 3.14, 9.87], ['cbd', [1, 2], 0, 0.876], ['cbi', [3, 4], 0, 0.543, 3.14, 9.87], ['cbd', [3, 4], 0, 0.543], ]) @defer.inlineCallbacks def test_newBest_basic(self): self.r.addCallback(self.cbDeferred) yield self.p.setup(uniform=True) self.r.newBest(self.p.best()) self.assertEqual(len(self.calls), 1) yield self.deferToDelay(0.6) self.assertEqual(len(self.calls), 2) @defer.inlineCallbacks def test_newBest_stacked(self): self.r.addCallback(self.cbDeferred) yield self.p.setup(uniform=True) self.r.newBest(self.p.best()) for x in (1E-3, 1E-4, 1E-5): i = yield self.p.spawn(np.array([x, x])).evaluate() self.r.newBest(i) # cbi0 self.assertEqual(len(self.calls), 1) yield self.deferToDelay(0.6) # cbi0, cbd0, cbi1 self.assertEqual( [x[0] for x in self.calls], ['cbi', 'cbd', 'cbi']) yield self.deferToDelay(0.5) # cbi0, cbd0, cbi1, cbd2 self.assertEqual( [x[0] for x in self.calls], ['cbi', 'cbd', 'cbi', 'cbd']) yield self.deferToDelay(1.0) self.assertEqual(len(self.calls), 4) self.assertEqual(self.calls[-1][1][0], 1E-5) @defer.inlineCallbacks def test_msgRatio(self): fh = StringIO() msg(fh) iPrev = yield self.p.spawn(
np.array([1.001E-3, 1.001E-3])
numpy.array
# --------------------------------------------------------------------- # Project "Track 3D-Objects Over Time" # Copyright (C) 2020, Dr. <NAME> / Dr. <NAME>. # # Purpose of this file : Data association class with single nearest neighbor association and gating based on Mahalanobis distance # # You should have received a copy of the Udacity license together with this program. # # https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013 # ---------------------------------------------------------------------- # # imports import numpy as np from scipy.stats.distributions import chi2 # add project directory to python path to enable relative imports import os import sys PACKAGE_PARENT = '..' SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__)))) sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT))) import misc.params as params class Association: '''Data association class with single nearest neighbor association and gating based on Mahalanobis distance''' def __init__(self): self.association_matrix =
np.matrix([])
numpy.matrix
import numpy as np from numba import vectorize # Size 为列表,为神经网络结构,比如[3,5,5,4,2],3是输入层神经元个数,中间为隐藏层每层神经元个数,2为输出层个数 class nn_Creat(): def __init__(self,Size,active_fun='sigmoid',learning_rate=1.5,batch_normalization=1,objective_fun='MSE', output_function='sigmoid',optimization_method='normal',weight_decay=0): self.Size=Size # 初始化网络参数,并进行打印 print('the structure of the NN is \n', self.Size) self.active_fun=active_fun print('active function is %s '% active_fun) self.learning_rate=learning_rate print('learning_rate is %s '% learning_rate) self.batch_normalization=batch_normalization print('batch_normalization is %d '% batch_normalization) self.objective_fun=objective_fun print('objective_function is %s '% objective_fun) self.optimization_method=optimization_method print('optimization_method is %s '% optimization_method) self.weight_decay = weight_decay print('weight_decay is %f '% weight_decay) # 初始化网络权值和梯度 self.vecNum=0 self.depth=len(Size) self.W=[] self.b=[] self.W_grad=[] self.b_grad=[] self.cost=[] if self.batch_normalization: # 是否运用批量归一化,如果用,则引入期望E和方差S,以及缩放因子Gamma、Beta self.E = [] self.S = [] self.Gamma = [] self.Beta = [] if objective_fun=='Cross Entropy': # 目标函数是否为交叉墒函数 self.output_function='softmax' else: self.output_function='sigmoid' print('output_function is %s \n'% self.output_function) print('Start training NN \n') for item in range(self.depth-1): width=self.Size[item] height=self.Size[item+1] q=2*np.random.rand(height,width)/np.sqrt(width)-1/np.sqrt(width) #初始化权系数W self.W.append(q) if self.active_fun=='relu': # 判断激活函数是否为relu函数,以决定b的初始化形式 self.b.append(np.random.rand(height,1)+0.01) else: self.b.append(2*np.random.rand(height,1)/np.sqrt(width)-1/np.sqrt(width)) if self.optimization_method=='Momentum': #优化方向是否使用矩形式,即为之前梯度的叠加 if item!=0: self.vW.append(np.zeros([height,width])) self.vb.append(np.zeros([height, 1])) else: self.vW=[] self.vb=[] self.vW.append(np.zeros([height, width])) self.vb.append(np.zeros([height, 1])) if self.optimization_method=='AdaGrad'or optimization_method=='RMSProp' or optimization_method=='Adam': #优化方法是否使用上述方法 if item!=0: self.rW.append(np.zeros([height,width])) self.rb.append(np.zeros([height, 1])) else: self.rW=[] self.rb=[] self.rW.append(np.zeros([height, width])) self.rb.append(np.zeros([height, 1])) if self.optimization_method == 'Adam': #优化方法是否为Adam方法 if item!=0: self.sW.append(np.zeros([height, width])) self.sb.append(np.zeros([height, 1])) else: self.sW = [] self.sb = [] self.sW.append(np.zeros([height, width])) self.sb.append(np.zeros([height, 1])) if self.batch_normalization: #是否对每层进行归一化 self.Gamma.append(np.array([1])) self.Beta.append(np.array([0])) self.E.append(np.zeros([height,1])) self.S.append(np.zeros([height,1])) if self.optimization_method=='Momentum': #在归一化基础上是否使用Momentun方法 if item!=0: self.vGamma.append(np.array([1])) self.vBeta.append(np.array([0])) else: self.vGamma = [] self.vBeta = [] self.vGamma.append(np.array([1])) self.vBeta.append(np.array([0])) if self.optimization_method == 'AdaGrad' or optimization_method == 'RMSProp' or optimization_method == 'Adam': # 在归一化基础上优化方法是否使用上述方法 if item!=0: self.rGamma.append(np.array([0])) self.rBeta.append(np.array([0])) else: self.rGamma = [] self.rBeta = [] self.rGamma.append(np.array([0])) self.rBeta.append(np.array([0])) if self.optimization_method == 'Adam': #在归一化基础上是否使用Adam方法 if item!=0: self.sGamma.append(np.array([1])) self.sBeta.append(np.array([0])) else: self.sGamma = [] self.sBeta = [] self.sGamma.append(np.array([1])) self.sBeta.append(np.array([0])) self.W_grad.append(np.array([])) self.b_grad.append(np.array([])) def nn_train(self,train_x,train_y,iterations=10,batch_size=100): #神经网络训练流程化 # 随机将数据分为num_batches堆,每堆Batch_Size个 Batch_Size=batch_size m=np.size(train_x,0) num_batches=np.round(m/Batch_Size) num_batches=np.int(num_batches) for k in range(iterations): kk=np.random.randint(0,m,m) for l in range(num_batches): batch_x=train_x[kk[l*batch_size:(l+1)*batch_size ],:] batch_y=train_y[kk[l*batch_size:(l+1)*batch_size ],:] self.nn_forward(batch_x,batch_y) # 执行神经网络向前传播 self.nn_backward(batch_y) # 执行神经网络向后传播 self.gradient_obtain() # 执行得到所以参数的梯度 return None def Sigmoid(self,z): # 定义sigmoid函数 yyy=1/(1+np.exp(-z)) return yyy def SoftMax(self,x): # 定义Softmax函数 e_x = np.exp(x - np.max(x,0)) return e_x / np.sum(e_x,0) def Relu(self,xxx): # 定义Relu函数 # xxx[xxx<0]=0 s=np.maximum(xxx, 0) return s def nn_forward(self,batch_x,batch_y): # 神经网络向前传播,得到对z偏导theta,每层输出a和cost batch_x=batch_x.T batch_y=batch_y.T m=np.size(batch_x,1) self.a=[] #定义每层激活函数输出 self.a.append(batch_x) # 接受第一层输入 cost2=0 #初始化正则函数 self.yy=[] for k in range(1,self.depth): # 从第一层开始,循环求每层输出 y=(self.W[k-1].dot(self.a[k-1]))+(np.repeat(self.b[k-1],m,1)) if self.batch_normalization: self.E[k-1]=self.E[k-1]*self.vecNum+np.sum(y,1)[:,None] self.S[k-1]=self.S[k-1]**2*(self.vecNum-1)+((m-1)*np.std(y,1)**2)[:,None] self.vecNum=self.vecNum+m self.E[k-1]=self.E[k-1]/self.vecNum #求期望 self.S[k-1]=
np.sqrt(self.S[k-1]/(self.vecNum-1))
numpy.sqrt
import numpy as np import matplotlib.pyplot as plt def gaussian_func(sigma, x): return 1 / np.sqrt(2 * np.pi * (sigma ** 2)) * np.exp(-(x ** 2) / (2 * (sigma ** 2))) def gaussian_random_generator(sigma=5, numbers=100000): uniform_random_numbers = np.random.rand(numbers, 2) rho = sigma * np.sqrt(-2 * np.log(1 - uniform_random_numbers[:, 0])) theta = 2 * np.pi * uniform_random_numbers[:, 1] gaussian_random = rho * np.array([
np.cos(theta)
numpy.cos
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Mar 23 09:26:17 2020 @author: jone """ import pandas as pd import numpy as np import dipole import matplotlib.pyplot as plt import datetime as dt #investigate the relationship between equatorward boundary in NOAA data and the #occurrence rate of substorms from sophie list #Load omni data omnifile = '/home/jone/Documents/Dropbox/science/superdarn/lobe_circulation/omni_1min_1999-2017.hdf' omni = pd.read_hdf(omnifile) #Load Sophie list sophie = pd.read_hdf('./jone_data/sophie75.h5') use = (sophie.index>=omni.index[0]) & (sophie.index<=omni.index[-1]) #use = (sophie.index>=dt.datetime(2003,1,1,0,0)) & (sophie.index<dt.datetime(2004,1,1,0,0)) sophie = sophie[use].copy() exp = sophie.ssphase == 2 #expansion phase list sophiexp = sophie[exp].copy() #Process omni data use = (omni.index >= sophiexp.index[0]) & (omni.index <= sophiexp.index[-1]) omni = omni[use].copy() omni = omni.interpolate(limit=5, limit_direction='both') bypos = (omni.BY_GSM>0)# & (np.abs(omni.BZ_GSM)<np.abs(omni.BY_GSM)) omni.loc[:,'bypos'] = omni.BY_GSM[bypos] byneg = (omni.BY_GSM<0)# & (np.abs(omni.BZ_GSM)<np.abs(omni.BY_GSM)) omni.loc[:,'byneg'] = omni.BY_GSM[byneg] omni.loc[:,'milan'] = 3.3e5 * (omni['flow_speed']*1000.)**(4./3) * (np.sqrt(omni.BY_GSM**2 + omni.BZ_GSM**2)) * 1e-9 * \ np.sin(np.abs(np.arctan2(omni['BY_GSM'],omni['BZ_GSM']))/2.)**(4.5) * 0.001 milanpos = 3.3e5 * (omni['flow_speed']*1000.)**(4./3) * (np.sqrt(omni.bypos**2 + omni.BZ_GSM**2)) * 1e-9 * \ np.sin(np.abs(np.arctan2(omni['bypos'],omni['BZ_GSM']))/2.)**(4.5) * 0.001 milanneg = 3.3e5 * (omni['flow_speed']*1000.)**(4./3) * (np.sqrt(omni.byneg**2 + omni.BZ_GSM**2)) * 1e-9 * \ np.sin(np.abs(np.arctan2(omni['byneg'],omni['BZ_GSM']))/2.)**(4.5) * 0.001 window = 60 #minutes nobsinwindow = omni.milan.rolling(window).count() cumsumneg = milanneg.rolling(window,min_periods=1).sum() cumsumpos = milanpos.rolling(window,min_periods=1).sum() omni.loc[:,'bxlong'] = omni.BX_GSE.rolling(window,min_periods=1).mean() omni.loc[:,'bzlong'] = omni.BZ_GSM.rolling(window,min_periods=1).mean() omni.loc[:,'bylong'] = omni.BY_GSM.rolling(window,min_periods=1).mean() bxlim = 200 usepos = ((cumsumpos>2.*cumsumneg) & (nobsinwindow==window) & (np.abs(omni.bxlong)<bxlim)) | ((cumsumneg.isnull()) & (np.invert(cumsumpos.isnull())) & (nobsinwindow==window) & (np.abs(omni.bxlong)<bxlim)) useneg = ((cumsumneg>2.*cumsumpos) & (nobsinwindow==window) & (np.abs(omni.bxlong)<bxlim)) | ((cumsumpos.isnull()) & (np.invert(cumsumneg.isnull())) & (nobsinwindow==window) & (np.abs(omni.bxlong)<bxlim)) omni.loc[:,'usepos'] = usepos omni.loc[:,'useneg'] = useneg omni.loc[:,'milanlong'] = omni.milan.rolling(window, min_periods=window, center=False).mean() #average IMF data #omni = omni.drop(['bxlong','bzlong','byneg','bypos','PC_N_INDEX','Beta','E','Mach_num','Mgs_mach_num','y'],axis=1) #need to drop PC index as it contain a lot of nans. Also other fields will exclude data when we later use dropna() #Combine omni and sophie list sophiexp.loc[:,'tilt'] = dipole.dipole_tilt(sophiexp.index) omni.loc[:,'tilt'] = dipole.dipole_tilt(omni.index) omni2 = omni.reindex(index=sophiexp.index, method='nearest', tolerance='30sec') sophiexp.loc[:,'bylong'] = omni2.bylong sophiexp.loc[:,'milanlong'] = omni2.milanlong sophiexp.loc[:,'substorm'] = sophiexp.ssphase==2 bybins = np.append(np.append([-50],np.linspace(-9,9,10)),[50]) bybincenter = np.linspace(-10,10,11) sgroup = sophiexp.groupby([pd.cut(sophiexp.tilt, bins=np.array([-35,-10,10,35])), \ pd.cut(sophiexp.bylong, bins=bybins)]) ogroup = omni.groupby([pd.cut(omni.tilt, bins=np.array([-35,-10,10,35])), \ pd.cut(omni.bylong, bins=bybins)]) #Plotting fig = plt.figure(figsize=(15,15)) ax = fig.add_subplot(221) res = ogroup.tilt.count() / sgroup.substorm.sum() ax.plot(bybincenter, np.array(res[0:11]), label='tilt < -10') ax.plot(bybincenter, np.array(res[11:22]), label='|tilt| < 10') ax.plot(bybincenter, np.array(res[22:33]), label='tilt > 10') ax.legend() ax.set_xlabel('IMF By') ax.set_ylabel('Average time between onsets [min]') ax.set_title('Onsets from Sophie-75 list, 1999-2014') ax = fig.add_subplot(222) #milanstat, bins= pd.qcut(omni.milanlong, 10, retbins=True) #milanbincenter = [(a + b) /2 for a,b in zip(bins[:-1], bins[1:])] #sgroup = sophiexp.groupby([pd.cut(sophiexp.tilt, bins=np.array([-35,-10,10,35])), \ # pd.qcut(sophiexp.milanlong, 10)]) #ogroup = omni.groupby([pd.cut(omni.tilt, bins=np.array([-35,-10,10,35])), \ # pd.qcut(omni.milanlong, 10)]) res = ogroup.milanlong.median() ax.plot(bybincenter,
np.array(res[0:11])
numpy.array
#!/usr/bin/env python from __future__ import absolute_import, division, print_function import rospy import numpy as np import time import math import random import tf from gym import spaces from .cable_joint_robot_env import CableJointRobotEnv from gym.envs.registration import register from gazebo_msgs.msg import ModelState from geometry_msgs.msg import Pose, Twist from std_msgs.msg import Float32MultiArray # Register crib env register( id='CablePoint-v0', entry_point='envs.cable_point_task_env:CablePointTaskEnv') class CablePointTaskEnv(CableJointRobotEnv): def __init__(self): """ This task-env is designed for cable-driven joint pointing at the desired goal. Action and state space will be both set to continuous. """ # action limits self.max_force = 20 self.min_force = 0 # observation limits self.max_roll = math.pi self.max_pitch = math.pi self.max_yaw = math.pi self.max_roll_dot = 10*math.pi self.max_pitch_dot = 10*math.pi self.max_yaw_dot = 10*math.pi # action space self.high_action = np.array(4*[self.max_force]) self.low_action = np.zeros(4) self.action_space = spaces.Box(low=self.low_action, high=self.high_action) # observation space self.high_observation = np.array( [ self.max_roll, self.max_pitch, self.max_yaw, self.max_roll_dot, self.max_pitch_dot, self.max_yaw_dot ] ) self.low_observation = -self.high_observation self.observation_space = spaces.Box(low=self.low_observation, high=self.high_observation) # action and observation self.action = np.zeros(self.action_space.shape[0]) self.observation = np.zeros(self.observation_space.shape[0]) # info, initial position and goal position self.init_orientation = np.zeros(3) self.current_orientation =
np.zeros(3)
numpy.zeros
""" :py:class:`UtilsCommonMode` contains detector independent utilities for common mode correction ============================================================================================== Usage:: from psana.detector.UtilsCommonMode import * #OR import psana.detector.UtilsCommonMode as ucm ucm.common_mode_rows(arr, mask=None, cormax=None, npix_min=10) ucm.common_mode_cols(arr, mask=None, cormax=None, npix_min=10) ucm.common_mode_2d(arr, mask=None, cormax=None, npix_min=10) ucm.common_mode_rows_hsplit_nbanks(data, mask, nbanks=4, cormax=None) ucm.common_mode_2d_hsplit_nbanks(data, mask, nbanks=4, cormax=None) This software was developed for the LCLS project. If you use all or part of it, please give an appropriate acknowledgment. Created on 2018-01-31 by <NAME> 2021-02-02 adopted to LCLS2 """ import logging logger = logging.getLogger(__name__) import numpy as np from math import fabs from psana.pyalgos.generic.NDArrUtils import info_ndarr, print_ndarr def common_mode_rows(arr, mask=None, cormax=None, npix_min=10): """Defines and applys common mode correction to 2-d arr for rows. I/O parameters: - arr (float) - i/o 2-d array of intensities - mask (int or None) - the same shape 2-d array of bad/good = 0/1 pixels - cormax (float or None) - maximal allowed correction in ADU - npix_min (int) - minimal number of good pixels in row to evaluate and apply correction """ rows, cols = arr.shape if mask is None: cmode = np.median(arr,axis=1) # column of median values else: marr = np.ma.array(arr, mask=mask<1) # use boolean inverted mask (True for masked pixels) cmode = np.ma.median(marr,axis=1) # column of median values for masked array npix = mask.sum(axis=1) # count good pixels in each row #print('npix', npix[:100]) cmode = np.select((npix>npix_min,), (cmode,), default=0) if cormax is not None: cmode = np.select((np.fabs(cmode) < cormax,), (cmode,), default=0) #logger.debug(info_ndarr(cmode, 'cmode')) _,m2 = np.meshgrid(np.zeros(cols, dtype=np.int16), cmode) # stack cmode 1-d column to 2-d matrix if mask is None: arr -= m2 else: bmask = mask>0 arr[bmask] -= m2[bmask] def common_mode_cols(arr, mask=None, cormax=None, npix_min=10): """Defines and applys common mode correction to 2-d arr for cols. I/O parameters: - arr (float) - i/o 2-d array of intensities - mask (int or None) - the same shape 2-d array of bad/good = 0/1 pixels - cormax (float or None) - maximal allowed correction in ADU - npix_min (int) - minimal number of good pixels in column to evaluate and apply correction """ rows, cols = arr.shape if mask is None: cmode = np.median(arr,axis=0) else: marr = np.ma.array(arr, mask=mask<1) # use boolean inverted mask (True for masked pixels) cmode = np.ma.median(marr,axis=0) # row of median values for masked array npix = mask.sum(axis=0) # count good pixels in each column cmode = np.select((npix>npix_min,), (cmode,), default=0) if cormax is not None: cmode = np.select((np.fabs(cmode) < cormax,), (cmode,), default=0) #logger.debug(info_ndarr(cmode, 'cmode')) m1,_ = np.meshgrid(cmode, np.zeros(rows, dtype=np.int16)) # stack cmode 1-d row to 2-d matrix if mask is None: arr -= m1 else: bmask = mask>0 arr[bmask] -= m1[bmask] def common_mode_2d(arr, mask=None, cormax=None, npix_min=10): """Defines and applys common mode correction to entire 2-d arr using the same shape mask. """ if mask is None: cmode = np.median(arr) if cormax is None or fabs(cmode) < cormax: arr -= cmode else: arr1 = np.ones_like(arr, dtype=np.int16) bmask = mask>0 npix = arr1[bmask].sum() if npix < npix_min: return cmode = np.median(arr[bmask]) if cormax is None or fabs(cmode) < cormax: arr[bmask] -= cmode def common_mode_rows_hsplit_nbanks(data, mask=None, nbanks=4, cormax=None, npix_min=10): """Works with 2-d data and mask numpy arrays, hsplits them for banks (df. nbanks=4), for each bank applies median common mode correction for pixels in rows, hstack banks in array of original data shape and copy results in i/o data """ bdata = np.hsplit(data, nbanks) if mask is None: for b in bdata: common_mode_rows(b, None, cormax, npix_min) else: bmask = np.hsplit(mask, nbanks) for b,m in zip(bdata,bmask): common_mode_rows(b, m, cormax, npix_min) data[:] =
np.hstack(bdata)
numpy.hstack
# -*- coding: utf-8 -*- import os import numpy as np import sympy import yaml def create_directory(dir_name): if not os.path.isdir(dir_name): os.makedirs(dir_name) def nonzero_indices(a): return np.nonzero(a)[0] def BezierIndex(dim, deg): """Iterator indexing control points of a Bezier simplex""" def iterate(c, r): if len(c) == dim - 1: yield c + (r,) else: for i in range(r, -1, -1): yield from iterate(c + (i,), r - i) yield from iterate((), deg) def poly(i, n): eq = c(i) for k in range(n): eq *= T[k] ** i[k] return eq * (1 - sum(T[k] for k in range(n))) ** i[n] def concat_data_to_arrray(d): index = 0 for key in d: # if len(key)==1: # d[key] == d[key].reshape((1,len(d[key]))) if index == 0: d_array = d[key] else: d_array = np.r_[d_array, d[key]] index += 1 return d_array def extract_multiple_degree(degree_list, index_list): """ return corresponding multiple indices as set indices: list or tuple """ d = set() for key in degree_list: if set(np.array(nonzero_indices(key))).issubset(set(index_list)): d.add(key) return d def calculate_l2_expected_error(true, pred): diff = true - pred # print(diff) # print(np.linalg.norm(diff,axis=1)) # print((np.sum(np.linalg.norm(diff,axis=1)**2))) return (np.sum(
np.linalg.norm(diff, axis=1)
numpy.linalg.norm
import numpy as np import torch from torchvision.ops.boxes import batched_nms def encode_boxes_to_anchors(boxes, anchors, eps=1e-8): """ Create anchors regression target based on anchors Args: boxes: ground truth boxes. anchors: anchor boxes on all feature levels. eps: small number for stability Returns: outputs: anchors w.r.t. ground truth """ def corner_to_center(rects): h, w = rects[:, 2] - rects[:, 0], rects[:, 3] - rects[:, 1] y_ctr, x_ctr = rects[:, 0] + 0.5 * h, rects[:, 1] + 0.5 * w return y_ctr, x_ctr, h, w ycenter_a, xcenter_a, ha, wa = corner_to_center(anchors) ycenter, xcenter, h, w = corner_to_center(boxes) ha, wa, h, w = ha + eps, wa + eps, h + eps, w + eps dy = (ycenter - ycenter_a) / ha dx = (xcenter - xcenter_a) / wa dh = torch.log(h / ha) dw = torch.log(w / wa) outputs = torch.stack([dy, dx, dh, dw]).T return outputs def decode_box_outputs(rel_codes, anchors): """Transforms relative regression coordinates to absolute positions. Args: rel_codes: batched box regression targets. anchors: batched anchors on all feature levels. Returns: outputs: batched bounding boxes. """ y_center_a = (anchors[:, :, 0] + anchors[:, :, 2]) / 2 x_center_a = (anchors[:, :, 1] + anchors[:, :, 3]) / 2 ha = anchors[:, :, 2] - anchors[:, :, 0] wa = anchors[:, :, 3] - anchors[:, :, 1] ty, tx = rel_codes[:, :, 0], rel_codes[:, :, 1] th, tw = rel_codes[:, :, 2], rel_codes[:, :, 3] w = torch.exp(tw) * wa h = torch.exp(th) * ha y_center = ty * ha + y_center_a x_center = tx * wa + x_center_a y_min = y_center - h / 2. x_min = x_center - w / 2. y_max = y_center + h / 2. x_max = x_center + w / 2. outputs = torch.stack([y_min, x_min, y_max, x_max], dim=-1) return outputs def clip_boxes_(boxes, size): boxes = boxes.clamp(min=0) size = torch.cat([size, size], dim=0) boxes = boxes.min(size) return boxes def generate_detections( cls_outputs, box_outputs, anchor_boxes, indices, classes, image_sizes, image_scales, max_detections_per_image): """Generates batched detections with RetinaNet model outputs and anchors. Args: (B - batch size, N - top-k selection length) cls_outputs: a numpy array with shape [B, N, 1], which has the highest class scores on all feature levels. box_outputs: a numpy array with shape [B, N, 4], which stacks box regression outputs on all feature levels. anchor_boxes: a numpy array with shape [B, N, 4], which stacks anchors on all feature levels. indices: a numpy array with shape [B, N], which is the indices from top-k selection. classes: a numpy array with shape [B, N], which represents the class prediction on all selected anchors from top-k selection. image_sizes: a list of tuples representing size of incoming images image_scales: a list representing the scale between original images and input images for the detector. Returns: detections: detection results in a tensor of shape [B, N, 6], where [:, :, 0:4] are boxes, [:, :, 5] are scores, """ batch_size = indices.shape[0] device = indices.device anchor_boxes = anchor_boxes[indices, :] scores = cls_outputs.sigmoid().squeeze(2).float() # apply bounding box regression to anchors boxes = decode_box_outputs(box_outputs.float(), anchor_boxes) boxes = boxes[:, :, [1, 0, 3, 2]] batched_boxes, batched_scores, batched_classes = [], [], [] # iterate over batch since we need non-max suppression for each image for batch_idx in range(batch_size): batch_boxes = boxes[batch_idx, :, :] batch_scores = scores[batch_idx, :] batch_classes = classes[batch_idx, :] # clip boxes outputs boxes_max_size = [image_sizes[batch_idx][0] / image_scales[batch_idx], image_sizes[batch_idx][1] / image_scales[batch_idx]] boxes_max_size = torch.FloatTensor(boxes_max_size).to(batch_boxes.device) batch_boxes = clip_boxes_(batch_boxes, boxes_max_size) # perform non-maximum suppression top_detection_idx = batched_nms( batch_boxes, batch_scores, batch_classes, iou_threshold=0.5) # keep only topk scoring predictions top_detection_idx = top_detection_idx[:max_detections_per_image] batch_boxes = batch_boxes[top_detection_idx] batch_scores = batch_scores[top_detection_idx] batch_classes = batch_classes[top_detection_idx] # fill zero predictions to match MAX_DETECTIONS_PER_IMAGE detections_diff = len(top_detection_idx) - max_detections_per_image if detections_diff < 0: add_boxes = torch.zeros( (-detections_diff, 4), device=device, dtype=batch_boxes.dtype) batch_boxes = torch.cat([batch_boxes, add_boxes], dim=0) add_scores = torch.zeros( (-detections_diff, 1), device=device, dtype=batch_scores.dtype) batch_scores = torch.cat([batch_scores, add_scores], dim=0) add_classes = torch.zeros( (-detections_diff, 1), device=device, dtype=batch_classes.dtype) batch_classes = torch.cat([batch_classes, add_classes], dim=0) batch_scores = batch_scores.view(-1, 1) batch_classes = batch_classes.view(-1, 1) # stack them together batched_boxes.append(batch_boxes) batched_scores.append(batch_scores) batched_classes.append(batch_classes) boxes = torch.stack(batched_boxes) scores = torch.stack(batched_scores) classes = torch.stack(batched_classes) # xyxy to xywh & rescale to original image boxes[:, :, 2] -= boxes[:, :, 0] boxes[:, :, 3] -= boxes[:, :, 1] boxes_scaler = torch.FloatTensor(image_scales).to(boxes.device) boxes = boxes * boxes_scaler[:, None, None] classes += 1 # back to class idx with background class = 0 detections = torch.cat([boxes, scores, classes.float()], dim=2) return detections def calc_iou(a, b): """ Calculate Intersection-over-Union of two samples Args: a (torch.Tensor): set of boxes with shape [N, 4] in yxyx format b (torch.Tensot): set of boxes with shape [M, 4] in yxyx format """ area = (b[:, 3] - b[:, 1]) * (b[:, 2] - b[:, 0]) ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 2]) \ - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 0]) iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 3]) \ - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 1]) ih = torch.clamp(ih, min=0) iw = torch.clamp(iw, min=0) ua = torch.unsqueeze((a[:, 3] - a[:, 1]) * (a[:, 2] - a[:, 0]), dim=1) + area - iw * ih ua = torch.clamp(ua, min=1e-8) intersection = iw * ih iou = intersection / ua return iou class Anchors: """RetinaNet Anchors class.""" def __init__(self, min_level, max_level, num_scales, aspect_ratios, anchor_scale, image_size, device): """Constructs multiscale RetinaNet anchors. Args: min_level: integer number of minimum level of the output feature pyramid. max_level: integer number of maximum level of the output feature pyramid. num_scales: integer number representing intermediate scales added on each level. For instances, num_scales=2 adds two additional anchor scales [2^0, 2^0.5] on each level. aspect_ratios: list of tuples representing the aspect ratio anchors added on each level. For instances, aspect_ratios = [(1, 1), (1.4, 0.7), (0.7, 1.4)] adds three anchors on each level. anchor_scale: float number representing the scale of size of the base anchor to the feature stride 2^level. image_size: integer number of input image size. The input image has the same dimension for width and height. The image_size should be divided by the largest feature stride 2^max_level. """ self.min_level = min_level self.max_level = max_level self.num_scales = num_scales self.aspect_ratios = aspect_ratios self.anchor_scale = anchor_scale self.image_size = image_size self.device = device self.config = self._generate_configs() self.boxes = self._generate_boxes() def _generate_configs(self): """Generate configurations of anchor boxes.""" anchor_configs = {} for level in range(self.min_level, self.max_level + 1): anchor_configs[level] = [] for scale_octave in range(self.num_scales): for aspect in self.aspect_ratios: anchor_configs[level].append( (2 ** level, scale_octave / float(self.num_scales), aspect)) return anchor_configs def _generate_boxes(self): """Generates multiscale anchor boxes.""" boxes_all = [] for _, configs in self.config.items(): boxes_level = [] for config in configs: stride, octave_scale, aspect = config if self.image_size % stride != 0: raise ValueError( "input size must be divided by the stride.") base_anchor_size = self.anchor_scale * stride * 2 ** octave_scale anchor_size_x_2 = base_anchor_size * aspect[0] / 2.0 anchor_size_y_2 = base_anchor_size * aspect[1] / 2.0 x = np.arange(stride / 2, self.image_size, stride) y = np.arange(stride / 2, self.image_size, stride) xv, yv = np.meshgrid(x, y) xv = xv.reshape(-1) yv = yv.reshape(-1) boxes = np.vstack((yv - anchor_size_y_2, xv - anchor_size_x_2, yv + anchor_size_y_2, xv + anchor_size_x_2)) boxes =
np.swapaxes(boxes, 0, 1)
numpy.swapaxes
#!/usr/bin/env python from optparse import OptionParser import os import numpy as np import pysam import pyBigWig import tensorflow as tf from basenji.dna_io import hot1_dna from basenji.tfrecord_batcher import order_tfrecords ''' tfr_bw.py Generate BigWig tracks from TFRecords. Experimental! ''' ################################################################################ # main ################################################################################ def main(): usage = 'usage: %prog [options] <tfr_dir> <out_bw>' parser = OptionParser(usage) parser.add_option('-f', dest='fasta_file', default='%s/assembly/ucsc/hg38.fa' % os.environ['HG38']) parser.add_option('-g', dest='genome_file', default='%s/assembly/ucsc/hg38.human.genome' % os.environ['HG38']) parser.add_option('-l', dest='target_length', default=1024, type='int', help='TFRecord target length [Default: %default]') parser.add_option('-s', dest='data_split', default='train') parser.add_option('-t', dest='target_i', default=0, type='int', help='Target index [Default: %default]') (options,args) = parser.parse_args() if len(args) != 2: parser.error('Must provide TF Records directory and output BigWig') else: tfr_dir = args[0] out_bw_file = args[1] # initialize output BigWig out_bw_open = pyBigWig.open(out_bw_file, 'w') # construct header header = [] for line in open(options.genome_file): a = line.split() header.append((a[0], int(a[1]))) # write header out_bw_open.addHeader(header) # initialize chr dictionary chr_values = {} for chrm, clen in header: chr_values[chrm] =
np.zeros(clen, dtype='float16')
numpy.zeros
#!/usr/local/sci/bin/python # PYTHON3.6.1 # # Author: <NAME> # Created: 18 Jul 2018 # Last update: 15 Apr 2019 # Location: /data/local/hadkw/HADCRUH2/UPDATE2017/PROGS/PYTHON/ # GitHub: https://github.com/Kate-Willett/HadISDH_Build # ----------------------- # CODE PURPOSE AND OUTPUT # ----------------------- # THIS CODE DOES MANY THINGS BUT ONLY ONE THING AT A TIME! SO RE-RUN FOR MULTIPLE THINGS # NOTE THAT FOR ANY 1BY1 OUTPUT IT REGRIDS TO BE 89.5 to -89.5 rather than 90 - -90 (180 boxes rather than 181!!!) # AND ROLLS LONGITUDE TO -179.5 to 179.5 # # AT THE MOMENT THIS ASSUMES COMPLETE FIELDS SO WON'T WORK FOR SST!!! # # ANOTHER ISSUE IS LAND / SEA MASKING - TOO MUCH LAND COVER, TOO MUCH SEA COVER - SO THERE WILL BE CONTAMINATION! # I COMPUTE ANOMALIES AT 1by1 RES BEFORE REGRIDDING TO 5by5 TO MINIMISE THIS> # # # This code reads in the ERA-Interim months of 1by1 6 hourly or monthly variables # (e.g., T, Td and Surface Pressure etc) for the full time period # # If desired it converts to humidity variables # If desired it averages to monthly means and saves to netCDF: # days since 19790101 (float), 181 lats 90 to -90, 360 lons 0 to 359, <var>2m # If desired it regrids to 5by5 (monthly means only) and saves to netCDF # days since 19790101 (int), 36 lats -87.5 to 87.5, 72 lons -177.5 to 177.5, actuals # If desired it calculates anomalies over a climatological references period given (default 1981-2010) # and saves to netCDF # For anomalies it also creates a land only and ocean only set of grids to save along side the complete # fields # days since 19790101 (int), 36 lats -87.5 to 87.5, 72 lons -177.5 to 177.5, anomalies, # anomalies_land, anomalies_sea # # The ERA-Interim updates have to be downloaded from ERADownload.py code # This requires a key to be set up in .ecmwfapirc annually - obtained from logging in to ECMWF # https://confluence.ecmwf.int/display/WEBAPI/How+to+retrieve+ECMWF+Public+Datasets # It also requires ecmwfapi to be downloaded and in the directory as you are running to code from # # The ERA5 updates have to be downloaded using ERA5Download.py which is in cdsapi-0.1.3/ # Each time you download change the filename to ERAINTERIM_6hr_1by1_MMYYYY.nc # Save to /data/local/hadkw/HADCRUH2/UPDATE<yyyy>/OTHERDATA/ # Copy previous years of monthly ERAINTERIM data from the previous # UPDATE<yyyy>/OTHERDATA/<var>2m_monthly_1by1_ERA-Interim_data_1979<yyyy>.nc # to OTHERDATA/ # # <references to related published material, e.g. that describes data set> # # ----------------------- # LIST OF MODULES # ----------------------- # inbuilt: # from datetime import datetime # import matplotlib.pyplot as plt # import numpy as np # from matplotlib.dates import date2num,num2date # import sys, os # from scipy.optimize import curve_fit,fsolve,leastsq # from scipy import pi,sqrt,exp # from scipy.special import erf # import scipy.stats # from math import sqrt,pi # import struct # from netCDF4 import Dataset # from netCDF4 import stringtoarr # for putting strings in as netCDF variables # import pdb # # Kates: # import CalcHums - written by <NAME> to calculate humidity variables # import TestLeap - written by <NAME> to identify leap years # from ReadNetCDF import GetGrid4 - written by <NAME> to pull out netCDF data # from ReadNetCDF import GetGrid4Slice - written by <NAME> to pull out a slice of netCDF data # from GetNiceTimes import make_days_since # #------------------------------------------------------------------- # DATA # ----------------------- # ERA-Interim 1by1 6 hrly gridded data # ERA<Mmm> = /data/local/hadkw/HADCRUH2/UPDATE<yyyy>/OTHERDATA/ERAINTERIM_<var>_6hr_1by1_<MMYYYY>.nc # # ----------------------- # HOW TO RUN THE CODE # ----------------------- # First make sure the New ERA-Interim data are in the right place. # Also check all editables in this file are as you wish # python2.7 ExtractMergeRegridERA_JUL2018.py # # ----------------------- # OUTPUT # ----------------------- # New ERA-Interim 1by1 monthly gridded data for 1979 to present # NewERA<var> = /data/local/hadkw/HADCRUH2/UPDATE<yyyy>/OTHERDATA/<var>2m_monthly_1by1_ERA-Interim_data_1979<yyyy>.nc # # ----------------------- # VERSION/RELEASE NOTES # ----------------------- # # Version 1 (18 Jul 2018) # --------- # # Enhancements # # Changes # # Bug fixes # # ----------------------- # OTHER INFORMATION # ----------------------- # #************************************************************************ # START #************************************************************************ # inbuilt: from datetime import datetime import matplotlib.pyplot as plt import numpy as np from matplotlib.dates import date2num,num2date import sys, os from scipy.optimize import curve_fit,fsolve,leastsq from scipy import pi,sqrt,exp from scipy.special import erf import scipy.stats from math import sqrt,pi import struct from netCDF4 import Dataset from netCDF4 import stringtoarr # for putting strings in as netCDF variables import pdb # Kates: import CalcHums import TestLeap from ReadNetCDF import GetGrid4 from ReadNetCDF import GetGrid4Slice from GetNiceTimes import MakeDaysSince ### START OF EDITABLES ############################### # Set up initial run choices # Start and end years styr = 1979 edyr = 2018 #edOLD = (edyr-styr)*12 stmon = 1 edmon = 12 # Set up output variables - for q, e, RH, dpd, Tw we will need to read in multiple input files OutputVar = 'dpd' # this can be 't','td','q','rh','e','dpd','tw','ws','slp','sp','uv','sst' # Is this a new run or an update? ThisProg = 'Regrid' # Update for updating an existing file (1by1 monthly or pentad) # Build for building from scratch (1by1 6hr to 1by1 monthly or pentad) # THIS AUTOMATICALLY REGRIDS LATS TO BE 180 RATHER THAN 181!!! # Regrid for changing spatial res from 1by1 to 6hr # IF OutputGrid = 1by1 then this just changes lats from 181 to 180 # IF OutputGrid = 5by5 then this changes to 36 lats (-87.5 to 87.5) and 72 lons (-177.5 to 177.5) # Is this ERA-Interim or ERA5? ThisRean = 'ERA-Interim' # 'ERA5' or 'ERA-Interim' # Are you reading in hourlies or monthlies? ReadInTime = 'monthly' # this can be '1hr', '6hr' or 'month' or maybe 'day' later # Are you converting to monthlies? We will output hourlies anyway if they are read in OutputTime = 'monthly' # this could be 'monthly' or 'pentad' # Are you reading in 1by1 or 5by5? We will output 1by1 anyway if they are read in. ReadInGrid = '1by1' # this can be '1by1' or '5by5' # Are you converting to 5by5? OutputGrid = '5by5' # this can be '1by1' or '5by5' # Do you want to create anomalies and if so, what climatology period? We will output absolutes anyway MakeAnoms = 1 # 1 for create anomalies (and clim and stdev fields), 0 for do NOT create anomalies ClimStart = 1981 # any year but generally 1981 ClimEnd = 2010 # any year but generally 2010 ### END OF EDITABLES ################ # Set up file paths and other necessary things if (MakeAnoms == 1): # set the filename string for anomalies AnomsStr = 'anoms'+str(ClimStart)+'-'+str(ClimEnd)+'_' else: AnomsStr = '' # Set up file locations updateyy = str(edyr)[2:4] updateyyyy = str(edyr) workingdir = '/data/users/hadkw/WORKING_HADISDH/UPDATE'+updateyyyy if (ReadInGrid == '5by5'): LandMask = workingdir+'/OTHERDATA/HadCRUT.4.3.0.0.land_fraction.nc' # 0 = 100% sea, 1 = 100% land - no islands!, latitude, longitude, land_area_fraction, -87.5 to 87.5, -177.5 to 177.5 elif (ReadInGrid == '1by1'): LandMask = workingdir+'/OTHERDATA/lsmask.nc' # 1 = sea, 0 = land - no islands! lat, lon, mask 89.5 to -89.5Lat, 0.5 to 359.5 long if (OutputVar in ['t','td']): # these are the simple ones that do not require conversion InputERA = ThisRean+'_'+ReadInGrid+'_'+ReadInTime+'_'+OutputVar+'2m_' if (ThisProg == 'Update'): OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+ThisRean+'_data_1979'+str(edyr-1)+'.nc' else: OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+AnomsStr+ThisRean+'_data_1979'+str(edyr)+'.nc' NewERAStr = OutputVar+'2m_'+OutputGrid+'_'+OutputTime+'_'+AnomsStr+ThisRean+'_data_1979'+updateyyyy+'.nc' elif (OutputVar in ['ws','uv']): InputERA = ThisRean+'_'+ReadInGrid+'_'+ReadInTime+'_'+OutputVar+'10m_' if (ThisProg == 'Update'): OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+ThisRean+'_data_1979'+str(edyr-1)+'.nc' else: OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+AnomsStr+ThisRean+'_data_1979'+str(edyr)+'.nc' NewERAStr = OutputVar+'10m_'+OutputGrid+'_'+OutputTime+'_'+AnomsStr+ThisRean+'_data_1979'+updateyyyy+'.nc' elif (OutputVar in ['slp','sp','sst']): InputERA = ThisRean+'_'+ReadInGrid+'_'+ReadInTime+'_'+OutputVar+'_' if (ThisProg == 'Update'): OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+ThisRean+'_data_1979'+str(edyr-1)+'.nc' else: OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+AnomsStr+ThisRean+'_data_1979'+str(edyr)+'.nc' NewERAStr = OutputVar+'_'+OutputGrid+'_'+OutputTime+'_'+AnomsStr+ThisRean+'_data_1979'+updateyyyy+'.nc' elif (OutputVar in ['tw','q','rh','e','dpd']): # these require T, Td and SLP InputERA = ThisRean+'_'+ReadInGrid+'_'+ReadInTime+'_' if (ThisProg == 'Update'): OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+ThisRean+'_data_1979'+str(edyr-1)+'.nc' else: OldERAStr = OutputVar+'2m_'+ReadInGrid+'_'+ReadInTime+'_'+AnomsStr+ThisRean+'_data_1979'+str(edyr)+'.nc' NewERAStr = OutputVar+'2m_'+OutputGrid+'_'+OutputTime+'_'+AnomsStr+ThisRean+'_data_1979'+updateyyyy+'.nc' # Might have some other options # Set up variables mdi = -1e30 # Required variable names for reading in from ERA-Interim LatInfo = ['latitude'] LonInfo = ['longitude'] # Dictionary for looking up variable names for netCDF read in of variables NameDict = dict([('q','q2m'), ('rh','rh2m'), ('e','e2m'), ('tw','tw2m'), ('t','t2m'), ('td','td2m'), ('dpd','dpd2m'), ('slp','msl'), ('sp','sp'), ('uv',['u10','v10']), # this one might not work ('ws','si10'), ('sst','sst')]) # Dictionary for looking up variable standard (not actually always standard!!!) names for netCDF output of variables StandardNameDict = dict([('q','specific_humidity'), ('rh','relative_humidity'), ('e','vapour_pressure'), ('tw','wetbulb_temperature'), ('t','drybulb_temperature'), ('td','dewpoint_temperature'), ('dpd','dewpoint depression'), ('slp','mean_sea_level_pressure'), ('sp','surface_pressure'), ('uv',['10 metre U wind component','10 metre V wind component']), # this one might not work ('ws','10 metre windspeed'), ('sst','sea_surface_temperature')]) # Dictionary for looking up variable long names for netCDF output of variables LongNameDict = dict([('q','specific_humidity'), ('rh','2m relative humidity from 1by1 6hrly T and Td '+ThisRean), ('e','2m vapour_pressure from 1by1 6hrly T and Td '+ThisRean), ('tw','2m wetbulb_temperature from 1by1 6hrly T and Td '+ThisRean), ('t','2m drybulb_temperature from 1by1 6hrly T '+ThisRean), ('td','2m dewpoint_temperature from 1by1 6hrly Td '+ThisRean), ('dpd','2m dewpoint depression from 1by1 6hrly T and Td '+ThisRean), ('slp','2m mean_sea_level_pressure from 1by1 6hrly msl '+ThisRean), ('sp','2m surface_pressure from 1by1 6hrly sp '+ThisRean), ('uv',['10 metre U wind component from 1by1 6hrly '+ThisRean,'10 metre V wind component from 1by1 6hrly'+ThisRean]), # this one might not work ('ws','10 metre windspeed from 1by1 6hrly'+ThisRean), ('sst','sea surface temperature from 1by1 6hrly'+ThisRean)]) # Dictionary for looking up unit of variables UnitDict = dict([('q','g/kg'), ('rh','%rh'), ('e','hPa'), ('tw','deg C'), ('t','deg C'), ('td','deg C'), ('dpd','deg C'), ('slp','hPa'), ('sp','hPa'), ('uv','m/s'), ('ws','m/s'), ('sst','deg C')]) nyrs = (edyr+1)-styr nmons = nyrs*12 npts = nyrs*73 #ndays = #n6hrs = #n1hrs = # set up nlons and nlats depending on what we are reading in and out if (ReadInGrid == '1by1'): nlonsIn = 360 nlatsIn= 181 # ERA style to have grids over the poles rather than up to the poles elif (ReadInGrid == '5by5'): nlonsIn = 72 # assuming this is correct nlatsIn = 36 # assuming this is correct if (OutputGrid == '1by1'): nlonsOut = 360 nlatsOut = 180 # ERA style to have grids over the poles rather than up to the poles but this will be changed here with Build or Regrid elif (OutputGrid == '5by5'): nlonsOut = 72 # assuming this is correct nlatsOut = 36 # assuming this is correct ## Array for monthly mean data for q, RH, e, T, Tw, Td, DPD one at a time though ##FullMonthArray = np.empty((nmons,nlats,nlons,7),dtype = float) #FullMonthArray = np.empty((nmons,nlats,nlons),dtype = float) #FullMonthArray.fill(mdi) #************************************************************ # SUBROUTINES #************************************************************ # GetHumidity def GetHumidity(TheTDat,TheTdDat,TheSPDat,TheVar): ''' Calculates the desired humidity variable if the code is set up to output humidity ''' ''' REQUIRES: ''' ''' CalcHums.py file to be in the same directory as this file ''' if (TheVar == 't'): TheHumDat = TheTDat elif (TheVar == 'td'): TheHumDat = TheTdDat elif (TheVar == 'q'): TheHumDat = CalcHums.sh(TheTdDat,TheTDat,TheSPDat,roundit=False) elif (TheVar == 'e'): TheHumDat = CalcHums.vap(TheTdDat,TheTDat,TheSPDat,roundit=False) elif (TheVar == 'rh'): TheHumDat = CalcHums.rh(TheTdDat,TheTDat,TheSPDat,roundit=False) elif (TheVar == 'tw'): TheHumDat = CalcHums.wb(TheTdDat,TheTDat,TheSPDat,roundit=False) elif (TheVar == 'dpd'): TheHumDat = CalcHums.dpd(TheTdDat,TheTDat,roundit=False) return TheHumDat #************************************************************ # RegridField def RegridField(TheOutputGrid,TheOldData): ''' This function does a simple regridding of data by averaging over the larger gridboxes NO COSINE WEIGHTING FOR LATITUDE!!!! NOTE: FOR OutputGrid = 5by5 THIS AUTOMATICALLY FLIPS LATITUDE AND ROLLS LONGITUDE TO BE -87.5 to 87.5 and -177,5 to 177.5 FOR OutputGrid = 1by1 THIS JUST REGRIDS LATITUDE FROM 181 boxes 90 to -90 TO 180 boxes 89.5 to -89.5 and rolls longitude to -179.5 to 179.5 Assumes input grid is always 1by1 INPUTS: TheOutputGrid - string of 1by1 or 5by5 TheOldData[:,:,:] - time, lat, long numpy array of complete field in original grid resolution OUTPUTS: TheNewData[:,:,:] - time, lat, long numpy array of complete field in new grid resolution I'm hoping that things set above are seen by the function rather than being passed explicitly ''' # Set up the desired output array TheNewData = np.empty((len(TheOldData[:,0,0]),nlatsOut,nlonsOut),dtype = float) TheNewData.fill(mdi) if (TheOutputGrid == '1by1'): # Then we know we're reading in original ERA-Interim or ERA5 data which has 181 lats # regrid to 0.5 by 0.5 degree gridboxes and then reaverage over 89.5 to -89.5 lats # shift lons back to -179.5 to 179.5 from 0 to 359 # regrid to 5by5 # First sort out the latitudes for ln in range(nlonsIn): for tt in range(len(TheNewData[:,0,0])): subarr = np.repeat(TheOldData[tt,:,ln],2) # this creates 362 grid boxes where each is repeated: [0a, 0b, 1a, 1b ...180a, 180b] subarr = subarr[1:361] # This removes the superfluous 90-90.5 and -90 to -90.5 boxes subarr = np.reshape(subarr,(180,2)) # This now reshapes to 180 rows and 2 columns so that we can average the gridboxes across the columns TheNewData[tt,:,ln] = np.mean(subarr,axis = 1) # hopefully this should work! #pdb.set_trace() # Then sort out the longitudes for tt in range(len(TheNewData[:,0,0])): TheNewData[tt,:,:] = np.roll(TheNewData[tt,:,:],180,axis = 1) if (TheOutputGrid == '5by5'): # Then we know we're reading in my converted ERA-Interim / ERA5 data which has 180 lats and already has lons rolled 180 degrees. # flip lats to go south to north # regrid to 5by5 # Regrid to 5by5 by simple averaging # Data input here should already be 89.5 to -89.5 lat and -179.5 to 179.5 long!!! StLt = 0 EdLt = 0 # Loop through the OutputGrid (5by5) lats and lons for ltt in range(nlatsOut): # create pointers to the five lats to average over StLt = np.copy(EdLt) EdLt = EdLt + 5 StLn = 0 EdLn = 0 for lnn in range(nlonsOut): # create pointers to the five lons to average over StLn = np.copy(EdLn) EdLn = EdLn + 5 #print(ltt,lnn,StLt,EdLt,StLn,EdLn) # Loop over each time point for mm in range(len(TheNewData[:,0,0])): # Create a subarr first so that we can deal with missing data subarr = TheOldData[mm,StLt:EdLt,StLn:EdLn] gots = np.where(subarr > mdi) if (len(gots[0]) > 0): # FILL THE LATITUDES BACKWARDS SO THAT THIS REVERSES THEM!!! TheNewData[mm,35-ltt,lnn] = np.mean(subarr[gots]) #pdb.set_trace() return TheNewData #************************************************************ # BuildField def BuildField(TheOutputVar, TheInputTime, TheOutputTime, InFileStr, TheStYr, TheEdYr): ''' function for building complete reanalyses files over the period specified this can be very computationally expensive so do it by year This requires initial reanalysis data to be read in in chunks of 1 year I may change this to month later and will slice out 1 month at a time anyway For derived variables this will read in the source vars and compute NOTE: THIS AUTOMATICALLY REGRIDS LATITUDE TO BE 180 RATHER THAN 181 BOXES AND ROLLS LONGITUDE TO -179.5 to 179.5 INPUTS: TheOutputVar - string lower case character of q, rh, t, td, dpd, tw, e, msl, sp, ws TheInputTime - string of 1hr or 6hr TheOutputTime - string of monthly or pentad #OutputGrid - string of 1by1 or 5by5 (WHICH SHOULD BE SAME AS INPUT GRID) - ASSUME THIS IS ALWAYS 1by1 FOR NOW InFileStr - string of dir+file string to read in TheStYr = integer start year of data - assume Jan 1st (0101) start TheEdYr = integer end year of data - assume Dec 31st (1231) end OUTPUTS: TheNewData[:,:,:] - time, lat, long numpy array of complete field in new time resolution ''' # Set up the desired output array if (TheOutputTime == 'monthly'): TheNewData = np.empty((nmons,nlatsOut,nlonsOut),dtype = float) elif (TheOutputTime == 'pentad'): TheNewData = np.empty((npts,nlatsOut,nlonsOut),dtype = float) TheNewData.fill(mdi) # The input grids are different to the output grids (181 lat boxes rather than 180) so we need a TmpNewData first TmpNewData = np.empty((len(TheNewData[:,0,0]),nlatsIn,nlonsIn),dtype = float) TmpNewData.fill(mdi) nyrs = (TheEdYr - TheStYr) + 1 # Begin the time counter for this dec - may need to do hourly in 5 year or 1 year chunks # 0 to ~87600 + leap days for 1 hourly data (24*365*10) # 0 to ~14600 + leap days for 6 hourly data (4*365*10) # 0 to 120 for monthly data HrStPoint = 0 # set as HrEdPoint which is actual ed point +1 HrEdPoint = 0 # set as HrStPoint + MonthHours or Month(must be +1 to work in Python!!!) # Loop through the years for y in range(nyrs): # Get actual year we're working on yr = y + StYr print('Working Year: ',yr) # First work out the time pointers for the year we're working with if (TheOutputTime == 'monthly'): mnarr = [31,29,31,30,31,30,31,31,30,31,30,31] nbits = 12 elif (TheOutputTime == 'pentad'): mnarr = list(np.repeat(5,73)) nbits = 73 # Is it a leap year? if (TestLeap.TestLeap(yr) == 0.0): if (TheOutputTime == 'monthly'): mnarr[1] = 29 elif (TheOutputTime == 'pentad'): mnarr[11] = 6 print('TestLeap (m, pt): ',mnarr[1],mnarr[11], yr) # Loop through each month or pentad depending on thing for m in range(nbits): ## string for file name #mm = '%02i' % (m+1) # Month pointer MonthPointer = (y * nbits)+m print('Month/Pentad Pointer: ',m) # Set the time counter for this dec in either 1hr or 6hrs # 0 to ~14600 + leap days HrStPoint = np.copy(HrEdPoint) # set as HrEdPoint which is actual end point +1 if (ReadInTime == '1hr'): HrEdPoint = HrStPoint + (mnarr[m]*24) # set as HrStPoint + MonthHours (must be +1 to work in Python!!!) elif (ReadInTime == '6hr'): HrEdPoint = HrStPoint + (mnarr[m]*4) # set as HrStPoint + MonthHours (must be +1 to work in Python!!!) print('Hr Pointies for this month: ',HrStPoint,HrEdPoint) # Open and read in the reanalysis files for the month # Sort out time pointers to pull out month # This assumes we're always reading in 1by1!!!! SliceInfo = dict([('TimeSlice',[HrStPoint,HrEdPoint]), ('LatSlice',[0,181]), ('LonSlice',[0,360])]) # Are we working on a direct variable or do we need to read in lots of variables and convert (e.g., humidity) # For humidity variables if (TheOutputVar in ['q','rh','e','tw','dpd']): # DOES automatically unpack the scale and offset # However, SP is Pa and T and Td are Kelvin # This kills memory so need to be tidy ReadInfo = ['t2m'] FileName = InFileStr+'t2m_'+str(yr)+'0101'+str(yr)+'1231.nc' T_Data,Latitudes,Longitudes = GetGrid4Slice(FileName,ReadInfo,SliceInfo,LatInfo,LonInfo) # Unpack t T_Data = T_Data-273.15 # DOES automatically unpack the scale and offset # However, SP is Pa and T and Td are Kelvin # This kills memory so need to be tidy ReadInfo = ['d2m'] FileName = InFileStr+'td2m_'+str(yr)+'0101'+str(yr)+'1231.nc' Td_Data,Latitudes,Longitudes = GetGrid4Slice(FileName,ReadInfo,SliceInfo,LatInfo,LonInfo) # Unpack td Td_Data = Td_Data-273.15 # DOES automatically unpack the scale and offset # However, SP is Pa and T and Td are Kelvin # This kills memory so need to be tidy ReadInfo = ['sp'] FileName = InFileStr+'sp_'+str(yr)+'0101'+str(yr)+'1231.nc' SP_Data,Latitudes,Longitudes = GetGrid4Slice(FileName,ReadInfo,SliceInfo,LatInfo,LonInfo) # Unpack sp SP_Data = SP_Data/100. # Convert to desired humidity variable TmpData = GetHumidity(T_Data,Td_Data,SP_Data,TheOutputVar) # Empty the SP_Data array SP_Data = 0 T_Data = 0 Td_Data = 0 else: # DOES automatically unpack the scale and offset # However, SP is Pa and T and Td are Kelvin # This kills memory so need to be tidy ReadInfo = [NameDict[TheOutputVar]] # the variable name to read in #pdb.set_trace() FileName = InFileStr+str(yr)+'0101'+str(yr)+'1231.nc' TmpData,Latitudes,Longitudes = GetGrid4Slice(FileName,ReadInfo,SliceInfo,LatInfo,LonInfo) #pdb.set_trace() # Is there an unpack thing like for T - -273.15? if (TheOutputVar in ['t','td','sst']): # t if (TheOutputVar == 'sst'): # there are missing values over land. TmpData[np.where(TmpData < 270.03)] = mdi # ERA Mdi is actually -32767 but in ncview it is 270.024 TmpData[np.where(TmpData > mdi)] = TmpData[np.where(TmpData > mdi)]-273.15 elif (TheOutputVar in ['slp','sp']): # pressure are Pa so need to be converted to hPa TmpData = TmpData/100. # Create monthly or pentad means for ltt in range(nlatsIn): for lnn in range(nlonsIn): TmpNewData[MonthPointer,ltt,lnn] = np.mean(TmpData[:,ltt,lnn]) # Empty the data arrays TmpData = 0 # Now regrid to 180 latitude boxes 89.5 to -89.5 and longitude from -179.5 to 179.5 TheNewData = RegridField('1by1',TmpNewData) return TheNewData #************************************************************ # CreateAnoms def CreateAnoms(TheInputGrid,TheOutputTime,TheClimSt,TheClimEd,TheStYr,TheEdYr,TheInData): ''' This function takes any grid and any var, computes climatologies/stdevs over given period and then anomalies It also outputs land only and ocean only anomalies dependning on the grid if (TheInputGrid == '5by5'): LandMask = workingdir+'/OTHERDATA/HadCRUT.4.3.0.0.land_fraction.nc' # 0 = 100% sea, 1 = 100% land - no islands!, latitude, longitude, land_area_fraction, -87.5 to 87.5, -177.5 to 177.5 elif (TheInputGrid == '1by1'): LandMask = workingdir+'/OTHERDATA/lsmask.nc' # 1 = sea, 0 = land - no islands! lat, lon, mask 89.5 to -89.5Lat, 0.5 to 359.5 long INPUTS: TheInputGrid - string of 1by1 or 5by5 to determine the land mask to use TheOutputTime - string of monthly or pentad TheClimSt - interger start year of climatology Always Jan start TheClimEd - integer end year of climatology Always Dec end TheStYr - integer start year of data to find climatology TheEdYr - integer end year of data to find climatology TheInData[:,:,:] - time, lat, lon array of actual values OUTPUTS: AllAnomsArr[:,:,:] - time, lat, lon array of anomalies LandAnomsArr[:,:,:] - time, lat, lon array of land anomalies OceanAnomsArr[:,:,:] - time, lat, lon array of ocean anomalies ClimsArr[:,:,:] - time, lat, lon array of climatologies StDevsArr[:,:,:] - time, lat, lon array of stdeviations ''' # Set up for time if (TheOutputTime == 'monthly'): nclims = 12 elif (TheOutputTime == 'pentad'): nclims = 73 nyrs = (TheEdYr - TheStYr) + 1 # Get land/sea mask and format accordingly if (TheInputGrid == '1by1'): MaskData,Lats,Longs = GetGrid4(LandMask,['mask'],['lat'],['lon']) # Check shape and force to be 2d if (len(np.shape(MaskData)) == 3): MaskData = np.reshape(MaskData,(180,360)) # roll the longitudes MaskData = np.roll(MaskData[:,:],180,axis = 1) # swap the land/sea so that land = 1 land = np.where(MaskData == 0) MaskData[np.where(MaskData == 1)] = 0 MaskData[land] = 1 elif (TheInputGrid == '5by5'): MaskData,Lats,Longs = GetGrid4(LandMask,['land_area_fraction'],LatInfo,LonInfo) if (len(np.shape(MaskData)) == 3): MaskData = np.reshape(MaskData,(36,72)) # first create empty arrays AllAnomsArr = np.empty_like(TheInData) AllAnomsArr.fill(mdi) LandAnomsArr = np.copy(AllAnomsArr) OceanAnomsArr = np.copy(AllAnomsArr) ClimsArr =
np.copy(AllAnomsArr[0:nclims,:,:])
numpy.copy
import math import numpy as np from matplotlib import cm import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.stats import multivariate_normal def gauss_kernel_values(xs: np.ndarray, cov: np.ndarray, mean: np.ndarray = None): ''' Vectorized Gaussian Kernel v(x) ~ exp(-x'C^{-1} x/2) for cov = C xs.shape = (n_obs, n_dim) cov is the covariance matrix n_dim x n_dim returns 1d array of n_dim ''' if mean is None: mean = np.zeros(xs.shape[1]) xs = xs - mean # calculating a vectorized version of x' cov^{-1} x Cinv = np.linalg.inv(cov) ds = np.sum(xs * (xs @ Cinv), axis=1) # alegedly this is faster: numpy.einsum("ij,ij->i", xs, xs @ Cinv) dim = xs.shape[1] detC = np.linalg.det(cov) nrm = (2*math.pi)**(dim/2.0)*math.sqrt(detC) return np.exp(-ds)/nrm def discretized_gauss_kernel_values_3d(xs: np.ndarray, cov: np.ndarray, mean: np.ndarray = None): rv = multivariate_normal(mean=mean, cov=cov) x1, x2, x3 = np.meshgrid(xs, xs, xs) pos = np.stack((x1, x2, x3), axis=-1) vals = 1e2*rv.pdf(pos) return vals, pos def generate_test_kernel_3d( npts: int = 10, range_std: float = 1, stds: np.ndarray = None, off_diag_correl: float = 0.0, mean: np.ndarray = None): if stds is None: stds = np.array([1.0, 1.0, 1.0]) dim = len(stds) cov = np.zeros((dim, dim)) for i in np.arange(dim): cov[i, i] = stds[i]**2 for i in
np.arange(dim)
numpy.arange
""" Trains and evaluates the model on the different emotions """ import argparse import ConfigParser import imp import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR import utils def load_model(model_name, X_train, y_train, optimization_parameters, sklearn_model=None): """ Loads the base model model with the specific parameters :param model_name: the name of the model :param X_train: training data (# of samples x # of features) :param y_train: labels for the training data (# of samples * 1) :return: model object """ model_source = imp.load_source(model_name, 'models/%s.py' % (model_name)) model = model_source.Model(X_train, y_train, optimization_parameters, sklearn_model) return model def get_labels(data): """ Returns the labels for each emotion :param data: dictionary of training data (emotion: [emotion data]) :return: a dictionary from emotion to a list of labels for each example for that emotion """ return {emotion:
np.array([val[-1] for val in values])
numpy.array
import copy import numpy as np import logging logger = logging.getLogger(__name__) try: from pycqed.analysis import machine_learning_toolbox as ml except Exception: logger.warning('Machine learning packages not loaded. ' 'Run from pycqed.analysis import machine_learning_toolbox to see errors.') from sklearn.model_selection import GridSearchCV as gcv, train_test_split from scipy.optimize import fmin_l_bfgs_b,fmin,minimize,fsolve def nelder_mead(fun, x0, initial_step=0.1, no_improve_thr=10e-6, no_improv_break=10, maxiter=0, alpha=1., gamma=2., rho=-0.5, sigma=0.5, verbose=False): ''' parameters: fun (function): function to optimize, must return a scalar score and operate over a numpy array of the same dimensions as x0 x0 (numpy array): initial position initial_step (float/np array): determines the stepsize to construct the initial simplex. If a float is specified it uses the same value for all parameters, if an array is specified it uses the specified step for each parameter. no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with an improvement lower than no_improv_thr maxiter (int): always break after this number of iterations. Set it to 0 to loop indefinitely. alpha (float): reflection coefficient gamma (float): expansion coefficient rho (float): contraction coefficient sigma (float): shrink coefficient For details on these parameters see Wikipedia page return: tuple (best parameter array, best score) Pure Python/Numpy implementation of the Nelder-Mead algorithm. Implementation from https://github.com/fchollet/nelder-mead, edited by <NAME> for use in PycQED. Reference: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method ''' # init x0 = np.array(x0) # ensures algorithm also accepts lists dim = len(x0) prev_best = fun(x0) no_improv = 0 res = [[x0, prev_best]] if type(initial_step) is float: initial_step_matrix = np.eye(dim)*initial_step elif (type(initial_step) is list) or (type(initial_step) is np.ndarray): if len(initial_step) != dim: raise ValueError('initial_step array must be same lenght as x0') initial_step_matrix = np.diag(initial_step) else: raise TypeError('initial_step ({})must be list or np.array'.format( type(initial_step))) for i in range(dim): x = copy.copy(x0) x = x + initial_step_matrix[i] score = fun(x) res.append([x, score]) # simplex iter iters = 0 while 1: # order res.sort(key=lambda x: x[1]) best = res[0][1] # break after maxiter if maxiter and iters >= maxiter: # Conclude failure break the loop if verbose: print('max iterations exceeded, optimization failed') break iters += 1 if best < prev_best - no_improve_thr: no_improv = 0 prev_best = best else: no_improv += 1 if no_improv >= no_improv_break: # Conclude success, break the loop if verbose: print('No improvement registered for {} rounds,'.format( no_improv_break) + 'concluding succesful convergence') break # centroid x0 = [0.] * dim for tup in res[:-1]: for i, c in enumerate(tup[0]): x0[i] += c / (len(res)-1) # reflection xr = x0 + alpha*(x0 - res[-1][0]) rscore = fun(xr) if res[0][1] <= rscore < res[-2][1]: del res[-1] res.append([xr, rscore]) continue # expansion if rscore < res[0][1]: xe = x0 + gamma*(x0 - res[-1][0]) escore = fun(xe) if escore < rscore: del res[-1] res.append([xe, escore]) continue else: del res[-1] res.append([xr, rscore]) continue # contraction xc = x0 + rho*(x0 - res[-1][0]) cscore = fun(xc) if cscore < res[-1][1]: del res[-1] res.append([xc, cscore]) continue # reduction x1 = res[0][0] nres = [] for tup in res: redx = x1 + sigma*(tup[0] - x1) score = fun(redx) nres.append([redx, score]) res = nres # once the loop is broken evaluate the final value one more time as # verification fun(res[0][0]) return res[0] def SPSA(fun, x0, initial_step=0.1, no_improve_thr=10e-6, no_improv_break=10, maxiter=0, gamma=0.101, alpha=0.602, a=0.2, c=0.3, A=300, p=0.5, ctrl_min=0.,ctrl_max=np.pi, verbose=False): ''' parameters: fun (function): function to optimize, must return a scalar score and operate over a numpy array of the same dimensions as x0 x0 (numpy array): initial position no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with an improvement lower than no_improv_thr maxiter (int): always break after this number of iterations. Set it to 0 to loop indefinitely. alpha, gamma, a, c, A, (float): parameters for the SPSA gains (see refs for definitions) p (float): probability to get 1 in Bernoulli +/- 1 distribution (see refs for context) ctrl_min, ctrl_max (float/array): boundaries for the parameters. can be either a global boundary for all dimensions, or a numpy array containing the boundary for each dimension. return: tuple (best parameter array, best score) alpha, gamma, a, c, A and p, are parameters for the algorithm. Their function is described in the references below, and even optimal values have been discussed in the literature. Pure Python/Numpy implementation of the SPSA algorithm designed by Spall. Implementation from http://www.jhuapl.edu/SPSA/PDF-SPSA/Spall_An_Overview.PDF, edited by <NAME> for use in PycQED. Reference: http://www.jhuapl.edu/SPSA/Pages/References-Intro.htm ''' # init x0 = np.array(x0) # ensures algorithm also accepts lists dim = len(x0) prev_best = fun(x0) no_improv = 0 res = [[x0, prev_best]] x = copy.copy(x0) # SPSA iter iters = 0 while 1: # order res.sort(key=lambda x: x[1]) best = res[0][1] # break after maxiter if maxiter and iters >= maxiter: # Conclude failure break the loop if verbose: print('max iterations exceeded, optimization failed') break iters += 1 if best < prev_best - no_improve_thr: no_improv = 0 prev_best = best else: no_improv += 1 if no_improv >= no_improv_break: # Conclude success, break the loop if verbose: print('No improvement registered for {} rounds,'.format( no_improv_break) + 'concluding succesful convergence') break # step 1 a_k = a/(iters+A)**alpha c_k = c/iters**gamma # step 2 delta = np.where(np.random.rand(dim) > p, 1, -1) # step 3 x_plus = x+c_k*delta x_minus = x-c_k*delta y_plus = fun(x_plus) y_minus = fun(x_minus) # res.append([x_plus, y_plus]) # res.append([x_minus, y_minus]) # step 4 gradient = (y_plus-y_minus)/(2.*c_k*delta) # step 5 x = x-a_k*gradient x = np.where(x < ctrl_min, ctrl_min, x) x = np.where(x > ctrl_max, ctrl_max, x) score = fun(x) res.append([x, score]) # once the loop is broken evaluate the final value one more time as # verification fun(res[0][0]) return res[0] def generate_new_training_set(new_train_values, new_target_values, training_grid=None, target_values=None): if training_grid is None: training_grid =new_train_values target_values = new_target_values else: if np.shape(new_train_values)[1] != np.shape(training_grid)[1] or \ np.shape(new_target_values)[1] != np.shape(target_values)[1]: print('Shape missmatch between new training values and existing ones!' ' Returning None.') return None,None training_grid =
np.append(training_grid,new_train_values,axis=0)
numpy.append
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 11 16:41:29 2019 Many of these functions were copy pasted from bctpy package: https://github.com/aestrivex/bctpy under GNU V3.0: https://github.com/aestrivex/bctpy/blob/master/LICENSE @author: sorooshafyouni University of Oxford, 2019 """ import numpy as np import statsmodels.stats.multitest as smmt import scipy.stats as sp import matplotlib.pyplot as plt #def sub2ind(DaShape, X, Y): # """ DaShape: [#rows #columns] # returns idx of given X & Y # SA, Ox, 2018 """ # return X*DaShape[1] + Y def OLSRes(YOrig,RG,T,copy=True): """ Or how to deconfound stuff! For regressing out stuff from your time series, quickly and nicely! SA,Ox,2019 """ if copy: YOrig = YOrig.copy() if np.shape(YOrig)[0]!=T or np.shape(RG)[0]!=T: raise ValueError('The Y and the X should be TxI format.') #demean anyways! mRG = np.mean(RG,axis=0) RG = RG-np.tile(mRG,(T,1)); #B = np.linalg.solve(RG,YOrig) # more stable than pinv invRG = np.linalg.pinv(RG) B = np.dot(invRG,YOrig) Yhat = np.dot(RG,B) # find the \hat{Y} Ydeconf = YOrig-Yhat #get the residuals -- i.e. cleaned time series return Ydeconf def issymmetric(W): """Check whether a matrix is symmetric""" return((W.transpose() == W).all()) def SumMat(Y0,T,copy=True): """ Parameters ---------- Y0 : a 2D matrix of size TxN Returns ------- SM : 3D matrix, obtained from element-wise summation of each row with other rows. SA, Ox, 2019 """ if copy: Y0 = Y0.copy() if np.shape(Y0)[0]!=T: print('SumMat::: Input should be in TxN form, the matrix was transposed.') Y0 = np.transpose(Y0) N = np.shape(Y0)[1] Idx = np.triu_indices(N) #F = (N*(N-1))/2 SM = np.empty([N,N,T]) for i in np.arange(0,np.size(Idx[0])-1): xx = Idx[0][i] yy = Idx[1][i] SM[xx,yy,:] = (Y0[:,xx]+Y0[:,yy]); SM[yy,xx,:] = (Y0[:,yy]+Y0[:,xx]); return SM def ProdMat(Y0,T,copy=True): """ Parameters ---------- Y0 : a 2D matrix of size TxN Returns ------- SM : 3D matrix, obtained from element-wise multiplication of each row with other rows. SA, Ox, 2019 """ if copy: Y0 = Y0.copy() if np.shape(Y0)[0]!=T: print('ProdMat::: Input should be in TxN form, the matrix was transposed.') Y0 = np.transpose(Y0) N = np.shape(Y0)[1] Idx = np.triu_indices(N) #F = (N*(N-1))/2 SM = np.empty([N,N,T]) for i in np.arange(0,np.size(Idx[0])-1): xx = Idx[0][i] yy = Idx[1][i] SM[xx,yy,:] = (Y0[:,xx]*Y0[:,yy]); SM[yy,xx,:] = (Y0[:,yy]*Y0[:,xx]); return SM def CorrMat(ts,T,method='rho',copy=True): """ Produce sample correlation matrices or Naively corrected z maps. """ if copy: ts = ts.copy() if np.shape(ts)[1]!=T: print('xDF::: Input should be in IxT form, the matrix was transposed.') ts = np.transpose(ts) N = np.shape(ts)[0]; R = np.corrcoef(ts) Z = np.arctanh(R)*
np.sqrt(T-3)
numpy.sqrt
import os import pickle from PIL import Image import numpy as np import json import torch import torchvision.transforms as transforms from torch.utils.data import Dataset class CUB(Dataset): """support CUB""" def __init__(self, args, partition='base', transform=None): super(Dataset, self).__init__() self.data_root = args.data_root self.partition = partition self.data_aug = args.data_aug self.mean = [0.485, 0.456, 0.406] self.std = [0.229, 0.224, 0.225] self.normalize = transforms.Normalize(mean=self.mean, std=self.std) self.image_size = 84 if self.partition == 'base': self.resize_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.RandomCrop(size=84) ]) else: self.resize_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.CenterCrop(self.image_size) ]) if transform is None: if self.partition == 'base' and self.data_aug: self.transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), lambda x: np.asarray(x).copy(), transforms.ToTensor(), self.normalize ]) else: self.transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ToTensor(), self.normalize ]) else: self.transform = transform self.data = {} self.file_pattern = '%s.json' with open(os.path.join(self.data_root, self.file_pattern % partition), 'rb') as f: meta = json.load(f) self.imgs = [] labels = [] for i in range(len(meta['image_names'])): image_path = os.path.join(meta['image_names'][i]) self.imgs.append(image_path) label = meta['image_labels'][i] labels.append(label) # adjust sparse labels to labels from 0 to n. cur_class = 0 label2label = {} for idx, label in enumerate(labels): if label not in label2label: label2label[label] = cur_class cur_class += 1 new_labels = [] for idx, label in enumerate(labels): new_labels.append(label2label[label]) self.labels = new_labels self.num_classes = np.unique(np.array(self.labels)).shape[0] def __getitem__(self, item): image_path = self.imgs[item] img = Image.open(image_path).convert('RGB') img = np.array(img).astype('uint8') img = np.asarray(self.resize_transform(img)).astype('uint8') img = self.transform(img) target = self.labels[item] return img, target, item def __len__(self): return len(self.labels) class MetaCUB(CUB): def __init__(self, args, partition='base', train_transform=None, test_transform=None, fix_seed=True): super(MetaCUB, self).__init__(args, partition) self.fix_seed = fix_seed self.n_ways = args.n_ways self.n_shots = args.n_shots self.n_queries = args.n_queries self.classes = list(self.data.keys()) self.n_test_runs = args.n_test_runs self.n_aug_support_samples = args.n_aug_support_samples self.resize_transform_train = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.RandomCrop(size=84) ]) self.resize_transform_test = transforms.Compose([ lambda x: Image.fromarray(x), transforms.Resize([int(self.image_size*1.15), int(self.image_size*1.15)]), transforms.CenterCrop(self.image_size) ]) if train_transform is None: self.train_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip(), lambda x: np.asarray(x).copy(), transforms.ToTensor(), self.normalize ]) else: self.train_transform = train_transform if test_transform is None: self.test_transform = transforms.Compose([ lambda x: Image.fromarray(x), transforms.ToTensor(), self.normalize ]) else: self.test_transform = test_transform self.data = {} for idx in range(len(self.imgs)): if self.labels[idx] not in self.data: self.data[self.labels[idx]] = [] self.data[self.labels[idx]].append(self.imgs[idx]) self.classes = list(self.data.keys()) def _load_imgs(self, img_paths, transform): imgs = [] for image_path in img_paths: img = Image.open(image_path).convert('RGB') img = np.array(img).astype('uint8') img = transform(img) imgs.append(np.asarray(img).astype('uint8')) return np.asarray(imgs).astype('uint8') def __getitem__(self, item): if self.fix_seed: np.random.seed(item) cls_sampled = np.random.choice(self.classes, self.n_ways, False) support_xs = [] support_ys = [] query_xs = [] query_ys = [] for idx, cls in enumerate(cls_sampled): imgs_paths = self.data[cls] support_xs_ids_sampled = np.random.choice(range(len(imgs_paths)), self.n_shots, False) support_paths = [imgs_paths[i] for i in support_xs_ids_sampled] support_imgs = self._load_imgs(support_paths, transform=self.resize_transform_train) support_xs.append(support_imgs) support_ys.append([idx] * self.n_shots) query_xs_ids = np.setxor1d(np.arange(len(imgs_paths)), support_xs_ids_sampled) query_xs_ids = np.random.choice(query_xs_ids, self.n_queries, False) query_paths = [imgs_paths[i] for i in query_xs_ids] query_imgs = self._load_imgs(query_paths, transform=self.resize_transform_test) query_xs.append(query_imgs) query_ys.append([idx] * query_xs_ids.shape[0]) support_xs, support_ys, query_xs, query_ys = np.array(support_xs), np.array(support_ys), np.array(query_xs), np.array(query_ys) num_ways, n_queries_per_way, height, width, channel = query_xs.shape query_xs = query_xs.reshape((num_ways * n_queries_per_way, height, width, channel)) query_ys = query_ys.reshape((num_ways * n_queries_per_way,)) support_xs = support_xs.reshape((-1, height, width, channel)) if self.n_aug_support_samples > 1: support_xs = np.tile(support_xs, (self.n_aug_support_samples, 1, 1, 1)) support_ys = np.tile(support_ys.reshape((-1,)), (self.n_aug_support_samples)) support_xs = np.split(support_xs, support_xs.shape[0], axis=0) query_xs = query_xs.reshape((-1, height, width, channel)) query_xs =
np.split(query_xs, query_xs.shape[0], axis=0)
numpy.split
import numpy as np import pytest from tbats.bats.Components import Components from tbats.abstract.ComponentMatrix import ComponentMatrix from tbats.bats.SeedFinder import SeedFinder class TestBATSSeedFinder(object): @pytest.mark.parametrize( "seasonal_periods, expected_mask", [ [ # no periods means no mask [], [], ], [ # one period always produces a mask with one zero [6], [0], ], [ # two periods with no common divisor produce a mask of zeroes [3, 7], [0, 0], ], [ # If one period is a subperiod of the other, the mask contains 1 for the smaller period [3, 5, 6, 24], [1, 0, 1, 0], ], [ # If one period is a subperiod of the other, the mask contains 1 for the smaller period [2, 5, 15, 16], [1, 1, 0, 0], ], [ # If two periods have a common divisor then mask for the larger one contains this divisor [4, 6], [0, -2], ], [ # If more than two periods have a common divisor then mask for the largest one contains divisor from smallest period [12, 42, 44], [0, -6, -4], # -4 instead of -2 ], [ # If more than two periods have a common divisor then mask for the larger one contains divisor from smaller period [9, 16, 24], [0, 0, -3], # -3 instead of -4 ], [ # being a subperiod is more important than having a divisor [4, 6, 12], [1, 1, 0], ], [ # divisors and periods together [4, 5, 10, 14, 15], [0, 1, -2, -2, -5], ], [ # divisors and periods together [7, 9, 11, 12, 22, 30, 33], [0, 0, 1, -3, -2, -3, -3], ], [ # divisors and periods together [7, 9, 11, 12, 22, 30, 44], [0, 0, 1, -3, 1, -3, -4], ], ] ) def test_prepare_mask(self, seasonal_periods, expected_mask): mask = SeedFinder.prepare_mask(seasonal_periods) assert
np.array_equal(expected_mask, mask)
numpy.array_equal
import torch import matplotlib.pyplot as plt import numpy as np from dqn_agent import QLAgent from collections import deque from unityagents import UnityEnvironment # Initilize Q-Learning Agent with the following inputs: # TODO rewrite network config to programatically build network (QNN in model.py) based on these settings network_config = { # network_config (dict) = hidden layer network configuration 'layers': 2, 'fc1_units': 64, 'fc2_units': 64, } state_size = 37 # state_size (int) = 37 [State space with `37` dimensions that contains the agent's velocity and ray-based perception of objects around agent's forward direction] action_size = 4 # action_size (int) = 4 [Discrete 0 (forward), 1 (back), 2 (turn left), 3 (turn right)] seed = 0 # seed (int) = 0 [] agent = QLAgent(state_size, action_size, seed, network_config) # Initialize Unity Environment env = UnityEnvironment(file_name="Banana_Windows_x86_64\Banana_Windows_x86_64\Banana.exe") # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] def dqn(n_episodes=1800, max_t=1000, eps_start=1.0, eps_end=0.01, eps_decay=0.995): """Deep Q-Learning. Params ====== n_episodes (int): maximum number of training episodes max_t (int): maximum number of timesteps per episode eps_start (float): starting value of epsilon, for epsilon-greedy action selection eps_end (float): minimum value of epsilon eps_decay (float): multiplicative factor (per episode) for decreasing epsilon """ scores = [] # list containing scores from each episode avg_scores = [] # List of average score per 100 episodes scores_window = deque(maxlen=100) # last 100 scores eps = eps_start # initialize epsilon for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=True)[brain_name] # reset the environment state = env_info.vector_observations[0] score = 0 for t in range(max_t): # Update variables used for next step action = agent.act(state, eps) env_info = env.step(action)[brain_name] # send the action to the environment next_state = env_info.vector_observations[0] # get the next state reward = env_info.rewards[0] # get the reward done = env_info.local_done[0] # Step through Q Learning agent agent.step(state, action, reward, next_state, done) state = next_state # Update reward score += reward if done: break scores_window.append(score) # save most recent score scores.append(score) # save most recent score eps = max(eps_end, eps_decay*eps) # decrease epsilon print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)), end="") if i_episode % 100 == 0: print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode,
np.mean(scores_window)
numpy.mean
# -*- coding: UTF-8 -*- from unittest import TestCase class TestNumpy(TestCase): def test_dot(self): from numpy import array, dot A = array([[1,2],[3,4]], dtype='int32') B = array([[5,6],[7,8]], dtype='int32') R = array([[19,22],[43,50]], dtype='int32') for val in (dot(A,B)-R).flat: self.assertEqual(val, 0) u = array([1,1], dtype='int32') Ru = array([3,7], dtype='int32') for val in (dot(A,u)-Ru).flat: self.assertEqual(val, 0) def test_eig(self): from numpy import array, dot from numpy.linalg import eig, inv A = array([[1,2],[3,4]], dtype='int32') vals, mat =
eig(A)
numpy.linalg.eig
""" Attempt to detect egg centers in the segmented images from annotated data The inputs are: 1. 4-class segmentation of ovary images (background, nurse, follicular cells and cytoplasm) 2. annotation of egg centers as 2a) csv list of centers 2b) 3-class annotation: (i) for close center, (iii) too far and, (ii) something in between The output is list of potential center candidates Sample usage:: python run_center_candidate_training.py -list none \ -imgs "data_images/drosophila_ovary_slice/image/*.jpg" \ -segs "data_images/drosophila_ovary_slice/segm/*.png" \ -centers "data_images/drosophila_ovary_slice/center_levels/*.png" \ -out results -n ovary Copyright (C) 2016-2017 <NAME> <<EMAIL>> """ import os import sys import logging import argparse from functools import partial import tqdm import pandas as pd import numpy as np from scipy import spatial import matplotlib if os.environ.get('DISPLAY', '') == '' and matplotlib.rcParams['backend'] != 'agg': print('No display found. Using non-interactive Agg backend.') matplotlib.use('Agg') import matplotlib.pyplot as plt sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root import imsegm.utilities.data_io as tl_data import imsegm.utilities.experiments as tl_expt import imsegm.utilities.drawing as tl_visu import imsegm.superpixels as seg_spx import imsegm.descriptors as seg_fts import imsegm.classification as seg_clf import imsegm.labeling as seg_lbs # whether skip loading triplest CSV from previous run FORCE_RELOAD = False # even you have dumped data from previous time, all wil be recomputed FORCE_RECOMP_DATA = False EXPORT_TRAINING_DATA = True # perform the Leave-One-Out experiment RUN_LEAVE_ONE_OUT = True # Set experiment folders FOLDER_EXPERIMENT = 'detect-centers-train_%s' FOLDER_INPUT = 'inputs_annot' FOLDER_POINTS = 'candidates' FOLDER_POINTS_VISU = 'candidates_visul' FOLDER_POINTS_TRAIN = 'points_train' LIST_SUBDIRS = [FOLDER_INPUT, FOLDER_POINTS, FOLDER_POINTS_VISU, FOLDER_POINTS_TRAIN] NAME_CSV_TRIPLES = 'list_images_segms_centers.csv' NAME_CSV_STAT_TRAIN = 'statistic_train_centers.csv' NAME_YAML_PARAMS = 'configuration.yaml' NAME_DUMP_TRAIN_DATA = 'dump_training_data.npz' NB_WORKERS = tl_expt.nb_workers(0.9) # position is label in loaded segm and nb are out labels LUT_ANNOT_CENTER_RELABEL = [0, 0, -1, 1] CROSS_VAL_LEAVE_OUT_SEARCH = 0.2 CROSS_VAL_LEAVE_OUT_EVAL = 0.1 CENTER_PARAMS = { 'computer': os.uname(), 'slic_size': 25, 'slic_regul': 0.3, # 'fts_hist_diams': None, # 'fts_hist_diams': [10, 25, 50, 75, 100, 150, 200, 250, 300], 'fts_hist_diams': [10, 50, 100, 200, 300], # 'fts_ray_step': None, 'fts_ray_step': 15, 'fts_ray_types': [('up', [0])], # 'fts_ray_types': [('up', [0]), ('down', [1])], 'fts_ray_closer': True, 'fts_ray_smooth': 0, 'pca_coef': None, # 'pca_coef': 0.99, 'balance': 'unique', 'classif': 'RandForest', # 'classif': 'SVM', 'nb_classif_search': 50, 'dict_relabel': None, # 'dict_relabel': {0: [0], 1: [1], 2: [2, 3]}, 'center_dist_thr': 50, # distance to from annotated center as a point } PATH_IMAGES = os.path.join(tl_data.update_path('data_images'), 'drosophila_ovary_slice') PATH_RESULTS = tl_data.update_path('results', absolute=True) CENTER_PARAMS.update({ 'path_list': os.path.join(PATH_IMAGES, 'list_imgs-segm-center-levels_short.csv'), 'path_images': '', 'path_segms': '', 'path_centers': '', # 'path_images': os.path.join(PATH_IMAGES, 'image', '*.jpg'), # 'path_segms': os.path.join(PATH_IMAGES, 'segm', '*.png'), # 'path_centers': os.path.join(PATH_IMAGES, 'center_levels', '*.png'), 'path_infofile': '', 'path_output': PATH_RESULTS, 'name': 'ovary', }) def arg_parse_params(params): """ SEE: https://docs.python.org/3/library/argparse.html :return dict: """ parser = argparse.ArgumentParser() parser.add_argument('-list', '--path_list', type=str, required=False, help='path to the list of input files', default=params['path_list']) parser.add_argument('-imgs', '--path_images', type=str, required=False, help='path to directory & name pattern for images', default=params['path_images']) parser.add_argument('-segs', '--path_segms', type=str, required=False, help='path to directory & name pattern for segmentation', default=params['path_segms']) parser.add_argument('-centers', '--path_centers', type=str, required=False, help='path to directory & name pattern for centres', default=params['path_centers']) parser.add_argument('-info', '--path_infofile', type=str, required=False, help='path to the global information file', default=params['path_infofile']) parser.add_argument('-out', '--path_output', type=str, required=False, help='path to the output directory', default=params['path_output']) parser.add_argument('-n', '--name', type=str, required=False, help='name of the experiment', default='ovary') parser.add_argument('-cfg', '--path_config', type=str, required=False, help='path to the configuration', default=None) parser.add_argument('--nb_workers', type=int, required=False, default=NB_WORKERS, help='number of processes in parallel') params.update(vars(parser.parse_args())) paths = {} for k in (k for k in params if 'path' in k): if not isinstance(params[k], str) or params[k].lower() == 'none': paths[k] = '' continue if k in ['path_images', 'path_segms', 'path_centers', 'path_expt']: p_dir = tl_data.update_path(os.path.dirname(params[k])) paths[k] = os.path.join(p_dir, os.path.basename(params[k])) else: paths[k] = tl_data.update_path(params[k], absolute=True) p_dir = paths[k] assert os.path.exists(p_dir), 'missing (%s) %s' % (k, p_dir) # load saved configuration if params['path_config'] is not None: ext = os.path.splitext(params['path_config'])[-1] assert (ext == '.yaml' or ext == '.yml'), \ 'wrong extension for %s' % params['path_config'] data = tl_expt.load_config_yaml(params['path_config']) params.update(data) params.update(paths) logging.info('ARG PARAMETERS: \n %r', params) return params def is_drawing(path_out): """ check if the out folder exist and also if the process is in debug mode :param str path_out: :return bool: # """ bool_res = path_out is not None and os.path.exists(path_out) \ and logging.getLogger().isEnabledFor(logging.DEBUG) return bool_res def find_match_images_segms_centers(path_pattern_imgs, path_pattern_segms, path_pattern_center=None): """ walk over dir with images and segmentation and pair those with the same name and if the folder with centers exists also add to each par a center .. note:: returns just paths :param str path_pattern_imgs: :param str path_pattern_segms: :param str path_pattern_center: :return DF: DF<path_img, path_segm, path_center> """ logging.info('find match images-segms-centres...') list_paths = [path_pattern_imgs, path_pattern_segms, path_pattern_center] df_paths = tl_data.find_files_match_names_across_dirs(list_paths) if not path_pattern_center: df_paths.columns = ['path_image', 'path_segm'] df_paths['path_centers'] = '' else: df_paths.columns = ['path_image', 'path_segm', 'path_centers'] df_paths.index = range(1, len(df_paths) + 1) return df_paths def get_idx_name(idx, path_img): """ create string identifier for particular image :param int idx: image index :param str path_img: image path :return str: identifier """ im_name = os.path.splitext(os.path.basename(path_img))[0] if idx is not None: return '%03d_%s' % (idx, im_name) else: return im_name def load_image_segm_center(idx_row, path_out=None, dict_relabel=None): """ by paths load images and segmentation and weather centers exist, load them if the path out is given redraw visualisation of inputs :param (int, DF:row) idx_row: tuple of index and row :param str path_out: path to output directory :param dict dict_relabel: look-up table for relabeling :return(str, ndarray, ndarray, [[int, int]]): idx_name, img_rgb, segm, centers """ idx, row_path = idx_row for k in ['path_image', 'path_segm', 'path_centers']: row_path[k] = tl_data.update_path(row_path[k]) assert os.path.exists(row_path[k]), 'missing %s' % row_path[k] idx_name = get_idx_name(idx, row_path['path_image']) img_struc, img_gene = tl_data.load_img_double_band_split(row_path['path_image'], im_range=None) # img_rgb = np.array(Image.open(row_path['path_img'])) img_rgb = tl_data.merge_image_channels(img_struc, img_gene) if np.max(img_rgb) > 1: img_rgb = img_rgb / float(np.max(img_rgb)) seg_ext = os.path.splitext(os.path.basename(row_path['path_segm']))[-1] if seg_ext == '.npz': with np.load(row_path['path_segm']) as npzfile: segm = npzfile[npzfile.files[0]] if dict_relabel is not None: segm = seg_lbs.merge_probab_labeling_2d(segm, dict_relabel) else: segm = tl_data.io_imread(row_path['path_segm']) if dict_relabel is not None: segm = seg_lbs.relabel_by_dict(segm, dict_relabel) if row_path['path_centers'] is not None \ and os.path.isfile(row_path['path_centers']): ext = os.path.splitext(os.path.basename(row_path['path_centers']))[-1] if ext == '.csv': centers = tl_data.load_landmarks_csv(row_path['path_centers']) centers = tl_data.swap_coord_x_y(centers) elif ext == '.png': centers = tl_data.io_imread(row_path['path_centers']) # relabel loaded segm into relevant one centers = np.array(LUT_ANNOT_CENTER_RELABEL)[centers] else: logging.warning('not supported file format %s', ext) centers = None else: centers = None if is_drawing(path_out): export_visual_input_image_segm(path_out, idx_name, img_rgb, segm, centers) return idx_name, img_rgb, segm, centers def export_visual_input_image_segm(path_out, img_name, img, segm, centers=None): """ visualise the input image and segmentation in common frame :param str path_out: path to output directory :param str img_name: image name :param ndarray img: np.array :param ndarray segm: np.array :param centers: [(int, int)] or np.array """ fig = tl_visu.figure_image_segm_centres(img, segm, centers) fig.savefig(os.path.join(path_out, img_name + '.png'), bbox_inches='tight', pad_inches=0) plt.close(fig) def compute_min_dist_2_centers(centers, points): """ compute distance toclosestt center and mark which center it is :param [int, int] centers: :param [int, int] points: :return (float, int): """ dists = spatial.distance.cdist(
np.array(points)
numpy.array
"""pytest unit tests for vibrationtesting""" import numpy as np import vibrationtesting as vt import numpy.testing as nt import scipy.io as sio def test_sos_modal_forsparse(): mat_contents=sio.loadmat('vibrationtesting/data/WingBeamforMAC.mat') # WFEM generated .mat file K = (mat_contents['K']) M = (mat_contents['M']) ## Mr and Kr are WFEM outputs after Guyan reduction Kr = (mat_contents['Kr']) Mr = (mat_contents['Mr']) master = np.array([[ 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90]]) ## Mred and Kred are from guyan_forsparse [Mred, Kred, master] = vt.guyan_forsparse(M, K, master=master, fraction=None) [omega_sp,zeta_sp,Psi_sp] = vt.sos_modal_forsparse(Mred,Kred) Kbm = Kr.todense() Mbm = Mr.todense() omega, zeta, Psi = vt.sos_modal(Mbm, Kbm) ## The below compares sparsematriceshandler.py vs system.py results nt.assert_array_almost_equal(omega_sp,omega) nt.assert_array_almost_equal(zeta_sp,zeta)
nt.assert_array_almost_equal(Psi_sp,Psi)
numpy.testing.assert_array_almost_equal
#!/usr/bin/env python # coding: utf-8 import numpy as np from tqdm import tqdm from functools import reduce import disk.funcs as dfn import h5py import os import glob import sys from matplotlib import pyplot as plt class binary_mbh(object): def __init__(self, filename): self.parse_file(filename) def parse_file(self, filename, cgs_units=True): self.filename = filename if cgs_units: print ('The cgs units are used!') with h5py.File(self.filename, 'r') as f: self.SubhaloMassInHalfRadType = np.array(f['meta/SubhaloMassInHalfRadType']) self.SubhaloSFRinHalfRad = np.array(f['meta/SubhaloSFRinHalfRad']) self.snapshot = np.array(f['meta/snapshot']) self.subhalo_id = np.array(f['meta/subhalo_id']) self.masses = np.array(f['evolution/masses']) #g self.mdot = np.array(f['evolution/mdot_eff']) #g/s self.sep = np.array(f['evolution/sep']) #cm self.dadt = np.array(f['evolution/dadt']) #cm/s self.dadt_df = np.array(f['evolution/dadt_df']) #cm/s self.dadt_gw = np.array(f['evolution/dadt_gw']) #cm/s self.dadt_lc = np.array(f['evolution/dadt_lc']) #cm/s self.dadt_vd = np.array(f['evolution/dadt_vd']) #cm/s self.scales = np.array(f['evolution/scales']) #NA self.times = np.array(f['evolution/times']) #s self.eccen = np.array(f['evolution/eccen']) #NA self.z = (1./self.scales)-1 #NA self.m1 = self.masses[:,0] self.m2 = self.masses[:,1] self.mtot = self.m1+self.m2 self.q = self.m2/self.m1 def find_Rlc(self): R_lc = np.zeros((self.sep.shape[0],3)) for i in range(len(self.sep)): try: idx = reduce(np.intersect1d,(np.where(np.abs(self.dadt_lc[i])>np.abs(self.dadt_df[i]))[0], np.where(np.abs(self.dadt_lc[i])>np.abs(self.dadt_vd[i]))[0], np.where(np.abs(self.dadt_lc[i])>np.abs(self.dadt_gw[i]))[0]))[0] R_lc[i]=[i,idx,self.sep[i][idx]] except: R_lc[i]=[i,np.nan,np.nan] return R_lc def find_Rvd(self): R_vd = np.zeros((self.sep.shape[0],3)) for i in range(len(self.sep)): try: idx = reduce(np.intersect1d,(np.where(np.abs(self.dadt_vd[i])>np.abs(self.dadt_df[i]))[0], np.where(np.abs(self.dadt_vd[i])>np.abs(self.dadt_lc[i]))[0], np.where(np.abs(self.dadt_vd[i])>np.abs(self.dadt_gw[i]))[0]))[0] R_vd[i]=[i,idx,self.sep[i][idx]] except: R_vd[i]=[i,np.nan,np.nan] return R_vd def find_Rgw(self): R_gw = np.zeros((self.sep.shape[0],3)) for i in range(len(self.sep)): try: idx = reduce(np.intersect1d,(np.where(
np.abs(self.dadt_gw[i])
numpy.abs
import numpy import quadpy def test_circle(): scheme = quadpy.circle.krylov(3) scheme.integrate(lambda x: numpy.exp(x[0]), numpy.array([0.0, 0.3]), 0.7) scheme = quadpy.circle.krylov(5) scheme.integrate( lambda x: [numpy.exp(x[0]), numpy.exp(x[0])], numpy.array([[1.0, 1.0], [0.0, 0.3], [2.0, 2.0]]), [1.0, 0.7, 0.333], ) return def test_disk(): scheme = quadpy.disk.peirce_1957(5) scheme.integrate(lambda x: numpy.exp(x[0]), numpy.array([0.0, 0.3]), 0.7) scheme = quadpy.disk.peirce_1957(5) scheme.integrate( lambda x: [numpy.exp(x[0]), numpy.exp(x[1])], numpy.array([[1.0, 1.0], [0.0, 0.3], [2.0, 2.0]]), [1.0, 0.7, 0.333], ) return def test_hexahedron(): scheme = quadpy.hexahedron.product(quadpy.line_segment.newton_cotes_closed(3)) val = scheme.integrate( lambda x: numpy.exp(x[0]), quadpy.hexahedron.cube_points([0.0, 1.0], [0.0, 1.0], [0.0, 1.0]), ) scheme = quadpy.hexahedron.product(quadpy.line_segment.newton_cotes_closed(3)) val = scheme.integrate( lambda x: [numpy.exp(x[0]),
numpy.exp(x[1])
numpy.exp
# Copyright (c) 2020. The Medical Image Computing (MIC) Lab, 陶豪毅 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np # from skimage.morphology import dilation from scipy.ndimage import grey_dilation import matplotlib.pyplot as plt from matplotlib.colors import Normalize import cv2 def showImage(image: np.ndarray): # https://stackoverflow.com/questions/28816046/displaying-different-images-with-actual-size-in-matplotlib-subplot dpi = 300 fig = plt.figure(figsize=(image.shape[1] / dpi, image.shape[0] / dpi), dpi=dpi) ax = fig.add_axes([0, 0, 1, 1]) ax.axis('off') ax.imshow(image, interpolation="None") fig.tight_layout() plt.show() def meshImage(image: np.ndarray): # from mpl_toolkits.mplot3d import Axes3D assert image.ndim == 2 y, x = image.shape x_values = np.linspace(0, x - 1, x) y_values = np.linspace(0, y - 1, y) X, Y = np.meshgrid(x_values, y_values) fig = plt.figure(figsize=(10, 10)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(X, Y, image, cmap='jet') plt.show() def getBBox2D(image: np.ndarray, bboxes: list, labels: list, scores: list = None): image = image.astype(np.float32) if np.max(image) > 1.0 or np.min(image) < 0.0: image = Normalize()(image) if image.ndim == 2 or image.shape[-1] == 1: image = np.dstack([image] * 3) font_scale = min(np.sqrt(image.size / 3) / 300, 0.5) thickness = min(int((
np.sqrt(image.size / 3)
numpy.sqrt
from typing import Tuple import numpy as np from scipy import spatial def hill_sphere_radius( planet_radius: float, planet_mass: float, stellar_mass: float, eccentricity: float = None, ) -> float: """Calculate the Hill sphere radius. Parameters ---------- planet_radius The orbital radius of the planet. planet_mass The mass of the planet. stellar_mass The mass of the star. eccentricity : optional The orbital eccentricity. Returns ------- hill_radius The Hill sphere radius. """ if eccentricity is None: eccentricity = 0.0 return ( (1 - eccentricity) * planet_radius * (planet_mass / (3 * stellar_mass)) ** (1 / 3) ) def binary_orbit( primary_mass: float, secondary_mass: float, semi_major_axis: float, eccentricity: float, inclination: float = None, longitude_ascending_node: float = None, argument_periapsis: float = None, true_anomaly: float = None, use_degrees: bool = True, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Set position and velocity of two bodies in an elliptic orbit. Parameters ---------- primary_mass The mass of the primary (m1). secondary_mass The mass of the secondary (m2). semi_major_axis The semi major axis (a). eccentricity The orbital eccentricity (e). inclination : optional The orbital inclination (i). Default is 0.0. longitude_ascending_node : optional The longitude of ascending node (Omega). Default is 0.0. argument_periapsis : optional The argument of periapsis (pomega). Default is 0.0. true_anomaly : optional The true anomaly (f). Default is 0.0. use_degrees : optional If true, specify angles in degrees. Otherwise, use radians. Returns ------- primary_position The Cartesian position of the primary. secondary_position The Cartesian position of the secondary. primary_velocity The Cartesian velocity of the primary. secondary_velocity The Cartesian velocity of the secondary. """ m1 = primary_mass m2 = secondary_mass a = semi_major_axis e = eccentricity if inclination is None: i = 0.0 else: i = inclination if longitude_ascending_node is None: Omega = 0.0 else: Omega = longitude_ascending_node if argument_periapsis is None: pomega = 0.0 else: pomega = argument_periapsis if true_anomaly is None: f = 0.0 else: f = true_anomaly if use_degrees: i *= np.pi / 180 Omega *= np.pi / 180 pomega *= np.pi / 180 f *= np.pi / 180 # Phantom convention: longitude of the ascending node is measured east of north Omega += np.pi / 2 dx = 0.0 dv = 0.0 E = np.arctan2(np.sqrt(1 - e ** 2) * np.sin(f), (e + np.cos(f))) P = np.zeros(3) Q = np.zeros(3) P[0] = np.cos(pomega) * np.cos(Omega) - np.sin(pomega) * np.cos(i) *
np.sin(Omega)
numpy.sin
#!/usr/bin/env pytohn2 import numpy as np from sklearn.model_selection import train_test_split import sklearn.metrics from data_handling import parse_data import misc_tools import settings def skyline_pianorolls(input, onset=True): """ Perform the skyline algorithm on *pianoroll*. This just takes the highest note at each time. If *onset* is True, then the original version is used, in which the highest pitch referred to the most recent onset is considered to be melody. Reference paper: <NAME> and <NAME>, "Melodic matching techniques for large music databases," in Proceedings of the 7th ACM International Conference on Multimedia '99, Orlando, FL, USA, October 30 - November 5, 1999, Part 1., 1999, pp. 57-66. RETURNS: a new array of shape *pianoroll.shape* containing the resulting pianoroll """ pianoroll = np.array(input, dtype=misc_tools.floatX) returned = np.zeros(pianoroll.shape, pianoroll.dtype) for y, col in enumerate(pianoroll.T): # iterating over columns backup = False for x, v in enumerate(col): # iterating over pitches if v != 0: if onset: if pianoroll[x, y - 1] == 0: # new onset at highest pitch returned[x, y] = v backup = False break elif not backup: # this is the highest value coming from a previous onset, # store this value and add it after having parsed the whole # column backup = (x, y, v) # N.B. now bool(backup) == True else: returned[x, y] = v break if backup: # add the highest value coming from a previous onset returned[backup[0], backup[1]] = backup[2] backup = False return returned def test_skyline_pianorolls(PATH=settings.DATA_PATH): import os from data_handling import parse_data # recurse all directories dataset = [] for root, subdirs, files in os.walk(PATH): # for each file with extension '.bz2' for f in files: if f[-3:] == ".bz": new_file = os.path.join(root, f) print("I've found a new file: " + new_file) # load pianorolls score and melody score, melody = parse_data.make_pianorolls(new_file) dataset.append((score, melody)) train_set, test_set = train_test_split( dataset, test_size=0.20, random_state=42) overall_sk_tp = overall_sk_fp = overall_sk_tn = overall_sk_fn = 0 overall_hp_tp = overall_hp_fp = overall_hp_tn = overall_hp_fn = 0 avarage_pieces_sk = [] avarage_pieces_hp = [] for score, melody in test_set: sk = skyline_pianorolls(score) results = misc_tools.evaluate(sk, melody) overall_sk_tp += results[0] overall_sk_fp += results[1] overall_sk_tn += results[2] overall_sk_fn += results[3] p = results[0] / misc_tools.EPS(results[0] + results[1]) r = results[0] / misc_tools.EPS(results[0] + results[3]) f = 2 * r * p / misc_tools.EPS(p + r) avarage_pieces_sk.append((p, r, f)) hp = skyline_pianorolls(score, onset=False) results = misc_tools.evaluate(hp, melody) overall_hp_tp += results[0] overall_hp_fp += results[1] overall_hp_tn += results[2] overall_hp_fn += results[3] p = results[0] / misc_tools.EPS(results[0] + results[1]) r = results[0] / misc_tools.EPS(results[0] + results[3]) f = 2 * r * p / misc_tools.EPS(p + r) avarage_pieces_hp.append((p, r, f)) # parse_data.plot_pianorolls( # score, sk, out_fn=f + "_skyline.pdf") # parse_data.plot_pianorolls( # score, hp, out_fn=f + "_highestpitch.pdf") print("Final Results Skyline:") print("True positives: " + str(overall_sk_tp)) print("False positives: " + str(overall_sk_fp)) print("True negatives: " + str(overall_sk_tn)) print("False negatives: " + str(overall_sk_fn)) p = overall_sk_tp / misc_tools.EPS(overall_sk_tp + overall_sk_fp) r = overall_sk_tp / misc_tools.EPS(overall_sk_tp + overall_sk_fn) print("Precision: " + str(p)) print("Recall: " + str(r)) print("Fmeasures: " + str(2 * r * p / misc_tools.EPS(p + r))) print("Avarage piece precision: " + str(np.mean(avarage_pieces_sk[0]))) print("Avarage piece recall: " + str(np.mean(avarage_pieces_sk[1]))) print("Avarage piece fmeasure: " + str(np.mean(avarage_pieces_sk[2]))) print() print("Final Results Highest Pitch:") print("True positives: " + str(overall_hp_tp)) print("False positives: " + str(overall_hp_fp)) print("True negatives: " + str(overall_hp_tn)) print("False negatives: " + str(overall_hp_fn)) p = overall_hp_tp / misc_tools.EPS(overall_hp_tp + overall_hp_fp) r = overall_hp_tp / misc_tools.EPS(overall_hp_tp + overall_hp_fn) print("Precision: " + str(p)) print("Recall: " + str(r)) print("Fmeasures: " + str(2 * r * p / misc_tools.EPS(p + r))) print("Avarage piece precision: " + str(np.mean(avarage_pieces_hp[0]))) print("Avarage piece recall: " + str(np.mean(avarage_pieces_hp[1]))) print("Avarage piece fmeasure: " + str(
np.mean(avarage_pieces_hp[2])
numpy.mean
import tensorflow as tf import numpy as np import pandas as pd from tqdm import tqdm from sklearn.metrics import classification_report, log_loss from ..base_dataloader import DataLoader from ..mean_pool_model import MeanPoolModel class ContextAggModel(MeanPoolModel): def init_graph(self, X, batch_size, **model_params): self.batch_size = batch_size n_dim_x_p = len(X[0].values[0][0]) n_dim_x_a = len(X[1].values[0][0]) n_dim_x_b = len(X[2].values[0][0]) n_dim_q = len(X[3].values[0]) n_dim_p = len(X[4].values[0]) n_dim_c = len(X[5].values[0]) # n_dim_c = len(X[3].values[0][0]) for key, val in model_params.items(): if key.startswith('n_hidden'): model_params[key] = int(model_params[key]) self.model = self.create_graph( None, n_dim_x_p=n_dim_x_p, n_dim_x_a=n_dim_x_a, n_dim_x_b=n_dim_x_b, n_dim_q=n_dim_q, n_dim_p=n_dim_p, n_dim_c=n_dim_c, **model_params) self.init = tf.initializers.global_variables() self.sess = sess = tf.Session() self.saver = tf.train.Saver() def fit(self, X, y=None, X_val=None, y_val=None, batch_size=32, n_epochs=30, patience=5, verbose=1, **model_params): start = timer() sess = self.sess # np.random.seed(0) # tf.set_random_seed(0) sess.run(self.init) self.saver = tf.train.Saver() train_dl = DataLoader(X, batch_size, shuffle=True, seed=21) test_dl = DataLoader(X_val, batch_size, shuffle=False, seed=21) model = self.model best_score = 2 best_probs = None since_best = 0 for epoch in range(n_epochs): pbar = tqdm(desc='Trn', total=len(X)+len(X_val)) if verbose else contextlib.suppress() with pbar: loss = [] for idx, (batch_x_p, batch_x_a, batch_x_b, batch_q, batch_p, batch_c, batch_y, seq_lens, seq_lens_p, seq_lens_a, seq_lens_b) in enumerate(train_dl): if len(batch_x_p) == 1: continue loss_, _ = sess.run([model.loss, model.train_op], feed_dict={model.d_X_p: batch_x_p, model.d_X_a: batch_x_a, model.d_X_b: batch_x_b, model.d_Q: batch_q, model.d_P: batch_p, model.d_C: batch_c, model.d_y: batch_y, model.d_seq_lens: seq_lens, model.d_seq_lens_p: seq_lens_p, model.d_seq_lens_a: seq_lens_a, model.d_seq_lens_b: seq_lens_b}) loss.append(loss_) if verbose: pbar.set_description('Trn {:2d}, Loss={:.3f}, Val-Loss={:.3f}'.format(epoch, np.mean(loss), np.inf)) pbar.update(len(batch_x_p)) trn_loss = np.mean(loss) loss, y_true, probs = self.predict(test_dl, epoch=epoch, trn_loss=trn_loss, pbar=pbar) score = log_loss(np.array(y_true), np.array(probs)) if score < best_score: best_score = score best_probs = probs since_best = 0 self.saver.save(sess, 'tmp/best_model.ckpt') else: since_best += 1 if verbose: pbar.set_description('Trn {:2d}, Loss={:.3f}, Val-Loss={:.3f}'.format(epoch, trn_loss, score)) pbar.update(len(X_val)) if since_best > patience: break if verbose: print('Best score on validation set: ', best_score) self.best_score = best_score self.saver.restore(self.sess, 'tmp/best_model.ckpt') return self def predict(self, X, y=None, epoch=None, trn_loss=None, pbar=None, verbose=1): # if verbose and pbar is None: # pbar_ = pbar = tqdm(desc='Predict', total=len(X)) # else: # pbar_ = contextlib.suppress() # with pbar_: if trn_loss is None: test_dl = DataLoader(X, self.batch_size) else: test_dl = X loss, y_true, probs = [], [], [] for idx, (batch_x_p, batch_x_a, batch_x_b, batch_q, batch_p, batch_c, batch_y, seq_lens, seq_lens_p, seq_lens_a, seq_lens_b) in enumerate(test_dl): if len(batch_x_p) == 1: continue loss_, y_true_, probs_ = self.sess.run([self.model.loss, self.model.d_y, self.model.probs], feed_dict={self.model.d_X_p: batch_x_p, self.model.d_X_a: batch_x_a, self.model.d_X_b: batch_x_b, self.model.d_Q: batch_q, self.model.d_P: batch_p, self.model.d_C: batch_c, self.model.d_y: batch_y, self.model.d_seq_lens: seq_lens, self.model.d_seq_lens_p: seq_lens_p, self.model.d_seq_lens_a: seq_lens_a, self.model.d_seq_lens_b: seq_lens_b}) loss.append(loss_) y_true += y_true_.tolist() probs += probs_.tolist() # if verbose: # if trn_loss is not None: # pbar.set_description('Trn {:2d}, Loss={:.3f}, Val-Loss={:.3f}'.format(epoch, trn_loss, np.mean(loss))) # else: # pbar.set_description('Predict, Loss={:.3f}'.format(np.mean(loss))) # # pbar.update(len(batch_x)) return loss, np.array(y_true), probs def create_graph(self, batch_size=None, seq_len=None, n_dim_x_p=1024, n_dim_x_a=1024, n_dim_x_b=1024, n_dim_q=1024, n_dim_p=1024, n_dim_c=1024, n_hidden_x=1024, n_hidden_x_p=1024, n_hidden_x_a=1024, n_hidden_x_b=1024, n_hidden_q=1024, n_hidden_p=1024, n_hidden_c=1024, dropout_rate_x=0.5, dropout_rate_p=0.5, dropout_rate_q=0.5, dropout_rate_c=0.5, dropout_rate_fc=0.5, reg_x=0.01, reg_q=0.01, reg_p=0.01, reg_c=0.01, reg_fc=0.01, label_smoothing=0.1, data_type=tf.float32, activation='tanh'): def gelu_fast(_x): return 0.5 * _x * (1 + tf.tanh(tf.sqrt(2 / np.pi) * (_x + 0.044715 * tf.pow(_x, 3)))) activ = tf.nn.relu # activ = gelu_fast # np.random.seed(0) # tf.set_random_seed(0) tf.reset_default_graph() # d_train_c = tf.constant(X_train, shape=[2000, 512, 1024]) d_X_p = tf.placeholder(data_type, [batch_size, None, n_dim_x_p]) d_X_a = tf.placeholder(data_type, [batch_size, None, n_dim_x_a]) d_X_b = tf.placeholder(data_type, [batch_size, None, n_dim_x_b]) d_Q = tf.placeholder(data_type, [batch_size, n_dim_q]) d_P = tf.placeholder(data_type, [batch_size, n_dim_p]) d_C = tf.placeholder(data_type, [batch_size, n_dim_c]) # d_C = tf.placeholder(data_type, [batch_size, None, n_dim_c]) d_y = tf.placeholder(tf.int32, [batch_size, 3]) d_seq_lens = tf.placeholder(tf.int32, [batch_size]) d_seq_lens_p = tf.placeholder(tf.int32, [batch_size]) d_seq_lens_a = tf.placeholder(tf.int32, [batch_size]) d_seq_lens_b = tf.placeholder(tf.int32, [batch_size]) # d_dropout_l0 = tf.placeholder(tf.float32, None) # d_dropout_l1 = tf.placeholder(tf.float32, None) # d_dropout_l2 = tf.placeholder(tf.float32, None) # d_dropout_l3 = tf.placeholder(tf.float32, None) with tf.name_scope('dense_concat_layers'): # n_hidden = 1024 lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_x_p, name='fw1') lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_x_p, name='bw1') _, (fw_state, bw_state) = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell, d_X_p, sequence_length=d_seq_lens_p, dtype=tf.float32) X_p = tf.reshape(tf.concat([fw_state.h, bw_state.h], axis=-1), (-1, 2*n_hidden_x_p)) lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_x_a, name='fw2') lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_x_a, name='bw2') _, (fw_state, bw_state) = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell, d_X_a, sequence_length=d_seq_lens_a, dtype=tf.float32) X_a = tf.reshape(tf.concat([fw_state.h, bw_state.h], axis=-1), (-1, 2*n_hidden_x_a)) lstm_fw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_x_b, name='fw3') lstm_bw_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_x_b, name='bw3') _, (fw_state, bw_state) = tf.nn.bidirectional_dynamic_rnn(lstm_fw_cell, lstm_bw_cell, d_X_b, sequence_length=d_seq_lens_b, dtype=tf.float32) X_b = tf.reshape(tf.concat([fw_state.h, bw_state.h], axis=-1), (-1, 2*n_hidden_x_b)) dense_init = tf.keras.initializers.glorot_normal(seed=21) # X_p = TransformerCorefModel().pool_and_attend(d_X_p, d_seq_lens_p, n_dim_x_p, n_hidden_x_p, 20)[0] # X_a = TransformerCorefModel().pool_and_attend(d_X_a, d_seq_lens_a, n_dim_x_a, n_hidden_x_a, 20)[0] # X_b = TransformerCorefModel().pool_and_attend(d_X_b, d_seq_lens_b, n_dim_x_b, n_hidden_x_b, 20)[0] X = tf.concat([X_p, X_a, X_b], axis=-1) X = tf.keras.layers.Dropout(dropout_rate_x, seed=7)(X) X = tf.keras.layers.Dense(n_hidden_x, activation=None, kernel_initializer=dense_init, kernel_regularizer = tf.contrib.layers.l1_regularizer(reg_x))(X) X = tf.layers.batch_normalization(X) X = activ(X) Q = tf.keras.layers.Dropout(dropout_rate_q, seed=7)(d_Q) Q = tf.keras.layers.Dense(n_hidden_q, activation=None, kernel_initializer=dense_init, kernel_regularizer = tf.contrib.layers.l1_regularizer(reg_q))(Q) Q = tf.layers.batch_normalization(Q) Q = activ(Q) P = tf.keras.layers.Dropout(dropout_rate_p, seed=7)(d_P) P = tf.keras.layers.Dense(n_hidden_p, activation=None, kernel_initializer=dense_init, kernel_regularizer = tf.contrib.layers.l1_regularizer(reg_p))(P) P = tf.layers.batch_normalization(P) P = activ(P) C = tf.keras.layers.Dropout(dropout_rate_c, seed=7)(d_C) C = tf.keras.layers.Dense(n_hidden_c, activation=None, kernel_initializer=dense_init, kernel_regularizer = tf.contrib.layers.l1_regularizer(reg_c))(C) C = tf.layers.batch_normalization(C) C = activ(C) # C = TransformerCorefModel().pool_and_attend(d_C, d_seq_lens, 1024, n_hidden_c, 512)[0] X = tf.concat([X, P, Q, C], axis=-1) X = tf.keras.layers.Dropout(dropout_rate_fc, seed=7)(X) # X = tf.layers.dense(X, 128, activation=None) # X = tf.layers.batch_normalization(X) # X = tf.nn.relu(X) # X = tf.keras.layers.Dropout(0.5)(X) y_hat = tf.keras.layers.Dense(3, name = 'output', kernel_initializer=dense_init, kernel_regularizer = tf.contrib.layers.l2_regularizer(reg_fc))(X) with tf.name_scope('loss'): probs = tf.nn.softmax(y_hat, axis=-1) # label smoothing works loss = tf.losses.softmax_cross_entropy(d_y, logits=y_hat, label_smoothing=label_smoothing) loss = tf.reduce_mean(loss) with tf.name_scope('optimizer'): global_step = tf.Variable(0, trainable=False, dtype=tf.int32) learning_rate = 0.005 learning_rate = tf.train.cosine_decay_restarts( learning_rate, global_step, 500, t_mul=1, m_mul=1, alpha=0.01, name=None ) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss, global_step=global_step) return AttrDict(locals()) @staticmethod def mean_featurizer(X_bert, X_plus, X_pretrained, y_true): batch_x_p = [] batch_x_a = [] batch_x_b = [] batch_q = [] batch_p = [] batch_c = [] seq_lens = [] seq_lens_p = [] seq_lens_a = [] seq_lens_b = [] batch_y = [] max_len = 512 max_len_tok = 20 for idx, row in tqdm(X_bert.iterrows(), total=len(X_bert)): plus_row = X_plus.loc[idx] x = np.array(row.bert) q = np.array(plus_row.plus) p = X_pretrained.loc[idx].pretrained c = np.array(row.cls).reshape(-1) # c = np.vstack((x, np.zeros((max_len-x.shape[0], x.shape[1])))) pronoun_vec = x[row.pronoun_offset_token:row.pronoun_offset_token+1] a_vec = x[row.a_span[0]:row.a_span[1]+1] b_vec = x[row.b_span[0]:row.b_span[1]+1] # print(idx, a_vec.shape, b_vec.shape) # x = np.hstack((np.mean(pronoun_vec, axis=0), np.mean(a_vec, axis=0), np.mean(b_vec, axis=0))).reshape(-1) x_p = np.vstack((pronoun_vec, np.zeros((max_len_tok-pronoun_vec.shape[0], pronoun_vec.shape[1])))) x_a = np.vstack((a_vec, np.zeros((max_len_tok-a_vec.shape[0], a_vec.shape[1])))) x_b = np.vstack((b_vec, np.zeros((max_len_tok-b_vec.shape[0], b_vec.shape[1])))) pronoun_vec = q[plus_row.pronoun_offset_token:plus_row.pronoun_offset_token+1] a_vec = q[plus_row.a_span[0]:plus_row.a_span[0]+1] b_vec = q[plus_row.b_span[0]:plus_row.b_span[0]+1] q = np.hstack((np.max(pronoun_vec, axis=0),
np.max(a_vec, axis=0)
numpy.max
#!/usr/bin/env python # The MIT License (MIT) # # Copyright (c) 2016 <NAME>, National Institutes of Health / NINDS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #import os import argparse import time import numpy as np import cv2 from dpLoadh5 import dpLoadh5 from dpWriteh5 import dpWriteh5 def draw_flow(img, flow, step=16): h, w = img.shape[:2] y, x = np.mgrid[step/2:h:step, step/2:w:step].reshape(2,-1).astype(int) fx, fy = flow[y,x].T lines = np.vstack([x, y, x+fx, y+fy]).T.reshape(-1, 2, 2) lines = np.int32(lines + 0.5) vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2.polylines(vis, lines, 0, (0, 255, 0)) for (x1, y1), (x2, y2) in lines: cv2.circle(vis, (x1, y1), 1, (0, 255, 0), -1) return vis def draw_hsv(flow): h, w = flow.shape[:2] fx, fy = flow[:,:,0], flow[:,:,1] ang = np.arctan2(fy, fx) + np.pi v = np.sqrt(fx*fx+fy*fy) hsv = np.zeros((h, w, 3), np.uint8) hsv[...,0] = ang*(180/np.pi/2) hsv[...,1] = 255 hsv[...,2] = np.minimum(v*20, 255) bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return bgr def warp_flow(img, flow): h, w = flow.shape[:2] flow = -flow flow[:,:,0] +=
np.arange(w)
numpy.arange
import torch import functools import numpy as np from esgd import ESGD,get_current_time class ESGD_WS(ESGD): def _sample_optimizer(self, weights=None): hpval_indices = np.random.choice(len(self.hpvalues), size=self.n_population, p=weights) return [self.hpvalues[idx] for idx in hpval_indices], hpval_indices def _update_weights(self, g, weights, rank, topn=3): for idx in rank[:topn]: weights[idx] += 1/(len(self.hpvalues)*np.sqrt(self.n_generations)+topn*g) return weights/np.sum(weights) def train( self, train_data, train_targets, topn=3, init_weights=None, test_set=None, log_file=None, batch_size=1024, transform=None ): logger = self.Logger(log_file) if init_weights is None: weights = np.ones(len(self.hpvalues)) weights /= len(self.hpvalues) else: weights = np.array(init_weights) train_loader = self.get_data_loader( train_data, train_targets, batch_size=batch_size, transform=transform ) if test_set is not None: test_loader = self.get_data_loader(*test_set, shuffle=False, batch_size=batch_size) np.random.seed(self.random_state) torch.manual_seed(self.random_state) curr_gen = [self.model_class().to(self.device) for _ in range(self.n_population)] results = [] for g in range(1, 1 + self.n_generations): curr_hpvals,hpval_indices = self._sample_optimizer(weights=weights) optimizers = [self.optimizer_class( ind.parameters(), **dict(zip(self.hpnames, hpvs)) ) for ind, hpvs in zip(curr_gen, curr_hpvals)] running_losses = [0.0 for _ in range(self.n_population)] running_corrects = [0 for _ in range(self.n_population)] running_total = 0 if self.verbose: logger.logging(f"Generation #{g}:") logger.logging(f"|___{get_current_time()}\tpre-SGD") for s in range(self.sgds_per_gen): for (x, y) in train_loader: x = x.to(self.device) y = y.to(self.device) running_total += x.size(0) for i, (ind, opt) in enumerate(zip(curr_gen, optimizers)): out = ind(x) loss = self.fitness_function(out, y) opt.zero_grad() loss.backward() opt.step() running_losses[i] += loss.item() * x.size(0) running_corrects[i] += (out.max(dim=1)[1] == y).sum().item() running_losses = list(map(lambda x: x / running_total, running_losses)) running_accs = list(map(lambda x: x / running_total, running_corrects)) opt_rank = hpval_indices[np.argsort(running_losses)] weights = self._update_weights(g, weights, rank=opt_rank, topn=topn) if self.verbose: logger.logging(f"|___{get_current_time()}\tpost-SGD") logger.logging(f"\t|___population best fitness: {min(running_losses)}") logger.logging(f"\t|___population average fitness: {sum(running_losses) / len(running_losses)}") logger.logging(f"\t|___population best accuracy: {max(running_accs)}") logger.logging(f"\t|___population average accuracy: {sum(running_accs) / len(running_accs)}") if self.verbose: logger.logging(f"|___{get_current_time()}\tpre-evolution") curr_mix = [ np.random.choice(self.n_population, size=self.mixing_number) for _ in range(int(self.reproductive_factor * self.n_population)) ] offsprings = [] for e in range(self.evos_per_gen): for mix in curr_mix: model = self.model_class().to(self.device) for p_child, *p_parents in zip(model.parameters(), *[curr_gen[idx].parameters() for idx in mix]): p_child.data = functools.reduce(lambda x, y: x + y, p_parents) / self.mixing_number # p_child.data.add_(1 / g * self.mutation_length * (2 * torch.rand_like(p_child) - 1)) p_child.data.add_(1 / g * self.mutation_length * torch.randn_like(p_child)) offsprings.append(model) train_losses = [0.0 for _ in range(int(self.n_population * (1 + self.reproductive_factor)))] train_corrects = [0 for _ in range(int(self.n_population * (1 + self.reproductive_factor)))] if test_set is not None: test_losses = [0.0 for _ in range(int(self.n_population * (1 + self.reproductive_factor)))] test_corrects = [0 for _ in range(int(self.n_population * (1 + self.reproductive_factor)))] test_total = 0 curr_gen.extend(offsprings) with torch.no_grad(): for ind in curr_gen: ind.eval() for (x, y) in train_loader: x = x.to(self.device) y = y.to(self.device) for i, ind in enumerate(curr_gen): out = ind(x) train_losses[i] += self.fitness_function(out, y).item() * x.size(0) train_corrects[i] += (out.max(dim=1)[1] == y).sum().item() if test_set is not None: for (x, y) in test_loader: x = x.to(self.device) y = y.to(self.device) test_total += x.size(0) for i, ind in enumerate(curr_gen): out = ind(x) test_losses[i] += self.fitness_function(out, y).item() * x.size(0) test_corrects[i] += (out.max(dim=1)[1] == y).sum().item() for ind in curr_gen: ind.train() train_losses = list(map(lambda x: x / running_total, train_losses)) train_accs = list(map(lambda x: x / running_total, train_corrects)) if test_set is not None: test_losses = list(map(lambda x: x / test_total, test_losses)) test_accs = list(map(lambda x: x / test_total, test_corrects)) curr_rank = np.argsort(train_losses) elite = curr_rank[:self.m_elite] others = np.random.choice(len(curr_gen) - self.m_elite, size=self.n_population - self.m_elite) + self.m_elite others = curr_rank[others] curr_gen = [curr_gen[idx] for idx in np.concatenate([elite, others])] train_losses = [train_losses[idx] for idx in np.concatenate([elite, others])] train_accs = [train_accs[idx] for idx in np.concatenate([elite, others])] if test_set is not None: test_losses = [test_losses[idx] for idx in
np.concatenate([elite, others])
numpy.concatenate
r""" Module for some integrators. - IRK3: Implicit third order Runge-Kutta - RK4: Runge-Kutta fourth order - ETD: Exponential time differencing Euler method - ETDRK4: Exponential time differencing Runge-Kutta fourth order See, e.g., <NAME> and <NAME> "Solving periodic semilinear PDEs in 1D, 2D and 3D with exponential integrators", https://arxiv.org/pdf/1604.08900.pdf Integrators are set up to solve equations like .. math:: \frac{\partial u}{\partial t} = L u + N(u) where :math:`u` is the solution, :math:`L` is a linear operator and :math:`N(u)` is the nonlinear part of the right hand side. Note ---- `RK4`, `ETD` and `ETDRK4` can only be used with Fourier function spaces, as they assume all matrices are diagonal. """ import types import numpy as np from shenfun import Function, TPMatrix, TrialFunction, TestFunction, inner, la __all__ = ('IRK3', 'RK4', 'ETDRK4', 'ETD') #pylint: disable=unused-variable class IntegratorBase: """Abstract base class for integrators Parameters ---------- T : TensorProductSpace L : function To compute linear part of right hand side N : function To compute nonlinear part of right hand side update : function To be called at the end of a timestep params : dictionary Any relevant keyword arguments """ def __init__(self, T, L=None, N=None, update=None, **params): _p = {'call_update': -1, 'dt': 0} _p.update(params) self.params = _p self.T = T if L is not None: self.LinearRHS = types.MethodType(L, self) if N is not None: self.NonlinearRHS = types.MethodType(N, self) if update is not None: self.update = types.MethodType(update, self) def update(self, u, u_hat, t, tstep, **par): pass def LinearRHS(self, *args, **kwargs): pass def NonlinearRHS(self, *args, **kwargs): pass def setup(self, dt): """Set up solver""" pass def solve(self, u, u_hat, dt, trange): """Integrate forward in end_time Parameters ---------- u : array The solution array in physical space u_hat : array The solution array in spectral space dt : float Timestep trange : two-tuple Time and end time """ pass class IRK3(IntegratorBase): """Third order implicit Runge Kutta Parameters ---------- T : TensorProductSpace L : function of TrialFunction(T) To compute linear part of right hand side N : function To compute nonlinear part of right hand side update : function To be called at the end of a timestep params : dictionary Any relevant keyword arguments """ def __init__(self, T, L=None, N=None, update=None, **params): IntegratorBase.__init__(self, T, L=L, N=N, update=update, **params) self.dU = Function(T) self.dU1 = Function(T) self.a = (8./15., 5./12., 3./4.) self.b = (0.0, -17./60., -5./12.) self.c = (0., 8./15., 2./3., 1) self.solver = None self.rhs_mats = None self.w0 = Function(self.T).v self.mask = self.T.get_mask_nyquist() def setup(self, dt): self.params['dt'] = dt u = TrialFunction(self.T) v = TestFunction(self.T) # Note that we are here assembling implicit left hand side matrices, # as well as matrices that can be used to assemble the right hande side # much faster through matrix-vector products a, b = self.a, self.b self.solver = [] for rk in range(3): mats = inner(v, u - ((a[rk]+b[rk])*dt/2)*self.LinearRHS(u)) if len(mats[0].naxes) == 1: self.solver.append(la.SolverGeneric1ND(mats)) elif len(mats[0].naxes) == 2: self.solver.append(la.SolverGeneric2ND(mats)) else: raise NotImplementedError self.rhs_mats = [] for rk in range(3): self.rhs_mats.append(inner(v, u + ((a[rk]+b[rk])*dt/2)*self.LinearRHS(u))) self.mass = inner(u, v) def compute_rhs(self, u, u_hat, dU, dU1, rk): a = self.a[rk] b = self.b[rk] dt = self.params['dt'] dU = self.NonlinearRHS(u, u_hat, dU, **self.params) dU.mask_nyquist(self.mask) w1 = dU*a*dt + self.dU1*b*dt self.dU1[:] = dU return w1 def solve(self, u, u_hat, dt, trange): if self.solver is None or abs(self.params['dt']-dt) > 1e-12: self.setup(dt) t, end_time = trange tstep = 0 while t < end_time-1e-8: for rk in range(3): dU = self.compute_rhs(u, u_hat, self.dU, self.dU1, rk) for mat in self.rhs_mats[rk]: w0 = mat.matvec(u_hat, self.w0) dU += w0 u_hat = self.solver[rk](dU, u_hat) u_hat.mask_nyquist(self.mask) t += self.dt tstep += 1 self.update(u, u_hat, t, tstep, **self.params) class ETD(IntegratorBase): """Exponential time differencing Euler method <NAME> and <NAME> "Solving periodic semilinear PDEs in 1D, 2D and 3D with exponential integrators", https://arxiv.org/pdf/1604.08900.pdf Parameters ---------- T : TensorProductSpace L : function To compute linear part of right hand side N : function To compute nonlinear part of right hand side update : function To be called at the end of a timestep params : dictionary Any relevant keyword arguments """ def __init__(self, T, L=None, N=None, update=None, **params): IntegratorBase.__init__(self, T, L=L, N=N, update=update, **params) self.dU = Function(T) self.psi = None self.ehL = None def setup(self, dt): """Set up ETD ODE solver""" self.params['dt'] = dt L = self.LinearRHS(**self.params) if isinstance(L, TPMatrix): assert L.isidentity() L = L.scale L = np.atleast_1d(L) hL = L*dt self.ehL = np.exp(hL) M = 50 psi = self.psi =
np.zeros(hL.shape, dtype=np.float)
numpy.zeros
from skimage.feature import corner_harris, peak_local_max import numpy as np def dist2(x, c): # Borrowed from https://inst.eecs.berkeley.edu/~cs194-26/fa18/ ndata, dimx = x.shape ncenters, dimc = c.shape assert dimx == dimc, 'Data dimension does not match dimension of centers' return (np.ones((ncenters, 1)) * np.sum((x ** 2).T, axis=0)).T + \ np.ones((ndata, 1)) *
np.sum((c ** 2).T, axis=0)
numpy.sum
import sys import os import os.path as op import glob import logging import json import multiprocessing from functools import partial from pathlib import Path from tqdm import tqdm import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import DBSCAN from scipy.stats import rankdata from scipy.spatial import distance_matrix from scipy.optimize import linear_sum_assignment from scipy.interpolate import interp1d import networkx as nx from utils.dir_helper import get_batch_subdir, get_exp_subdir from utils.file_manipulation import tiff_read def get_diff_static(I, ds_median, config): """ Computes a diff between current image I and the dataset median. Parameters ---------- I: 2d array the current image frame ds_median: 2d array the dataset median config: dict configuration """ diff = abs(I - ds_median) abs_threshold = config['absthresh'] pc_threshold = config['pcthresh'] # Threshold is the max value of the abs_threshold, and the value of diff at percentile pc_threshold threshold = max(abs_threshold, np.percentile(diff, pc_threshold)) # Suppress values of rng_diff less than a threshold diff[diff < threshold] = 0 return diff def get_particles(range_diff, image, clustering_settings): """Get the detections using Gary's original method Returns a list of particles and their properties Parameters ---------- range_diff: output from background subtraction image: original image frame for intensity calculation may have a different shape than range_diff cluster_settings: hyperparameters for the clustering algorithm Returns ------- list of dicts with keys: pos: (y, x) coordinates of particle size: number of pixels in cluster bbox_tl: bbox (top, left) bbox_hw: bbox (height, width) max_intensity: max intensity of pixels (list) """ # select points above a threshold, and get their weights idx = (range_diff > 0) points = np.column_stack(np.nonzero(idx)) weights = range_diff[idx].ravel().astype(float) # empty list to store particles particles = [] if len(points) > 0: # use DBSCAN to cluster the points dbscan = DBSCAN(eps=clustering_settings['dbscan']['epsilon_px'], min_samples=clustering_settings['dbscan']['min_weight']) labels = dbscan.fit_predict(points, sample_weight=weights) n_clusters = int(np.max(labels)) + 1 for l in range(n_clusters): idx = (labels == l) # must have specified minimum number of points # keep track of clusters that fall below this thresh if np.sum(idx) < clustering_settings['filters']['min_px']: continue relevant = points[idx] # Build particle properties particle = {} # center of particle particle['pos'] = [round(i, 1) for i in
np.average(relevant, axis=0)
numpy.average
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ ''' Bert evaluation assessment method script. ''' import math import numpy as np from .CRF import postprocess class Accuracy(): ''' calculate accuracy ''' def __init__(self): self.acc_num = 0 self.total_num = 0 def update(self, logits, labels): labels = labels.asnumpy() labels = np.reshape(labels, -1) logits = logits.asnumpy() logit_id = np.argmax(logits, axis=-1) self.acc_num += np.sum(labels == logit_id) self.total_num += len(labels) class F1(): ''' calculate F1 score ''' def __init__(self, use_crf=False, num_labels=2): self.TP = 0 self.FP = 0 self.FN = 0 self.use_crf = use_crf self.num_labels = num_labels def update(self, logits, labels): ''' update F1 score ''' labels = labels.asnumpy() labels = np.reshape(labels, -1) if self.use_crf: backpointers, best_tag_id = logits best_path = postprocess(backpointers, best_tag_id) logit_id = [] for ele in best_path: logit_id.extend(ele) else: logits = logits.asnumpy() logit_id = np.argmax(logits, axis=-1) logit_id = np.reshape(logit_id, -1) pos_eva = np.isin(logit_id, [i for i in range(1, self.num_labels)]) pos_label = np.isin(labels, [i for i in range(1, self.num_labels)]) self.TP += np.sum(pos_eva&pos_label) self.FP += np.sum(pos_eva&(~pos_label)) self.FN += np.sum((~pos_eva)&pos_label) class SpanF1(): ''' calculate F1、precision and recall score in span manner for NER ''' def __init__(self, use_crf=False, label2id=None): self.TP = 0 self.FP = 0 self.FN = 0 self.use_crf = use_crf self.label2id = label2id if label2id is None: raise ValueError("label2id info should not be empty") self.id2label = {} for key, value in label2id.items(): self.id2label[value] = key def tag2span(self, ids): ''' conbert ids list to span mode ''' labels = np.array([self.id2label[id] for id in ids]) spans = [] prev_label = None for idx, tag in enumerate(labels): tag = tag.lower() cur_label, label = tag[:1], tag[2:] if cur_label in ('b', 's'): spans.append((label, [idx, idx])) elif cur_label in ('m', 'e') and prev_label in ('b', 'm') and label == spans[-1][0]: spans[-1][1][1] = idx elif cur_label == 'o': pass else: spans.append((label, [idx, idx])) prev_label = cur_label return [(span[0], (span[1][0], span[1][1] + 1)) for span in spans] def update(self, logits, labels): ''' update span F1 score ''' labels = labels.asnumpy() labels = np.reshape(labels, -1) if self.use_crf: backpointers, best_tag_id = logits best_path = postprocess(backpointers, best_tag_id) logit_id = [] for ele in best_path: logit_id.extend(ele) else: logits = logits.asnumpy() logit_id = np.argmax(logits, axis=-1) logit_id = np.reshape(logit_id, -1) label_spans = self.tag2span(labels) pred_spans = self.tag2span(logit_id) for span in pred_spans: if span in label_spans: self.TP += 1 label_spans.remove(span) else: self.FP += 1 for span in label_spans: self.FN += 1 class MCC(): ''' Calculate Matthews Correlation Coefficient ''' def __init__(self): self.TP = 0 self.FP = 0 self.FN = 0 self.TN = 0 def update(self, logits, labels): ''' MCC update ''' labels = labels.asnumpy() labels = np.reshape(labels, -1) labels = labels.astype(np.bool) logits = logits.asnumpy() logit_id = np.argmax(logits, axis=-1) logit_id = np.reshape(logit_id, -1) logit_id = logit_id.astype(np.bool) ornot = logit_id ^ labels self.TP += (~ornot & labels).sum() self.FP += (ornot & ~labels).sum() self.FN += (ornot & labels).sum() self.TN += (~ornot & ~labels).sum() def cal(self): mcc = (self.TP*self.TN - self.FP*self.FN)/math.sqrt((self.TP+self.FP)*(self.TP+self.FN) * (self.TN+self.FP)*(self.TN+self.FN)) return mcc class Spearman_Correlation(): ''' Calculate Spearman Correlation Coefficient ''' def __init__(self): self.label = [] self.logit = [] def update(self, logits, labels): labels = labels.asnumpy() labels = np.reshape(labels, -1) logits = logits.asnumpy() logits =
np.reshape(logits, -1)
numpy.reshape
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for google3.third_party.py.tensorflow_graphics.interpolation.weighted.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf from tensorflow_graphics.math.interpolation import weighted from tensorflow_graphics.util import test_case class WeightedTest(test_case.TestCase): def _get_tensors_from_shapes(self, num_points, dim_points, num_outputs, num_pts_to_interpolate): points = np.random.uniform(size=(num_points, dim_points)) weights = np.random.uniform(size=(num_outputs, num_pts_to_interpolate)) indices = np.asarray([ np.random.permutation(num_points)[:num_pts_to_interpolate].tolist() for _ in range(num_outputs) ]) indices = np.expand_dims(indices, axis=-1) return points, weights, indices @parameterized.parameters( (3, 4, 2, 3), (5, 4, 5, 3), (5, 6, 5, 5), (2, 6, 5, 1), ) def test_interpolate_exception_not_raised(self, dim_points, num_points, num_outputs, num_pts_to_interpolate): """Tests whether exceptions are not raised for compatible shapes.""" points, weights, indices = self._get_tensors_from_shapes( num_points, dim_points, num_outputs, num_pts_to_interpolate) self.assert_exception_is_not_raised( weighted.interpolate, shapes=[], points=points, weights=weights, indices=indices, normalize=True) @parameterized.parameters( ("must have a rank greater than 1", ((3,), (None, 2), (None, 2, 0))), ("must have a rank greater than 1", ((None, 3), (None, 2), (1,))), ("must have exactly 1 dimensions in axis -1", ((None, 3), (None, 2), (None, 2, 2))), ("must have the same number of dimensions", ((None, 3), (None, 2), (None, 3, 1))), ("Not all batch dimensions are broadcast-compatible.", ((None, 3), (None, 5, 2), (None, 4, 2, 1))), ) def test_interpolate_exception_raised(self, error_msg, shapes): """Tests whether exceptions are raised for incompatible shapes.""" self.assert_exception_is_raised( weighted.interpolate, error_msg, shapes=shapes, normalize=False) @parameterized.parameters( (((-1.0, 1.0), (1.0, 1.0), (3.0, 1.0), (-1.0, -1.0), (1.0, -1.0), (3.0, -1.0)), ((0.25, 0.25, 0.25, 0.25), (0.5, 0.5, 0.0, 0.0)), (((0,), (1,), (3,), (4,)), ((1,), (2,), (4,), (5,))), False, ((0.0, 0.0), (2.0, 1.0))),) def test_interpolate_preset(self, points, weights, indices, _, out): """Tests whether interpolation results are correct.""" weights = tf.convert_to_tensor(value=weights) result_unnormalized = weighted.interpolate( points=points, weights=weights, indices=indices, normalize=False) result_normalized = weighted.interpolate( points=points, weights=2.0 * weights, indices=indices, normalize=True) estimated_unnormalized = self.evaluate(result_unnormalized) estimated_normalized = self.evaluate(result_normalized) self.assertAllClose(estimated_unnormalized, out) self.assertAllClose(estimated_normalized, out) @parameterized.parameters( (3, 4, 2, 3), (5, 4, 5, 3), (5, 6, 5, 5), (2, 6, 5, 1), ) def test_interpolate_negative_weights_raised(self, dim_points, num_points, num_outputs, num_pts_to_interpolate): """Tests whether exception is raised when weights are negative.""" points, weights, indices = self._get_tensors_from_shapes( num_points, dim_points, num_outputs, num_pts_to_interpolate) weights *= -1.0 with self.assertRaises(tf.errors.InvalidArgumentError): result = weighted.interpolate( points=points, weights=weights, indices=indices, normalize=True) self.evaluate(result) @parameterized.parameters( (((-1.0, 1.0), (1.0, 1.0), (3.0, 1.0), (-1.0, -1.0), (1.0, -1.0), (3.0, -1.0)), ((1.0, -1.0, 1.0, -1.0), (0.0, 0.0, 0.0, 0.0)), (((0,), (1,), (3,), (4,)), ((1,), (2,), (4,), (5,))), ((0.0, 0.0), (0.0, 0.0)))) def test_interp_unnormalizable_raised_(self, points, weights, indices, _): """Tests whether exception is raised when weights are unnormalizable.""" with self.assertRaises(tf.errors.InvalidArgumentError): result = weighted.interpolate( points=points, weights=weights, indices=indices, normalize=True, allow_negative_weights=True) self.evaluate(result) @parameterized.parameters( (3, 4, 2, 3), (5, 4, 5, 3), (5, 6, 5, 5), (2, 6, 5, 1), ) def test_interpolate_jacobian_random(self, dim_points, num_points, num_outputs, num_pts_to_interpolate): """Tests whether jacobian is correct.""" points_np, weights_np, indices_np = self._get_tensors_from_shapes( num_points, dim_points, num_outputs, num_pts_to_interpolate) def interpolate_fn(points, weights): return weighted.interpolate( points=points, weights=weights, indices=indices_np, normalize=True) self.assert_jacobian_is_correct_fn(interpolate_fn, [points_np, weights_np]) @parameterized.parameters( ((3, 2), (2, 2)), ((None, 3, 2), (None, 1, 2)), ((10, 5, 3, 2), (10, 5, 2, 2)), ) def test_get_barycentric_coordinates_exception_not_raised(self, *shapes): """Tests that the shape exceptions are not raised.""" self.assert_exception_is_not_raised(weighted.get_barycentric_coordinates, shapes) @parameterized.parameters( ("triangle_vertices must have exactly 2 dimensions in axis -1", (3, 1), (1, 2)), ("triangle_vertices must have exactly 3 dimensions in axis -2", (2, 2), (1, 2)), ("pixels must have exactly 2 dimensions in axis -1", (3, 2), (1, 3)), ("Not all batch dimensions are broadcast-compatible", (5, 3, 2), (2, 10, 2)), ) def test_get_barycentric_coordinates_exception_raised(self, error_msg, *shape): """Tests that the shape exceptions are raised.""" self.assert_exception_is_raised(weighted.get_barycentric_coordinates, error_msg, shape) def test_get_barycentric_coordinates_jacobian_random(self): """Tests the Jacobian of get_barycentric_coordinates.""" tensor_size = np.random.randint(2) tensor_shape = np.random.randint(1, 2, size=(tensor_size)).tolist() triangle_vertices_init = 0.4 * np.random.random( tensor_shape + [3, 2]).astype(np.float64) - 0.2 triangle_vertices_init += np.array( ((0.25, 0.25), (0.5, 0.75), (0.75, 0.25))) pixels_init = np.random.random(tensor_shape + [3, 2]).astype(np.float64) barycentric_fn = weighted.get_barycentric_coordinates self.assert_jacobian_is_correct_fn( lambda vertices, pixels: barycentric_fn(vertices, pixels)[0], [triangle_vertices_init, pixels_init]) def test_get_barycentric_coordinates_normalized(self): """Tests whether the barycentric coordinates are normalized.""" tensor_size = np.random.randint(3) tensor_shape = np.random.randint(1, 10, size=(tensor_size)).tolist() num_pixels = np.random.randint(1, 10) pixels_shape = tensor_shape + [num_pixels] triangle_vertices = np.random.random(tensor_shape + [3, 2]) pixels =
np.random.random(pixels_shape + [2])
numpy.random.random
# Built-in import warnings import itertools as itt import copy import datetime as dtm # DB # Common import numpy as np import scipy.interpolate as scpinterp import scipy.stats as scpstats import matplotlib.pyplot as plt __all__ = [ 'fit1d_dinput', 'fit2d_dinput', 'fit12d_dvalid', 'fit12d_dscales', ] _NPEAKMAX = 12 _DCONSTRAINTS = { 'bck_amp': False, 'bck_rate': False, 'amp': False, 'width': False, 'shift': False, 'double': False, 'symmetry': False, } _DORDER = ['amp', 'width', 'shift'] _SAME_SPECTRUM = False _DEG = 2 _NBSPLINES = 13 _SYMMETRY_CENTRAL_FRACTION = 0.3 _BINNING = False _POS = False _SUBSET = False _VALID_NSIGMA = 6. _VALID_FRACTION = 0.8 _LTYPES = [int, float, np.int_, np.float_] _DBOUNDS = { 'bck_amp': (0., 3.), 'bck_rate': (-3., 3.), 'amp': (0, 10), 'width': (0.01, 2.), 'shift': (-1, 1), 'dratio': (0., 2.), 'dshift': (-10., 10.), 'bs': (-10., 10.), } _DX0 = { 'bck_amp': 1., 'bck_rate': 0., 'amp': 1., 'width': 1., 'shift': 0., 'dratio': 0.5, 'dshift': 0., 'bs': 1., } _DINDOK = { 0: 'ok', -1: 'mask', -2: 'out of domain', -3: 'neg or NaN', -4: 'binning=0', -5: 'S/N valid, excluded', -6: 'S/N non-valid, included', -7: 'S/N non-valid, excluded', } ########################################################### ########################################################### # # Preliminary # utility tools for 1d spectral fitting # ########################################################### ########################################################### def get_symmetry_axis_1dprofile(phi, data, cent_fraction=None): """ On a series of 1d vertical profiles, find the best symmetry axis """ if cent_fraction is None: cent_fraction = _SYMMETRY_CENTRAL_FRACTION # Find the phi in the central fraction phimin = np.nanmin(phi) phimax = np.nanmax(phi) phic = 0.5*(phimax + phimin) dphi = (phimax - phimin)*cent_fraction indphi = np.abs(phi-phic) <= dphi/2. phiok = phi[indphi] # Compute new phi and associated costs phi2 = phi[:, None] - phiok[None, :] phi2min = np.min([np.nanmax(np.abs(phi2 * (phi2 < 0)), axis=0), np.nanmax(np.abs(phi2 * (phi2 > 0)), axis=0)], axis=0) indout = np.abs(phi2) > phi2min[None, :] phi2p = np.abs(phi2) phi2n = np.abs(phi2) phi2p[(phi2 < 0) | indout] = np.nan phi2n[(phi2 > 0) | indout] = np.nan nok = np.min([np.sum((~np.isnan(phi2p)), axis=0), np.sum((~np.isnan(phi2n)), axis=0)], axis=0) cost = np.full((data.shape[0], phiok.size), np.nan) for ii in range(phiok.size): indp = np.argsort(np.abs(phi2p[:, ii])) indn = np.argsort(np.abs(phi2n[:, ii])) cost[:, ii] = np.nansum( (data[:, indp] - data[:, indn])[:, :nok[ii]]**2, axis=1) return phiok[np.nanargmin(cost, axis=1)] ########################################################### ########################################################### # # 1d spectral fitting from dlines # ########################################################### ########################################################### def _checkformat_dconstraints(dconstraints=None, defconst=None): # Check constraints if dconstraints is None: dconstraints = defconst # Check dconstraints keys lk = sorted(_DCONSTRAINTS.keys()) c0 = ( isinstance(dconstraints, dict) and all([k0 in lk for k0 in dconstraints.keys()]) ) if not c0: msg = ( "\ndconstraints should contain constraints for spectrum fitting\n" + "It be a dict with the following keys:\n" + "\t- available keys: {}\n".format(lk) + "\t- provided keys: {}".format(dconstraints.keys()) ) raise Exception(msg) # copy to avoid modifying reference return copy.deepcopy(dconstraints) def _checkformat_dconstants(dconstants=None, dconstraints=None): if dconstants is None: return lk = [kk for kk in sorted(dconstraints.keys()) if kk != 'symmetry'] if not isinstance(dconstants, dict): msg = ( "\ndconstants should be None or a dict with keys in:\n" + "\t- available keys: {}\n".format(lk) + "\t- provided : {}".format(type(dconstants)) ) raise Exception(msg) # Check dconstraints keys lc = [ k0 for k0, v0 in dconstants.items() if not ( k0 in lk and ( ( k0 in _DORDER and isinstance(v0, dict) and all([ k1 in dconstraints[k0].keys() and type(v1) in _LTYPES for k1, v1 in v0.items() ]) ) or ( k0 not in _DORDER and type(v0) in _LTYPES ) ) ) ] if len(lc) > 0: dc0 = [ '\t\t{}: {}'.format( kk, sorted(dconstraints[kk].keys()) if kk in _DORDER else float ) for kk in lk ] dc1 = [ '\t\t{}: {}'.format( kk, sorted(dconstants[kk].keys()) if kk in _DORDER else dconstants[kk] ) for kk in sorted(dconstants.keys()) ] msg = ( "\ndconstants should be None or a dict with keys in:\n" + "\t- available keys:\n" + "\n".join(dc0) + "\n\t- provided keys:\n" + "\n".join(dc1) ) raise Exception(msg) # copy to avoid modifying reference return copy.deepcopy(dconstants) def _dconstraints_double(dinput, dconstraints, defconst=_DCONSTRAINTS): dinput['double'] = dconstraints.get('double', defconst['double']) c0 = ( isinstance(dinput['double'], bool) or ( isinstance(dinput['double'], dict) and all([ kk in ['dratio', 'dshift'] and type(vv) in _LTYPES for kk, vv in dinput['double'].items() ]) ) ) if c0 is False: msg = ( "dconstraints['double'] must be either:\n" + "\t- False: no line doubling\n" + "\t- True: line doubling with unknown ratio and shift\n" + "\t- {'dratio': float}: line doubling with:\n" + "\t \t explicit ratio, unknown shift\n" + "\t- {'dshift': float}: line doubling with:\n" + "\t \t unknown ratio, explicit shift\n" + "\t- {'dratio': float, 'dshift': float}: line doubling with:\n" + "\t \t explicit ratio, explicit shift" ) raise Exception(msg) def _width_shift_amp( indict, dconstants=None, keys=None, dlines=None, nlines=None, k0=None, ): # ------------------------ # Prepare error message msg = '' pavail = sorted(set(itt.chain.from_iterable([ v0.keys() for v0 in dlines.values() ]))) # ------------------------ # Check case c0 = indict is False c1 = ( isinstance(indict, str) and indict in pavail ) c2 = ( isinstance(indict, dict) and all([ isinstance(k1, str) and ( (isinstance(v1, str)) # and v0 in keys) or ( isinstance(v1, list) and all([ isinstance(v2, str) # and v1 in keys for v2 in v1 ]) ) ) for k1, v1 in indict.items() ]) ) c3 = ( isinstance(indict, dict) and all([ # ss in keys isinstance(vv, dict) and all([s1 in ['key', 'coef', 'offset'] for s1 in vv.keys()]) and isinstance(vv['key'], str) for ss, vv in indict.items() ]) ) c4 = ( isinstance(indict, dict) and isinstance(indict.get('keys'), list) and isinstance(indict.get('ind'), np.ndarray) ) if not any([c0, c1, c2, c3, c4]): msg = ( f"dconstraints['{k0}'] shoud be either:\n" f"\t- False ({c0}): no constraint\n" f"\t- str ({c1}): key from dlines['<lines>'] " "to be used as criterion\n" f"\t\t available crit: {pavail}\n" f"\t- dict ({c2}): " "{str: line_keyi or [line_keyi, ..., line_keyj}\n" f"\t- dict ({c3}): " "{line_keyi: {'key': str, 'coef': , 'offset': }}\n" f"\t- dict ({c4}): " "{'keys': [], 'ind': np.ndarray}\n" f" Available line_keys:\n{sorted(keys)}\n" f" You provided:\n{indict}" ) raise Exception(msg) # ------------------------ # str key to be taken from dlines as criterion if c0: lk = keys ind = np.eye(nlines, dtype=bool) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': np.ones((nlines,)), 'offset': np.zeros((nlines,)), } if c1: lk = sorted(set([dlines[k1].get(indict, k1) for k1 in keys])) ind = np.array( [ [dlines[k2].get(indict, k2) == k1 for k2 in keys] for k1 in lk ], dtype=bool, ) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': np.ones((nlines,)), 'offset': np.zeros((nlines,)), } elif c2: lkl = [] for k1, v1 in indict.items(): if isinstance(v1, str): v1 = [v1] v1 = [k2 for k2 in v1 if k2 in keys] c0 = ( len(set(v1)) == len(v1) and all([k2 not in lkl for k2 in v1]) ) if not c0: msg = ( "Inconsistency in indict[{}], either:\n".format(k1) + "\t- v1 not unique: {}\n".format(v1) + "\t- some v1 not in keys: {}\n".format(keys) + "\t- some v1 in lkl: {}".format(lkl) ) raise Exception(msg) indict[k1] = v1 lkl += v1 for k1 in set(keys).difference(lkl): indict[k1] = [k1] lk = sorted(set(indict.keys())) ind = np.array( [[k2 in indict[k1] for k2 in keys] for k1 in lk], dtype=bool, ) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': np.ones((nlines,)), 'offset': np.zeros((nlines,)), } elif c3: lk = sorted(set([v0['key'] for v0 in indict.values()])) lk += sorted(set(keys).difference(indict.keys())) ind = np.array( [ [indict.get(k2, {'key': k2})['key'] == k1 for k2 in keys] for k1 in lk ], dtype=bool, ) coefs = np.array([ indict.get(k1, {'coef': 1.}).get('coef', 1.) for k1 in keys ]) offset = np.array([ indict.get(k1, {'offset': 0.}).get('offset', 0.) for k1 in keys ]) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': coefs, 'offset': offset, } elif c4: outdict = indict if 'coefs' not in indict.keys(): outdict['coefs'] = np.ones((nlines,)) if 'offset' not in indict.keys(): outdict['offset'] = np.zeros((nlines,)) # ------------------------ # Remove group with no match indnomatch = np.sum(ind, axis=1) == 0 if np.any(indnomatch): lknom = outdict['keys'][indnomatch] outdict['keys'] = outdict['keys'][~indnomatch] outdict['ind'] = outdict['ind'][~indnomatch, :] lstr = [f"\t- {k1}" for k1 in lknom] msg = ( f"The following {k0} groups match no lines, they are removed:\n" + "\n".join(lstr) ) warnings.warn(msg) # ------------------------ # Ultimate conformity checks assert sorted(outdict.keys()) == ['coefs', 'ind', 'keys', 'offset'] # check ind (root of all subsequent ind arrays) assert isinstance(outdict['ind'], np.ndarray) assert outdict['ind'].dtype == np.bool_ assert outdict['ind'].shape == (outdict['keys'].size, nlines) # check each line is associated to a unique group assert np.all(np.sum(outdict['ind'], axis=0) == 1) # check each group is associated to at least one line assert np.all(np.sum(outdict['ind'], axis=1) >= 1) assert outdict['coefs'].shape == (nlines,) assert outdict['offset'].shape == (nlines,) return outdict ########################################################### ########################################################### # # 2d spectral fitting from dlines # ########################################################### ########################################################### def _dconstraints_symmetry( dinput, dprepare=None, symmetry=None, cent_fraction=None, defconst=_DCONSTRAINTS, ): if symmetry is None: symmetry = defconst['symmetry'] dinput['symmetry'] = symmetry if not isinstance(dinput['symmetry'], bool): msg = "dconstraints['symmetry'] must be a bool" raise Exception(msg) if dinput['symmetry'] is True: dinput['symmetry_axis'] = get_symmetry_axis_1dprofile( dprepare['phi1d'], dprepare['dataphi1d'], cent_fraction=cent_fraction, ) ########################################################### ########################################################### # # data, lamb, phi conformity checks # ########################################################### ########################################################### def _checkformat_data_fit12d_dlines_msg(data, lamb, phi=None, mask=None): datash = data.shape if isinstance(data, np.ndarray) else type(data) lambsh = lamb.shape if isinstance(lamb, np.ndarray) else type(lamb) phish = phi.shape if isinstance(phi, np.ndarray) else type(phi) masksh = mask.shape if isinstance(mask, np.ndarray) else type(mask) shaped = '(nt, n1)' if phi is None else '(nt, n1, n2)' shape = '(n1,)' if phi is None else '(n1, n2)' msg = ("Args data, lamb, phi and mask must be:\n" + "\t- data: {} or {} np.ndarray\n".format(shaped, shape) + "\t- lamb, phi: both {} np.ndarray\n".format(shape) + "\t- mask: None or {}\n".format(shape) + " You provided:\n" + "\t - data: {}\n".format(datash) + "\t - lamb: {}\n".format(lambsh)) if phi is not None: msg += "\t - phi: {}\n".format(phish) msg += "\t - mask: {}\n".format(masksh) return msg def _checkformat_data_fit12d_dlines( data, lamb, phi=None, nxi=None, nxj=None, mask=None, is2d=False, ): # Check types c0 = isinstance(data, np.ndarray) and isinstance(lamb, np.ndarray) if is2d: c0 &= isinstance(phi, np.ndarray) if not c0: msg = _checkformat_data_fit12d_dlines_msg( data, lamb, phi=phi, mask=mask, ) raise Exception(msg) # Check shapes 1 mindim = 1 if phi is None else 2 phi1d, lamb1d, dataphi1d, datalamb1d = None, None, None, None if is2d: # special case c1 = lamb.ndim == phi.ndim == 1 if c1: if nxi is None: nxi = lamb.size if nxj is None: nxj = phi.size lamb1d = np.copy(lamb) phi1d = np.copy(phi) lamb = np.repeat(lamb[None, :], nxj, axis=0) phi = np.repeat(phi[:, None], nxi, axis=1) if nxi is None or nxj is None: msg = "Arg (nxi, nxj) must be provided for double-checking shapes" raise Exception(msg) c0 = ( data.ndim in mindim + np.r_[0, 1] and ( lamb.ndim == mindim and lamb.shape == data.shape[-mindim:] and lamb.shape == phi.shape and lamb.shape in [(nxi, nxj), (nxj, nxi)] ) ) else: c0 = ( data.ndim in mindim + np.r_[0, 1] and lamb.ndim == mindim and lamb.shape == data.shape[-mindim:] ) if not c0: msg = _checkformat_data_fit12d_dlines_msg( data, lamb, phi=phi, mask=mask, ) raise Exception(msg) # Check shapes 2 if data.ndim == mindim: data = data[None, ...] if is2d and c1: dataphi1d = np.nanmean(data, axis=2) datalamb1d = np.nanmean(data, axis=1) if is2d and lamb.shape == (nxi, nxj): lamb = lamb.T phi = phi.T data = np.swapaxes(data, 1, 2) # mask if mask is not None: if mask.shape != lamb.shape: if phi is not None and mask.T.shape == lamb.shape: mask = mask.T else: msg = _checkformat_data_fit12d_dlines_msg( data, lamb, phi=phi, mask=mask, ) raise Exception(msg) if is2d: return lamb, phi, data, mask, phi1d, lamb1d, dataphi1d, datalamb1d else: return lamb, data, mask ########################################################### ########################################################### # # Domain limitation # ########################################################### ########################################################### def _checkformat_domain(domain=None, keys=['lamb', 'phi']): if keys is None: keys = ['lamb', 'phi'] if isinstance(keys, str): keys = [keys] if domain is None: domain = { k0: { 'spec': [np.inf*np.r_[-1., 1.]], 'minmax': np.inf*np.r_[-1., 1.], } for k0 in keys } return domain c0 = ( isinstance(domain, dict) and all([k0 in keys for k0 in domain.keys()]) ) if not c0: msg = ("\nArg domain must be a dict with keys {}\n".format(keys) + "\t- provided: {}".format(domain)) raise Exception(msg) domain2 = {k0: v0 for k0, v0 in domain.items()} for k0 in keys: domain2[k0] = domain2.get(k0, [np.inf*np.r_[-1., 1.]]) ltypesin = [list, np.ndarray] ltypesout = [tuple] for k0, v0 in domain2.items(): c0 = ( type(v0) in ltypesin + ltypesout and ( ( all([type(v1) in _LTYPES for v1 in v0]) and len(v0) == 2 and v0[1] > v0[0] ) or ( all([ type(v1) in ltypesin + ltypesout and all([type(v2) in _LTYPES for v2 in v1]) and len(v1) == 2 and v1[1] > v1[0] for v1 in v0 ]) ) ) ) if not c0: msg = ( "domain[{}] must be either a:\n".format(k0) + "\t- np.ndarray or list of 2 increasing values: " + "inclusive interval\n" + "\t- tuple of 2 increasing values: exclusive interval\n" + "\t- a list of combinations of the above\n" + " provided: {}".format(v0) ) raise Exception(msg) if type(v0) in ltypesout: v0 = [v0] else: c0 = all([ type(v1) in ltypesin + ltypesout and len(v1) == 2 and v1[1] > v1[0] for v1 in v0 ]) if not c0: v0 = [v0] domain2[k0] = { 'spec': v0, 'minmax': [np.nanmin(v0), np.nanmax(v0)], } return domain2 def apply_domain(lamb=None, phi=None, domain=None): lc = [lamb is not None, phi is not None] if not lc[0]: msg = "At least lamb must be provided!" raise Exception(msg) din = {'lamb': lamb} if lc[1]: din['phi'] = phi domain = _checkformat_domain(domain=domain, keys=din.keys()) ind = np.ones(lamb.shape, dtype=bool) for k0, v0 in din.items(): indin = np.zeros(v0.shape, dtype=bool) indout = np.zeros(v0.shape, dtype=bool) for v1 in domain[k0]['spec']: indi = (v0 >= v1[0]) & (v0 <= v1[1]) if isinstance(v1, tuple): indout |= indi else: indin |= indi ind = ind & indin & (~indout) return ind, domain ########################################################### ########################################################### # # binning (2d only) # ########################################################### ########################################################### def _binning_check( binning, dlamb_ref=None, dphi_ref=None, domain=None, nbsplines=None, ): lk = ['phi', 'lamb'] lkall = lk + ['nperbin'] msg = ( "binning must be dict of the form:\n" + "\t- provide number of bins:\n" + "\t \t{'phi': int,\n" + "\t \t 'lamb': int}\n" + "\t- provide bin edges vectors:\n" + "\t \t{'phi': 1d np.ndarray (increasing),\n" + "\t \t 'lamb': 1d np.ndarray (increasing)}\n" + " provided:\n{}".format(binning) ) # Check input if binning is None: binning = _BINNING if nbsplines is None: nbsplines = False if nbsplines is not False: c0 = isinstance(nbsplines, int) and nbsplines > 0 if not c0: msg2 = ( "Both nbsplines and deg must be positive int!\n" + "\t- nbsplines: {}\n".format(nbsplines) ) raise Exception(msg2) # Check which format was passed and return None or dict ltypes0 = _LTYPES ltypes1 = [tuple, list, np.ndarray] lc = [ binning is False, ( isinstance(binning, dict) and all([kk in lkall for kk in binning.keys()]) and all([kk in binning.keys() for kk in lk]) ), type(binning) in ltypes0, type(binning) in ltypes1, ] if not any(lc): raise Exception(msg) if binning is False: return binning elif type(binning) in ltypes0: binning = { 'phi': {'nbins': int(binning)}, 'lamb': {'nbins': int(binning)}, } elif type(binning) in ltypes1: binning = np.atleast_1d(binning).ravel() binning = { 'phi': {'edges': binning}, 'lamb': {'edges': binning}, } for kk in lk: if type(binning[kk]) in ltypes0: binning[kk] = {'nbins': int(binning[kk])} elif type(binning[kk]) in ltypes1: binning[kk] = {'edges': np.atleast_1d(binning[kk]).ravel()} c0 = all([ all([k1 in ['edges', 'nbins'] for k1 in binning[k0].keys()]) for k0 in lk ]) c0 = ( c0 and all([ ( ( binning[k0].get('nbins') is None or type(binning[k0].get('nbins')) in ltypes0 ) and ( binning[k0].get('edges') is None or type(binning[k0].get('edges')) in ltypes1 ) ) for k0 in lk ]) ) if not c0: raise Exception(msg) # Check dict for k0 in lk: c0 = all([k1 in ['nbins', 'edges'] for k1 in binning[k0].keys()]) if not c0: raise Exception(msg) if binning[k0].get('nbins') is not None: binning[k0]['nbins'] = int(binning[k0]['nbins']) if binning[k0].get('edges') is None: binning[k0]['edges'] = np.linspace( domain[k0]['minmax'][0], domain[k0]['minmax'][1], binning[k0]['nbins'] + 1, endpoint=True, ) else: binning[k0]['edges'] = np.atleast_1d( binning[k0]['edges']).ravel() if binning[k0]['nbins'] != binning[k0]['edges'].size - 1: raise Exception(msg) elif binning[k0].get('bin_edges') is not None: binning[k0]['edges'] = np.atleast_1d(binning[k0]['edges']).ravel() binning[k0]['nbins'] = binning[k0]['edges'].size - 1 else: raise Exception(msg) # ------------ # safet checks if np.any(~np.isfinite(binning[k0]['edges'])): msg = ( f"Non-finite value in binning['{k0}']['edges']\n" + str(binning[k0]['edges']) ) raise Exception(msg) if not np.allclose( binning[k0]['edges'], np.unique(binning[k0]['edges']), ): raise Exception(msg) # Optional check vs nbsplines and deg if nbsplines is not False: if binning['phi']['nbins'] <= nbsplines: msg = ( "The number of bins is too high:\n" + "\t- nbins = {}\n".format(binning['phi']['nbins']) + "\t- nbsplines = {}".format(nbsplines) ) raise Exception(msg) # -------------- # Check binning for (dref, k0) in [(dlamb_ref, 'lamb'), (dphi_ref, 'phi')]: if dref is not None: di = np.mean(np.diff(binning[k0]['edges'])) if di < dref: ni_rec = ( (domain[k0]['minmax'][1] - domain[k0]['minmax'][0]) / dref ) msg = ( f"binning[{k0}] seems finer than the original!\n" f"\t- estimated original step: {dref}\n" f"\t- binning step: {di}\n" f" => nb. of recommended steps: {ni_rec:5.1f}" ) warnings.warn(msg) return binning def binning_2d_data( lamb, phi, data, indok=None, indok_bool=None, domain=None, binning=None, nbsplines=None, phi1d=None, lamb1d=None, dataphi1d=None, datalamb1d=None, ): # ------------------------- # Preliminary check on bins dlamb_ref, dphi_ref = None, None if lamb.ndim == 2: indmid = int(lamb.shape[0]/2) dlamb_ref = (np.max(lamb[indmid, :]) - np.min(lamb[indmid, :])) dlamb_ref = dlamb_ref / lamb.shape[1] indmid = int(lamb.shape[1]/2) dphi_ref = (np.max(phi[:, indmid]) - np.min(phi[:, indmid])) dphi_ref = dphi_ref / lamb.shape[0] # ------------------ # Checkformat input binning = _binning_check( binning, domain=domain, dlamb_ref=dlamb_ref, nbsplines=nbsplines, ) nspect = data.shape[0] if binning is False: if phi1d is None: phi1d_edges = np.linspace( domain['phi']['minmax'][0], domain['phi']['minmax'][1], 100, ) lamb1d_edges = np.linspace( domain['lamb']['minmax'][0], domain['lamb']['minmax'][1], 100, ) dataf = data.reshape((nspect, data.shape[1]*data.shape[2])) dataphi1d = scpstats.binned_statistic( phi.ravel(), dataf, statistic='sum', bins=phi1d_edges, )[0] datalamb1d = scpstats.binned_statistic( lamb.ravel(), dataf, statistic='sum', bins=lamb1d_edges, )[0] phi1d = 0.5*(phi1d_edges[1:] + phi1d_edges[:-1]) lamb1d = 0.5*(lamb1d_edges[1:] + lamb1d_edges[:-1]) return ( lamb, phi, data, indok, binning, phi1d, lamb1d, dataphi1d, datalamb1d, ) else: nphi = binning['phi']['nbins'] nlamb = binning['lamb']['nbins'] bins = (binning['phi']['edges'], binning['lamb']['edges']) # ------------------ # Compute databin = np.full((nspect, nphi, nlamb), np.nan) nperbin = np.full((nspect, nphi, nlamb), np.nan) indok_new = np.zeros((nspect, nphi, nlamb), dtype=np.int8) for ii in range(nspect): databin[ii, ...] = scpstats.binned_statistic_2d( phi[indok_bool[ii, ...]], lamb[indok_bool[ii, ...]], data[ii, indok_bool[ii, ...]], statistic='mean', # Beware: for valid S/N use sum! bins=bins, range=None, expand_binnumbers=True, )[0] nperbin[ii, ...] = scpstats.binned_statistic_2d( phi[indok_bool[ii, ...]], lamb[indok_bool[ii, ...]], np.ones((indok_bool[ii, ...].sum(),), dtype=int), statistic='sum', bins=bins, range=None, expand_binnumbers=True, )[0] binning['nperbin'] = nperbin lamb1d = 0.5*( binning['lamb']['edges'][1:] + binning['lamb']['edges'][:-1] ) phi1d = 0.5*( binning['phi']['edges'][1:] + binning['phi']['edges'][:-1] ) lambbin = np.repeat(lamb1d[None, :], nphi, axis=0) phibin = np.repeat(phi1d[:, None], nlamb, axis=1) # reconstructing indok indok_new[np.isnan(databin)] = -1 indok_new[nperbin == 0] = -4 # dataphi1d dataphi1d = np.full(databin.shape[:2], np.nan) indok = ~np.all(np.isnan(databin), axis=2) dataphi1d[indok] = np.nanmean(databin[indok, :], axis=-1) datalamb1d = np.full(databin.shape[::2], np.nan) indok = ~np.all(np.isnan(databin), axis=1) datalamb1d[indok] = ( np.nanmean(databin.swapaxes(1, 2)[indok, :], axis=-1) + np.nanstd(databin.swapaxes(1, 2)[indok, :], axis=-1) ) return ( lambbin, phibin, databin, indok_new, binning, phi1d, lamb1d, dataphi1d, datalamb1d, ) ########################################################### ########################################################### # # dprepare dict # ########################################################### ########################################################### def _get_subset_indices(subset, indlogical): if subset is None: subset = _SUBSET if subset is False: return indlogical c0 = ( ( isinstance(subset, np.ndarray) and subset.shape == indlogical.shape and 'bool' in subset.dtype.name ) or ( type(subset) in [int, float, np.int_, np.float_] and subset >= 0 ) ) if not c0: msg = ("subset must be either:\n" + "\t- an array of bool of shape: {}\n".format(indlogical.shape) + "\t- a positive int (nb. of ind. to keep from indlogical)\n" + "You provided:\n{}".format(subset)) raise Exception(msg) if isinstance(subset, np.ndarray): indlogical = subset[None, ...] & indlogical else: subset = np.random.default_rng().choice( indlogical.sum(), size=int(indlogical.sum() - subset), replace=False, shuffle=False, ) for ii in range(indlogical.shape[0]): ind = indlogical[ii, ...].nonzero() indlogical[ii, ind[0][subset], ind[1][subset]] = False return indlogical def _extract_lphi_spectra( data, phi, lamb, lphi=None, lphi_tol=None, databin=None, binning=None, nlamb=None, ): """ Extra several 1d spectra from 2d image at lphi """ # -------------- # Check input if lphi is None: lphi = False if lphi is False: lphi_tol = False if lphi is not False: lphi = np.atleast_1d(lphi).astype(float).ravel() lphi_tol = float(lphi_tol) if lphi is False: return False, False nphi = len(lphi) # -------------- # Compute non-trivial cases if binning is False: if nlamb is None: nlamb = lamb.shape[1] lphi_lamb = np.linspace(lamb.min(), lamb.max(), nlamb+1) lphi_spectra = np.full((data.shape[0], lphi_lamb.size-1, nphi), np.nan) for ii in range(nphi): indphi = np.abs(phi - lphi[ii]) < lphi_tol lphi_spectra[:, ii, :] = scpstats.binned_statistic( lamb[indphi], data[:, indphi], bins=lphi_lamb, statistic='mean', range=None, )[0] else: lphi_lamb = 0.5*( binning['lamb']['edges'][1:] + binning['lamb']['edges'][:-1] ) lphi_phi = 0.5*( binning['phi']['edges'][1:] + binning['phi']['edges'][:-1] ) lphi_spectra = np.full((data.shape[0], nphi, lphi_lamb.size), np.nan) lphi_spectra1 = np.full((data.shape[0], nphi, lphi_lamb.size), np.nan) for ii in range(nphi): datai = databin[:, np.abs(lphi_phi - lphi[ii]) < lphi_tol, :] iok = np.any(~np.isnan(datai), axis=1) for jj in range(datai.shape[0]): if np.any(iok[jj, :]): lphi_spectra[jj, ii, iok[jj, :]] = np.nanmean( datai[jj, :, iok[jj, :]], axis=1, ) return lphi_spectra, lphi_lamb def _checkformat_possubset(pos=None, subset=None): if pos is None: pos = _POS c0 = isinstance(pos, bool) or type(pos) in _LTYPES if not c0: msg = ("Arg pos must be either:\n" + "\t- False: no positivity constraints\n" + "\t- True: all negative values are set to nan\n" + "\t- float: all negative values are set to pos") raise Exception(msg) if subset is None: subset = _SUBSET return pos, subset def multigausfit1d_from_dlines_prepare( data=None, lamb=None, mask=None, domain=None, pos=None, subset=None, update_domain=None, ): # -------------- # Check input pos, subset = _checkformat_possubset(pos=pos, subset=subset) # Check shape of data (multiple time slices possible) lamb, data, mask = _checkformat_data_fit12d_dlines( data, lamb, mask=mask, ) # -------------- # Use valid data only and optionally restrict lamb indok = np.zeros(data.shape, dtype=np.int8) if mask is not None: indok[:, ~mask] = -1 inddomain, domain = apply_domain(lamb, domain=domain) if mask is not None: indok[:, (~inddomain) & mask] = -2 else: indok[:, ~inddomain] = -2 # Optional positivity constraint if pos is not False: if pos is True: data[data < 0.] = np.nan else: data[data < 0.] = pos indok[(indok == 0) & np.isnan(data)] = -3 # Recompute domain indok_bool = indok == 0 if update_domain is None: update_domain = bool(np.any(np.isinf(domain['lamb']['minmax']))) if update_domain is True: domain['lamb']['minmax'] = [ np.nanmin(lamb[np.any(indok_bool, axis=0)]), np.nanmax(lamb[np.any(indok_bool, axis=0)]), ] # -------------- # Optionally fit only on subset # randomly pick subset indices (replace=False => no duplicates) # indok = _get_subset_indices(subset, indok) if np.any(np.isnan(data[indok_bool])): msg = ( "Some NaNs in data not caught by indok!" ) raise Exception(msg) if np.sum(indok_bool) == 0: msg = "There does not seem to be any usable data (no indok)" raise Exception(msg) # -------------- # Return dprepare = { 'data': data, 'lamb': lamb, 'domain': domain, 'indok': indok, 'indok_bool': indok_bool, 'dindok': dict(_DINDOK), 'pos': pos, 'subset': subset, } return dprepare def multigausfit2d_from_dlines_prepare( data=None, lamb=None, phi=None, mask=None, domain=None, update_domain=None, pos=None, binning=None, nbsplines=None, deg=None, subset=None, nxi=None, nxj=None, lphi=None, lphi_tol=None, ): # -------------- # Check input pos, subset = _checkformat_possubset(pos=pos, subset=subset) # Check shape of data (multiple time slices possible) ( lamb, phi, data, mask, phi1d, lamb1d, dataphi1d, datalamb1d, ) = _checkformat_data_fit12d_dlines( data, lamb, phi, nxi=nxi, nxj=nxj, mask=mask, is2d=True, ) # -------------- # Use valid data only and optionally restrict lamb / phi indok = np.zeros(data.shape, dtype=np.int8) if mask is not None: indok[:, ~mask] = -1 inddomain, domain = apply_domain(lamb, phi, domain=domain) if mask is not None: indok[:, (~inddomain) & mask] = -2 else: indok[:, ~inddomain] = -2 # Optional positivity constraint if pos is not False: if pos is True: data[data < 0.] = np.nan else: data[data < 0.] = pos # Introduce time-dependence (useful for valid) indok[(indok == 0) & np.isnan(data)] = -3 # Recompute domain indok_bool = indok == 0 if not np.any(indok_bool): msg = "No valid point in data!" raise Exception(msg) if update_domain is None: update_domain = bool( np.any(np.isinf(domain['lamb']['minmax'])) or np.any(np.isinf(domain['phi']['minmax'])) ) if update_domain is True: domain['lamb']['minmax'] = [ np.nanmin(lamb[np.any(indok_bool, axis=0)]), np.nanmax(lamb[np.any(indok_bool, axis=0)]), ] domain['phi']['minmax'] = [ np.nanmin(phi[np.any(indok_bool, axis=0)]), np.nanmax(phi[np.any(indok_bool, axis=0)]), ] # -------------- # Optionnal 2d binning ( lambbin, phibin, databin, indok, binning, phi1d, lamb1d, dataphi1d, datalamb1d, ) = binning_2d_data( lamb, phi, data, indok=indok, indok_bool=indok_bool, binning=binning, domain=domain, nbsplines=nbsplines, phi1d=phi1d, lamb1d=lamb1d, dataphi1d=dataphi1d, datalamb1d=datalamb1d, ) indok_bool = indok == 0 # -------------- # Optionally fit only on subset # randomly pick subset indices (replace=False => no duplicates) # indok_bool = _get_subset_indices(subset, indok == 0) # -------------- # Optionally extract 1d spectra at lphi lphi_spectra, lphi_lamb = _extract_lphi_spectra( data, phi, lamb, lphi, lphi_tol, databin=databin, binning=binning, ) if np.sum(indok_bool) == 0: msg = "There does not seem to be any usable data (no indok)" raise Exception(msg) # -------------- # Return dprepare = { 'data': databin, 'lamb': lambbin, 'phi': phibin, 'domain': domain, 'binning': binning, 'indok': indok, 'indok_bool': indok_bool, 'dindok': dict(_DINDOK), 'pos': pos, 'subset': subset, 'nxi': nxi, 'nxj': nxj, 'lphi': lphi, 'lphi_tol': lphi_tol, 'lphi_spectra': lphi_spectra, 'lphi_lamb': lphi_lamb, 'phi1d': phi1d, 'dataphi1d': dataphi1d, 'lamb1d': lamb1d, 'datalamb1d': datalamb1d, } return dprepare def multigausfit2d_from_dlines_dbsplines( knots=None, deg=None, nbsplines=None, phimin=None, phimax=None, symmetryaxis=None, ): # Check / format input if nbsplines is None: nbsplines = _NBSPLINES c0 = [nbsplines is False, isinstance(nbsplines, int)] if not any(c0): msg = "nbsplines must be a int (degree of bsplines to be used!)" raise Exception(msg) if nbsplines is False: lk = ['knots', 'knots_mult', 'nknotsperbs', 'ptsx0', 'nbs', 'deg'] return dict.fromkeys(lk, False) if deg is None: deg = _DEG if not (isinstance(deg, int) and deg <= 3): msg = "deg must be a int <= 3 (the degree of the bsplines to be used!)" raise Exception(msg) if symmetryaxis is None: symmetryaxis = False if knots is None: if phimin is None or phimax is None: msg = "Please provide phimin and phimax if knots is not provided!" raise Exception(msg) phimargin = (phimax - phimin)/1000. if symmetryaxis is False: knots = np.linspace( phimin - phimargin, phimax + phimargin, nbsplines + 1 - deg, ) else: phi2max = np.max( np.abs(np.r_[phimin, phimax][None, :] - symmetryaxis[:, None]) ) knots = np.linspace(0, phi2max + phimargin, nbsplines + 1 - deg) if not np.allclose(knots, np.unique(knots)): msg = "knots must be a vector of unique values!" raise Exception(msg) # Get knots for scipy (i.e.: with multiplicity) if deg > 0: knots_mult = np.r_[[knots[0]]*deg, knots, [knots[-1]]*deg] else: knots_mult = knots nknotsperbs = 2 + deg nbs = knots.size - 1 + deg assert nbs == knots_mult.size - 1 - deg if deg == 0: ptsx0 = 0.5*(knots[:-1] + knots[1:]) elif deg == 1: ptsx0 = knots elif deg == 2: num = (knots_mult[3:]*knots_mult[2:-1] - knots_mult[1:-2]*knots_mult[:-3]) denom = (knots_mult[3:] + knots_mult[2:-1] - knots_mult[1:-2] - knots_mult[:-3]) ptsx0 = num / denom else: # To be derived analytically for more accuracy ptsx0 = np.r_[ knots[0], np.mean(knots[:2]), knots[1:-1], np.mean(knots[-2:]), knots[-1], ] msg = ("degree 3 not fully implemented yet!" + "Approximate values for maxima positions") warnings.warn(msg) assert ptsx0.size == nbs dbsplines = { 'knots': knots, 'knots_mult': knots_mult, 'nknotsperbs': nknotsperbs, 'ptsx0': ptsx0, 'nbs': nbs, 'deg': deg, } return dbsplines ########################################################### ########################################################### # # dvalid dict (S/N ratio) # ########################################################### ########################################################### def _dvalid_checkfocus_errmsg(focus=None, focus_half_width=None, lines_keys=None): msg = ("Please provide focus as:\n" + "\t- str: the key of an available spectral line:\n" + "\t\t{}\n".format(lines_keys) + "\t- float: a wavelength value\n" + "\t- a list / tuple / flat np.ndarray of such\n" + "\t- a np.array of shape (2, N) or (N, 2) (focus + halfwidth)" + " You provided:\n" + "{}\n\n".format(focus) + "Please provide focus_half_width as:\n" + "\t- float: a unique wavelength value for all focus\n" + "\t- a list / tuple / flat np.ndarray of such\n" + " You provided:\n" + "{}".format(focus_half_width)) return msg def _dvalid_checkfocus( focus=None, focus_half_width=None, lines_keys=None, lines_lamb=None, lamb=None, ): """ Check the provided focus is properly formatted and convert it focus specifies the wavelength range of interest in which S/N is evaluated It can be provided as: - a spectral line key (or list of such) - a wavelength (or list of such) For each wavelength, a spectral range centered on it, is defined using the provided focus_half_width The focus_half_width can be a unique value applied to all or a list of values of the same length as focus. focus is then return as a (n, 2) array where: each line gives a central wavelength and halfwidth of interest """ if focus in [None, False]: return False # Check focus and transform to array of floats if isinstance(focus, tuple([str] + _LTYPES)): focus = [focus] lc = [ isinstance(focus, (list, tuple, np.ndarray)) and all([ (isinstance(ff, tuple(_LTYPES)) and ff > 0.) or (isinstance(ff, str) and ff in lines_keys) for ff in focus ]), isinstance(focus, (list, tuple, np.ndarray)) and all([ isinstance(ff, (list, tuple, np.ndarray)) for ff in focus ]) and np.asarray(focus).ndim == 2 and 2 in np.asarray(focus).shape and np.all(np.isfinite(focus)) and np.all(np.asarray(focus) > 0) ] if not any(lc): msg = _dvalid_checkfocus_errmsg( focus, focus_half_width, lines_keys, ) raise Exception(msg) # Centered on lines if lc[0]: focus = np.array([ lines_lamb[(lines_keys == ff).nonzero()[0][0]] if isinstance(ff, str) else ff for ff in focus ]) # Check focus_half_width and transform to array of floats if focus_half_width is None: focus_half_width = (np.nanmax(lamb) - np.nanmin(lamb))/10. lc0 = [ type(focus_half_width) in _LTYPES, ( type(focus_half_width) in [list, tuple, np.ndarray] and len(focus_half_width) == focus.size and all([type(fhw) in _LTYPES for fhw in focus_half_width]) ) ] if not any(lc0): msg = _dvalid_checkfocus_errmsg( focus, focus_half_width, lines_keys, ) raise Exception(msg) if lc0[0] is True: focus_half_width = np.full((focus.size,), focus_half_width) focus = np.array([focus, np.r_[focus_half_width]]).T elif lc[1]: focus = np.asarray(focus, dtype=float) if focus.shape[1] != 2: focus = focus.T return focus def fit12d_dvalid( data=None, lamb=None, phi=None, indok_bool=None, binning=None, valid_nsigma=None, valid_fraction=None, focus=None, focus_half_width=None, lines_keys=None, lines_lamb=None, dphimin=None, nbs=None, deg=None, knots=None, knots_mult=None, nknotsperbs=None, return_fract=None, ): """ Return a dict of valid time steps and phi indices data points are considered valid if there signal is sufficient: np.sqrt(data) >= valid_nsigma data is supposed to be provided in counts (or photons).. TBC!!! """ # Check inputs if valid_nsigma is None: valid_nsigma = _VALID_NSIGMA if valid_fraction is None: valid_fraction = _VALID_FRACTION if binning is None: binning = False if dphimin is None: dphimin = 0. if return_fract is None: return_fract = False data2d = data.ndim == 3 nspect = data.shape[0] focus = _dvalid_checkfocus( focus=focus, focus_half_width=focus_half_width, lines_keys=lines_keys, lines_lamb=lines_lamb, lamb=lamb, ) # Get indices of pts with enough signal ind = np.zeros(data.shape, dtype=bool) isafe = np.isfinite(data) isafe[isafe] = data[isafe] >= 0. if indok_bool is not None: isafe &= indok_bool # Ok with and w/o binning if data provided as counts if binning is False: ind[isafe] = np.sqrt(data[isafe]) > valid_nsigma else: # For S/N in binning, if counts => sum = mean * nbperbin ind[isafe] = ( np.sqrt(data[isafe] * binning['nperbin'][isafe]) > valid_nsigma ) # Derive indt and optionally dphi and indknots indbs, ldphi = False, False if focus is False: lambok = np.ones(tuple(np.r_[lamb.shape, 1]), dtype=bool) indall = ind[..., None] else: # TBC lambok = np.rollaxis( np.array([np.abs(lamb - ff[0]) < ff[1] for ff in focus]), 0, lamb.ndim + 1, ) indall = ind[..., None] & lambok[None, ...] nfocus = lambok.shape[-1] if data2d is True: # Code ok with and without binning :-) # Get knots intervals that are ok fract = np.full((nspect, knots.size-1, nfocus), np.nan) for ii in range(knots.size - 1): iphi = (phi >= knots[ii]) & (phi < knots[ii + 1]) fract[:, ii, :] = ( np.sum(np.sum(indall & iphi[None, ..., None], axis=1), axis=1) / np.sum(np.sum(iphi[..., None] & lambok, axis=0), axis=0) ) indknots = np.all(fract > valid_fraction, axis=2) # Deduce ldphi ldphi = [[] for ii in range(nspect)] for ii in range(nspect): for jj in range(indknots.shape[1]): if indknots[ii, jj]: if jj == 0 or not indknots[ii, jj-1]: ldphi[ii].append([knots[jj]]) if jj == indknots.shape[1] - 1: ldphi[ii][-1].append(knots[jj+1]) else: if jj > 0 and indknots[ii, jj-1]: ldphi[ii][-1].append(knots[jj]) # Safety check assert all([ all([len(dd) == 2 and dd[0] < dd[1] for dd in ldphi[ii]]) for ii in range(nspect) ]) # Deduce indbs that are ok nintpbs = nknotsperbs - 1 indbs = np.zeros((nspect, nbs), dtype=bool) for ii in range(nbs): ibk = np.arange(max(0, ii-(nintpbs-1)), min(knots.size-1, ii+1)) indbs[:, ii] = np.any(indknots[:, ibk], axis=1) assert np.all( (np.sum(indbs, axis=1) == 0) | (np.sum(indbs, axis=1) >= deg + 1) ) # Deduce indt indt = np.any(indbs, axis=1) else: # 1d spectra if focus is False: fract = ind.sum(axis=-1) / ind.shape[1] indt = fract > valid_fraction else: fract = np.sum(indall, axis=1) / lambok.sum(axis=0)[None, :] indt = np.all(fract > valid_fraction, axis=1) # Optional debug if focus is not False and False: indt_debug, ifocus = 40, 1 if data2d is True: indall2 = indall.astype(int) indall2[:, lambok] = 1 indall2[ind[..., None] & lambok[None, ...]] = 2 plt.figure() plt.imshow(indall2[indt_debug, :, :, ifocus].T, origin='lower') else: plt.figure() plt.plot(lamb[~indall[indt_debug, :, ifocus]], data[indt_debug, ~indall[indt_debug, :, ifocus]], '.k', lamb[indall[indt_debug, :, ifocus]], data[indt_debug, indall[indt_debug, :, ifocus]], '.r') plt.axvline(focus[ifocus, 0], ls='--', c='k') if not np.any(indt): msg = ( "\nThere is no valid time step with the provided constraints:\n" + "\t- valid_nsigma = {}\n".format(valid_nsigma) + "\t- valid_fraction = {}\n".format(valid_fraction) + "\t- focus = {}\n".format(focus) + f"\t- fract max, mean = {np.max(fract), np.mean(fract)}\n" + "\t- fract = {}\n".format(fract) ) raise Exception(msg) # return dvalid = { 'indt': indt, 'ldphi': ldphi, 'indbs': indbs, 'ind': ind, 'focus': focus, 'valid_fraction': valid_fraction, 'valid_nsigma': valid_nsigma, } if return_fract is True: dvalid['fract'] = fract return dvalid ########################################################### ########################################################### # # dlines dict (lines vs domain) # ########################################################### ########################################################### def _checkformat_dlines(dlines=None, domain=None): if dlines is None: dlines = False if not isinstance(dlines, dict): msg = "Arg dlines must be a dict!" raise Exception(msg) lc = [ (k0, type(v0)) for k0, v0 in dlines.items() if not ( isinstance(k0, str) and isinstance(v0, dict) and 'lambda0' in v0.keys() and ( type(v0['lambda0']) in _LTYPES or ( isinstance(v0['lambda0'], np.ndarray) and v0['lambda0'].size == 1 ) ) ) ] if len(lc) > 0: lc = ["\t- {}: {}".format(*cc) for cc in lc] msg = ( "Arg dlines must be a dict of the form:\n" + "\t{'line0': {'lambda0': float},\n" + "\t 'line1': {'lambda0': float},\n" + "\t ...\n" + "\t 'lineN': {'lambda0': float}}\n" + " You provided:\n{}".format('\n'.join(lc)) ) raise Exception(msg) # Select relevant lines (keys, lamb) lines_keys = np.array([k0 for k0 in dlines.keys()]) lines_lamb = np.array([float(dlines[k0]['lambda0']) for k0 in lines_keys]) if domain not in [None, False]: ind = np.zeros((len(lines_keys),), dtype=bool) for ss in domain['lamb']['spec']: if isinstance(ss, (list, np.ndarray)): ind[(lines_lamb >= ss[0]) & (lines_lamb < ss[1])] = True for ss in domain['lamb']['spec']: if isinstance(ss, tuple): ind[(lines_lamb >= ss[0]) & (lines_lamb < ss[1])] = False lines_keys = lines_keys[ind] lines_lamb = lines_lamb[ind] inds = np.argsort(lines_lamb) lines_keys, lines_lamb = lines_keys[inds], lines_lamb[inds] nlines = lines_lamb.size dlines = {k0: dict(dlines[k0]) for k0 in lines_keys} # Warning if no lines left if len(lines_keys) == 0: msg = "There seems to be no lines left!" warnings.warn(msg) return dlines, lines_keys, lines_lamb ########################################################### ########################################################### # # dinput dict (lines + spectral constraints) # ########################################################### ########################################################### def fit1d_dinput( dlines=None, dconstraints=None, dconstants=None, dprepare=None, data=None, lamb=None, mask=None, domain=None, pos=None, subset=None, update_domain=None, same_spectrum=None, nspect=None, same_spectrum_dlamb=None, focus=None, valid_fraction=None, valid_nsigma=None, focus_half_width=None, valid_return_fract=None, dscales=None, dx0=None, dbounds=None, defconst=_DCONSTRAINTS, ): """ Check and format a dict of inputs to be fed to fit1d() This dict will contain all information relevant for solving the fit: - dlines: dict of lines (with 'lambda0': wavelength at rest) - lamb: vector of wavelength of the experimental spectrum - data: experimental spectrum, possibly 2d (time-varying) - dconstraints: dict of constraints on lines (amp, width, shift) - pos: bool, consider only positive data (False => replace <0 with nan) - domain: - mask: - subset: - same_spectrum: - focus: """ # ------------------------ # Check / format dprepare # ------------------------ if dprepare is None: dprepare = multigausfit1d_from_dlines_prepare( data=data, lamb=lamb, mask=mask, domain=domain, pos=pos, subset=subset, update_domain=update_domain, ) # ------------------------ # Check / format dlines # ------------------------ dlines, lines_keys, lines_lamb = _checkformat_dlines( dlines=dlines, domain=dprepare['domain'], ) nlines = lines_lamb.size # Check same_spectrum if same_spectrum is None: same_spectrum = _SAME_SPECTRUM if same_spectrum is True: if type(nspect) not in [int, np.int]: msg = "Please provide nspect if same_spectrum = True" raise Exception(msg) if same_spectrum_dlamb is None: same_spectrum_dlamb = min( 2*np.diff(dprepare['domain']['lamb']['minmax']), dprepare['domain']['lamb']['minmax'][0], ) # ------------------------ # Check / format dconstraints # ------------------------ dconstraints = _checkformat_dconstraints( dconstraints=dconstraints, defconst=defconst, ) dinput = {} # ------------------------ # Check / format double # ------------------------ _dconstraints_double(dinput, dconstraints, defconst=defconst) # ------------------------ # Check / format width, shift, amp (groups with possible ratio) # ------------------------ for k0 in ['amp', 'width', 'shift']: dinput[k0] = _width_shift_amp( dconstraints.get(k0, defconst[k0]), dconstants=dconstants, keys=lines_keys, nlines=nlines, dlines=dlines, k0=k0, ) # ------------------------ # add mz, symb, ION, keys, lamb # ------------------------ mz = np.array([dlines[k0].get('m', np.nan) for k0 in lines_keys]) symb = np.array([dlines[k0].get('symbol', k0) for k0 in lines_keys]) ion = np.array([dlines[k0].get('ion', '?') for k0 in lines_keys]) # ------------------------ # same_spectrum # ------------------------ if same_spectrum is True: keysadd = np.array([[kk+'_bis{:04.0f}'.format(ii) for kk in keys] for ii in range(1, nspect)]).ravel() lines_lamb = ( same_spectrum_dlamb*np.arange(0, nspect)[:, None] + lines_lamb[None, :] ) keys = np.r_[keys, keysadd] for k0 in _DORDER: # Add other lines to original group keyk = dinput[k0]['keys'] offset = np.tile(dinput[k0]['offset'], nspect) if k0 == 'shift': ind = np.tile(dinput[k0]['ind'], (1, nspect)) coefs = ( dinput[k0]['coefs'] * lines_lamb[0, :] / lines_lamb ).ravel() else: coefs = np.tile(dinput[k0]['coefs'], nspect) keysadd = np.array([ [kk+'_bis{:04.0f}'.format(ii) for kk in keyk] for ii in range(1, nspect) ]).ravel() ind = np.zeros((keyk.size*nspect, nlines*nspect)) for ii in range(nspect): i0, i1 = ii*keyk.size, (ii+1)*keyk.size j0, j1 = ii*nlines, (ii+1)*nlines ind[i0:i1, j0:j1] = dinput[k0]['ind'] keyk = np.r_[keyk, keysadd] dinput[k0]['keys'] = keyk dinput[k0]['ind'] = ind dinput[k0]['coefs'] = coefs dinput[k0]['offset'] = offset nlines *= nspect lines_lamb = lines_lamb.ravel() # update mz, symb, ion mz = np.tile(mz, nspect) symb = np.tile(symb, nspect) ion = np.tile(ion, nspect) # ------------------------ # add lines and properties # ------------------------ dinput['keys'] = lines_keys dinput['lines'] = lines_lamb dinput['nlines'] = nlines dinput['mz'] = mz dinput['symb'] = symb dinput['ion'] = ion dinput['same_spectrum'] = same_spectrum if same_spectrum is True: dinput['same_spectrum_nspect'] = nspect dinput['same_spectrum_dlamb'] = same_spectrum_dlamb else: dinput['same_spectrum_nspect'] = False dinput['same_spectrum_dlamb'] = False # ------------------------ # S/N threshold indices # ------------------------ dinput['valid'] = fit12d_dvalid( data=dprepare['data'], lamb=dprepare['lamb'], indok_bool=dprepare['indok_bool'], valid_nsigma=valid_nsigma, valid_fraction=valid_fraction, focus=focus, focus_half_width=focus_half_width, lines_keys=lines_keys, lines_lamb=lines_lamb, return_fract=valid_return_fract, ) # Update with dprepare dinput['dprepare'] = dict(dprepare) # Add dind dinput['dind'] = multigausfit12d_from_dlines_ind(dinput) # Add dscales, dx0 and dbounds dinput['dscales'] = fit12d_dscales(dscales=dscales, dinput=dinput) dinput['dbounds'] = fit12d_dbounds(dbounds=dbounds, dinput=dinput) dinput['dx0'] = fit12d_dx0(dx0=dx0, dinput=dinput) dinput['dconstants'] = fit12d_dconstants( dconstants=dconstants, dinput=dinput, ) # add lambmin for bck dinput['lambmin_bck'] = np.min(dprepare['lamb']) return dinput def fit2d_dinput( dlines=None, dconstraints=None, dconstants=None, dprepare=None, deg=None, nbsplines=None, knots=None, data=None, lamb=None, phi=None, mask=None, domain=None, pos=None, subset=None, binning=None, cent_fraction=None, update_domain=None, focus=None, valid_fraction=None, valid_nsigma=None, focus_half_width=None, valid_return_fract=None, dscales=None, dx0=None, dbounds=None, nxi=None, nxj=None, lphi=None, lphi_tol=None, defconst=_DCONSTRAINTS, ): """ Check and format a dict of inputs to be fed to fit2d() This dict will contain all information relevant for solving the fit: - dlines: dict of lines (with 'lambda0': wavelength at rest) - lamb: vector of wavelength of the experimental spectrum - data: experimental spectrum, possibly 2d (time-varying) - dconstraints: dict of constraints on lines (amp, width, shift) - pos: bool, consider only positive data (False => replace <0 with nan) - domain: - mask: - subset: - same_spectrum: - focus: """ # ------------------------ # Check / format dprepare # ------------------------ if dprepare is None: dprepare = multigausfit2d_from_dlines_prepare( data=data, lamb=lamb, phi=phi, mask=mask, domain=domain, pos=pos, subset=subset, binning=binning, update_domain=update_domain, nbsplines=nbsplines, deg=deg, nxi=nxi, nxj=nxj, lphi=None, lphi_tol=None, ) # ------------------------ # Check / format dlines # ------------------------ dlines, lines_keys, lines_lamb = _checkformat_dlines( dlines=dlines, domain=dprepare['domain'], ) nlines = lines_lamb.size # ------------------------ # Check / format dconstraints # ------------------------ dconstraints = _checkformat_dconstraints( dconstraints=dconstraints, defconst=defconst, ) dinput = {} # ------------------------ # Check / format symmetry # ------------------------ _dconstraints_symmetry( dinput, dprepare=dprepare, symmetry=dconstraints.get('symmetry'), cent_fraction=cent_fraction, defconst=defconst, ) # ------------------------ # Check / format double (spectral line doubling) # ------------------------ _dconstraints_double(dinput, dconstraints, defconst=defconst) # ------------------------ # Check / format width, shift, amp (groups with posssible ratio) # ------------------------ for k0 in ['amp', 'width', 'shift']: dinput[k0] = _width_shift_amp( dconstraints.get(k0, defconst[k0]), dconstants=dconstants, keys=lines_keys, nlines=nlines, dlines=dlines, k0=k0, ) # ------------------------ # add mz, symb, ION, keys, lamb # ------------------------ mz = np.array([dlines[k0].get('m', np.nan) for k0 in lines_keys]) symb = np.array([dlines[k0].get('symbol', k0) for k0 in lines_keys]) ion = np.array([dlines[k0].get('ION', '?') for k0 in lines_keys]) # ------------------------ # add lines and properties # ------------------------ dinput['keys'] = lines_keys dinput['lines'] = lines_lamb dinput['nlines'] = nlines dinput['mz'] = mz dinput['symb'] = symb dinput['ion'] = ion # ------------------------ # Get dict of bsplines # ------------------------ dinput.update(multigausfit2d_from_dlines_dbsplines( knots=knots, deg=deg, nbsplines=nbsplines, phimin=dprepare['domain']['phi']['minmax'][0], phimax=dprepare['domain']['phi']['minmax'][1], symmetryaxis=dinput.get('symmetry_axis') )) # ------------------------ # S/N threshold indices # ------------------------ dinput['valid'] = fit12d_dvalid( data=dprepare['data'], lamb=dprepare['lamb'], phi=dprepare['phi'], binning=dprepare['binning'], indok_bool=dprepare['indok_bool'], valid_nsigma=valid_nsigma, valid_fraction=valid_fraction, focus=focus, focus_half_width=focus_half_width, lines_keys=lines_keys, lines_lamb=lines_lamb, nbs=dinput['nbs'], deg=dinput['deg'], knots=dinput['knots'], knots_mult=dinput['knots_mult'], nknotsperbs=dinput['nknotsperbs'], return_fract=valid_return_fract, ) # Update with dprepare dinput['dprepare'] = dict(dprepare) # Add dind dinput['dind'] = multigausfit12d_from_dlines_ind(dinput) # Add dscales, dx0 and dbounds dinput['dscales'] = fit12d_dscales(dscales=dscales, dinput=dinput) dinput['dbounds'] = fit12d_dbounds(dbounds=dbounds, dinput=dinput) dinput['dx0'] = fit12d_dx0(dx0=dx0, dinput=dinput) dinput['dconstants'] = fit12d_dconstants( dconstants=dconstants, dinput=dinput, ) # Update indok with non-valid phi # non-valid = ok but out of dphi for ii in range(dinput['dprepare']['indok'].shape[0]): iphino = dinput['dprepare']['indok'][ii, ...] == 0 for jj in range(len(dinput['valid']['ldphi'][ii])): iphino &= ( ( dinput['dprepare']['phi'] < dinput['valid']['ldphi'][ii][jj][0] ) | ( dinput['dprepare']['phi'] >= dinput['valid']['ldphi'][ii][jj][1] ) ) # valid, but excluded (out of dphi) iphi = ( (dinput['dprepare']['indok'][ii, ...] == 0) & (dinput['valid']['ind'][ii, ...]) & (iphino) ) dinput['dprepare']['indok'][ii, iphi] = -5 # non-valid, included (in dphi) iphi = ( (dinput['dprepare']['indok'][ii, ...] == 0) & (~dinput['valid']['ind'][ii, ...]) & (~iphino) ) dinput['dprepare']['indok'][ii, iphi] = -6 # non-valid, excluded (out of dphi) iphi = ( (dinput['dprepare']['indok'][ii, ...] == 0) & (~dinput['valid']['ind'][ii, ...]) & (iphino) ) dinput['dprepare']['indok'][ii, iphi] = -7 # indok_bool True if indok == 0 or -5 (because ...) dinput['dprepare']['indok_bool'] = ( (dinput['dprepare']['indok'] == 0) | (dinput['dprepare']['indok'] == -6) ) # add lambmin for bck dinput['lambmin_bck'] = np.min(dinput['dprepare']['lamb']) return dinput ########################################################### ########################################################### # # dind dict (indices storing for fast access) # ########################################################### ########################################################### def multigausfit12d_from_dlines_ind(dinput=None): """ Return the indices of quantities in x to compute y """ # indices # General shape: [bck, amp, widths, shifts] # If double [..., double_shift, double_ratio] # Except for bck, all indices should render nlines (2*nlines if double) nbs = dinput.get('nbs', 1) dind = { 'bck_amp': {'x': np.arange(0, nbs)[:, None]}, 'bck_rate': {'x': np.arange(nbs, 2*nbs)[:, None]}, 'dshift': None, 'dratio': None, } nn = dind['bck_amp']['x'].size + dind['bck_rate']['x'].size inddratio, inddshift = None, None for k0 in _DORDER: # l0bs0, l0bs1, ..., l0bsN, l1bs0, ...., lnbsN ind = dinput[k0]['ind'] lnl = np.sum(ind, axis=1).astype(int) dind[k0] = { 'x': ( nn + nbs*np.arange(0, ind.shape[0])[None, :] + np.arange(0, nbs)[:, None] ), 'lines': ( nn + nbs*
np.argmax(ind, axis=0)
numpy.argmax
""" Utilities for reading and writing parameters files to perform FFD geometrical morphing. """ try: import configparser as configparser except ImportError: import ConfigParser as configparser import os import numpy as np from OCC.Bnd import Bnd_Box from OCC.BRepBndLib import brepbndlib_Add from OCC.BRepMesh import BRepMesh_IncrementalMesh import vtk import pygem.affine as at class FFDParameters(object): """ Class that handles the Free Form Deformation parameters in terms of FFD bounding box and weight of the FFD control points. :param list n_control_points: number of control points in the x, y, and z direction. If not provided it is set to [2, 2, 2]. :cvar numpy.ndarray box_length: dimension of the FFD bounding box, in the x, y and z direction (local coordinate system). :cvar numpy.ndarray box_origin: the x, y and z coordinates of the origin of the FFD bounding box. :cvar numpy.ndarray rot_angle: rotation angle around x, y and z axis of the FFD bounding box. :cvar numpy.ndarray n_control_points: the number of control points in the x, y, and z direction. :cvar numpy.ndarray array_mu_x: collects the displacements (weights) along x, normalized with the box length x. :cvar numpy.ndarray array_mu_y: collects the displacements (weights) along y, normalized with the box length y. :cvar numpy.ndarray array_mu_z: collects the displacements (weights) along z, normalized with the box length z. :Example: from file >>> import pygem.params as ffdp >>> >>> # Reading an existing file >>> params1 = ffdp.FFDParameters() >>> params1.read_parameters( >>> filename='tests/test_datasets/parameters_test_ffd_identity.prm') >>> >>> # Creating a default parameters file with the right dimensions (if the >>> # file does not exists it is created with that name). So it is possible >>> # to manually edit it and read it again. >>> params2 = ffdp.FFDParameters(n_control_points=[2, 3, 2]) >>> params2.read_parameters(filename='parameters_test.prm') >>> >>> # Creating bounding box of the given shape >>> from OCC.IGESControl import IGESControl_Reader >>> params3 = ffdp.FFDParameters() >>> reader = IGESControl_Reader() >>> reader.ReadFile('tests/test_datasets/test_pipe.igs') >>> reader.TransferRoots() >>> shape = reader.Shape() >>> params3.build_bounding_box(shape) .. note:: Four vertex (non coplanar) are sufficient to uniquely identify a parallelepiped. If the four vertex are coplanar, an assert is thrown when `affine_points_fit` is used. """ def __init__(self, n_control_points=None): self.conversion_unit = 1. self.box_length = np.array([1., 1., 1.]) self.box_origin = np.array([0., 0., 0.]) self.rot_angle = np.array([0., 0., 0.]) if n_control_points is None: n_control_points = [2, 2, 2] self.n_control_points = n_control_points @property def n_control_points(self): """ The number of control points in X, Y and Z directions :rtype: numpy.ndarray """ return self._n_control_points @n_control_points.setter def n_control_points(self, npts): self._n_control_points = np.array(npts) self.array_mu_x = np.zeros(self.n_control_points) self.array_mu_y = np.zeros(self.n_control_points) self.array_mu_z = np.zeros(self.n_control_points) @property def psi_mapping(self): """ Map from the physical domain to the reference domain. :rtype: numpy.ndarray """ return np.diag(np.reciprocal(self.box_length)) @property def inv_psi_mapping(self): """ Map from the reference domain to the physical domain. :rtype: numpy.ndarray """ return np.diag(self.box_length) @property def rotation_matrix(self): """ The rotation matrix (according to rot_angle_x, rot_angle_y, rot_angle_z). :rtype: numpy.ndarray """ return at.angles2matrix( np.radians(self.rot_angle[2]), np.radians(self.rot_angle[1]), np.radians(self.rot_angle[0])) @property def position_vertices(self): """ The position of the vertices of the FFD bounding box. :rtype: numpy.ndarray """ return self.box_origin + np.vstack([ np.zeros( (1, 3)), self.rotation_matrix.dot(np.diag(self.box_length)).T ]) def reflect(self, axis=0): """ Reflect the lattice of control points along the direction defined by `axis`. In particular the origin point of the lattice is preserved. So, for instance, the reflection along x, is made with respect to the face of the lattice in the yz plane that is opposite to the origin. Same for the other directions. Only the weights (mu) along the chosen axis are reflected, while the others are preserved. The symmetry plane can not present deformations along the chosen axis. After the refletcion there will be 2n-1 control points along `axis`, witha doubled box length. :param int axis: axis along which the reflection is performed. Default is 0. Possible values are 0, 1, or 2, corresponding to x, y, and z respectively. """ # check axis value if axis not in (0, 1, 2): raise ValueError( "The axis has to be 0, 1, or 2. Current value {}.".format(axis)) # check that the plane of symmetry is undeformed if (axis == 0 and np.count_nonzero(self.array_mu_x[-1, :, :]) != 0) or ( axis == 1 and np.count_nonzero(self.array_mu_y[:, -1, :]) != 0 ) or (axis == 2 and np.count_nonzero(self.array_mu_z[:, :, -1]) != 0): raise RuntimeError( "If you want to reflect the FFD bounding box along axis " + \ "{} you can not diplace the control ".format(axis) + \ "points in the symmetry plane along that axis." ) # double the control points in the given axis -1 (the symmetry plane) self.n_control_points[axis] = 2 * self.n_control_points[axis] - 1 # double the box length self.box_length[axis] *= 2 # we have to reflect the dispacements only along the correct axis reflection = np.ones(3) reflection[axis] = -1 # we select all the indeces but the ones in the plane of symmetry indeces = [slice(None), slice(None), slice(None)] # = [:, :, :] indeces[axis] = slice(1, None) # = [1:] indeces = tuple(indeces) # we append along the given axis all the displacements reflected # and in the reverse order self.array_mu_x = np.append( self.array_mu_x, reflection[0] * np.flip(self.array_mu_x, axis)[indeces], axis=axis) self.array_mu_y = np.append( self.array_mu_y, reflection[1] * np.flip(self.array_mu_y, axis)[indeces], axis=axis) self.array_mu_z = np.append( self.array_mu_z, reflection[2] * np.flip(self.array_mu_z, axis)[indeces], axis=axis) def read_parameters(self, filename='parameters.prm'): """ Reads in the parameters file and fill the self structure. :param string filename: parameters file to be read in. """ if not isinstance(filename, str): raise TypeError("filename must be a string") # Checks if the parameters file exists. If not it writes the default # class into filename. if not os.path.isfile(filename): self.write_parameters(filename) return config = configparser.RawConfigParser() config.read(filename) self.n_control_points[0] = config.getint('Box info', 'n control points x') self.n_control_points[1] = config.getint('Box info', 'n control points y') self.n_control_points[2] = config.getint('Box info', 'n control points z') self.box_length[0] = config.getfloat('Box info', 'box length x') self.box_length[1] = config.getfloat('Box info', 'box length y') self.box_length[2] = config.getfloat('Box info', 'box length z') self.box_origin[0] = config.getfloat('Box info', 'box origin x') self.box_origin[1] = config.getfloat('Box info', 'box origin y') self.box_origin[2] = config.getfloat('Box info', 'box origin z') self.rot_angle[0] = config.getfloat('Box info', 'rotation angle x') self.rot_angle[1] = config.getfloat('Box info', 'rotation angle y') self.rot_angle[2] = config.getfloat('Box info', 'rotation angle z') self.array_mu_x =
np.zeros(self.n_control_points)
numpy.zeros
import torch import numpy as np from sklearn.cluster import KMeans from typing import Mapping, Any, Optional # https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/mixture/_gaussian_mixture.py # https://github.com/scikit-learn/scikit-learn/blob/0fb307bf3/sklearn/mixture/_base.py def _batch_A_T_dot_B(A, B): assert A.dim() == B.dim() == 3 assert A.shape[0] == B.shape[0] assert A.shape[1] == B.shape[1] return (A[:, :, :, np.newaxis] * B[:, :, np.newaxis, :]).sum(dim=1) def _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar): """Estimate the diagonal covariance vectors. Parameters ---------- responsibilities : Tensor, shape (batch_size, n_samples, n_components) X : Tensor, shape (batch_size, n_samples, n_features) nk : Tensor, shape (batch_size, n_components) means : Tensor, shape (batch_size, n_components, n_features) reg_covar : float Returns ------- covariances : Tensor, shape (batch_size, n_components, n_features) The covariance vector of the current components. """ # avg_X2 = np.dot(resp.T, X * X) / nk[:, np.newaxis] # avg_means2 = means ** 2 # avg_X_means = means * np.dot(resp.T, X) / nk[:, np.newaxis] # return avg_X2 - 2 * avg_X_means + avg_means2 + reg_covar avg_X2 = _batch_A_T_dot_B(resp, X * X) / nk[..., np.newaxis] avg_mean2 = means ** 2 avg_X_means = means * _batch_A_T_dot_B(resp, X) / nk[..., np.newaxis] return avg_X2 - 2 * avg_X_means + avg_mean2 + reg_covar def _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar): return _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar).mean(dim=-1) def _estimate_gaussian_parameters_spherical(X, resp, reg_covar): """Estimate the Gaussian distribution parameters. Parameters ---------- X : Tensor, shape (batch_size, n_samples, n_features) The input data array. resp : Tensor, shape (batch_size, n_samples, n_components) The responsibilities for each data sample in X. reg_covar : float The regularization added to the diagonal of the covariance matrices. Returns ------- nk : Tensor, shape (batch_size, n_components) The numbers of data samples in the current components. means : Tensor, shape (batch_size, n_components, n_features) The centers of the current components. covariances : Tensor (batch_size, n_components) The covariance matrix of the current components. """ # nk = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps # means = np.dot(resp.T, X) / nk[:, np.newaxis] # covariances = {"full": _estimate_gaussian_covariances_full, # "tied": _estimate_gaussian_covariances_tied, # "diag": _estimate_gaussian_covariances_diag, # "spherical": _estimate_gaussian_covariances_spherical # }[covariance_type](resp, X, nk, means, reg_covar) nk = resp.sum(dim=1) + 10 * torch.finfo(resp.dtype).eps means = _batch_A_T_dot_B(resp, X) / nk[..., np.newaxis] covariances = _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar) return nk, means, covariances def _estimate_log_gaussian_prob_spherical(X, means, precisions_chol): """Estimate the log Gaussian probability. Parameters ---------- X : Tensor, shape (batch_size, n_samples, n_features) means : Tensor, shape (batch_size, n_components, n_features) precisions_chol : Tensor, shape of (batch_size, n_components) Returns ------- log_prob : Tensor, shape (batch_size, n_samples, n_components) """ batch_size, n_samples, n_features = X.shape # det(precision_chol) is half of det(precision) log_det = n_features * torch.log(precisions_chol) precisions = precisions_chol ** 2 # (batch_size, n_samples, n_components) log_prob = ( ((means ** 2).sum(dim=-1) * precisions)[:, np.newaxis, :] - (2 * (X[:, :, np.newaxis, :] * (means[:, np.newaxis, :, :] * precisions[:, np.newaxis, :, np.newaxis])).sum(dim=-1)) + (X ** 2).sum(dim=-1)[:, :, np.newaxis] * precisions[:, np.newaxis, :] ) return -.5 * (n_features * np.log(2 * np.pi) + log_prob) + log_det[:, np.newaxis, :] class BatchSphericalGMM: def __init__( self, n_components: int = 1, *, tol: float = 1e-3, reg_covar: float = 1e-6, max_iter: int = 100, n_init: int = 1, init_params: str = "kmeans", weights_init: Optional[np.ndarray] = None, means_init: Optional[np.ndarray] = None, precisions_init: Optional[np.ndarray] = None, seed: int = None, # warm_start=False, # verbose=0, # verbose_interval=10, centroids_init=None, fit_means: bool = True, fit_precisions: bool = True, kmeans_kwargs: Optional[Mapping[str, Any]] = None, device: torch.types.Device = "cpu", dtype: torch.dtype = torch.float64, ) -> None: self.n_components = n_components self.tol = tol self.reg_covar = reg_covar self.max_iter = max_iter self.n_init = n_init self.init_params = init_params self.weights_init = weights_init self.means_init = means_init self.precisions_init = precisions_init self.centroids_init = centroids_init self.fit_means = fit_means self.fit_precisions = fit_precisions self.kmeans_kwargs = {} if kmeans_kwargs is None else kmeans_kwargs self.generator = torch.Generator() self.device = device self.dtype = dtype self.seed = seed if seed is not None: self.generator.manual_seed(seed) def fit(self, X: np.ndarray): """ Args: X: array, shape (batch_size, n_samples, n_features) Returns: best_weights: Tensor, (batch_size, n_components) best_means: Tensor, (batch_size, n_components) best_weights: Tensor, (batch_size, n_components) """ X = torch.from_numpy(X).to(dtype=self.dtype, device=self.device) batch_size, n_samples, n_features = X.shape max_lower_bound = torch.full((batch_size,), -np.inf, dtype=self.dtype, device=self.device) best_weights = torch.full((batch_size, self.n_components), np.nan, dtype=self.dtype, device=self.device) best_means = torch.full( (batch_size, self.n_components, n_features), np.nan, dtype=self.dtype, device=self.device ) best_covariances = torch.full((batch_size, self.n_components), np.nan, dtype=self.dtype, device=self.device) for init in range(self.n_init): # self._print_verbose_msg_init_beg(init) self._initialize_parameters(X) lower_bound = torch.full((batch_size,), -np.inf, dtype=self.dtype, device=self.device) for n_iter in range(1, self.max_iter + 1): prev_lower_bound = lower_bound log_prob_norm, log_resp = self._e_step(X) self._m_step(X, log_resp) lower_bound = self._compute_lower_bound(log_resp, log_prob_norm) change = lower_bound - prev_lower_bound # self._print_verbose_msg_iter_end(n_iter, change) if (abs(change) < self.tol).all(): self.converged_ = True break # self._print_verbose_msg_init_end(lower_bound) to_be_updated = lower_bound > max_lower_bound best_weights[to_be_updated] = self.weights_[to_be_updated] best_means[to_be_updated] = self.means_[to_be_updated] best_covariances[to_be_updated] = self.covariances_[to_be_updated] max_lower_bound[to_be_updated] = lower_bound[to_be_updated] return ( best_weights.detach().cpu().numpy(), best_means.detach().cpu().numpy(), best_covariances.detach().cpu().numpy(), max_lower_bound.detach().cpu().numpy(), ) def _initialize_parameters(self, X): batch_size, n_samples, n_features = X.shape if self.centroids_init is not None: centroids = torch.from_numpy(self.centroids_init).to(dtype=self.dtype, device=self.device) assert centroids.shape == (batch_size, self.n_components, n_features) resp = torch.nn.functional.one_hot( torch.argmin(((X[:, :, np.newaxis, :] - centroids[:, np.newaxis, :, :]) ** 2).sum(dim=-1), dim=-1), num_classes=self.n_components ).float() elif self.init_params == 'kmeans': resp = torch.zeros((batch_size, n_samples, self.n_components), dtype=self.dtype, device=self.device) # TODO: batch computation for batch_index in range(batch_size): label = KMeans( n_clusters=self.n_components, n_init=1, random_state=self.seed, **self.kmeans_kwargs ).fit(X[batch_index].detach().cpu().numpy()).labels_ resp[batch_index, np.arange(n_samples), label] = 1 elif self.init_params == 'random': resp = torch.rand((batch_size, n_samples, self.n_components), generator=self.generator) resp = resp.to(dtype=self.dtype, device=self.device) resp /= resp.sum(dim=1, keepdims=True) else: raise ValueError("Unimplemented initialization method '%s'" % self.init_params) self._initialize(X, resp) def _initialize(self, X, resp): batch_size, n_samples, n_features = X.shape weights, means, covariances = _estimate_gaussian_parameters_spherical(X, resp, self.reg_covar) weights /= n_samples if self.weights_init is None: self.weights_ = weights else: self.weights_ = torch.from_numpy(self.weights_init).to(dtype=self.dtype, device=self.device) if self.means_init is None: self.means_ = means else: self.means_ = torch.from_numpy(self.means_init).to(dtype=self.dtype, device=self.device) if self.precisions_init is None: self.precisions_cholesky_ = 1. / torch.sqrt(covariances) self.covariances_ = covariances else: self.precisions_cholesky_ = torch.from_numpy(self.precisions_init).to(dtype=self.dtype, device=self.device) self.covariances_ = 1 / (self.precisions_cholesky_ ** 2) def _e_step(self, X): """ Returns ------- log_prob_norm : Tensor, shape (batch_size,) Mean of the logarithms of the probabilities of each sample in X log_responsibility : Tensor, shape (batch_size, n_samples, n_components) Logarithm of the posterior probabilities (or responsibilities) of the point of each sample in X. """ log_prob_norm, log_resp = self._estimate_log_prob_resp(X) return log_prob_norm.mean(dim=-1), log_resp def _estimate_log_prob_resp(self, X): """Estimate log probabilities and responsibilities for each sample. Compute the log probabilities, weighted log probabilities per component and responsibilities for each sample in X with respect to the current state of the model. Parameters ---------- X : Tensor, shape (batch_size, n_samples, n_features) Returns ------- log_prob_norm : Tensor, shape (batch_size, n_samples) log p(X) log_responsibilities : Tensor, shape (batch_size, n_samples, n_components) logarithm of the responsibilities """ weighted_log_prob = self._estimate_weighted_log_prob(X) log_prob_norm = torch.logsumexp(weighted_log_prob, dim=-1) # TODO: use a context equivalent to np.errstate(under='ignore') log_resp = weighted_log_prob - log_prob_norm[..., np.newaxis] return log_prob_norm, log_resp def _estimate_weighted_log_prob(self, X): """ Returns ------- weighted_log_prob : Tensor, shape (batch_size, n_samples, n_components) """ return self._estimate_log_prob(X) + self._estimate_log_weights()[:, np.newaxis, :] def _estimate_log_prob(self, X): """ Returns ------- log_prob : Tensor, shape (batch_size, n_samples, n_components) """ return _estimate_log_gaussian_prob_spherical(X, self.means_, self.precisions_cholesky_) def _estimate_log_weights(self): """ Returns ------- log_weights : Tensor, shape (batch_size, n_components) """ return torch.log(self.weights_) def _m_step(self, X, log_resp): """M step. Parameters ---------- X : Tensor, shape (batch_size, n_samples, n_features) log_resp : Tensor, shape (batch_size, n_samples, n_components) Logarithm of the posterior probabilities (or responsibilities) of the point of each sample in X. """ batch_size, n_samples, n_features = X.shape weights, means, covariances = _estimate_gaussian_parameters_spherical(X, torch.exp(log_resp), self.reg_covar) self.weights_ = weights / n_samples if self.fit_means: self.means_ = means if self.fit_precisions: self.covariances_ = covariances self.precisions_cholesky_ = 1. / torch.sqrt(covariances) def _compute_lower_bound(self, _, log_prob_norm): return log_prob_norm if __name__ == "__main__": from sklearn.mixture import GaussianMixture import warnings from sklearn.exceptions import ConvergenceWarning np_random = np.random.RandomState(0) gmm_reference = GaussianMixture(n_components=2, covariance_type="spherical", tol=0, random_state=np_random) _initialize_orig = gmm_reference._initialize weights_init, means_init, precisions_init = None, None, None def _patched_initialize(X, resp): global weights_init, means_init, precisions_init _initialize_orig(X, resp) weights_init = gmm_reference.weights_ means_init = gmm_reference.means_ precisions_init = gmm_reference.precisions_cholesky_ gmm_reference._initialize = _patched_initialize batch_size = 32 n_samples, n_features = 250, 2 mu1, mu2 = -1.0, 5.0 sigma1, sigma2 = 1.0, 2.0 X_batch = [] weights_init_batch, means_init_batch, precisions_init_batch = [], [], [] expected_weights, expected_means, expected_covariances = [], [], [] for _ in range(batch_size): n1 = int(n_samples * 0.7) * n_features n2 = n_features * n_samples - n1 X = np_random.normal(np.r_[np.full(n1, mu1), np.full(n2, mu2)], np.r_[np.full(n1, sigma1), np.full(n2, sigma2)]) X = X.reshape(n_samples, n_features) X_batch.append(X) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ConvergenceWarning) gmm_reference.fit(X) weights_init_batch.append(weights_init.copy()) means_init_batch.append(means_init.copy()) precisions_init_batch.append(precisions_init.copy()) expected_weights.append(gmm_reference.weights_.copy()) expected_means.append(gmm_reference.means_.copy()) expected_covariances.append(gmm_reference.covariances_.copy()) weights_init_batch = np.asarray(weights_init_batch, dtype=np.float64) means_init_batch = np.asarray(means_init_batch, dtype=np.float64) precisions_init_batch = np.asarray(precisions_init_batch, dtype=np.float64) X_batch = np.asarray(X_batch, dtype=np.float64) gmm_tested = BatchSphericalGMM( n_components=2, weights_init=weights_init_batch, means_init=means_init_batch, precisions_init=precisions_init_batch, init_params="random", dtype=torch.float64, device="cpu", ) actual_weights, actual_means, actual_covariances = gmm_tested.fit(X_batch) assert np.allclose(expected_weights, actual_weights) assert
np.allclose(expected_means, actual_means)
numpy.allclose
import skimage import skimage.io import skimage.transform import numpy as np from matplotlib import pyplot as plt from matplotlib.pyplot import imshow import matplotlib.image as mpimg import tensorflow as tf import os from skimage import io from skimage.transform import resize import cv2 # synset = [l.strip() for l in open('synset.txt').readlines()] def resnet_preprocess(resized_inputs): """Faster R-CNN Resnet V1 preprocessing. VGG style channel mean subtraction as described here: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md Args: resized_inputs: A [batch, height_in, width_in, channels] float32 tensor representing a batch of images with values between 0 and 255.0. Returns: preprocessed_inputs: A [batch, height_out, width_out, channels] float32 tensor representing a batch of images. """ channel_means = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean') return resized_inputs - channel_means # returns image of shape [224, 224, 3] # [height, width, depth] def load_image(path, normalize=True): """ args: normalize: set True to get pixel value of 0~1 """ # load image img = skimage.io.imread(path) if normalize: img = img / 255.0 assert (0 <= img).all() and (img <= 1.0).all() # print "Original Image Shape: ", img.shape # we crop image from center short_edge = min(img.shape[:2]) yy = int((img.shape[0] - short_edge) / 2) xx = int((img.shape[1] - short_edge) / 2) crop_img = img[yy: yy + short_edge, xx: xx + short_edge] # resize to 224, 224 resized_img = skimage.transform.resize(crop_img, (224, 224), preserve_range=True) # do not normalize at transform. return resized_img # returns the top1 string def print_prob(prob, file_path): synset = [l.strip() for l in open(file_path).readlines()] # print prob pred = np.argsort(prob)[::-1] # Get top1 label top1 = synset[pred[0]] print("Top1: ", top1, prob[pred[0]]) # Get top5 label top5 = [(synset[pred[i]], prob[pred[i]]) for i in range(5)] print("Top5: ", top5) return top1 def visualize(image, conv_output, conv_grad, gb_viz): output = conv_output # [7,7,512] grads_val = conv_grad # [7,7,512] print("grads_val shape:", grads_val.shape) print("gb_viz shape:", gb_viz.shape) weights = np.mean(grads_val, axis = (0, 1)) # alpha_k, [512] cam = np.zeros(output.shape[0 : 2], dtype = np.float32) # [7,7] # Taking a weighted average for i, w in enumerate(weights): cam += w * output[:, :, i] # Passing through ReLU cam = np.maximum(cam, 0) cam = cam / np.max(cam) # scale 0 to 1.0 cam = resize(cam, (128,128), preserve_range=True) img = image.astype(float) img -= np.min(img) img /= img.max() # print(img) cam_heatmap = cv2.applyColorMap(np.uint8(255*cam), cv2.COLORMAP_JET) cam_heatmap = cv2.cvtColor(cam_heatmap, cv2.COLOR_BGR2RGB) # cam = np.float32(cam) + np.float32(img) # cam = 255 * cam / np.max(cam) # cam = np.uint8(cam) fig = plt.figure() ax = fig.add_subplot(111) imgplot = plt.imshow(img) ax.set_title('Input Image') fig = plt.figure(figsize=(12, 16)) ax = fig.add_subplot(141) imgplot = plt.imshow(cam_heatmap) ax.set_title('Grad-CAM') gb_viz = np.dstack(( gb_viz[:, :, 0], gb_viz[:, :, 1], gb_viz[:, :, 2], )) gb_viz -= np.min(gb_viz) gb_viz /= gb_viz.max() gd_gb = np.dstack(( gb_viz[:, :, 0] * cam, gb_viz[:, :, 1] * cam, gb_viz[:, :, 2] * cam, )) image_cam = img*0.7 + (cam_heatmap/255.)*0.3 ax = fig.add_subplot(142) imgplot = plt.imshow(gb_viz) ax.set_title('guided backpropagation') ax = fig.add_subplot(143) imgplot = plt.imshow(gd_gb) ax.set_title('guided Grad-CAM') ax = fig.add_subplot(144) imgplot = plt.imshow(image_cam) ax.set_title('Grad-CAM Image') plt.show() def save_result(image, conv_output, conv_grad, gb_viz, idx=0, version=0, save=True): output = conv_output # [7,7,512] grads_val = conv_grad # [7,7,512] #print("grads_val shape:", grads_val.shape) #print("gb_viz shape:", gb_viz.shape) weights = np.mean(grads_val, axis = (0, 1)) # alpha_k, [512] cam = np.zeros(output.shape[0 : 2], dtype = np.float32) # [7,7] # Taking a weighted average for i, w in enumerate(weights): cam += w * output[:, :, i] # Passing through ReLU cam =
np.maximum(cam, 0)
numpy.maximum
import numpy as np import matplotlib.pyplot as plt import pandas as pd import json import os import datetime as dt import main from eval import data_analysis # LaTeX settings plt.rc('text', usetex=True) plt.rc('font', **{'family': 'serif', 'sans-serif': ['lmodern'], 'size': 18}) plt.rc('axes', **{'titlesize': 18, 'labelsize': 18}) # Constants JSON_PATH = './out/' OUT_PATH = './out/' MODEL_NAMES = { 'KF': ('KalmanFilter', ''), 'KF(+W)': ('KalmanFilter', '_W'), 'KF(+WF)': ('KalmanFilter', '_WF'), 'KD-IC': ('KD-IC', ''), 'KD-IC(+W)': ('KD-IC', '_W'), 'KD-IC(+WF)': ('KD-IC', '_WF'), 'LN-IC': ('LogNormal-IC', ''), 'LN-IC(+W)': ('LogNormal-IC', '_W'), 'LN-IC(+WF)': ('LogNormal-IC', '_WF'), 'DeepAR': ('DeepAR', ''), 'DeepAR(+W)': ('DeepAR', '_W'), 'DeepAR(+WF)': ('DeepAR', '_WF'), 'LW': ('LastWeek', '') } MAIN_SEED = '42' DECIMALS = 2 COLORS = ('C0', 'C1', 'C3', 'C9', 'C7') MARKERS = ('o', 'X', 'v', 'd', 'p') LINESTYLES = ('solid', 'dashed', 'dashdot') S_D = 48 S_W = 7 * S_D def get_file_name(model, level, cluster, seed=''): return f'{MODEL_NAMES[model][0]}{seed}_{level}_{cluster}{MODEL_NAMES[model][1]}' def get_path(model, level, cluster, seed=''): return JSON_PATH + f'{MODEL_NAMES[model][0]}{seed}/{get_file_name(model, level, cluster, seed)}.json' def load_res(model, level, cluster, seed=''): if 'DeepAR' in model and seed == '': seed = MAIN_SEED with open(get_path(model, level, cluster, seed), 'r') as fp: res = json.load(fp) return res def collect_results( levels=('L0', 'L1', 'L2', 'L3'), metrics=('MAPE', 'rMAE', 'rRMSE', 'rCRPS'), models=('KF', 'KF(+W)', 'KF(+WF)', 'KD-IC', 'KD-IC(+W)', 'KD-IC(+WF)', 'DeepAR', 'DeepAR(+W)', 'DeepAR(+WF)', 'LW'), seeds=(0, 1, 2, 3, 4), forecast_reps=28, save_results_with_info=True ): results_path = os.path.join(JSON_PATH, 'results_with_info.npy') if os.path.isfile(results_path): results_with_info = np.load(results_path, allow_pickle=True) return results_with_info[0], results_with_info[1] results = {} level_info = data_analysis.get_level_info(levels) for level in levels: clusters = level_info[level]['clusters'] # Create results array results[level] = np.empty((len(metrics), len(models), len(clusters), forecast_reps)) results[level][:] = np.nan for m, model in enumerate(models): if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue for c, cluster in enumerate(clusters): if 'DeepAR' in model and level is not 'L3': res_per_seed = [] for seed in seeds: res_per_seed.append(load_res(model, level, cluster, seed)) for i, metric in enumerate(metrics): results[level][i, m, c] = np.mean([res[metric] for res in res_per_seed], axis=0) else: res = load_res(model, level, cluster) for i, metric in enumerate(metrics): if 'CRPS' in metric and model == 'LW': # No distributional forecasts for LW model continue results[level][i, m, c] = res[metric] info = { 'levels': level_info, 'metrics': list(metrics), 'models': list(models), 'reps': forecast_reps } if save_results_with_info: np.save(results_path, (results, info), allow_pickle=True) return results, info def collect_results_per_tstp( levels=('L0', 'L1', 'L2'), metrics=('rMAE', 'rRMSE', 'rCRPS'), models=('KF', 'KF(+W)', 'KF(+WF)', 'KD-IC', 'KD-IC(+W)', 'KD-IC(+WF)', 'DeepAR', 'DeepAR(+W)', 'DeepAR(+WF)', 'LW'), seeds=(0, 1, 2, 3, 4), forecast_reps=28, horizon=192, save_results_per_tstp_with_info=True ): results_path = os.path.join(JSON_PATH, 'results_per_tstp_with_info.npy') if os.path.isfile(results_path): results_with_info = np.load(results_path, allow_pickle=True) return results_with_info[0], results_with_info[1] results = {} level_info = data_analysis.get_level_info(levels) t_train, t_val = main.train_val_split(data_analysis.energy_df.index) for level in levels: clusters = level_info[level]['clusters'] # Create results array results[level] = np.empty((len(seeds), len(metrics), len(models), len(clusters), forecast_reps, horizon)) results[level][:] = np.nan level_info[level]['y_mean'] = [] for c, cluster in enumerate(clusters): level_info[level]['y_mean'].append( np.nanmean(data_analysis.get_observations_at(level, cluster, t_train)) ) y_true = data_analysis.get_observations_at(level, cluster, t_val).reshape(forecast_reps, horizon) for m, model in enumerate(models): if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue if 'DeepAR' in model and level is not 'L3': for s, seed in enumerate(seeds): res = load_res(model, level, cluster, seed) for i, metric in enumerate(metrics): if metric == 'rMAE': results[level][s, i, m, c] = np.abs(y_true - res['p50']) elif metric == 'rRMSE': results[level][s, i, m, c] = (y_true - res['mean']) ** 2 elif metric == 'rCRPS': results[level][s, i, m, c] = res['CRPS'] else: res = load_res(model, level, cluster) for i, metric in enumerate(metrics): if 'CRPS' in metric and model == 'LW': # No distributional forecasts for LW model continue if metric == 'rMAE': results[level][0, i, m, c] = np.abs(y_true - res['p50']) elif metric == 'rRMSE': results[level][0, i, m, c] = (y_true - res['mean']) ** 2 elif metric == 'rCRPS': results[level][0, i, m, c] = res['CRPS'] info = { 'levels': level_info, 'metrics': list(metrics), 'models': list(models), 'reps': forecast_reps, 'horizon': horizon } if save_results_per_tstp_with_info: np.save(results_path, (results, info), allow_pickle=True) return results, info def create_metric_df(metric, with_std=True, to_LaTeX=True): results, info = collect_results() i = info['metrics'].index(metric) row_names = info['models'] col_names = info['levels'].keys() metric_df = pd.DataFrame(index=row_names, columns=col_names, dtype=float) for level in col_names: for m, model in enumerate(row_names): mean = np.mean(results[level][i, m]) metric_df.loc[model, level] = (('%%.%sf' % DECIMALS) % mean) if not np.isnan(mean) else '-' if with_std and not np.isnan(mean): std = np.std(results[level][i, m]) metric_df.loc[model, level] += (' (%%.%sf)' % DECIMALS) % std if to_LaTeX: df_to_LaTeX(metric_df) return metric_df def create_level_df(level, with_std=True, to_LaTeX=True): results, info = collect_results() row_names = info['metrics'] col_names = info['models'] level_df = pd.DataFrame(index=row_names, columns=col_names, dtype=float) for i, metric in enumerate(row_names): for m, model in enumerate(col_names): mean = np.mean(results[level][i, m]) level_df.loc[metric, model] = (('%%.%sf' % DECIMALS) % mean) if not np.isnan(mean) else '-' if with_std and not np.isnan(mean): std = np.std(results[level][i, m]) level_df.loc[metric, model] += (' (%%.%sf)' % DECIMALS) % std if to_LaTeX: df_to_LaTeX(level_df) return level_df def create_runtime_df(models=('KF', 'KD-IC', 'DeepAR', 'LW'), with_std=False, to_LaTeX=True): _, info = collect_results() train_name = 'Avg. training time [s]' prediction_name = 'Avg. prediction time [s]' runtime_df = pd.DataFrame(index=[train_name, prediction_name], columns=models, dtype=float) for model in models: training_times = [] prediction_times = [] for level in info['levels'].keys(): if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue for cluster in info['levels'][level]['clusters']: res = load_res(model, level, cluster) training_times.append(res['fit_time']) prediction_times.append(res['prediction_time']) decimals = DECIMALS + 1 runtime_df.loc[train_name, model] = ('%%.%sf' % decimals) % np.mean(training_times) runtime_df.loc[prediction_name, model] = ('%%.%sf' % decimals) % np.mean(prediction_times) if with_std: runtime_df.loc[train_name, model] += (' (%%.%sf)' % decimals) % np.std(training_times) runtime_df.loc[prediction_name, model] += (' (%%.%sf)' % decimals) % np.std(prediction_times) if to_LaTeX: df_to_LaTeX(runtime_df) return runtime_df def df_to_LaTeX(df): num_columns = len(df.columns) print(df.to_latex( float_format=f'%.{DECIMALS}f', na_rep='-', column_format='l' + ''.join('r' * num_columns) )) def get_color(model): if 'KF' in model: return COLORS[0] elif 'KD-IC' in model: return COLORS[1] elif 'DeepAR' in model: return COLORS[2] elif 'LW' in model: return COLORS[3] else: return COLORS[4] def get_linestyle(model): if '(+W)' in model: return LINESTYLES[1] elif '(+WF)' in model: return LINESTYLES[2] else: return LINESTYLES[0] def _complete_plot(name, legend=True, grid=True): if legend: plt.legend() if grid: plt.grid() plt.tight_layout() plt.savefig(OUT_PATH + f'{name}.pdf', bbox_inches='tight') plt.close() def plot_epoch_loss(model, level, cluster, seed=MAIN_SEED): assert 'DeepAR' in model, "Loss plot only available for deep models" res = load_res(model, level, cluster, seed) train_loss = res['train_loss'] val_loss = res['val_loss'] plt.figure(figsize=(6, 4)) plt.plot(np.arange(len(train_loss)) + 1, train_loss, color=COLORS[0], label='Train') plt.plot(np.arange(len(val_loss)) + 1, val_loss, color=COLORS[1], label='Validation') plt.ylabel('Loss') plt.xlabel('Epoch') _complete_plot(f'{get_file_name(model, level, cluster, seed)}_epoch_loss', grid=False) def plot_horizon(model, metric, horizons=(1, 2, 3, 4), levels=('L0', 'L1', 'L2')): results, info = collect_results_per_tstp() model_W = model + '(+W)' model_WF = model + '(+WF)' i = info['metrics'].index(metric) m = info['models'].index(model) m_W = info['models'].index(model_W) m_WF = info['models'].index(model_WF) score = np.empty(len(horizons)) score_W = np.empty(len(horizons)) score_WF = np.empty(len(horizons)) for h, horizon in enumerate(horizons): idx = np.arange(0, horizon * S_D) res = [] res_W = [] res_WF = [] for level in levels: for c, cluster in enumerate(info['levels'][level]['clusters']): y_mean = info['levels'][level]['y_mean'][c] if metric == 'rRMSE': res.append(100 * np.sqrt(np.mean(results[level][:, i, m, c, :, idx], axis=2)) / y_mean) res_W.append(100 * np.sqrt(np.mean(results[level][:, i, m_W, c, :, idx], axis=2)) / y_mean) res_WF.append(100 * np.sqrt(np.mean(results[level][:, i, m_WF, c, :, idx], axis=2)) / y_mean) else: res.append(100 * np.mean(results[level][:, i, m, c, :, idx], axis=2) / y_mean) res_W.append(100 * np.mean(results[level][:, i, m_W, c, :, idx], axis=2) / y_mean) res_WF.append(100 * np.mean(results[level][:, i, m_WF, c, :, idx], axis=2) / y_mean) score[h] = np.nanmean(res) score_W[h] = np.nanmean(res_W) score_WF[h] = np.nanmean(res_WF) skill_W = 100 * (1 - score_W / score) skill_WF = 100 * (1 - score_WF / score) print(f'SS_{metric} (W): {skill_W}') print(f'SS_{metric} (WF): {skill_WF}') plt.figure(figsize=(3.5, 4)) plt.plot( score, linestyle=get_linestyle(model), color=get_color(model), marker=MARKERS[0] ) plt.plot( score_W, linestyle=get_linestyle(model_W), color=get_color(model_W), marker=MARKERS[1] ) plt.plot( score_WF, linestyle=get_linestyle(model_WF), color=get_color(model_WF), marker=MARKERS[2] ) plt.ylim(6.95, 8.35) plt.ylabel(metric) plt.xlabel('Horizon') plt.xticks(np.arange(len(horizons)), np.array(horizons)) plt.title(model) _complete_plot(f"{model}_{metric}_horizon", grid=False, legend=False) def plot_reps(metric, levels=('L0', 'L1', 'L2'), models=None, name=None): results, info = collect_results() models = info['models'] if models is None else models i = info['metrics'].index(metric) # Lines for second legend _, ax = plt.subplots() lines = ax.plot([0, 1], [0, 1], '-C7', [0, 1], [0, 2], '--C7') plt.close() plt.figure(figsize=(10, 4)) for j, model in enumerate(models): m = info['models'].index(model) reps_mean = [] for level in levels: if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue for c, cluster in enumerate(info['levels'][level]['clusters']): reps_mean.append(results[level][i, m, c]) reps_mean = np.mean(reps_mean, axis=0) plt.plot( reps_mean, label=model if '(' not in model else None, linestyle=get_linestyle(model), color=get_color(model) ) plt.ylabel(metric) plt.xlabel('Forecast origin') plt.yticks(np.arange(5, 17, 2.5)) t0 = load_res('LW', 'L0', 'Agg')['t0'] ticks = [dt.datetime.strptime(tstp, '%Y-%m-%d, %H:%M').strftime('%b, %d') for tstp in t0[1::5]] plt.xticks(np.arange(1, len(t0), 5), ticks, rotation=0) plt.grid(axis='y') second_legend = plt.legend(lines, ('no weather', 'actual weather'), loc='upper left') plt.gca().add_artist(second_legend) _complete_plot(f"{f'{name}_' if name is not None else ''}{metric}_reps", grid=False) def plot_clusters(level, metric, models=None, name=None): results, info = collect_results() models = info['models'] if models is None else models i = info['metrics'].index(metric) plt.figure(figsize=(10, 4)) for model in models: if level == 'L3' and 'KF' in model: # No level 3 results for the KF model continue m = info['models'].index(model) clusters_mean = np.mean(results[level][i, m], axis=1) plt.plot( clusters_mean, label=model, linestyle=get_linestyle(model), color=get_color(model) ) plt.ylabel(metric) cluster_labels = [f"{cluster.replace('ACORN-', '')} ({count})" for cluster, count in zip( info['levels'][level]['clusters'], info['levels'][level]['cardinality'] )] if level == 'L3': plt.xticks(np.arange(0, len(cluster_labels), 100), np.array(cluster_labels)[::100], rotation=90) elif level == 'L2': plt.xticks(np.arange(len(cluster_labels)), cluster_labels, rotation=90) else: plt.xticks(np.arange(len(cluster_labels)), cluster_labels) _complete_plot(f"{f'{name}_' if name is not None else ''}{level}_{metric}_clusters") def plot_aggregate_size(metric, models=None, name=None): results, info = collect_results() models = info['models'] if models is None else models i = info['metrics'].index(metric) aggregate_sizes = [] errors = {} bottom_level_errors = {} for model in models: errors[model] = [] bottom_level_errors[model] = [] for level, level_info in info['levels'].items(): for c, agg_size in enumerate(level_info['cardinality']): if level != 'L3': aggregate_sizes.append(agg_size) for model in models: m = info['models'].index(model) errors[model].append(np.mean(results[level][i, m, c])) else: for model in models: m = info['models'].index(model) bottom_level_errors[model].append(np.mean(results[level][i, m, c])) aggregate_sizes.append(1) for model in models: errors[model].append(np.mean(bottom_level_errors[model])) sorted_idx = np.argsort(aggregate_sizes) aggregate_sizes = np.array(aggregate_sizes)[sorted_idx] plt.figure(figsize=(6, 4)) for model in models: if 'CRPS' in metric and model == 'LW': # No distributional forecasts for LW model continue plt.plot( aggregate_sizes, np.array(errors[model])[sorted_idx], label=model, linestyle=get_linestyle(model), color=get_color(model) ) plt.ylabel(metric) plt.yticks(np.arange(0, 70, 20)) plt.xlabel('\\# aggregated meters') plt.xscale('log') plt.xticks([1, 10, 100, 1000], ['1', '10', '100', '1000']) _complete_plot(f"{f'{name}_' if name is not None else ''}{metric}_aggregate_size", grid=False) def get_skill_scores(model, metric, no_L3=False): results, info = collect_results() i = info['metrics'].index(metric) m = info['models'].index(model) m_W = info['models'].index(model + '(+W)') m_WF = info['models'].index(model + '(+WF)') aggregate_sizes = [] score = [] score_W = [] score_WF = [] bottom_level_score = [] bottom_level_score_W = [] bottom_level_score_WF = [] t_train = main.train_val_split(data_analysis.energy_df.index)[0] u = data_analysis.daily( data_analysis.get_weather_df(forecast=False).loc[t_train, 'temperature'].to_numpy(float), reduce=True ) u_F = data_analysis.daily( data_analysis.get_weather_df(forecast=True).loc[t_train, 'temperature'].to_numpy(float), reduce=True ) corr_W = [] corr_WF = [] bottom_level_corr_W = [] bottom_level_corr_WF = [] for level, level_info in info['levels'].items(): if level == 'L3' and ('KF' in model or no_L3): # No level 3 results for the KF model continue for c, (cluster, agg_size) in enumerate(zip(level_info['clusters'], level_info['cardinality'])): y = data_analysis.daily( np.array(data_analysis.get_observations_at(level, cluster, t_train)), reduce=True ) if level != 'L3': aggregate_sizes.append(agg_size) score.append(np.mean(results[level][i, m, c])) score_W.append(np.mean(results[level][i, m_W, c])) score_WF.append(np.mean(results[level][i, m_WF, c])) corr_W.append(data_analysis.correlation(u, y) ** 2) corr_WF.append(data_analysis.correlation(u_F, y) ** 2) else: bottom_level_score.append(np.mean(results[level][i, m, c])) bottom_level_score_W.append(np.mean(results[level][i, m_W, c])) bottom_level_score_WF.append(np.mean(results[level][i, m_WF, c])) bottom_level_corr_W.append(data_analysis.correlation(u, y) ** 2) bottom_level_corr_WF.append(data_analysis.correlation(u_F, y) ** 2) if 'KF' not in model and not no_L3: aggregate_sizes.append(1) score.append(np.mean(bottom_level_score)) score_W.append(np.mean(bottom_level_score_W)) score_WF.append(np.mean(bottom_level_score_WF)) corr_W.append(
np.mean(bottom_level_corr_W)
numpy.mean
# TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras from keras.models import Sequential from keras.layers import Dense, Flatten # Helper libraries import numpy as np import matplotlib.pyplot as plt import pickle import random #import dataset with open('./data/jar/DHSs_onehot.pickle', 'rb') as pickle_in: onehot_data = pickle.load(pickle_in) with open('./data/jar/var_chart.pickle', 'rb') as pickle_in: var_chart_data = pickle.load(pickle_in) input_matched_label = {} matched_list = [] # group dhs with its label for dhs in onehot_data.keys(): input_matched_label[dhs] = [onehot_data[dhs], var_chart_data[dhs]] matched_list.append([onehot_data[dhs], var_chart_data[dhs]]) #generate random unique indexes to pull out data for testing testing_indexes = [] tmp_indexes = [] while(len(testing_indexes) < 500): tmp_indexes.append(random.randint(0,3619)) testing_indexes = list(set(tmp_indexes)) training_indexes = [] for x in range(3618): if x not in testing_indexes: training_indexes.append(x) training_data_list = [] training_labels_list = [] for ind in training_indexes: training_data_list.append(matched_list[ind][0]) training_labels_list.append(matched_list[ind][1]) testing_data_list = [] testing_labels_list = [] for ind in testing_indexes: testing_data_list.append(matched_list[ind][0]) testing_labels_list.append(matched_list[ind][1]) train_data =
np.array(training_data_list)
numpy.array
import os assert os.environ['CONDA_DEFAULT_ENV']=='skbio_env', 'You should use the conda environment skbio_env' import numpy as np from skbio.stats.ordination import cca import pandas as pd import matplotlib.pylab as plt from copy import copy import matplotlib.colors as mcolors import seaborn as sns from matplotlib.patches import Patch redFspecies = True spl = [6,11,25,250] tits = ['(a)', '(b)', '(c)', '(d)'] Allvars = False noise = [True,False] plott=True#False# dirRead = '/Users/nooteboom/Documents/GitHub/cluster_TM/cluster_SP/density/dens/ordination/' minss = [100,200, 300, 400, 500, 600, 700, 800, 900,1000] # The s_min values xiss = np.arange(0.0001,0.01, 0.0001) # The xi values fig, ax = plt.subplots(2,3, figsize=(16,16), gridspec_kw={'width_ratios':[1,1,0.08]}) ax[0,0].get_shared_y_axes().join(ax[1,0]) ax[0,1].get_shared_y_axes().join(ax[1,1]) for axs in ax[:, 2]: axs.remove() gs = ax[1, 2].get_gridspec() axbig = fig.add_subplot(gs[:, 2]) sns.set(style='whitegrid',context='paper', font_scale=2) fs=20 vs = np.array([-1,1])*0.8 for spi, sp in enumerate(spl): print(sp) # keep track of the results # F and D stand for Foram and Dino # noise keeps track of CCA results if noisy locations are included # cluster keeps track of results if noisy locations are excluded FNoise = np.zeros((len(minss), len(xiss))) DNoise = np.zeros((len(minss), len(xiss))) FCluster = np.zeros((len(minss), len(xiss))) DCluster = np.zeros((len(minss), len(xiss))) for mini,mins in enumerate(minss): print('min: %d'%(mins)) for xii, xis in enumerate(xiss): opts = ["xi", xis] if(redFspecies): ff = np.load('loops/redF/prepredF_CCA_sp%d_smin%d%s_%.5f.npz'%(sp, mins, opts[0], opts[1])) else: ff = np.load(dirRead+'loops/prep_CCA_sp%d_smin%d%s_%.5f.npz'%(sp, mins, opts[0], opts[1])) #%% envs = ff['envnames'] if(Allvars): envsplt = ff['envnames'] else: envsplt = ff['envnames'] envsplt = ['temp','N'] Flabels = ff['Flabels'] Flabelsfull = copy(Flabels) Fenv = ff['Fenv'] for ni,n in enumerate(noise): envs = ff['envnames'] envsplt = ['temp','N'] Flabels = ff['Flabels'] Fenv = ff['Fenv'] Fenv_nn = ff['Fenv_nn'] #%% Foraminifera data = ff['data'] sites = np.array(['site %d'%(i) for i in range(data.shape[0])]) species = np.array(['species %d'%(i) for i in range(data.shape[1])]) if(not n): args = np.where(Flabels!=-1) data = data[args] Flabels = Flabels[args] sites = sites[args] Fenv = Fenv[args] Fenv_nn = Fenv_nn[args] X = pd.DataFrame(data, sites, species) Y = pd.DataFrame(Fenv, sites, envs) Y_nn = pd.DataFrame(Fenv_nn, sites, envs) # del Y['N'] del Y['Si'] # del Y['P'] #del Y['temp'] # del Y['salt'] if(len(Y.values)!=0): if(Y.shape[0]>1): CCA = cca(Y,X) else: FCluster[mini,xii] = np.nan if(n): FNoise[mini,xii] = np.sum(CCA.proportion_explained[:len(CCA.proportion_explained)//2]) else: FCluster[mini,xii] = np.sum(CCA.proportion_explained[:len(CCA.proportion_explained)//2]) else: FCluster[mini,xii] = np.nan #%% Load the significant according to the subsamples its = 999 siglevel = 0.05 if(redFspecies): ffsig = np.load('randomsubsamples_redF_sp%d_its%d.npz'%(sp,its)) else: ffsig =
np.load('randomsubsamples_sp%d_its%d.npz'%(sp,its))
numpy.load
# -*- coding: utf-8 -*- from copy import deepcopy import numpy as np from mrinversion.linear_model._base_l1l2 import _get_augmented_data from mrinversion.linear_model._base_l1l2 import _get_cv_indexes def test01(): K = np.empty((8, 16)) indexes = _get_cv_indexes(K, 4, "lasso", f_shape=(4, 4)) index_test = [ [[1, 2, 3, 5, 6, 7], [0, 4]], [[0, 1, 2, 4, 5, 6], [3, 7]], [[0, 1, 3, 4, 5, 7], [2, 6]], [[0, 2, 3, 4, 6, 7], [1, 5]], ] assert indexes == index_test, "test01" def test02(): K = np.empty((8, 16)) lst = [ 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, ] index_test = [ [[1, 2, 3, 5, 6, 7], [0, 4]], [[0, 1, 2, 4, 5, 6], [3, 7]], [[0, 1, 3, 4, 5, 7], [2, 6]], [[0, 2, 3, 4, 6, 7], [1, 5]], ] indexes = _get_cv_indexes(K, folds=4, regularizer="smooth lasso", f_shape=(4, 4)) index_test_1 = deepcopy(index_test) for tr_, _ in index_test_1: tr_ += lst assert indexes == index_test_1, "test02 - 1" indexes = _get_cv_indexes(K, 4, "smooth lasso", f_shape=16) index_test_2 = deepcopy(index_test) for tr_, _ in index_test_2: tr_ += lst[:15] assert indexes == index_test_2, "test02 - 2" def test03(): # 1d - explicit K = np.empty((5, 5)) s = np.empty((5, 1)) KK, _ = _get_augmented_data(K, s, 1, "smooth lasso", f_shape=(5)) A = [[1, -1, 0, 0, 0], [0, 1, -1, 0, 0], [0, 0, 1, -1, 0], [0, 0, 0, 1, -1]] assert np.allclose(KK[5:], A) # 2d - explicit symmetric K = np.empty((5, 4)) s = np.empty((5, 1)) KK, _ = _get_augmented_data(K, s, 1, "smooth lasso", f_shape=(2, 2)) J1 = [[1, 0, -1, 0], [0, 1, 0, -1]] J2 = [[1, -1, 0, 0], [0, 0, 1, -1]] assert np.allclose(KK[5:7], J1) assert np.allclose(KK[7:9], J2) # 2d - explicit asymmetric K = np.empty((5, 6)) s = np.empty((5, 1)) KK, _ = _get_augmented_data(K, s, 1, "smooth lasso", f_shape=(3, 2)) J1 = [ [1, 0, -1, 0, 0, 0], [0, 1, 0, -1, 0, 0], [0, 0, 1, 0, -1, 0], [0, 0, 0, 1, 0, -1], ] J2 = [[1, -1, 0, 0, 0, 0], [0, 0, 1, -1, 0, 0], [0, 0, 0, 0, 1, -1]] assert np.allclose(KK[5:9], J1) assert np.allclose(KK[9:12], J2) # 1d - function K = np.empty((5, 12)) KK, _ = _get_augmented_data(K, s, 1, "smooth lasso", f_shape=(12)) A1 = (-1 * np.eye(12) + np.diag(np.ones(11), k=-1))[1:] assert np.allclose(KK[5:], A1) # 2d - function symmetric K = np.empty((5, 16)) s = np.empty((5, 1)) KK, _ = _get_augmented_data(K, s, 1, "smooth lasso", f_shape=(4, 4)) J = -1 * np.eye(4) + np.diag(np.ones(3), k=-1) I_eye = np.eye(4) J1 = np.kron(J[1:], I_eye) J2 = np.kron(I_eye, J[1:]) assert np.allclose(KK[5 : 5 + 12], J1) assert np.allclose(KK[5 + 12 :], J2) # 2d - function asymmetric K = np.empty((5, 12)) KK, _ = _get_augmented_data(K, s, 1, "smooth lasso", f_shape=(4, 3)) A1 = -1 * np.eye(4) + np.diag(np.ones(3), k=-1) I2 = np.eye(3) J1 = np.kron(A1[1:], I2) A2 = -1 * np.eye(3) + np.diag(np.ones(2), k=-1) I1 = np.eye(4) J2 =
np.kron(I1, A2[1:])
numpy.kron
from __future__ import print_function import os import numpy as np import kaldi_io as ko """ Reads a kaldi scp file and slice the feature matrix Jeff, 2018 """ def tensor_cnn_frame(mat, M): """Construct a tensor of shape (C x H x W) given an utterance matrix for CNN """ slice_mat = [] for index in np.arange(len(mat)): if index < M: to_left = np.tile(mat[index], M).reshape((M,-1)) rest = mat[index:index+M+1] context = np.vstack((to_left, rest)) elif index >= len(mat)-M: to_right = np.tile(mat[index], M).reshape((M,-1)) rest = mat[index-M:index+1] context = np.vstack((rest, to_right)) else: context = mat[index-M:index+M+1] slice_mat.append(context) slice_mat = np.array(slice_mat) slice_mat = np.expand_dims(slice_mat, axis=1) slice_mat = np.swapaxes(slice_mat, 2, 3) return slice_mat def tensor_cnn_utt(mat, max_len): mat = np.swapaxes(mat, 0, 1) repetition = int(max_len/mat.shape[1]) tensor =
np.tile(mat,repetition)
numpy.tile
#!/usr/bin/env python2.7 # encoding: utf-8 """ test_dmarket.py Created by <NAME> on 2011-05-05. Copyright (c) 2011 University of Strathclyde. All rights reserved. """ from __future__ import division import sys import os import numpy as np import scipy.integrate as integral import scipy.stats.mstats as mstats import scikits.statsmodels as sm import matplotlib.pyplot as plt from operator import itemgetter from matplotlib import rc rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino'])) rc('text', usetex=True) def simulate(N, pmin, pmax): '''This function simulates one stage of the auctioning game among the network operators. Keyword args: N -- number of bidders pmin -- minimum price/cost of the service pmax -- maximum price/cost of the service Returns: intersection (if exists) of the winning bidders for price weight->1 ''' # Service agent weights w_range = 1000 w = np.linspace(0, 1, w_range) # Calculate prices costs = [
np.random.uniform(pmin, pmax)
numpy.random.uniform
from simglucose.simulation.scenario import Action, Scenario import numpy as np from scipy.stats import truncnorm, uniform from datetime import datetime import logging logger = logging.getLogger(__name__) class RandomScenario(Scenario): def __init__(self, start_time, seed=None): Scenario.__init__(self, start_time=start_time) self.seed = seed def get_action(self, t): # t must be datetime.datetime object delta_t = t - datetime.combine(t.date(), datetime.min.time()) t_sec = delta_t.total_seconds() if t_sec < 1: logger.info('Creating new one day scenario ...') self.scenario = self.create_scenario() t_min = np.floor(t_sec / 60.0) if t_min in self.scenario['meal']['time']: logger.info('Time for meal!') idx = self.scenario['meal']['time'].index(t_min) return Action(meal=self.scenario['meal']['amount'][idx]) else: return Action(meal=0) def create_scenario(self): scenario = {'meal': {'time': [], 'amount': []}} # Probability of taking each meal # [breakfast, snack1, lunch, snack2, dinner, snack3] prob = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3] time_lb = np.array([5, 9, 10, 14, 16, 20]) * 60 time_ub = np.array([9, 10, 14, 16, 20, 23]) * 60 time_mu = np.array([7, 9.5, 12, 15, 18, 21.5]) * 60 time_sigma = np.array([60, 30, 60, 30, 60, 30]) amount_mu = [45, 10, 70, 10, 80, 10] amount_sigma = [10, 5, 10, 5, 10, 5] for p, tlb, tub, tbar, tsd, mbar, msd in zip(prob, time_lb, time_ub, time_mu, time_sigma, amount_mu, amount_sigma): if self.random_gen.rand() < p: tmeal = np.round( truncnorm.rvs(a=(tlb - tbar) / tsd, b=(tub - tbar) / tsd, loc=tbar, scale=tsd, random_state=self.random_gen)) scenario['meal']['time'].append(tmeal) scenario['meal']['amount'].append( max(round(self.random_gen.normal(mbar, msd)), 0)) return scenario def reset(self): self.random_gen = np.random.RandomState(self.seed) self.scenario = self.create_scenario() @property def seed(self): return self._seed @seed.setter def seed(self, seed): self._seed = seed self.reset() def harris_benedict(weight, kind): # (min, max, age, weight) if kind == 'child': child_weight_to_age_and_height = [(0, 25.6, 7, 121.9), (25.6, 28.6, 8, 128), (28.6, 32, 9, 133.3), (32, 35.6, 10, 138.4), (35.6, 39.9, 11, 143.5), (39.9, np.infty, 12, 149.1)] for tup in child_weight_to_age_and_height: if weight > tup[0] and weight <= tup[1]: age = tup[2] height = tup[3] elif kind == 'adolescent': adolescent_weight_to_age_and_height = [(0, 50.8, 13, 156.2), (50.8, 56.0, 14, 163.8), (56.0, 60.8, 15, 170.1), (60.8, 64.4, 16, 173.4), (64.4, 66.9, 17, 175.2), (66.9, 68.9, 18, 175.7), (68.9, 70.3, 19, 176.5), (70.3, np.infty, 20, 177)] for tup in adolescent_weight_to_age_and_height: if weight > tup[0] and weight <= tup[1]: age = tup[2] height = tup[3] else: age = 45 height = 177 bmr = 66.5 + (13.75 * weight) + (5.003 * height) - (6.755 * age) total = ((1.2 * bmr) * 0.45) / 4 adj = 1.1 + 1.3 + 1.55 + 3 * 0.15 # from old carb calc b_ratio = 1.1/adj l_ratio = 1.3/adj d_ratio = 1.55/adj s_ratio = 0.15/adj return (total*b_ratio, total*l_ratio, total*d_ratio, total*s_ratio) class SemiRandomScenario(Scenario): def __init__(self, start_time=None, seed=None, time_std_multiplier=1): Scenario.__init__(self, start_time=start_time) self.time_std_multiplier = time_std_multiplier self.seed = seed def get_action(self, t): # t must be datetime.datetime object delta_t = t - datetime.combine(t.date(), datetime.min.time()) t_sec = delta_t.total_seconds() if t_sec < 1: logger.info('Creating new one day scenario ...') self.scenario = self.create_scenario() t_min = np.floor(t_sec / 60.0) if t_min in self.scenario['meal']['time']: logger.info('Time for meal!') idx = self.scenario['meal']['time'].index(t_min) return Action(meal=self.scenario['meal']['amount'][idx]) else: return Action(meal=0) def create_scenario(self): scenario = {'meal': {'time': [], 'amount': []}} time_lb = np.array([5, 10, 16]) * 60 time_ub = np.array([10, 16, 22]) * 60 time_mu = np.array([7.5, 13, 19]) * 60 time_sigma = np.array([60, 60, 60]) * self.time_std_multiplier amount = [45, 70 ,80] for tlb, tub, tbar, tsd, mbar in zip(time_lb, time_ub, time_mu, time_sigma, amount): tmeal = np.round(truncnorm.rvs(a=(tlb - tbar) / tsd, b=(tub - tbar) / tsd, loc=tbar, scale=tsd, random_state=self.random_gen)) scenario['meal']['time'].append(tmeal) scenario['meal']['amount'].append(mbar) return scenario def reset(self): self.random_gen = np.random.RandomState(self.seed) self.scenario = self.create_scenario() @property def seed(self): return self._seed @seed.setter def seed(self, seed): self._seed = seed self.reset() class RandomBalancedScenario(Scenario): def __init__(self, bw, start_time=None, seed=None, weekly=False, kind=None, harrison_benedict=False, restricted=False, unrealistic=False, meal_duration=1, deterministic_meal_size=False, deterministic_meal_time=False, deterministic_meal_occurrence=False): Scenario.__init__(self, start_time=start_time) self.kind = kind self.bw = bw self.day = 0 self.weekly = weekly self.deterministic_meal_size = deterministic_meal_size self.deterministic_meal_time = deterministic_meal_time self.deterministic_meal_occurrence = deterministic_meal_occurrence self.restricted = restricted # take precident over harrison_benedict self.harrison_benedict = harrison_benedict self.unrealistic = unrealistic self.meal_duration = meal_duration self.seed = seed def get_action(self, t): # t must be datetime.datetime object delta_t = t - datetime.combine(t.date(), datetime.min.time()) t_sec = delta_t.total_seconds() if t_sec < 1: logger.info('Creating new one day scenario ...') self.day = self.day % 7 if self.restricted: self.scenario = self.create_scenario_restricted() elif self.harrison_benedict: self.scenario = self.create_scenario_harrison_benedict() elif self.unrealistic: self.scenario = self.create_scenario_unrealistic() elif self.weekly: if self.day == 5 or self.day == 6: self.scenario = self.create_weekend_scenario() else: self.scenario = self.create_scenario() else: self.scenario = self.create_scenario() t_min = np.floor(t_sec / 60.0) # going to cancel overalpping meals by going with first meal in range for idx, time in enumerate(self.scenario['meal']['time']): if t_min>=time and t_min<time+self.meal_duration: return Action(meal=self.scenario['meal']['amount'][idx]/self.meal_duration) else: return Action(meal=0) def create_scenario_restricted(self): scenario = {'meal': {'time': [], 'amount': []}} # Probability of taking each meal # [breakfast, snack1, lunch, snack2, dinner, snack3] prob = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3] time_lb = np.array([5, 9, 10, 14, 16, 20]) * 60 time_ub = np.array([9, 10, 14, 16, 20, 23]) * 60 time_mu = np.array([7, 9.5, 12, 15, 18, 21.5]) * 60 time_sigma = np.array([60, 30, 60, 30, 60, 30]) if self.kind == 'child': amount_lb = np.array([30, 10, 30, 10, 30, 10]) amount_ub = np.array([45, 20, 45, 20, 45, 20]) elif self.kind == 'adolescent': amount_lb = np.array([45, 15, 45, 15, 45, 15]) amount_ub = np.array([60, 25, 60, 25, 60, 25]) elif self.kind == 'adult': amount_lb = np.array([60, 20, 60, 20, 60, 20]) amount_ub = np.array([75, 30, 75, 30, 75, 30]) else: raise ValueError('{} not a valid kind (child, adolescent, adult').format(self.kind) amount_mu = np.array([0.7, 0.15, 1.1, 0.15, 1.25, 0.15]) * self.bw amount_sigma = amount_mu * 0.15 for p, tlb, tub, tbar, tsd, mlb, mub, mbar, msd in zip( prob, time_lb, time_ub, time_mu, time_sigma, amount_lb, amount_ub, amount_mu, amount_sigma): if self.random_gen.rand() < p: tmeal = np.round(truncnorm.rvs(a=(tlb - tbar) / tsd, b=(tub - tbar) / tsd, loc=tbar, scale=tsd, random_state=self.random_gen)) scenario['meal']['time'].append(tmeal) ameal = np.round(truncnorm.rvs(a=(mlb - mbar) / msd, b=(mub - mbar) / msd, loc=mbar, scale=msd, random_state=self.random_gen)) scenario['meal']['amount'].append(ameal) return scenario def create_scenario_harrison_benedict(self): scenario = {'meal': {'time': [], 'amount': []}} # Probability of taking each meal # [breakfast, snack1, lunch, snack2, dinner, snack3] prob = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3] time_lb = np.array([5, 9, 10, 14, 16, 20]) * 60 time_ub = np.array([9, 10, 14, 16, 20, 23]) * 60 time_mu = np.array([7, 9.5, 12, 15, 18, 21.5]) * 60 time_sigma = np.array([60, 30, 60, 30, 60, 30]) mu_b, mu_l, mu_d, mu_s = harris_benedict(self.bw, self.kind) amount_mu = np.array([mu_b, mu_s, mu_l, mu_s, mu_d, mu_s]) amount_sigma = amount_mu * 0.15 for p, tlb, tub, tbar, tsd, mbar, msd in zip( prob, time_lb, time_ub, time_mu, time_sigma, amount_mu, amount_sigma): if self.random_gen.rand() < p: tmeal = np.round(truncnorm.rvs(a=(tlb - tbar) / tsd, b=(tub - tbar) / tsd, loc=tbar, scale=tsd, random_state=self.random_gen)) scenario['meal']['time'].append(tmeal) ameal = np.round(self.random_gen.normal(mbar, msd)) scenario['meal']['amount'].append(ameal) return scenario def create_scenario_unrealistic(self): scenario = {'meal': {'time': [], 'amount': []}} # Probability of taking each meal # [breakfast, lunch, dinner] prob = [1, 1, 1] time_lb = np.array([8, 12, 18]) * 60 time_ub = np.array([9, 15, 19]) * 60 time_mu = np.array([9, 14, 19]) * 60 time_sigma = np.array([0, 0, 0]) amount_mu = np.array([50, 80, 60]) amount_sigma = np.array([0, 0, 0]) for p, tlb, tub, tbar, tsd, mbar, msd in zip( prob, time_lb, time_ub, time_mu, time_sigma, amount_mu, amount_sigma): if self.random_gen.rand() < p: tmeal = np.round(truncnorm.rvs(a=-np.infty, b=np.infty, loc=tbar, scale=tsd, random_state=self.random_gen)) scenario['meal']['time'].append(tmeal) ameal = np.round(truncnorm.rvs(a=-np.infty, b=np.infty, loc=mbar, scale=msd, random_state=self.random_gen)) scenario['meal']['amount'].append(ameal) return scenario def create_weekend_scenario(self): scenario = {'meal': {'time': [], 'amount': []}} # Probability of taking each meal # [breakfast, snack1, lunch, snack2, dinner, snack3] prob = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3] time_lb = np.array([7, 11, 12, 15, 18, 22]) * 60 time_ub = np.array([11, 12, 15, 16, 22, 23]) * 60 time_mu =
np.array([9, 11.5, 13.5, 15.5, 21, 22.5])
numpy.array
import numpy as np from numpy.testing import assert_allclose import pytest from .. import SphericalDust, IsotropicDust from ...util.functions import random_id, B_nu def test_missing_properties(tmpdir): d = SphericalDust() with pytest.raises(Exception) as e: d.write(tmpdir.join(random_id()).strpath) assert e.value.args[0] == "The following attributes of the optical properties have not been set: nu, chi, albedo, mu, P1, P2, P3, P4" class TestSphericalDust(object): def setup_method(self, method): self.dust = SphericalDust() self.dust.optical_properties.nu = np.logspace(0., 20., 100) self.dust.optical_properties.albedo = np.repeat(0.5, 100) self.dust.optical_properties.chi = np.ones(100) self.dust.optical_properties.mu = [-1., 1.] self.dust.optical_properties.initialize_scattering_matrix() self.dust.optical_properties.P1[:, :] = 1. self.dust.optical_properties.P2[:, :] = 0. self.dust.optical_properties.P3[:, :] = 1. self.dust.optical_properties.P4[:, :] = 0. def test_helpers(self): nu = np.logspace(5., 15., 1000) # Here we don't set the mean opacities to make sure they are computed # automatically assert_allclose(self.dust.kappa_nu_temperature(34.), self.dust.kappa_nu_spectrum(nu, B_nu(nu, 34))) assert_allclose(self.dust.chi_nu_temperature(34.), self.dust.chi_nu_spectrum(nu, B_nu(nu, 34))) def test_conversions_out_of_bounds(self): np.random.seed(12345) self.dust.mean_opacities.compute(self.dust.optical_properties, n_temp=10, temp_min=1., temp_max=1000.) # Test with scalars assert_allclose(self.dust.temperature2specific_energy(0.1), self.dust.mean_opacities.specific_energy[0]) assert_allclose(self.dust.temperature2specific_energy(1e4), self.dust.mean_opacities.specific_energy[-1]) # Test with arrays assert_allclose(self.dust.temperature2specific_energy(np.array([0.1])), self.dust.mean_opacities.specific_energy[0]) assert_allclose(self.dust.temperature2specific_energy(np.array([1e4])), self.dust.mean_opacities.specific_energy[-1]) # Test with scalars assert_allclose(self.dust.specific_energy2temperature(1.e-10), self.dust.mean_opacities.temperature[0]) assert_allclose(self.dust.specific_energy2temperature(1.e+10), self.dust.mean_opacities.temperature[-1]) # Test with arrays assert_allclose(self.dust.specific_energy2temperature(np.array([1.e-10])), self.dust.mean_opacities.temperature[0]) assert_allclose(self.dust.specific_energy2temperature(np.array([1.e+10])), self.dust.mean_opacities.temperature[-1]) def test_conversions_roundtrip(self): np.random.seed(12345) # Here we don't set the mean opacities to make sure they are computed # automatically temperatures1 = 10. ** np.random.uniform(0., 3., 100) specific_energies = self.dust.temperature2specific_energy(temperatures1) temperatures2 = self.dust.specific_energy2temperature(specific_energies) assert_allclose(temperatures1, temperatures2) def test_set_lte(self): np.random.seed(12345) # Here we don't set the mean opacities to make sure they are computed # automatically self.dust.set_lte_emissivities(n_temp=10, temp_min=1., temp_max=1000.) assert_allclose(self.dust.mean_opacities.temperature[0], 1) assert_allclose(self.dust.mean_opacities.temperature[-1], 1000) assert_allclose(self.dust.mean_opacities.specific_energy, self.dust.emissivities.var) def test_plot(self, tmpdir): # Here we don't set the mean opacities or the emissivities to make sure # they are computed automatically self.dust.plot(tmpdir.join('test.png').strpath) def test_hash(self, tmpdir): # Here we don't set the mean opacities or the emissivities to make sure # they are computed automatically try: assert self.dust.hash() == 'ace50d004550889b0e739db8ec8f10fb' except AssertionError: # On MacOS X, the hash is sometimes different assert self.dust.hash() == 'c5765806a1b59b527420444c4355ac41' def test_io(self, tmpdir): filename = tmpdir.join('test.hdf5').strpath self.dust.write(filename) dust2 = SphericalDust(filename) assert_allclose(self.dust.optical_properties.nu, dust2.optical_properties.nu) assert_allclose(self.dust.optical_properties.chi, dust2.optical_properties.chi) assert_allclose(self.dust.optical_properties.albedo, dust2.optical_properties.albedo) assert_allclose(self.dust.optical_properties.mu, dust2.optical_properties.mu) assert_allclose(self.dust.optical_properties.P1, dust2.optical_properties.P1) assert_allclose(self.dust.optical_properties.P2, dust2.optical_properties.P2) assert_allclose(self.dust.optical_properties.P3, dust2.optical_properties.P3) assert_allclose(self.dust.optical_properties.P4, dust2.optical_properties.P4) assert_allclose(self.dust.mean_opacities.temperature, dust2.mean_opacities.temperature) assert_allclose(self.dust.mean_opacities.specific_energy, dust2.mean_opacities.specific_energy) assert_allclose(self.dust.mean_opacities.chi_planck, dust2.mean_opacities.chi_planck) assert_allclose(self.dust.mean_opacities.kappa_planck, dust2.mean_opacities.kappa_planck) assert_allclose(self.dust.mean_opacities.chi_inv_planck, dust2.mean_opacities.chi_inv_planck) assert_allclose(self.dust.mean_opacities.kappa_inv_planck, dust2.mean_opacities.kappa_inv_planck) assert_allclose(self.dust.mean_opacities.chi_rosseland, dust2.mean_opacities.chi_rosseland) assert_allclose(self.dust.mean_opacities.kappa_rosseland, dust2.mean_opacities.kappa_rosseland) assert self.dust.emissivities.is_lte == dust2.emissivities.is_lte assert self.dust.emissivities.var_name == dust2.emissivities.var_name assert_allclose(self.dust.emissivities.nu, dust2.emissivities.nu) assert_allclose(self.dust.emissivities.var, dust2.emissivities.var) assert_allclose(self.dust.emissivities.jnu, dust2.emissivities.jnu) assert self.dust.sublimation_mode == dust2.sublimation_mode assert_allclose(self.dust.sublimation_energy, dust2.sublimation_energy) def test_isotropic_dust(): nu = np.logspace(0., 20., 100) albedo = np.repeat(0.5, 100) chi =
np.ones(100)
numpy.ones
# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for bond_curve.""" import math from absl.testing import parameterized import numpy as np import tensorflow.compat.v2 as tf from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import from tf_quant_finance.rates.hagan_west import bond_curve from tf_quant_finance.rates.hagan_west import monotone_convex @test_util.run_all_in_graph_and_eager_modes class BondCurveTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('single_precision', np.float32), ('double_precision', np.float64), ) def test_cashflow_times_cashflow_before_settelment_error(self, dtype): with self.assertRaises(tf.errors.InvalidArgumentError): self.evaluate( bond_curve.bond_curve( bond_cashflows=[ np.array([12.5, 12.5, 12.5, 1012.5], dtype=dtype), np.array([30.0, 30.0, 30.0, 1030.0], dtype=dtype) ], bond_cashflow_times=[ np.array([0.25, 0.5, 0.75, 1.0], dtype=dtype), np.array([0.5, 1.0, 1.5, 2.0], dtype=dtype) ], present_values=np.array([999.0, 1022.0], dtype=dtype), present_values_settlement_times=np.array([0.25, 0.25], dtype=dtype), validate_args=True, dtype=dtype)) @parameterized.named_parameters( ('single_precision', np.float32), ('double_precision', np.float64), ) def test_cashflow_times_are_strongly_ordered_error(self, dtype): with self.assertRaises(tf.errors.InvalidArgumentError): self.evaluate( bond_curve.bond_curve( bond_cashflows=[ np.array([12.5, 12.5, 12.5, 1012.5], dtype=dtype),
np.array([30.0, 30.0, 30.0, 1030.0], dtype=dtype)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den =
N.array([3,3,3])
numpy.array
# ############################################################################## # linalg.py # ========= # Author : <NAME> [<EMAIL>] # ############################################################################## """ Linear algebra routines. """ import numpy as np import scipy.linalg as linalg import imot_tools.util.argcheck as chk @chk.check( dict( A=chk.accept_any(chk.has_reals, chk.has_complex), B=chk.allow_None(chk.accept_any(chk.has_reals, chk.has_complex)), tau=chk.is_real, N=chk.allow_None(chk.is_integer), ) ) def eigh(A, B=None, tau=1, N=None): """ Solve a generalized eigenvalue problem. Finds :math:`(D, V)`, solution of the generalized eigenvalue problem .. math:: A V = B V D. This function is a wrapper around :py:func:`scipy.linalg.eigh` that adds energy truncation and extra output formats. Parameters ---------- A : :py:class:`~numpy.ndarray` (M, M) hermitian matrix. If `A` is not positive-semidefinite (PSD), its negative spectrum is discarded. B : :py:class:`~numpy.ndarray`, optional (M, M) PSD hermitian matrix. If unspecified, `B` is assumed to be the identity matrix. tau : float, optional Normalized energy ratio. (Default: 1) N : int, optional Number of eigenpairs to output. (Default: K, the minimum number of leading eigenpairs that account for `tau` percent of the total energy.) * If `N` is smaller than K, then the trailing eigenpairs are dropped. * If `N` is greater that K, then the trailing eigenpairs are set to 0. Returns ------- D : :py:class:`~numpy.ndarray` (N,) positive real-valued eigenvalues. V : :py:class:`~numpy.ndarray` (M, N) complex-valued eigenvectors. The N eigenpairs are sorted in decreasing eigenvalue order. Examples -------- .. testsetup:: import numpy as np from imot_tools.math.linalg import eigh import scipy.linalg as linalg np.random.seed(0) def hermitian_array(N: int) -> np.ndarray: ''' Construct a (N, N) Hermitian matrix. ''' D = np.arange(N) Rmtx = np.random.randn(N,N) + 1j * np.random.randn(N, N) Q, _ = linalg.qr(Rmtx) A = (Q * D) @ Q.conj().T return A M = 4 A = hermitian_array(M) B = hermitian_array(M) + 100 * np.eye(M) # To guarantee PSD Let `A` and `B` be defined as below: .. doctest:: M = 4 A = hermitian_array(M) B = hermitian_array(M) + 100 * np.eye(M) # To guarantee PSD Then different calls to :py:func:`~imot_tools.math.linalg.eigh` produce different results: * Get all positive eigenpairs: .. doctest:: >>> D, V = eigh(A, B) >>> print(np.around(D, 4)) # The last term is small but positive. [0.0296 0.0198 0.0098 0. ] >>> print(np.around(V, 4)) [[-0.0621+0.0001j -0.0561+0.0005j -0.0262-0.0004j 0.0474+0.0005j] [ 0.0285+0.0041j -0.0413-0.0501j 0.0129-0.0209j -0.004 -0.0647j] [ 0.0583+0.0055j -0.0443+0.0033j 0.0069+0.0474j 0.0281+0.0371j] [ 0.0363+0.0209j 0.0006+0.0235j -0.029 -0.0736j 0.0321+0.0142j]] * Drop some trailing eigenpairs: .. doctest:: >>> D, V = eigh(A, B, tau=0.8) >>> print(np.around(D, 4)) [0.0296] >>> print(np.around(V, 4)) [[-0.0621+0.0001j] [ 0.0285+0.0041j] [ 0.0583+0.0055j] [ 0.0363+0.0209j]] * Pad output to certain size: .. doctest:: >>> D, V = eigh(A, B, tau=0.8, N=3) >>> print(np.around(D, 4)) [0.0296 0. 0. ] >>> print(np.around(V, 4)) [[-0.0621+0.0001j 0. +0.j 0. +0.j ] [ 0.0285+0.0041j 0. +0.j 0. +0.j ] [ 0.0583+0.0055j 0. +0.j 0. +0.j ] [ 0.0363+0.0209j 0. +0.j 0. +0.j ]] """ A = np.array(A, copy=False) M = len(A) if not (chk.has_shape([M, M])(A) and np.allclose(A, A.conj().T)): raise ValueError("Parameter[A] must be hermitian symmetric.") B = np.eye(M) if (B is None) else np.array(B, copy=False) if not (chk.has_shape([M, M])(B) and np.allclose(B, B.conj().T)): raise ValueError("Parameter[B] must be hermitian symmetric.") if not (0 < tau <= 1): raise ValueError("Parameter[tau] must be in [0, 1].") if (N is not None) and (N <= 0): raise ValueError(f"Parameter[N] must be a non-zero positive integer.") # A: drop negative spectrum. Ds, Vs = linalg.eigh(A) idx = Ds > 0 Ds, Vs = Ds[idx], Vs[:, idx] A = (Vs * Ds) @ Vs.conj().T # A, B: generalized eigenvalue-decomposition. try: D, V = linalg.eigh(A, B) # Discard near-zero D due to numerical precision. idx = D > 0 D, V = D[idx], V[:, idx] idx = np.argsort(D)[::-1] D, V = D[idx], V[:, idx] except linalg.LinAlgError: raise ValueError("Parameter[B] is not PSD.") # Energy selection / padding idx = np.clip(np.cumsum(D) /
np.sum(D)
numpy.sum